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INTRODUCTION 

The Grant NGR-06-002-l47, "Theoretical Investigations of Plasma 

Processes in the Ion Bombardment Thruster," is concerned with i) the 

sputtering of the accelerating grid, and the cathodes of the hollow 

cathode and neutralizer discharges, ii) the deposition of the sputtered 

atoms on system components such as the solar energy collectors, and 

iii) the analysis of the thruster discharge. The progress made on 

these subject in the period from 7.1.74 to 8.30.75 is communicated herein. 

A physical model for a thruster discharge is developed consisting 

of spatially diverging plasma sustained electrically between a small 

ring cathode and a larger ring anode in a cylindrical chamber with an 

axial magnetic field. The associated boundary-value problem for the 

coupled partial differential equations with mixed boundary conditions 

is solved in closed form for the electric potential, the electric 

field, current density, and velocity distribution. As a result of the 
6 

Lorentz forces, the plasma rotates with speeds of the order 10 cm/sec 

around the chamber axis. It is shown that at sufficiently large Hall 

coefficients and/or Hartmann numbers i) the radial spreading of the 

discharge is reduced by the external magnetic field, and ii) the dis-

charge fields exhibit an oscillatory spatial structure off the discharge 

axis, e.g., current flows in alternating axial directions. 

By means of quant~mechanical perturbation theory, a formula for 

the number 5(E) of ato .. sputtered on the averale by an ion of 

enerlY E is derived from first principle.. The theory alree. with 

experimental Iputterinl data in the low enerlY relion above the thres-

hold, and leads to the correct sputterinl thresholds. As an appli-

cation mercury-metal atom .catterinl cro ••• ections are deterained 

! 
i 

I 
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by quantitative comparison of the theortetical and experimental S(E)-values 

for sputtering mercury ions and polycrystalline target materials, such 

as As, AUt Co, CUt Fe, MotNbtPt t Tat Tit Wt and Zr. 

The boundary-value problem describing the diffusion of the sputtered 

atoms through the surrounding rarefied electron-ion plasma of ion pro-

pulsion systems to the system surfaces is formulated and treated 

analytically. It is shown that outer boundary-value problems of this 

type lead to a complicated integral equation. Numerical results can 

be obtained by a considerable computer effort. 

The investigations reported herein represent preliminary 

communications. The final version of this work will be communicated 

in form of publications at a later date. 



THEORY OF ROTATING DISCHARGE IN MAGNETIC FIELD 

ABSTRACT 

A physical model for a thruster discharge is developed consisting 

of a spatially diverging plasma sustained electrically between a small 

ring cathode and a larger ring anode in a cylindrical chamber with an 

axial magnetic field. The associated boundary-value problem for the 

coupled partial differential equations with mixed boundary conditions, 

which describe the electric potential and the plasma velocity fields, 

is solved in closed form. The electric field, current density, and 

velocity distributions are discussed in terms of the Hartmann number H 

and the Hall coefficient WT. It is shown that the plasma fields 

exhibit an oscillatory radial structure at sufficiently large magnetic 

interaction parameters Hand WT. As a result of the Lorentz forces, 

6 
the plasma rotates with speeds as high as 10 cm/sec around its axis of 

symmetry at typical conditions. 

_~, ___ --...... ___ .............. _______________ .......J'" 
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In the ion thruster, the plasma is produced by means of a diffuse, 

spatially diverging electrical discharge between a hollow cathode of 

small radius R1 and a circular anode of considerably larger radius R2 

(at the cylindrical chamber wall).l) The field lines of the electric 

current density J and of the confining magnetic field i cross under 

a nonvanishing angle (except at the chamber axis)2) so that the resultant 

Lorentz force J x B rotates the discharge around its axis of s,..etry. 

In steady state, the magnetic body forces in azimuthal directions are 

balanced by viscous forces (boundary layers at the chamber walls). 

Schematically, this is illustrated in Fig. 0 for a much simpler model 

of a discharge between a cathode (Rl) and an anode (R2) in a homogeneous 

magnetic field i (R2» R1, rotation in direction ~). 
o 

In view of the complicated geometry of actual thruster discharges 

and their inhomogeneous magnetic confinement fields,1,2) the steady 

state rotation of a spatially diverging discharge in an external 

magnetic field is analyzed by means of the electrical discharge model 

in a homogeneous axial magnetic field B depicted in Fig. O. The 
o 

analysis is based on the magnetogaadynamic approximation. in which two 

characteristic nondimensiona1 parameters occur, the Hartman number H 

and the Hall coefficient wt, 

The symbols introduced designate the electrical conductivity (0), the 

Viscosity (~), the electron gyration frequency (w), and the electron 

aa.entua relaxation tt.e (t). H and wt ar. a .... ur. for the .tr.nath 

of the Lor.ntz force relative to the viscous friction force and for the 

r.duction of the curr.nt flow 11 tranwver •• to tha :aanetic field lo' 



respectively. Very little is known about the t i,qnliport coefficients 

a, ~,and t for low pressure discharges, except the qualitative 

experimental re.ults that a is anomalously smAll, p is anomalously 

larle, and t is anomalously small. 3) 

Por the above reasons, the dynamics of the rotating di8charge in 

an axial magnetic field will be discussed in terms of the nondtm8n8ional 

parameters H and wt which are treated as variables within their 

value domain of practical interest. H ~ 1 and WT ~ 1. H and WT 

represent phenomenololical parameters since a.~. and T have to be 

obtained by measurements. 

i 
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THEORETICAL FORMULATION 

+ Por a purely azimuthal flow field, v • {O, v(r,z),O}, the plasma 

+ behaves incompressible, V • v • O. Prom the continuity equation, 
+ + 

V • (pv) • v • Vp • 0, it follows then that the density Iradient Vp 
+ is everywhere perpendicular to the flow field v. These staple conditions 

are only approxtmately realized since the intensity of the secondary 

- - 4) flows increases with increasinl Reynolds number R· PM v R/". In 

absence of secondary flows, momentum cannot be balanced completely in 

the z-direction, since 

3p/'az • 0, for 
+ 
v • {O, v(r,z),Ol, 

in accordance with the z-component of the malnetolasdynaaic equation of 

motion. A strictly z-independent pressure field is physically not 

possible, since the axial pressure gradient across the boundary layers 

at the end plates z· tc is nonzero, althoulh lenerally ... 11, 

'aptaz a 0 (boundary-layer ap?lroxtmation for "transverse" pressure 

Iradient).4) 

In accordance with the malnetolasdynaaic equations,S) Oha'. law 

with Hall effect,S) and the conservation equation for the electric 

charle density (V • 1 • 0), the rotating discharle in a homoleneou. 

