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Divided into three sections, this Compilation contains articles on theoretical and applied
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and information theory. Section 2 includes descriptions of a number of computational
aids that could be used by scientists and engineers; and Section 3 presents mathematical
techniques for design and quality control.

Additional technical information on the items in this Compilation can be
requested by circling the appropriate number on the Reader Service Card included in this
Compilation.
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Technology Utilization Office
National Aeronautics and Space Administration
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Section 1. Statistics and Information Theory

THEORY AND CALCULUS OF CUBICAL COMPLEXES

Combination switching networks with multiple out-
puts may be represented by Boolean functions. A report
has been prepared which describes the derivation and
use of an extraction algorithm that may be adapted to
the simplification of such simultaneous Boolean func-
tions, a problem that often arises in logic minimization
and fault diagnosis.

The algorithms are derived through cubical complexes,
an n-variable, algebraic and topological system that may
be used to represent a Boolean function of n-variables..

The particular problem that motivates the formula-
tion of the extraction algorithm is a “covering™ problem,
i.e.: given a Boolean function, find an equivalent one in
disjunctive form (the logical sum of logical products)
that requires a minimum number of Boolean variables.

Each term of a Boolean function may be represented
as:

a az a
X; Xp .o.Xp "

a. a,
where X '=X, ifa;=1,and X; 1=X{ifai=0

Each vertex of an n-cube (an n-dimensional hyper-
cube) can be represented by the coordinates (a;, a3 ...,
a ) where a, = 0, 1. Thus a one-to-one correspondence
exlsts between the 2™ possible terms of the Boolean
function and the 2" vertices of an n-cube.

In developing the extraction algorithm, several con-
cepts are defined. A O-cube is a single vertex, a 1-cube

consists of two zero cubes that differ in exactly one
place (e.g., 1101 and 1100 which may be written as
110X where X is a free or “don’t care” variable). A
2-cube would be of the form 11XX, and by induction
the collection of r<ubes KT is defined for all r where
0<r<n.

A cubical complex is defined as KO K!, .. K™ and
two operators, the face and co-face operators Several
other operations (a star product, a sharp product, and a
“less than” operation) are defined for us in the extraction
algorithm.

Several types of subcomplexes are defined and, along
with the various operations, are used .in an extraction
algorithm to find a K-cover of minimum cost for a
subset of K. This procedure, then, is analogous to
finding the minimum number of literals and (logical) -
product terms necessary to represent a Boolean function
in disjunctive form.

Source: Marvin Perlman of
Caltech/JPL

under contract to

NASA Pasadena Office
(NPO-11491)

Circle 1 on Reader Service Card.




2 MATHEMATICAL TECHNIQUES

BINARY CONCATENATED CODING SYSTEM

In many instances, data encoding by either delta
(differential) modulation or a fully encoded scale is
relatively inefficient. To understand the approach in-
corporated in each, consider a measurement application
which uses a 1-meter rod divided into 1-centimeter
intervals. If a given length were measured and processed
by nonambiguous encoding, the readout would be a
numerical value of the measured length in centimeters;
that is each centimeter would be numbered. Delta
modulation, on the other hand, measures unit intervals
so that centimeters are not numbered. The user would,
therefore, have to count centimeter lines to obtain the
numerical value of a measurement.

A binary concatenated coding (BCC) system simplifies
many types of measurements by using 3-bit binary
words to count numbers from 0 through 99.

The system utilizes a decade type measurement scale
which is divided into specific intervals. In each decade,
integers 1 through 7 are described by 3-bit data words
expressed in the binary system as 001 through 111,
respectively.

The number 8, normally expressed in binary as a
four-digit 1000, is depicted as 000. Numbers 9 and 10
are coded depending on the decade by binary 2, 3, or 4
for 9and 4,5, 6, or 7 for 10. Thus, 9 described in binary
2 and 10 described in binary 4 would indicate the second

decade, etc. This would correspond, for example, to the
10th centimeter on the meter scale.

