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ACOUSTICS OF ATTACHED AND PARTIALLY ATTACHED FLOW FOR

SIMPLLFIED OTW CONFIGURATIONS WITH 5:1 SLOT NOZZLE

by U von Glahn and D. Groesbeck

Lcwis Research Center

ABSTRACT

The acoustics of simple engine over-the-wing config-	 ► ons, with
complete and partially attached jet flow to the shield: 1',	itface were

studied at model scale. Tire nozzle usea consisted of a 5:1 slot nozzle

(equivalent diameter, 5.1. cm) operated at a nominal jet bL1ch number of

0.6, with the flow directed parallel to and of angles up r,, 10 0 toward

the shielding surface (flat board). The shielding length of the surface

was varied from 15 to 54.4 cm, and the nozzle height above the surface

was varied from U to 4.45 cm. The flow field at the trailing edge of
each nozzle/surface configuration was mapped. The aerodynamic results

indicate that, with attached flow, the jet flow field is stretched in the
flow direction resulting in locally higher velocities than those for par-
tially attached flow or nozzle only flow. The stretching of the flow

field increased the noise levels for the attached flow cases compared toapsI	 those with only p — tially attached flow. With attached flow, the shield-

w	 ing benefits were 6ubstantially reduced compared with fully detached flow.

Increasing the impingement angle of the jet flow from O o to lo o genErally

caused the noise levels to increase in the mid and high frequencies. The

noise increase was sufficiently broadband that the jet noise shielding

benefits were noticeably reduced.

INTRODUCTION

In order to help meet acceptable community noise standards for

future short takeoff and landing (STOL) aircraft, the engine exhaust noz-
zles can be placed over the wing (OTW) as shown schematically in Fig. 1.
With such a configuration, the ground observer is shielded by the wing

from some of the Engine jet noise radiated to the ground.

In a STOL-OTW configuration the jet flow is required to attach to

the wing and flap surfaces. The interaction of the jet flow with the
shielding surface causes low frequency noise in excess of that normally
associates with nozzle-only jet mixing noise (.Ref. 1). This low fre-

quency jet-surface interaction noise also occurs when the jet flow is

only partially attached to or even completely detached from the surface,

as was shown in Ref. 2. The interaction noise is caused by trailing

edge noise due to jet flow interaction with the trailing edge region
and jet flow scrubbing noise (also called fluctuating lift noise). A

typical STOL OT's configuration noise spectrum is shown in Fig. 2. Cur-

rent b.liefs, not completely substantiated by theory and experiment, are

that the noise in the very low frequency region (400 Hz range) is caused



by the fluctuating lift noise source (noise source 1), while that in the
mid-frequency range (125U Hz range) is caused by trailing edge noise
(noise source 11). In the high frequency range, the shielding surface
attenuates the jet noise by the principle of barrier shielding; the
amount of shiel ,^ing depends on a variety of factors including surface
length, nozzle configuration, and nozzle size (Refs. 1 to 4).

In Ref. 1, the jet-surface interaction noise sources and jet noise
shielding benefits were empirically related to the geometry of the con-
figurations (shielding surface length, nozzle size, nozzle height above
the shielding surface, etc.). In the present work, an effort is made to
relate the changes in noise level and frequency caused by changes in
STUL-OTW configuration geometry to the flow field characteristics normal
to the surface at the trailing edge of the shielding surface. This study
is aimed prim.. ^Ily at the cases of attached and partially attached flow
to the shieldir,	 rface, although the case of unattached flow will also
be considered.

The study, conducted at the NASA Lewis Research Center, was made
with a model scale, 5:1 ratio slot nozzle (2.03 cm height and 10.2 cm
width) and a simple flat plate that simulated an airfoil. The shielding
length of the plate (measured from the nozzle exhaust plane) was varied
from 15 to 54.4 cm and the plate had a span of 01 cm.	 he nozr.le exhaust
flow was normally parallel to the surface, with the nozzle height from
the surface being varied from U to 4.45 cm. For a nozzle height of
0.95 cm from the surface, the nozzle also was canted toward the surface
by up to IUo.