aaanetic field to is described by the followinl boundary-value 

problem for the azt.uthal velocity v(r,z) and electric potential 

+(r.z) field. (Pil' OJ secondary flow. neslected): 

v212 !t 
-PM ir • - ar + WT G1 8

0 (- oar + v 10 ) • (1) 

a 1 a a2v !t o • "{a; (r ir (rv)] .f- iZ2'l-Gfo(- ar + v 10 ) • (2) 

! .!.. (r !t) + ~ ~. 8 !..!.. (r v) 
r ar ar "1 az 0 r ar • (3) 
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where 

and 

v(r,Z)r_a - 0 t -C! Z ! +c 
o 

v(r,z) • - 0, 0 < r < a z-.c - 0 

[a;(r,z)/3r]r_a - 0, -c ~ Z ! +c 
o 

The boundary conditions (4), (5), and (7) consider that the plasma 

(4) 

(5) 

(6) 

(7) 

does not slip at the walls r - Rand z· tc, and that no current o 

flows into the cylinder wall r • R , respect ively. The boul\';,'1.~ j 
o 

conditions in Eq. (6) tmply that the cathode (Rl) and anode (R2 ) are 

ring electrodes of vanishing radial width, 6r + O[6(r - Rl,l)/2wr -

radial Dirac fun~tion]. The net current flowing through the discharge 

is by Eq. (6) 

Ro 
-2wa J at(r,z - ±c) rdr -

o 3z 

R o 
1 J 

o 
6(r-Rl 2) dr • I < 0 , 

since the positive current (I < 0) flows from the anode to the cathode 

(Fi,. 0). In Eql. (1) - (3), the transverse conductivity is given by 

(8) 

Owing to the dilre,ard of secondary flows, the boundary-value 

problem is linear since v(r,z) and ;(r,z) are described by the 

linear equations (2) - (7). The nonlinear equation (1) deteraine. the 

pre.sure field p(r,z) which does not occur in Eqs. (2) - (3). It 

should be noted that the induced maanetic field has been disre.arded 

under the assUliption that the upetic Ileynold. nuaber 11 lUll, 

a • ~ OIV a «1 • 
• 0 J. 0 

r 
4Ci#S 
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ANALYTICAL SOLUTION 

The characteristic nondimensioaal par ... tars of the "anatolasdynamic 

discharle problem under consideration are obtained by introducinl the 

nondt.en.ional independent and dependent variables, 

where 

p • r/l , O! p ! 1 o 

~ • z/c, -l! ~ ! +1 

, 

Y(p,~) • v(r,z)/v, .(p,~). +(r,z)/+ , o 0 

In teras of the nondt.ensional space variables and fields, the 

(9) 

(10) 

(11) 

(12) 

boundary-value problem defi~d in Eqao (2) - (7) a •• u.ea for Y(p,~) 

and .(p,~) the fora: 

1 a at 2 a2• 1 a (13) - - (p -) + r -. - - (pY) , p ap ap a~2 p ap 

aap l! ;p (pY) ] + a-2 a2y _ H2y • -H2 !! 
a~2 1 1. ap , 

(14) 

whera 

Y(p,~) 1· 0 , -1 ! ~ ! +1 , (15) 
p. 

y(p,~)~.:u • 0 , O!P!l , (16) 

-la.(p,~)/a~J~.±l • 6(p-P2,1)/P , (17) 

[a.(p,~)/apJ 1· 0 , (18) p. 

with P2,l = 12,1/I ?o The Doncli_natonal constanta M, 1,_ Hi ara 

clafined by 

~ 
1, 
1 ;! 
} 
.: 
" '& 
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M-2 - (1 + w2t 2) (lo/c)2 • N-2. (lo/c)2 • 

Hi - (al/~)B~a~ • H2/(1 + w2
t
2) 

r- '1 

(19) 

(20) 

In view of the s~ilarity of the left sides of Eqs. (13) - (14) 

with Bessel's differential equation, Z" + p-1Z' + (k2 - p-2m2)Zm· 0, 
m m v 

for cylinder functions Z (k p), partial solutions of the coupled m v 

inhomogeneous equations are sought in the form, 

where J~(kvp)· -Jl(kvp) and J~(kvP) + (kvp)-lJl(kvP) • Jo(kvp)· 

Substitution of Eqs. (21) - (22) into Eqs. (13) - (14) yields 

(21) 

(22) 

(23) 

(24) 

where the eigen-values kv > 0 are determined by the boundary conditions 

(lS) and (18) al the real roots of the transcendental equation, 

Jl(k) - O. v· 1,2,3, •••• v 
(25) 

ThuI, the general solution of the coupled equationl (13) - (14) obtains 

by linear superposition .1: 

• 
• (p,~) - I J (k p)f (~) (26) 

val 0 v v 

• 
V(p.~) - I Jl(kvp)gv(~) • (27) 

val 

By decoupl1ng Eqs. (23) - (24) one finds for fv(e) and gv(~) the 

differential equations of 4th order, 

i. ' 

1-
AQ 
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(28) 

(29) 

with 

(30) 

g(l;) I;-±l - 0 (31) 

as brandary conditions by Eqs. (16) - (17). In deriving Eq. (30), the 

Dirac function in Eq. (17) has been expanded, 

00 

6(p - P2,1)/P - 2 Ll [Jo(kvP2,1)/J!(kv)]Jo(kvp) • (32) 
v-

In addition to Eqs (28) - (31), fv(l;) 

the uncoupled Eqs. (23) - (24). With 

and g (I;) have to satisfy also v 

(33) 

W :J~ [k2(H2 + N2) + N2Hi2] ± ([k2 (H2 + N2) + N2H2]2 
v± l2 v v 

- 4k~H2N2}~}] ~ (34) 

the general solutions for fv(l;) ~ eWI; and gv(l;) ~ eWI; of Eqs. (28) -

(29), can be written a8: 

sinh w1 I; cosh w1 I; 

fv(l;) - A1v sinh w;v + B1v cosh W;v 

sinh w2 I; cosh w2 I; 
+A v +B v 

2V sinh w2V 2v cosh w2v ' (35) 

sinh w1 I; cosh w1 I; 
Iv(l;) - C1V sinh W~v + D1V cosh W;v 

sinh w2 I; cosh w2vl; 
+C v +1' 

2v sinh w2v 2v cosh w2v • (36) 
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Only four of the ei8ht integration constants A
1V 

••••• D
2V 

for any 

v > 1 are independent; by Eqs (23) - (24). 

and 

where the coefficient determinants of the pairs of correspondin8 

equations in Eqs. (37) and (38) vanish owin8 to Eqs. (33) - (34). 