In use, this coding is applicable to any measurement
which has an integer scale up to 100. The user who
records a measurement through this coding obtains a
decimal number from 1 through 10 as a 3-bit data word.
This word is the last digit of the recorded value. To
establish the decade (first digit) in which this reading is
taken, he has to scan to the left on the readout and
check the coding of the first 9°s and 10’s that he en-
counters. From this he can deduce the exact measure-
ment value. This technique is highly competitive with
pulse code and delta modulation for slowly vary-
ing measurements where continuous data readout is
desirable. '

This system which uses 6-bit data words can be
expanded to read from 1 to 10,000, and 9-bit data
words can increase the range to 1,000,000. In addition,
the code may be “read” directly by observation after
memorizing a simple listing of 9’s and 10’s.

Source: L. G. Monford, Jr.
Johnson Space Center
(MSC-14082)

Circle 2 on Reader Service Card.

ESTIMATING TIME TO RESTORE SERVICE IN A MULTICOMPONENT SYSTEM

This numerical technique reduces the complex statis-
tical data describing a multicomponent system. It is
used to obtain the expected value of an ordered
statistic germane to a mixture of multiple-exponential
distributions.

Specifically the technique is used to analyze systems
in which if just one part fails, the whole system fails; and
it is used to determine the “time to restore” service in
such a case. An example is the range support equipment
at a missile test facility.

The statistical technique evaluates the time required
to repair components of different types and, thus, the

time to have the whole system working by using the
distribution of the nth-order statistic in a random
mixed sample.

Source: H. I. Patel of
University of Georgia

under contract to

Marshall Space Flight Center
(MFS-20617)

Circle 3 on Reader Service Card.




STATISTICS AND INFORMATION THEORY

VALIDITY TEST FOR LINEAR ERROR ANALYSIS

In linear, nonsequential, error analysis, batched data
are used to obtain estimates which have the minimum
error consistent with the completeness and accuracy of
the data. This method is frequently compared to the
more lengthy Monte Carlo technique. Under certain
circumstances the two techniques are equivalent with
the most important factor for equivalence being con-
vergence. To determine whether the estimation process
simulated by linear error analysis will converge, a new
criterion, based on an extension of classical observa-
bility, has been developed. The particular application of
this technique is with groups of batched navigation data
where the statistics of the estimation errors are derived
with classical minimum-variance methods.

The extended observability describes the extent to
which the navigation is estimating the real world. The
error ellipsoids are described by an asphericity factor.
This factor measures the extent to which the shape of
the ellipsoid is distorted from a spherical configuration.
The extent to which the true error ellipse is represented
by the estimated error ellipsoid is related to the observa-
bility. For instance, if the major axes of the ellipses are
colinear, the overlap and thus the observability will be
excellent; if the major axes are at right angles, the

observability will be poor and the possibility of an error
in the estimate will be greater.

Since alinement of the axes provides the most
favorable observability, it can serve as the basis of the
observability criterion. From the normalized asphericity
factors, orientation of the axes may be obtained through
a “sphericity transformation”. From the transformation
matrix a single, normalized “observability parameter”
can be defined. This parameter has a value of 1 for
maximum observability, O for neutral observability, and
is negative for degraded observability.

If degraded observability is indicated, a failure like-
lihood test must be applied. The probability that error
may arise depends on the distribution of the real and
estimated errors, and may be calculated by a method
using the orientation of the ellipses and existing tech-
niques.

Source: L. S. Diamant of
TRW, Inc.

under contract to
Johnson Space Center
(MSC-14378)

Circle 4 on Reader Service Card.

A GENERALIZATION OF THE WEIBULL DISTRIBUTION

The two-parameter Weibull distribution (with origin
at zero) and the three-parameter version (with origin
at y) are widely employed as statistical models in
connection with life testing.

A new four-parameter generalization of this distri-
bution provides a more versatile model, for life studies
and related investigations. The technique develops ana-
lytical estimators of parameters, using maximum-likeli-
hood estimators, moment estimators, and alternate
estimators based on the first three moments and the
first-order statistic.

This technique can be used to analyze the béhavioral
characteristics of complex operating systems, and in
quality-control and product-testing applications for the
electronics and automotive industries.

