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PREFACE 
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ABSTRACT
 

This study was undertaken to solve the problem of determination of an 

optimal selenodetic control network on the Moon. Selenodetic control is 

defined by the coordinates of a network of well identifiable features on the 

lunar surface with respect to a selenodetic Cartesian coordinate system, __ 

which is fixed to the lunar crust, is centered at its mass center and is 

oriented along the three principal axes of inertia of the Moon. 

The method developed for solving the problem is fully consistent with 

the theoretical and numerical models for the motion of the Moon in space. 

For this purpose, the parameters of orientation of the selenodetic system 

with respect to the mean ecliptic system, identified in this study with the 

physical [ibrations of the Moon, are made an integral part of the solution 

for selenodetic control. 

The solution is based on optical data obtained by photography or by 

direct angular observations of the Moon taken from the Earth or on board 

a spacecraft and on range and range-rate data obtained from tracking 

stations on Earth to a spacecraft orbiting the Moon. In order to achieve 

orientation of the control network at least part of the optical data- is 

considered oriented with respect to a certain celestial coordinate system. 

Scale is introduced to the control solution through the assumption that the 

lunar ephemeris describes the motion of the center of mass of the Moon, 

or in this case, the translatory motion of the origin of the selenodetic 

coordinate system with respect to the geocenter. The lunar ephemeris 

introduced by JPL under the code-name LE-16 is used for the above 

purpose.
 

The total observational material modeled in terms of the parameters 

of the solution is processed by a weighted least squares adjustment procedure 

and results in estimates for the following parameter groups and their co­

variances: 
iii 



a. selenodetic coordinates of a selected number of fundamental 

control points on the lunar surface, 

b. parameters of orientation of the Moon (physical libration angles 

and time ratcs at a standard epoch), 

c. parameters featuring the low degree terms in the lunar 

gravitational field. 

In case the optical data was taken on board a spacecraft, an orbit 

determination procedure is appled to the range and range-rate data which 

results in estimates for the selenocentric state vector of the spacecraft 

and also in estimates for the higher degree terms in the lunar gravitational 

field. 

In order to test numerically the mathematical procedure developed in 

this study, a simulated environment was created which reflects very closely 

the true world. The Earth, the' Moon and a variety of satellites move 

and rotate in this simulated envirQmnent strictly according to the laws of 

Newton and Kepler. The observational material generated is free of 
unaccounted phenomena and simulates very closely real observations. 

Numerical tests with the simulated as well as with real data demon­

strated that the solution for the physical librations of the Moon conforms 

very closely to existing solutions while having many advantages primarily 

that of being an integral part of the control network solution. A complete 

selenodetic control solution obtained from simulated Earth-based optical 

data confirmed the feasibilty of the method developed in this study and 

introduced estimates for accuracies that could be achieved in the solution 

for an optimal selenodetic control. 
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1. INTRODUCTION 

1. 1 Statement of the Problem 

Maps of the Moon have been drawn ever since the first telescopes 

began scanning the surface of the nearest-to-the-Earth celestial body. 

Coordinates of features on the front side of the Moon have been calculated 

for. almost two centuries. Improvements in observational techniques and 

instrumentation as well as the perfection of mathematical theories designed 

to model the motions of the celestial bodies involved all have continuously 

enhanced the accuracy of the maps produced. Recent articles reporting 

on research being done in this area reveal that the interest in mapping the 

Moon has not subsided; on the contrary with the advent of space explora­

tion a new dimension has been added to it. Having detailed and accurate 

maps of the Moon's surface is considered indispensible in view of landing 

missions and also in cases where certain instruments are placed and 

operated on the surface of the Moon. 

The new dimension extends also to the, types of observational material 

obtained. In addition to the Earth-bound optical observations, a new 

generation of space-borne photography and angular measurements became 

available. For the first time the Earth's atmosphere ceased to be a 

limiting factor in the overall quality of observations of the Moon. 

The high degree of optimism, however, gave way to a mild dis­

illusionment as the analysis of space-acquired data failed to conform to 

the previously available results. Possible reasons for the discrepancies 

could be named by the dozen, -but no clear way for resolving the contra­

dictions and eventually arriving at a consistent and better solution were 

at hand. This is the point where the study presented hereafter was 

initiated. 
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In addition to the practical aspects of obtaining better coordinates for 

features on the Moon and consequently defining a better coordinate system, 

there was a challenge in undertaking an investigation in this particular field. 