Upon application of the four relations in Eq. (38), which are 

(37) 

(38) 

equivalen:; to Eq. (37) by Eqs. (33) - (34). and the boundary conditions 

(31). which 8ive 

-c -c =c 2v Iv v (39) 

Equations (35) - (36) become: 

Cy I sinh Cil1vl; sinh "'2vl; I 
fv(l;) - kv.2Ht t °lv ainh "'IV - °2V ainh Cil2V 

Dv I c08h Cillvl; _ ° c08h Cil2Vl; I (40) 
+ kvN2Hl °lv c08h Cillv 2v c08h Cil2v t 



, 
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where 

0i = W2
i - (k2 + H12)N2, i· 1,2 • v v v 

The boundary conditions (30) applied to Eq. (40) yield 

c • v 
kv'N

2
Hi 

J2(k ) 
o v 

[J (k P1) + J (k P2)] 
o v 0 v 

[J (k P1) - J (k P2)] o v 0 v 

Substitution of Eqs. (43) - (44) into Eqs. (40) - (41) gives as 

and 

(41) 

(42) 

(43) 

(44) 

(45) 

l 
! 

1 

! , 
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)( . v 
[
sinh w1 t 
sinh wlV 

(46) 

Equations (45) - (46) form, together with Eqs. (26) - (27), the closed 

form solution of the problem of the rotating gal discharge in an axial 

magnetic field 1 : o 

(47) 

and 

[Jo(kvP 1) - Jo(kvP2)] [COSh wlV~ 

- [wlvOlvtghwlv - w2v02vtghw2vl cosh WlV 

The remaining nondtm..nsional discharge fields t*. - V./Eo and 

j • j/J ara liven in term. of the solutions for t(p,t) and V(p,t)s 
o 

* E • -at/t z 
, (49) 
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at 
J • N(- - + V) r ap , 

where E ., Ic, J • a, Ic ,and N· cia [Eq. (12»). 
o 0 000 

at 
J - --z al; 

(SO) 

If the cathode is in the plane z· -c (I; • -1) and the anode is 

in the plane z. +c (I; • +1), then the reference fields v and , o 0 

[Eq. (12)] are negative, since 1<0. The results are also applicable 

to the case where the anode is in the plane z· -c (I; • -1) and the 

cathode is in the plane z· +c (I; • +1). In the latter situation, the 

reference fields Vo and '0 [Eq. (12)] are positive, since 1>0. 

These explanations hold for magnetic fields pointing in the positive 

z- direction, B >0; v changes its sign if B <0 [Eq. (12)]. 
o 0 0 
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NUMERICAL ILLUSTRATIONS 

As an illustration, the radial (p) dependence of the nondimensional 

discharge fields V(p,t), ~(p,t), E (p,t), E (p,t), and Jr(p,t) has 
r z 

been calculated for I < 0 in the cross sectional planes t· -0.9 

(cathode region), t • 0 (central region), and t· +0.9 (anode region) 

based on Eqs. (47)-(50). The remaining fields Je(p,t) and J (p,t) z 

are simply proportional to J (p,t) and E (p,t), respectively 
r z 

[Eq. (50»). The characteristic (nondimensional) magnetic interaction 

numbers are treated as parameters: 

lilt • 1, 10, 100; H • 1, 10, 100. 

The geometry parameter N is taken to be N. 1 so that M-2 • 1 +w2
t

2, 

corresponding to R • c [Eq. (20)]. The radial positions of the 
o 

cathode and anode are assumed to be: 

The dimensional fields are negative everywhere where the nondimensional 

fields are positive, and vice-versa [Eq. (11)] since v < 0 and 
o 

• < 0 for 1<0 [Eq. (12)]. 
o 

Central Resion, t • 0: In Figs. 1-9, the potential t, the radial 

electric field E, and the azimuthal flow field V are represented 
r 

versus p for t· 0 and lilt· 1, 10, 100; H • 1, 10, 100. The 

• lilt and/or 
extrema of V and E move towards the center p. 0 as 

r 

H are increased. t always decreases from a max~ at p. 0 to a minimum at 

p • 1 [E (p • 1, t) • 0]. It is remarkable that at certain values of 
r 

lilt and H the fields t, E and V exhibit an "oscillatory" radial 
r 

> 
distribution (E <0, V < 0; the oscillation amplitudes of 

r -
• are 

.enerally too .mall to be visible in the • curves). 

"~- .. ~~-----""""-~~---------
------..... 
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The FilS. 10-12 show the axial electric field E versus p z 

~ • 0 and WT· 1. 10. 100; H • 1. 10. 100. It is seen that E z 

is particularly strong in the center. p ; o. and changes repeatedly its 

sign at larger p values, e.g. in an oscillatory manner for larger 

wT and/or H values. This means that the bulk axial current flows in 

a narrow region. p • 0, in the direction anode+cathode, outside of 

which the axial current density J changes periodically its sign. The z 

pronounced maximum of E at p. 0.9, is due to the effect of the 
z 

anode at p. 0.9. ~ • +1 on E in the plane ~. O. 
z 

The Figs. 13-15 represent the radial current density J versus 
r 

p for ~. 0 and WT· 1, 10, 100; K • 1, 10, 100. J vanishes r 

always for p. 0 (symmetry) and p. 1 [J (p • 1, t) • 0]. The bulk 
r 

of the radial current flows in a restricted radial region off the center 

p • 0 (~ • 01). The extremum of J at p. 0.85 reflects the r 

influence of the anode at p. 0.9, ~ • +1 on J in the plane ~. O. 
r 

At sufficiently large values of WT and/or H, J 
r 

flows periodically 

forward and back radially in accordance with the oscillatory radial 

structures of E and the induced electric field - V. r • 

Cathode Resion, ~ • -0.9: 

and V are shown versus p for 

In Figs. 16-24, the fields t, E , 
r 

~ • -0.9 and WT· 1, 10, 100; 

H • 1, 10, 100. which exhibit a radial structure qualitatively similar 

to that of the corresponding fields in the plane t· O. - The FilS. 25-27 

Ihow Ez verlul P for ~. -0.9 and WT· 1. 10. 100; H • 1. 10, 100, 

which il qualitatively limilar to E in the plane ~. O. The Fi,l. 28-
Z 

30 lhow J verlul p for ~. -0.9 and WT· 1, 10, 100; H • 1, 10, 
r 

100, which il qualitatively limilar to J r in the plane ~. O. - Thele 

coaparilonl indicate that the bulk dilcharle r ... inl concentrated 

around the axil p. 0 frca the cathode relion ~. -0.9 to the 

central relion ~. O. It 11 r_rkable that the d1lchar.a doel not 
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spread significantly in radial direction with increasing axial distance 