Source: A. C. Cohen of
University of Georgia

under contract to

Marshall Space Flight Center
(MFS-20612)

Circle 5 on Reader Service Card.




4 MATHEMATICAL TECHNIQUES

A METHOD FOR EXPANDING MULTINOMIALS FOR ANY NUMBER OF VARIABLES

A method has been developed for expanding multi-
nomials to any order for any number of variables. The
system can be easily implemented on a computer.
Multinomials can be expanded using the binomial
theorem or the multinomial theorem. A binomial
expansion results in a very cumbersome equation,
containing many summations. The multinomial expan-
sion is a more manageable expression, but there is no
provision for selecting the R numbers in the multi-
nomial expansion formula:

A.

| R X!

(XI+X2+ e XR)=2N' n—
i=1 A}l

where the sum is taken of R numbers from O to N, such
that
R
N=X A
i=1

An alternate way of choosing values for

I

is to construct all methods for putting N objects into
R boxes, where A, is the number of elements in the ith
box. Thus the problem is solved by a program which will
expand multinomials for any number of variables by
using a set of recursive formulas that will generate all
possible choices of

e

R

i=1

Source: G. M. Engel of

IBM Space Systems Center
under contract to

Marshall Space Flight Center
(MFS-91750)

Circle 6 on Reader Service Card.

SIMPLIFIED METHOD FOR FINDING ESTIMATORS IN
CURTAILED ATTRIBUTE SAMPLING

A simplified method has been developed for delivering
the maximum-likelihood estimation (MLE) of the frac-
tion defectives, and of the average sample number
(ASN), in single curtailed sampling. Obtaining estimators
can be simplified, by choosing the number of items
inspected as the basic random variable rather than an
artificial variable.

The MLE (p), based on inspections'from a sequence
of m lots, is the ratio of the number of defectives found
to the total number of items inspected. The symptotic
variance of this estimator is approximately

- A m
p1-P) T,
i=1
m
where > Y;

i=1

is the total of all items inspected.

The estimator is used for fraction detection in lot-
attribute sampling plans, where sampling is discontinued
when the lot is either accepted or rejected based on a
specified number of defectives. :

Source: A. C. Cohen of

The University of Georgia
under contract to

Marshall Space Flight Center
(MFS-20363)

Circle 7 on Reader Service Card.




STATISTICS AND INFORMATION THEORY

INFORMATION RETRIEVAL FOR NONSTATIONARY DATA RECORDS

Most random time series recorded in a natural
(uncontrolled) environment, such as the atmosphere,
are affected continuously by the variations of the
environment. These time series are statistically non-
stationary. A compendium of the present techniques
provides a working approach to the problems of
analyzing nonstationary random data in determining
trends, periodic components, and stationary random
time series.

Three types of approach are given, the first being the
classical theory of stationary time series. Statistical
quantities such as mean, correlation, and spectrum are
defined much the same as for stationary time series,
except that an additional time or frequency parameter
is introduced.

The second approach follows the model-construction
method by assuming that the nonstationary time series
consists of a slowly-varying trend, a periodic component,
and a stationary random component. The basic strategy

of this approach is to split the nonstationary time series
into its components and then to analyze each component
separately. In the third approach, which is a further
refinement of the first approach, an optimum filtering
operation is derived and performed on the double-
parameter correlation, or spectrum function, obtained
from the ensemble average.

A new algorithm for splitting nonstationary time
series is presented as applied to the analysis of sunspot
data.

Source: M. Y. Su of
Northrop Corp.

under contract to

Marshall Space Flight Center
(MFS-21929)

Circle 8 on Reader Service Card.

USING BAYESIAN STATISTICS TO ASSESS RATE-OF-COMPONENT FAILURE

Bayesian Statistics are used for early assessment of
component failure rates. The classical method, T/n
(where T is the component time and n is the number of
failures), is often useless for the assessment, until a
large quantity of data is available for the component in
question. The Bayesian approach offers a better method,
since it determines failure rate with limited test data.

