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ABSTRACT

This study was undertaken to solve the problem of determination of an
optimal selenodetic control network on the Moon. Selenodetic control is
defined by the coordinates of a network of well identifiable features on the
lunar surface with respact to a selenodetic Cariesian coordinate system,‘/—-
which is fixed to the lunar crust, is centered at its mass center and is
oriented along the three principal axes of inertia of the Moon.

The method developed for solving the problem is fully consistent with
the theoretical and numerical models for the motion of the Moon in space.
For this purpose, the parameters of orientation of the selenodetiec system
with respect to the mean ecliptic system, identified in this study with the
physical li']:E“a:tions of the Mnon, are made an integral pari of the solution
for seleno:ieﬁc control,

The solution is based onr optical data obiained by photography or by
direct angular cbservations of the Moon taken from the Earth or on board
a spacecraft and on range and range-rate data obtained from tracking
stations on E;th to a spacecraft orbiting the Moon. In order to achieve
orientation of the control network at least part of the c_)ptica_l data- is
considered oriented with respect to a certain celestial coordinate system.
Scale is infroduced to the control solution through the assumption that the
lunar ephemeris describes the motion of the center of mass of the Moon,

or in this case, the translatory motion of the origin of the selenodetic

coordinate system with respect to the geocenter. The lunar ephemeris
introduced by JPL under the code-name LE-16 is used for the above

purpose.

The total observational material modeled in terms of the parameters
of the solution is processed by a weighted least squares adjustment procedure
and results inl estimates for the following parameter groups and their co-

variances:
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a. selenodetic doordinates of a selected number of fundamental

control points on the lunar surface,

b. parameters of orientation of the Moon (physical libration angles

and time ratcs at a standard epoch), T

c. parameters featuring the low degree terms in the lunar

gravitational field.

In case the optical data was taken on board a spacecraft, an orbit
determination procedure is appled to the range and range-rate data which
results in estimates for the selenoceniric state vector of the spacecraft
and also in estimates for the higher degree terms in the lunar gravitational
field.

In order to test numerically the mathematical procedure developed in
this study, a sitmulated environment was created which reflects very closely
the true world. The Earth, the Moon and‘ a variety of satellites move
and rotate in this simulated environment strictly according to the laws of
Newton and Kepler. The observational material generated is free of
unaccounted phenomena and simulates very closely real observations.

Numerical tests with the simulated as well as with real data demon-
strated that the solution for the physical librations of the Moon conforms
very closely to existing solutions while having many advantages primarily
that of being an integral part of the conirol network solution. A complete
selenodetic control solution obtained from simulated Earth-based optical
data confirmgd the feasibilty of the method developed in this study and
introduced estimates for accuracies that could be achieved in the solution

for an optimal selenodetic conirol.
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1. INTRODUCTION

1.1 Statement of the Problem

Maps of the Moon have been drawn ever since the first telescopes
began scanning the surface of the nearest-to-the-Earth celestial body.
Coordinates of features on the front side of the Moon have been calculated
for. almost two centuries. Improvements in observational techniques and
instrumentation as well as the perfection of mathematical theories designed
to model the motions of the celestial bodies involved all have continuously
enhanced the accuracy of the maps produced. Recent articles reporting
on research being done in this area reveal that the interest in mapping the
Moon has not subsided; on the contrary with the advent of space explora-
tion a new dimension has been added to it. Having detailed and accurate
maps of the Moon’s surface is considered indispensible in view of landing
missions and also in cases where certain instruments are placed and
operated on the surface of the Moon.

The new dimension extends also to the. types of observational material
obtained. In addition to the Earth-bound optical observations, a new
generation of space-borne photography and angular measurements became
available. TFor the first time the Earth's atmosphere ceased to be a
limiting factor in the overall quality of observations of the Moon.

The high degree of optimism, however, gave way to a mild dis-
illusionment as the analysis of space-acquired data failed to conform to
the previously available results. Pogsible reasons for the discrepancies
could be named by the dozen, -but no clear way for resolving the contra-
dictions and evenfually arriving at a cb}lsistent ahd better solution were
at hand. This is the point where the study presented hereafter was

initiated.



" In addition to the practical aspects of obtaining better coordinates for
features on the Moon and consequently defining a better coordinate system,
there was a challenge in undertaking an investigation in this particular field.
Traditionally, mapping of the Moon has been in the domain of astronomers
and out of place for geodesists who had plenty of problems of their own to
cope with. The geodetic sciences, however, have registered tremendous
progress in the past several decades, and the prospects for a geodesist to
contribute to the solution of the problem of mapping the Moon are at least
fair. The challenge is also in venturing into and examining theories'and
models of celestial mechanics associated with the motion of celestial bodies
in general and that of the Moon in particular, There is a certain advantage in
coming into a field from the outside: The traditional approaches and solutions
appear less inhibitive. It is easier for a newcomer fo think of new ways to
tackle old problems than it is for the home bred scientist.

The problem to be investigated can be defined as follows:

To explore known methods for mapping the Moon and to develop a procedure
for the establishment of a unique solution which will be consistent with all the
riata types available and which will conform with the models and ephemerides
for the motion of the Moon, the Earth, and other celestial bodies.

The initial stage in any mapping sequence is the definition and determination

of a datum and a fundamental control network which will serve in later stages

as the basis for densification of control and the actual map production. Thus
the specific objective in this work is limifed to the basic phase of the general
problem of mapping the Moon, i.e., the establishment of a fundamental
control network on the Moon or using "geodetic" as a synonym:

"The establishment of an optimal selenodetic control.”



1.2 Past Achievemenis and Problem Areas

A detailed review of past achievements in mapping the Moon is beyond
the scope of an introductory chapter. As can be seen in [Mueller, 1969b],
even a bibliographical list could easily extend into tens of pages. Instead,
in order to put in perspective the work reported in the following chapters,
typical articles have been selected to represent the past achievements and
contemporary trends in this field. In what follows, the various solutions
to the problem are classified according. to their broader character; thus
avoiding the necessity of going into exhausting details and the many delicate
differences among the individual procedures.

The data considered in this section are optical data obtained by photo-
graphy of the Moon or from the meagurement of directions to particular
features on the surface of the Moon. The methods for determining cooxr-
dinates of features on the Moon are divided into two major categories ‘
according to the mode of acquiring the optical data:

I. Methods based on data obtained from the surface of the Earth.

II. Methods based on data acquired from a spacecraft.

Following is an outline of the main optical data types:

(i) Heliometer or position micrometer observations in which the

quantity measured is the spatial angular distance between any two

features on the surface of the Moon or between a particular

feature (the crater Mosting A) and the apparent limb of the Moon

at different position angles [Koziel, 1948; Hopmann, 1967].

(ii) Photography of the Moon obtained by means of long focus

(15-20m) Earth-based astronomic telescopes with or without a

superimposed star field [Arthur, 1962; Moutsoulas, 1969].

(iii) Photography of the Moon by cameras with a principal distance

of 80-240mm taken from a spacecraft in the vicinity of the

Moon.



(iv) Directions to features on the surface of the Moon measured
with an optical instrument on board an orbiting spacecraft [Ransford,
et al., 1970].

Although a: movre. detailed account on the complex motion of the Moon
is presented in section 1.3, one particular aspect of this motion should be
mentioned in the present section due to its relevance to the Earth-based
methods. The rotation of the Moon about its center of mass and its
translatory (orbital) motion about the geocenter (the center of mass of the
Earth) are interrelated in a way such that the face of the Moon as seen
by an observer on Earth remains the same, i.e., the relative orientation
of the Moon with respect to the Earth does not change. Due to various
reasons (see section 1,3) the Moon osecillates about its mean orientation
with respect to the Ear'th. These oscillations, as detected by an observer

on Earth, are called in general librations of the Moon. They are composed

of true or physical and of apparant librations. The true librations are
deviations of the Moon from the state of .steady (even) rotational motion as
referred to inertial space, while the apparent librations are due to the
varying position oftﬁ observer on Earth with respect to the Moon.

The maximum amplitude of the total librations as seen from the geo-
center is of the order of 7° to 8°. Another way of presenting the situation
would be to say that from the geocenter the Moon can be seen only through
a comparatively narrow libration window measuring 1579 by 1373 (see figure
1. 1). Due to the diurnal rotation of the Earth, an observer located on its
surface could observe the Moon outside the libration window by as much as
57 [Kopal, 1969]. Thus, two optical observations taken by an observer on
Earth to a particular feature on the Moon can have a maximal angle of
convergence of about 238° However, suéh cases are rare and the usual

angle of convergence is considerably smaller.
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1.21 Earth-Based Methods.

{a) Heliometer observations of the angular distances between the lunar
crater MoOsting A and points on the lunar limb were processed and resulied
in the derivation of the parameters of physical libration and the seleno-
graphic Cartesian or polar coordinates of the point Mosting A. The
coordinates of this point together with the orientation of the Moon as defined
by the physical libration model (constants in a trigonometric series) define

the "center of figure' datum. The center of figure is introduced by the

implicit assumption made in the reduction of the heliometer observations
that the center of the apparent limb corrected for local irregularities
{deviations from a circle) is the projection of the point about which the
Moon oscillates. The latest and most comprehensive solution for this
datum had been derived by Koziel and reported in [Kopal and Goudas, 1967].
Mosting A was regarded as the "datum point" of any further extension of
conirol on the Moon. It should be noted that the scale of the datum was



defined through the mean radius of the Moon, i.e., the radius of the best

fitting circle over the irregularities of the lunar-limb.

(b) Direct angular observations between Mosting A and 12 other craters on
the Moon's surface, performed by heliometer or position micrometer together
-wi’sh a physical libration model (for the orientation of the Moon), were used to
. determine the coordinates of these 12 points as a fundamental control network,
With small variations these points together with Mosting A served as the
basis of any subsequent Earth-based control network. Observations of this
type were  performed some 70 years ago by two distinguished German
astronomers—Franz in K6nigsberg [ Franz, 18991 and Hayn in Leipzig [Hayn,
1904). Franz measured 8 of the 12 points and Hayn, the remaining 4, Half
a century later the Austrian astronomer, Schrutka-Rechtenstamm, readjusted
the original observations of Franz and Hayn and obtained a consistent solution
for the 12 fundamental points [ Schrutka-Rechtenstamm, 19561. His solution is
rigorous mathematically and provides a procedure for handling the nonlinear

variation of the parameter f { for a definition of f see section 1.32 ).

(c) Photography of the Moon obtained by astronomic telescopes at
extreme librations resulted in a series of convergent photos. These con~
vérgent photographs were used through the colinearity conditions of an
optical bundle to determine the relative positions of secondary control
points [Kopal, 1969]. The first consistent sets of such secondary control
were derived by Franz and Saunder at the beginning of this century [Franz,
1901; Saunder, 1900]. Schrutka-Rechtenstamm also recalculated Franz's
<:;bservations for secondary control and established a set'of 150 second-
order control points on the front side of the Moon [Schrutka-Rechtenstamm,
19'58]. The list of second- and thir@-order triangulations based on this
method is long. To mention a few: Breece, Hardy and Marchant [1964],
Meyer and Ruffin [1965], Hathaway [1967], Mills [1968]. There is also

extensive literature on intercomparison of coordinates and error evaluation.



Haliert {1962] and others [NASA MSC, 1965] concluded that, theoretically,
regarding known uncertainties in the photogrammetric process, €.g£.,
acquisition of photography through a continuously turbulent atmosphere
[Edgar, 1964], poor geometry (narrow libration window), identification and
measuring accuracies, the results from this method can hardly be better
than 1-1.5 km; and in many cases they would probably be much worse.
This could be proven to some extent also numerically by comparing coor-
dinates of the same points as determined in various triangulations [Kuiper,

Arthur et al., 1969].

(d) A modified version of method (c) is possible when the Earth-based
lunar photographs have stars recorded in the background [Arthur, 1962] or
superimposed on the lunar disc [Moutsoulas, 1970]. The scale and the
orientation of the photos can thus be determined from the star images,
and so the photogrammetric solution does not have to depend on the funda-
mental control as in method (¢). Two series of star-oriented photographs
have been obtained in the past decade: the Tucson, Arizona, "gtar-trailed"
photographs and more recently the Manchester, England, "star-super-
imposed” plates. Some results of triangulations with these oriented plates
have been reported [Arthur, 1968; Kuiper, Arthur et al., 1969], but it is
too early to draw conclusions insofar as ultimate aceuracies and datum
determination are concerned .

Methods (c) and to some extent (d) depend on the datum defined by the
methods (a) and (b). Accordingly, they all define an Earth~based cenfer
of figure lunar datum. An extensive review and discussion on thg various

third-order lunar triangulations is given in [Kuiper, Arthur et al., 1969].

1.22 Satellite-Borne Methods.

Distinetly different although somewhat related to the above are the
gatellite—borne methods. If from a spacecraft in the vicinity of the Moon

a photograph is obtained or an oriented direction is observed, due to the



superior geometry (directions and photos can be taken from any conceivable
angle, no atmospheric effects, closer range, etc.), a "photogrammetric'
solution can be obtained for coordinates of features on the surface of the
Moon. "Photogrammetric" is put between quotation marks because, as in
the case of direct angular observation from an Apollo command module,
though the data is reduced photogrammetrically there are no photographs
involved. This comment is further expanded in section 2.1 fo bring for-
ward the idea of a general optical direction in space; see also [Rinner et al.,

1967].

(e) Photographic coverage of the Moon's surface or portions thereof
were treated as in ordinary aerotriangulation with existing ground confrol.
Photographs taken with a Hasselblad camera from the Apollo spacecrait
(command module) have been used to triangulate strips of photographs
[Mueller, 1969b, pp. 38, 51] using control points obtained through method
(¢) above or by method (f) to be discussed next. Constraints on space-
eraft positions were not necessarily imposed and the orienfation of the
photos were regarded as unknown. Along this line, D. Brown envisioned
a situation where-if a complete coverage with sufficient side and forward
overlapping were obtained, the peculiar geometry of the closed net would
be so strong as to allow an excellent solution without any orbital or camera
orientation constraints [Brown, 1968]. One problem which cannot be over-
loocked, however, is the datum of this perfectly determined cluster of

points.

() The solution as of method (e) could be enhanced by the introduction
of more or less rigid orbital constraints, i.e., consideration of the fact
that the photos are taken from points on a trajectory of a spacecraft orbiting
the Moon. Moreover, if the orientation of the camera may be assessed by
an independent sensor, a stellar camera or an inertial navigator, a phofo-

grammetric solution may be obftained which does not need fuhdamental control



.
]

at all., Tt creates its own control which stems from the orbital geometry
and the orientation of the photographs with respect to inertial space.

Here, however, the orientation and the rotation of the Moon come into

the picture. As the Moon rotates with respect to the stars in a rather
complicated manner, the projection center and the orientation of the
bundle of directions created by each photograph cannot be used directly

in the photogrammefric solution unless the rotation of the Moon is faken
into account. This would mean that this method can define fundamental
control through the use of the physical librations as derived on the basis

of method (a) discussed above. Thus, this method still has to depend on
information obtained from Earth-based observations. A procedure that
avoids this dependence is developed in Chapter 2 where the model for a
combined solution is discussed. The solutions for "independent conirol"
from Tunar Qrbiter IV photography belong to this class irrespective of the
fact that the geometric integrity of the transmitted photos and the reliability
of the orbitall and orientation constraints may be questioned [TOPOCOM,
1969; Boeing, 1969].

() If instead of photography, direct angular observations were
obtained from the orbiting spacecraft, a solution is possible which follows
in general that of method (f). The same feature on the Moon's surface
has to be observed from different points along the orbit and also,if possible,
irom different passes in order to acquire geometry that will allow a good
solution. CObservations of this t{ype have been made successfully by
Apollo astronauts and have been reduced by NASA/MSC as reported in
[Ransford et al., 1870].

It should be noted that the datums defined by methods (f) and (g) are not
constrained to the coordinates of Mosting A. On the other hand, these two
methods define a datum which is centered at the mass center of the Moon

primarily due fo the orbital constraints. An excellent preview of satellite-



borne methods for moon triangulation is presénted in [Doyle, 1968} which
reflects to some extent thoﬁghts and recommendations of the Sanfa Cruz
study group on lunar exploration [NASA, 1967].

Summarizing the methods outlined above, it appears that none of them is
capable of solving independently and satisfactorily the problem of a funda-
mental control network on the Moon. The Earth-based methods suiffer
from poor geomeiry, atmospheric turbulence and define a datum which is
centered at an arbitrary "center of figure' point whatever the definition of
that figure may be. The satellite-borne methods need the orientation of
the Moon in space in order to relate their obserxvations to the actual surface
of the Moon although they are capable of determining the scale of the
datum and associate it fo the center of mass,

For one reason or another, none of the methods takes full advantage
of the existence of a lunar ephemeris of a superior quality which is
available today [O'Handley et al., 1969]. Although the ephemeris is used
for deriving the physical libration series and also to some extent in orbit
determination of the state vector of the satellite, it is not a dominant
factor, and its metric potentials are ignored.

As stated at the beginning of this section, this is only a compressed
review of existing methods, and it should be understood that within each
method there are numerous variations in approach and freatment which,

however, do not alter their basic nature as specified above.
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1.3 Astronomical Models and Constants

The Geodesy and Cartography Working Group of the NASA 1967 Summer Study

of Lunar Science and Exploration held between July 31 and August 13, 1967, in
Santa Cruz, California, outlined in exceptionally lucid language certain principles
which were adopted almost literally as the motito in tliis work, Regarding the
determination of a datum and its relation to the translatory and rotational

motion of the Moon as well as to its gravitational figure, it states the following

[ NASA, 1967, p. 298]:

The interlinked nature of the whole set of topics has the consequence
that refinements in all topics must proceed at the same pace for
optimum efficiency. In fact, it is difficult to singularly advance any of
the topics without advancing some aspects of others. Just enough
redundancy exists in the proposed program so that the solutions
obtained can benefit from a consistency check within the total frame-
work, '

Indeed since August, 1967, in some of the interlinked topics mentioned above a
definite progress has been registered. The brilliance and systematic efforts of

seientists from JPL and USNO preduced in 1969 a new lunar ephemeris which is

a significant step forward toward the stated objective of 10 m accuracy., The

presentation of the mascon hypothesis and the determination of a network of point

masses on the near side of the Moon to model its gravitational potential are
without doubt another major breakthrough.

This section summarizes the stﬁdy of models for the motion of the Moon
which was undertaken in order to achieve a better understanding of the inter-
relations between the constants involved and in general to enhance the insight

into some of the problems in dynamical astronomy.

1.31 ZLunar Theory and Ephemeris.

. The lunar theory was subjected to intensive and detailed study with the
following primary objectives:
(2) To obtain a sufficient knowledge of the mathematical procedures employed

in the various solutions ‘of the lunar theory. The rotating rectangular

11



coordinates method of Hill as developed by Brown was to be investigated in
particular,

(b) To settle on a minimum number of parameters which govern the lunar theory
and define the relationship between thosg constants and the geocentric
coordinates of the Moon at any epoch.

(c) To evaluate the latest reports on the consistency of the lunar ephemeris with
certain observational types and come up with reasonable estimates of the

remaining uncertainties in it,

The following is condensed primarily from [ Brown, 1896] and [ Brouwer
and Clemence, 1961]. The motion of the Moon about the geocenter is essentially
a perturbed two body Keplerian motion, The main perturbations are due to the
gravitational attraction of the Sun while secondary perturbations are due to the
planets, the nonspherical dynamic shapes of the Earth and the Moon, and to
tidal forces.

The solution of the differential equations of motion of the Moon ig based on
the assumption that the motion of the perturbing bodies is a known function of
time and in general follows Keplerian motion (heliocentric). Small corrections
for the actual deviations from Keplerian motion are added at a later stage. One
way of presenting the solution is by expressions for the six osculating orbital
elements containing, in general, constant, secular and periodic parts.

The mean orbital elements of the Moon are composed of the constant and

secular parts, all periodic terms being removed:

o= o+ Py
where
" t=T-To
P symbolizes any of the six mean orbital elements at the
epoch T

Yo is the value of Y at the standard epoch T, (1900.0 for example)

P, is the rate of secular change in .

12



The six orbital elements are (see Figure 1.2):

L mean longitude n meah motion in longitude
© longitude of perigee e eccenfricity
Q longitude of ascending node i  inelination .

The mean longitude and the longitude of perigee are composite angles
measured from the equinox to the ascending node and from the node along

the orbital plane.

T plane of mean orbit
/" of the Moon

plane of the

ecliptic ™ mean position
of the Moon
vernal — N\\_\ ,/ T point of perigee
- "'\-._-\ s
equinox ~

—~ " ascending node

Figure 1.2 Mean Orbit of the Moon

According to Figure 1.2 and the definitions outlines above, the following

relations hold:

Q = TEN
@ = O+ NEP
L = @+ PEM

The physical constant p may be considered as the "seventh" element and stands

for
p = K°(E + M)

13



where
k® is the Gaussian gravitational constant

E,M are the masses of the Earth and the Moon, respectively,

Three more quantities are needed to define the mean orbit geometrically:

1
a = (Wod)® the mean distance
(1-¢c)n the mean motion of perigee
{1-g}n the mean motion of node , where

¢, g are functions of the parameters a, n, e, 1, and also of the adopted constants of
mass and motion of the Sun and the planets, Instead of i, a more useful parameter

isy =tan i, Thus the list of the mean elements can be written as follows:

L= 1y +nt n = hg -+ nt
W= Wet (1-c)nt e = e+ et
= b+ 1-g)nt Y = Yot it
a = gg+ at

ay, Ny, €, ¥i are secular variations due to tidal dissipation (Kopal,1969).They are
added at the very end of the solution. Thus for the most part of the development

of the theory, a,n,e,¥ are regarded as virtually constant.

The elements of the mean orbit at the initial epoch Ty and the values of
the auxiliary constants (c,g) are determined from observations and are known
with high precision.As c and g are also functions of (n, a, e, ), the comparison
of the theoretical c, g with the observed ones serves as a test of the validity
of the theory. Actually for Brown's theory as corrected by Eckert's work,
there are still some unexplained differences between the theoretical and
observed ¢ and g [Eckert, 1965].

The practical result of any lunar theory is the Iunar ephemeris in which
the geocentric coordinates of the Moon are given as a function of time.

The general form of an ephemeris is

= sin
Q= Q*@t+)P  (et+aq)

i
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where

Q represents any ofthe three coordinates (longitude, latitude, parallax)

Qo+t @t  are the coordinates in the mean orbit

P, are algebraic functions ofa, e,y and corresponding solar and planetary
orbital constants

d, are linear functions of L, W, 8o and corresponding solar and planetary
orbital constants '

Py are linear functions of 1,, Z:J;.', 8, and correspdnding gsolar and
planetary constants

t is the independent variable, i.e., ephemeris time measured from the

standard epoch—1900, 0 {in the original Brown's theory),

Thus the objlective of any lunar theory is to determine the values of p,,
Pisdi. In numerical theories like Hangen's, the numerical values of the
parameters n, a, e, ¥, ¢, g, etec. are substituted at the outset; and the
series are developed numerically as far as P, is concerned. In such a
theory, the parameters of the mean orbit which are contained implicitly in
the coefficients of the harmonic series camnot be separated. In a fully
algebraic theory like Delauney's, the c'oefficients P, are developed in a

literal form in terms of the primary parameters. Brown's theory is semi-

algebraic as the ratio m =n/n’ (n’ is the mean motion of the Sun) is sub-
stituted numerically while the other parameters are left in the development
in an algebraic form. The periodic terms in Brown's theory are thus
convenient for the calculation of partial 'derivatives of the coordinates with
resbect to the mean orbital parameters [Eckert, et al., 1954]. As reported
by Van Flandern, very good approximations for the partial derivatives of

the lunar coordinates with respect to the mean orbital elements can be
obtained by differentiating the characteristic part of the major terms in
Brown's series [Van Flandern, 1970]. An inadequacy was detected in Brown's
theory, namely, the insufficiently developed planetary part [Mulholland, 1968].
Scientists from JPL have largely solved the problem by integrating numer-

ically the equations of motion and fitting to quasi-observations obtained from

15



the theoretical Brown ephemeris. These are the so-called integrated lunar
ephemerides, the latest reported version being called LE-16 [O'Handley et al.,
1969]. Reports by various users of this ephemeris provide a satiéfactoxy
proof of the improvement achieved ['Mulholland, 1969b; Cary and Sjogren,

1968; Garthwaite, et al., 1970] and increase the confidence in the estimated
accuracies, namely: 100-150 m in position and 50 m in range [Mutholland,
1969]. This error level is of the same order of magnitude as the errors

in selenocentric position of a circumlunar ‘satellite as d;atermined from

- Doppler data.

As a rvesult of examining thé various lunar theories, and in particular,
after realizing the magnitude of the task of improving an existing ephemeris,
the decision was made to adopt tﬁe newly devéloped JPL lunar ephemeris,
TE-16 and to make use of it in the following manner : The Cartesian geo—
centric coordinates of the Moon are to be regarded as ral.ldom quantities
with mean at the nominal value of the coordinates as given by LE-16 and
standard deviations corresponding to 50 m in range (parz;.llax) and 150 m in
direction (latitude and longitude). In other words, the uncertainties are
defined as an oblate rotationally symmetric error ellipsoid with major and
minor semiaxes of 150 m and 50 m respe_ctively where the shorter (rotational)

axis is oriented along the Earth-Moon vector.

1.32 Orientation of the Moon in Space,

In this subsection, the actual motion of the Moon around its center of
mass and with respect to inertial space is discussed. As it is well-known
the Moon rotates around its axis of rotation with a rather slow rate as
compared to the Earth. The rotational period is equal to one sidereal
month so that this rotation combined with the orbital period of one month
results in the Moon facing the E'arth with the same side. However, since
the Moon moves around the Earth in an elliptical orbit with a varying

velocity along the orbit in accordance with the second law of Kepler, while
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its rotational velocity remains approximately constant, the Moon, as seen
from the Earth, librates in longitude (see Figure 1.3). These are the so-

called optical librations in Ilongitude. Their period is an anomalistic month

{perigee to perigee) where the amplitude is 7°57° [Kopal, 1969].

S =N
/
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- -

- / .\
TNl X Earth
e . (s SEEEEE— Perigee

\

7

N ’/

Apogee = -
bog .~ "Zero meridian \

- | ~ \ *
& e
\-akwm® . - X/ Moon

Figure 1.3 Optical Librations in Longitude

~

The inclination of the Moon's equator (the plane normal to the rotational
axis) with respect to the ecliptic (1°32') combined with the inclination of
its orbit with respect to the ecliptic (5°08 43" result in the so-called optical

librations in latitude with a maximum amplitude of 6°41'[Kopal, 1969].

Because of the asymmetric gravitational field of the Moon, the Earth
and the Sun trigger secondary true oscillations of the Moon of a much

smaller amplitude but of a more complicated nature called physical or frue

librations.
Mathematically, the rotation of the Moon is defined through the rotational
motion, with respect to the ecliptic coordinate system, of a selenodetic

coordinate system which is considered fixed to the body of the Moon. The

selenodetic systermn is centered at the Moon's mass center and its three

axes are oriented along the Moon's principal axes of inertia.
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In its rotation, the Moon follows very closely the three laws of Cassini

(see Figure 1.4):
(i) The Moon rotates uniformly about its axis of maximum
moment of inertia with a rotational velocity indentical with its
mean motion around the Earth (n).
(ii) The inclination of the lunar equator (the plane normal to
the rotational axis) with respect to the ecliptic is a constant (I).
(iii) The Iunar equator intersects the plane of the ecliptic along
the line of nodes of the Moon's mean orbit so that the plane of the
ecliptic is always in between the planes of the equator and the
orbit.

" north ecliptic pole

north pole of the Moon
mean orbit of

" the Moon

north pole of the
lunar orbit

- ecliptic

© lunar equator

,-/
selenccentric ascending node of
celestial sphere .Moon's mean orbit

Figure 1.4 Cassini's Laws

The physical librations as defined earlier are actually the deviations

of the Moon from following exactly the laws of CaSSini'. These are:

T - the libration in longitude (deviation from law (i) above);
p - the libration in inclination (deviation from law (ii) above);
¢ - the libration in node (deviation from law (iii) above).
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The instantaneous orientation of the Moon's selenodetic system with

respect to the ecliptic system is defined by the Eulerian angles ¢, ¥, 9.

The Eulerian orientation angles are composed of elements of the mean
orbit (through the laws of Cassini) and of the three physical libration

angles as shown in the following formulae and also in Figure 1.5:

Z v

descending node of
lunar equator

Figure 1.5 Eulerian QOrientation Angles

where:

XYZ is a selenocentric coordinate system parallel to the ecliptic
system

Xyz is the-selenodetic coordinate system as defined zbove.

L+ -Q+71-¢

= Q+0
g6 = I+p
where:
_ L is the mean longitude of the Moon
‘H = 3.1415,,..
Q is the longitude of the ascending node of the Moon's
mean orbit
I is the mean inclination of the lunar. equator to the ecliptic

T.0,0 are the physical librations in longitude, node and
inclination, respectively.
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In formulating the differential equations for the physical librations, two
assumptions are made, namely, that the Moon is perfectly rigid and that
the geocentric motion of its center of mass is a known function of time.

Three second-order differential equations (Euler's dynamic equations) are

formed for the motion of the Moon about its center of mass. The solution
of Euler's dynamic equations is obtained in terms of harmonic series
having fixed coefficients with arguments which are linear functions of the

mean orbital parameters of the Moon and the Sun.

sin
A=A cos (ayt + by)

.
1
where A represents any of the three physical libration angles. The forced
librations are defined as the particular solution of the differential équations,
depending on the varying position of the Earth with respect to the Moon's

selenodetic system. The general solution contains six constants of integration

which ave defined as the parameters of free librations. Only two of these

parameters are considered non zero and are determined from analysis of
observations.
The solution of Euler's equations requires the following additional

information:

I - the mean inclination of the lunar equator to the ecliptic, and

f= {S—E‘-%)LE - the mechanical flattening representing the ratio

between the principal moments of inertia A',B, C.

Assuming these two quantities to be known, the solution is a purely
mathematical process, the final product being a model of the physical
libration angles [Eckhardt, 1965]. CObservations are necessary, however,
in order to check the model and also for the establishment of a consistent
set of constants (including I,f, the free libration constants and other
auxiliaries).

The heliometer observations of the Moon were designed to provide this



observational material. They are precise measurements of the angular
distances between an arbitrarily chosen crater at the center of the visible
moon disc - MOsting A - and the apparent limb., As stated already, the
physical librations are modeled as taking place about the center of mass of
the Moon. 1In order to reduce_z the heliometer observations and obtain an
estimate for the parameters (I, 'f, free librations, etc.) an assumption is
made in that the center of the best fitting circle to the apparent limb is a
projection of the center of mass of the Moon along the Moon-Earth mass
centers vector. This is equivalenf to the assumption that the Moon is
homogeneous and basically spherical so that its center of mass coincides
with the center of the best fitting sphere. Recent chservations have largely
demonstrated that certain biases exist between the center of mass and the
center of the best fitting sphere [Ransford, 1969]. Because of this in-
consistency in modeling the heliometer observations the parameters which
are being estimated in the adjustment process contain certain biases.
However, determinations of the gravitational field 'of the Moon from Orbiter
tracking data have essentially confirmed the value of f as known from

reducing heliometer data and have thus demonstrated, at least for f, that

even if such a bias does exist ifs magnitude is small [Lorell, 1969].
Another troublesome area in the current version of tﬁe solution of
physical librations is in the linearization of Euler's equations prior to their
solution. This creates a nonlinearity problem in the physical libration in
longitude 7 for f=.662 with corresponding large uncertainties in the co-
efficient of one of the terms in the series for 7. A major development

in this area as reported in an article by Moutsoulas [1970], is that he
solves the differential equation of Euler for libration in longitude in ifs
original nonlinearized form and thus avoids altogether the nonlinearity

problem. Consequently, f can assume values near f = ,662.

There are two more problems associated with the current version of a solution
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for physiecal librations, Aé reported above, it appears that the future lunar
ephemerides are going to be numerical, i.e., obtained by numerical integration
of the equations of motion rather than by an analytical or semianalytical solution
(Brown's, for example), ' The current solutions for the physical librations are
based on the lunar ephemeris presented in a harmoniq series form only and
cannot be easily adopted to 2 numerical ephemeris, Unless the physical libration
is very insensitive to variations in the lunar ephemeris, this may create serious
inconsistencies between the orientation of the Moon and the position of its mass
center,

A second problem exists which is of a practical nature, In order to obtain
least squares estimates for the parameters of physical librations based on the
minimization of the residuals of a suitable observational data, the partiai
derivatives of the observed quantities with respect to these parameters are
needed. But the physical libration angles are related to the constants I
and f only indirectly and in a rather complicated manner. Also if is not
clear which are the basic (independent) parameters of the physical librations
in addition to T and f. So it is evident that a method is necessary that
will allow a straightforward computation of the partial derivatives of any
relevant data type with respect o a carefully selected minimal set of
independent parameters.

Chapter 3 gives an answer to most of the aforementioned problems.

r

1.33 Fundamental Astronomical Constants,

As in many other areas, the means for satisfying the aspiration for consistency
between the astronomic constantsl became available only late in the 20th century.
The resolutions taken at almost every congress of the TAU mark the steady
progress in this area, Important in particular and relevant to the presently
acecepted set of constants is the resolution of the General Asgsembly of the
International Astronomical Union at its session on September 3, 1964, in

Hamburg, West Germany.
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The constants adopted by the IAU are defined as follows [ Transactions IAU,

19667:

Defining: These are constants which are actually adopted without having to
assess their value by observations,

Primary: These are a self-consistent set (also consistent with the defining
constants) of independent constants whi-ch are obtained as the result of direct
or indirect observations. As such they are subject to eventual updating when
the quality of new observations and mathematical models warrant it, However
such an updating is permissible only provided the consistency within the
combined sets of defining and primary constants is preserved.

Secondary. These are essentially functions of the defining and primary constants,
Through the functional relationships which are consistent with one another,
the original consistency within the primary set is maintained throughout the

secondary group [ AENA Supplement, 1961].

The establishment of a fundamental coordinate system on the Moon involves
more than the lunar ephemeris and the physical libration model. Most of the
observations are ultimately related to the Earth, its size, its geometric and

dynamic figure and its motion in space. So in order to maintain consistency

between all the elements to be used in this work another parallel to the
"TAU—1964" set of constants was considered as reported in JPL's [ Melbourne
et al,, 1968]. For the most part the differences between JPL and IAU—1964

are minute, but where they do exist the JPL constants were adopted.

Thus, in summary of this section it can be stated that JPL's constants
and lunar ephemeris data were adopted as a basis for the solutions developed
in this report. Textbooks like [Mueller, 1969] and [AENA Supplement,
1961] were consulted insofar as definitions and interrelations between the

constants were concerned.
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1.4 QGeneral Plan for the Study

Two basic concepts were laid down at the basis of the solution proposed in

this work: consistency and uniformity. The brief analysis of existing astro-

nomical theories and models as presented in section 1. 3 made clear that
consistency is indeed one of the backbones in modern astronomical theory.
Practically, this means that the functional relationship between the various
models as well as the constants involved have to be clearly formulated so that
no contradictory assumptions are made and no constants are used which fail to
satisfy these conditions, This princ‘iple extended to the definition and determina-
tion of fundamental control on the Moon creates one more branch in the list of
constants and models which together constitute the comprehensive theory of the
shape and the motion of the Moon, As in any other creation of man, the concept
of ‘coinsistency should not be regarded as absolute but rather within the limits of
the presently available observational material,

It often so happens that improvements in the quality of the observational
data uncover new inconsistencies in theory Wh_ich in turn Warral;.t 2 hew
reevaluation and eventually a restatement of relationships and finally an

overall refinement in theory and corresponding computational procedures.

Congidering presently available types of observations, a careful study of

the existing theories was undertaken and at the end a consistent set of
constants and postulates were selected to serve as the basis for the datum
solution. As the numerical treatment in this work is limited to a simulation,
certain liberty was taken in ignoring lmown physical realities with the pur-
pose of leaving in only the most important aspects in the situation, namely,
the geometric and gravitational phenomena. A detailed expogition of this
simplified environment is presented in Chapter 4. Notwithstanding th_e -
simplifications, this synthetic environment was designed to };)e absolutely
self-consistent.