~ within the interval -0.9 $ ~ $ 0 although the ratio of anode and 

~de Resion, t • +0.9: In Figs. 31-39, ., E ,and V are 
r 

represented versus p for t· +0.9 and wt· 1, 10, 100; H • 1, 10, 

100. One recognize. that the discharge has spread radially, in 

particular at moderate values of wt and H, in the plane t· +0.9 

due to the influence of the anode at p. 0.9 and ~. +1. - The 

Figs. 40-42 show E versus p for 
z 

r; • +0.9 and wt • 1, 10, 100; 

H • 1, 10, 100. For moderate values of wt and H, E is strongest z 

at p ii 0.9, whereas E is strongest at p ii 0 for large values of z 

Wt and/or H. - The Figs. 43-45 show J versus p for ~ • +0.9 r 

WT • 1, 10, 100; H • 1, 10, 100. J r is most intt::nse i) at p ii 0.9 

and 

for moderate values of wt and Hand ii) at p ii 0 for large values 

of wt and/or H. - It is evident that the axial magnetic field 

inhibits the radial spreading of the discharge at sufficiently large 

values of WT and/or H. The discharge bends around toward the 

circular anode of radius P2»Pl in a thin layer 6t close to the 

anode plane t· +1, where 6~ is the smaller the larger Wt and/or 

Hare. 

n,e ,bovp re.ult. are readily applic.ble to ordinary den.e 

di.charges with known tr.n.port properties. An application of the 

theory presented to the thrulter di.charge i. more difficult, lince 

the ".nomalou." tr.n.port proper tie. (",a,T) of low density di.charle 

pl..... .re not known. Other complic.tion. .rile from the prelence of 

the b.ffle electrode. which bi.ectl the dilcharle relion. .nd the 

inhoma,eneity of the external ma,netic field. With.ome confidence, 

however. the followin, qu.lit.tive conclulion. lhould hold: 
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The torque produced by the Lorentz forces rotates the thruster 

discharge around the For III - 1 amp. B -
-2 

chamber axis. 10 Teala, 
0 

4 -1 -1 O[v ] 
-1 -1 and, hence. 

0-10 mho m • R. -c - 10 m. one has - 10 m sec 
0 0 

by Fig. 6. O[V] 
4 -1 for CII't' - 10, H - 102• - 10 m sec 

The usual assumption of an approximately homogeneous current 

distribution throughout the discharge space is most probably inapplicable. 

It must rather be assumed that the discharge current is concentrated in a 

narrow region around the chamber axis and a thin layer on the cathode 

side of the baffle. In the annular gap surrounding the baffle. the 

current density should be extremely high and restricted to a thin layer 

adjacent to the baffle. 

Conductivity estimates based on the assumption of a homogeneous 

current density in the annular gap between the baffle and the cylinder 

piece will necessarily be too pessimistic. The radial spreading of the 

thruster discharge is considerably reduced by the magnetic confinement 

field at Hall coefficients CIIT»l. 

I 
I • 

. I 
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QUANTUM THEOllY OF SPUTTEllING: 

Application to Cro.. Section Determination 

Surface .putteriD, of polycr)'pt..tlHne metals 18 explained 

theoretically by mean. of a 3-bod'l aputterina mechanism involvln, the 

impinaina ion and two metal atom.. By meana of quantum-mechanical 

perturbation theory, a formula for the number SeE) of atoms sputtered 

on the avera,e by an ion of ener,y E i. derived from first principles. 

The theory a,ree. with experimental sputterin, data in the low ener,y 

re,ion above the thre.hold. As an application mercury-metal atom 

.catterina cro ••• ectiona are determined by quantitative compari.on of 

the theoretical and experimental S(I)-values for sputterin, mercury 

iona and various metal •• 
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By means of quantum-mechanical perturbation theory,!) the 

probability SeE) for an atom sputtered by an ion of energy E 

1 
I 

j 

incident on a polycrystalline metal is calculated for low ion energies, 

E ~ Eo' where Eo is the apparent sputtering threshold. Whereas the 
2-10) 

previous classical approaches to the analysis of sputtering---

contain phenomenological parameters (usually determined by fitting the 

experimented S(E)-curves), the quantum-mechanical sputtering theory 

is based on first principles. The theory presented agrees with exper

imental sputtering data for low ion energies. ll ,l2) As an application, 

the formula derived for the sputtering ratio SeE) is used for the 

determination of the total scattering cross section for mercury atoms 

(recombined Hg-ions) interacting with atoms of various metallic solids 
11 12) 

from the corresponding experimental sputtering data.--'--

A binary collision between a surface atom of the solid and an ion 

incident normal to the surface can evidently not lead to sputtering 

since the atom does not acquire a momentum component in the direction 

of the external normal of the surface. Similarly, sputtering is not 

likely to occur for smaller angles of ion incidence if its energy is 

not large compared to the threshold energy for sputtering. It is evi-

dent that sputtering, at ion energies of the order of the threshold 

energy, is a 3-body process involving one ion and two surface atoms of 

the solid. At higher ion energies, however, sputtering will result 

mainly from higher order many-body interactions. 

By restricting the theoretical considerations to ion energies 

of the order of the threshold energy, E ~ Eo' ~puttering is regarded 

as the result of an ion-atem-atom interaction. Furthermore, it is 

E 

T 

I 

4 
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assumed that the solid is polycrystalline and has a sublimation energy 

which is on the average E - < E ijk >, where the average is taken s s 

over the randomly distributed surfaces (ijk) of the crystallites. 

In this case, the sublimation energy Es represents the average bind

ing energy of a surface atom of the polycrystalline solid. 

In the 3-body sputtering process, the incident ion transfers, on 

the average, the energy Es (as well as kinetic energy) to the atom 

which is expelled and the energy a) 2Es or B) 4Es to the other atom 

depending on whether the latter is pushed to an a) unstable or 

B) stable interstitial lattice position. Accordingly, the threshold 

energies for the 3-body interactions a) and B) are: 

Depending on whether the process a) or B) occurs with dominant prob-

ability, the apparent threshold (obtained by extrapolation of the 

experimental s (E)-curve , E + Eo) will be E .. E o a or If 

the cases a) and B) have equal probability one might introduce an 

average threshold by 

Indeed, some of the experimentally found thresholds 
11 12) E (exper)-'

o 

can be explained by the theoretical formula Eo - 4Es • In other cases, 

the formulae E - 3E a s 
have to be used to explain the 

measured thresholds. This is demonstrated in Table I which com-

pares the experimental:ll ,l2) and theoretical threshold energies 

(E
a

, ES' Eo> for different metals. Sputtering is in general not a 

T 
,CHAM x'*' . 
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simple threshold process which can be defined by means of a single 

threshold value. This will be shown in detail through the following 

quantum-statistical considerations. 