Traditionally, mapping of the Moon has been in the domain of astronomers 

and out of place for geodesists who had plenty of problems of their own to 

cope with. The geodetic sciences, however, have registered tremendous 

progress in the past several decades, and the prospects for a geodesist to 

contribute to the solution of the problem of mapping the Moon are at least 

fair. The challenge is also in venturing into and examining theories and 

models of celestial mechanics associated with the motion of celestial bodies 

in general and that of the Moon in particular. There is a certain advantage in 

coming into a field from the outside: The traditional approaches and solutions 

appear less inhibitive. It is easier for a newcomer to think of new ways to 

tackle old problems than it is for the home bred scientist. 

The problem to be investigated can be defined as follows: 

To explore known methods for mapping the Moon and to develop a procedure 

for the establishment of a unique solution which will be consistent with all the 

data types available and which will conform with the models and ephemerides 

for the motion of the Moon, the Earth, and other celestial bodies. 

The initial stage in any mapping sequence is the definition and determination 

of a datum and a fundamental control network which will serve in later stages 

as the basis for densification of control and the actual map production. Thus 

the specific objective in this work is limited to the basic phase of the general 

problem of mapping the Moon, i.e., the establishment of a fundamental 

control network on the Moon or using "geodetic" as a synonym: 

"The establishment of an optimal selenodetic control." 
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1. 2 Past Achievements and Problem Areas 

A detailed review of past achievements in mapping the Moon is beyond 

the scope of an introductory chapter. As can be seen in [Mueller, 1969b], 

even a bibliographical list could easily extend into tens of pages. Instead, 

in order to put in perspective the work reported in the following chapters, 

typical articles have been selected to represent the past achievements and 

contemporary trends in this field. In what follows, the various solutions 

to the problem are classified according- to their broader character; thus 

avoiding the necessity of going into exhausting details and the many delicate 

differences among the individual procedures. 

The data considered in this section are optical data obtained by photo­

graphy of the Moon or from the measurement of directions to particular 

features on the surface of the Moon. The methods for determining coor­

dinates of features on the Moon are divided into two major categories 

according to the mode of acquiring the optical data: 

I. Methods based on data obtained from the surface of the Earth. 

11. 	 Methods based on data acquired from a spacecraft.
 

Following is an outline of the main optical data types:
 

(i) Heliometer or position micrometer observations in which the 

quantity measured is the spatial angular distance between any two 

features on the surface of the Moon or between a particular 

feature (the crater MOsting A) and the apparent limb of the Moon 

at different position angles [Koziel, 1948; Hopmann, 19671. 

(ii) Photography of the Moon obtained by means of long focus 

(15-20m) Earth-based astronomic telescopes with or without a 

superimposed star field [Arthur, 1962; Moutsoulas, 1969]. 

(iii) Photography of the Moon by cameras with a principal distance 

of 80-240mm taken from a spacecraft in the vicinity of the 

Moon. 
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(iv) Directions to features on the surface of the Moon measured 

with an optical instrument on board an orbiting spacecraft [Ransford, 

et al., 1970]. 

Although a more- detailed account on the complex motion of the Moon 

is presented in section 1.3, one particular aspect of this motion should be 

mentioned in the present section due to its relevance to the Earth-based 

methods. The rotation of the Moon about its center of mass and its 

translatory (orbital) motion about the geocenter (the center of mass of the 

seenEarth) are interrelated in a way such that the face of the Moon as 

by an observer on Earth remains the same, i.e., the relative orientation 

of the Moon with respect to the Earth does not change. Due to various 

reasons (see section 1. 3) the Moon oscillates about its mean orientation 

with respect to the Earth. These oscillations, as detected by an observer 

on Earth, are called in general librations of the Moon. They are composed 

of true or physical and of apparant librations. The true librations are 

deviations of the Moon from the state of steady (even) rotational motion as 

referred to inertial space, while the apparent librations are due to the 

varying position of the observer on Earth with respect to the Moon. 