Given a prediction which is reliable to the extent that
m/2<m<2im with reasonable certainty, where m is the
predicted component MTBF (mean time between fail-
ure), a reasonable assumption of Bayes’ estimate of m
(the true component MTBF) is

m+T/4
1+n/4

A
m=

where m is the assessed component MTBF.

The method allows the determination of equipment
reliability tests for both commercial and military speci-
fications, in pyrotechnics, navigation, ASW detection,
appliances, and automotive parts, for example. Con-
siderable cost savings result, since it is cheaper to
correct potential failures than to incur the expenses of
a system breakdown.

Source: R. M. Sireath, Jr., of
The Boeing Company

under contract to

Marshall Space Flight Center
(MFS-14749)

Circle 9 on Reader Service Card.




6 MATHEMATICAL TECHNIQUES

SENSITIVITY COEFFICIENTS GENERATED
FOR USE IN DESIGNING MATHEMATICAL MODELS

Methods have been developed for the generation of
first- and second-order sensitivity coefficients. The
input/output relationship of the coefficients must be
describable by a linear, ordinary, constant-coefficient
differential equation of the following type:

a (j_n_c+an_l d Loy .tapdetanc
dth dath—1 dt

n n—1
bn(_i_l""bn_ld 1[+...+b1(_j_r+b0f
dt" den— dt

The coefficients of the equations may be functions of
the system parameters, and the order of the numerator
dynamics may be as great as the order of the denomi-
nator dy;lamics. It is shown that the first-order sensi-
tivity coefficients with respect to each parameter, pj,
=1, 2, ..., k, may be generated as linear-combinations
of the signals present in the system and one sensitivity
model. The generation of the second-order sensitivity
coefficients with respect to each parameter pj may be
accomplished with k+1 sensitivity -models in addition to
the system model.

The first- and second-order output sensitivities may
be used for the purpose of generating the first- and
second-order sensitivities of a class of cost functionals.

The cost sensitivities in turn are utilized for the purpose
of determining parameter sets which yield a relative
minimum in the cost functional.

An s-domain proof (Laplace transform) of the often-
noted symmetry and complete simultaneity property of
the first-order state sensitivities of a system in the
companion canonical form is given. This proof is
extended to the second-order state sensitivities.

As a result, the second-order state sensitivities with
respect to any given number of system parameters may
be generated utilizing two sensitivity models instead of
k+1. Furthermore, the system need not be in the form
of the equation. Removal of this$ restriction means that
one does not need the transfer function between input
and output. The system may be simulated in any form
desired.

Source: C. L. Phillips of
Auburn University

under contract to

Marshall Space Flight Center
(MFS-21110)

Circle 10 on Reader Service Card.




STATISTICS AND INFORMATION THEORY

PROBABILITY DENSITY FUNCTIONS IN COMPUTER DESIGN

Mathematical techniques based on probability models
and the algebraic manipulation of probability density
functions are necessary tools in designing complex
information-processing systems. A procedure, superior
to approximate methods and recommended for com-
puter implementation, was developed at the Marshall
Space Flight Center for work on a general-purpose
spaceborne digital computer.

Two basic problems are considered:

1. Let p(x) be the probability density function of a
random variable x; and y(x) an analytic, uniquely
valued, and otherwise arbitrary function of x. Find
the probability density function of y.

The problem may be solved by a transformation

Z p(x(i)) (3_;)- | dy

i=1(1)k “x=x!

p(y)dy =

2. Let p(xy), k'= 1, (1), n be the probability density
functions of a set of random variables, x, k = 1, (1),
n; and let z = @(x; X2, ... X} ), where z is an analytic,
uniquely valued, and otherwise arbitrary function of
(x1X2, - Xy ). Find the probability density function
of z.

The problem may be solved by a composition rule:

(x,) d
D)= 'én Py(xy) dxy

l% dxj

where the product is taken over all n values of k and j is
an arbitrary index between 1 and n. The integration
manifold R is defined by R = SNC, where C is the
manifold defined by ¢ (x) = z = constant and S is an
n-dimensional manifold of certain points of x.

Proofs, examples, and several applications of these
two methods are discussed. The technique is particularly
applicable to computer design and error analysis.