TABLE I: Comparison of experimental and 
theoretical sputtering thresholds. 

E (exper)[eV] 
Target Crystal E (theor)[eV] 

0 0 

Element Structure 
17 

Ag fcc 5E - 16.75 
S 

Au fcc 3E - 11. 70 18 
S 

Co hcp 5ES = 22.00 22 

Cu fcc 5ES :0 17.65 17 

Fe bcc 5ES -20.60 20 

Mo bcc 4ES -24.80 24 

Nb bcc 4ES .. 30.84 32 

Pt fcc 3ES -16.80 22 

Ta bcc 3ES -24.00 25 

Ti hcp 5ES -24.20 25 

W bcc 4ES - 35.20 35 

Zr hcp 3ES • 18.42 18 

In Table I, the experimental thresholds have been taken from 

Stuart 
11) These authors concluded from their experi-and Wehner- • 

mental data that the threshold is independent from the mass 

ratio between the incident ion and target atom,ll) and is, in 

first approximation, equal to Eo - 4ES' the average displacement 

threshold in radiation damage. 1l) It is seen that the agre~~ent 

between the theoretical thresholds (E Q E ) and the exper1mentf'l a,p, 0 

values E (exper) is excellent, except in the cases Au and W. 
o 

Whether the a-process or the B-process is dominant or both are 

(about) equally probable is apparently not dependent on the 

respective crystal system (fcc, bee, hcp). 
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PERTURBATION THEORY 

In general, a sputtering ion recombines with an electron into an 
9) 

atom as soon as it approaches the surface of a metal.- This means 

that the incident ion interacts actually like a neutral atom with the 

atoms of the solid. This neutralized ion is always referred to as 

"ion", in order to distinguish it from the "atoms" of the solid. 

Experiments indicate that also the atom sputtered from the metal sur-

9) 
face is electrically neutral.-

When an ion of low energy as defined above hits the surface of 

a solid, one of the following processes may occur: 1) the ion is 

reflected without energy loss by the bound surface atom it encounters; 

2) the ion collides with a surface atom and quasi-simultaneously with 

a second atom so that 3-body sputtering results. The total probability 

for the ion to interact in either of the two ways with the solid is 

(1) 

where N is the number density of atoms in the solid and aCE) is 

the total (energy dependent) cross section for ion-atom scattering. 

Let wl(E) and w2(E) be the transition probability rates for the 

processes 1) and 2), respectively. The relative probability with which 

sputtering occurs is then 

(2) 

Combining of Eqs. (1) and (2) yields for the sputtering rate, i.e., the 

number of atoms expelled on the average by one ion of energy E from 

the solid, 

l' 
.tP .: 1 -
I I 
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(3) 

On principle, a(E) can be calculated quantum mechanically, or 

determined experimentally. 

In the transition processes 1) or 2), the ion interacts with the 

surface of the solid within an area of the extension of the de Broglie 

wavelength, A - ft/I2mE. For this reason, the spatial part of the phase 

space is 

(4) 

The transition probability w(E) from a state "i" to a state "f" is 

proportional to the matrix element IMifl in square and the density of 

final states dp/dE per unit energy,l) 

where 

and 

w(E) _ 2n 1M 12 dp 
Ii if dE 

dp -. dE 
[ 0 ]n d~(E) 

(2nfi) 3 dE 

for a state containing n independent particles with moments 

(5) 

(6) 

(7) 

+ + + Pl' P2,···,Pn· t(E) is the volume of momentum space corresponding 

to the total energy E. H is the perturbation (operator) of the 

Hamiltonian of the ion-atom system which causes the transition i+f, 

and ~i and ~f are the wave functions of the total sy.tem before and 

after the transition which &re normalized for' the volume 0, n > V. 

' PS¥_ii' g 1 ?I$ ........ 

I 
I 
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Equations (5) through (7) represent the basis for the determination of 

the process probabilities wl(E) and w2(E). 

1. Reflection State. wl(E) is defined as the probability rate 

for the ion to be reflected at the surface of the solie without energy 

loss. In the center of mass system, the ion momentum is p - 12mE in 

the final state and the momentum space volume is ~(E)· 4wp3/3. 

According to Eqs. (5) through (7), the transition probability for 

reflection is per unit time (n-l) 

(8) 

where M(l) 
if 

is the matrix element of the transition 1). 

2. Sputtering State. 0 
W

2
(E) is defined as the probability rate 

for the 3-body sputtering state with threshold E to'"' a,a 
0 

(E • 3E , ES • 5E ). In the center of mass system, the momenta of 
a s s 

the ion (i), the sputtered atom (s), and the second atom (a) can be 

chosen as 

(9) 

.. .. 
so that momentum is conserved EjPj· O. Since the potential energy 

E is expended in the sputtering interaction of type o· a, S, the 
o 

total kinetic energy of the three particles is 

1 1 .. 2 1 .. 2 
E* • E - Eo • (2m + 4M)P + M q > 0 

Equation (10) reprelentl an ellipsoid with the axe •• eetion. 

{4[mM/(m + 2M)]E*}1/2 and (ME*)l/2 in the lix-dimen.ional .paee 

(10) 

of the vee tore 
.. .. 
p and q. Hence, the volume of the momentum apace 1s 

l 
#42$. 

• A. "' ! 

I 
! 
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3 2 
teE) • !-( 4mM )3/2 (E _ E )3 > 0 

6m+2M 0 -
(11) 

From Eqs. (5) through (7) and (11) one obtains the transition probability 

for the sputtering state with threshold E per unit time (n-2) 
o 

where is the matrix element of the transition 2) and 

H(E - E ) • 1 or 0 for E > E + 0 or E < E - 0 (Heaviside). 
o - 0 - 0 

o With the assumption w
2

(E) « wl(E), one obtains from Eqs. (2), 

(8), and (12) for the relative sputtering probability the expression, 

H(E - E ) . 
o 

IMi
(lf,2)I i 1 h The matrix elements n square are proportiona to t e 

(13) 

probabilities for finding the interacting particles in the processes 1) 

and 2) in the interaction volume V [Eq. (1)], i.e., 

(14) 

since these are one and two independent particles in ~he interactions 

1) and 2), respectively. Substitution of Eqs. (14) and (4) into 

Eq. (13) leads to the following equation for the relative probability 

for sputtering with threshold E (0· a, S): 
o 

h 2 (E - E )2 
2/1 (M/m) 3/2 W~(E). 24 [1 + 2(M/m)] E20 H(E - Eo) (15) 

h2/l ;: (n/V) 

O[h2/ l ] • 1, 

is a correction factor of the magnitude 

which can be determined more accurately by evaluating the 

matrix elements if the force potentials of the interactions 1) and 2) 

are known. 