The many data types available and appropriate for use in determining a
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Iunar datum prompted the search for a general treatment of them all. This is
what brought the quest for uniformity. Stripped from instrumental peculiarities
and particular observing procedures, available data could be grouped into a

few broad classes with the result that a uniform and compact solution could

be worked out. Adapting such a general solution to the processing of a real
data type could be done at a later stage by the introduction of a set of
parameters pertaining to the particular data {(error modelling) so that

the uniformity in the solution would be preserved. This is the reason for
grouping the existing data types into two categories:

—Optical observations from a point in space to points on the surface of the

Moon. '

—Range and range-rate observations from a tracking station on Earthto a

spacecraft,

In the mathematical treatment of the second class certain subdivisions
were neceésary, but on the whole their character and contribution to the solution
are such that they stand clearly as a single ohservational group, An odd member
in the optical observations family is the heliometer observation.  Although a
detailed model and a computer program for their generation were developed,
their incorporation into the general solution was not worked out in
detail, ‘The reasons are mainly limitations in time and the fact that this
particular group of optical observations is not indispensible for achieving a

solution o the problem.

There is a whole generation of new types of observations either already
available or in the process of being developed (or at least being considered)

which were excluded from the solution. To mention a few, these are:

(a) Laser ranging from observatories on Earth to reflectors placed on the

surface of the Moon.

(b) Vex:y—long—baseline interferometeric observations with a base extending from

an antenna on Earth to another antenna on the Moon.
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(c) Satellite-to-satellite range and range-rate observations from a synchronous
satellite of the Moon to a Moon-orbiting spacecraft.

An entirely new revision of astronomic theory and reduction procgdures seem
indispensible in order to take full advantage of the significantly higher quality of
these new data types. These types of obscrvations are treated in the work of
Fajemirokan [1971].

Last but not least the old problem of orientation of the Moon in space
was given another try. Although it has been-{reated by many distinguished
scientists, it appears that a new contribution could be registered by the
application of modern numerical methods and practices. The new solution
as presented in Chapter 3 of this work compares fairly well with the
latest a.nd most authoritative model in use today, i.e., that of Eckbardt.

It would be presumptuous to regard the new solution as superior in quality,
although as demonstrated in Chapter 2, it has definite advantages in its
actual use as part of the general solution for fundamental control on the
Moon.,

Summarizing, the structure of this sfudy is as follows:

Chapter 2 presents the solution for an optimal selenodetic control,

Chapter 3 contains the elements of the newly proposed model for the physical
librations of the Moon, ‘

Chapter 4 displays in full detail the conceptual and mathematical basis for
the creation of a simulated Earth-Moon environment and observational types.

Chapter 5 reports on some experiments made with the simulated and real
data in which the theories from Chapters 2 and 3 are applied.

A number of odd topics ére discussed in the Appendices. Although relevant
to the subject, these topics were judged to be out of the main line of thought and
were designated accordingly as Appendices.

A guiding principle in writing this report has been the creation of the

chapters as independent units with minimal cross referencing. The extensive
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bibliography listed at the end was continuously consulted through all stages of
this work,although,in the text,referencing to it was kept to a minimum in order
not to disrupt the continuity of the presentation, This was accomplisheqd at the
expense of some overlapping between chapters and also the inclusion of some

theorems and procedures which can otherwise be found in the existing literature,
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2, THEORETICAL SOLUTION OF THE PROBLEM

2.1 Infroduction

The problem of mapping the lunar surface has attracted the attention of
astronomers for many centuries. Considering the exactness of the methods
employed and the quality of the resultls obtained, it would not be presumptuous
to state that only in the twentieth century steps have been taken towards
mapping with geodetic accuracy. Chapter 3 in Prof, Z. Kopal's The Moon
[Kopal, 1969] contains many interesting details on the long history of lunar
mapping; however, it is only the past decade of space exploration and
"oriented” lunar photography which have brought a real breakthrough in this
field.

The basic problem in lunar mapping and, unfortunately, the one most
elusive and difficult to solve is the definition and determination of a datum on
the Moon. Even if the concept of a datum is confined here to the position and

orientation with respect to the lunar crust of a Cartesian coordinate system

only, thus avoiding the necessity of defining a reference figure for the Moon,
the problem remains far from being solved. The main reason is in the fact
that there are no observations conducted from the surface of the Moon which
can claim geodetic accuracy. Traditionally, the only data available” have been
obtained from remote observations conducted primarily from the Earth's
surface, and in the past five years or so from spacecrafts in'the vicinity of

the Moon. The prospects for extensive geodetic measurements on the surface
of the Moon in the next five or {en years appear remote at present,even if
technology which could support such an undertaking has been developed. So
the problem remains to explore methods which have not been considered és

yet for the establishment of control of geodetic quality on the Moon.
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Geodetic quality should not be interpreted merely as high relative-
position accuracy of a number of features on the Moon's surface, but also
and mainty as the determination of coordinates of points such that the
coordinate system defined by them is unique, possesses favorable properties,
and is consistent with observations and theories associated with the Moon.

This would mean, for example, that the geocentric lunar ephemeris and the
parameters of orientation in space of the Moon will have to be incorporated
in any solution for a datum on the Moon. ’

The favorable properties of a datum are related to the dynamical rather
than the topographical figure of the Moon. Assuming the Moon to possess a
practically invariable gravitational field, the favorable datum can be defined
as having its origin at the mass center of the Moon and its three axes
oriented along the principle axes of inertia. As the basic dynamical figure of
the Moon is that of a triaxial ellipsoid, this definition of a datum holds
many advantages and appears less arbifrary than others. One important
advantage is that the basically triaxial dynamic figure governs the rotation of
the Moon in space as shown in chapter 3. Any other choice of orientation of
the datum would complicate the equations of rotational motion of the Moon
and may increase the uncertainties in their solution. There are broader
problems associated with the dynamic figure and motion of the Moon, the
solution of which is not enhanced by the choice of this particular datum.
Tor example:

(2) The Cgo term of the Moon is about 1/6 of the -J, of the Earth.

(b) The equatorial dynamical flattening represented by the Cg,5 term is much
smaller than the polar flattening.

(¢) The spin of the Moon is about 27% times slower than the corresponding
diurnal rotational velocity of the Earh.

All these facts imply that the principal axes of the Moon (x,y,z) are not
so0 well defined. As a result the use of observations for the determination of

a datum on the Moon is much less efficient. These considerations lead to the
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preliminary conclusion that in determining a lunar datum it would be

unreasonable to expect accuracies comparable to those on Earth. Even after

lunar surface measurements become available, it would require observations

of a much higher degree of accuracy and also the use of much more exact

theories of motion in order to approach geodetic accuracies as known on Earth,
The requirement for consistency between datum solution and theories

and models for the motion of the Moon can be interpreted as follows:

(a) Constants used in the "accepted as exact' models should not be included
in the list of parameters to be s‘olved simultaneously with the datum,

(b) The assumptions underlying the various theories and the mathematical
model for the datum solution have to be fully consistent.

(¢) Limited by feasibility only, a maximum number of parameters should be
solved together with the datum solution thus enhancing uniformity and

implicitly satisfying requirements (a) and (b} above,

Before proceeding with the solution for a datum as presented in this
chapter, a brief exposition iz given of the fundamental concepts which
form the basis of this work.

For a fundamental orientation frame of reference, a hypothetical

inertial coordinate system is considered which coincides with the ecliptic

mean coordinate system at some arbitrary standard epoch and is defined

as a Newtonian Frame of Reference (Brouwer and Clemence, 1961, p. 3). The orien-

tation of any other Cartesian coordinate system with respect to the
inertial system is defined through three Eulerian angles necessary to
rotate the particular Cartesian system info the inertial or vice versa
(see Figure 2.1). The term inertial coordinate system, to bhe denocted
by XYZ, is used for any coordinate system (having an arbitrary origin)
which is parallel fo the fundamental orientation frame. Thus, one may
have a geocentric inertial system, an inertial system centered at a

satellite, ete.
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Figure 2.1 Earth-Moon Environment

the geocenter

the selenocenter

a satellite

inertial coordinate systems

average terresirial coordinate system
selenodetic coordinate system

reference frames for optical observations
Eulerian orientation angles of the Earth
Eulerian orientation angles of the Moon
observing station for optical observations
tracking station for range and range rate observation

triangulation point on the Moon
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r(r) - range (range rate) between O, and S

Al

u
° } -  optical ray (direction) between O, or S and T.

Ug

The orientation of a physical body is defined through a Cartesian
coordinate system fixed to the body. Thus, for example, the orientation
of the Earth is defined through the so-called average terrestrial coordinate
system which is fixed to the Earth's crust and related to a geocentric
inertial system by means of three Eulerian angles.

There are three Cartesian systems which are of primary importance:

(@) The average terrestrial system is centered at the mass

center of the Earth and is oriented with respect to the crust
through the CIO pole and the so-called mean observatory
[Mueller, 1969]. 1t is denoted by UVW,

() The selenodetic system is centered at the mass center of

the Moon and is oriented along its principal axes. It is denoted

by Xyz.

(c) The optical observations reference system is centered at the

projection center: (from which the optical rays emanate) and is

generally oriented so that the primary axis (B,) points towards

the Moon. It is denoted by B,B,B.

The general rotational motion of a physical body with respect to the
inertial system is described by the change with time in the Eulerian
orientation angles of the appropriate coordinate system (the one fixed to
the body). Thus, for example, in order to study the rotational motion
of the Moon, one should consider the changes in the Eulerian angles
(¢, ¥, 8) which relate the Moon-fixed (xyz) system to the inertial (XYZ)
system. From this definition of rotational motion, it is clear how
rotation and orientation of a body are related to one another. As the

body rotates, its orientation changes and by considering the instanianeous
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set of Eulerian angles at a particular epoch one has the means ‘f-ar defining
the orientation of the body at that epoch.

The rotation of a physical body is governed by a set of equations of
rotational motion (second order differential equations) in which the external
forces acting on the body are represented. The solution of these equations
of motion results in the Eulerian orientation angles as functions of time.

The position with respect to the UVW system of points on the surface
of the Earth is defined by three Cartesian coordinates. Points on the
surface of the Moon are defined similarly with respect to the selenodetic
{xyz} system.

The position and velocity (state vector) of poinis in space with respect
to 2 particular igertial coordinate gysiem (selenocentric, geocentric, efe.}
ave defined by Cartesian coordinates (XYZ). Thus, the geocentric siate
vactor of the Moon's mass center is given by the LE-16 ephemeris
[C'Handley et al., 1969] where the inertial XYZ system has been defined
as identical fo the mean equatorial system of 1950.0 .

All optical observations of the Moon (photographs, direction measure-
ments, etc.) are treated as light rays emanating from a projection center
whose selenocentric inertial coordinates are known or are being estimated
in a least squares process. The individual ray from a bundle {the rays
emanating from the same projection center form a bundle ) is related tfo
o reference optical frame B,B;B; by two angular quastities. As mentioned
above, the B.B.Bs is related to the XYZ system centered at the projection
center by three Fulerian angles or in general by an orthogonal transformation
matrix. )

Recapitulating, the objective of this study is to develop a model solution
for an optimal datum on the Moon in the form of Cartesian coordinates of
a network of topographic features on its suriace. The solution is to be
obtained by a simultaneous weighted least squares adjustment of presently

available iypes of observations, where the weights are determined from
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estimates of the observations statistics. Available and newly developed

physical models are to be used in formulating the problem and its solution

such that they would share a common basis of postulates and would be
consistent with one ancther.
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2.2 General Adjustment Model

In the model to be developed in this section, the Moon is regarded as a
rigid body. As such its motion in space can be partitioned into two independent
parts, i.e., a translatory motion of its mass center and a rotation about its
mass center, '

The numerical solution of the geocentric equations of translatory motion of
the Moon as provided by JPL in the form of the LE-16 ephemeris (the lunar
part in the general ephemeris of the Sun and the planets called DE-69, see
[ O'Handley et al., 1969]) is considered absolute and constitutes the numerical
basis for the entire solution in this chapter, Future improvements in the lunar
ephemeris by the incorporation of more accurate data and further perfection of
the mathematical model of its translatory motion could be used to reprocess
the available observations and eventually obtain a new and better determination
for the lunar datum. It can be shown, however, that accepting the presently
known uncertainties in the lunar ephemeris as being fair estimates, the effect
of these uncertainties is well below the noise level of conventional optical

observations.

The model for the rotational motion of the Earth in space as specified
by generally-adopted constants [IAU, 1964] for precession and nutation and
the continuously monitored polar motion and UT1 variations is considered
as being exact. The nutation information is to be taken direetly from the
DE-69 tape where it has been computed from Woolard's series as developed
in [Woolard, 1958]. The total effect of inadequacies in this model resulting
in errors in the orientation of the Earth in space as well as uncertainties in
the geocentric (UVW) position of Earth stations performing optical or radio
observations can be shown to fall below the noise level of the optical obser-

vations.

The assumptions of adequacy of the lunar ephemeris, Earth orientation and

station positions on Earth may invoke serious reservations as to their validity and
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place a question mark on the solution for lunar datum as proposed in this

study. There is always the possibility, however, to model the station unknowns
and the FBarth orientation parameters (for example, the Eulerian orientation
angles) although it should be admitted that the application of such a model at
this stage would require considerable work. In the present solution, how-
ever, in order to obtain realistic stfatistical information for the parameters
that are being solved, the uncertainties in the Iunar ephemeris, the orien-
tation of the Farth and the geocentric position of the obgerving stations are
considered in the form of covariances of the selenocentric position of the
observing station on Earth. This is done following the approach of
"Considered Parameters' presented in Appendix D.

The data to be used in determining coordinates of features on the Moon
have been defined in general as optical observations. The idea is to regard
an observation which defines a direction from a point in space,to be called
the "projection center",to a point on the lunar surface as an optical obser-
vation., The directions in space are considered in principle nonoriented,
and it is through the a priori covariances in the adjustment process that a
distinction is made between truly nonoriented and partially - or fully -

oriented directions.
Presently the selenocentric position of a spacecraft orbiting the Moon is

determined by least squares adjustment of range and range-rate tracking

data from stations on Earth to the satellite. The ordinary orbit determination
solves for the state vector (position and velocity} at a standard (initial) epoch
as well as for a number of constants. As some of these constants are
dominant factors in the rotational motion of the Moon and also as the projection
center from which the optical observations are made lies along the trajectory
of the spacecraftf, it is necessary to process the range and range-rate tracking
data together with the optical data and thus obtain a solution for the trajectory

and for the relevant constants which is consistent with both types of data. Thus
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the uncertainties in the selenocentric position of the projection center are
the combined result of the degree of incompatibility of its adjusted position and
velocity. with the range, range-rate, and optical observations,

Thus far the orientation of the Moon in space was not discussed. It is,
however, inherent in the definition of the selenoceniric coordinates of points on
the surface of the Moon; and, moreover, it isinstrumental in the definition of
an optimal lunar datum as stated in section 2.1. For the above reasons and also
from a practical point of view, i.e., the need to define the orientation of the
Moon at any epoch by a minimal number of parameters, the theory for the rotation
of the Moon is redeveloped; and a numerical solution is provided in Chapter 3.

The solution for the rotation of the Moon as presented in Chapter 3 is consistent
with the lunar ephemeris (LE-16) as it actually uses the LE-16 as an input in

the numerical solution. In the least squares adjustment procedure, the
parameters in the proposed solution are used to model the optical and to a certain
extent the range and range-rate data. In this sense the solution for the parameters
of orientation of the Moon can be regarded as an integral part of the general
adjustment procedure,

The geometric situaiion and the observations involved are represented

schematically in Figure 2,2.
Z

Figure 2.2 Geometry of Observations
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The symbols in Figure 2.2 have the following meaning:

E

M

S15 (S¢)
XYZ

'8
Lgd,

(p! 4)’ 8

is the geocenter

is the selenocenter

is the satellite

are the inertial Cartesian coordinate systems

is the selenodetic coordinate system

are reference frames for optical observations

is an Ea_rth—based station for optical observations

is an Earth-based station for range and range-rafe
observations

is a triangulation point on the Moon where t, is the
selenocentric position vector in components of the
XyZ sysiem.

are unit vectors of the optical rays to T from O, and S,,
respectively, given in B,B;B, components

are range and range-rate measurements from O, to 8,

are the selenocentric position vectors of O, and S,
respectively at epoch T, in components of the XYZ system

is the initial state vector :df"jthéisatellité S at epoch
T, o

are the Eulerian orientation angles of the Moon

(It should be noted that ¢, ¥, 8 change with time. )

The meaning of the subscribts is as follows:

i
k
]

indicates quantities at epoch T,
indicates quantities at epoch T,

indicates the sequential number of a triangulation
point on the Moon

© Two orthogonal transformation matrices are defined as follows:

Mg

for a transformation from B,B:Bs into XYZ
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M, for a fransformation from xyz into XYZ
where
My = Ra(~¥) R; (6) Rs (-9)

2,21  Condition Equations for an Optical Observation.

The vector friangle defined by the selenocenter, a particular triangulation
point on the Moon and the projection center (see Figure 2.2), allows the
formation of a vector condition equation - one for each observed direction.

A double subscript notation is used as follows:

i identifies the bundle or, actually, the projection center,

j identifies the serial number of the particular triangulation
point on the Moon to which the direction is being observed. -

The distance between the projection center and the triangulation point is
denoted by py;.

From Figure 2.2 and using the notation described above, it follows:

P;J'Mei' Uyy + o8y - Mmi-tj =0

. . _ 2.21.1)
Fyy = Mg, ruyy + ;(Si = My, ty) =0 .

i}
Py can be evaluated from equation 2.21.1 as follows:

s * *
pyy = sy - My, * 17 [sy - My, * ty] = [s - tu]T' [sy - ti.‘j]
where

F3
ty; = My -t

B should be pointed out that the three components of u,, are interdependent

through the following equation:

The components of u;; are not measured directly. They are functions of
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two independently measured quantities which are defined in this study as the angles
% and V¥ (see Figure 2.3). Actually, in order to assure orthogonality, the
quantities q,, defined below, rather than x and v, are used. The following

two equations define u,;,; and ¢, in ferms of w3y and vy,

cosy v

11“ = SinV‘COSX 3 qu =

. . giny « %
sinl+* SsinA 13 v 1

Figure 2.3 Optical Observations

As shown in Figure 2.2 the projection center can be along the trajectory
of a satellite (§;), or it can be an observing station on Earth (O 1}. The notation
for the vector equation remains unchanged except for subscript E indicating
that ;)Ei is a selenocentric vector pointing at the station on Earth instead of gi
being the selenocentric vector to the satellite §,. In sections 2,3 and 2.4 this
distinction is expanded further in the nomination of appropriate parameters

and the subsequent linearization.
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2.22 Condition Edquations for Range and Range-Rate.

Condition equations for range and range-rate observations are developed
under the assumption that for an epoch T, = T, the point 8, = 8; or, in other
words, there is no parallax between the projection center ( S;) and the focal
point of the radio transponder (S.). Actually th'es;e two points are assumed to
coincide with the mass center of the satellite. The subscript in the diagram
for range and range-rate observations is k to indicate that even if the
satellite is the same one considered in the optical observations eguation (8),
the range and range-rate observations are being conducted at an essentially
different epoch Ty.

According to Figure 2.4 and using slightly different notation, the

following two condition equations can be written:

1
G = R+ R)°-r, =0 (for range) (2.22.1)
1 . .
H = o Ry * Ry - 1y = 0 (for range-rate) (2.22.2)
k

Ty is the observed range at epoch T,

Ty is the observed range rate at epoch Ty .

S
q
IR A
- - ". .\\
. / B
X Y et \\
s ST
1] e Tl
s, . x .
initial . tPak \““"\"Ok
state vector s" - .
(=]

Figure 2.4 Range and Range-Rate Observations
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The symbols used in Figure 2.4 have the following meaning:

M selenocenter
Sk satellite at epoch Ty
0, radio {racking station on Earth

[ X] topocentric (tracking station) state vector of Moon in X,Y,Z components,
X
% fmplicit in Lj{ | are the following: Ilunar ephemeris, tracking station
position, orientation and rotational velocity of the Earth.

[ S} selenocentric state vector of satellite inX,Y,Z components
S e

{ R] topocentric state vector of satellite in X,Y,Z components,
R}y

It should be noted that in forming the equations G, and H, the topo~

centric state vector of the satellite ' E-J'
= X

ik
L

is obtained from the following

vector relationship:
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2.3 Parameters in the Solution

The subject treated in this section is the selection and definition of the
parameters in the general adjustment model. The nature of the observational
material is fairly well known. The quantities of direct interest, i.e., the
coordinates of features on the Moon' in the particular (optimal) coordinate system
are also well defined. A number of additional parameters are needed, however,
for the purpose of modeling the observations and also for the deﬂniﬁon of the
selenodetic system itself which are not so easily available. Before describing
the parameters chosen for this analysis; a short discussion is presented on the
general problem of parameters in an adjustment process.

The basic relationship between parameters and observations in an adjustment
process is that the observations processed have to be fairly sensitive to variations
in the parameters, Unless this is so, the parameters cannot be estimated from
analysis of the observations and,vice versa. there is no need for these parameters
as they cannot model the observations., A However, even after it is clear from
experience, logic or intuition what type of parameters are neceséary to model
a particular physical or geometric situation, there are still 2 number of options
left for selecting a particular set of parameters. Thus choosing a set of
parameters in an adjustment problem is of necessity somewhat arbitrary.

Unless there is past experience or thg parameters are physically obvious, the
only guidance in making the final selection is provided by physical or numerical
considerations,

Once chosen and utilized, the criteria for evaluating the success of a
particular set of parameters are trifold:

(2) The estimated values for the parameters should be stable, i.e., the
gsolutions obtained from processing different baiches of data should be
consistent within the estimated covariance of the solutions.

(b} The parameters should fully model the situation at hand.

(c) Tt should be numerically possible to arrive at solutions for the parameters

which are well separated.
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The first and the third criteria are easy to check. The second is difficult
as the only means one has of checkin'g it i< through inspection and analysis of
the observational residuals after the adjustment. But even if the residuals
appear well behaved, i.e., showing no r'gsiduail systematic effects, one is
seldom sure that criterion (b) above has been fully met.

A case can be envisioned in which sox'ne paratﬁeters may be tolerated even
if they do not satisfy criterion (a). This méans that the values of these payamet.er's
are of no interest, and they are used in the adiustment as nuisance parameters,
Numerically such parameters are not solved expli;:itly, but rather their solution
ig "folded in" the solution of the other parameters (see section 2. 5).

~ As implied in section 2,2, the parameters figuring in the general model are

selected so as to model only the geometric and gravitational aspects of the
siiéuation. Parameters associated with the instrumentation involved or with
physical phenomena such as refraction, solar pressure, ete. are left out. The
mathematical interpretation of this would be that the effect of the parameters
left out is.perfectly known, anﬁ the :z-aw observed quantities involved in the
process can be fully corrected prior to the adjustment ., A direct result
of this assumption is that the observations can lg‘e_‘rfegiai-de;d; as noncorrelated
quantities, By a proper definition of orientati:op pé%éé,éieis, directions
observed gsimultaneously {from the same pré;jéct%br.i{ééﬁtei') can also'be
regarded as noncorrelated with one another. In accordance with the "Generalized
Approach, '' the actual observations are regarded and treated in the adjustment
as another group of parameters [Uotila,1967 1.

" Two broad classes of parameters are considered:

(a). Permanent: These are the parameters whic;h are displayed as the results
of tl;e -analysis. Implied by this is that they should satisfy completely all
three criteria mentioned above.

(b) Transient: These are parameters which are necessary in constructing the

mathematical model, yet they are either different for different data batches,
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or their nature is such that there is no particular interest in their adjusted
values and the appropriate covariance matrices, The actual observations

belong to this class although it may be of interest to study their residuals

after the adwstment.

The parameters chosen for this analysis are presented in Table 2.1

followed by brief .comments on each of the 11 parameter groups.

Description Class | Symbol

Parameters:

1. Cartesian coordinates of triangulation points on

the Moon in xyz system. b L,
2. Orientation parameters of the Moon at a standard

epoch Toqy P s
3. Physical constants of the Moon (low degree) P Ls

4, Higher-degree gravitational parameters of the
Moon (in mascon form) T L,

5. State vector of a satellite at a standard epoch T,

in XYZ system. T Ls
6. Exterior orientation elements of B;B,B, with

respect to the XYZ system : T I,

Observations:

7. Optical observations (two independent quantities

per direction) T Ly
8. Range T s
9. Range-rate T Ly

Considered Parameters (see Appendix D )

10. Selenocentric position of Earth observatory or

tracking station in XYZ system Iag
11. Selenocentric velocity of Earth observatory or

tracking station in XYZ system Ly,

P - permanent ; T - transient

Table 2.1 Parameters in the General Adjustment Procedure
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Parameters L,. Cartesian coordinates were chosen to relate points on the

surface of the Moon to the Xyz selenodetic coordinate system, The advantage
in the use of Cartesian coordinates is in having simpler mathematical formula~
tion and an easy derivation of partial derivatives. Associated.with Cartesian
coordinates, however, is the lack of distinction between horimontal and vertical
control  which may be considered as a disadvantage. There is the inconvenience
in analyzing the positional uncertainties of the points after an adjustment and

also in case the points are to be used for densification of control or for
navigation. However, transformaticn into polar coordinates is a simple

matter for the Moon which is basically spherical in shape.

Parameters L,. These are the physical libration angles and their time

rates at a standard epoch, Variations in the orientation parameters of the
Moon at a particular epoch (the Eulerian angles) are related to L, by a 6X6
matrix of partial derivatives called the state transition matrix (see section
3.32 in Chapter 3). This is a significant asset in the parameterization of the
model. No matter at how many epochs the Moon is observed, the parameters

of orientation of the Moon remain six.

Parameters 1L, and I,. These are the parameters defining the dynamic

figure of the Moon. The reason for their separation into two groups" is
technical. 1s does figure in the equations of rotational motion of the Moon .‘:;S
well as in the satellite motion, while I, affects the motion of the satellite only.
Also with reference to the classification as permanent and transient, IIB r;lre
considered permanent while I, are regarded as transient. This would mean
that the adjusted I, can.be different for different satellite arcs, The values of

L, are solved implicitly by the "fold in" matrix operation (section 2.5).

Parameters Ls. This is the selenocentric state vector of a particular satel-

lite arc at the initial epoch , This would mean that if,for various reasons,data
from the same satellite are processed in several arcs, there will be several

sets of initial values. For this and other reasons as shown in section 2. 5, the
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data are processed one arc at a time.Asin the case of parameters L, there is

a single set of six parameters for tt'xe selenocentric position and velocity of the
spacecraft al any epoch along the same arc. An appropriate state transition

matrix is used to relate variatioﬁs in the state vector at a particular epoch to the L

parameters (see Appendix F).

Parameters L;. The choice for exterior orientation parameters was made

following in general [ Rinner et al., 1967]. These parameters are defined as
three differential rotations applied to the Cartesian reference system B,B.Ba.
These rotations together with a nominal (approximate) orthogonal transforma-

tion matrix Mg (see section 2.2) bring the B B;B; reference system into the
inertial XYZ system. The mathematical treatment of these orientation parameters
is much simpler than the one using the traditional gimbal axes (x, ¢, w) and is
more appropriate to the general model developed in this chapter. No matter how
the nominal orientation of the B,B,B, system is determined: by star background
photography, by a separate camera, by star-lock devices, inertial navigator,

etc., the mathematical treatment of the exterior orientation elements remains

invariable. The only difference is in the a priori values of the covariance matrix

of the orientation parameters.

Parameters I, Lg, Ly, These are the actual observations and need little

or no explanation. The optical observations {L») were chosen to be two
independent quantities relating an individual ray to the reference B;B.B,
Cartesian system. The B;B;B; system is the same for all rays observed at
the same epoch (see also section 4,7 in Chapter 4). As shown in section 2.4,
the linearized mathematical model does not have to be altered in order to

accommodate a different choice of observed quantities.

Parameters Igcand 1,;. These are the selenocentric Cartesian components

of the position and the velocity of an observing station on Earth in the XY7Z

system, These parameters are not solved, They are used as shown in section
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9.4 for deriving partial derivative matrices of the ¥, G, and H functions in
order to be employed later in evaluating the covariances of the permanent
parameters. Throughout this chapter, these are the "considered parameters’

in the adjustment (see Appendix D).
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2.4 Linearization

The linearization of the mathematical models for optical, range, and
range-rate observations is obtained through partial differentiation of the ;,
G, and H functions (equations 2.21.1, 2.22.1 an;:l 2.22,2) with respect to
the parameters. As usual, the linearization is valid provided the functions
are fairly linear over thg range of the corrections to the observed quantities.
For the partial derivatives with respect to parameters La, 1., and Ls, use
is made of the state transition and parameter sensitivity matrices as derived
in section 3.32 and also in Appendix F. Accordingly, in this section, these
matrices are assumed known.‘

2.41  Optical Observations.

Mathematical model for projection center on a satellite (equation 2.21.1):

* *
= :g‘( al’Lg’I‘gsl’Z:Lg!]‘-é!L%) =0 .

bidrs 87

Mathematical model for projection center on Earth (equation 2.21.1):

* *

*®
F = F(L} I3 1§, I8, 15, Ly = 0

where L‘fo are considered parameters { see Appendix D) ,

LY = L} +X,

and 1} are the adjusted, LY are the observed and X; are the corrections to
the observed parameters. The following expressions are needed for the

linearization:

F (2, I3 13 1,

* *

BFS‘ Cox E
sl P T,

The linearized models for optical observations are as follows:

49



*

* * * * * * * * %k
F=0% W+BX +BXp+BXgt B X+ BeXe BXs + ByXy = 0 (2.41.1)
* * % * * * * %
E=0=We+BX +BX+5BX; TBX+t BrXy = 0 . (2.41.2)

*
The partial derivatives matrices B: are obtained by differentiating
F

equation 2.21.1 with respect to the parameters L, (i=1,2.... .7,10).

* 1
Fi,j = Mg,i . ui,.'s + 0, J(Sq_ - MM,!.. t") (2.21. 1)
£ _ 3F alo—%‘" Use=My, " } 1
= bl oo = - -—(1-M T oMl M
BT AL, 31, b L= Mo, a0, 5,11 Mu,s (2.41.3)
where i _
Ll,}.
L]_,E tj:x
L= : and L =8 = by
Li,s . Y,
* *
E _ O0F,; _ 3Fi,; op;,9vy _
7> 3Ly 3p;  ov; dlo
=7 : ' gt o]
= Py jl MM,I' E3°tJE Es‘MM,i'tj :'Rs(“lbi)'IQL° Rl(91)°R3("'§Di)'tj ! 0; 0; Oj'
[ “
1 -1 0.
0o 1 0. 0
. _0_ ‘__(_)__..1- o N -[gai (2.41.4)
-1 -1 0
o) 0 1 0
"0 0 1

50



where

where

Lg=TCxn B Cx¥

= [ode opbY
=[rop 765}
L= [trop TUP]SO
v,

which is the state transition matrix for the
3l

Ui -
M .
physical libration angles (see section 3.32).

MM,i = Ra(-11)* R1(8)* R (-0

Iy, k5, &3 are Lucas matrices used to differentiate the rotation matrices

(see Appendix F).

—

* % |5
- !‘aFi p aFi 3 a]?i JJ FoF, ;. Py, _E_sﬁ +BF1,5. LSy i
Lols oLy olg L op, ov; 8l s ols :
Lsi,
” i’ss !._S—l
aFy,, .,f s_| cSagy
Fs1 \dL, 'aLS Ji =
o
'_s_l1
- ! t - 2-41-5
'a“"“p,_ avi 65521100J - _Q‘;QB‘U‘J ( )
Ls;_ii

are low-degree harmonics of the gravity field of the Moon;
8=(C-A)/B ; A, B, C being the principle moments of

inertia of the Moon

+=TH1 o ... ]" are mass concentrations on the surface of the Moon repre-
senting the higher-degree features of the gravity field of
the Moon, The conditions imposed on the solution of 1,
are as in Appendix C.
s
Lg= ! 2 J is the initial state vector of the satellite arc
- [}
Q= %Y-‘— is the parameter sensitivity matrix for the rotation of the Moon
u La ~ gt
% sl
[Q Q= — L is the parameter sensitivity matrix for the motion of the satellite
sl 82 3 LS !
L
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s

o L
Iy = —[":E:—J-i— is the state transition matrix for the motion of the satellite
3 5
L8
i) BE '
E
Pis Vi Py y o—r2d are the same as defined or derived for B, above
AV~ apy F
(%1 - is derived in section 3,32
Qli, SQEI, Ifi are derived in Appendix F.
-

*

In equation 2.41.5 above, the expression for ‘2*3:&1-‘L is evaluated as

follows: | al-.s '
*
3F 1 ;
L = fI*Ma.;“i,JuI,JMg'i ;01 .
Al §1 Pus
L.S_li

¥

* oF
The expression for B, is actually part of -—F-i;:‘-f as follows:
3 5
LS_i,-_
" *
* aFi J aFi 3 1 T T

= Z = 2 = I - M 1 u M - 2. 4:1.6
310 ST Ss, b [ 8,1 U,y Uy, Mg,y ] ( )

The matrix *gﬁis not part of the linearized mathématical model (2. 41. 2)
but is needed fort the evaluation of the contribution of the considered parameters
Lys to the covariances of the parameters which are being solved (see Appendix D).
The exterior orientation parametrs weredefined in section 2.3 as small
rotations (e;,ez,es) around B,,Bs, Bz, respectively. The approximate values
of e; are set to zero, and it is assumed that the My matrix transforms the
B,B:B; system very closely to its "true" orientation with respect to the XYZ

%k
gsystem so that the e;,ese; are small quantities. " The derivation of Bg is
F

presented in what follows:
*

U,y = Mg ¢* Me,:* ug,;

1 €y —e,ﬂ
Rgler,s)* Ra(eq, o) Rifey,)) = |~e; 1 € L

€ - 1 J:

Me;
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The approximation is based on the e,, e, e; being small angles so that

sine; = e, and cose;= 1,

/ P 0 e -es [ 0 e -6,
3 = MB’1'11+[-83 0 el ui,J = Ma.i' 1.11’3‘*‘ MB'il_e.S O el . ui,s

i
\\\ ez "el 0 1 L € -el 0 1

*
Uy

* 0 ~u; uz] ]
Ug,y = Mgyouy,y + Mp,p*| Uy 0 -y |
Uz W, 0,y [€3p

The last algebraic operation is based on the following identity:

- - - >
€Uy, 5 = U,y X e

Using the expressions developed above and realizing that
€y,1 |

Le,; = & = 91,2j
€4,3

the expression for B, follows directly:
F

/ ]- 0 U.3 _U.2 _
* * * ° \MB,i'- -uzg 0w, ie P 0 Ua Uz
BB = aFi:J .—.:—alliaj — YUz "W 0 1,3 =MEI " 1 Y 0 u, 1 (2"41'7)
uz w0 i,y

The partial derivatives matrix for the optical observations is evaluated as follows:

% - *
H 3 n
By = OFiy = 3Ty o Ms , (2.41.8)
) aﬁ?’-i..‘i ouy,

At this point a transformation will be performed from i?k‘ to ¥ functions with
corresponding fran.formation of the Ei matrices into 3?1- The purpose of this
transformation is to reduc.e the number of condition equations per ohserved
direction from 3 (%‘) to 2 (F) so that the normal matrix to be obtained sub-

sequently from the optical observations is of full rank. The new 1. param-

eters are defined as follows:
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Lo, 1,1]
7,1,2
: r 4 _] *
=1 Lo,z | 3 Lygg = Qg = ; Liga,y & Uiy
. Lsinvsnly
L 1,4
. ;
% Su [-sin v 0
Lig, 4,5 = 6111,5 = 3 irde qu =1 cosV cosH -sin H |- 5L7,1,$=E1’3- 0L, 4,3
G, | cosy sinx COSX
Using this relationship
* * *
Bays,s® Xr,1,5 = Ba,o,17 Eqyyt Koty = Boyryy Koy (2.41.9)
%7,1,:} = Mg, By, o (2.41.10)

An important property of E, , is that it is orthogonal, i.e.,
E{,y* Ey,y = 1.
As Mg, is orthogonal too, B, , is an orthogonal matrix, i.e.,

T L] -
B'__?’i’.! 3;7:1!-1 I.