Source: B. G. Grunebaum of
Computer Sciences Corp.
under contract to

Marshall Space Flight Center
(MFS-20611)

Circle 11 on Reader Service Card.




Section 2. Algorithms and Computational Aids

BINARY, OCTAL, AND HEXADECIMAL CONVERTER

Pin in
Reset
Position

Number-System Converter

A simple mechanical device has been developed for
the interconversion of numbers in the binary, octal, and
hexadecimal number systems. This converter (see figure)
consists of a block with 12 pins or keys. The positions
of the keys are labeled with several scales, each of which
is associated with a particular number system.

Numbers are converted from one system to another
by pressing down a combination of pins. The conversion
then may be read from the value of the positions
indicated on the appropriate scale.

The converter is based on the binary number system,
and each pin represents the set/reset states of a binary
bit; i.e., set or “1” when the pin is pressed down, and
reset or “0” when it is up. The positions of the pins
give a direct readout of the binary number at the top of
the scale.

Programers, who often need to transform binary
information into another number system, will find this
converter especially useful. It can be manufactured
inexpensively from plastic by a conventional molding
process.

Source: J. M. Lee of
Philco-Ford Corp.
under contract to
Johnson Space Center
(MSC-12595)

Circle 12 on Reader Service Card.




ALGORITHMS AND COMPUTATIONAL AIDS

CURVE FITTING TO REDUCE CALCULATION TASK

Tests and experiments often yield data points for
which two parameters vary nonlinearly with a third pa-
rameter that cannot be directly measured. No standard
technique exists for relating three such parameters math-
ematically, as would be needed if they were used for a
computer calculation.

The previous method has been to graph the relation-
ships between the nonmeasurable parameter and one
other, and to then read off data points which are fed
into a computer in tabular form. The computer then cal-
culated the values of the nonmeasurable parameter for
the given values of the other two. Because of the non-
linear characteristic of the data graph and the usual wide
separation between data points, accuracy has been very
limited with this technique.

Instead, the nonmeasurable empirical parameter can

" be expressed as a continuous function of the two meas-
urable empirical parameters. The continuity means that
linear interpolation no longer need be used to determine
dependent variables of nonlinear functions.

Three-Variable Functions Y = f (X, Z)

The relationship may be understood by referring to
the figure. A least-squares expression is derived between
Xand Y for each value of Z:

Eg., forZ): Y =Agp+A[ 1 X+Ay X2 ... +A XD
.V = 2 n
for Z2 Y= A02+A12X+A22X e +An2X

As Z varies, the values of the coefficients vary, usually
as a smooth function of Z. Each coefficient may there-
fore be expressed as a function of Z, which may be ob-
tained by another least-squares fit: '

E.g., AO = B00+BOIZ+B02ZZ e +BOmZm
Ay =Byy*B Z+B ,Z% ... 4B, Z™

These are then combined to produce an expression relat-
ing all three parameters:

— m .
Y = (Bog*BgZ - . . By Z™)+(B1otB {Z - -
m
B Z™X+ .. +B *B(Z ...
Myl
*BmZ X

When working with data that follow logarithmic
curves, individual curves may be fitted as Ajjln X.
Likewise the equations for the Ajj may be reset in
logarithmic form when that procedure results in a
more accurate fit.

This method can be particularly helpful where limited-
capacity computers are used, such as with automatic
quality-control systems or programable calculators. In
addition, the technique is not limited to empirical data.
For instance, tables used as input data (such as tempera-
ture and pressure tables for thermodynamic calcula-
tions) could be stored in equation form rather than as
tables.

Source: D.R. Saucier, Jr.
Johnson Space Center
(MSC-13406)

No further documentation is available.




10 MATHEMATICAL TECHNIQUES

A METHOD FOR RAPIDLY EVALUATING THE LINEARITY OF CALIBRATION DATA

A simple technique is presented for determining
whether or not a set of five data points lies within a
specified close tolerance of a linear fit.