·#44· ZW 4. 444_ 
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SPUTTERING RATIO 

In the sputtering of a surface atom by an ion, two fundamental 

cases (a) and (e) are distinguished which have the thresholds 

Ea • 3E
s 

and Ee· 5Es' respectively. Let the probabilities for the 

occurrence of the thresholds Ea and Ee be ga and ge' which are 

normalized in the usual way, 

g e > 0 a, 

It follows for the relative probability that sputtering occurs with 

either of the thresholds Ea and ES' 

w • s 

(16) 

(17) 

Substitution of Eqs. (17) and (15) into Eq. (3) yields for the number 

of atoms sputtered on the average by an ion of energy E: 

h 2 (E - E )2 
S(E). 2/1 0(E)N2/3 [(HIm) ] 3/2 \" g ----,,-2....;;.0- H(E - E ). 

24 1 + 2 (HIm) l. 0 E 0 a-a,S 

For applications, it is suitable to further simplify Eq. (18), 

which is strictl, 7~lid only for ion energies 

example, if only one threshold E dE, ES) o a 

E > E • 
~ a,S 

is important 

For 

(18) 

(ga «lor gS« 1) and the total scattering cross section aCE) 

varies slowly at E ; E (absence of resonances), Eq. (18) can be 
o 

reduced to 
h 2 (E - ! )2 

SeE) • ':JJ.l aCE )N2 / 3 [ (MIll) )312 _~.;;.o_ H(! - E ) 
24 0 1 + 2(M/II) E 2 0 

o 
with 

• aCE )/E 2, E ~ E • o 0 0 

(19) 

(20) 

r" it -
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Equation (19) is exactly of the form of the sputtering relation 

S(E) • const(E - E)2 found phenomonologically by fitting experimental 
o 

sputtering data. ll) It 

of experimental data to 

is commonly used in the extrapolation E ~ E o 

find the threshold E .11) Recently, also a 
o 

relation S(E) - const(E - E)3 has been employed in the extrapolatory 
o 

determination of the threshold E ,12) which appears to be difficult 
o 

to justify theoretically. As expected, the thresholds reported in 

Refs. 11 and 12 are in general somewhat different. 

\ A4.i , 4; . *-) « 
I 

! 
I 
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APPLICATION 

In the literature, measurements of the total scatterinl cross 

sections for HI-atoms (recombined ion) and tarlet atoms such as AI, Au, 

Co, Cu, Fe, Mo, Nb, Pt, Ta, Ti, W, Zr have apparently not been 

13) reported.-- Theoretical cross section values are not available yet 

owing to the mathematical difficulties associated with the application 

of quantum mechanical scattering theory to many-electron atoms.
14

) 

For these reasons, the cross sections under consideration shall be 

determined here by comparing the theoretical [Eq. (19») and experimental 

sputtering ratios SeE). 

In Figs. 1-12, the dashed curves repre~ent the experimental 

I 

sputtering data of Askerov and Sen~) for Hg ions and the (polycristalline) 

ta~:get materials Ag, Au, Co, Cu, Fe, Mo, Nb, Pt, Ta, Ti, Wand Zr 

(with the lowest SeE) value measured at E· E indicated by a dot). 

The corresponding theoretical sputtering curves SeE), based on Eq. (19) 

and the theoretical thresholds given in Table I, are shown by solid 

lines. The cross section values a(E) are chosen in such a way that o 

the experimental and theoretical sputtering curves agree in the low 

energy region E ~ t, since theory and expertment should agree the better 

the lower the ion energy is ()-body sputtering model). The mass of Hg 

is m. 200.59 a.m.u., and the remaining constants M and N in 

Eq. (19) are given in Table I. The latter shows also the details of 

the calculation of the cross sections a(E) from the expertm8ntal o 

sputtering data by means of Eq. (19). It is seen that the cross 

sections a(E) for atom-atom scatterings are between 10
0 

to 10
1 

barns 
a 

at low energies, i.e. are of the order-of-magnitude expected (hZ/l • 1). 

444 .¥ , 



~..",..,>,_~., .. ",",.'-'''''._~ , __ ......... "':lI'1'i'-._ .. ~-:=<ImI.. 4 Ct· X"UFP;~ l , 
~l l .~ 

t 1 .-~-4 
\~ i 

.~ 1 
~ . 

,! l 
_--------I 

TABLE II ." I 

Constants of Sputtering Formula and Cross Sections o(E ) for Various Target Atoms 
0 

Target M[gr] 
(M/m)Z 3/Z N[cm-3] N2/ 3[cm-2] [h

2l1
o(E )N2/3/24) h

2l1
o(E

o
)[ca 2) 

AtOillS [l+2M/m ] o exper 

1.7906 )( 10-22 5.201 )( 10-2 5.859 )( 10
22 1.509 )( 1015 8.700 )( 10-2 1.384 x 10-15 s-

Ag 
~ , 

Au 3.2697 )( 10-22 1.856 )( 10-1 5.903 )( 10
22 1.516 )( 1015 2.672 )( 10-2 4.230 x 10-16 

\ 

9.7829 )( 10-23 1.268 )( 10-2 8.903 )( 1022 1.994 )( 1015 9.687 )( 10-2 1.166 )( 10-15 '.~ 

Co 

Cu 1.0549 )( 10-22 1. 523 )( 10-2 8.468 )( 1022 1.928 )( 1015 1.993 )( 10-1 2.480 x 10-15 

Fe 9.2706 )( 10-23 1.111 )( 10-2 8.478 )( 10
22 1.930 )( 1015 7.649 )( 10-2 9.512 x 10-16 

Mo 1.5926 )( 10-22 3.998 )( 10-2 5.657 )( 1022 1.474 )( 1015 2.248 x 10-2 3.661 )( 10-16 

Nb 1.5422 )( 10-22 3.716 )( 10-2 5.187 )( 1022 1. 391 )( 1015 3.719 )( 10-2 6.417 x 10-16 

Pt 3.2385 )( 10-22 1.820 x 10-1 6.599 )( 1022 1.633 )( 1015 2.244 )( 10-2 3.298 x 10-16 " " 
Ta 3.0037 )( 10-22 1.563 )( lO-l 5.526 )( 1022 1.451 )( 1015 9.593 )( 10-3 1.587 )( 10-16 

Ti 7. 9514 )( 10-23 7.581 x 10-3 5.659 )( 1022 1.474 )( 1015 1. 786 x 10-1 2.908 x 10-15 