Mach number contour maps at the trailing edge location were obtained
for all nozzle-surface configurations as well as the nozzle only. From
these, the Mach number (velocity) profiles at the nozzle centerline were
obtained at the trailing edge. Acoustic data were taken only at 90 0 to
the surface, since previous studies had shown little variation of STOL-
OTW configuration overall sound pressure levels with direccivity angle
(Refs. 1 and 2). A jet velocity of 203 m/sec was used to obtain all test
data (the effect of jet velocity on STOL-OTW co afgurations acoustics is
given in Refs. 1 and 2).

APPARATUS AND PROCEDURE

Facility

The noise tests were conducted out-of-doors within the 7 . 15 m court-
yard of a subsonic wind tunnel at the Lewis Research Center. A schematic
sketch of this faeil.tty is shown in Fig. 3. Pressurized air at about
292 F was supplied Lo a 15.2 cm diameter plenum by twin diametrically
opposed supply lines. Airflow through the overhead supply line was meas-
ured with a calitrated orifice. The nozzle inlet total pressure was
measured with a single probe near the plenum exit flange. Perforated
plates and a muffler were locate.l in each system to remove valve noise.

__
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In addition, a bundle of tubes was placed in the plenum to straighten the
air flow before it reached the entrance to the nozzle. These devices
were located well upstream of the nozzle, open-cell foam pads were
placed on the ground and walls to minimize ground reflections,

Sound pressure level (SPL) spectra were obtained using a 1,27-cm
diameter condenser microphone with wind screen. Data were recorded at
900 to the jet axis at a 3.05 meter radius. The noise data were recorded
on an FM tape recorder and digitized by a four-second time averaged one-
third octave band spectrum analyzer. The analyzer determined sound pres-
sure level spectra in decibels referenced to 2*10 -5 N/m2.

Jet Mach number (velocity) profiles were obtained at the downstream
trailing edge of the shielding surfaces. Measurements were made with a
traversing pitot static tube. The pressures measured were transmitted to
an x-y-y' plotter which yielded dire-:t traces on graph paper of the total
and static pressure distribution across the jet (Ref. 2),

Acoustic and aerodynamic data were taken at a nominal jet velocity
of 203 m/sec (Mj = 0.6).

Models

The test nozzle consisted of a 5:1 slot nozzle with an equivalent
diameter of 5.1 cm (Fig. 4(a)).

The jet noise shielding surfaces consisted of simple, flat boards
(0,95-cm thick plywood) of 61-cm span and surface lengths downstream of
the exhaust nozzle of 15.0, 26.,4, and 54,4-cm (Fig. 4(b)). The shielding
surface length upstream of the nozzle exhaust plane was C.,6 cm, (In
Ref. 2, it was shown that airfoils with flaps retracted and simple t•oards
produce substantially the same acoustic signature.)

Most of the data were taken with the nozzle jet flow directed par-
allel to tht flat plate shielding surface. The nozzle height above the
surface was vaiied from 0 to 4,45 cm. Some data were also taken with the
nozzle canted at . o and a loo toward the surface with a nozzle height, h,
of 0.95 em. A summary of the geometric variations is tabulated in
Fig. 4(b).

AERODYNAMIC DATA

The flow contours, in terms of constant Mach number lines, normal to
the surface and in a spa-.,wise plane at the trailing edge are shown in
Figs. 5 to 8. The data shown are for nominal nozzle heights, h, of 0
0.95, and 4„45 cm above the surface and shielding surface lengths of
26.4, and 54,4 cm (see Fig. 4).

Effect of nozzle height, - The effect of increasiug the nozzle
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height from the shielding surface is shown in Figs. 5 to 7 for shielding
surface lengths of 15, 26.4, and 54.4 cm, respectively. Also shown in
these figures is the effect of canting the nozzle 10 0 toward the s•-irface

with a nozzle Height of 0.95 cm. With the shortest surface length
(Fib. 5), the Mach number contours were substantially oval in shape for

all nozzle heights above the surface. In general, the thickness of the
jet flow normal to the trailing edge increased somewhat with increasing
nozzle height. With a larger shielding surface length of 26.4 cm, the
shape o' the flow field became more D-shaped than oval when the nozzle
was on or close to the surface (Fig. 6). With a nozzle height of 4.45 cm

from the surface, the flow field was still oval. Finally, with the long-
est shielding surface length of 54.4 cm, the flow field approached a

semicircular shape when the nozzle was on or close to the surface
(Fig. 7). With a nozzle height of 4.45 cm, the flow field for this sur-
face length was substantially circular in shape (Fig. 7(b)).