The following theorem, which justifies this tech-

nique, will be proved: Define two arbitrary constants,

T and C. Select data points (Xi, Y;) with i = 1,2,3,4,5
which have the property

Xt -X;=C. (1

Let f(X) = agta;X be the least-squares linear fit to
these data (regression of Y on X). If g(X) = botb; X is
another line which has the property

Y, —&(X) < T/1.6 for all i, 2
then Y; —f(X) < T forall i. 3)
Consider the following situation. A calibration check

is run on amplifier modules with a linearity tolerance
of 0.25% of the full-scale output. The input signal is

Ful-Scale Graph of Data Points and Retference Line

10 -4

5 -
/
0 ' e d 4
T M ¥ L] v
1 2 3 4 5
Difference Between Y. and
X. Y. Corresponding Point on
! ! Line
1 6 +1
2 7 -1
3 12 +1
4 12 -2
5 16 -1

Figure 1. Sample Data Set

Difference Plot and Least-Squares Straight-Line Fit

+3 =
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x
34
Fitted
N Difference .
X Difference By Method of Residual
Least-Squares

1 +1 0.6 0.4

2 -1 0.1 -1

3 +1 —0.4 K

4 -2 —09 -1.1

5 -1 -0.4 04

Figure 2. Difference Plot

increased in five equal steps. Full scale output is
approximately 5 V (tolerance 0.0125 V). The expected
results follow:

Coded

Nominal
Input Output
0 0.00V
1 125V
2 250V
3 375V
4 500V

A logical first step to verify acceptable data linearity
is to plot the points and see if a line can be drawn to
bring the points within tolerance. In this case, how-
ever, if a graph is plotted using a scale of 1 V: 2 in., the
tolerance is only 0.025 in., less than 1/32 in. Thus,
plotted on 8-1/2 x 11 in. graph paper, the tolerance in
question is barely discernible. To avoid this problem
of scale, a difference plot is used.



ALGORITHMS AND COMPUTATIONAL AIDS 11

Figure 1 presents a sample data set (chosen delib-
erately to exaggerate certain aspects of difference plots)
in tabular and graphic form,. together with an ap-
proximately fit reference line: Y = 2+3X. Figure 2
shows the difference plot, a graph of the vertical
separation of each point from the reference line. These
differences may be ploited on a magnified scale, to
allow easy display of discrepancies otherwise too small
to see. The line plotted on Figure 2 is the least-squares
best fit to the difference data

h(X) = 1.1 —0.3X @

In general, the least-squares line h(X) fitted to a
difference plot is related to the reference line g(X)
used to determine the differences and to the least-
squares line f(X) fitted to the raw data, by the relation-
ship ’

f(X) = g(X)th(X). )

Thus, in this example, f{X) may be computed from the
sum

g(X) =2.0+3.0X
h(X) =1.1-0.3X
f(X) =3.1427X

Worst-case analysis was used to obtain the constant
1.6 which appears in equation 2. Let the tolerance on
the y-distance be unity. Then the worst case of a line
within tolerance exists when each of the five points is
at the maximum distance of 1 from the reference line.
There are 32 such cases, but, because of the condition
of equation 1, imposed on the independent variable,
certain of the 32 difference patterns possess the same
maximum absolute distance of a point from the least-
squares line fit. Identification of identical patterns of
differences reduce to eleven the number of essentially
different cases. Each of these cases is tabulated below,
giving the absolute value of the residual for the farthest
point from the least-squares line.

Maximum
Difference Absolute
Pattern Residual
1 1111 0.0
1 111-1 1.4
1 1111 14
1 1 1-1-1 038
1 1111 1.6 greatest maximum residual
1 1-11-1 1.2
1 1-1-11 1.2
1-111-1 14
1-11-11 1.2
1 -1-11-1 1.4
1 -1-1-11 1.2

Since the greatest (absolute) y-distance of one of these
points from a least-squares line is 1.6, the theorem,
stated in equations 2 and 3, is proved. Note, however,
that the theorem provides a sufficient, but not a
necessary condition.

With this background, the amplifier module cali-
bration data may be evaluated. The tolerance is ad-
justed to 0.0078 V (0.0125/1.6). A standard form is
used to make difference plots of the calibration data.