W 3.0519 )( 10-22 1.615 x 10-1 6.324 x 1022 1.587 x 1015 1.344 x 10-2 2.032 x 10-16 

Zr 1.5143 )( 10-22 3.564 )( 10-2 4.253 )( 1022 1. 218 )( 1015 2.658 x 10-2 5.236 x 10-16 

---

--
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The Figs. 1-12 indicate that the theoretical sputterings formula 

in Eq. (19) describes the experimental data rather well in the low 

energy region E ~ E • o 
The theoretical sputtering curves SeE) are 

plotted up to E· 120 eV, in order to show the deviations of Eq. (19) 

from the experimental data at larger ion energies, E. The 3-body 

sputtering model and the sputtering formula derived from it evidently 

represent adequate approximations only up to energies E • 2E o 

It should be noted that the theoretical sputtering curves 

[Eq. (19)] are very sensitive towards changes in the thresholds 

to 

E • o 

It can be shown that an adequate agreement between the experimental 

3E • o 

and theoretical sputtering curves SeE) cannot be obtained by choosing 

theoretical thresholds E noticeably different from those in Table I 
o 

and varying the values of the cross sections aCE ). o 
Experimental or 

the~retical cross section values are obviously necessary to demonstrate 

the success of the quantum mechanical sputtering theory presented in a 

rigorous way. 

; . PC 
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Fig. 2: Theoretical (---) and experimental (---) 
sputtering ratios S(E) for Au. 
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Fig. 3: Theoretical (---) and experimental (---) 
sputtering ratios SeE) for Co. 
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Cu 
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Fig. 4: Theoretical (---) and expertmental (---) 
sputtering ratios S(E) for Cu. 
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Fig. 5: Theoretical (---) and experimental (---) 
sputtering ratios ~(E) for Fe. 
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Fig. 6: Theoretical (---) and experimental (---) 
sputtering ratios S(E) for Mo. 
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Nb 

Fig. 7: Theoretical (---) and experimental (---) 
sputtering ratios SeE) for Nb. 
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PI 

Fig. 8: Theoretical (---) and experimental (---) 
sputterina ratios S(E) for Pt. 
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Fig. 9: Theoretical t-) and experimental (---) 
sputtering ratios SeE) for Ta. 
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Theoretical (----) and expertmental (---) 
sputtering ratios S(E) for Ti. 
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Fig. 11: Theoretical (---) and experimental (---) 
sputtering ratios SeE) f~r w. 
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Fig. 12: Theoretical (---.) and experimental (---) 
sputtering ratios S(E) for Zr. 
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DEPOSITION OF SPUTTERING PRODUCTS ON SYSTEM SURFACES 

ABSTRACT 

An analytical theory is developed describing the deposition of 

sputtered atoms on system surfacea which cannot be seen along straight 

paths from the emitting surface. The boundary-value problem describing 

the diffusion of the sputtered atoms through ~he surrounding rarefied 

electron-ion pla81ll8 to the "hidden" system surfac.s is formulated and 

treated analytically. It is shown that outer boundary-value probl .. s 

~f this type lead to a coaplex integral equation. which requires 

numerical resolution. 
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In an ideal vacuum, sputtered atoms travel undeflected along 

straight paths determined by their initial velocities at the point of 

emission. Within this free particle flow, a system surface is reached 

by the sputtered atoms only if it can be seen along a straight line from 

the emitting surface. In reality, ion propulsion systems are surrounded 

by a very rarefied plasma consisting of escaped beam ions, recombined 

ions, and electrons. For this reason, always some of the sputtered 

atoms will be deflected out of their initial paths by interacting through 

long-range forces (polarization forces) with the plasma particles so that 

they can reach system surfaces which are not seen along a straight line 

from the emitter. 

Figure 1 depicts the geometry of an idealized propulsion system 

which exhibits an emitting plane z· 0, 0 ~ r ~ a (accelerating grid), 

the rocket surfaces r· a, -c ~ z ~ 0 and z· -c, 0 ~ r ~ a, and the 

plane z· -d, a ~ r ~ b of the solar energy collectors. All these 

~ystem surfaces can be reached by the atoms sputtered from the emitter 

by diffusion through the rarefied plasma. The diffusion coefficient 

D is determined by the Vlasov equatioa!) for the sputtered atoms inter

acting through weak long-range force.!) with the plasma particles. In 

view of the mathematical difficulties ••• ociated with the solution of 

outer boundary-value problems for the geometry in Fig. 1, a somewhat 

limpler system il studied here con~llting of an emitting plane 

(z • 0, 0 ~ r ~ a), the upper rocket surface (r • a, -c ~ z ~ 0) and 

the plane (z • -c I a ~ r ~ -) of the r;.' .. t.t energy collecton (Fig. 2). 

The latter is allu:ud to have infinite: radial extension, r • b .. -max 
\ 

\ 
1 

1 
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since in general b»a and b»c,d (Fig. 1). Within the model of I 

t 
Fig. 2, particle deposition on system surfaces in the space z ~ -c I I ; 
cannot be analyzed. i . 
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In the space z ~-c, let the density of the sputtered atoms be 

designated by N(r,z) [cm-3) and the flux of emitted atoms at the 

emitter surface by I(r) [cm-3 • cm sec-l ]. In steady state, the 

spatial distribution N - N(r,z) of sputtered atoms is determined by 

the boundary-value problem for the Laplace diffusion equation (Fig. 2): 

where 

and 

-1 
[3N(r,z)/3z] 0 - -I(r)D H(a-r) z· 

N(r,z) - 0, -c ~ z ~ 0 
r-a 

N(r,z) - 0, a ~ r ~ w 
z--c 

N(r,z) .. 0 , 
2 2 (r + z ) .. w 

, 

are the proper and improper boundary conditions, respectively. D 

designates the diffusion coefficient of the sputtered atoms in the 

rarefied plasma which represents a spatial average, D = < D(r.z) >. 

The Heaviside function is defined as 

H(a-r) - 1 o ~ r < a • 

.0, a < r < w 

The boundary conditions (3)-(4) imply that sputtered atom. 

arriving at the system surfaces are d.posited there, i •••• do not 

return into the diffusion spaee. This assumption is at least 

(1) 

(2) 

(3) 

(4) 

(5) 

I 

I 
j 
! 