%
The linearized function F is premultiplied by }IE}T';:

* * *
F=BL+F = BYy(B,;X;+... + B.X;+W,) = 0
S F $ FF F F

*
The same is done for EE‘ The resulting linearized model is denoted by the

omission of (*).

B, X, * BoXe + BaXy ¥ ByX, + BsXp ¥ BoXg * X+ Wy = 0 (2.41.11)
F F F F
B, X, + B;Xp + B %o ¥ BeXo + Kyt Wy = 0 (2.41.12)

Tn what follows the’ expressions for B; are summarized:
F

- "Bl Mg,
%1'5' o ) rI - MB!i uy 3 uI,J Mg.!]. MM,i

1,3
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2 L - ELyMEL /T '
.'%\%3 1;4: §5j1 3 = ——-%:—ﬁél(iMm,i ].53 t.] ; I.Qa MM,i tJ : "-R3(— )bi) T_cl]_ R]_( 91):8.3(_('01) t,] 0 0 0‘|

f1-1 0 ; ]
0 1 0 ‘ O ;
0 0 1 b
L2 N Y U rO +
"71 -1 70 nﬂﬁe]ifo‘ )
; O 0 1 0,
:_ : 0 0 1“'
t R T\
+(o: [1- My, 0, o, M, 0 0;0{+iQQUj ) (2.41.14)
£ N . .- S_li
ro U -up |
—_ 4 |
Bess = Eigl-s 0 wu | (2.41.15)
i_ ug —u; 0 1,1
:Evd,é =1 (2.41.16)
. 1
Wy, = Bl Mg,y (Mg uy ) + o (8¢ ~ My, ty)] (2.41.17)
E] , M}
Bio,y,y = —H—2t insji [T - Ms,, ug,yui,, M, ] @.41.18)

2.42 Range and Range-Rafe Observations.

The mathematical models for range and range-rate (equations 2.22.1 and
2.22.2) are as follows:

CG o= G(LE, 13, 14, 18, L) = 0 (range) (2.42.1)

H = H(L, L, 12, 13, L%, L)) = 0 (range-rate) . (2.42.2)

_As for Earth-based optical observations, here too L, and L,, are

considered parameters (see Appendix D),

Utilizing notation similar to the optical observations model, the linearized models

are as follows:

G = ByXg+ B,X,+ BsXs+ ByXs +W = 0 (2.42.3)
[¢] G G G

G

|
[=]

H = %3X3+%4X4+%5X5 +:%9X9+.Vg = . ’ (2.4:2.4)

The models G and H as defined in section 2. 2 will be presented again with

slightly different notation consistent with that for the optical observations:
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1

G = (ls-sk-[s- sk)®- 1 (2.42.5)

1

I—Ik = —a [S._S:];I rs—s]k—i'k . (2-4:2-6)
T ] £ S E
where
rs” is the selenocentric state vector of the satellite
84 '
5
ST is the selenocentric state vector of the tracking station on Earth .
LSa

The partial derivatives matrices B1 and B1 are derived by the
differentiation of equations (2.42.5) and (2.42, 6) with respect to the param-

eters L, figuring in equations (2.42.1) and 2.42.2), respectively:

rsn s s
al 3 ‘a[ 1
, Lsde TLes
popop oG | 75" S ?J“;_lr T -
| 4425 ren % :_:.“i[§_§:lkl0.| U,
6 & ¢k a s aLa aL4 ,aus ! ke S < I - s_]k
‘._S_L t J
r ir ‘ ST -
B;B,B =[5 - Tox - ) - The
BeleBe) T ili- gk - ek e-gkn199 Yy (2.42.7)
Bow = 15 "By = -1 (2.42,8 and 2.42.9)
ML Iso
Lu—lk LS;-—’k
0G,  _
Bua = 55— = Ts- gk (2.42.10)
- "N SRy
Box = 5Ter ~ T n (s~ sl (2.42.11)
= aHk = ...—1- -
Bue = 5 B8k (2.42.12)

For the derivation of Q, @, U, see Appendix F.

st 32 &

o6


http:k(2.42.10

2.5 Formation and Solution of the Normal Equations

The development presented in this section is based on the following premises:
(a) A large batch‘of data (optical, range, and range-rate) is to be processed

simultaneously, The batch includes data from several satellite arcs and

also from Earth~based observations.

(b) There have been data processed prior to the present batch so that there is
an a priori knowledge of values for the parameters and their covariance
matrices,

{c) The covariance matrix of the permanent parameters L,, L,, I, (see
section 2, 3) is nondiagonal while those of the transient parameters are
diagonal or at least block diagorfal.

The Il,otation used is as in éection 2.4, and the solution follows according
to Appendix D. The two cases of optical observations—satellite borne and
Earth-based—are treated separately, and at the end it is demonstrated how the
separate normal equations are combined into the final solution for the whole

batch.

2.51  Satellite-Borne Optical Observations (Single Arc_).

The solution as developed is for processing data from a single satellite are.

The linearized models as from section 2.4 are:

F = ]g’lxl““§2X2+]§3X3+]§4X4+1§5X5+]§5X6+X7 tTWe = 0
G = B3X3+B4X4+BSX5 —Xa +WG = 0
. ¢ - € (2.51.1)
H = . Ea&'-"%e&'*‘%sxs - XgtWy = 0
C = T, +W, = 0

The conditions (C,) imposed on the X, parameters are identical to the ones
presented in Appendix C.

The minimizing function ¢ is defined in the usual way:

o = XiX3... XJ] T XIXL... X7 - 2N [FGTHT O] (2.51.2)
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where

A=A NNT

is a vector of Lagrange multipliers

% is the a priori covariance matrix of all the parameters

involved in the adjustment (Ly,Ip...Lg).

It is clear from the formulation of ¢ that the weight matrix is obtained by

inverting the covariance matrix where the variance of unit weight is defined as a

dimensionless number equal to one.

In order to facilitate the formation and solution of the normal equatidns, the

submatrices are blocked in terms of auxiliary matrices.

Lg
0]
24 O 2‘7
r1=21,2,33 Iz ; In =
O Zs (0] g
g
BB B B B Bs 1.0
O -
pel© 0 Bl LB B, 0 04
Q O Bs I% ]35 o 0o O
|0 O O | 1C, O O 0 O
i ' X .
IX].-I [‘th_ !X X}_g
Yl“[X2|; Yo =1 ; Ya=rTTl Zo= H
XS] L85 ] B! _ 4 |
| Xo

_ o o -
Az = %10 O

ﬁm ]H311

L, O 0 -

WF -I A.F

;

! WG ; K = E A‘G
. Wy i A
We i Ac

The normal equations are obtained [Uotila, 1967 | using the auxiliary notation:

_

f-—r'} O O Ai‘lhfl_} o}
! .

o -Iz O ALIY?,%:{O;_

o 0 -T? A;“Yal | o |

‘ |

CAL B2 A OJi_KJ -0
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The solution for Y, is according to Appendix D :

Y, = -PAIMZ,U (2.51.4)
P = (7 + AIMZ; A)°
where
Mz,s= (A2 T2 AL + AT AN
The covariance matrix of the adjusted Y} parameters is
TP = P+PAI M3, M, Mj35A,P (2.51.5)
where

MZ = AZ rZ A.Zr

2.52  Earth-Based Optical Observations .

In this case there are no accompanying range and range-rate observations;
the parameters X,, Xs do not appear in the model, and the solution is consequently

much simpler. Auxiliary notation similar to that for the satellite ohservations

is used:
s O 1
= 21,2,3§ T: = ;i T, = Tho,n
o I,
A = []?1 ]§2 Byl Ay = “?s I1; A, = [_]5:’1001
| X %] [ Xy
Y, = Xl Ys = bz = J
i Xg © Xq LX

The solution for Y, and the covariance matrix of the adjusted parameters Y2 are:

Y, = -PAIMIU (2.52.1)

M =P+ PAIM;M, Mz AP (2.52.2)
where

P = (TL + Al Mj Ay

M; = A T, A]

M, = A, T,Al
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2.53 Combined Solution.

In case more than one satellite arc are processed, the parameters L,, Ls
are different for each arc. I, may end up being the same for all the axrcs
although this is not enforced by the solution, i.e,, L, are allowed to adjust to
different values for different arcs, The a priori values and covariance
matrix for L, used for the different arcs are the same. This is so as the
processing of the arcs is regarded as simultaneous even if numerically the
arcs are processed one by one,

The normal equations of all the observations in the batch (k satellite arcs
and Earth observations) can be written as follows (see normal equations for a

single arc (2.51.3) ):
E--I"ll O Al Y, 0
O -T* AT|*{Y |*+] O |= O (2.53.1)
A, A O K U

where
[T, O} ]
0 T o
_____ RS B
To 0
1 O rg Iy
- T+ -——=t- —_———
r= _:II"2 0
]
© O T
_ | Ta,e
[ A [ Az A ]
—————— r==-=4
A2 (Aobeis O
A]_: . * A= e
! O i A 1
Apx E iﬁ_.s.g,__-
L Aye | ! 1 7eE
K, " U, ]
Ky Us
K = . U= .
R U,
| Ke | | Ue |
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The solution of such 2 mammoth system of normal equations is a straight-
forward matter due to its banded block diagonal structure [ Brown, 1969]. The
operations with the large matrices are replaced by a summation. The procedure
is well known and at the end the adjusted values of the permanent parameters and
their covariance matrix are as follows:

Setting P, P, P, as

k
P = [rll + P + EPi ].1§ P = (AE M.?} Ades; Py = (AI M%,s Ar)y
1=1
it follows
k
v3 = Y5 - P [(AlMIU) + ) (Al M35 U),) (2.53.2)
i=1
T = P+ (U7 + Py (Al Mg M, M3 A (T + P)™ +

k

+ Z(r% + Pi)-l (AI M§'3 M, M;,-,3 Al (I‘? + Pi).l (2.53.3)
i=1

As shown in Appendix D, P is the covariance matrix obtained by ignoring
the contribution of Z, It should be noted that the covariance matrix evaluated is
identical numerically to the weight coefficients matrix as the variance of unit
weight is assumed to remain unchanged after the adjustment (it was set initially

to one).
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2.6 Programming Considerations

The analysis in section 2.5 resulted in a solution which was considered
feasible due to the banded block diagonal nature of the normal matrix, Yet
even the elements within the summation sign involve operations with matrices
of immense dimensions which cannot be handled directly even by the largest
computer systems available today. Fortunately, the actual situation is much
less alarming as those expressions are composed of matrices with a favorable
pattern such that the formation and inversion of the large expressions can be
performed in parts.

The objective in this section is to analyze the various matrix expressions
obtained in section 2.5 and to develop algorithms for their evaluation under
the assumption that a computer system of the rank of IBM 360/75 is available
with its core size, auxiliary devices (magnetic discs and tapes) and matrix
inversion subroutines,

The expressions that will be considered are as follows (see section 2.5):

Satellite-Borne
1, (Al M§,3 Ay
2. (Al M3z, U)r
3. (TT+ P (AI M3 o M, M3 5 Ay, (T + Py)?

where 1 represents satellite arc #i ,

Earth-Based
4. (AIMIA))
5. (Al M3 U)
8. (Ti+ Pe)™ (Al MAM, M2 A, ) (TT+ Pp)?

In order to illustrate better the logic of the algorithms developed, the
matrices involved in each of the six expressions will be shown diagramatically

emphasizing the submatrices which are full vs, those composed of zeros.
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Expression 1: A] M3 5 A,

The auxiliary matrices from section 2,5 aré partitioned further as follows:

X ;;2] A ]
A, = 3 As = 3 Az =
o c. o ]
i A, ] exposure 1
%}'2 expo.sure 2
* . .
AL = A1, - exposure m
Pél range
él | m range-rate




where

* * * * *
My s = AT AL+ A3 T5 Ag
— *
Ng = Ag ]."2 C;
Na = CpTy Cg -
Q Q!
Mz, = _ l[
Qs Qo

From Uotila, [1967] it follows:
* T arlTa Tyl *-1 *-1 e T *-1 ALY "
Q = (Mz,a-NpNoNg)! = Mp 5+ Mp, 3 Np(Np- No M, 3 No)™ Nz N

The only element in M3 , needed is @, as
- —
P Qy Qe'l i;’h ‘]l * *

*
AIM'al,a A, = [A] O]l_ﬁg le = AlQ, 4, .

0]

The covariances are blocked as follows:

2, O
Ty=%y,2,a I';= =
o Is
[ To l |
26’2 0
T, = z = K
a B, 27 \\
O Te AN
Te A
27 = 9’2' 1
Ea = gz + I
Eg = 0'2' I

H
x -1
Evaluating the Mz ; matrix:

* * * o * L. ¥ * ok
M3, = (Mg+ ApT2AD" = M3 - MaAp(Te+ AIMZ Aj)*AL M3
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S -
2,3,1
[ M O
W2, 8,2
1
I'_:'IIB,S,B N
o Yas |
11\_,{12,3
I(I;]'l 0 r ml O _E
m, [ " m [
s 2 i
M2, = . ’
LR H Hg.s - L !
C m; O me .
N gt - He
- i wad 1
M3, . I‘;’[a.i fﬂg,;Yﬁ\z,i%’I&,i
=LA vaA
0.4 GS.J G?"J
g

-1 T
- 0_4- ﬂ‘e,éYéz,a
H

*
CoT2 AL = [Co Ty {}:Ta,i CTy {3;,,2 een CaTm f}é,m CoTo A; CoTy {}%]
G
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* —_ -—
TTard T o= ° 1 3 T 7 )
Ne Mg,z Nz =, ,Cz T, l:_ia,i 1\;,12,3,1 1}2,1 T,Cy + {_,Cg T Bz,y My éz,; T,Cy +

i 3

e

T T
+ CpTa {}a,k m, ﬁxz,k T'2Cs

- ¥ —
R = (N2 - N Mz,5 Np)*

91,1 o
Sl.z
_— *’1 *‘l T *'1 —
Q) = Mz, + Mgz 3 Ny R N; Mz 5 Q
¢ l,m
O &t
Q,

[ glrl O 1 i— Elnl O 1
E\"i = 91.2 . Q, :§ El,e

[ O O, ¢ E o Ui, 7

¢ P %

! a T . T 1
1\;12,3,1 + 1\£2,3,1 éa,z-rz CaRCpT> 1:}2,1 Dglz,s.i

= T T
:gnj + Iéﬂ‘! éa,.] I‘gCgRCgrzéz’J TGn"

+ T T
Iglk Iglx {:*z,k T2CzRCT: ﬁ*z,k I}{lk

+ L{}Tl,:c Qi,k B1,x (2-6.1)
K

1

U,
F r -1 - 1 I g
1

Egi IEI U } EL.
Cl U= | ues| Rl oy le
Um) G | . H . c 1
F i |- . |
Y A U Y

; G.Ej H,Z : Uo,9
U " L _ - |
oo !
g |
c
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Some of the auxiliary matrices defined for Expression 1 will be used again:

.

*
FQQ,m

2

Q2,7

R

L Gz |

- 1 T
Qp,y = “I\ga,s,i {__\2. 1 T2 C2R

Qp,; ~ "Iéld *é‘*z,i Tz CER

Qo = _Iglk {}z,k T, C; R .

As before, due to the block diagonal struecture of Mg' 3, Expression 2 is

obtained by summation:

—

T -1 — N T —
AM; 52U = /Tf—i,i (91,1 pi + 92,1 EJ) +

. —_
+ L{}I,k (El;k gk + 92,k p‘) (2.6.2)

Expression 3: (T} + P)*(A] M3 s M, M3 ; A))(T}+ p)?

P is equal to Expression 1 which was treated above.
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- o [ -
A T
A2 :
A !
- | e ,m s
A, s 1 . .;-;%{.Ha—q
A;'E )
H
A )
LTS ' —=
O .
[ o VLG
H
—_ . = | ) | |
M, = A, T, Al o Ny ' N
|
[ Icnz’l o --i i— 1[312'1 O
M: - ?3'2 ’ IYIIZ :| Il‘l;lz’z
G [ ) - J i o .
Ianz.? - Iglz’g)

= Y,
I]'!ilz,k {}z,k M7.% éz,k

Using auxiliary submatrices as defined for Expression 1 above, the

resulting algorithm is:

éll\! * gl.k mz x A{,k ‘él,k - (2- 60 3)

H “*™ ¢y

Expression 4: (A] Mz A))

Because of the absence of range and range-rate observations the situation

is much casier to handle. Parameters L,, Ls and also the conditions imposed
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on L, do not figure in the mathematical model for Earth-based observations,

. 7

BAzin

L E = e

The covariance matrices T',, T, T, are identical to the ones defined for

Expressions 1, 2, and 3.

_1 r
ES,i i 0 _]
M; = g312 =
+ e
O 1
E 3,1

a = 13 + 2 a
Iéﬁa,i [és,ize,i 12*3,1 g 177,
Following the same logic as for Expression 1

v 2
L*é{,i 1\5&3?,1 Ay (2.6.4)
1

1

(Al M3 A))e

E ’

Expression 5: (Al M3 U),

-
U
Us

e
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Using results from Expression 4 it follows:

AIMIO) = ¥ AL ME U, | (2.6.5)

Expression 6: (T7+ P,)* (A} M3 M, M3 A)e (T1+ Py)”

P, is equivalent to Expression 4 and was treated above.
M -
et 0] l

M,

£ '“J

M, are block diagonal matrices composed of (2 X 2) submatrices.
3

—

AT M3 M, M3 A, = Z.%I , I‘{:I;,i IgIz,i 1::’13,1 Ay (2.6.6)

[y

As stated at the beginning of this section, the algorithms were developed
in order to demonstrate the feasibility of the solution as presented in section
5.5 and also to serve ag the mathematical basis for the massive computer

programming effort, necessary for carrying out an actual reduction of data.
/
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3. NUMERICAL INTEGRATION OF THE PHYSICAL
LIBRATIONS OF THE MOON

s.1 Introduction

The orientation of the Moon in space or more specifically, the orien-
tation with respect to the ecliptic imean coordinate system of a Moon-fixed
selenodetic g:oordinate system is a problem of primary impor}:ance‘
in the solution for a datum on the Moon. As explained in Chapter 1, the
problem can be reduced actually to the solution of the physical librations
of the Moon, Although a satisfactory solution for the physical librations

does exist [Eckhardt, 1970], there are several important aspects which

require an entirely different approach.

There has been considerable discussion in the literature [Kopal and
Goudas, 1967] on the problems created by the linearization of Euler's
dynamic equatio-ns prior to fheir solution. The prevailing opinion is that
the unstable solution for one of the terms in the physical libration in
longitude (1) at a particular value of the constant f (where f =%
and A,B,C are the principal moments of inertia of the Moon) does not
necessarily exist in the actual rotational motion of the Moon, but is due
to the linearization. Thus, if a solution of Euler's dynamic equations
in their original nonlinearized form is possible, it could avoid the afore-
mentioned problem.

The consistency of the existing solutions for physical librations with the
new generation of numerical lunar ephemerides cannot be maintained due
to the manner in which these solutions were obtained. The particular
solution of Euler's dynamic equations (the forced librations of the Moon)

is composed of harmonic terms with arguments which are linear combina-
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tions of the arguments in Brown's lunar ephemeris [Koziel, 1948; Eckhardt,
1965]. Even if the solution for the physical librations is not so sensitive
to small variations in the lunar ephemeris [Eckhardt, 1971}, the fact
remains that the present solutions are inconsistent in principle- with the
best available lunar ephemeris.

As pointed out in section 1.3, it is difficult to evaluate all the effects

of the bias introduced by the 'center of figure" assumption made in the

reduction of the heliometer observations. Thus, a solution which is entirely
independent of this assumption could provide a clue as fo its real effects.
The adjustment procedure, as developed in Chapter 2, presents a prob-

lem of parameterization for the solution of the physical librations (section 2.3).

The analysis of observations which are sensitive to the orientation of the
Moon and, consequently, to the physical librations of the Moon, requires
the definition of a minimal number of mutually independent physical librations
parameters. It is also advantageous for these parameters to be explicitly
present in the mathematical model in order to enhance its linearization.
There are two additional aspects which have been neglected so far.

The existing solutions ignore the motion of the ecliptic coordinate system

and do not account  for the direct gravitational effect of the Sun. The

effect of these approximations is marginal in view of uncertainties in the
present knowledge of the dynamical figure of the Moon and the quality of
presently available optical observations. However, as shown in this chapter,
the incorporation of these effects in the solution requires little additional
effort and in view of observations of a superior guality which are becoming
available (like laser ranging to the Moon) it appears that the objective in
any new attempt at solving the physical librations problem should be to
obtain as complete a solution as possible.

The solution for the physical librations in this chapter is presented in
three main sections:

(i)  Derivation of the equations of rotational motion of the
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Moon in the form of second order differential equations of the
physical libration angles .-and the subsequent solution of those
equations by numerical integration.

(i} Development of the adjustment model for observations
which are sensitive to the physical libration angles,

(iif) Development of the :mathematical theory for a least
squares fit of one set of physical libration angles info

another.

The solution in this chapter is based on the following three postulates:

(1) The Moon is regarded as perfectly rigid [Eckhardt, 1970].
(if) The translatory motion of the Moon's mass center about
the geocenter is assumed perfectly known and taken directly
from the LE-16 Iunar ephemeris [O'Handley, et al., 1969].

(iii) The effect of the spherical harmonies of the lunar

gravitational field of degree higher than the second is neglected.
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3.2‘ Equations of Rotational Motion of the Moon

3.21 Euler's Dynamic Equations.

The differential equations of rotational motion of a rigid body about
its mass center as referred to an inertially oriented system are known
in the literature as Euler's dynamic equations. A brief account is
brought of the derivation of these equations for the rotation of the Moon.

Two right-handed Cartesian coordinate systems are considered, both
centered at the mass center of the Moon:

X Y Z - inertially oriented coordinate system (see section 2.1).

XYy % -  gelenodetic coordinate system where x,y,z coincide

with the principal axes of the Moon.
Principal axes of a rigid body are defined such that the moment of

inertia tensor is a 3 ¥ 3 diagonal matrix where the three diagonal elements
A,B,C are the principal moments of inertia with respect to axes X,y,Z,
respectively.

The two coordinate systems X Y Z and x ¥ z momentarily coincide
for the purpose of this analysis.

The rotational (angular) velocity of the Moon with respect to the x ¥ =z

rotating system is expressed by the vector @. The components of i
along x,y,Z are the rotational velocities around the x,y,z axes, respectively.

In mairix notation

The angular momentum of the Moon in its rotation with respect to

—
the x ¥ z system is denoted by vector h and defined as
= r - - ==
h=Jdmr><w Xr (3.21.1)

s

where
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? is the position vector of a mass element dm

M is the total mass of the Moon

Using matrix notation for the vector cross product and substituting

the moment of inertia tensor of the Moon, h assumes the following form:

A - -E 4353

>

(3.21.2)

-~

y

=
Il
=2 = =

=1-F B-D|-{w
l—E -D C HEOPY

The coordinate system x y z was defined to coincide with the principal

axes of the Moon which for the products of inertia D,E and I would mean that:

The expression for h simplifies further to

A.w,
h =| B-wy (3.21.3)

C-w,

The angular momentum of the Moon in its rotation with respect to the
...)
inertial X Y Z system is denoted by H. The following important relation
= )
holds between H, h and ZJ [Smart, 1951]:

2 _7 o
H=h +wxh . (3.21.4)

=3
?I and h are the time derivatives of H and h, respectively.
In the matrix notation, considering A,B,C as time invariant, the expres-

sion for H can be written as follows (see Appendix E):

[ Hyx P Ao, 0 -w, o, Aw,
Hy| = |Bdy| + | w 0 -w|-|B w, (8.21.5)
I:Iz C Cbz ""wy wx 0 C w‘, _l
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. hd -
Moment of a force T acting on the Moon is denofed by Q@ and is

defined as
-> 1 - >
Q:ﬁ jdmeT (3.21.6)
M

where )
R is the selenocentric position vector of the mass element dm.

The second law of Newton applied to rotational motion states thai the
moment of a force acting on a rigid body is equal to the derivative with
respect to time of the angular momentum of the body. As in the case of
Newton's second laws for translatory motion, 'the moment and the angular
momentum are refervred to fixed (inertial) axes ~in our case - X,Y,Z.

- >

Q@ = H
-2
In the matrix notation denoting the components of @ along X,Y,Z as

L,M,N, respectively, it follows:

L A w, (C - B) wy w,
M|=]Baw| + |-(C-A)w, . (3.21.7)
N C o, (B-A)w,w,

. Three moment of inertia ratios are defined as follows:

The differential equations written now in their final form are known

as Euler's dynamic equations:

@y @ 0 0 W, o, L/A
Wy | + 0 -B 0} .| wWewy!| = M/B |. (3.21.8)
w, 0 0 vy Wy Wy N/C
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The external forces acting on the Moon are primarily the -gravitational
attraction of the Earth and that of the Sun. The moment caused by the
attraction of the planets is insignificant and in this analysis it is
neglected,

The potential of the Moon at a distant point and for a unit mass can he

expressed by Mac Cullaugh's formula:

M

12 M _
V=R 508 (A+B+C-31) (3-21.9)
where
M is the mass of the Moon
T is the distance between the mass centers of the Moon and the

disturbing body

A, B, C are the principal moments of inertia of the Moon (about the
X,¥,Z axes)

I is the moment of inertia about an axis defined by the

mass centers of the Moon and the disturbing body.

The position of the disturbing body in the x y = (rotating) system
18 Xp,¥o,2p such that r® = x° + y2 + 22 .

In terms of A,B,C and XosYvs Zpsthe moment I can be expressed as follows:

1
I=;2“(A.X[,2+B.y§+c.zpa)

The potential of the Moon for the total mass D of the disturbing body

is then

2 -
v = k"DM + kaD -rA"‘B'*‘C"'I% (AXDB + B‘yDB -+ Caz,Dg) ' (3.21-10)

T 2r°
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In this formula the effect of harmonic terms of the Moon's gravitational
field of a degree higlier than the second are neglected. The error intro-
duced in the moment caused by the Earth is in the ninth significant digit
while for the Sun it causes an error in the fifteenth significant digit
{Eckhardt, 19701,

H a differential rotation 606 is introduced to the Moon, the work done
by the disturi)ing moment is equal to the change in potential of the Moon.
Inspecting the expression for V it is obvious that the only term that
depends on the Moon's orientation is I. Thus, the variation in V is

obtained as follows:

5V = _.3.1_{;512. (A% 8%y + Bypdy, + C2zy-02p)
0xp
- —Sf:D-EA-x,, By, C-2pl- 6y9J 284
dzp

8xp, 5Yo, 07, are relatedtio 80 according to the following expression:

6%p | [ 0 -89, 56 i’x[ﬂ! 0 -z ¥ | 66«
ﬁyD = 663 0 -66;: l yD ; = - 0 "'XD ‘:; aey :l
620 L—ﬁey 58){. 1v ZD_E -yD XD 0 ‘3_682 j

-2
The work done by a moment Q along the angle of rotation 53 is equal to

the dot product of the two vectors and is denoted by §U:

r 59,{]
659y | (3.21.12)
692j

86U = (LM Nl

i

According to the law of conservation of energy and for an arbitrary rotation 58

§V +8U = 0 (3.21.13)

Substituting (3.2%.11) and (3.21.12) in (3.21.13) it follows:
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0 zp - |
(L M Nj= 3]1:52]3 A%y Bryp Czpl-]-2 0 xp | (3.21.14)
| Yo X 0
L [ (C - B) ¥z |
M= %:Q‘|~(C—A) Xp Zp
B N_l L (B - 4) Xp Yo |
" L/A a ¢ 0}l yoz
M/B | = %E‘[O ~B 0 ' Xp Zp (3.21.15)
| N/C LO 0 v | XY

Denoting the mass of the Earth by E and that of the Sun by S,Euler's

equations can be written now with an explicit right hand part:

Wy I_O‘ 0 O] ryz] yz]' {rwywz

) Ske 2 '

wy {={0 -8 0} —rg- Xzi + §_1§_58_ Xz| - 5 Wy W, (3.21,16)
E S

5, 0 0 ‘)f_l nyE [X¥js I_wx Wy

It would be of interest to compare the perturbing effect of the Sun to that
of the Earth.

(a) Gravity coefficients

k8 _ .99.10%

= .00029 day™®

v T 1,5°,10%
k°E .298.10'% .
2 T Gedfioe = -0525 day”
.00029 1 o
L0525 T 200 0.5%

(b) Range for lrai y TZ, ﬁ%

iy

Sun <.026 <.026 <,707

Earth <.014 <.12 <.12
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(c) Total effect in L,M,N in [day2] :

Moment Earth Sun Sun/Earth

L/[3(C-B)] | <.00073 <.0000075 ~1. %
M/[3(C-A)] | <.0063  <.0000075 ~0.1%
N/[3(B-A)] | <.0063  <.000205 ~ 3.2%

The ratios between the Earth and the Sun in generating the disturbing
moment as calculated should be viewed as an estimate of the order of magnitude
only., It is realized that at zero libration in longitude (y,= 0) or at zero
libration in latitude(z; = 0)N and M, respectively,are composed solely of the
effect of the Sun. Cenerally, however, the Earth dominates the Sun in
generating the L and M components of the disturbing moment. In N
the effect of the Sun can be considered as marginal. Programming the
inclusion of the Sun in Euler's dynamic equa_tions is simple and the extra
computer time needed to evaluate and include the contribution of the Sun
at each step of the integrations is negligible. In order fo keep the
approximations and neglected effects in the derivation to a minimum with-

out having to pay an unreasonable price Euler's dynamic equations are

extended to include the effect of the Sun,

3.22 Transformation of Euler's Dynamic Equations.

Euler's dynamic equations have been derived (Equation 3.21.16) without

referring explicitly to the Eulerian orientation angles of the Moon ¢, Y, 0.

However, it is the Eulerian angles which are of interest, rather than the
rotational velocities w,, Wy, w;,as they define the orientation of the
selenodetic coordinate system with respect to the mean of date ecliplic
coordinate system (see section 2.1). The mean of date (MOD} ecliptic
coordinate system is defined by the instantaneous (of date) plane of the
mean orbit of the Earth around the Sun (mean ecliptic) and the instan-

taneous mean vernal equinox [Mueller, 1969]. Denoting the MOD ecliptic
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coordinate system by XYZ and the selenodetic coordinate system by xyz,
the transformation from XYZ into xyz is obtained by a sequence of three

rotations through the Eulerian angles as follows:

Y ! = Ra(@ Ri(-9) Ra) i Y { =Gy | Y . (3.22.1)
L2 ] Lz ] z

In this section, Euler's dynamic equations are transformed into second
order differential eguations of the Eulerian angles of the Moon. The first
step in the transformation of Euler's dynamic equations is made by rotating
the time derivatives of the Eulerian angles (Q'D, D, é) into the x y z system.
‘The resulting components are equivalent to the rotational velocities of the

Moon about the x,y,z, axes (see Figure 3.1).

o] 6] o
W | = Ral@BRa(®) -1 0 | + ; 0 . =
i ! . 1 i o |
w: | L P Q|
[0 -sing sinf -coso T Tl
i ! .
= +0 -cososinf sing i i (3.22.2)
§ -
Pl cos f 0 | 6 i
y

Figure 3.1 Euler's Geometric Equations Diagram

81



These equations are known as Euler's geometric equations. The

implicit assumption made in deriving them is that the vector @ represents
the total rotational motion of the Moon, i.e., that the X Y Z system is
motionless (inertial). The equations developed in section 3.21 and in
particular the relatio;i between the rate of angular momentum and moments

of external forces hold for a XYZ system which is inertial in the Newtonian sense.
Traditionally, the motion of the MOD ecliptic system has been neglected
because of the small magnitudes involved and mainly because of difficulties in
obtaining an analytical solution of Euler's dynamic equations.

Ii the MOD ecliptic system has a rotational motion of its own with respect to
the Wewtonian Reference Frame,denoted as E), the total rotational motion of
the Moon will be the sum of the two motions, i.e., :) + ;. As stated
above, in order to keep the approximations to a minimum, the implication
of the motion of the MOD ecliptic coordinate system in transforming
and solving Euler's dynamic equations is analysed,

There is, of course, the possibility to relate the x y z system to an-
other coordinate system like the mean equatorial system of 1950.0. However,
ag it is shown in section 3,23 there are considerable advantages in
using the mean ecliptic as the reference system, mainly due to the Cassini
laws. '

The motion of the MOD ecliptic coordinate system consists of slow
rotation of the plane XY (the plane of the ecliptic) by rotational velocity
7 about an axis contained in the plane of the ec'liptic at longitude II,
and a comparatively fast rotation about the 7 axis by the rate -p

(regression of the vernal equinox), (see Figure 3.2).
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Figure 3.2 Motion of the MOD Eecliptic Coordinate System

The expressions for II, 7 and p as a function of time given by

Newcomb are as follows [Mueller, 1969]:
Tl= 173° 5706 + 5477 « t
a =01"711 - 010007 - t

p= 501'"2564 + 011222 . ¢
where

t is in tropical centuries since 1900.

mand p are annual motions.

The components of the rotfational velocity vector of the MOD ecliptic

-3
gsystem e along the X,Y,Z axes, denoted by e,, e, , e, are as follows:

ex_i C : ir 0 ;—'ncosﬁ
i ]
ey | = Rs("n)'% 0 ¢+ 0] =iwsinl
1 H i i _
!_‘ez__: LO.! -p—l - B

Euler's geometric eguations extended now to include the vector g, are

[wﬂ [—9 "i Fex“l % 0

b, | = Raz(©)R1(-8) ; 0 | + Ra)]| e i + i 0 (3.22.3)
1 § [

[wzJ LY e. | Lo |
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Euler's geometric equations differentiated with respect to time, where

=
e is regarded as time invariant, are

d) "é : i-ezlc
: o |

iy =[a—1§$@ b - Ry(-6) *Rafo) - T2HE e} 0 |+ R e

@, : b e

+ Ra@@) + Ri(-8) - l + Ra(©) * Ry(-0)- —a—i—@-;p- e, | (3-22.4)
b ]

!'
| o
!
i .
The terms contammg (p, 1,[), § are developed further as follows:

:r_g‘ ' i' 0 —i " 0 -sinosind - C'»OSQ'T’-l \‘fyl _l
H ! -~
Ra(©) * Raf- 9)., 0' + | 0{=|0-cosgsinf sinp Mb | =W l‘b‘
i ! o .
C P L o 1 cos8 0 ;L8] LAl
The inverse of W obtained analytically is:
sinpeotB cospeotf 1
~W2 =| -sinoecsc B ~coswesch 0 (3.22.5)
~COS© sino 0
P o]
The expressions for Dy from Equation 3.22.4
L @
are substituted in Euler's dynamic equations (3.21.16). All the terms

in [(b, 03,, 03237 except the ones- containing [Ef) lb 81" are transposed to the

right hand side. Then both sides are premultiplied by W™ and result in
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P o fa 0 0] [ vz] Tyzl M w, w,
: 1 2 '
Py = W P o -Boy- %"ksg"frxz +fi‘1?55 L xz - !wxwz
| . ; E : 5 i :
Le | L0 0y XYl i_XYJs LW, Wy |
r /'—"9. ] Sy \\
3 Ra(w) . dRL(-B9) 4 \
_L a;@ R(-8) - © + ]5{3((;))-—61'(?—L . 9] 0 + Ra{h) | ey 1
) Le. |/
,"ex_l\
- R0+ Ral-h) 2R g (3.22.6)

Fw, w,
In the above equations the vector | w, @, | is expressed in terms of ¢, ¥, e,
qb, ;,b, 8 through equation (3. 22, 3). Wy Wy
The only quantities that have not been freated yet are the selenodetic
[ x [ x 1
position of the E;frth E y and that of the Sun Py o
2 |, L,

The geocentric ephemeris of the Moon and of the Sun can be obtained
from the DE-69 ephemeris in the mean equatorial (mean equator and equinox)
coordinate system of 1950,0. The transformation from this 1950.0 system
to the MOD ecliptic coordinate system can be performed through a series of
rotations through the precession angles z, o 6 and through the obliquity of
the ecliptic angle ¢ [Mueller, 1969]. (In this paragraph, 6 is different

from the Eulerian angle 8). The transformation is carried out as follows:

1

l‘x Fx

l Y = Ru(€)Rs(-2)Ra(0)Ra(-L,) - | ¥ = Ry Y |
2] t

-~ o,0

z | ]

85



where the subscripts o and & denote the equatorial system of 1950.0 .