The maximum amplitude of the total librations as seen from the geo­

center is of the order of '70 to 80. Another way of presenting the situation 

would be to say that from the geocenter the Moon can be seen only through 

a comparatively narrow libration window measuring 15.9 by 13?3 (see figure 

1.1). Due to the diurnal rotation of the Earth, an observer located on its 

surface could observe the Moon outside the libration window by as much as 

57' [Kopal, 1969]. Thus, two optical observations taken by an observer on 

Earth to a particular feature on the Moon can have a maximal angle of 

convergence of about 230. However, such cases are rare and the usual 

angle of convergence is considerably smaller. 
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Earth 

Figure 1. 1 Libration Window 

1.21 Earth-Based Methods. 

(a) Heliometer observations of the angular distances between the lunar 

crater Mbsting A and points on the lunar limb were processed and resulted 

in the derivation of the parameters of physical libration and the seleno­

graphic Cartesian or polar coordinates of the point Mesting A. The 

coordinates of this point together with the orientation of the Moon as defined 

by the physical libration model (constants in a trigonometric series) define 

the "center of figure" datum. The center of figure is introduced by the 

implicit assumption made in the reduction of the heliometer observations 

that the center of the apparent limb corrected for local irregularities 

(deviations from a circle) is the projection of the point about which the 

Moon oscillates. The latest and most comprehensive solution for this 

datum had been derived by Koziel and reported in [Kopal and Goudas, 1967]. 

Mbsting A was regarded as the "datum point" of any further extension of 

control on the Moon. It should be noted that the scale of the datum was 
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defined through the mean radius of the Moon, i.e., the radius of the best 

fitting circle over the irregularities of the lunar limb. 

(b) Direct angular observations between Masting A and 12 other craters on 

the Moon's surface, performed by heliometer or position micrometer together 

with a physical libration model (for the orientation of the Moon), were used to 

determine the coordinates of these 12 points as a fundamental control network. 

With small variations these points together with M*sting A served as the 

basis of any subsequent Earth-based control network. Observations of this 

type were performed some 70 years ago by two distinguished German 

astronomers-Franz in K*nigsberg [Franz, 18991 and Hayn in Leipzig [Hayn, 

1904]. Franz measured 8 of the 12 points and Hayn, the remaining 4. Half 

a century later the Austrian astronomer, Schrutka-Rechtenstamm, readjusted 

the original observations of Franz and Hayn and obtained a consistent solution 

for the 12 fundamental points [Schrutka-Rechtenstamm, 1956]. His solution is 

rigorous mathematically and provides a procedure for handling the nonlinear 

variation of the parameter f ( for a definition of f see section 1.32 ). 

(c) Photography of the Moon obtained by astronomic telescopes at 

extreme librations resulted in a series of convergent photos. These con­

vergent photographs were used through the colinearity conditions of an 

6ptical bundle to determine the relative positions of secondary control 

points [Kopal, 1969]. The first consistent sets of such secondary control 

were derived by Franz and Saunder at the beginning of this century [Franz, 

1901; Saunder, 1900]. Schrutka-Rechtenstamm also recalculated Franz's 

observations for secondary control and established a set!of 150 second­

order control points on the front side of the Moon [Schrutka-Rechtenstamm, 

1958]. The list of second- and third-order triangulations based on this 

method is long. To mention a few: Breece, Hardy and Marchant [1964], 

Meyer and Ruffin [1965], Hathaway [1967], Mills [1968]. There is also 

extensive literature on intercomparison of coordinates and error evaluation. 
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Hallert [1962] and others [NASA MSC, 1965] concluded that, theoretically, 

regarding known uncertainties in the photogrammetric process, e.g., 

acquisition of photography through a continuously turbulent atmosphere 

[Edgar, 1964], poor geometry (narrow libration window), identification and 

measuring accuracies, the results from this method can hardly be better 

and in many cases they would probably be much worse.than 1-1.5 km; 

coor-This could be proven to some extent also numerically by comparing 

as determined in various triangulations [Kuiper,dinates of the same points 

Arthur et al., 1969]. 

possible when the Earth-based(d) 	 A modified version of method (c) is 

stars recorded in the background [Arthur, 1962] orlunar photographs have 

superimposed on the lunar disc [Moutsoulas, 1970]. The scale and the 

can thus be determined from the star images,orientation of the photos 

and so the photogrammetric solution does not have to depend on the funda­

(c). Two series of star-oriented photographsmental control as in method 

the Tucson, Arizona, "star-trailed"have been obtained in the past decade: 


photographs and more recently the Manchester, England, "star-super­

imposed" plates. Some results with these oriented platesof triangulations 

have been reported [Arthur, 1968; Kuiper, Arthur et al., 1969], but it is 

insofar ultimate accuracies and datumtoo early to draw conclusions as 

determination are 	concerned. 

(c) and to some extent (d) depend on the datum defined by theMethods 

centermethods (a) and (b). Accordingly, they all define an Earth-based 

of figure lunar datum. An extensive review and discussion on the various 

third-order lunar triangulations is given in [Kuiper, Arthur et al., 1969]. 