Comparisons of the Mach number contour plots shown in Figs. 5 to 7
indicate that with decreasing nozzle height, particularly with shielding

surface lengths of 26.4 and 54,4 cm, the peak :Mach number increases. For

example, in Fig. 6, the peak Mach number for a nozzle height of 4.45 cm
is 0.53 (Fig. 6(b)), whereas with the nozzle flush on the surface the peak

;fah number is about 0.6 (Fig. 6(a)).

Eliect of nozzle canting. - In the (d) portions of Figs. 5 to 7 the

effect of canting the nozzle lo o toward the sui`ace on the Mach number

contour plots is shown side by side with the parallel flow plots ((c)
portions of figures). Both sets of contours were obtained for a nozzle

height above the shielding surface of 0.95 cm. It is apparent that cant-
ing the nozzle spreads the jet flow spanwise along the trailing edge to a
much greater extent than that with the nozzle parallel to the surface for

all surface lengths. Furthermore, the height of a given Mach number con-
tour line above the surface is decreased when the nozzle is canted com-

pared to a parallel nozzle orientation to the surface. However, it is
also apparent that the canting of the nozzle by lo o had only a small ef-
fect on the peak Mach number at the trailing edge for each shielding sur-
face length.

Effect of shielding surface length. - The Mach number contours ob-
tained with the nozzle flush to the shielding surface at the various sur-

face lengths are taken from Figs. 5(a), 6(a), and 7(a) and reassembled
in Fig. B to illustrate the typical effect of shielding surface length
on the flow field at the trailing ed be of the plate. The change in shape
of the contour map from an oval shape to a D-shape is apparent. Also,

the increase in the profile height for constant Mach number contours, as

well as some increase in overall width of the jet flow is clearly evident.

Tile peak Mach number is seen to decrease with increasing shielding sur-
face length, from 0.6 with a surface length of 15 cm to 0.5 with a sur-

face length of 54.4 cm. Similar trends were observed at other nozzle

heights.

?lath number centerline profiles. - The variation of local Mach num-
ber at the trailing edge as a function of height above the surface (nor-



5

mal to the chord) at the nozzle centerline for several nozzle locations

above the surface and fixed surface lengths is shown in Fig. 9. 7'he
changes in the profiles including the peak Mach number discussed previ-

ously are clearly evident in these plots. Also noted in Fig 9 is the
peak Mach number of the nozzle only at the various surface trailing edge

F:	 locations. Except for the case of the shortest shielding surface

(15.0 cm). the ef fect of decreasing the nozzle height from the surface is

to increase the peak Mach number as previously noted 	 For the shortest

surface, the surface length was not enough to alter the jet flow suffi-

ciently to affect the Mach numl)er decay characteristics of the nozzle
flow. The data show that the peak Mach number in general decreases

with increases in both surface length and nozzle height.

ACOUS'T'IC DATA

The acoustic data herein were obtained at a directivity angle of 900

and are presented in terms of SPL as a function of frequency. The perti-

nent data are given in Figs. 10 to 13 and the data trends are summarized

briefly in the following sections.

Nozzle Only

For reference and comparison purposes, the spectrum for the nozzle

only is given in Fig 10. The curve shown in the figure is faired through

the data and will be used in subsequent comparisons with the nozzle-

surface acoustic data

Nozzle with Shielding Surface

Effect of nozzle height. - The effect of nozzle height from the

shielding surface on the spectra is shown in Fig. 11. Also shown, for
comparison, is the nozzle-only spectrun. With increasing nozzle height

the SPL values in the frequency range --)f 900 to 2000 Hz generally are

reduced, The SPL values in the lower frequency range (200 to 500 Hz)
generally increase with an increase in nozzle height from the shielding

surface. In addition, the shielding benefits, in terms of the differ-

ence between the SPL's for the nozzle-wing and nozzle only (GSPL), gener-
ally are increased with increasing nozzle height above the shielding sur-

face.

Effect of shielding surface length - The effect of surtace length
at several nozzle heights above the surface is shown also by the data

in Fig 11 and illustrated for clarity in Fig 12 for the case of the
nozzle flush to the surface. With increasing surface length the peak SPL

values occur at decreasing frequencies. A second SPL peak occurs in the
200 to 500 Hz frequency range with the 54 4 cm long shielding surface.