The selenocentric coordinates of the Farth mass center in any coordinate
gystem are the same as the geocentric coordinates of the Moon, only with
opposite signs. In the differential equations (3.22.6), the coordinates of
the Earth appear always in products of two (xy, yz, xz), so changing the
sign of all three coordinates does not make any difference in these products.
Therefore, the ephemerides of the Moon can be used as given in DE-69
without reversing their sign. In a similar manner the selenocentric coor-
dinates of the Sun are obiained as the differences between the geoceniric
coordinates of the Moon and those of the Sun.

The tra.nsformatiori from the MOD ecliptic system to the selenodetic
coordinate system was shown fo consist of three rotations (Equation 3.22.1).
So combining the two transformations, the coordinates of the Earth or of

the Sun in the selenodetic xyz system are obtained as follows:

x ] [ x]
i
y, TG ¥ |
z | L 214,
where
G; was defined in Equation (3.22.1)
and

R: = Rs@Ri(-6)Ra®) .

This completes the transformation of Euler's dynamic equations
(3.21.16) into the second order differential equations of the Eulerian
orientation angles ¢, ¥, 6 (3.22.6). The second derivatives of @, ¢, 8
are expressed in(3.22.6) in terms of the angles ¢, ¥, 6, their first
derivatives with respect to time, information from the DE-69 ephemeris
and a number of constants (g, 8, y, etc.). '

The solution of equations (3.22.6) is possible using available computer
subroutines for numerical integration of ordinary differential equations.

86



By analogy to the numerical integration of orbits of planets and satellites,
the solution for the Eulerian angles ¢, i, 6 obtained by the numerical
integration of Equation (3.22.6) can be regarded.as an integration of
Cowell's type and, consequently, Equation (8.22.86) is referred in this

study as Cowell's equations of motion of the Eulerian angles of the Moon.

3.23  Differential Equations of the Physical Libration Angles.

The equations of motion (3.22.6) as derived in section 3.22 can be
integrated 'numerically and this was done successfully for a variety of
initial epochs. There are, however, certain refinements of these equations
which, without adding much labor in terms of computer programming,

introduce definite improvements in the solution.

As in any numerical solﬁtion of differential equations, the number of
"correct" significant digits in the integrated quantities is crucial. Correct
is set in quotation marks as all the numerical integration subroutine can
detect and take care of,are the local discretization and round off errors
at each step of the integration. No reliable and general way of monitoring
the cumulative effect of these errors exists. In textbooks and reports
one is advised to experiment with functions which are close in nature to
the actual differential equation and which have an analytical solution.

One principle generally accepted in numerical integration is that the
smaller the number of "correct" significant digits needed in the integrated
quantities, the better the chances are of obtaining a solution without
running into numerical broblems or having to spend excessive computer
time,

Long before electronic computers were available for numerical solution
of differential equations Encke devised a modification of the "raw'" equations
such that in order to achieve the same absolute accuracy, fewer "correct"
significant digits are required in the integration. Encke introduced a

diffcrential equation of a reference function which has an analytical solution
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and is close in nature to the original [Brouwer and Clemence, 1961, p. 176]
The quantily integrated is then the difference hetween the two functions.

If the reference is chosen close enough, the magnitude of the differences
integrated is much smaller than the original function.

Encke's artifice is particularly applicable to Euler's dynamic equations
in view of Cassini's laws for the rotation of the Moon. The mathematical
interpretation of Cassini's laws is that the Eulerian aﬁgles can be approxi-
mated by power series of the independent argument {time). Actually these
series are combinations of the elements of the mean orbit of the Moon
around the geocenter as referred to the MOD ecliptic coordinate
system. The implication of Cassim"é laws is that the Eulerian angles
o, P, 8 and their first and second time derivatives can be presented as
power sevies of time with kunown coefficients plus small periodic terms
(perturbations). 'The main property of these perturbations of interest in
this case is their small magnitude. For example, the perturbations in
8 and in (o+P~w) are of the order of two minutes of arc. Those in
can reach a magnitude of less than one degree.

Thus, after an appropriate modification is made, the quantities to be
integrated numerically for the solution of Euler's dynamic equations are

the small periodic perturbations 'in the following Eulerian angle combinations:
o+p-7, ¢ and 8§

It is easily seen that these perturbations are the physical Iibrations

of the Moon as follows:

[ longi b . ) -
T 1 the physical i ongitude 8| are equivalent to the ; e d-m
| librations in ; node F perturbations in i 4
o | | inclination | g

Unlike numerical integration of satellite trajectories where occasional

rectifications of the Encke reference orbit are necessary in order to keep
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the perturbations to the reference orbit small, in this case the reference
Eulerian angles (the power series) are stable in the sense that the pertur-
bations 71,0, p are composed solely of periodic terms of constant amplitude.
The two parameters of the mean lunar orbit needed to separate the
physical libration angles from Euler's angles are the mean longitude Ly
and the longitude of the node Q.
According to [AENA Supplement, 1961] and in general notation

Ly = Lo + Ly(T=To) + La(T-Tg)® + Lg(T-Tp)°

. s (3.23.1)
Qy= Qs + { (T-Tg) + Qa(T-To)° + Qa(T-To)

where (T-To) is the time interval since the standard epoch T, .

Through Cassini's laws and the defipition of the physical libration
angles, the Eulerian angles can be expressed as follows:
e=Ly+w-Y+7T
p=1E<h+o (3.23.92)
6=+ p

where

Iy is the mean inclination of the Moon's equator to the ecliptic.

From the above relations

Ly+a+T7=0+¥ [ 7] [o+d ‘l MLy +o]
i

Qb  +o=P or o =l ) "‘éﬂj)

I, +p =8 p L BJ i_I»

Differentiating with respect to time, it follows:

-

o+d ] ;fl',))]-
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A second differentiation yields

"%15 Co+d | Ly'l
5= I S o MO I (3.23.3)
5 50 .o |

The derivalives of Ly and {y are obtained by formal differentiation of

the power series with respect to time :

1:3 Iy + 21,(T-Tg) + 3Lgs (T-To)a s

Qy = Q) + 20, (T-Ty) + 30, (T-To)° ,
and

Ly = 2L, + 6Le (T-To) ,

Gy = 20 + 68 (T-Ty) .
This completes the transformation of Euler's dynamic equations
from Cowell's form (3.22.6) as presented in section 3.22 to Encke's

form (3.23.3). On the left side of the equations (3.23.3) are the second

derivatives of the physical libration angles while on the right side there

are rather complicated expressions which depend, however, on the
angles Ty Ty O T . fr,,f), on power series with known fixed coefficients
(Ly, 13), on numerical information from the DE-69 ephemeris and on

a number of physical constants ( KE, K°S, o, 8,7y, etc.) .

The only additional information needed to solve these equations by
numerical integration are the values of T,0,p, ‘f", (:T, ,D at some arbitrary
standard epoch, the initial values of the numerical integration. The
only way these six values can be determined is through analysis of cbser-
vations which are sensitive to the orientation of the Moon. In a sense
these six quantities correspond to the six arbitrary constants in an ana-

lytical solution of the three second order differential equations.
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3.3 Adjustment Theory

The differential equations (3.23.3) developed in section 3.23 and their
solution depend on a number of parameters. The purpose of this section
is to develop the adjustment theory for the least squares estimaﬁon of
those parameters so as to provide the means for carrying out the general
solution for a datum on the Moon as présented in Chapter 2,

The solution of ‘the differential equations (3.23.3) is performed by
numerical integration. In complete analogy to other situations in which
differential equations of certain quantities are solved by numerical
integration (satellite trajectories, planetary orbits, etc.), the param-
eterization of this problem is straightforward. The values of the inte-
grated quantities at any intermediate epoch (between the initial and the
final epochs of the integration) depend on two sets of parameters as
follows:

(i) The values of the quantities at the initial epoch - in this

case, the initial values of the physical libration angles and

their time rate, to be referred as initial values.

{(ii) A number of constants which appear explicitly or in-
directly in the differential equations - in this case, physical
constants associated with the gravitational field of the Moon,

to be referred as physical constants.

These two sets of quantities have been chogsen as the parameters
which govern the solution for the physical librations. Through an adjust-
ment process, these parameters can be estimated following known pro-
cedures (orbit determination of, satellites from tracking data, for example).

In the following subsections, the general outline of the mathematical
model designed to process data sensitive to the physical librations is
presented. The derivations necessary for the generation of the so-called
state fransition and parameter sensitivity matrices are presented also

in full detail.
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3.31 Mathematical Model.

The mathematical model for the adjustment of observational data
sensitive to the physical librations of the Moon follows in general ideas
and procedures of Warner [1964] and notation as of Uotila [19671.

A general situation to be considered is that the data being processed
are sensitiveto the physical libration parameters (initial values and physical
constants) and also to additional groups of parameters which are irrel-
evant to the physical librations phenomena. These will be referred as

additional constants. The selenodetic coordinates of observed features

on the surface of the Moon are an example of such a group of parameters.
For any of the quantities figuring in the mathematical model, the

meaning of the superscripts is as follows:

| Pl I adjusted T
o -
L represents approximate guantities
b observed
L correction to observed
N | or to approximate

The guantities involved in the mathematical model are dencted as

follows:

Parameters

Initial Values

T, 6T, |
O, [iJo
Pq 5 0o
R R R N Y =9+ y
o 6,
L oo KN
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Tas Tos Po are the initial values of the physical libration
angles at the standard epoch T, .

T 23 Tos Po are the initial values of the time rates of the
physical libration angles at T, .

Physical Constants

=

a

;0 =0 +o

O O On

r6C
;<D=!B
| 6C

"l

|

l
20 J
where

are second degree harmonics of the
Cop | gravitatiopal field of the Moon.

8= C-A is a ratio between the principal
B moments of inertia of the Moon.

There are other physical constants which figure in equations (3.23.3).
However, their values are well known from other sources and it can be
shown that the physical librations are insensitive to small variations in
these constants. Another consideration against their inclusion in ¢© is in
the fact that these constants have been estimated in the solution for the

lunar ephemeris LE-16 [C'Handley, et al., 1969] and the ephemeris is

treated here as fixed.

Additional Constants

[ ] [ |
Kgl zﬁlzl
X = .’;x= | X=X +2
! H
A 8\
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As specified above these are parameters which depend on the partic-
ular data type, but are irrelevant to the physical librations. They are

left in general notation.

Observations
R [ 6Ly
i .
Lo .
Lb = . | H L = - ; H La = Lb+ L
L, i 6L,

Covariance Matrices

(a priori statistics of L° ¥°,¢°% ")

chserved quantities

P

.o - initial values

23@., - physical constants
EX, -~ additional constants

The mathematical model is defined as the function F
F(I5, v, ©% X)) =20 (3.31.1)

The function F is linearized under the assumption that L, v, 0, A,
are vectors composed of small quantities so that the second degree terms

in Taylor's expansion of F can be neglected.
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oF oF aF aF o
— . - [ ] = 0 3 - 31- 2
oL* Lo+ Qe yﬁLacpa ‘*°+a>e AT F ( )
where
F° = F(L% v°, 0% \°) .
i OF OF . o .
The expressions _B'Va and S o are developed further in keeping with

the nature of the numerical integration process.

3F _ 3F LATopTapl L, .y
dy= 3[T o o T o p} dy*? Pt
dF _ d[ropTao p] _
don - A >0° = A @
where
aF

LT S[ronTap]

_23lTopTopl

v ay*®
Q = 3iTopTtopl’
3p*°

In the literature U is referred to as the state transition matrix and Q

as the parameters sensitivity matrix.

and C for oF the linearized mathematical

. oF
Denoting B for ST

I
model is written as follows:

Be L+ Ae(Uy+Qp) + C* A+ Fo=9 (3.31.3)

Least squares adjustment is applied under the assumption that L° is
a vector of random quantities with mean Lu and variance and covariance

matrix 24,
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The well known procedure will result in estimates for the parameters
and their variance covariance matrix obtained through the minimization of
the function £ ( £=LTE% L) and in keeping with the constraints imposed
by the a priori statisticsof the parameters (Ey“ E@o . 2}9) .

The matrices B, Az, C, and F° depend on the particudar data
type processed while the matrices U and Q are general for all obser-
vational types and depend solely on the numerical integration of the
physical libration angles. All partial derivatives matrices are evaluated
for L, ¥°, 0°, X.

3.32 State Transition and Parameter Sensifivity Matrices.

The state transition and the parameters sensitivily matrices were

defined in section 3.31 as
d[top 7801

U= 3ye
and
Q= ar'rcro'fr(‘fp]l
do*
where
.y&= [TC' 00 po :ro (-J'o f)o}T
and

©=[Cex B Cxl .

The only mathematical expressions that relate indirectly the quantities
[ T+0s p,'f',c},ﬁ} at a particular epoch to the vectors +vy2and ¢*are the second
order differential equations (3.23.3) derived in section 3.23. Of the
many methods known for the formation of the matrices U and Q [Escobal,
1965] the one presented by Anderson [1964] will be used as a basis for
the developments in this section.In denoting differentiation with respect to
vtand o*the superscript ® will be omitted hereafter,

The following vectors are defined:
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T T
£E= | ¢ | E=| 6 |; E=a
p p

Equations (3.23.3) anduthe U and @ matrices can bhe written in the new
notation as follows:

Fe] _ _-é(g,éqn
el it

3.32.1
oY ( )

a[g]
- L&
= (3.32. 2)

From the discussion on the nature of the numerical integration process

in section 3.31, the following variational equation can be written:

-é | [é]
£ °lg 3 3 £
6[%‘}:‘- :g-_ . 6[é:|+ a; 'GQO =® -6 [é:]'l'@. 6@ (3.32-3)
ol e
€ ]

The variation in [£° é’] T s developed in terms of &y and 6¢ |

e 5y +Q 60 (3.32.4)

[
3
6& = @-U- §y+(® - Q+P). b0 (8.32.5)
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But the variation in i:i‘i | can be obtained also hy differentiation with respect
to time of 5;_ £ | Which yields
M
1 £ . i
igJ = [T+ 6‘)}+Q- 6(0 (3.32.6)
A variational equation holds for an arbifrary variation in the independent
variables so the coefficients in front of &Y and 6@ can be equated one by

one. Two first-order differential. equations are the result of this operation:

.

U

©-U
(3.32.7)

Q

It

. Q+9

Solution of these two sets of differential equations can provide the
two matrices U and Q. So the problem narrows to the derivation of
expressions for the matrices © and @, which then can be used to integrate
numerically the equations U and é and result in the determination of the
matrices U and @ along with the integration of the physical libration

angles (£ ). The ®and & have been defined as follows:

e HEE
@::——#= " . . (T):O“= .-‘l
£ ] ot 8& ’ - 3¢ 14

Euler's dynamic equations (3.22.6) were formulated for [@$O] rather
than for [Top] and also the quantities [ 8 y] rather than [Cx 8 Cxl
appear in the expressions. So the chain rule for partial differentiation

is employed as follows:
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1 [FT (] [e]

3| T 31 & 3 zg')i 3 ¥

o) _ _lpl 16 L6 ] (3.32. 8)
T il @ T

3 o o ¥ ) 3 o

o ] | 6 KB P ]

e > L s

sl & 2| o 3l b a] ¥

o ) _ Lol L] L6 . (3.32.9)
r ] [e] P ] kB

3o 3l ¥ 3l B 3 o

0 KB B | o
T F7 ] o o

slol a3f 5] B! 3l 8

L6 1__Lpl _ibB ] Ly | (3.352.10)
(C=| [0 ] [ o Cx

3 8 3 ¥ 3 8 3| 8

| Cxo | 9 | Y | Cap |

The functional relationship between [p $ €] and [T 0] is stated

again:
o) [ T-o+Ly+m-O
b | = | o+ (3.32. 11)
GJ Lp'%ID

Equations (3.32.11) are differentiated with respect to time and yield

f\Pl [%-6‘+L)}"QD
i b1 = [ o+ (3.32.12)
LéJ b
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The inverse relationship is derived from egquation (3.32.12) and is

differentiated once more
"

Cr $+ b - Lyl
I;Ei 1 = b - M (3.32.13)
PR ]

Now the partial differentiation of [:r: as]Twith respect to [f:fi qb 5]7 can be

performed easily:

- e

:
. - 1
o © 1 1 0
L O | .
= Jo 1 0 (3.32.14)
o
- 0 ¢ 1
3 ¥ 3 i
. 0 ]
From equations(3.32.11) and (3,22,12) it follows
o C 0]
ol ¥ oF ¥ 1 -1 0]
L e . L B ~d
—= — =10 1 o0 (3.32. 15)
T T
N N 0 o 1
L P ] L.

From Appendix A and substituting A,B,C in the expressions for o, 8,y

it follows

B (Co +2Cs)

% T Cp-(2-48)- Cm
B = B (3. 32, 186)
y = -4 8Cgp

(L+B)-Co- (2-2B)- C
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http:equations(3.32.11

The squared denominators are defined as auxiliary guantities D; and D,

I

D, [Coo = (2 -48)+ Cea)®

1l

Dz [(X+B) Cao-(2-28)+ Col®

Differentiating equations (3.32.16) and simplifying the resulis

4B(1-B)° Co Cags - 4 Cop® —48-(1-8). Cxp
Dl Dl Dl
0 1 0

~48- (1+8)- Cx =4 Czp- (Coo~2Cea) 48 - (1+8). c

]
3| g |
LY ]
ok
3| B

u_Ca‘J__

Dy D2 Do

(3.32.17)

It should be pointed out that the o, 8, v ratios are not independent

from each other. They are related by the equation

For this reason, the matrix of partials (8, 32, 19)is of rank two.

oo -8 + v - gBYy=20

(3.32.18)

Appropriate measures will be taken in the adjustment to avoid singularity.

Equations (3.22.3) and 3.22.6) as derived in section 3.22

are rewritten as a starting point in deriving the three remaining partial

derivatives

matrices:
& ] ¢ ] [ ]
ot ¥ 3l o 3| B
B ; L8] L § |
o | [ [ o
3 8 3l ¥ 3| ¥
LY | L 6 | . @ ]
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% a 0 0 . | Y2 vz [ Wy Ws
pi= wlj]o -8 o SkgE Xz} + ifgg’ xz| - | w Wi
re Ty
0 0 0 vy xy |, xy], Lwn @
—"é €x
oR . 3R, (-6 .
- —az—)@ * Ry(~6) » ©+Ra(®) - —alé(——) -8 | 0 I+ Ra(P)| ey
_-ib ez
. €x
R Ll
-  Rs(@) - R.(-9) g"éa%)" <Pt | ey (3.22.86)
€2
w}_ -é .ex 0
W =  Rgl@)* R (-8) | 0 + Ra(d) < | ey + | 0 |,(3.22.3)
ws | \L # ] Lel/ L¢

From section 3.22, the following relations 'hold;

X X b4 X
Z e Z |e Z |s Z s

where
M = Ral@) * Ry (-8) * Ra(¥)

The matrix W was derived in section 3,22 as follows:

sing cot 8 cospcot 8 1

w'= | -sin@csc@ -cospescO 0 (3.22.5)

~-COS ¢ sing 0

Euler's dynamic equations are written again substituting auxiliary
vectors T,, Ts, T¢y, and T,
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where

. {_ vz
IeR .l
5 ~XZ
Te I
| xy

|rw2 . w3'|
— -y . wSJ
I

Wi «

Ts = 16° Ral®@) + Ry(-0)- 0 - Ry(@)+ Ry(-0) - I3+

6

(For differentiating rotation matrices, see Appendix E)

-6
B, = 0
K

H

[}
i
=

1

|
j

i}
— e e — ——

s Tug e
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.o

J

|
!
i
1

“RaP) * Ri(-6)« Eq - Ra(¥) -

(3.82.19)

(3. 32.20)

(3.32.21)

(3.32.22)

(3.32.23)

[T W LeS e
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1 Cy

Two .3 X 3 matrices are evaluated; one for the Earth ' Cz and

[ C ' Ca
another for the Sun :
I'—C;;JS
]T e 1
a W (2 = B - - ' i _ . — . =
e 6T —|E3-Rs(qo,--Rl( 6): Po | M- Bl ey || “Ra(@)* Ra(-6)- Ioy* Po
® ’ I i 1
Ll
Gy
= G2
Gs
o o -17 o o o [ Ty
D, wp wal” ' | _
= . -0y - ' 0 0 o1+ : 0 0 0 = I F
36 b 6] Ralp) « R1(-0) ! ] | 2
L0 1L 0] L1 0 o] { Fa
cospcotf  -singcotd 0
aW™) _| . aWh _, .
>0 cospescB sino csc @ 0 o 39 H
sing cos 0 i
E——sintp csco ~CosS esc @ 0
1
BJB%) = | singpcotBesct cosipeot € esch 0
{ 0 0 0

Now the three partial derivatives matrices necessary for the for-

mation of © and ¢ can be evaluated:

St 5 61 _[é who b W, 1+ 2 _3Tp 3.32.24)
a[ltpM—Lz‘bG]T = e Tpt 0 >0 TD# w dfe 3{)9]1. ( .
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-y e "T
3y B gl 9T (3.32. 25)

=W 5 H
3 d 61 o der
o [ Ty 0 0
b BT _ 2 _dTp ~ oWl 2 o | (3.32.26
3By " 38y wep oo T ( )
Y 0 Ta(3)
where
o 0 0
3Te . |o g ol. _2Ta _3@-P) _ _3%
S 61" d[p P O1T 3fvelT 3oy O]
0 0 v
0Ty  _ 3k‘:E . dlyz -xz xyld N kS d[yz -xz_xyld
sl 6" e 3fe P 81 rg alp p BT
| dWawy -~ Wy w wp]T
3lp $O7°
| Ca+z+ Cy- . . M Goe @ .
_ SK°E ® 3"y i [ Co-2+Cq Y-l | Ga» Wa +Gg* th
T "Gy 2 Corx 4 rs “Cyr2=Caox | —|-GyW3-Gg- W1 |;
C]_‘ y + Cg' X E Cl°y+C2'X 5 Gl‘wg'!'Gg‘wl
i i‘ex] !
D (Txe B . ‘ H
W= Iize To+ Po | T+ Tae Ra()- [er| ! -To- Tn- B
1 i '
’ L&
: Tex t Fex'
9Ty ! : . } : .
dip poy | Te 1M T Barde ey “Re(p) Ba=0) I Ra(¥) - Bo® | ey |l
, !
' ez ]| {_ez
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i
3T 10 B, 0 deptawwa vy’ (T By O
3P PO | | ) 3[BT 3 HOTT B[P PBY

alweﬁ-’rs:'wlws wi w1’
dip P B]I”

B8

oo
= o o
S O

1

—_

g T

at
B o
i3
Dol
-

]
proe——1
[/

1=

This completes the derivation of the ® and € matrices. No atiempt
was made to simplify the results and to put them together as the only
criterion used to judge the final forms was the efficiency with which they
can be coded.

U and @ matrices were generated by numerical integration using the
coded © and € matrices over an interval of several months. For the
same interval another set of U and Q matrices were generated using
numerical differentiation [Escobal, 1965]. The agreement found in the
corresponding elements of U and Q was usually better than five significant
digits. This was considered as an indirect check on the dervivation carried

out in this section.
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3.4 TFitting Numerically Integrated Physical Libration

Angles Tnto Existing Soluiions

The approach taken by J P L in creating the numerically integraj:ed
lunar ephemeris was discussed in section 1.31, Fitting the numerically
integrated ephemeris into Brown's ephemeris was defined as the product of
minimizing the differences between the position vectors at a series of
corresponding epochs along the lunar orbit. There are other criteria that
could be used to define the minimizing function ; however, it appears that
fitting one trajectory into another does not represent conceptual difficulties.

In order to test the proposed method -for the solution of Euler's
dynamic equations and also to come up'with provigional standard epoch
values for '}JO (section 3.31) an attempt is made to fit the numerically integrated
physical libration angles and time rates into an existing solution.

Eckhardt‘g, sclution for the physical libration angles usging Koziel's
values for f =% and Ip is used to éenerate "ohserved" physical libration
angles [Eckhardt, 1970]. The basic problem to be clarified prior to the
actual fit is the definition of a "best fit" of one set of physical libration
angles into another. The main difficulty is in the fact that unlike the ecase
of trajectories, the physical libration angles are used invariably as a
means for determining the orientation of the xyz selenodetic
coordinate system with respect to the MOD ecliptic system after an appro-
priate conversion into Eulerian angles. It may be possible to come up
with two different sets of physical libration angles that will result in the
same transformation matrix from MOD ecliptic into the selenodetic '
system. If the transformation matrix is the goal, it seems reasonable to
seek minimization of the differences between the corresponding elements of
the "observed" transformation matrix and the numerically integrated one.

Another approach to the 'best fit" problem can be developed by
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analyzing the relations between variational rotations around the x,y,% axes
and variations in the physical libration angles. The following two sub-

sections will treat these two approaches,

3.41  Spatial Angles Approach.

Two xyz coordinate systems are considered:

Figure 3.3 Spatial Angles Diagram

(2) An "observed" [xyz]® system defined in space by three rotations
from the ecliptic mean system XYZ through Eckhardt's Eulerian angles.

(b) A "computed" [xyz]° system defined in the same way like ()
but using the nwmerically integrated Eulerian angles.

Actually "observed" and "computed" are the physical libration angles
T, 0, p which are iransformed into Eulerian angles through Ly, {Qp, and Iy
(section 3.22).

The best fit is defined as the solution for <y and ¢ (section 3.31)
that minimizes the spatial angles i, t,, tz'between the "observed! and
"eomputed'' axes x, y and z, respectively (see Figure 3.3).

Mathematicaily, the two xyz systems are defined by the respective

transformation matrices
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= Rg{@") * Ro(-0% » Rad®)y Y | =
b i Z

IS

1

|

§

]

} = Ra(@% “ Ri(-8% » Ra(d ) Y Il =
1

B and C are orthogonal so B*= BT and

I x X
.’ Y{ = Bly
!_ Z Z Iy
] '
Substituting i Y | in the equation for| y
X X i
y = C . BT. y = D y
Z | Z iy Z 1y

(3.41.1)

(3.41.2)

(3.41.3)

D is an orthogonal transformation matrix from the "observed" to the

"ecomputed' xyz system.

D will be the identity matrix in case B = C, i.e., when the two

systems coincide.

Examining the diagonal elements in D

dyy are the cosines between
dep of the spatial the
dss | angles t, t, t, axes | z
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x° and x

y® and y° ¢ respectively
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For D = I (identity matrix)

and the spatial angles are zero

ty=t, =t, =0 .

z

The adjustment process is defined as the estimation of y* and ¢
that will minimize the spatial angles t,, t,, t, at a series of consecutiv
epochs.

The following notation is used:

Parameters:

y" nominal { initial values Tas Oos Pos Toy Tg 5P
©° physical constants Cgzs B8, Ca

78.

» ( adjusted
©

a °

vy =yt

1 corrections in the sense
P = o+

Y
%

Quasi Qbservations:

n ‘. 1o spatial angles
¢ calculated by the use of Eckhardt's and the
: nominal (pased on 7¥°, ¢°) angles.

IR
ty adjusted spatial angles,

L tz B
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The mathematical model of the least squares fit can be written now

t, 1° t, 1° y

3ty by £,17
t, = |t —BLL;—-%— 1o (8.41.4)
oL H

Introducing the U and @ matrices (secfion 3.32)

t a rtx o

Y
Oty by t,1"
£ = t s . 3 .
Y Y sropropy - IRE g
t, [
In auxiliary notation
7]

Vi = Ly + Ay » [U; i Q4] - ’PJ (3.41.5)

. The subscript i indicates the i set of observation equations corre-
sponding o the i epoch.

The function that is minimized is
A= g otd r6f e = RS (3.41.6)
1 i

And the solution follows according to Uotila [1967]:

a UT
- 1

* At—{ * Ati[Ui ! Qi] . L * JA.T.:;:r ¢ Li .
N

(3.41.7)

The matrix A; and vector L will be developed explicitly in terms of

Eckhardt's and the numerically integrated angles.

Assuming the t,, t,, t, angles to be small
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I

t, = sint, J 1-dy
t, = sint, = J1- dz5
t, = sint, = J1- dﬁ.:3

«/1 d,
L, = «/1 da

J1-a2

. c
A = dtetytls | 0
“ 3[T o pl] |
3 tutytd” _ B[tetytl] 3{dy des dusl™ 2[00 P OT°
[T o oY’ dfddeedas]™  B[@ 81T . dftopl
...C_-ill 0 0
ty
M—. — 0 _g‘ﬂ 0
d [dyy Gpdegl t,
0 0o S
%'1 -1 0
;
ofp Y6l _ ~=lo 1 o (from section 3.32)
aftopl] i .
tg o0 1

B | C, }
B = Bg s C = Cg +
Bs Ca
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v dyy i Cy - BIT —E
jae | = feend
1 i . H
| das | [ Cs- Bs |
Fac 5C 5 C p
oLy T B4 T S 1
E d By 5 By T B |
a[dll d% d@a]-r ‘)Cz . BT '
3[¢ 961" CI- T
2 Ca T 35Ca .
AP Bs 36 BB_]

C = Ra(p) » Ry(-8) - Ry(¥)

Matrix C is differentiated using Iucas matrices IS, I, I; (see

Appendix E).

aC

- o 1S

2P s° €
3C _ .
>0 C .« L
oC

|

-Rz{®) - Ry (-8) * L1 « Ry(¥)

o/
D

The fit over a large number of epochs is simplified and the computer
memory requirements are minimal because the normal matrix and also the
vector of constants are created by a process of summation. As the
numerical integration of Euler's dynamic equations progresses, at pre-
determined epochs or at regular time intervals, a layer is added to the
normal matrix and {o the vector of constants until the whole interval over

which the fit is performed has been covered.
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3.42  Variational Rotations Method.

The variations in the physical libration angles are transformed into
variational rotations around the x, y, z axes of the selenodetic system,

The least squares fit is defined then by. the minimization of the variational
rotations around the x, y, 2 axes,

Euler's geometric equations (3.22.2) are used to transform &®, 69, 568
into 8&,, 68y, 8E;

lf—ﬁe F o
= Rgf0) + Ry(-0)-| 0 | + | O

[6&
5t | Lss) Lee

where 8¢, 8¢, 8 £ are variational rotations of the Moon arcund the x,y,z

[‘663{

axes , respectively,

Pigure 3.4 Variational Rotations About the xyz Axes
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From the relations between ¢, $, 8 and T, o, p (section 3.23) and
affer some regrouping ‘

§ &, 0 -singsing —coé(p 8T 5T
&, 1 cosf-1 0 50 50

The variations in 7, ¢, 0 are identified in the adjustment process
with the differences between Eckhardt's 7, o, p and the numerically
integrated angles. Through the E, matrix these differences are trans-
formed into rotations around X, y and z axes. Thus, the function to be

minimized in accordance with the opening statement in this subsection is
Ap = L(f)«";'xf + 6&3(12 + 9 gzig)
1

It is interesting at this point to express )\, in terms of 67,6 0,60
and compare it with A, from 3.41.

§&x | 6T
[8&, 8, 8£,]-| 8& |= [6T 60801« B+~ Ey- | 60 | =
6&; 5P
1 cos & -1 0 8T
=[éTr 80 6p] -| cosB-1 2(1-cosB) O }-| 6c|=
| 0 0 1 p

r

)
= 8§T% -2+ (1-cos §)+ 6T~ 60+2+ (1-cos B)» 502+8p°  (3.42.2)

For the Moon 6 is a small angle of about 1°30;so for the purpose
of this comparison only

62
0 o 1 -2
Ccos = 1 >
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The result is then
5Exe+6€y2+65z2=61‘2+(9~ 60’)2'*'592_9'60" 6T+ 6 .

Considering the orders of magnitude of 7,0,0 and &7, 80, &6p the last
(fourth) term in the expression obtained is by an order of magnitude
sthaller than the rest and will be neglected. The sum of squares of the

variations (Az) is then in an approximation to the first order

Ao = 862 + 8EZ + BEL = 6T+ (B 50)° +50° (8.42.3)
From 3.41

Ay =t2 ]+t

~ \Y\ 6 E z
b
Y A6,
ﬁgz (4 'x° 3 tY
5 s
tx ﬁ“’ 86

Figure 3.5
Equivalency Between Spatial Angles and Variational Rotations

The comparizon is made only for a single epoch T; in order to simplify

the notation; however , the results are valid for any number of epochs:
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From inspecting Figure 3.5 and as the t, t, t, spatial angles are

si'nall, it follows that

M= t2 7+ t2 = (582 + 887) + (587 + 68]) + (885 + 8E) = 2X5 (3.42.4)

The conclusion to be drawn from the last equation is that within the
approximations made in deriving equation (3.42.4) the two methods are
equivalent. However, the computational effort involved in applying method
2 is considerably lighter.

The mathematical model for‘ method 2 and the consequent solution

follow the same logic as for method 1.

Notation:
E Q
* rotations around x,y,z computed from Eckhardt's
£, - angles and numerical integration of 7, o, p
£ based on (y°, ©%
z
Ex |
£y - adjusted rotations
£z

S 05 Y% 0% vy, o, are the same as defined in 3.41 -

&« ]a !' Ex“%O T { Y

g1 o= |g o+ b .gz.]T [U;Q]| ] (3.42.5)
: dlrop TG0] ‘ l

gz gz i = @ -

From results obtained in this subsection

—
-.%
-]
|
-.]
o

i
I
q
o
I
o
| S |

©
T qQ
o
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Using auxiliary notation as in 3.41 an observation equation setf i

can be written as follows:

V]
Vi = Ew - Ly + [Epg; 0]+ [Ug: Q4] (3.42.6)
©
The solution minimizing )\2=ZVJ vV, is
1
. 1 .
'}, — UiT EME - UiT EMJ :
= -1/ ah *[Emi 01-[Us;Q41 | - 4 : © Eupc Ly
® 1| Q 0 1 | Qf | 0

(3.42.7)

Method 2 was used to perform a series of least squares fits into
Eckhardi’s angies over various periods . Results and diagrams are
given in Chapter 5. The residuals after the fit were not subjected to
eéxtensive analysis as the purpose of this mathematical development was fo
demonstrate the compatibility of the new method with converntional solutions
and also to obtain provisional initial values for the physical libration angles.
The residuals in 7, 0, p shown in Chapter 5 suggest patterns which may
lead eventually to a better understanding of the differences between
Eckhardt's solution and the one based on numerical integration. However,
such an investigation appears io be well beyond the scope of the present

work.
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4. SIMULATION OF ENVIRONMENT AND OBSERVATIONS
4,1 TInitroduction

In Chapter 4 a sustained effort has been directed towards the creation of a
self -consistent simulated environment of the Earth, the Moon and man-made
satellites in which a variety of observational activities take place. The celestial

bodies involved move and rotate according to the laws of Newton and Kepler;
the satellites revolve around the Moon in accordance with the forces acting on
them. The observations are generated realistically, while at the same time
they are free of any unaccounted effects. The solution presented in Chapter 2
aims at estimating certain parameters which represent existing physical pro-
perties of the real Moon; it solves for the initial state vector of a satellite
orbiting the Moon and in general the situations treated are rather complex.
All this implies that any simulation short of accounting exactly for all the
gravitational phenomena taking place (which are solved afterwards) cannot be
useful for investigating numerically the feasibility and merits of the theoretical
solution proposed in Chapter 2.