If a line can be drawn on the difference plot which
passes within 0.0078 V of each data point, the linearity
requirement is satisfied. If no such line can be drawn,
judgement is deferred, and the part is held for further
investigation.

This technique has been successfully applied to
reduce delays in a large-scale testing program. About
95% of a large group of amplifier modules which were
evaluated using this technique, were accepted without
waiting for computer curve fits.

Source: Frances A. Norton Bari of
The Boeing Company

under contract to

Marshall Space Flight Center
(MFS-14834)

No further documentation is available.
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GRAPHING THE CUMULATIVE DISTRIBUTION FUNCTION
FOR THE PRODUCT FUNCTION
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Figure 2. Cumulative Probability Distribution Function for
Function of Normal-Distribution Random Variable(s)

A graph has been created that shows the cumulative
distribution function (cdf) for the product of two
independent normally-distributed random variables, each
having zero mean and a unit standard deviation. The
graph can be used to find the probability that a
positive or a negative deviation of the product variable,
as large as or larger than a specified deviation, will
occur by chance.

This explicit evaluation for the cdf, previously
unrecorded, is now readily available in graphic form
(see the figure for an example). It can be helpful

in statistical analysis where normal random variables
arise.

Source: D. Carden of
Rockwell International Corp.
under contract to

Marshall Space Flight Center
(MFS-16835)

Circle 13 on Reader Service Card.
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A LINEAR PROGRAMMING MANUAL

This manual, Linear Programming Primer, presents a
lucid and useful introduction to linear programming and
discusses the use of a computer (the Univac 1108) to solve
linear programming problems. The manual can be under-
stood by readers familiar with mathematics at a high
school algebra level.

The first part introduces vector spaces and convex sets
and presents those elements of matrix algebra used to
solve a system of simultaneous linear equations.

The second part introduces the linear programming
(LP) problem, Several examples (such as the diet problem,
which seeks the most economical way to get a minimum
requirement of vitamins A, C, and D from a diet of milk,
beef, and eggs) are followed through in stages. The
problems are restated in a useful form; the equations and
matrices are set up; the solutions are analyzed; and the
simplex method is used to obtain the “best” solutions.
Restraints, slack variables, and maximized and minimized
solutions -are also explained in this discussion.

The third and last part of the manual explains how to
use a computer to solve the same problems which were
discussed in “long-hand” in Part Two. Only the most

‘elementary knowledge of computers is needed to under-

stand the presentation. In this section, the dual problem,
reduced cost analysis, ranges, and error- analysis are also
presented.

The entire manual presents a practical view of linear
programming. It avoids excursions into theory and con-
centrates on providing the background needed to under-
stand and solve most LP problems.

Source: Richard C. Tuey of
Informatics, TISCO, Inc.
under contract to

NASA Headquarters
(HQN-10743)

Circle 14 on Reader Service Card.

AN ALGORITHM FOR FINDING THE GENERALIZED INVERSE OF A MATRIX

A detailed paper reviews the concept of a generalized
inverse and introduces a computer algorithm for its
‘determination. ’

With this algorithm, additional rows or columns are
adjoined to the initial matrix. Then the generalized
inverse of the composite matrix is determined, as a
simple modification of the generalized inverse of the
initial matrix.

This technique is of particular value in estimation
theory. It can be used with curvefit and estimation
procedures when new data or constraints are adjoined
on subsequent computational passes. In general, alternate

methods only approximate the pgeneralized inverse.
Furthermore, this system has a built-in tolerance that
allows the use of imperfect computational models.

Source: R. C. Jackson of
TRW Systems Group

" under contract to
Johnson Space Center
(MSC-13458)

Cir(,'le 15 on Reader Service Card.




14

MATHEMATICAL TECHNIQUES

EULER COMPUTER
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A sophisticated circular slide rule has been developed
for computing Euler angles almost instantaneously.
Conventional methods, such as unit sphere analysis,
require a mathematical background and are time-
consuming. In addition, existing calculators have re-
stricted usefulness. The Euler computer has the following
advantages:

(a) it provides an unrestricted sequence of