When the nozzle is flush with the shielding surface, the peak SPL value
of the spectra decreases with increasing surface length. With a nozzle
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height of 0 95 cm, the peak SPL of the spectra remains substantially con-
stant, although the frequency at which the peek SPL occurs shifts to
lower frequencies with increasing surface length.

In general, increased shielding benefits (greater .^.SPL values at a

given frequency) were obtained at the higher frequencies with incrt< ►ses
in the shielding surface length.

Effect of nozzle cant a ► ,gle. - With increasing nozzle cant angle,
the SPL near the peak SPL values generally increase as shown in Fig. 13.

The increase in peak SPL with nozzle r ant angle amounts to about 3 dB for

the shortest surface length (15 cm) and decreases with increasing surface

length. Furtlitrmore, an increase in SPL with increasing nozzle cant angle
occurs at the higher frequencies resulting in lower i1SPL values, thus re-

ducing the shielding benefits compared with the case of parallel flow.

At the same time, a decrease in SPL occurs at the lower frequencio,,.

These trends are also evident with a shielding surface length of 26.4 cm
and to lesser extent with the longest surface length of 54.4 cm.

CORRELATION OF ACOUSTIC DATA WITH AERODYNAMIC DATA

Analysis

The low and mid-frequency noise increase observed with OTW configu-

rations (Figs. 11 to 13) compared with the noise level of the nozzle only
spectra is caused by two primary noise sources. The spectra ascribed to

t` ►ese noise sources are shown schematically in Fig. 14(a) in terms of SPL
as a function of frequency. The low frequency noise (noise source I in

Fig 14(a)) is currently believed to be associated with the fluctuating
lift noise on the surface, while the mid-frequency noise (nois iource II
in Fig. 14(a)) is currently believed to be caused by trailing . ► ge noise
associated with the jet flow interaction with the shielding surface tr:il-
ing edge	 These interpretations supersede the source identifications

speculated in Ref. 2.	 In Ref. 2, different spectral shapes, based on
curves faired through the data, were proposed for these two noise sources

based on unattached and partially attached flo • - cases associated with cir

cular nozzles and shielding surfaces. For the present study with the 5:1

slot nozzle representative spectral shapes are taken as shown in Fig. 14(b).

These representative spectra differ slightly from those of Ref. 2, partic-
ularly _lie spectrum for noise source II which has a steeper ascending

slope than that of Re'. 2.

Furthermore, in the region of jet noise shielding, the data indicate
the apparent presence of a high frequency jet-surface interaction noise

source that peaks at about 6300 Hz (Fig 11). This noise source could
also be related to fluctuating lift or body forces as discussed in Ref. 5.

Refraction effects at the trailing edge could also be contributing to the
establishment of a noise floor. The data, herein, are insufficient to

permit an evaluation of this possible additional jet-surface interaction
noise source.
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In attempting to analyze the acoustic data trends for attached and
Lartially attached flow in t erms of the jet flow characteristics measured
at the trailing edges of the shielding Surfaces, the flow rela t ed vari-
ables Shown schematically in Fig. 15 appear to be most important. The
5T term represents the jet boundary layer height at the trailing edge
and is specified by the maximum velocity, Um , of the velocity profile
(Mach number prof i le) at the trailing edge of Lite shielding surface. The
`e term defines the effective height of the jet free-shear boundary.
This height is determined by the point at which the local flow velocity
in the free shear layer of the jet is 0.8 U m. Velocities less than this
value of 0.8 Um are considered not to contribute significantly to the
overall noise level.

With unattached flow Lite term 5 F is determined at Lite thickness of
Lite outer jet shear flow boundary at the point where the local velocity
is 0.8 of the maximum local boundary velocity, UF , m, when the jet flow is
completely detached from the surface at the trailing edge. With the
present 5:1 slot nozzle, the value of 6., was obtained by a straight-
line projection along the Mach number '(velocity) profile to an intersec-
tion with the ordinate (zero Mach number). Because the flow field ve-
locity contours are substantially unchanged in shape, when referenced to
the jet velocity (the absolute level of velocity of course, does change
with Uj ), this procedure is assumed to be valia for a wide range of sub-
sonic jet velocities.