Simulation of environment and observations has become a standard
tool for testing theories and computational procedures in many fields of

science. In a sense, use of simulation in research can he considered

i
indispensable,

Sooner or later any scientific research reaches the stage when the
theories and procedures developed have to be tested by exposing them
to actually observed phenomena. Discrepancies between theory and

observations lead eventually to an improvement of the theory and also to a

better understanding of the phenomena involved,
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Sound as it is, this approach is rather expensive in time and effort
required on the part of the research worker—a great deal of luck is
needed too. Observations are never free of unaccounted effects, and it
is .with a large degree of optimism that one makes the convenient assumption
that they are randomly distributed and as such can be handled by statistical
analysis,

With the advent of the electronic computer, a new option became
available to the research worker. Very complicated situations can be
programmed, and observations can be simulated with an absolute knowledge
of the effects embodied in them. The simulations are usually designed
to follow closely the actual (true life) situation. In the_early stages of
a study, it is helpful to have a reasonably representative model which is
absolutely free of unknown phenomena in order to acquire a better
insight into the problems involved and also to develop a feeling for the
general behavior of quantities which play an important role in the area of
study. For this purpose the simulated model can be rather simple so
that the main structure is clearly visible. Tt is judged qualitatively

and not quantitatively. ' In later stages of the study it becomes more

important for the simulated model to follow as closely as possible the
true situation. It is necessary for the smooth transition from the
simulated to the true environment. This would require a very compli-
cated model up to the inclusion of marginally significant effects.

The problem of designing a simulated model of the Earth-Moon
environment was solved by a compromise. It was clear that the scope
of the present study does not justify the design of too complicated a
model. On the other hand, the results of this study will have to be
applied at a latter stage to the true case. The compromise was the

design of a moderately complex simulated model that exceeds the needs
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of the present study, but holds the promise for future applications in
more advanced sta'ges of the research.

Whatever the level of complexity of a simulated model, it has to be
fully consistent. Consistency is to be understood here as conceptual as
well as numerical. The basic set of constants are to be selected care-
fully so that the exact relationship among them in accordance with the
model of simulation are absolutely valid - no discrepancies or conira-
dictions of any kind and magnitude can be tolerated. Numerically, the
quantities generated should contain sufficient number of correct signifi-
cant digits to conform to the anticipated noise in the observations. TFor
example, if the noise in heliometer observations is believed to be about
0Y02 - 005, the lunar ephemeris needed to simulate the heliometer
observations will have to be precise to the degree that will insure
observations better than 001.

There is certain danger in relying too heavily on conclusions reached
from the analysis of a simulation. The models used to generate the
simulation are occasionally the same ones employed in the reduction
procedures. Unless programming errors interfere, the procedures will

prove {o be invariably successful. However, the first contact with

reality, i.e., the use of actual observations will cause a serious shock
which in some cases may shatter the whole theoretical structure of the
analysis. So, useful and convenient as it is, numerical simulation should
be utilized with utmost care and watchfulness. It is the real world that
we waat Lo analyze and not the simulated model, no matter how skillfully

it has been created.

The design of a simulated model of the Earth-Moon environment presented

a unique opportunity to develop some new ideas in astronomy. Instead

of formulating and programming models baged on concepts and expressions
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as published in textbooks, a difficult but promising approach was taken.

The theories, models and constants relevant to the Earta-Moon Environment
were subjected to intensive study. The objective was to gain a profound
understanding of the basic problems and postulates which have served as a
starting point in developing the conventional solutions. Another goal was

set to determine a minimal set of independent parameters. The astronomical
problems were solved then consistently using a new approach. The result is
a compact and geoxqetrically well-defined astronomical model. No attempt is
made to point out differences or similarities, As this development i? confined
to the simulated model only, it was felt that there is no need or justification
for comparison. Rather a continuous exposition is made, and the theories are
developed as if no other ways exist for solving the same problem.

It would be presumptuous to regard the developments in this chapter as
applicable to the a;,nalysis of actu_al astronomical observations. However,
changes in relevant astronomical ' models in the future should not be ruled
out. The impact of computer technology has left many areas in astronomy
unaffected; in many cases the computer has been employed as a mere
substitute for the human in performing the calculations without bringing
substantial changes in the approach to the problems. Instead of triggering
a critical examination of concepts and fundamentals, the computer produced

merely amendments to the available procedures,

In the following sections of this Chapter the simulated environment
is unfolded step by step beginning with definitions and fundamentals, adopting
a set of basic constants, through development of the equations of motion and
finally presenting the theory for the generation of the various data types. In
order not to refer too often to definitions and facts already stated in Chapters 1
through 3 the liberty is taken to repeat some of those without indulging in

lengthy discussions,
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4.2 TFundamentals of the Simulation

The celestial bodies descirbed in this Chapter carry the names Earth
and Moon and in their properties closely correspond to the real Earth and
Moon., However, by definition they are part of an abstract model. As
such anything related to them is or is based upon abstract assumptions.

S0 in stating the "facts" and “constants' of this model it should be
remembered that these are facts and constants existing only in the
abstract model created in this Chapi:er.

The simulated Earth-Moon environment is composed of the Earth,
the Moon and one or more man-made satellites usually in the vicinity of
the Moon. The mean distance between the Earth and the Moon. is of the
same order of magnitude as in the real case. The basic framework in
the simulation is an inertially oriented right handed Cartesian coc;rdinate
system (XY Z). It is defined implicitly by infinitely distant fixed stars
s0 that all the directions to any of these stars from points within the
Earth-Moon environment are perfectly parallel. Numerically this
coordinate system is chosen identical fo the mean ecliptic system of
some standard epoch.

An infinitely distant illuminating source serves as the "Sun" in the
simulation. It moves on the XY inertial plane in a positive direction
(from X to Y) with an angular velocity similar to that of the mean sun.
All the illuminating rays of the "Sun" crossing the Earth-Moon environ-
ment are perfectly parallel. The "Sun" does not have any gravitational
effect on the Earth-Moon environment. The only celestial bodies which
exert gravitational attraction are the Earth and the Moon. Man-made
satellites in the system have negligibly small masses. The center of
mass of the Earth and the Meen (the barycenter of the system ) is
regarded as an inertial point in space, i.e., it is considered to be

stationary or moving at a constant speed in a certain direction.
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The particular inertially-oriented system (XY Z) centered at the
barycenter is the fundarﬁental coordinate system of the simulated environ-
ment. The motion of the Earth, the Moon and any of the man-made
satellites is defined with respect to this system. In some cases, how-
_ ever, it may be convenient to transform the motions to non-inertial
points like the geocenter or the selenocenter.

The Earth is a perfectly rigid body. Iis topography is identical to
that of the true Earth. Its reference figure is a rotationally symmetric
ellipsoid. Four radio tracking stations measuring range and range-rate
and three optical observatories are defined at locations where actual and
presently active stations are engaged in observations of the appropriate
type. Two additional optical observatories are defined which were used
in the past for conducting heliometer observations of the Moon.

An average terrestrial right handed Cartesian coordinate system is
defined (UVW ) which is fixed to the Earth, centered at its mass
center and is oriented so that it coincides with the principal axes of
inertia of the Earth. Where such axes are not defined (on the eguator
of a rotationally symmetric Earth) the UW plane contains a certain point
on the Earth's surface (Greenwich). The total motion of the Earth with
respect to the fundamental coordinate system is defined by the translatory
motion of its center of mass and by the rotation of the average terrestrial
system ahout its origin.

The gravitational field of the Earth is given in terms of a spherical
harmonics expansion. The only coefficient in the expansion apart of the
central (zero degree) term which is not zero is the J,. The three

principal moments of inertia of the Earth (A, B, C) are consistent with

A
i to be adopted in the simulation see Appendix B.

the value of J, and the ratio u= S For derivation of a value for

The Moon is a perfectly rigid body. Its topography is that of an

exact sphere. The center of the sphere is shifted from the center of
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mass. On the front side of the Moon (the side facing the Earth) 30
triangulation points are chosen evenly spaced and in areas on the true
Moon where there is an abundance of craterlets of 3-7 km diameter
range. The crater Mosting A and also the crater Bruce in Sinus Medii
are among the 30 points.

A selenodetic right-handed Cartesian coordinate system is defined
(x ¥ z) which is fixed to the lunar body, centered at its center of mass
and is oriented so that it coincides with the principal axes of inertia of
the Moon. The motion of the Moon is defined in 2 manner similar to
that of the Earth.

The mass of the Moon is related to that of the Earth by a constant,
Dynamically, the Moeon is a more complicated body than the Earth. It
is a triaxial ellipsoid with a set of 12 mass-points superimposed on its
triaxial dynamic figure. Cg and Cx are the only non-zero coefficients
of spherical harmonics expansion of the triaxial ellipseid, apart of the
zero degree term. The 12 mascons are selected go as to satisfy
certain conditions. The conditions 'are that their total mass and also
their first and second moments are all zeros. This was considered
necessary in order to refain a hasically rough gravity field as far as a
close lunar satellite is concerned and at the same time not to complicate
unnecessarily the equations of motion of the Moon itself. The three

moments of inertia (A . B’, C') are consistent with the Caxps Cyp values
7 I
and also with the ratio 8 = Q}?A— taken identical to the presently

accepted value of B for the true Moon.

The man-made satellites are defined as bodies of negligible mass
and physical dimensions. No parallax exists between mass center, the
calibrated point of the transponder for radio measurements and the
principal point of its camera or other sensor. No orientation jets or
other physical effects disturb the perfectly gravitational motion. In

designing the various satellite orbits no consideration is given to their
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trajectories prior to the circumlunar orbit.

In order to define exactly the position and orientation of the Earth
in the fundamental coordinate system six quantities are necessary—three
for the position of its mass center and three more for the orientation of
the UVW system. The same applies to the Moon where six more quantities
are needed to define its posilion and orientation with respect to the funda-
mental inertial coordinate system. Because of the fact that the barycenter
always lies on the vector defined by the centers of mass of the Earth and
the Moon and moreover, its distance from the Earth (or from the Moon)
is a constant fraction of the total distance between the two mass centers,
it is sufficient to define the barycentric position of the Meon, that
of the Earth being along the same radius vector at a known fraction of
the Moon’s distance from the barycenter. This reduces the total number
of‘ independent quantities needed to define the position and orientation of

the Earth and the Moon to nine (see Figure 4.1),
Z

Figure 4,1 Position and Orientation of the Earth and the Moon.

The meaning of the symbols in Figure 4.1 is as follows:
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E - Earth

M - Moon

B - barycenter

XYZ - fundamental inertial coordinate system

UVW - average terrestrial coordinate system

Xyz - selenodetic coordinate system

M, A, € - Eulerian orientation angles of the Earth relating the UVW
system to a coordinate system centered at E and parallel to
the XYZ system.

©, P, 6 - Eulerian orientation angles of the Moon relating the xyz system

to a coordinate system centered at M and parailel to the XYZ system,

4,3 Constants of the Simulation

The best known presently values were selected as basgic constants. The
list of constants adopted by the TAU 1in its resolution of 1964 was the main
source. Additional constants were taken from NASA and JPIL publications,
also from reports by other scientists or groups working in this area of study.

4,31 The Earth.

¥ E = .297556 10 km®/day® - Earth's gravitational constant
Jo = .0010827 - second degree zonal harmonic
a, = 6378.16 km - equatorial semi-diameter of
reference ellipsoid
f = 1/298,25 - flattening of reference éllipsoid
p= C—l;é- = .00°27802 - dynamical "flattening" where
' A, C are the equatorial and
polar moments of inertia
Ws = 6.300388098 rad/day - diurnal rotational speed
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No. Name Type U v W
1 TUCSON OPT -1996.0051  -5042,6961  3360.7748
2 PIC DU MIDI OPT 4686.1252 11.6385  4371.0499
3 JOHANNESBURG OPT 5058, 2628 2698, 0251 -2799.8019
4 GOLDSTONE RRT -2351.1949 -4655.5944 3661, 0605
5 WOOMERA RRT -3078.5840 3724.8986 -2302.3278
6 JOHANNESBURG  RRT '5085. 4787 2668.3035 ~2768,7011
7 MADRID RRT 4845.7274 - 360.0147  4125.7615
8 BAMBERG HEL 4051. 6351 779.4787  4864. 3305
9 KAZAN HEL 2369, 2457 2707,8489  5266,5740
OPT- Optizal, RRT- Radio, HEL- Heliometer, U,V, W in kilometers

Table 4, 1, Geocentric Cartesian Coordinates of Observatories.

4,32 The Moon,

_E _
m = M 81.3
Cxo = -~,000207
Ce = .0000207}
£ = 3,6696 -
1At
B= CB, AL~ 000629 -

ratio of mass of the Earth to that of the

Moon

second-order harmonics

ratio of equatorial semi-axis of Earth

ellipsoid to mean radius of the Moon

ratio between Moon's principal moments

of inertia
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No. Mass X N b4
1 19,0694 1619.1766 - 433.5269 449, 3554
2 -20. 0394 1532, 2877 559, 6170 593. 9678
3 15, 3805 1497, 0175 866, 7468 - 151, 9861
4 -11,8910 1630, 7870 1.0000 - 594, 9678
5 11,7378 938. 9899 - 940,4899 -1117.7341
6 ~-12, 7844 1110. 4827 -1325. 4011 - 151, 9861
7 2.8233 750.1227 -1302,5808 868,5538
8 - 6.0431 836.9416 - 223.9277 1504, 7454
9 10. 0246 715, 6442 856. 8510 1330. 9677
10 - 8.0542 582, 9365 1609, 4737 301, 3192
11 8.1149 750.1227 1304.5808 - 869. 55?;8
12 - 8, 3384 750.1227 435. 5269 -1505. 7454

Mass in 10 ® of Moon's mass; x,y, z in kilometers

i

Table 4.2. Mass and Selenodetic Coordinates of Mascons on the Moon.

D i o PO,

129

No., X y Z
1 284,7144 - 164,8233 1705, 6738
2 267. 3828 742.4968 1548,1653
3 298. 9995 -1050, 4536 1350.2634
4 950, 9536 .- 484,8089 1369. 1476
5 897, 8094 293.5282 1457, 1998
6 297,.0151 1298. 3423 1116, 7341
7 1013.5746 ~1088. 60686 894, 6916
8 1453. 2020 - 75.2901 946, 1413
9 1076. 7970 844, 2392 1069, 5859,
10 341,1861 -1615, 9158 536, 6048 .




i1 1506. 4731 ~ 767,8602 390, 4892
12 1577. 2501 544, 9516 478, 5874
13 341,1861 1617.9158 536. 6048
14 1157. 6880 -1287.5193 120, 7443
15 1735. 3430 " 1.0000 29, 8342
‘16 1106, 4064 1322.5432 211. 3220
17 1726, 6207 - 150, 2785 - 91,4655
i8 490.5786 T -1611.7874 - 420.9863
19 1499.1838 733. 4201 — 479.5874
20 294.7339 1686, 6973 - 302, 3192
21 1211, 2688 ~1091. 8823 ' - 594.9678
22 - 1511. 8985 ~ 131.4927 - 843.1513
23 1004. 3727 1244, 3842 ~ 679.6328
24 257, 4499 -1221. 9682 -1207. 8911
25 1155, 7211 - 614,8371 -1140, 8012
26 1055.5706 741, 8690 ~1163,5211
27 449, 7967 1120, 4735 -1250.7900
28 940, 5390 83,5052 ~1458.1998
29 377,2905 ~378.7905 ~1653,5386
30 305,4515 368. 0022 -1671.2764
X,V,% are in kilometers

Table 4,3. Selenodetic Coordinates of Triangulation Points on the Moon.

The selenodetic coordinates of the center of the Moon's sphere are as

follows:

x = ~2.5; y = 1.0 z = -0.5 (in kilometers).
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4,33 Tluminating Source "Sun'.

The longitude of the "Sun" measured from X in a positive direction (to Y)

is given by the angle A :

A = Xot M (T - To)

Yo = 4,8815286 rad

M = .0172027913 rad/day

T epoch for which A is required in JD.

To = 2415020. 0 JD. standard epoch (1200.0).

4, 34, Initial Values for Posgition and QOrientation of Farth and Moon including

Linear and Angular Velocities,

The inertial (barycentric)position and orientation ..of the Earth and the
Moon are obtained from the solution of the differential equations of motion.
As shown already, because of the particular configuration of the mass centers
of the Earth and Moon with respect to the barycenter, the position of only one
of the mass centers has to be solved, that of the other being obtained in a
trivial way. Thus the total of 12 =2 x (2 x 3) second-order differential
equations is reduced to nine, The solution of these equations requires the
determination of eighteen arbitrary constants of the integration. As it is
shown in section 4.4, the integration is performed numerically, so the
arbitrary constants are actually the initial values of position, orientation

angles, and their time rates. The differential equations for the translatory

motion of the Moon'smass center are written with respect to the geocenter so

that the eighteen initial values that need to be defined are as follows:

Xos Yo, Zo, X5, Yo, Zo -  geocentric position and velocity of
the Moon
©®o s Yo, 80,09, o, éo - Eulerian angles and their time rates

defining the orientation of the seleno-
detic system (x y 2z) with respect

to the inertial (X Y 2Z) system
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Mo s Aos €0 ﬁo, ?.\0, éo - Eulerian angles and their time rates
defining the orientation of the average
terrestrial system { UVW) with respect

to the (XYZ) system.

These eighteen initial values are defined for a given epoch at which the
numervrical integration begins. In order to be flexible in the choice of such
initial epoch no fixed numerical values are given for a particular initial epoch,
but rather the method and the equations are given with the aidof which the eighteen

initial values for any desired initial epoch (Ty) can be evaluated.

4,35, Motion of the Mass Center of the Moon,

XOW These six values are the geocentric position and velocity
Y, | components of a Moon that moves in a Keplerian orbit. The
Zo | parameters of this orbit are taken identical to the mean

X5 orbital elements of the true Moon at epoch T ({Z,, wo, Lo,
Yo | i, €5 Do —longitude of node, argument of perigee, mean

Zo anomaly, inclination, eccentricity, and mean motion). These

parameters are explicit functions of time as follows:

Qg [4.523601515 -0.9242202943 +10° +0.271952 + 10713 +0, 07156 - 10~

wol | 1.311550024 +0. 2868588296 -1072 -0.162264 1012 _0,5008 .10°® | [1 ]
Loi | 5.168000340 +0.2280271850 +0.120256 + 1071% +0,43616 -1072°| |[d
io| | 0.0898 0.0 0.0 0.0 Tlae
eol [0.0549 0.0 0.0 0.0 ]

| no| | 0.2299715030-0.296454 - 107%  +0.02042 + 10°® 0.0
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The coefficients are in radians or radians per day’ (i=1,2,3); d= To- T

in Julian days; Tgo = 2415020.0 J.D. The coefficients are from [AENA

Supplement, 1961}

The transformation from Keplerian elements to state vector param-

eters Xo, Yo, Zo, 5'{0, ’5..’0, :Zo is performed using an iterative solution of

Kepler's equation and well known formulae as given in textbooks .[Mueller,

1964].

4,386 FEulerian Angles of the Moon.

where

$o

Yo
8o

N2s!
do
6o

T = 3.14...

QO, wO’ ‘{’0
05 oy Lo

Wo + Lot g | To - 0o ]
Qo Co
Io + Po
6.00 + 4'1,0 ;'o—c;'o
G L oo
0 I
radians

are the same as defined for the Moon'sKeplerian orbit.

are the time derivati.ves of the same quantities.

Tos Uos Pos To» Tos Do are the physical libration angles and their time rates

at To.

The physical libration angles are obtained from the following %xpressions:

I, = 0.026769 radians

To= L7 sin o +916 sincy -174 sino, +472. sina, - 375, sinog - 1679, sin oy

+170, sin @y +1573.sing, +1070 sin aq

0o =-3.0 sin oy -1076 'sin 05~23"8 sin o, #275 sin oy ~10076 sin o

Po ==3/1 cos o, -1078 cos a,523”8 cos all—lf9 cos o, - 98."4 cos o,

The coefficients for the physical libration angles are taken from [Eckhardt, 1970).
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o = 2Fo - 2D o, = 246 ~ Lo -2D,
0% = 4 @ = 24 -2Fq

oy = Lo - 4§ - Dg oy = 240 -2Dg
O = 1o - 2D, Wi = 2F,

gs = Lo - Dq oy = Lo -2F,

Gg = 1o

Table 4,4 Arguments of the Terms in the Physical Librations Harmonic Series.

The arguments O, are linear combinations of the so called Delaunay
arguments as given in Table 4.4 .

Loy 46 Fo, Do are Delaunay arguments composed of parameters of the
mean orbits of the Sun and the Moon and are explicit functions of time. They

are evaluated for T,. The coefficients are taken from [AE NA Supplement ,1961].

Fo = wo *+ 4o

Lo = Lo .

L4 = 6.256583523 + . 01720196977+ d - . 1962403 10% ¢ - . 1075+ 1070+ &
Do

6.121523941 + . 2127687117+ d - .18786737+ 10 d®+ ,068-107%- ¢ ,

The coefficients are in radians or radians per day11 (i =7,2,3); d=T- T

in Julian days; T,o = 2415020.0 (1900.0).

Lo is the mean anomaly of the Sun

Do is the mean elongation of the Moon from the Sun

For To, 0o, Do, the trigonometric series for T, g, o are differentiated and the
values for JLO, :&0', f‘o, i)o are obtained by differentiation with respect to time

of the series for these quantities.
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4..37. Eulerian Angles of the Earth,

No | | -1.73993589 6. 300388098 0.506407-10%% 0.0

Xo 0.0 0.0 : 0.0 0.0

€0 {_ | 0.4093197475 -0, 6217959.10"% -0.214556.10715 0.18- 1072

o 6. 300388098 1.012814-10%% 0.0 ‘ 0.0 '
io 0.0 0.0 0.0 0.0 ‘
€o ~0.8217959-10°  -0,429112-107%% 0,36 - 1072 0.0

The coefficients are in radians or radians per dayl i=1,2,3);d=T - Tho

in Julian days; T,o = 2415020, 0 JD (1900.0). The coefficients are taken from

[AENA Supplement, 1961] and also from [Mueller, 19697,
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4.4 Equations of Motion

The constants and postulates as outlined in sections 4.2 and 4.3 are

used to derive the equations of motion of the bodies in the simulated system

with respect to the fundamental inertial coordinate system (X Y Z) centered

at the barycenter. However in order to generate data gsets of the same nature

as the ones available for the real Earth-Moon environment and also to generate

observational data that will conform with the reduction model as proposed in

Chapter 2, various transformations of origin will be introduced to the equations

of motion.

The data sets to be generated are as follows {see Figure 4.2):

(a) Cartesian coordinates of the Moon's mass center with respect to

an inertially oriented geocentric coordinate system (X Y Z).

{b) Eulerian orientation angles of the selenographic coordinate

system (x v z) with respect to an inertially oriented seleno-

centric coordinate system (X Y Z).

(c) Eulerian orientation angles of the average terrestrial coordinate

system (U V W) with respect to an inertially-oriented geocentric

coordinate system.

~(d) Cartesian coordinates of a satellite in an inertially oriented

selenocentric coordinate system (X Y Z).

The inertially oriented systems in (a), (b), (¢), and (d) are all parallel

to the fundamental coordinate system as defined in section 4. 2.

Symbols in the derivation of the equations of motion,

K -

E -

l\j‘[z£ —
m

A, B, C -

A, B, ¢ -

a, -

universal gravitational constant
mass of the Earth

mass of the Moon

principal moments of inertia of the Earth, where A = B
principal moments of inertia of the Moon, where A < B <¢’

major semiaxis.of Farth reference ellipsoid.
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K - Earth mass center

M ~ Moon mass center

B - barycenter

] ~ satellite

P, 8,0 - Eulerian angles of the Moon

X, €, ~ FEulerian angles of the Earth

m, - mascon on the Moon

X, Y, 2 - inertially-oriented coordinate systems
U,V,W - average terrestrial coordinate system
X, ¥V, % - selenodetic coordinate system

LET

Py

Vectors:
B Earth
By barycentric to Moon
Bs satellite

Ey geocentric to Moon
E; satellite

Ms Selenocentric to satellite
M, mascon

P; from mascon to satellite

Figure 4,2, The Simulated Earth-Moon Environment,

Orthogonal transformation
matrices:

Rs(m)* Ra(-€) * Ra(X)

Ry )" Ru(-0) - Ra(P)

from XYZ to UVW

Ty =

oo S
= m =
H 1 ]

from XYZ to xyz

Bagic Vecetor relations:

En

B

BM_BE

m
1+m

BS - BM= BS_BE_EM
TH * My
Bs = By - M,

Ey



a, = —E-"‘- - radius of Moon reference sphere
Jds - second-order zonal harmonic of the Earth
C20,C22 - second-order harmonics of the triaxial (basic)

Moon dynamic figure

- C-A
B=—% - dynamic "flattening' of the Earth
c’-A'
8= B - dynamic "flattening" of the Moon
m
W= - ratio of mass of i - th mascon with respect to the

total mass of the Moon.

4.41 Equations of Motion of the Moon's Mass Center.

The potential of the Earth and the Moon integrated over the masses of

the two bodies is given by MacCullagh's formula [ Brouwer and Clemence, 1961,

p. 132 1.
E-M E .
V='k2{hp_+§B§_LA' +Bt+ci_3(A!a|2+Biﬁl2+C!vlz)]
M P 2
* 20° [2A+C =~ 3(AdT +A-5%+Cyv*] } (4.41,1)
where p absolute magnitude of vector E, (distance Earth~Moon)
K
o, B Y direction cosines of Earth in UVW system
o', B Y direction cosines of Moon in xyz system.

The potential V is interpreted as being equivalent to the work to be done
in bringing the Moon from infinity to its instantaneous position and orientation
in the fundamental barycentric coordinate system, whilethe Earth iskept fixed inits
instantaneous position and orientation [Plummer, 1918], Thepotential ofthe mascons
is ignored in this analysis which is permissible regarding the specific way

by which the mascons were designed (see Appendix C).
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Because of the rotational symmetry of the dynamical figure of the Earth the

following hold:
x *
a8y =1, o+ =192
*ﬁ =3
A(OP+8%) + Cy2 = A+ (C-A)Y?

The expression for the potentizl V {(4.41.1) is transformed in terms of auxil-

liary expressions in order to facilitate its subsequent differentiation.

I_Al i r ‘-
. - 0 0 o,
VvV = keimwugg-—a (KB - s3la’ By 0 B o i B’|J+
M =
+ = (C - -3V {4.41. 2)
250 (C-A)Q )
From Appendix A it follows
/ 7 M 2 E. aeg
A+p+o = X8 [~(3+B)Cap + (6-68)Con] = e D ; (4.41.3)
’ i :
A 0 0 t M 2:_C20+(2“4B)C22 0 0
1] f a,
0 B o0 Tl 0 -Cz0+2Ca 5 0
0 0 C ; 0 0 ~(148)Ca0+(2-2B)Cs |
E* 8. )
= =0 3 4,41, 4
m- B. E"" ( )
C~-A = Ea2J, (4.41.5)
3 Xl‘}
According to Figure 4.2 and sefting X = X, !E Eu,
b,
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X,, Xs, Xa being the vector components of Ey in the inertial coordinate system,
the following expressions hold:

f.l

¢ X p X
B’ =TMo-E and { B =Tg-lp—
v’ ¥

-

=

Y X
p was defined earlier as p = (XF+XZ+XH* = X' X))~

Another 3 x 3 matrix is defined:

0 0 0
L={0 0 0 (4.41.6)
0

Substituting the array of new symbols in V and after some rearrangement

<
|

= a[ 1__ i____i_( _3 et
I2E [mo+2p3 a5 (D ngTMGTMX)'P

1

_.af'-Ja' I )_‘.
Yo Tm (1 5 X'T{ LT, X) |

KCE?
m

1. af:/ D N oBa (XTI GTyX \j

Lot 2 B e %) 5 (g - I TLTX)| (4
This is the final form of the potential which will be differentiated with

respect to By and B; to obtain the barycentric equations of motion of the

Moon and of the Earth.
Let ¢ be a function of X and implicitly of B and Bylas X = By - B,)

so _ 3 3X . % _ 2% oX
3B oX 3B °’ 3By 03X 3B,

oX oX
'aEE I x3) EEM - I(S x3)

“e

1l

o _ 0 . X0 _ 3
aB; oX ! 3B, X
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The equations of motion of a body are identified with the second deriva-
tives with respect to time of its position vector and are denoted by the

symbol of the position vector with two upper dots.

Thus
X is the position vector of the body X
X is the velocity vector of X

is the acceleration vector of X identified with the equations
of motion of the body X.

The equations of motion of the Moon (B,) are obtained as the derivatives of

the potential (V) with respect to the barycentric position vector of theMoon (By)
divided by the total mass of the Moon (M) [Brouwer and Clemence, 1961, p. 132].

Similar procedure is applied for the Earth.

é@*B w1 3V T m rav?

— = —— . . T e g | mim—

a - ™ T M'ismd T E L3X4 (4.41.8)
B _x _ 1 rd3v-t 1 r3vy

de2 Be = ¢ LaB,d " E i3xJ (4.41.9)

The points E, B, and M are on a straight line and so it follows

X =Buw- Be (4. 41.10)

Fquation (4. 41, 10) differentiated twice with respect to time results in the
geocentric equations of motion of the Moon :
vV m+1 rav =’

'-m}E_i = TE T ipx ) @4R1D

. . . fm 1
X=Ba- B = (T tE

[
Q/

\
/
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Equation (4,41, 7) is differentiated with respect to X using rules as developed

in Appendix E.

rav =l K°E® r_gg__ uaEX( 15a.%X (X'T GIX
. 3 3. £2 2) 207 \ B-t®

+ L,XT] LTX} g—DL(g—Tﬁg—_gé—M+2J2TE LTEX)J(441 12)

A new set of auxiliaries is defined:

— 332 —
P B"E_z TwG T, : Q= Jo T LT,
_= 3&2 " . "'-.= SaggJ
H= —= D ; E= ——&
28+ £ 2

Rearranging 2—?{— and substituting the auxiliaries:

ER PE2r-1 , H+E  §-XX(P+Q) , P+Q °
5 - 5 | X

X_iﬂ_m ip3 p o’ p d

f -

s o - = 2¢_ 58 V(P +Q i

Iis the 3 x 3 identity matrix. Equation (4.41.13) is substituted in (4. 41.11)

m+1l rav ’ 1.rl , H+E (0 I-BXX'(P+ Q"
L3

X = , = - KPR(1+—) - +
E 4 E( m);p3 o o’ E

(4. 41.14)

X

These are Cowell's equations of ﬂlotion of the Moon's mass center with respect

to a geocentric inertially oriented coordinate system.



4.42 Equations of Motion of the Selenodetic Coordinate System with Respect

{o a Selenocentric Inertially Oriented System.

The motion of a rigid body about its center of mass satisfies Euler's

dynamic equations (Plummer, 1918, p. 292)

r

W, a 0 0 TN, [ wy w, |

. | | i t

w, {=] 0 -8 0 . ¢ N, i - bWy W, I' . (4.42.1)
. § : ! i i

w, | L 00 v | \ PN, Wy Gy

For this section only, o and v are defined as follows:

Cc’' - B’
a= S
A', B’, C’are principal moments of inertia of the Moon
B - A
v = Y
_ C' - as defined already.
.B - B’
fwy .
é w . are rotational velocities of the Moon around axes X, y, and z
P
respectivel
Lw . P y
PN, ]
X N are moments of external forces acting on the Moon around axes
H
; ’ i X, yand z
N, | ’
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As it is the equations of motion (second time derivatives) of the
Eulerian angles (@ ,¥ , 6 , which are of interest,Euler’s geometric
equations are used to relate the rotational velocities (W, , Wy , W;) to the

angles (@, ¥, 8) and their time derivatives (see Figure 4.38) :

[, —E " 0 -sineg sin@ -cosg | r o i
1 : . . . '
| w, i= 0 -cospsinA sing * o« . Y : (4. 42, 2)
Vg, 1 cos® 0. 6 -

Differentiating Euler's geometric equations with respect to time

£

O ; 0 -sing sin9 -cosw | I— & 0 -cospsin® sin cp} {qo
W, = 0 -~coswsinf  sing |- z,b + ' 0 sing sinH coscpg Qe 4) +
w, . 1 Ccoss 0 | B o 0 0 | 6 |
"0 -sinpcos® 0 | C o]
o 0 -cosep cosfb 0O |- 8 . ’ 1,b ; (4. 42, 3)
0 © -sin@ 0 J tg !
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Regrouping

tr w". T 0 -singsinf -coso i:p - —smrpcose -cos©sing smgo] d)B
C:Jy E= 0 -cospsing sing }p + . -cos@cos8 sinesingd cosQ * ¢cb :
1_ w, 1 cos9 o ‘6| -sinf 0 j : _i
(4,42, 4)

This expression (4.42, 4) is substituted into Euler's dynamic equations (4. 42. 1),
2 |
the matrix in front of | ¥ I is inverted and the second term is transposed

to the right hand side. The results are the equations of motion of the angles

B, 0:

[ o {7 0 -sinpsing -coso Yia 0 07N ~ww, ]
’l l,b t= 0 -cos®sing sing /50 -8 0 !-ENy - Wy Wy }
LGJ' 1 cos@ 0 \\_5_0 0 'y_l _N, —wxw,j
'E——sincpcose -cospsinB  sing q;l ;_ zI) 8 -g\\\
- . -cospcosB singsinB cos¢ ! Y @ j (4. 42.5)
-sin B 0 0 R

The moments N,, N,, N, are functions of the mass of the disturbing
body (the Earth) and its position with respect to the x,y,z system.
P \
The position of the Earth in the selenodetic system | y | can be obtained from
z |
the geocentric ephemeris of the Moon given in the XYZ system. A change in

sign and a transformation through the Eulerian angles (@, §, 6) is necessary to

perform the conversion as follows:
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http:01.'N.-w.wz

———y
™.

Y~]|= Ty * (‘“X)_

N

-where
as defined in earlier

Tuw = Rgl) - Ry (-8)- 33 (%) sections of this chapter

X is the geocentric position of the Moon in the XYZ system

p is the distance between the centers of mass of the Earth

and the Moon,

The moments of the external forces are obtained as follows:

rNx_f f—y'zhl

| 3L KPR |
Ny | = 55 I (4. 42. 6)
N, [ x.y

The moments of inertia A’, BY, C’ can be expressed in terms of the second

degree harmonics as follows (see Appendix A):

l A 1 ) ) ~Cao + (2-4B8) - Cgg!

: E ae : S
B’ =m . -Caq 2+ Cyy, 4. 42.7)
C (1 +B) g + 2-28) - gy

All quantities on the right side have been numerically defined as basic

constants of the simulation in Section 4. 8 and also

146



|

Performing the inversion in equations (4. 42.5) analytically and substi-

titing (4. 42.6) it follows:

® 1 [ cosBsinp/sin® cosBcosp/sinb 1‘1' /o 0 07 / . j"y <zl
- : ; : 3k°E | '
P I = E -sin@/siné -cosp/sinB® 0 i(: 0 -8 0 \ oF X+ Z
8 _| :_ -CoS sing 0] N\ 0 0 ¥ \ Xy,
l' wyw, \ [ -sinpcosB -cosesin® sineg | !‘ b 6 ], N
i - . |
- Wy W, \ -{ -cospcos 8 sinpsin® cose ! . b oo )(4.42. 8)
] ! - . .
wewy, /1 -sin@ - 0 o | 6o /
Wy

Wy are functions of ¢, ¥, 8, cp . z:b, é, through Euler's geometric

(), equations.

Equations (4.42. 8) are Cowell's equations of rotational motion of the Moon

about its mass center. On the right side of these equations there are functions

of the following quantities:
(p’ d’! Q,f;D,z:b,é, Xl, X,?,,Xs,p anda.ISO
kgEs fe, M, 3,5, CEO: C22

The first group is composed of quantities that are being integrated as shown in

this section and also in 4.41. The second group is composed of basic congtants

of the simulation.

4.43 Equations of Motion of the Average Terrestrial Coordinate System with

Respect to a Geocentric Inertiélly—Oriented Coordinate System.