I 
1 

IC 

I 
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approximately correct for nonheated surface. a. lonl as the nuaber of 

atomic layers deposited is not too larle. The fluxes .i· -D ViN of 

atoms arriv1n1 at the systea surfaces r· a, -c ~ • ~ 0 and •• -c, 

a ~ r ~ - are liven by 

.r(r • a,.) • -D aN(r • a,z)/ar, -c ~ z ~ 0 

• (z • -c,r) • -D aN(. • -c,r)/az, a < r < -
z 

AccordinalY, 

o 
2waD f [aN(r • a,z)/ar]dz 

-c 

-N • -2-D f [aN(r,z • -c)/az]rdr 
z· -c a 

, 

, 

, 

are the numbers of .puttered atoms deposited per unit time on the 

(6) 

(7) 

(8) 

(9) 

systea surfaces r· a, -c < z < 0 and z· -c, a < r <' -, respectively. - - - -
The above boundary-value problem can not be solved directly, i.e., 

requires a decomposition of the space z ~ -c into appropriate sub-

relions for which the a.sociated boundary-value probl... are readily 

solvable. In this approach the common boundary value at the decoaposi-

tion plane i. detera1ned by an intelral equation. 

DBCCIIPOSITION BY ONE INTDlACI 

In Fil. 2, the .pace i. decompo.ed into the relions 

1(0 ! r ! _, O! • ! -) and l1(a! r ! -, -c ! • ! 0). At the 

interface, •• 0, a ! r ! _, the partial al(r,.· o)/a. • .(r)D-
l 

H(r - a) 

i. introduced .. the c~ (UDkDcMl) boundary value .(r) of the 

adjac8ftt re.iODs I and II. 
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Region I. N1(r,z) is described by Eq. (1), and the boundary 

conditions (5), and 

-1 -1 
aN1(r,z • O)/az • -I{r)D H(a - r) + ~(r)D H(r - a) (10) 

Accordingly, a solution is sought in form of the Fourier integral 

(0 ~ z ~ 00) 

00 
N1(r,z) • f A{k)e-kz J (kr)dk ell) 

o 0 

whence 

00 00 CD 

_ f k A(k) J (kr)dk • D-l f J (kr) k dk f[-I(a)H(a - a) 
o 0 0 0 0 

+ $(a) H(a - a)1 J (ka)ada (l2) 
o 

by Eq. (10) in accordance with the Hankel transformation. Substitution 

of the Fourier amplitudes A(k) from Eq. (8) into Eq. (7) gives the 

solution: 

CD 

-1 f N1(r,z) • D [I(a)H(a - a) - $(a)H(a - a)1 ada x 
o 

aD f e-kz J (kr) J (ka)dk (13) 
o 0 0 

N1(r,z) evidently satisfies Eq. (5) since Jo(kr) + 0 for r + aD, 

as well a8 Eq. (10) since 

aD 

J J (kr) J (ka) dk • 6(r - a)/a 
o 0 0 

Relion II. NII(r,z) i8 described by Eqs. (1) and the boundary 

conditions (3)-(5), and 

-q'WiW 
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Accordingly. a solution i. sought in form of the Fourier .erie. 

(-c ~ z ~ 0): 

where 

J (A a)· 0 
o v 

• (14) 

(15) 

(16) 

determines the eigenvalues v - 1.2.3 •••• Equations (14)-(15) and the 

orthogonality relations for J (A r) relate the Fourier coefficients. 
o v 

, (17) 

to ;(r). Equation (15) evidently satisfies the boundary conditions 

(3)-(5). 

lntelral Equation for fer). In the solutions for NI(r,z) and 

NII(r.z), the function ,(r) is still unknown (Eqa. (13) and (lS»). 

Since the z-derivativea of NI(r,z) and NII(r,z) have already been 

matched at the interface, z • 0, a ~ r ~ -, ,(r) ia deterained by the 

remaining continuity condition, 

(18) 

Subatituion of Eqa.(ll) and (lS), (17)yielda for ,(r) the iDteara1 

equation: 

-I ,(a) R(a - a) Q(a,r) do • oCr) (19) 

o 

1 
f 



r-l---JU-l---~'-' '1-~~~~-~"-~"'- -~-'". 

I 
\ . 
i · I 
f 

I 

,. 

where 

Q(a,r) 
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~ ~ tgh A c J (A a) 
_ a f J (kr) J (ka) dk - 2~ r v 0 v 

0
00 a 2 v-l A a J l (A a) v v 

o(r) _ f I(a) H(a - a)ada f J (kr) J (ka)dk 
00 0 

0 

J (A a) , 
o v 

are the kernel and the source of Eq. (19), respectively. Since£) 

(20) 

(21) 

where 
2 

K(m - k ) 
is the complete elliptic integral of the first kind, 

Q(a,r) and o(r) become: 

2 f~ a a
2 

o(r) - - I(a) R(a - a) - K(--)da 
nOr r2 

r > a 

noting that a < a and r ~ a along the interface of the regions I 

and II, and, hence, r ~ a in Eqs. (21)-(22). In case the sputtered 

atoms are emitted homogeneously, I(r) G I , Eq. (24) reduces to o 

r > a 

(24) 

(25) 

where 
2 

E(m - k ) 
is the complete elliptic integral of the second kind. 

Note that o(r· a) • 0 and oCr - ~) - O. 

- ¢ 4W#J4Uij 

; 

I 



[. 

102 

From the mathematical point of view, Eqs. (13) and (15, 17), which 

live the atom density in the space z ~ -c, and 14. (19), which deter-

mines the remaininl unknown function ,(r), represent the formal solution 

of the deposition problem. 

FURTHER llEHARKS 

Attempts at solving the integral equation defined by Eqa. (19) 

and (23)-(24) in closed form were not successful. Consecutively, 

the boundary-value function ~(z) was determined numerically from 

Eq. (19) by an iteration method. Substitution of a finite number of 

values 'i· '(Zi)' 0 ~ zi < m, into Eq. (17) lave (approximate) 

numerical values for the Fourier expansion coefficients B • v The 

numerical solution N(r,z), obtained by substitution of these 8v 

values into the Fourier series in Eq. (15), however, showed insufficient 

converlence, in particular at the corners of the system (Fil. 2). This 

difficulty is evidently due to (minor) numerical errors in the computation 

of B, which are added up in the Fourier series. v 

In order to find a simpler, analytical solution to the deposition 

problem, other analytical attempts were made, e.l. by decomposition of 

the diffusion space into three simple relione throulh two interface. 

(Fil. 3). However, thi. approach results in an infinite sy.tem of 

a11ebraic equation. and an even more complicated intelra1 equation. 

The analysis of the depo.ition of char led particle., produced by 

charle-exchan.e between sputtered atoma and beam ion., leads to a 

similar outer boundary-valua problem for coupled, nonlinear partial 

differential equations (collision-free electrohydrodynaaic equation. 

and Poi.son equation). For the latter reason, first the .t.pler problem 

of the deposition of neutral atoms by diffusion was tPeated. 
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