Noise s ource I. - On the basis of the acoustic and aerodynamic data,
the following equations were developed empirically to describe noise
source I. The peak sound pressure level, SPLp ,l , is calculated by:

SPLp'l - 97,5 - 10 log Um + 20 log de	 (1)

or, in terms of nozzle height, H, and jet velocity, Uj,

U
SPLp'I = 80.5 + 20 log 

H) 
+ 10 10	 I	 (2)

m/

The terms H and U 	 in Eq. (2) ace introduced to provide dimensionless
parameters for the present work. However, it should be noted that `e
and Um are directly dependent on a characteristic geometry dimension
such as H and a velocity such as Uj , respectively. Furthermore, al-
though not included in the present scope of the work, it is shown in
Ref. 2 that	 SPLp,l is also a function of U 1 , nozzle size etc	 Be-
cause then! terms are constants herein, they Are included as part of the
constant in Eq. (1) 	 In summary, the peak SPL of noise source I is a
primary function of the effective jet free shear boundary thickness at
the trailing edge and the peak veloA ty of the jet flow at the trailing
edge,

The frequency at which SPLp , l occurs was determined as:
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fp,l	 0.22(x ) (L/H)
0.33
	(3)

Noise source 11. - The evai ►iation of suitable parameters for corre-
lating noise source 11 resulted in the following equations. The peak SPL
value was determined by:

SPL 
Poll0 

25 - 10 log 6e + 30 log Um	 (4)

or, in terms of nozzle height, H, and jet velocity, Uj,

U
SPL p II	 94.2 • 10 log V} - ^0 to 

Uj	
(5)

m

The terms H and Uj weie again used to provide nondimensional terms.

Furthermore, according to Ref. 2, the peak SPL for noise source II should

also be a function of Uuj , nozzle size, etc. As noted previously, these
variables were not included herein, and thus constitute part of the con-

stant in Eq. (4) .

Reasonable correlation of the data can be obtained also by the use

Of 6T; however, the agreement between measured and calculated SPL values
is not as good as when 6e is used. The equations when 6T is used are
as follows:

SPL Poll= 22 - 10 log 6T + 30 log Um	 (6)

The frequency at which SPLp .II occurs is given by

U \	 0.33
f ps II	 0.5 

aJ 
(1./H)	 (7)

With the nozzle locatee 4.45 cm above the shielding surface, the

trailing edge velocity surveys had indicated jet flow detachment with the
15 and 26.4 cm shielding surface lengths. (Jat flow attachment is still

indicated for the 54.4 cm length.) The detachment of the jet flow from
the surface causes the level of the interaction noise source I to become

less than that with a nozzle height above the surface of 1.9 cm. As a
consequence, all the equations developed herein for predicting the noise
source levels	 not apply to cases where flow detachment has occurred or
is imminent.

Comparison of Measured and Calculated Spectra

The measured SPL values of noise sourcei 1 and II are compared in

Figs. 16 to 19 with calculated spectra based on hqs. (1) to (5) and (7)
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and the spectral shapes given in Fib. 14(b). - , e solid points in
Figs. lb to l y represent the ant ilogarithmic s-uttactlon of the nozzle-
only SPL values from the nozzle-surtaue SPL values when these noise

sources coincide.	 In general, good agreement in spectral distribution

between the measured data and that based on the empirically developed
model is evident for the entire range of variables included in this
study.	 In particular. it is apparent that the equations account well
for variations in shielding length, nozzle height above the surface (par-
tially attached flow) and canting the nozzle toward the shielding surface

to promote improved flow attachment to the surface.

Jet Noise Correlation in Shielding Region

The data shown in Fig 11 indicate that with increasing nozzle height

above the Shielding surface the amount of jet noise shielding at high

frequencies provided by the surface increases; consequently the SPL

values are reduced =ompared with these for the nozzle only. It was also

demonstrated in t:ef. 2 that when the jet flow is substantially detached
from the surface, no additional shielding benefits are obtained with

further increases in nozzle height from the shielding surface. The in-
crease in :SPL with an increase in nozzle height is correlated herein
by the shielding parameter W. given by

L^fL	
, —

e --	 (8)
1• , nt	 F	 s

where A - 5 s and UF,m are reference values (see Fig. 15).