The approach is similar to that applied to the motion of the Moon.
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However, these equations are considerably simplified due to the rotational
symmetry of the Earth's gravitational field. The following relations are

defined where A, B, C are the principal moments of inertia of the Earth,

g= &=B
A
_C-A
B= B
_B-A
YT ¢
A =B

ﬁy: 0 .
d
i W
‘;
% .
L
B 4
r/\-:
/o v
€ 3 At
)\ -, _;.; . ] .
X / n U Y

Figure 4.4. Eulerian angles of the Earth

The disturbing body in this case is the Moon with mass M = -EIE

148



Euler's dynamic equations assume the following form:

rdyt F3k° E VW -~ PoWy Wy }
lavi = P lap low! ~ La o (4.43.1)
As aresult of ¥ = 0 it follows:
Gy = 0
Wy = constant = W, an adopted constant in the simulation.
Euler's geometric equations {see Figure 4. 4)
]_wu‘! :'0 - sin7 sin € —cosn} Con
I { .
Wy != ! 0 -cosmsine sinn X (4. 48.2)
cwy ]t cos € 0 ;_'6.__
From the third equation in (4, 43, 2)
Wy = N + cose A (4. 43, 3)
but @, = W, = constant; so it follows:
Wg= 0 =7+ cosex - singeX (4. 43, 4)

1= sineé€X - cos e\ .

Now the first two geometric equations (4.43.2) are differentiated and regrouped

&

QU] I*'—sinnsine -cos7 | A'i
- !
) €]

Ld
F . . . A€
[ —sinMcose -cosmsine siny
1 4 »
+
i
|

Wy -cosm sine sinm 11 E | —CcosT7ICoS € sin”sin ¢ cosn K
. : é7
From equation (4. 43. 3) it follows:
h = Wa- cOSEA . (4.43.5)
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The coordinates of the disturbing body (the Moon) are obtained as follows:

iy
V =TE‘X

where

U,V,W - are the vector components of the moon mass
center in the average terrestrial coordinate system.

Te = Rz () Ry (- €)}Ra(A) ag defined earlier.

The same mathematical procedure is followed as for the Moon and the

expression is

-

[ )L ] [—sinn sine¢ -cosn ]'1 3 KkPE-u [VW] [ cosmsine - sinn] [)\ }
= - 4+ ul w3 -

€ -cosT sine  Sing meg ~-OW -sinnsine -cosn €
gin ineg -si Ae |
neose¢ cosysine -siny : .
cosmeose -sinmsine -cosy " | Mws - cose ?L) (4. 43.6)
€ (ws - COS€N)

The inversion is performed and after some regrouping the final form is

_ -ginn/sine -cosp/sine SKPE L [ VW
-cosn sinn ‘ . [ '

"
mi >4
j Y

Ae
- {ATws (L+1) - cosel]

€lws (L+4) ~ cosel]

sinncos e cosnsine -sinny
(4. 43.7)

cosncos € —sinnsine -cosy

+ ..

Ir', = ginesece) - COSEX .,

150



These are Cowell's equations of motion of the Earth about its mass center,
On the right side there are functions of the following quantities: 1, A, €, 7, 5&,
€, X1, X3, X3, p which are integrated functions and also K°E, m, U, ws Which

are constants of the simulation,

4,44 Equations of Motion of a Satellite with Respect to a Selenocentric

Inertially Oriented Coordinate System.

The approach is somewhat similar to the one used for the geocentric motion
of the Moon's mass center.
Additional symbols in this section are:

Components inInertially Oriented System

R=E  p.=(RI+RE+R)
S = M Pa = (8,°+ 87+ 857

Pi= P, py=(PP+P2+BA%= (- B)®  vector from mascon to satellite

= (R'* R) vector from Earth to satellite

= ool

I e ol

=(8'.8) % vector from Moon to satellite
1

The potential of the Earth and the Moon at a poirit in space and for a unit

mass is defined as follows:

E, 1 M. 1 , ,
vV = k2{5:+ 5 0F (C—A)(1—372)+E;+ 500 [A+B+¢ - S(Ka:a+Bﬁ,2+C,_)/,Q)} N
AN TR ’
M Ly ] : (4.44.1)

i

Substituting the auxiliaries L, D and G defined in section 4. 41 .

//1

1 101
V=KE (= + 2 - ==
e zp® R0 EEI {pm "

1 r3a’D 3a% _, ., ol R R
Y207 g g WEYIC BT g )/ G 402)
i

'

Y
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where

rd r

= TE‘R

™

|

-3

z.

o
R W R

The auxilliaries L, D and G are substituted in (4.44.2):

1
—
Pn

_ 1. J,a2 3alyJ 1 7/
vV = kg'E[E+22p3 - e P RT/LTCR + =

. _a’D _3af
2BE%p) 2B¢EFp

T T T}-ﬂ\-_"
E,STMGTMS-E-:_,pi)J .

i

In general V is a function of the vectors R, S and P,

V = f{{(R) + ix(8) + Z fa+ ) (P1)
1

Applying the chain rule in partial differentiation and noting tt

b
1l

B + R

B, = By+S

B, = By+M, +P,

the differentiation of V can be performed in parts as follov

ofy, - 2f;, .2B . R _, o 2. 3f
3B, 3R 8B, ° 3B 3B, >

where I is the identity matrix, Following the same pattern

ofs  _ of o
o B 38
and also

(4. 44, 3)

(4.44.4)



af.’3+i = af2+£
3 B 3P,

The equations of motion of the satellite with respect to the barycenter are

obtained in a way similar to those of the Moon and the Earth:

. 3V af o SEY:
B] = = 1 2 2+ 4 .
[ : 3B, 3R s | S (4.44.5)

The functions f,(R), f5(S) and £ (aﬂ)(Pi) are written explicitly

/1 27 3a J AN
V =k%EF ’\E‘J’E;”a - ——2-59—-% RTTETLTERj
K°E /1 ) 3a 2 A
+ - '\E:- 2—'&'——-5 5w - "—'-“"-'—-zﬁgzp 5 S™T, 7 GTy S )
g ©
+ B (4. 44. 6)

Differentiating functions fy, fs, fay (i = 1;-12) by R, S and Py, respectively

- /1 .83°], 15a? 2
B; = K°E {\Ef #22ge D2 Js porprpq, 4 38 ds

T LT)R+
20 20, of tlTe

2
177 1 34, D 15 ae:a . - 336
= _ _ 3¢ .
mL(pms +2B'szpm5 2862.05? S8 TM G Ty Brh S‘I;_q GTM)
- F_ 1
L p? Pit; : (4.44.7)

i

Substituting the auxiliaries P, Q, E, H as defined in section 4,41

1 E (0> - RR"HQ 171 (me—ESS’)P-
= KPE,, — +— + 2 R + =, — S+
S pE pe )7 T mipg " pf ol J
1R 50
+Ei,’6§ P, - ~ (4. 44, 8)
i
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These are the barycentric equations of motion of the satellite. However

S

B, - By
8 = B, - By (4.44. 9)
where BM are the barycentric equations of motion of the Moon. Expressions for

B, as obtained in section 4.1 (part of equation (4. 41, 11)) are substituted in

- equation (4.44.9) and result in

— - 5 -
(1r1 0 . (0f1-28SHB'_ . 17y
S = K°E{=|—5+— + Xt + =, K p o+
lm l_pf On O’ ] m e pl !
,FLl . E , (@PI-3RRNQ .
Lp2 ~ pé& 0.7 J

1  H+E 2] _2XXN(P+Q): o)

_[E S 1-2 57 X Q)J' X} (4. 44. 10)

These are Cowell's equations of motion of a satellite with respect to a
selenccentric inertially oriented cocrdinate system. As shown before, the
right side of the equations is composed of functions of the integrated guantities,

i.e., 8, X, 0 ¥ 9, n, A, € and of constants as adopted for the simulation.

4,45 Numerical Integration of the Equations of Motion.

The equations of motion derived in 4.41through 4,44 are second-order differential

equations of a rather complex form. Their analytical solution, if possible at

all, is a task well beyond the scope of this work. Particular real cases have

been solved after introducing many simplifying assumptions. The cost was

enormous in terms of time spent by the best talents in dynamical astronomy.
As the solutions are needed for the purpose of simulating a synthetic

" physical environment there is no justification whatsoever not to resort to

more convenient, yet, over a short time interval, not less accurate, methods.

The availability of the electronic computer makes the simultaneous solution

of the 9 or even 12 second-order differential equations by numerical integration

a straightiorward process. The simultaneous solution is needed as the three

(or four) sets of equations (4.41, 14, 4, 42.'8; 4,43.7, 4.44, 10) share informa—

tion on the right sides of the equations,
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Control over the accuracy of a numerical integration process is exercised
through the so called local error ecriteria. However there are other means by
which the potential accuracy of the process can be enhanced, One such method is to
reduce the number of significant digits in the integrated guantities and still
maintain the absolute accuracy needed. This can be done by modifying th_e
original equations of motion from Cowell's to Encke's type. A reference
case of motion is defined which has an analytical solution of its equation of
motion. The differences between Cowell's equations and the equations of
motion of the reference case are called Encke's equations of motion. The
new quantities integrated are the perturbations of the reference case of
motion. By proper choice of the reference case and favorable nature of
the original equations of motion the perturbations can be reduced to a small ‘
magnitude, and consequently a fewer number of significant digits, compared
to the full quantities, will result in the same degree of absolute accuracy.

This is particularly appropriate to the cases of the Moon's motion, its
orientation, and the orientation of the Earth for the following reasons:

(2) “The lunar orbit is very close to a Keplerian orbit. (b) The Eulerian
angles of the Moon follow very closely Cassini's laws, (¢) The deviations
of the rotation of the Earth from secular motions such as precession, diurnal
spin, mean inclination are much smaller than the full quantities,

The perturbations in all three cases are periodic in nature, or, if there
are some secular effects left in,because of the particular choice of constants
and initial values, over short periods of time (one to three years) their
accumulated effect will remain small enough not to require a rectification of the
reference case of motion.

The application of Encke's modification to the equations of motion of the
lunar satellite is not so clearly advantageous,as the nature of the perturbations
is less predictable and for a very close lunar satellite (Apollo-type orbit) after

one revolution the perturbations may be as large as the full components of the
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selenocentric radius vector. However, an efficient computer subroutine was develop-
ed (SKE PTR)With the help of which the rectification of the reference Keplerian

orbit can be performed in a fraction of a second with absolutely no loss in
accuracy. Through occasional or even frequent rectifications of the reference
orbit, the magnitude of the perturbations can be kept below a predetermined level,
thus enhancing the use of Encke-type equations of motion for a satellite of the

Moon as well,

The transition from Cowell- to Encke-type equations is straightforward.

Using general notation:

%
%

i X, 5() arve Cov‘vell's equations of motion

It

.f'o . f(o) are the reference case equations of motion.

There has to be an analytical solution for X, as a function of time which satisfiesthe

differential equations Xo Thus defining

6 = X-Xp as the perturbations vector it follows by differentiation
5

X-%, = (X, X -5(Xy X9  which are Encke's equations of motion.

The main condition for the effectiveness of the transition to Encke's equations
is to choose the function fy sufficiently close to f so that § remains small, In
case 5 grows beyond a certain limit, the reference case is rectified, the
values X, f{o‘are set equal to X, X, and the process is carried on.

In what follows the reference cases for the four sets of equations of

motion are discussed,

(a) Geocentric motion of the Moon.

¥ = 12 1-r1 H+E  (°1- XXV (B+Q)
fX = -k E\1+ }.D 05 > X
= -K®F 1 } p3 =+ K} which are Cowell's equations. (4. 41, 14)

K stands for the second and third terms in the square brackets

multiplied by X .
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The reference case is defined as a Keplerian orbit:

X,

- TN Y
fo Xo) =-K°E (1+ -] b:g (4. 45, 1)

where X, is the geocentric positionvector of the reference Moon in a Keplerian

orbit around the Earth.

v _ ¥ o _ 2 P I-fr_}g 2(_0-\ - Encke's
8 f7X) ~ 16(X) k" E \1+m) AN o - poaj * K_‘ equations.

(4. 45, 2)
The mean elements of the lunar orbit are used to generate X,.

(b) Eulerian angles of the Moon,

It is known from observations of the actual Moon that in its rotation about
its mass center it follows Cassini's laws very closely. The reference Moon,
thusg,is defined as following these laws exactly, the angles ¢y, g, 85 and their
time derivatives oy, z])o, éo being explicit functions of time. As the integration
is not carried out over extensive periods of time, the perturbations ean
absorb some small secular effects. So the reference equations of motion ¥,

are defined as follows:

Po| [ O {‘bo 0ol | (Po} i_(poo"'ﬂbot

L1 LA d - L] ! L]

=1 d |70} i bo |=1 o |; = oo t Yot . (4. 45, 3)
é‘0 0 " .60 0 eoJ ieo

The four constants ®gg Pa Poos a:bo, are derived from the mean elements of
the lunar orbit where terms in 4, wyand {, with powers, of t higher than the
first are deleted and 8o is set equal to I, (see Section 4,3).

Subtracting (4,45,3) from 4,42,8) it follows:
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which are Encke's

. 4.45.4
equations of motion. ( )

!
|
l
I
]
|
J

1t is evident that in this case,formally, the Encke equations are identical to

Cowell's. Tt is only the initial values (5, 5) used and further integrated which
make the difference.

(c) Eulerian angles of the Earth,

The rotational motion of the Earth is dominated by the diurnal spin about
the W axis. So the reference case to be chosen may be even simpler than that

for the Moon,

B (0] [H ][] ] e
el Sel=j o Rei=to s Pagl=] 0 . (s
. L I | J] ; [ . f
€o OJ | <o L0 € | |_€o B

The constants Moo, €o are taken from the expressions in section 4.3 where
for €, all terms except the constant and for 7, the terms beyond the one having
t in the first power have been deleted; ws is an adopted constant . Here
too the Encke equations are identical to Cowell's, the only difference being in
the initial values of the integration.

{d) Selenocentric motion of a satellite.

The reference case of the satellite orbit is chosen as a Keplerian orbit

having the following equations of motion:
i3 = -— 2 '
£,(S0) k°E { \ a2 ) (4. 45. 6)

where 8, is the selenocentric positionvector ofa satellite in a Keplerian orbit

around the Moon and
i
o~ (SoT 30)2
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Equation (4.45.6) is subtracted from (4.44,10) and the result is

§=f-F = a2p Ll/8S _ S, . . . 4.45.7
0=f-1% kE'__m \ 2 —--Q-pmg} K_i- _Enckesequatlons.(- . 7)

As mentioned before, too rapid growth in § may preclude the advantages of

a transition to Encke~type equations for a satellite of the Moon .

(e} Encke transformation [see Brouwer and Clemence, 1961, p. 177].

Establishing Encke-type equations in cases (2) and (d) may lead to a
considerable loss in significant figures when the quantities subtracted are close

in value, In case(a),[(X/ foi) -{Xs /pc?ﬂis such a set of differences, and in case (d)

there are even two such sets of differences: (TO-S—S- - ES%) and (553 —%) It should
2 j.10] e

be remembered that X, S, R, Xos 8p are all column vectors.

‘To overcome this problem, Encke has devised a simple transformation:

6 = X"‘XO
X _X _06-FX
Pa E [y
where
F = —"—*—7—1
(1+2q)%2
1r -t
= = + &
q pOEL}(O caJ b

F is usually a small number; however, the number of gignificant digits carried
in 6 through the numerical integration is not lost. This procedure is applied in

all three cases in (a) and (d).
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4,5 Total Librations of the Moon.

The disc of the true Moon as seen by an observer on Earth appears to
be oscillating about its center. This phenomena is called libration of the
Moon and is a combination of a true oscillation of the Moon with respect to
its mass cenfer called physical }ibration and an apparent one due to the
eccentricity and inclination of the Moon's geocentric orbit and the diurnal
motion of the observer ahout the geocenter called geometrical and topocentric
libration,respectively. This distinction is made mainly for the purpose of
evaluating the components as in the end all three are summed up to result
in the total libration of the Moon, ‘

In the simulated environment all the quantities necessary to establish
the geometric relationship between an observer on Earth and the selenodetic
coordinate system can be obtained from the results of the numerical solution
of the equations of motion. M this section the equations are derived for the
direct evaluation of the total librations of the Moon.

Total libration in longitude and latitude are defined (Figure 4.5) by
the polar angles 4., b; of the selenodetic vector-to the observer Y.
Position angle is measured counterclockwise from the plane defined by (;P

and OW’ up to the plane defined by OP and Pz, Tt is denoted as Pp.

y I
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§
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- o ( A
“ ’4;' ,-::_,, L
’ S - X - “\ ‘13' by !
/ . h - - NoLA )ﬁ
7 ].' ! - B - - X &T.—- P /// .Y
{ E/ . ) Y .- - -
[ S ! - o
S gt TG
b Sg A

Figure 4,5, Total Librations of the Moon.
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The following vectors are defined :

X geocentric position vector of the Moon

In components
Q topocentric (observer) vector to point P P

ey o

f the XYZ system,
W, unit vector of spin axis (W) of the Earth of the syste

Wy unit vector of spin axis (z) of the Moon
O  position of observer in the UVW system

P position of point P on the Moon in xyz system.
Two orthogonal transformation matrices are defined:

Teg {from XYZ to UVW gystems
Ty from XYZ to xyz systems
The computational procedure set to evaluate 4, b; and P, is as follows:
Y = T§(T;:0-X)
Y,

Ly = '1(—-*-
T an Yx

= gin? [ Xz
b, = sin \_ET/

Vi = QxW;

Va Q Wy

- «f V- Vo
ol = o ED

To determine the sign of P, another vector is evaluated:

V, = W, x W,

s vVi-Q

If s ig positive, P, is positive and vice versa.
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4.6 Observations

One of the purposes of creating the simulated environment was to
have the capacity of generating absolute observations for any desired epoch.
As in the case of the environment itself, certain simplifications are
introduced for the observations too so that a purely geometric situation be
ereated with no consideration being given at this stage to physical and
instrumental problems encountered when dealing with actual observations.

The following additional assumptions are made in generating the
simulated observations:

(a) No atmosphere (troposphere, ionosphere) exists around the earth.

() The velocity of electromagnetic wave propagation (including light)

ig infinite. Th-is excludes any relativity theory implications.

(¢) No distortion whatsoever is caused by using man-made observing

instruments or recording materials.

(d) No solar radiation pressure exists.

Thus the observations are the result of the instartaneous geometric
gituation defined by positions and velocities of points in space. The equiv-—
alent of these idealized observations in the real world would be the ftilly
corrected and compensated actual observations. The random noise left
or, in other words,the total of the unknown or unaccounted effects would be
the only difference between those observations and the absolute observations

generated in the simulation.

4,61 Optical Observations.

Optical observations are defined in the most general way. No matter
by which means the observations were obtained, they can be reduced to a
bundle of rays emanating from a point to be called the projection center.
Each ray in the bu'ndle points from the projection cenfer to a particular

point on the Moon (30 such points have been defined on the Earth side of
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the Moon, section 4.3). "The rays in the bundle are related to a reference
Cartesian system (B,, Bs;, Bg)which is centered at the projection center and is
oriented with respect to the inertial coordinate syste‘m by means of three
Eulerian angles (¢©., ¢, ®s). The apriori covariance matrix of these
angles will provide the distinction between an oriented and a floating
(unoriented) bundle of rays. This concept allows a uniform ifreatment of all
optical observations obtained from Earth-based or satellite photography and

from direct angular observations isken on board a spacecraft (Apollo),

/ By
by
] !
/ 7
; /B=
[
5(0) & b z
= = o Ser :
AN o ton rgy
7/ T
! B]_ e e

X

Figure 4.6. Reference Frame for Optical Observations,

S or O Projection center on a satellite (S) or on the Earth (O)

M Selenocenter

P Point on the Moon being observed
XYZ Inertialy oriented coordinate systems
ByB:B; Reference frame for the optical observations

¢ ¥z s Eulerian angles relating B,B.B; to XYZ,
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Conditions for a Valid Optical Cbsexvation Ray

In order to be generated, an optical ray has to satisfy all of the

following conditions:

i) At the Earth station it is night (the "Sun" is 18° below

~ the horizon). ‘

(i) The observ:a.tion ray is at least 20° above the station
horizon.

(iii) The angle between the observation ray and the Sun 1:ays
is smaller than 120° (to prevent glare).

(iv) The observed point is on the front side of the Moon's disc
(front side defined with respect to the projection center)
and 20° off the lunar limb. '

(v} The observed point is illuminated (5° from the terminator
in the‘illuminated portion of the disc).

(vi) The observation ray is within the "aperture frame' - (to

simulate photography).

As the constraining angles defined in the conditions are fairly con-
servative, the station's zenith (and horizon) can be defined by the geo-
centric radius vector fo the Station. rather than by the normal fo the
reference ellipsoid.

The rays in the bundle are referred to the B, B, Bs system
through two angles (¥;, %) or through three unit vector components
(direction cosiﬁes) {(Ugs75 Ugsps Uisgle

As the orientation of B; B, B, with respect to XYZ is arbitrary a

standard orientation is defined common for all situations:

B, - points to the Moon's mass center.
B, - is parallel to the XY plane.
B, - completes the right handed Cartesian system.
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Figure .4. 7. Optical Observations
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Figure 4,8, Determining the Eulerian Angles @, @z, @
The Eulerian orientation angles of B1B2B; (¢, ©2 ©3) are defined

then by the selenocentric position of the projection center (0) as follows:

_
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whére Q is the vector from M to O in component of the XYZ system (see
also Figure 4,6). Using these angles the transformation matrix from the

XYZ system to the B, BBy system is defined in the usual way:

Tg = Ra(P1) * R1(-¥3) - Ra(P2)

Flow of Computations for the Establishment of the Bundie of Rays.

(a) For the particular epoch for which the bundle is to be generated
the geocentric position of the Moon, the Moon's orientation, the Earth's
orientation a.nd if a satellite is involved , the selenocentric position

of the satellite, are all assumed kﬁown. The positions of the obsexving
stations on Farth are known in UVW components. The positions of
the points to be observed on the Moon are known in the x y z

system (see Figure 4.9).

O, - observing station in UVW components
P - Moon point in X y %z components

X - geocentric Moon position]

Qs L

Q -J observation rays

S _} selenocentric position >in XYz

O | of projection center components
N - illuminating vector (Sun) |

U - observation-ray in B; Bs Bs components
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Figure 4.9 - Vector Diagram of Optical QObservations
Tes Tu > as before,are transformation matrices from the XYZ system
to UVW and xyz systems, respectively.

(b)  All the vectors are transformed into XYZ system and the unit vectors

of the observation rays are computed as follows:

O = T/.-0-X
QQ = ;I‘MT . P - O
QS = TMT' P - S

()  Check on observing conditions is carried out by vector operations in
which the spatial angle between any two vectors is obtained frorn their dot
product., This angle is compared to the appropriate criteria as set above

(conditions i through vi),

{d) The observation ray is established in the B, B, B; system, after the
Ty matrix has been calculated. The unit vector of an observation ray (U)
is a function of the observed angles v and x according to the folléwing

relations:
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u, cos v
U = L O = siny cos
Uy siny sin J
The reverse relationship follows directly {(see Figure 4.7)

v = cost (uy)

»x = tan? (Ea.\.

LUy /

“The unit vector U is obtained by the following transformation

*
U = TB'QS
or
*
U = Tg- Qo

*
and the division of the U vector by its absolute value

4,62 Range and Range Rate Observations from an Earth Station to a

Satellite of the Moon.

The range between a radio tracking station on Earth (O in Figure 4. 10)
and a satellite of the Moon (S) can be derived from the following quantities
which are either defined as constants (Section 4, 3) or are obtained as a

result of the numerical integration of the equations derived in Section 4. 4.

These are:
3_{ the geocentric state vector of the Moon
- X - ’
S
5 the selenocentric state vector of the satellite
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e
A
€ )
’ the Eulerian angles of the Earth and their time rates
n
A
€
e -
O the station position vector in UVW components.,

The evaluation of the range~rate between the tracking station and the satellite
requires in addition to the previously mentioned quantities the knowledge of the
linear velocity of the station referredto ageocentric inertially oriented XY Z

system, to be denoted as 15.

Ly

)

i

!l

|

1
o

Figure 4.10. Range and Range-Rate Diagram.

geocenter

tracking station on Earth

Moon's mass center

m 2 o

satellite
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The vector P is obtained as follows:

Euler geometric equations relate the instantaneous rotational

velocities of the Earth around axes UVW to the quantities

73, Ay € (see section 4,43)

W [r 0 -sinnsing -cosn . [ 7 1
tady i= L 0 -cosm sine sinnp A ;
i e
Wy L1 cose 0 | | e |

where

Te = Ra(m) - Ri(~€) - Ra() as defined before is the transformation
matrix from the XYZ system to the UVW system.
In order to have all the vectors involved in the computation referred to

the XYZ system vector O is transformed into vector P:
P=T{-0
The range and the range-rate can be calculated at any desired density

along the satellite orbit from the following expressions

| T| range from 'O to S

H
il

L
r = z " L range rate from O to S

where
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T=X+8-P

1
r = (T'. T)®
. TT.T
r=—"7-r
r

The sign of r is defined as positive for r increasing (S getting
away of Q).

Conditions for the Existence of Range and Range-Rate Observations.

The conditions considered are two:
(i) The satellite is at least 10° above the tracKing station horizon.

(ii) The T vector passes no closer than 60 kilometers from the

Moon's surface.

\,_,/ radius of grazing sphere

Figure 4.11. Conditions for Existence of Range and
Range-Rate Observations

The two conditions are checked as follows:

T -
check (i) = T%WI-TT_I - 8in10°
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check (ii) = 1

The constraints 10° and 60 km were chosen arbitrarily. Any other

set of values derived from experience can be easily substituting in the

scheme.
As in the case ‘of the other observation types only those observations

are retained which meet the two conditions.
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5. NUMERICAL EXPERIMENTS
5.1 Introduction

The main purpose of this study is to develop a method for the
solution of an optimal datum on the Moon from conventional data types.
This is accomplished mainly in Chapters 2 and 3 where the models of
solution for a datum as well as a new method for the solution ‘of the
physical librations of the Moon are presented. Section 2.6 in Chapter
2 goes as far as to display a detailed algorithm to serve as a basis for
the extensive computer programming necessary to carry out a complete
pumerieal solution. The eomplexity.l of the solution and the number of
different types of observations and.';-)arameters involved as reflected in
section 2.6 clearly indicate that proéramming the complete solution and
running an extensive experimentation program is a task of considerable
magnitude well beyond the scope of the present study. However, there.
are certain elements in the solution w!hich, although mathematically
correct, neeci some numerical confirmation of their feasibility and use-
fulness. This is true, in particular, regarding the newly proposed method
for the solution of the physical librations of the Moon. It is true also for
the novél approach taken in treating the Earth-bound optical observations.
It seems desirable to have some results which would demonstrate that the
numerical solution for the permanent parameters (see section 2.3 in
Chapter 2) is possible and the correlations between those parameters are
tolerable. Chapter 5 is designed to provide this numerical support for
the theory developed in the aforementioned chapte]::s,although it should not
be regar‘ded as a complete num;arical solution for a datum on the Moon

from a combination of Earth-bound and satellite~borne observations.
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In the development of a simulated environment and observations, as
shown in Chapter 4, particular care is taken to avoid any inconsistencies
and obtain simulated data which arerealistic and closely correspond to
the real situation. All the equations derived in Chapter 4 have been
fully programmed in a way such that generating the various data sets is
easy and straightforward. So it is clear that the additional effort necessary
to bring to completion the extensive numerical experimentation, although
time consuming, involves mainly computer programming of mathematical
expressions developed in this study and a large number of computer rung.
Such a task could be easily handled by a person whose knowledge extends
no further than computer programming.

The following three problems are treated in Chapter 5:

(i) A least squares fit of the numerically integrated physical

librations to angles simulated according to Chapter 4 is per-

formed and analyzed. ‘ '

(ii) A least squares fit as in (i) above, is performed to angfes

generated according to Eckhardt's [1970] model and using real

lunar and solar ephemerides as given in the DE-69 tape

[O'Handley, et al. 1969].

(iii) A datum solution is obtained consisting of the following:

a. Coordinates of a network of 22 triangulation points
on the Moon.

b. Physical libration angles and time rates at a standard
epoch (1969.0). ¥

G. The constants Cg, Co B featuring the low degree
terms in the gravitational field of the Moon.

Simulated Earth-bound optical observafions are used for this solution.
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9.2 Fitting Numerically Integrated to Simulated
Physical Libration Angles

The main pbjective in this section is to demonstrate the feasibility
of the adjulsi_‘tm;ent model as developed in sectign 3.3 and to test the
numerical-’efficiency of the algorithm in recovering the "errors! intro-
duced in the nominal parameters. The correlation matrix is regarded
as an mdlcator of the capability of .the procedure to separate
the various parameters bemg estimated.

There -is gnother problem which is investigated. The solution for -
physical libration in longitude,where the value of the constant f is 0.662,
preseni:s a‘nonlinearity pi'oblerﬁ as mentioned in section 3.1. Koziel has
reported that‘l'-,,there appear to be two minima in the solution depending
on the starting value of f [Kopal and Goudas, 1967]. Two different s_ets
of starting values for f are used to find out if‘ they both converge to the
same adjusted value of f..

As there is no previous experience in similt;ir solutions, the assu_ﬁlption
for linearity of the function X, (see section 3.42) over the corrections to
the starting (approximate) parameters is tested. This assumption is the
basis and justifi.cation for the. linearizati.on of the mathematical model.
The test is performed by iterating the least squares solution and denoting
the speed of convergence to the final (in this case the theoretical)
parameters and also by examining the residuals after each iteration. In
the following paragraph, a short accour}t is given of the numerical tools
developed for the pﬁrpose of this exﬁerimentation.

A simulated ephemeris of the Earth and the Moon was created for a
period of one year beginning at 2440222.5 JD (19692.0) and up to 2440592.5
JD. The mathematical formulation and constants used follow exactly
those"giyen in Chapter 4. The subroutine used to integrate numerically

the differential equations of motion is the so called DVDQ - a variable
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step, variablé order Adams integrator [Krogh, F. T., 1869]. The geo-
centric position and velocity of the Moon, the Eulerian angles and time
rates for the Moon and for the Earth were created and recorded at half
-daily intervals. In order to facilitate interpolation for the 18 quantities
at epochs \':vhich fall eetween the tabulated values, a fifth-order modified
Everett interpolation formula was employed [O'Handley, et al., 1969,

p. 251. For this purpose, the second and fourth differences of the
tabulated quantities were modified to include 1i'near combinations of the
sixth and eighth dlfferences. Subsequent tests of the differences between
1nterp01ated quantities and directly integrated ones. showed that the inter-
polation is satisfactory and produces results which are correct within the
nominal number of "correct" significant figures obtained in the integration
of the differential equations. The final product was a three dimensional
matrix of 8 X 18 X 740 .quan-tities which contained, in double precision,
all the information necessary to obtain the position and orientation of the
Moon and the orientation of the Earth for any eboch during the year 1969
with a precision.. of 0.0001 km and 0.0001 km/day for the lunar ephemeris
and 01'003 and 0.003 "/day for the orientation angles and time rates of
the Earth and the Moon. 'Ijhis ephemeris is used to obtain the selenocentric
position of the Earth needed in the integration of -the physical librations - ‘
{see equation 3.23.3 in section 3.23) and also as a source for 'observed"
physical libration angles needed in performing the least squares fit
according to section 3.42.

Programs aeveloped for the integration of the physical librations of
the real Moon are used in this experiment,the only difference being fhat
the gré.vita.tional constant of the Sun is seét-to zero (no Sun which exerts
gravxtatlonal a.ttractlon exists in the simulated environment) and also the
motion of the ecliptic MOD system is set to zero. . The last provision is
justified by the fact that the reference XYZ frame in the simulated environ-
ment wag chosen fo be the eciipt‘ic system of 1969.0 which is inertial by
definition (see section 4.2 in Cﬂé:pter 4. ‘
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The mean longitude and the longitude of node of the Moon needed in
the transformation between the Eulerian angles and the physical librations
of the Moon are determined through the following expressions:

Ly = 1.196721511 + 0.2299715022 - (T - 2440222, 5)

Qy = 0.080512750 - 0.0009242189 - (T ~ 2440222, 5)

where Ly and Qj are the mean longitude and the longitudcnf of node in
radians ‘and T is the epoch in Julian days (see Section 4, 35).

The mean inclination of the lunar equator to the XY plane (Iy) is
defined as follows: .

Iy = 0.026769 radians

The nominal (theoretically exact) values for the six initial values of
the physical librations for 2440222.5 JD and the three physical constants

(Cas 8, Cx) are as follows (see Section 4.36):

T = -0.000060718 T = 0.000027449 Cz = 0.0000207
o = ~0.008818575 ; G = 0.005304188 ;- B = 0.0006290
p = 0,000606182 6 = 0.000062452 Co = -0.0002070

where 7, 0, p are in radians, 1.', c-r, £ are in radians per day and Cg, 8, Cxm
are dimensionless.
The value of f that corresponds to the chosen physical parameters is
f = 0.6668
which is quite close to the critical value of f (0.662),
Three types of adjustment were performed as follows:
(i) The nominal (absolute) physical constants were used ag
starting values while the initial values for 244022.5 of the
physical librations were shifted. The normal equations were
generated and solved only for the six initial values.
(ii)  The absolute initial values of the physical libration
angles were used as starting values while Cz and 8 were
shifted from their absolute values. The normal eguations

were generated and solved for C,, and 8 alone.

177



(iii) All the parameters with the exception of Cy were

shifted from their nominal values. The normal equations

were generated and solved for the 8 parameters (initial

values, (s and B). Two cases were run with different

starting values to test the convergence in both to the

same solution and also to test if starting with f values

on either side of the critical f(0.662) will have any adverse

effect on the solution.

The following is a display of the results of the three adjustment
experiments:

(i) The stari:ing (approximate) values were set at the following:

T = -0.0001 T = 0.00001 Ce-

_ : . equal to the
o= -0.01 ; o= 0.01 ; 8
p= 0.0 p = 0.0001 cp  DOminal

Atter three iterations all the residuals in 7, sin@-* ¢ and p were
smaller than 1/10000 of a second of arc and the adjusted values of the
six initial angles and time rates were brought back to the nominal values.
Computer time for the run oﬁ the IBM 3860/75 was 4.4 minutes. The
inverted normalﬁtrix (weight coefficients matrix) and the corresponding

correlation matrix after the third iteration are as follows:

T o o T a o
T| 7.8D-3 1.9D-4 -3,4D-6 -1.3D-5 1.7D-5 -8.1D-6
ol 0.00 7.5D-0 -4.7D-83 1.3D-5 ~7.9D-2 -2.4D-2
p|-0.00  -0,02 5.2D-3 7.9D-6 2.0D-2 1.4D-5
T |-0.33 0.01 0.25 1.9D-7 6.4D-5 6.2D-8
o| 0.00  -0.07 0.68  0.35 1.7D-1  3,1D-4
0]-0.01  -0.71 0.02 0.01 0.06 | 1.5D-4
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The upper right triangular submatrix is the weight matrix while the
lower left triangular matrix is the correlation mairix without the diagonal
elements. This patiern in presenting the weight and the correlation
matrices will be used hereafter. The solution appears satisfactory in all
respects. There are, however, somewhat larger correlations between £ and ¢ and
also between ¢ and p.

(i) The starting initial values and Cg, were set equal to the

nominal while Cy, and B were shifted as follows:

Cxp 0.0000217
8 0.000619
The corresponding f value is f=0.653.

1l

After two iterations, the residuals in all three angles throughout the
year (1969) were smaller than 0!'0006 and the adjusted parameters were
back at the nominal, differing at the seventh significant figure for Cy and
in the tenth significant figure for 8. There is no doubt that a third
iteration would have brought all the residuals to zero and the parameters -
to the exact nominal values. The weight coefficient and correlation

matrices after the second iteration were as follows:

Con 8
Cx | 8.1D-7 ~1.4D-6

8 -0.42 [ 3.7D-5

The two parameters appear to be separated at a tolerable level. The

solution. for C., and 8 crossed the critical value in f without any deterio-
ration in the solution (from f = 0,653 to f = 0.667).

(iii) The starting values for case (a) weré as follows:

T = -0.0001 T = 0.00002 Ce = 0.00002
0=-0.009 ; g= 0004 : B = 0.000627
o= 0.0005 o = 0.00008 Cp = 0.000207 (nominal)

The f value corresponding to the starting physical parameters is
f = 0.676.
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After three iterations (4.1 minutes computer time on the IBM 360/75)
the residuals in all three angles were smaller than 010005 and also all
the 8 parameters were back at the nominal values. The correlation

matrix after the third iteration is presented below:

.
0.03 | a

-0.06  -0.02 p

-0.78  -0.03 0.11 T

~0.10  -0,08  _0.68  0.16 G

-0.05  -0.45 0.02  0.06  -0.07 | D

~0.76  -0.11 0.08 0,99  0.13 0.06 | Cam

0.01 0.77 -0.01 0.00 -0.04 0.00 -0.10 I 8

The large correlations, as exhibited in solution (i), show up in this
solution too, However, the correlation between C, and T is of a much
more disturbing magnitude (0.9889) and places a question mark on the
capability of the procedure to separate the two parameters. In spite of
the high correlétion between C, and ’}, the solution for these two param-
eters converged satisfactorily. It appears that this is another of those
cases where a high degree of correlation between parameters does not seem
to affect their solution advgrsely.

As it is shown in the next section, this phenomena is common to the
true case also, i.e., it is not typical to the simulated environment.

The starting values for case (b) were set as follows:

T = -0.00003 T = 0.000035 Cx = 0.000024
o= -0.007 s G = 0.007 8 = 0.000633
o= 0.00075 5 = 0.00004 Co = =0.000207

The f value corresponding to the Caup, B, Coo as chosen is £ = 0.624.
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After three iterations, all the residuals fell below 0!'0003 and the
parameters were back at the nominal values. The correlation matrix is
almost identical to the one displayed for case (a). To illustrate the
pattern of the residuals after the first and the second iterations, the
residuals in T are plotted in Figure 5.1. The residuals in sin6 - ¢and
in p, not show.;m in Figure 5.1, fell below the 0!%5 level already after
the first iteration and exhibited, in general, a monthly period. A
similar monthly period in addition to a secular or a very long periodic

effect show in the T residuals (Figure 5.1).

Three preliminary conclusions can be drawn from the results presented

in this section as follows:
(L) The adjustment procedure developed in Chapter 3 is
capable of solving for the parameters of the physical
librations.
(ii) The critical value of f does not affect the solution in
any perceptible way and there appears to be definitely a
single minimum.
(iii) The separation between the parameters C, and 'r appears
to be poor although the adjustment procedure converges to the
correct solution. The correct values of Czz and T were known

in this case as they are parameiers in the simulation.
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5.3 Titting Numerically Inteprated to Eckhardt's

Physical Libration Angles

In the introduction to Chapter 4, a warning was issued against
relying too much on conclusions reached from processing simulated data
alone. In the case of the new solution for the physical librations, it
was felt.that if there is some hidden incompatibility of the procedure as
applied to the real world, this study may be seriously compromised if
not completely devalidated. TFor this reason, a large amount of time was
spent in testing the solution for the physical librations of the real Moon.
Technically, this was not too difficult as an excellent ephemeris of the
real Moon was at hand (LE-16) and also a good and ‘frequently used
version of the physical librations was available too {Eckhardt, 1970].

The objective of this section was set to compare the new solution for the
physical librations with Eckhardt's, or more specifically to fit the numeri-
cally integrated to Eckhardt's physical libration angles. Numerically, the
treatment was similar to the one used in section 5.2, only here the gravi-
tational attraction of the .Sun (the real Sun) and also the motion of the
ecliptic MOD coordinate system were included in the solution. As
mentioned in section 5.2, the programs used were literally the same.

Only several constants had to be changed in the main program (the pro-
gram which calls the integrating subroutines).

The problem in dealing with real data is that the "frue' solution is
unknown and actually it remains unknown in spite of good estimates of the
solution which may be obtained. Also, when differences are examined,
it is occasionally a matter of opinion who is right and who is wrong. In
this case, a hypothesis was suggested to explain some of the observed
phenomena.

The experiments were performed in two stages:
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) A least squares fit was performed over one year (from
2440222.5 JD and up to 2440588.5 JD) of Eckhardi's angles and

a variety of starting values were used with several different
sets of solved and fixed parameters.

(ii) The residuals of the experiments in (i) above prompted

a soul-searching operation at the end of which some modifi~
cations and "corrections' were applied to Eckhardt's expressions
for T, the physical libraticn in longitude. Then another set

of least squares fits were performed which, as it is shown at the
end of this section, confirmed the assumptions made and brought
some more light into the problem of the physical librations of
the Moon. It turned out that the problem was hidden in the
troublesome term in the harmonie series for T (argument
-(2F-24) and coefficient of 15V3 according to Eckhardt [1970]).
The coefficient of this term is extremely sensitive to small
-yariations in f and as f is not known too well, the value of
this coefficient has a large uncertainty [Kopal and Goudas,

19677.

One important result in so fé,r as the numerical integration
procedure is concerned was that the normal matrices behaved
in very much the same way as in fhe simulated case (section
5.2} and, acfually, for fits over one year to Eckhardi's
angles there was little difference in the covariance matrices of
the estimated parameters. As stated in Chapter 3, the objectives
of this study do not include analysis of the differences hetween
the numerically integrated physical libration angles and those
obtained from éonventional solutions; therefore, as soon as
positive conclusions could be reached about the feasibility and
compatibility of the numerical solution of the physical librations

of the Moon, the harmonic analysis of the differences was halted.
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In the following paragraphs of this section, a brief description of the
experiments is presented together with the numerical results.

(i) Eight different cases of adjustment were run as follows:

In cases 1 through 4, the gravitational effect of the Sun and the motion
of the ecliptic were set to zero and the starting values of the physical
parameters (Cgp, B, Cxo) were set so that £ = 0.633 and 8 = 0.0006268 which
are the so-called Koziel's values [Kopal and Goudas, 1967].

In the second group of cases 5 through 8, the effects of the Sun and the
motion of the eclipticwere included and the values of Cs and Cxo used were
the ones adopted by NASA in the so-called Apollo gravitational model of
the Moon [Ransford, etal,, 1970].

In each of the two groups, the nine normal equations generated were
solved in four different ways as follows:

(2) Only initial values solved (6).

(b)  Initial values and Cg solved (7).

(c) Initial values and 8 solved (7).

(d) All the parameters with the exception of Ca solved (8).

If a parameter was not solved, like Cux in all cases or Cy in case (c),
for example, its value was kept fixed in the solution.

The solutions of cases 4 and 8 were iterated two more times to find
out if significant changes in the solutions would occur.

The resulis of the eight cases of adjustment are displayed in Table 5.1;
the correlation matrices are given in Tables 5.2 and 5.3 and the residual
differences between the numerically integrated and Eckhardt's T angles
are presented in Figure 5.2. The residuals in sin8 - ¢ and in p are not
displayed as they behaved after the various adjustments quite satisfactorily,
There were no differences larger than 3" in absolute magnitude and they
were evenly distributed with respect to the zero line. The residuals in
T exhibited some unusual persistence and could not be brought to order,

no matter what starting values or solution combination were used. The
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Sol.

.

No. T o & T o 0 Ca g f
Start| -0.000070687 | -0.008406005 | 0,000607810 | 0. 000028399 | 0. 005360716 | 0. 000059528 | 0. 00002302 |0. 0006268 | .633
1 23967 8578287 608580 28130 5363364 59440 2302% 6268% .633
2 26125 8576564 608424 28262 5362402 59427 2315 6268% ,631
3 24416 8400416 609138 28160 5363646 59446 2302% 6275 | .633
4 26241 8401163 608999 28272 5362826 59435 2313 6275 | .632
Start| -0.000026241{~0,008401163{ 0.000608999| 0.000028272| 0.005362826| 0. 000059435 | 0,00002313 |0.0006275 | .632
4+ 25563 8401807 609046 28232 5363123 59439 2309 6275 | .632

Start| -0,000070687 {-0.008406005 | 0.000607810| 0.000028399 | 0, 005360716 | 0, 000059528 0.00002070 [0.0006268 | .667
5 | +0.000017248 8570615 611982 25632 5380387 59748 2070 6268%* 667
6 | -0,000049625 8535498 608102 29033 5356752 59422 2385 6268% .626 |
7 { +0.000016689 8377966 612588 25663 5380708 59755 2070* 6275 | .667
8 | ~0.000049765 8396385 608555 29042 5357078 - 59429 2384 6273 | .626
Start| -0.000050000 |-0.008400000 | 0. 000609000 | 0. 000028000 | 0. 005360000 | 0. 000059400 | 0.00002384 [0, 0006274 | .626
g*2 26200 8405344 609252 28349 5361191 59483 2335 6273 | .632

+2

These parameters were held fixed in the solution,

Results after two more iterations of the

appropriate case (4 or 8)

For cases 1 through 4" Cno was held fixed at -0.0002048.
For cases 5 through 8%2 C,0 was held fixed at -0.000207,

Table 5.1 Starting and Adjusted Physical Libration Parameters for Solutions Numbers 1 Through 8.




0.00 | ‘o
0,00 -0.02 | p No. 1
-0.35  0.01 IW' T
0.00  -0.07  0.68  0.35 o
0.00  -0.70  0.01  0.01  0.06 | p
T
-0.03 o
0.11  -0.03 0 ‘ No. 2
-0.88  0.03 -0.12 | T
0.12  -0.07  _0.68 -0.12 | &
0.05  -0.70  -0.02  -0.06 0.07 o
-0.88  0.03  -0.13  _0.998 -0.14 W’ Cs
;
-0.08 | o
-0.02  0.10 o No. 3
-0.30 _0.60  0.27 r
0.00  -0.03  _0.67  0.23 o
-0.01  -0.44 0.02 0.02 0.06 p
0.1 0.77  0.14  _0.78  0.01  0.01 | 8
T
0.03 | o
0.11 'TIO_I p
-0.88  0.04  -0.11 | No. 4
0.12  -0.03  0.68 -0.12 o
0.05 ~ -0.44 0,02 -0.06  0.07 |
-0.87 -0.01  -0.13  _0.996 -0.14  -0.06 Co

-0.02 0.77 0.15 0.03 0.02 0.01 -0.04 l 8

Table 5.2 Correlation Matrices for Cases 1 Through 4.
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0.00 | o

0.00 Wl p No. &
-0.29 0.01 0.25 T
0.00° -0.07 0,68 0.35 l o
0.00 -0.70 0.0l  0.0L  0.06 | 0
T
-0.03 | o
0.11  ~0.03 0 No. 6
0,84  0.04  -0.12 T
0.11  -0.07  _0.68 _m o
0.05 -0.71  -0.02  =-0.06  -0.07 | p
-0.83  0.04 -0.13  0.998 ~0.14 -0.07 | Cm
,
-0.07 o
~0,02  0.10 o No. 7
0,25 _0.61  0.26 T
0.00 -0.03  0.67  0.22 G
~0.01  -0.44 0.02 0.02 0.06 o
-0.10 0.77 0,14 _0.79 0.01 0.01 8
T
~0.03 o
0.10 0.10 o No. 8
-0.84  0.04 -0.11 | 7
0.11  -0.08  _0.68  -0.12 o
0.05  -0.44 0.02  -0.06 0.07 0
-0.83 -0.01  -0.13  _0.996 -0.14  -0.07 Cas

-0,01 0,77 0.315 0.02 0.02 0.01 -0.05 I B

Table 5.3 Correlation Matrices for Cases 5 Thrc:ugh 8.
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correlation matrices are almost exactly the same as those in section 5.2,
only "here the large correlations are slightly larger. As in section 5.2,
the main problem remains the separation betwc;en T and Cs: (correlation
0.996). As could be expected, the Sun and the motion of the ecliptic do
not have significant effect as far as the correlation matrices are concerned.
In the solutions, however, and mainly in the solution for initial values for
7 and for 7 and also for the constant Coe, there are two distinct subgroups,
i.e., 5 and 7 vs. 6 and 8 (see Table 5.1). The answer lies in the param-
. eters chosen to be solved and those left fixed. 1In cases 5 and 7, Cxp was
held fixed at 0.0000207 while in cases 6 and 8, it was solved for. Another
reason for the unusual behavior of the solutions 5 through 8 as compared
to those of 1 through 4 was that the corrections in Cs, required to fit to
Eckhardi's angles were apparently too large and more than one iteration
was necessary to overcome the nonlinear behavior of the minimized function
Az (see section 3.42).Thus,case 8 wasiterated two more times (denoted as g+?
in Table5.1) and converged to a solution very close in initial values and in
f to the solution obtained after two more iterations of .case 4 (denoted as
4*¥ jn Table 5.1). There were no significant changes in the correlation
matrices of cases 4% and 8% as compared to the ones of cases 4 and 8,
respectively. '

The conclusions reached after running all the experiments in (i) were
that in o 'and in-p, the numerical solution for the physical librations of
the Moon is quite satisfactory. Actually, the small magnitude of the
differences was surprising and encouraging. The only‘ problem remaining
was in the solution for 7, in view of the large differences and,moreover,
in view of their pattern. It was not clear at all if graph A in Figure 5.2
would continue to grow indefinitely which is improbable in view of the laws
of Cassini and the long history of observations of the Moon. The experi-
ments undertaken to clarify this problem are presented in the following

paragraphs.
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(if} I a solution exists for the numerically integrated _physical
libration angles 2all one has are six initial "values for some standard
epoch and three (actué.lly two)} physical parafneters which govern the
integration. Theoretically, if the solution'is, perfect and the integrating
subroutine does not lhave any cumulative nﬁmerical errors, the physical
libration angles couid be obtained by numerical integration for any
desired epoch, even an epoch which is beyond the interval in time used
to obtain the solution. The question thus arises if using an actual
solution which is not perfect,an "extrapolation of the kind described
above can be performed without losing control over the integrated angles.
In the present case, the initial values and physical constants obtained .
after the second iteration of case 8% ghove were used to perform an
integration over approximately four years (1400 days). The results of
this integration in terms of differences between the numerically integrated
and Eckhardt's angles are given in Figure 5.3. Twa interesting phenomena
are evident: '

(@) The solutions in ¢ and in p (from case 8™) are good and

could safely be "exirapolated" over three years (beyond 2440588.5 JD).

There is some secular trend in p but on the whole, the solution

is satisfactory and brings a partial answer to the question if a

numerical solution could be used over extended periods of time.

(b) . The residuals in T exhibit a clearly periodic character as

suggested by Eckbardt [1971]. Actually, the period of the large

differences is almost exactly three years, same as the period of
the problematic term in 7. It seems quite likely that if the
initial epoch for the one year fits performed in (i) above was
chosen to be 2440750, the residuals in that experiment would
have been an exact mirror image of the ones displayed in

Figure 5.2.

In order fo investigate the cause for the periodic differences in T

*
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an adjustment was run over the 1400 days beginning at 2440222.5 JD,

only to discover that the parameters changed insignificantly and the
residuals in 7 remained the same. Now it was .clear that there is

some defect in Eckhardt's model and the value of the coefficient of the
term (2F-24,) ‘should be checked. A careful search in the literature
revealed that Kopal [1970, p.41l] reporting on Eckhardi's solution as of
1965,' gives the coefficient of that term as 31!"1, much larger than 153
as given by Eckhardt in his later solution [Eckhardt, 1970, p.267]. The
difference of 15!'8 was increased slightly in view of the amplitude of the
A graph in Figure 5.3 and a least squares fit was performed to Eckhardt's
angles where the term in the harmonic series for T has been increased
up to 32I'3. Two iterations of the adjustment over 1200 days, beginning
at 2440222.5 JD were run (computer time ‘on the IBM 360/75 was 8.3
minutes). The solution for the parameters (the six initial values, Cw

and 8 were solved)is given in what follows while the residuals are displayed

in Figure 5.4.

T = -0.000032358 T = 0,000028992 Cgm =  0.00002302

o = -0.008383211 ¢ = 0.005370362 8 =  0.0006274

p = 0.000615345 5 = 0.000059711 Cax = =-0.000205 (nominal)
Cf = 0.633

The correlation matrix of the 8 parameters is given below:

_—
0,14 o
0.13 "“‘6?15“] b
-0.41 0.28  -0.35 | T
0.22  -0.15  _0.69  -0.53 G
0.13  -0.50 0.21  -0.34 0. 30 o
~0.40 0.199  -0.41  _0.986 -0.57  -0.35 Ce
-0.09 _0.72 0.33 0.08 0.01 0.03  0.02 | B
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The correlation matrix compared to the ones in (i) shows a
significant increase in the smaller correlations while there is some
mellowing in the larger ones. For instance, the 0.996 correlation
between T and Cx is down to 0.986, still large but less alarming. I
is not clear exactly what caused these changes although the fitting interval
is considerably longer and may be related to this phenomena.

The residuals in 7 still remained far from the zero line and as can be
seen in Figure 5.4, the coefficient of Eckhardt's term (2F-245) could
be increased by some 2 to 3 seconds of arc to eliminate complete,ly
the periodic part. A second search in the liter?.ture revealed that there
may be effects of a very iong period (18.6 years, for example) which
may be the ones causing the remaining large difference in T [Eckhardt,
1970, p.274]. By inspection, the coefficient and the zero point of an
additive harmonic term with a period of 18.6 years (6794 days) were
determined as follows: :

T - 2438700

- " ai o,
AT = 12" . 8in (360 5794

where T in Julian days is the epoch for which 7 is evaluated.

Eckhardt's model was corrected.by introducing the additive term in
7. and increasing the coefficient of the (2F-24.) term to 35!'3 and a single
iteration of the adjusting program was run. The solution shiﬂ:-ed slightly

from the previous one as follows:

T = -0.000035338 T = 0,000029111 Cz =  0.00002303
= -0.008481583 o = 0.005366544 B = 0.0006274
= 0.000613573 p = 0.000059654  Czp = -0.000205 (nominal)
' f = 0.633

The correlation matrix was almost exactly the same as in the previous case
of 1200 days. The residuals are displayed in Figure 5.5. Finally, the

residuals in 1 are distributed uniformly about the zero line. There is
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still evidemée of short periodic effects, the dominant being a clear one-
month period (27.3 days). The residuals in o display some secular
tendency of about 2" per 1200 days. It is possible to go on-and correct
additional terms in Eckhardt's model by rigorous harmonic analysis of
the remaining differences although the real value of such an improvement
is questio_na.ble. The fact remains that two totally different solutions
agree over a period of more than three years to better than three seconds .
of arc. Until observations with noise level corresponding to less than 30
meters on the lunar surface become availgble (1" measured from the
selenocenter .is roughly equivalent fo 10 meters on the surface of the .
Moon) there is no point in correcting the presently available solution of
Eckhardt except for-the (2F-24.) term and the additive long periodic term
introduced above,

During the various phases of the experimentation reported in this
section, the mathematical developments presented in Chapter 3 and pro—
grams wrltten accordmgly were checked repeatedly to uncover any
possible error. After the numerous tests run with this program and the
satisfactory resulis as reported in this section, it can be stated with
confidence that the procedure for the solution of the physical librs;,tions of
the Moon as developed in this study and programmed is fully capable
of solving the problem. I remains to obtain real data and process it
according to the theory developed in Chaptér 2, in order to fully utilize

the potentials of the new method.
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5.4 Selenodetic Control Solutions From Simulated

Earth-Bound Qptical QObservations

In this section, a series of experiments desighed to analyze the
quality of various solutions for a control network on the Moon from sim-
-ulated Earth-bound optical obgervations are presented. As the dafa imply
(Earth-bound observations), the control extends only to features on the front
side of the Moon.

The selection of the triangulation points (features on the lunar sur-
face) was done so that two different control networks are defined, each

consisting of twenty-two points.

Z

— A

X
View from North Pole of the Moon View from the Earth

Figure 5.6 Typical Areas for Positioning Triangulation

Points on the Moon.

The two networks are defined as follows (see Figure 5.6):

a. Network I includes points from areas A and C. .

bh. Network II includes points from areas A and B.
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’I‘hig distinction .is made in order to enable experimentation with
solutions o'f "ecenter arlld limb" networks (I) vs. "limbless! networks (II).
In a way, the heliometer observations which traditionally have been used
for the, solution of the physical libration constanis can be regarded as an
extreme case-of a network of type I V\.zhere there is only one point in
area’ A (Mosting Ajwhile the points in area C are all on the limb itself.
Network II can be associated to the set of 150 triangulation points solved
by Schrutka Rechtenstamm (1958) in which there are very few points in
the limb area C.

From a total of 30 points as defined in the simulated environment
(section 4.,32), 14 points are common to both networks (I and TI) and the
remaining 16 points are split evenly between the two.networks (see Figure

5.7). z
® Nets I and II
O NexI Only
o Net II Only

Figure 5.7 Distribution of Points in Control Networks I and IL.

Optical observations conducted from the Earth have to be obtained
at epochs of extreme libration offsets in order to allow a fair solution

(see section 1.2). For this purpose, the total geocentric librations (otal
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libration as seen from the geocenter) for the year 1969 were generated
and then fifteen epochs with iarge librations evenly distributed along the
year were selected as the approximate observation epochs. Another
criterionin s;electing the approximate%epochs was the phase of the Moon.
In order to have a maximum number of rays per bundle, the epochs

. were selected around Full Moon. The observatories at Pic Du Midi
and at Johannesburg were defined as the observing stations (see section
4.3i) and then it was left to the program to choose the exact epoch of
the optical bundle, one for each station, in the proximity of the epochs
discussed above so that the observing conditions would be optimal.

In this way, a total of thirty optical bundies were created which
containeci from twenty-two and up to thirty rays per. bundle . The
exact librations and other auxiliary data, in addition to the optical obser-
vations themselves, were recorded. From this raw data two sets of
thirty bundles each were created according to the conirol points figuring
the networks I or II. It should bé remembered that all of these calcu-
lations are based on the simulated ephemeris for the year 1969 as
described in section 5.2. ‘

The libration subpoints :(intersection with the lunar surface of the

vector from the observing stations fo the selenmocenter) of the thirty bundles

are shown in Figure 5.8. N 18
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Figure 5.8 Libration Subpoints of the Thirty Optical Bundles.
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The adjusﬁnent procedure for processing Earth-bound data as developed
in Chapter 2 was programmed and applied to the simulated optical data for
a solution of selenodetic control. Before going into detailed discussions
on the various experiments carried out with the simulated optical data,
the logic of the adjustment program is outlined briefly.

The backbone of the adjustment program is the numerical integration
program for the physical librations of the Moon discussed in sections 5.2
and 5.3. The sequence of steps is as follows: ‘

1. The integrating progfam is operated up to the "next" epoch

at which a bundle was observed.

2. The infegration is arrested 4nd the information generated
by the integrating program for that epoch- (physical libration
angles, state transition and parameter sensitivity matx:icltes)
together with information gathered by the optical bundle are
used in evaluating the partial derivatives as developed in
section 2.4.

3. A layer of the normal matrix, the constant vector and the
considered parameters contribution matrix is generated and
added to the corresponding matrices where layers from
previous bundles have been accumulated.

4, The integration is resumed until the epoch of the ™ext"
bundle and so on, until all the bundles in the batch have
been processed. It should he remembered (section 2.52)
that the normal matrix generated is that of the permanent
parameters only, the solution for the auxiliary parameters
being "folded in".

5. The apriori covariances of the permanent parameters are
added to the normal matrix followed by inversion and sub-
sequent evaluation of the solution vector (corrections to

the starting values of the permanent parameters) and the
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full covariance matrix of the corrected (adjusted) param-
eters. Tull covariances mentioned above imply the
inclusion of the effect of the considered parameters (see
Appendix D). .
This complex procedure is not particularly fast, not even on the IBM
360/75 computer. It takes about twenty seconds to process a bundle of
twenty rays with intervals between bundles of sixty days.

Tn the remaining paragraphs of this section, the experiments carried
out are described, followed by results and discussion. First the a priori
covariances of the parameters used in the various solutions are presented.
The units of the a priori covariances (and also of the a posteriori covariances)
are as follows:

km® - kilometer squared for coordinates of the triangulation points.
sec® - seconds of arc squared for initial values of the physical
librations and also for the physical constants (Cgs, B,‘Czo).
sec®/day® - seconds squared per day squared for initial values of
the physical lib;ﬁ:ation angular velocities (T etc.).
The values for the covariances were selected carefully to conform with

the level of uncertainties in the present knowledge of the various quantities.

¥, =10.0-1(66 x 66) [km®1 coordinates of triangulation points

22’1 0

P27 physical librations initial values

0 22, 2

T, = 1000.0-1(8 x 3) lsec®]

22,2 = 250, 0"I(3 b3 3) I__sece/dayg]

[ 0,25 0 0
T.=| 0 4,0 0 [sec®] physical constants (Ca, B, Cao)
0 0 0.0001
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s =0.2.-I(3 x3) [sec®] low

L =0.1:-1(3 x 8) [sec®] normal quality orientation parameters
Dg = 0.02-1(3 « 3) [sec®l high

05=0.1 [sec®] low

6+ =0.02 [sec®] normal quality optical observations

g =0.01 [sec®] high

0,004 0 0
Two= Tgl 0 0.04 0 [km®]  considered parameters
0 0 0, 04

where Ty is an orthogonal transform ation matrix from the selenodetic to
the inertial coordinate systems. Tt should be remembered that the magnitude
and character of &, are determined primarily from the uncertainties in

the lunar ephemeris.

ExpuTriment (i).

The first experiment was designed to test the quality of the solution for
selencdetic control by analysing the covariance matrix (the inverted normal
matrix augmented by the effect of the considered parameters) of the permanent
parameters. The starting values of all the parameters involved were kept
at their theoretically known (from the simulation) values. In a way the -
covariance matrix obtained in such a solution c;)uld be regarded as a result of
the last in a series of iterative adjustment solutions where the one before the
last iteration has brought the parameters very close to their final values. The
specific objectives of this experiment were threefold:

(a) ‘To determine the rate of improvement in the quality of the solution

with the gradual intreduction of more data.

203



(b) To evaluate the effect of variations in the quality of the optical

observations on the solution for the permanent parameters.

{c) To check if there is a significant difference in the quality of the

solutions of Network I vs. Network II.

The 30 bundles were processed in a particular order, to enhance the
achievement of the above objectives and to save in computer time needed
for the experiment. The 30 bundles were divided into 5 batches of 6 bundles
each, as follows:

batch No. 1 consisted of bundles 1, 6,11, 16,21, 26

batch No. 2 consisted of bundles 2,7, 12, 17,22, 27

bateh No. 5 consisted of bundles 5, 10, 15, 20, 25, 30.
As can be seen in Figure 5.8 because of the particular pattern of the libration
subpoints of the bundles each batch as defined above could be used to obtain an
independent solution. A solution based on a batch consisting of bundles 1 through
6, on the other hand, would certainly run into numerical problems and would

produce meaningless results because of the extremely narrow resection basis.

Test (a). A series of 5 solutions were obtained. Starting with a solution
from batch No. 1 alone,additional batéhes (Nos. 2, 3,4,5) were introduced
in the subsequent solutions so that in the fifth solution the normal matrix
wasg formed from processing all 30 optical bundles. Tables 5,4, 5.5, and 3.6
present samples of the results. '
Table 5.4 presents diagonal submatrices of the covariance matrix and
the corresponding correlations of the solution based on all 30 bundles. The
correlations appear tolera.ble where a clear pattern of the higher correlations
can be observed as follows: The x coordiﬁates are com’:elated among them-
selves and the same applies also to the ¥ and z coordinates, respectively.
One possible reason for this phenomena is that the orientation of the

selenodelic coordinate system is part of the general solution (physical libra-
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Table 5.4 Covariance and Correlation Matrices for Solution

of Network I From 30 Bundles.
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Table 5.5 Covariance and Correlation Matrices for Solution of Net I From 30 Bundles.
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tions initial values). On the other hand the coordinates of an individual
triangulation point are almost completely noncorrelated . Another
typical result to be noted in Table 5, 4 is that the x coordinates are deter-
mined much less accurately as compared to y and z. Also for points near
the zero meridian of the Moon (points with small y coordinates) like points
Nos, 11,12,17,19 and 28 (see Figure 5. 7} the coordinate z is better deter-
mined than y. Points on the limb like 13 and 18 have larger than average
uncertainties in x;however theiry coordinates are as well determined as
their z coordinates, This phenomena is sometimes referred to as the
"poor planimetry and fair altimetry" of the limb points on the Moon and
vice versa for points in the central region.

Table 5.5 presents the portion of the covariance/correlation matrix
of the 30 bundles solution pertaining to the physical libration initial values
and the physical constants. At the top the covariances and correlations of
the physical libration parameters are presented While at the middle and at A
the bottom the correlations between the physical libration parameters
and the coordinates of some of the triangulation points are shown. The
striking feature of the solution for the physical libration parametérs is the
poor quality of 7 and the complete insensitivity of the data to s and &. As
can be seen in the table the covariances of ¢ and ¢ remained after the solu-
tion at their a priori values indicating that the solution could not bring
any improvement in¢g and in g, The improvement in T is from 1000 sec®
down to 472 sec® which is not too impressive, considering the large amount
of good data involved (optical observations of normal accuracy). It ishard
to find a good explanation for this phenomena. -One reason may be that one
year is too short a period for a solution of a quantity (o) defined by the
intersection of two planes which form an angle of only 155, As for Tit
should be remembered that in longitude a selenocentric angle of 10" is

about 85 meters on the lunar equator and much less in northern or southern
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Table 5.6 Diagonal Elements of Covariance Matrix for Solution of Net I from 30 Bundles.
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latitudes. So it appears that the poor determination of 7 and the sonllewhat
poorer solutions for y (Table 5.4) of points near the zero meridian are
interrelated. Actually this is clearly demonstrated by the high correlations
between 1 and the y coordinates of points 17,19 and 28 (see Figure 5. 7).

One encouraging resuit in the somewhat grim picture is the tolerable ‘
correlation between T and Cy, which in Sections 5.2 and 5. 3 was a cause

for considerable concern. Actually the solution for ¥ has a comfortingly small
covariance corresponding to a standard deviation of about 0. 25 sec/day, much
better than in the solution for p. Bis also well determined corresponding to a
solution good to almost four significant figures,

Table 5. 6 displays the diagonal elements of the covariance matrix with-
out and with the inclusion of the effect of the considered parameters, It is
somewhat surprising to find out that it is the x coordinates which are affected
mostly by the considered parameters while in y and in z there are much smaller
effects. This is surprising because the uncertainties (% o) in the x direction
were set at about + 60 meters (one-g) while in y and in z they were =+ 200m.
It is possible that the constraints in orientation of the bundles = +0/3)
together with the great abundace of data reduced markedly the effect of the
considered parameters on y and on z, The considered parameters seem
to have little or no effect on the covariances of the physical libration initial
values and the physical constants.

Table 5. 7 presents the improvement in the solution with the introduction
of the second, third, etc. batches into the solution. One pattern which is
typical for almost all the coordinates as well as for the physical librétion
parameters (with the exception of ¢ and of §) is the sharp improvement
between the one and two-batches-solution. After that the degree of improve-
ment levels off.The preliminary conclusion to be drawn from this result is
ihat a greater abundance of data does not necessarily mean a significant

improvement in the solution.
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Table 5.7 Diagonal Elements of Covariance Matrix for Solutions from 6 ,12 ,18 ,24 and 30 Bundles
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"Table 5.8 Effect on the Solution of Difa_?erent Optical Observation Accuracies
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Test (b}, Only one batch (6 bundles) was used to generate gldrmal
matrices at three different quality levels of optical observations: iow, normall
and high. As it could be expected, the quality of the solution is directly
proportional to the quality of the optical data. In Table 5.8 the diagonal elements
of the covariance matrix are presenfed for the three solutions beginning at
the top with the iow quality optical data and ending at the bottom with the
solution from the high quality data, The results of this test clearly indicate
that the general quality of the solution for selenodetic control strongly depends
on the quality of the optical observations., It should be noted that optical
observations of a higher quality imply that not only the directions in a bundle
relative to each other are known better but also that the orientation of the

bundle has smaller uncertainties.

Test (¢). A parallel solution fo the one discussed in (a) above was run with
30 bundlés simulated for Control Nétwork 1. At all levels of the solution
(6,12, etc, bundles) the differences in the covariances were found to be insig-
nificant and what is more important no clear pattern could be detected in the
differences. It is possible that the reason for this similarity is in the positions
of the points chosen for Net I and for Net II. As it can be seen in Figure 5.7
the points chosen for the two networks do not follow exactly the definition’
of "center and limb" vs. "center only' networks as stated at the beginning of
this section. The deviations from these rules may have removed the distinc-
tion between the two networks and conseguently may have produced two

different’ networks but of the same intermediate type.

Experiment (ii).

The second experiment had a more limited objective. Three tests were
run to find out the extent to which the adjustment program is capable of
recovering shifts introduced in the starting parameters (approximate values
of the parameters). In a manner -similar to that employed in Section 5, 2

the three tests were designed as follows:
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(a) Only the coordinates of the triangulation points were shifted from

their known absolute values (simulated coordinates).

(b) Only the physical libration initial values and the parameters Ca»

and B were shifted while the coordinates were left at their absolute values.

{c) All the permanent parameters (with the exception of Cz) Were shifted.

Even before examining the results it should be clear by now from the
discussions presented in (i) above that no spectacular results can be expected
'from the program and the particular Earth-bound simulated data. This is
frue in particular considering the fact that only one iteration of the adjustment

per test case was performed and the data used consisted of only one batch of

6 bundles of optical data.

Test (a), Table 5.9 presents the absolute coordinates of the triangulation
points and the solution vector (negative) after one iteration of the adjﬁstment.
" The starting (shifted) coordinates were set simply by removing from the
absolute coordinates the decimal fraction, So the degree of recovery can be
assessed by comparing the negative value of the solution vector with the
fractional part of the corresponding absolute coordinate. The degree of
recovery of EI}e shifts is impréssivesmore so considering the low quality of
the solution as exhibited by the covariances (see (i) above). A general pattern
can be recognized in the difference in the degree of recovery of the x coordinates
as compared to that in y and in z, It can be seen in Table 5.9 that in x the
recovery is much less efficient. ‘As stated earlier the main reason for this
as well as for the higher uncertainties in the solution for x lies in the poor

geometry of the optical observations of the Moon conducted from the Earth.

Test (b). Only the starting values of the physical libration parameters

were shifted as follows:

AT = 427 AT=-1.54"/day A Czz = 0721
b0 = 45709 5 AG=-62,70%day; A B =-0741
Ap=-5/40  Ap=-2.57"/day A Cazo = 0.00
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Solution Vector

y.

X y % . X Z
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Absolute (Simulated) Coordinates of Triangulation Points
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X v 2 = v Z
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Table 5.9  Solution Vector for Test (a} in Experiment (ii)
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Shift

Solution

Shift
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Shift

Coordinates of

X

Triangulation Points

y

Z
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01771680 01
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000

Table 5.10 Solution Vector for Test {b) in Experiment (ii)
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Table 5. 10 presents the elements of the solution vector. The recovery
is excellent for T and 7; it is fair for ¢ and B; it is poor for p and Cpa; and
it is non~existant for ¢ and . 'This is rather surprising as the covariances
(not shown) are very much the same as in the cases discussed in (i) above.

0 is not as well determined as one would have expected but on the other hand
T is really excellent,much better than indicated by the covariance of the
solution for . No final conclusions can be reached from this experi-
ment as it is felt that one or two more iterations would have brought the
physical libration parameters closer to their absolute values. However,

the problem with the inability of the procedure to solve for ¢ and for &
remains and further investigation is necessary in order to determine the
exact cause of this disturbing phenomena, The shifts introduced ino and
in & were set actually larger than the a-priori covariances (1000 sec®, .

250 sec®/day®) in order to find out if any correction in the right direction
would occur. It did not produce any results and the solution remained
insensitive to the shifts ing and &, The coordinates of the triangulation
points received "corrections' ~ generally small - which is another way of
demonstrating the small but nevertheless existing correlations between the
physical libration parameters and the coordinates of the triangulation points.
Tt should be noted hy examining the solution vector Fhat the "corrections' or
actually errors introduced in z are slightly larger than those in y probably
due to the error remaining after the adjustment in the value of p (the physical

libration in inclination}.

Test (). The shifts in all the permanent parameters were set as for
cases (2) and (b) put together, Table 5.11 presents the solution vector and
the absolute coordinates of the points (as in Table 5. 9) as well as the shifts
introduced in the physical libration parameters, There is no significant
difference between cases {c) and (a) as far as the recovery of shifts in the

coordinates are concerned and the same applies to cases {c) and (b) for the
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Test (c) in Experiment (ii)
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physical libration parameters. It is another proof of the relative independence
in the solution for the coordinates of the points in the control network on one
hand and the solution for the‘parameters of the physical librations on the
other. The covariance matrix (not shown) is almost exactly the same as

for cases shown in (i) above.