The correlation of the SPL for the high frequency jet noise shield-
ing region is shown in Fig 20 in t erms of Eq (N). The data are shown
separated by shielding surface length for clarity; the solid curves shown
faired through the data in the figure parts provide the same reference
for the data	 It is apparent that excellent agreement of the acoustic
data has been achieved for all three suttace lengths and nozzle geometry
variations.

In Fig. 21, an example of the variation of SPL and ASPL with the
degree of jet flow attachment to the shielding surface is illustrated.
The curves shown in the figure are based on the aerodynamic and acoustic
data contained herein 	 For the example, a shielding surface length of
26 4 cm was selected. The nozzle-only curve shown tot comparison pur-
poses in Fig. 21(a) was taken from Fig 10.

The maximum shielding benefits, according to Eq. ( S) ate obtained
when the jet flow is completely detached tram the shielding surface;
i.e., 6 e /(6 F - ' s ) - 1 0	 This case is shown in Fig. 21 by the dashed
curves	 (It should be noted that the shape of the OSPL curve in
Fig. 21(b) is the same as that given in Ref. 2 ) The minimum shielding
benefits are obtained when the jet flow is firmly attached to the shield-

T
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ing surface	 'This case is shown by the dash-double dot curves in Fig. 21

which represent a nozzle moun t ed flush to the shielding Gurrace and with

the jet flow parallel to it 	 Similar results were obtained with the noz-

zle mounted 0.95 cm above the surface but canted lo o toward it. With in-
creasing nozzle height above the surface and parallel jet flow to it

(6e /(6 F - 6 8 ) < 1.0), the shielding benefits are increased, in terms of
lower SPL and higher bSPL values.

These latter cases represent partial jet flow attachment to the

shielding surface, with less attachment being associated with greater
nozzle heights abo a the shielding surface. Results similar to those

shown in Fig. 21 also occur with the shielding surface lengths of 15.0
and 54.4 cm used in this study

CONCLUDING ;%F NARKS

On the basis of the present study, it has been shown that the acous-

tics of simple STOL-type OTW configurations with a 5:1 slot nozzle can be

related to the aerodynamic characteristics at the tra'_ling edge of the
shielding surface. However, the limited scope of the present work, with

respect to nozzle size and shape, surface curvature effects, etc., indi-
cate additional work needs to be done to provide more complete acoustic
and aerodynamic parameters. For example, in Ref. 2, a nozzle size param-

eter was required to provide correlation for the OTW configuration shield-
ing data with circular nozzles. A brief comparison of these data with

the present work indicates that the parameter needs to be modified to

include a term that reflects the aspect ratio of a noncircular nozzle.
The present work Indicates that inclusion of the square root of tl ► e as-
pect ratio may provide correlation; however, this must be verified through
tests with slot nozzles raving aspect ratios other than 5:1.

The effect of greater jet flow impingement angles (nozzle cant angle)

on the spectral content of OTW configurations: must also be further evalu-
ated. Tile present data indicate Shat the noise level can be increased

with a change from parallel jet flow to the surface to one impinging at
only loo to the surface. The use of large jet flow impingement angles to

the surface stems from the aerodynamic need to maintain flow attachment

to deflected flap or curved wing surfaces 	 Impingement of the nozzle
flow on the surfaces with an internal (nozzle roof or kick-down angle) or

an external deflector promotes such jet flow attachment. Unfortunately,
the use of tk ► e 100 canted nozzle also reduced t! ► e amount of jet noise
shielding provided by the shielding surface.

NOMENCLATURE

(All symbols are in S.I. units unless noted.)

t	 frequency

11	 nozzle height
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h	 nozzle height above shielding surface

L	 shielding surface length downstream of nozzle exhaust plane

M	 Mach number

SFL	 sound pressure level of nozzle-surface configuration, dB

re 2 . 10-5 N /m2

S?LN	sound pressure level of nozzle only, dB re 2 , 10 -5 N/m2

LSPL	 SPL - SPLN, dE

U	 velocity

d	 jet boundary characteristic dimension

W	 shielding parameter (fL/UF,m)('e/(6F - 68))

I,II	 jet-surface interaction noise source identification

Subscripts.

e	 effective jet free shear boundary

F	 jet free shear boundary height with detached flow

4	 jet

m	 maximum

p	 peak

s	 lower jet free shear boundary height F rom shielding surface

T	 trailing edge of shielding surface
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Figure I - Schematic diacram of courtyard test rig.
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