It would be premature and rather presumptuous to state that definite
conclusions can be drawn from the few experiments with simulated data per-
formed in this section. As it was declared in the introduction to this chapter
the main purpose was to demonstrate the feasibility of the adjusiment program
and to develop a feeling for the many problems that lje ahead, With a
large degree of reservation it can be stated that from the experiments
described in this seci:ion it appears that the coordinates of a selenodetic
control network can be solved rather efficiently from processing Earth-based
optical observations and scaling the network by the lunar ephemeris. The
solution for the physical libration parameters is less spectacular and there
remains the problem of the inability of the procedure to solve for o and .

In general however the resulits demonstrate convincingly that the theory
developed in Chapter 2 is sound and it is possible to solve simultaneously for
the coordinates of the control network points and for the orientation parameters

of the selenodetic coordinate system.
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6. SUMMARY AND CONCLUSIONS

This study was undertaken to solve the problem of determination of
an optimal selenodetic control network on the Moon. Selenodetic control
is defined by the coordinates of a network of well identifiable features on
the lunar surface with respect to a selenodetic Cartesian coordinate system
which is fixed {o the lunar crust,‘ is centered at its mass cenier and is
oriented along the three principal axes of inertia of the Moon. The solu~
tion of this problem, although closely related to the dynamical properties
of the Moon, is not a comprehensive datum solution for the Moon which
by definition includes in addition to the fundamental selenodetic control
also the parameters of the lunar gravitational field and the elements of
its géneral geometric figure. .

In order not to compromise the generality and rigor of the solution,
the method, as developed in this study, is fully consistent with the
theoretical and numerical models for the motion of the Moon in space.
For this purpose, the definition of the selencdetic coordinate system and
its orientation in space are given particular attention. Actually, the
parameters of orientation of the selenodetic system with respect to the
mean eclipfic coordinate system were made an integral part of the
solution for selenodetic control.

The solution in this sfudy is based on processing optical, range and
range-rate data obtained from photography or direct angular observations
of the Moon and rahge or range-rate measurements from tracking stations
on' Barth to satellites orbiting the Moon. As all the observations are
either taken directly from the Earth or are related to it (a satellite
photographing the Moon is tracked from stations on Earth) the geocentric

ephemeris of the lunar mass center and also the geocentric coordinates of
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the stations engaged in relevant observational activities are incorporated
in the solution. In order not to expand unnecessarily the scope of the
study, the geocentric lunar ephemeris and coordinates of observing
stations on Earth are kept as fixed quantities in the solution although
their uncertainties are reflected in the covariances of the solved parameters.
In the solution, thé Moon is regarded as a rigid body rotating in space
in a complicated manner under the influence of the gravitational attraction
of the Earth and the Sun, the effect of the planets being neglected. The
orientation of the Moon in space is defined through three Eulerian angles
relating the selenodetic coordinate system to the mean ecliptic system.
The value of these angles (or rather the so-called physical libration angles)
at any epoch consitutues the soluiion for the orientation of the Moon.
Around the Moon in space there are a variety of sensors engaged in optical
observations of the Moon. An optical observation is defined as the direction
in space from a projection center (the sensor) to a particular feature on
the lunar surface. The optical observations are usually grouped in bundles,
i.e., divections emanating simultanecusly from the same projection center.
These optical observations modeled in terms of the parameters of the
solution are processed by a weighted least squares adjustment procedure
and result in estimates for the following parameters and their covariances:
a. the selenodetic coordinateés of a selected number-of features
on the lunar surface;
b. six parameters of orientation of the Moon in space (physical
libration initial values);
¢. three parameters featuring the low degree terms (second
degree) in the lunar gravitational field.
In case the projection center is on  board a spacecraft, in
addition to the optical data, range and range-rate measurements from the
Earth to the spacecraft are incorporated in the adjustment process. A

standard orbit determination procedure is applied to the range and range-
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rate data which results in estimates for the selenocentric state vector

of the spacecraft and also in estimates of parameters of the gravitational
field of the Moor. As the position of the spacecraft is identified with
the projection center and also some of the parameters of the gravitational
field of the Moon figure in the model for the optical observations, if is
necessary for the optical data taken from the satellite to be processed
simultaneously with the range and range-rate measured from Earth to

the satelllite.

In ;)rder to test numerically the mathematical procedures developed
J{n this study, a simulated environment was created which reflects very
closely the true worid. The Earth, the Moon and a variety of satellites
move and rotate in this simulated environment strictly according to the
laws of Newton and Kepler. The observational material generated: is
absolutely free of any unaccounted phenomena and although certain sim-
plifications were introduced, it simulates very closely real observations
that could be obtained through photography or by Doppler tracking as the
case may be.

A number of experiments run with the simulated data served as a
test for the mathematical development in this study and provided also a
sample of the quality of results that could be expected from processing
real data with the same characteristics. Tests of the new model for the
physical librations of the Moon demonstrated that the adjustment procedure
is capable of estimating the parameters of physical libration and with one
exception, the correlations between the parameters are tolerable.

Experiments were run also with real data in which the model for the
physical librations was compared to an existing model. The results of
the comparison indicated a surprising simula;:ity although the approaches
taken in developing the two models were entirely different.

A complete selenodetic control solution was attempted using as source
data thirty simulated bundles of optical rays taken from the Earth. The

results confirmed once more the limitations of the Earth bound data. The
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covariance matrices indicated a comparatively poor determination of the
coordinates of the lunar features with standard deviations in the hundreds
of meters. The parameters of the ph;}sical librations of the Moon were
not determined much better, i. e. , the standard deviations of the initial values
of the physical librations were of the order of tens of seconds of arc.

The primary reason is that the attempted solution was limited to Earth
bound data thus only leiting the poor geometry and the great distance
have their say. There is little doubt that the inclusion of satellite-borne
optical data would have changed the situation entirely.

There are many problem areas which can be seen as a natural
continuation of the present study. Actually, at almost every step in the
course of the research, there were 'new questions raised, new avenues
of research laid open, tempting and promising, interesting and previously
unknown answers, just around the corner. A great deal of restraint had
to be applied in order to keep the present study within the predetermined
scope and time limits. The main problem areas are outlined in the form
of questions and brief comments:

a. What is the comparative value of optical observations

obtained from a low orbiting spacecraft (perigee of less
than 100 miles) as compared to observations from a high

.. spacecraft (perigee of more than 1000 miles}? There

are two conflicting aspects, i.e., the scale of the photo-
graphs taken vs. the perturbing effect of the fine (and
not so well-known) features of the lunar gravitational

field.
bh. Are the covariances of the coordinates of the lunar features

as obtained in the sample solution indicative of the uncertainties
in the relative position of the points in the control network

or they only indicate that the coordinate system itself is

poorly defined while the relative positions are much better ?

it appears -that applying inner adjusiment constraints to the

solution may bring an answer to this question [Meissl, 1971],
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C.

What is the quality of a solutiqn for, the physical libration
parameters from analysis of heliometer cbservations as .
compared to the solution from ordinary optical observations
as proposed in this study? It would be of great interest: }“o )
fi]:;ld out if the vast number of heliometer observations
a;:cumulated over more than a century could be put to use

in deriving a new solution for the physical librations.

As -in any other thgaoretical study, it is extremely interesting
to find out what new problems will be brought up when an
attempt is made to use real data for a selenodetic control

golution.

At the end, the main characteristics of the solution for selenodetic

control, as developed in this study, are summarized:

a.

b.

C.

€.

The solution is consistent with the motion of the Moon in

space.

The solution for the orientation of the Moon in space is

* part of the general solution. .

Optical data obtained from the Earth or from a spacecraft
are processed uniformly, thus avoiding inconsistencies between
solutions based on either of the two sources of data.

All the observations needed for the solution (optical, range,
and range-rate) are processed simultaneously in a weighted
least squares procedure where the parameters are constrained
according to their apriori covariances.

The adjustment procedure can be programmed for use with
available electronic computers where the core size required
and the computer time for processing the data are reason-
able and make the application of the solution to processing

real data a feasible proposition,

223



APPENDIX A

Equivalency of MacCullagh's Formula to a Spherical Harmonics Expansion

The problem treatedin this Appendix is to compare expressions for the
potential of a triaxial ellipsoid using MacCullagh's formula with that of a
spherical harmonics expansion.

MacCullagh's formula (Jeffreys, "The Earth", p. 176):
A+B+ C -3
LI
25 ) (A. 1)

v = k? (E.
\p

Spherical harmonics expansion:
k= M a 2 A
o r—l + ‘I\E:‘[ i\Pa‘ Ca ot ng‘ Cg 2 C‘=OS 2 A-/"_li ) (A. 2)

V =

The second order harmonics Cz 1,8 1,Ss » are equal to zero, which means
that the axes (X, ¥, Z) are i;:leritieal with the principal axes of inertia.
Symbols used and their meaning:
k®  gravitational constant
M  mass of the body
a scaling quantity (usually taken as equal to the major semiaxis of
the reference ellipsoid)
Cz 0. coefficients of the second order iﬁ_ a gpherical harmonics
Co o) expansion of the gravitational potential
P, 2} Legendre polynomigls
oA, polar coordinates of point (Q) at which the potential is evaluated
- with respect to the principal axes of the body (x,y, z).
The following relations ﬂold between the polar coordinates of a point Q and

its Cartesian coordinates:
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r=1yl = plyl; v | = j(coso sin )

zJ a1
Ha 4o . L

where @, v, 3 are the direction cosines of @ (see Figure A.1).

_x} Jo o] COS (0 COS A

sin®

o/

Figure A.1 Polar Coordinates of Point Q,

Tisdefined as the moment of inertia of the body about an axis defined by

o, v o as follows:

l A 0 0

A 0 0_|!-a
I = AP+BY*+Cc&f = [ay 3]0 B ()'I:;y =—1ﬁ-? r'f0 B 0fr
) 0 0 c,!a_, 0 0 c

.{A. 3}

The Legendre polynomialsare expressed as a function of the latitude o

[Mueller, 1964]:

P, = %(3 sin® o -1)
(A. 4)

Ppp = 3costo

The principal moments of inertia are related to the spherical harmonics coef-

ficients by the following formulae [Mueller, 1964]:
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1 /A+B >
C = - -
TEE AGratl) s
i B-A
Ce2 = J ~ 1
B = € - & s a ratio between the moments of inertia A, B and C.

The relationship in (A. 5) can be reversed so that A, B and C are expressed

in teAmlS of Czo, Caz and 6:

1 1 -2[A] 2.Cp 0
1 o Bl = Ma® l4-Con| 3 (A. 6)
1 B -1 C_\ 10
1 1 -2 -1 1-28 2
1
- == -1 - . T
1 1 0 Y. 1 1 2 (AT
1 g -1 ~(1 +8) 1-8 2
So finally:
]-A‘] . -Cao +Cz 20 (2 - "'13)‘_I
B| = P%‘- -Cao +Cz o 2 (A.8)
C ~Ca o° (1L + 3) +Cg 2 (2 - 23)

The following intermediate developments are nebessary for the comparison

of {A.1) and {A.2):

=2 2 X2_|_ 2
sina(p =-F-Z)§; cosa{P.—. 1__Z_§ :—Eéx.._

— By ainy . i — . - =__312_____ 2y _ o1
cos 2A = cos ) - sin®A; S.ln)\. ij—g-, sin“)\ X3+yg, cos A =1 X2+y2
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1 . 1 1
P=% (8sin®p-1) = EE(sza—xg—ya-Za) B (22% -~ y%)

P = 5 P+
p°
cos2) = 1 - _‘i = M — i’:ﬁ
2+y X2+y2 X2+y2

In what follows the spherical harmonics expression (A, 2) is to be transformed by
substitutions so that finally it is expressed in terms of the same quantities as

MacCullagh's formula (A, 1):

v = k®M ; [- (27252 ?)- A+B-2C 3(x +y) (B-4)  (x*-y) 2!
o U Z 5 Y oma® 7 4Ma® oy us
After rearrangement
A 1
= - + + +
Vv = k2| Lp TS 4p2 'x2- (~4AF2BH2C) + yH2A-4B 20) Z2A+2B- 40)_“.
Adding and subtracting in the square brackets the expression
X°6A + Y 6B+ 226 C
the result is
V = BBMa =+ =y ”—‘—e—tf—— (24 +2B+2C - — (x°A +y*B+22C)
lp Mo® . 4p° 4. 2 _lj
but
pe - x2+y2+22
S0 finally —A 0 0 [—‘q
1 ! h
vV = k"‘MI—+ Mp’ (A+B+C—p [xyz]-{0 B 0[-1y]]|. (A.9)
0 0 C} iz

The expression (A.9) is identical with MacCullagh's formula (A, 1) where I
has been substituted by (A.3). This completes the proof of the equivalency of
(A.1) and (A.2). It holds only where in both expressions for the potential

the terms beyond the second degree have been neglected.
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APPENDIX B

Derivation of a Numerical Value for the Ratio

between the Equatorial and Polar Moments

of Tnertia of the Earth.

In analysing the motion of the average terrestrial system with respect
to the center of mass of the Earth the following ratio is needed in the integra-

tion (see Chapter 4, Section 4. 43):

where C and A are the polar and the equatorial moments of inertia of the Earth.
Tn the literature the values given for p vary in the third significant figure and
there is no clear indication of the method used to derive this constant [ Plummer,
1918; Jeffreys, 1970].

In what follows two methods are used for deriving a numerical value for u:

Method (i) - From Woolard's expressions for nutation in obliguity
using the constant of nutation adopted by the IAU in 1964 [Woolard, 1953].
Method (ii) - Using formulae given by Jeffreys f1970] and
evaluating the value of y for constants adopted by TAU in 1964.
The constants to be used are
kM = 4902, 86593 km® sec ©  gravitational constant of the Moon
N = 97210 coefficient of major term in nutation in obliquity for

the epoch 1800.0

w, = .0000729211507 rad/sec spin velocity of the Earth
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)
I

384400, 0 km. mesan distance to the Moon
1. 06969941 10° rad/sec

Il

rate of change of the node of the
lunar orbit.

o
@
I

6378.16 km. major semiaxis of Earth reference ellipsoid
1/298.25 flattening of the reference ellipsoid
k?E = 398603 km®sec?

gravitational constant.of the Earth,
Method (i)

From Woolard's "Astronomical Papers" p. 124 for the solution of Poison's
equations for the motion of the Earth,through integration of the term "sin G,

the following expression is obtained [Woolard, 1953, p, 1241:
ey CoA 1

~. 0411 «
i R o) 68 - cos2= 9,21 cos{}
C-A _ 9.21 1.06969941-10° - 729211507-10* _ 3844007
C  206264.8062 . 041166 3 4902. 86593
C;A = . 00326731,

Method (ii)

From Jeffreys [1970, p. 189] a formula for

; is given as follows:

m
c-a _ -3
C 2“——-»
1".5_' 1+T’a
where
_ bm
=T of 2
2 =2
=wab
m -—L—“-—-kgE and

b = (1~-f) a, is the minor semi-axis of the
reference ellipsoid,

The constants listed at the beginning of this Appendix
are substituted in the above expression and result in the following:
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http:constant.of
http:1/298.25

m = 003449801472
N, = .572258243
and finally
c cA = 003266166 .

The difference between the values obtained is in the fourth significant
digit and as the constant N = 9.21 is based on astronomic observations and

as it is important to remain consistent with the set of constants adopted

by IAU in 1964 (N being one of them} the value for to be adopted is

0.003267.
. . A . . _ C-A
A simple algebraic manipulation results in p = G
p= .00327802,
- . . _ C-A _
Compared to the dynamic flattening of the Moon (B = —— = .000629)

B
i is about five times larger,
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APPENDIX C

Design of a set of Mascons on the Moon.

Dynamically the simulated Moonis a triaxial ellipsoid with a set of 12
mass concentrations laying on the surface of the Moon sphere. They are super-
imposed on the basic triaxial figure, '

The mascons had to be designed in a way such that they do not alter the
low degree terms of the spherical harmonics expansion (up to and including the
second degree). This would mean éhat the total contribution of the mascons
to the mass of the Moon, to its first moments and to its second moments and
products of inertia is zero.

The 12 mascons were all chosen to lay on the front (Earth side) of the Moon
at locations which correspond to mascon models as solved and reported recently.

Mathematically this is an overdetermined problem as the 12 masses have

to satisfy a total of nine independent conditions. The symbols used are:

m; — mass of i mascon

X; ¥y 2; — Cartesian coordinates of mascon in the selenodetic gystem (x,y, z).

The nine conditions are as follows:

Zero degree term -1l Tmy =0
first degree terms 3 Tmyy, =0
z

2 is the summation symbol over the i mascons
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Czy = 0 6 ITmx 7z
second degree terms Cpz = 0 7 Tm; (XF - ¥
‘ Co1-= 0 8 Tm.y:%

0 .9 Tm; ¥V .

The condition equations are linear in the parameters and so the solution
follows directly.

The mathematical model is given by

BM +W =0

where

= -
11 ... .. 1
XXz &0 . v e KXo Gml ] wl
Vi P A P 6ma Wo
z 6m.

B = 1 ; M = ‘3 ; W =
X2+ .2 .
Z T 9 .
51’1’112 Wg

Y Xp¥2. - - Xizhiz

dm,, 6mp, ... are corrections to initial values for the masses mgp,, Mo2,. . ;o2

The least squares solution for M is

M = -P'B"(BP'BY'W
where P is the weight matrix for M (in this case it was defined as the identity
matrix). Two of the masses were setf to predetermined initial values while the
rest (ten masses) were get to zero.

Three consecutive iterations of the adjustment problem were run, The
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second and third iterations produced identical results and the vector W

after the third iteration contained quantities smaller than 10*°,
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APPENDIX D

Considered Parameters in a Least

Squares Adjustment Process

Parameters in aleast squares adjustment process arve estimated either
as free variables, i.e., without conditions (functional or weight constrainis)
being imposed on t—heir solution or as observed quantities baving an a priori
estimate of their covariances. These a priori covariances constrain the
solution of the parameters and figure also in their weight coefficients
matrix. In what follows the second case is treated where a priori infor-
mation on the parameters does exist. ]

In order to solve for the parameters one should have reasons to
expect that the data processed areof a type and quality such that the esti-
mates of the parameters are going to be improved after the adjustment,
i.e., the trace of the a posteriori covariance matrix (the scaled weight
coefficients matrix) will be.smaller as compared to the trace of the a
priori covariance matrix. There are' cases, however, where for various
reasons some of the parameters have to be held fixed through the adjust-
ment or even if they can be allowed to vary it is realized beforehand
that no improvements in their a priori values can be éxpected as a result
of the adjustment. If this is the case, such parameters are treated as
constants. There is one major flaw in such an approach:

In estimating the covariances of the parameters that are being

adjusted, the effect of uncertainties in the "fixed" parameters

on these estimated covarignces is implicitly ignored. This

implicit omigsion is seldom justified as the "fixed" paramefers

themselves have been obtained, most probably,earlier through an
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adjustment process and have a covariance matirix associated

with them.

The problem to be treated in this appendix is to derive expressions
for the contribution of uncertainties in 'fixed! parameters on the estimated
covariance matrix of other parameters which are being solved for in a
least squares adjustment process. The development here is a generalization
of the method of "Considered Parameters™ as used by JPL and outlined by
Anderson (19641, '

The mathematical model used is in accordance with the so called
"Generalized Approach' in which all the quantities involved are treated as
observables with associated a priori covariance estimates [Uotila, 1967].

The following notation is used:

1® - observables which are subject to adjustment
X® - observables which although possessing a covariance matrix

are held fixed

Yo

Z a priori covariance L .
f , respectively,
<

2oy matrix of
/A a

The mathematical model F is then

F=F(L, X" =0 (D.1)

where L* are the adjusted observables.

I =1’ +V (D. 2)

The mathematical model is linearized under the assumption that F is

fairly linear over V

F=BV +W=20 (D. 3)
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where

and W = F(L", XY

In what follows the sequence of formulae is well known from Uotila

[1967] and is presented, therefore, without comments:

@ = VIZlv - 2AT BV + W) (D 4)
W0 T 0L siy - Rl

oz BT_{ | v] | o |

B 0 *'t o w (D-5)
i I R T R

v =-TB"(BESBYW =-TB MW (D. 6)
=12 +V=L"- TR M'W (D.T)

Two fixed vectors L°, X° are defined which are close in value or

even identical to Lb, X° so that

IP=1°+ L
1 = L% + L*
X*=X"+X

The vectors L, L*, X have the same covariance matrices like b, 18,
X°, respectively as X° and L° are constant vectors.

Using the partial derivatives matrix B

W = W° + BL + B,X (D. 8)
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where

o a « oF
W° = F(L°% X% and B, = 3%
The equation for 1° is written again

L°+I* = L°+ L -TB"M'W° - £B"MBL - B"M*B, X

1%

I

~ZB'M*W’ + [I- TR"M'B] L- 2B'M*B, X (D.9)

The only elements on the right side which possess covariance matrices
are L and X. An assumption is made that no elements in 1. are correlated
to any elements in X°, The covariance matrix of L* (or L*) is evaluated

according to the law of propagation of covariances.
L = [I- ZB'M'B] T [I- B'™M'BE] + ZB'M*B,Z,B/M*BZT (D.10)

Setting

and also as

[I-ZB™™'B] © [I-B'M*BZ] = [I~ZB'M*B] T
it foliows that
T# = Ziwa = [I- ZB'M*B] T+ EB"M*M;M*BZ (D. 11)

This is the expression for the estimate of the total covariance matrix
of 1* where the first term on the right side is the covariance matrix of I
obtained without considering the contribution of X°.

In practice the vector of observables L’ is usually partitioned into
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L} - the actual observations

and

I1.° - the parameters.

The solution for the corrected observations is ocecasionally of no
interest and is "folded in" the solution for the parameters.
An assumption is made again that there is no correlation between LY

andlg

I 1
vy
V=

NP X
| Vs |

B = [B Bl

[ L
|
L

Her
[P |
-
]
]
e}
]
H
[
J SV |
-

5o

The solution for V as obtained above is then

(vl [m o] [m 5 olimr)
b e L] e
.J b - AR
M1=B1‘Z]_Bj:r 3 M2=BEZ"2B§
Vg =~ZgB (M + Mp)™ W (D. 13)

A matrix inversion identity is used according to Uotila f1967].
(M, + Mp)t = (M + BoE,BJ)" = M, - M'Bo (T2 + B2 MyBp) B My (D.14)
Through a trivial matrix manipulation it follows:

Vo = —(S2+ Ba M Bz)"Bd My « W (D. 15)

The covariance matrix of 1° is partitioned as follows:
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r - 1

, (D - D |
ELa. =i i

i ELJIE ELBQ i

where X, are the covariances between 1 and I5. ZT.., is the lower

right submatrix in T;a . The expression for T is developed further to

obtain X,% explicitly.

HEY 171 r
(mood Tmoo e (moo |
La & - i |- M + Mp)™ [By Ba)-
o = o Tz | B | VI >
. .
[}31 o |[5;] 'm0 |
+ | Mo+ Mp)® MMy + Ma)™ [ By Bl
Lo TeiiB: | RN
Skipping several obvious steps
Das = Tp- LBy (M +Mp) By +
+ TeBy (My+Mz) M, (M;+ Mz)* Bo T (D. 16)

Using the matrix inversion identity mentioned above
(T + Be'My'Bp) " = %y~ TpBa (M, + M) "By X
It was shown already that
TeBz My + Mo)'= (Z5'+ BS M,'Bs)” By M,

so after setting K = (Iz'+ By M;'Bz)"  the covariance matrix for I3 can

he written as
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s = K+ KBy M;'M,M;'B;K . (D. 17)
As for the ¥,s matrix, here also K is the covariance matrix of the

L, parameters obtained if the contribution of uncertainties in X* is

ignored.
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APPENDIX E

Rules for Differentiation of Matrices

(@) Partial derivative of a scalar function © with respect to a vector X

is the row vector Y.

Yz_a_@_:[acp 3¢ 239 2
_aXl aXe an ® & & 2 5 s 8 0va s aX

(b) Partial derivative of a matrix A by a scalar ¢ is a matrix C.

o= A
Jc

where each element in C is the partial derivative by ¢ of the

corresponding element in A,

(c) Partial derivative of a vecior Y with respect to a vector X is a

matrix C.
oY, oY, 3 Y,
30X, aXs 3 X
aYa - -+ - - - L ] L [ ] - .
o - Y ) 0X3
oX ) b
Y, . .. ... c e e e . 99X
3y Y d3Y ]
aXl aXa - - . L - - - aXn
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(d)

(e)

Partial derivative of a matrix A hy a vector X is a three dimensional

matrix C.

A is partitioned into column vectors |
A=A AA, . o . .« . A]

The layers of C are obtained by differentiating sequentially the columns
of A

A
o Ofy
€1 = 3x

where C, are layers of the three dimensional matrix C and are

matrices obtained according to (c) above.

Partial derivative of the product of a matrix A and a vector Y by a

vector X is a mairix C.

c - A-Y)
X

According to case (c)

oo [aa-Y) dA-Y) aa-1))
x A LR

C=C1+A'C2
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and

(0%

% = ox

fol)

In what follows two particular vector forms are differentiated applying
the rules as developed above.
(f) Partial derivative of the vector form A by the vector X is the
matrix C.

D

T

where D is a matrix which is not a function of X .

_ oA
CT3ix
D

C = (XT'X)% + Cy

c _ _i*D-xX-X

If instead of D there is the scalar d which like D is not a function
of X the resulting matrix C is

d

__jedex-x7
-

- I
X)de 0.4 SRR

-
-

() Partial derivative of the vector form A by a vector X is the matrix C.
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A=X-X"+DX

where D is a matrix which is not a function of X

_ oA
C—aX

This can be treated like case (e)

_alxxh . @exy _

+
C 53X C +Cg
where
Co=XX'D ;
_laxxh | L3 XXD | : 3 (XX
Cl aXl DX :l BXZ DX : - a & & & @ aXn DX
. 1
- 0 -
T

OXX) 0 0 06....X..07 + 0 2

aXi * .

1 2 - L] - - - 1 [ e n .

X'y

L 0

c, = XX'D' + X'DX1I

¢ = XX'(D+D") +X'DXI

(r) Rotation matrices R,(p) i=1,2,3 are differentiated with respect

to the angle of rotation ¢ using auxiliary matrices Le, as given by
Lucas [1963].
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Rotation matrices about the three Cartesian axes, respectively are:

1 0 0 coso 0 —sin(p] cosp sing 0

Rafp) =| 0 coso sing | ;3 Ra)=| 0 1 0 5 Ralp) =|-sing cosp 0

L

0 -siny cose sing 0 coso | 0 0 1

Tucas' auxilliary matrices used to differentiate the rotation

matrices are:

[0 00 [001 0 1 0
Le;=/0 0 1] =10 0 005 Le={-1 0 0
[0~10 L1 0-0 0 0 0

The differentiation is straightforward:

oR; () _
Le, -

20 = Rip) =Rs0) - L

In the case of a negative rotation (@)

3R (0) _ o

30 °p " Ry(-@) - (-1) =-Le;R, (-0) .

Products of Vectors in Three Dimensional Space

Performed by Equivalent Matrix Operations

@) Dot product of vector A and vector B is equal to the

scalar c.

| B
1
C=AT‘B=BT'A=[A1A2A3] . Bg

| Bs



() Vector product of vector A and vector B is equal to

vector C.
- - - 2> -2
C=AX B=-BXx A
fcl] [f 0 -A; A, [B] 0 By -B | [Ai
Cg‘ =1 -A.a 0 _A'l [ Bg = "‘Bs 0 Bl 1 Ag
L CsJ | -Az A, O J B | i Bz By 0 J | As
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APPENDIX F

Orbit Determination Routine for a Satellite of

the Moon in the Simulated Environment

During the past decade with the advent of space exploration and the
availability of electronic computers many and highly sophisticated orbit
determination routines were devglol?ed. To mention only a few, O.D.
(orbit determination) routines were programmed and used successiully by
JPL, Langley R.C., MSC, TRW, etc. The difference between the various
routines, where it does exist, is mainly in the types of data being pro-
cessed and the particular application the routine was designed for.

None of the above programs was found appropriate for use in the
simulated environment. In general, they are much too complicated and have
an extensive list of parameters which are irrelevant to the simulation.
The observables are real and so extensive _error modeling is included
in the Eroutines. On the other hand, if such an O.D. routine is to be
used with Ithe simulated data, the mathematical model of the simulation
would have to be altered to conform with the particular model implied
in the O.D. routine,

Becau-se of all the above reasons, it was considered essential to
design and program an (.D. routine which will be capable of processing
the simulated range and range-rate data and will solve for initial state
vector and a set of physical parameters consistent in form with the ones
used in generating the data themselves. The approach taken follows very
closely that of JPL's GDP as reported by Warner [1964] and by Anderson
[1964]. It is based also on theory as presented in textbooks like[Brouwer
and Clemence, 1961} and [Escobal, 1965].

The essential elements in the O.D. routine are two:
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(@) Numerical integrator of the equations of motion of the satellite.

(b) Generator of partial derivatives of the state vector with respect
to the initial state vector (stat'\e transition matrix).and to the
parameters of interest (paraméter sensitivity matrix).

The mathematical formulation for (2) is given actually in section 4,44
of Chapter 4. The expressions for (b). are developed in this Appendix
using as a starting point Cowell's equations of motion of a satellite in the
simulated environment as given in section 4.44. " The notation to be used

in this Appendix is identical to the one used throughout Chapter 4.

Cowell's Fquation of Motion of a Satellite

(See Figure F, 1)

o 171 B (PfI-5 8sSHP . T P
= kBREi—1 =5 + T L IS —L
Elmlo? "of P’ 178 L #e o3
i
- E (0 1-% R:RNQ
+ Lpf + ‘065 -+ p: i R (4.4:4. 10)
H+E, (0°1-£XX)- (B+Q) |, 4
o o7 ]
_)
P,
e
5
E - geocenter
‘ R M - selenocenter
= M; - mascon i
X

S -~ satellite

. E
Figure F.1. Vector Diagram fora Satellite of the Moon.
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o = (X'X)*
X
O = (STS)E
Ca
0. = (R'R)"

1
Py = (P{Pp*

Il

Tw = Ra{®) » Ry (-0) - Ra(®) .

Tu is orthogonal transformation matrix from XYZ into XYZ.
M, is the position vector of the i-th mascon in xyz system.
k*E  is the Earth gravitational constant.

m=E— ratio of mass of the Earth to mass of the Moon.

M
R=§5+X

-Czo + (2-48)Cxp 0 0
0 0 ~(L+B) Cop+ (2-28) Cxo

“-.ﬂf__
=5g.57 "B +F)Co+ (6-68)Car] .

[— -— - — :
Q, E, a,, £ are quantities which are not functions of Lg _I,

Py and ps.

p = [ﬁl_l are the physical parameters as follows:
2
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‘™ [ Cz B. Caol’

T

I

Pz (Mol Ma e o o v o Bi]

where )
Cx, Coz are second degree- spherical harmonics of the

gravitational field of the Moon.

B = %—é where A,B,C are the principle moments of

inertia of the Moon.

g, - 1is the ratio .of the mass of the ith mascon to the

totai mass of the Moon.

Most of the above is copied from Section 4. 44,

The two matrices sought in this Appendix are:

rsS
°lsd
U= —= S the state transition matrix
s
a -
| g ds
and
2(5d 2[5l
Q=[Q Q]-= the parameter sensitivily matrix
3 3L == .

) 231 ops

As the state vector at a particular epoch i:z_l is the result of the
numerical integration of the equations of motion 'S', the differentiation of E]with
respect to the initial state vector [z jﬂ and the par;n_leters P1a Pz is carried
out through differentiation of S with respect to [S _io » P and py. As
shown by Anderson [1964] two sets of linear differential equations can be

" derived as follows:
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<
It
@
.

(F.1)
s s
Q = 90.Q + ¢ (F.2)
s 3 '
where .
S . rg
o - S =
L
0 = I'S'] and o = S
5 S op
L8,

The derivation of these equations as applied to the rotation of the

Moon is presented in section 3,32 of Chapter 3.

o 11 Mo )

i
= . = @ = o’ .
e 38 o 4 1= ®:] 38 3S
as 1 apa 9Pz

In what follows the derivation of expressions for the three partial
derivatives mairices o5 s o5 , o8 is presented. Rules for differ-
oS~ 3p, " ops

entiation of matrix forms are outlined in Appendix E. As in the case of
the mairices derived in section 3.32, the expressions are simplified only
in g0 far as this is required for enhancing the coding in FORTRAN

computer language.

The matrix a8 :

38
38 +1rI 388 H-1 SHSST P 5Pss'
—= -k L + + -
58 1m'—pm pe  pe ou pe  od
) SSST(P—%PT) , 35 ssTPss’ SSTPSI _3u, PPl .
200 20, L pi pe /]

1 _3RR' ,EI _5ERR _@5 SQRRT 5RR'Q + QT
o 5~ + - -

ps oc "o 04 Pe X 204

3SRRTQRRT 5SRIQRI 3
2p8 Y Y (F.3)
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Slight regrouping is in order and the final form is as follows:

OJ

(021 -2 8P .

[ H -
¥ (g iy * e .

3

Il

) E::);?I 5;? N 5(93;§%SST)§J, g s

- Z,E:JJ (STE"SI + 8STP") + Z: \pli - 3;:5 PI)}
. [pza +;51 A (pflp}%RRT)a |

"-2pe ®'QRI + RR'Q") ) - (F.4)

The matrix g—s" :
R % 1

pr={Cz 8 Ca:]T

In section 3.32the following two partial derivative matrices are

derived.

[ 1 -1 0 ]

o 1 o0} 0

- . 3
dfp v 6 o ¥ 61" _ I
T 3[T o 0 T 6 01 t1-10 (¥.5)

o) L0 1 0
0 0 i




and .
oIT 0 p T o p}’

% B opy
T K
= T .
L Q
where
K = —L-]—a P 6]

apl

The differentiation is performed as follows:

2

38 _ en 1L 3H (EF1-% 85" 3(P. 5
P kELm LO,;,S apl S+ p: om
I dH PI-$ XX 3(P-X)°
+ . = . +
e P1 X o’ . dps. J

The following intermediaries are needed:

S C S N
%‘E——l is obtained similarly substituting X for S.
%:%%%i:frg aaé; Tw + 2TJ G %%J
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(F.7)

(¥F.8)



3P _ 3a ¢ . 3G 1. 3Ty -
— == . -+ 2 -
3Co | BETLTH 3Cgm M T 2THE tYen
where
2-4R8 0 0
dG 3(G/B) _ (Cap = 2Czp)
—_—— = 0 0 H = I
20 2 38 B
0 0 2-288
and
F -1 0 0
3G
—_—— = -1 0
3 Cz=o I 0 ‘
The partial derivatives of Ty are evaluated as follows:
aTH BTM_ .
= * K K was defined above
3py  d o) ( )
aT
Ay = a—;'L = Ly ¢ Ty
- 9Ty _ .
Ay, = 20 = Ty + L3 \  (see appendix E
_ 9Ty _
Ag = Y ~Rg(@) = Ley » Ry (-6) * Ra(P)

. )
ot = Ay s Ky,s t A Ko + Az Ka,,

o

£
I
F:JJ;-

Ki,z * A K2+ Aa° Kpp2
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0Ty
MKy, * AsKp 5+ A3Kg g

oCap
Py
B( 3 ) T
0Oy 1 3P, P, T 1 T ' T
= _ 1 _ Lo TAY o M. o e M. - M
3D Lo2 0.5 g [A 1) As 1 As 1]

The last expression is based on the following identity

AT = --@_T..M_ T - BTJ
1 L3Cy, 3Csp
28

The mairix

3S _ KETP, D !
B ‘ 0z° ) : ) O;ig_-l

This completes the derivation of all the expressions necessary to
evaluate © and . Uging numerical integration, the matrices U and- Q
are evaluated along the orbit together with the state vector itself.S In casse
the number of para.mefers (number of columns in Q) is excessive, the
differential equations Q =@Q + & can be solved sioy quadrature using

5 5
Simpson's or other appropriate methods (see Anderson, 1964).
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