1. 22 Satellite-Borne Methods. 

Distinctly 	different although somewhat related to the above are the 

of the Moonsatellite-borne methods. If from a spacecraft in the vicinity 

due to thea photograph is obtained or an oriented direction is observed, 
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superior geometry (directions and photos can be taken from any conceivable 

angle, no atmospheric effects, closer range, etc.), a "photogrammetrie" 

solution can be obtained for coordinates of features on the surface of the 

Moon. "Photogrammetric" is put between quotation marks because, as in 

the case of direct angular observation from an Apollo command module, 

though the data is reduced photogrammetrically there are no photographs 

involved. This comment is further expanded in section 2.1 to bring for­

ward the idea of a general optical direction in space; see also [Rinner et al., 

1967]. 

(e) Photographic coverage of the Moon's surface or portions thereof 

were treated as in ordinary aerotriangulation with existing ground control. 

Photographs taken with a Hasselbad camera from the Apollo spacecraft 

(command module) have been used to triangulate strips of photographs 

[Mueller, 1969b, pp. 38, 51] using control points obtained through method 

(c) above or by method (f) to be discussed next. Constraints on space­

craft positions were not necessarily imposed and the orientation of the 

photos were regarded as unknown. Along this line, D. Brown envisioned 

a situation where -if a complete coverage with sufficient side and forward 

overlapping were obtained, the peculiar geometry of the closed net would 

be so strong as to allow an excellent solution without any orbital or camera 

orientation constraints [Brown, 1968]. one problem which cannot be over­

looked, however, is the datum of this perfectly determined cluster of 

points. 

(f) The solution as of method (e) could be enhanced by the introduction 

of more or less rigid orbital constraints, i.e., consideration of the fact 

that the photos are taken from points on a trajectory of a spacecraft orbiting 

the Moon. Moreover, if the orientation of the camera may be assessed by 

an independent sensor, a stellar camera or an inertial navigator, a photo­

grammetric solution may be obtained which does not need fundamental control 
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at all. It creates its own control which stems from the orbital geometry 

and the orientation of the photographs with respect to inertial space. 

Here, however, the orientation and the rotation of the Moon come into 

the picture. As the Moon rotates with respect to the stars in a rather 

complicated manner, the projection center and the orientation of the 

bundle of directions created by each photograph cannot be used directly 

in the photogrammetric solution unless the rotation of the Moon is taken 

into account. This would mean that this method can define fundamental 

control through the use of the physical librations as derived on the basis 

of method (a) discussed above. Thus, this method still has to depend on 

information obtained from Earth-based observations. A procedure that 

avoids this dependence is developed in Chapter 2 where the model for a 

combined solution is discussed. The solutions for "independent control" 

from Lunar Orbiter IV photography belong to this class irrespective of the 

fact that the geometric integrity of the transmitted photos and the reliability 

of the orbital and orientation constraints may be questioned [TOPOCOM, 

1969; Boeing, 1969]. 

(g) If instead of photography, direct angular observations were 

obtained from the orbiting spacecraft, a solution is possible which follows 

in general that of method (f). The same feature on the Moon's surface 

has to be observed from different points along the orbit and also,'if possible, 

from different passes in order to acquire geometry that will allow a good 

solution. Observations of this type have been made successfully by 

Apollo astronauts and have been reduced by NASA/MSC as reported in 

[Ransford et al., 1970]. 

It should be noted that the datums defined by methods (f) and (g) are not 

constrained to the coordinates of Mbsting A. On the other hand, these two 

methods define a datum which is centered at the mass center of the Moon 

primarily due to the orbital constraints. An excellent preview of satellite­
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borne methods for moon triangulation is presented in [Doyle, 1968] which 

reflects to some extent thoughts and recommendations of the Santa Cruz 

study group on lunar exploration [NASA, 1967]. 

Summarizing the methods outlined above, it appears that none of them is 

capable of solving independently and satisfactorily the problem of a funda­

mental control network on the Moon. The Earth-based methods suffer 

from poor geometry, atmospheric turbulence and define a datum which is 

centered at an arbitrary "center of figure" point whatever the definition of 

that figure may be. The satellite-borne methods need the orientation of 

the Moon in space in order to relate their observations to the actual surface 

of the Moon although they are capable of determining the scale of the 

datum and associate it to the center of mass. 

For one reason or another, none of the methods takes full advantage 

of the existence of a lunar ephemeris of a superior quality which is 

available today [O'Handley et al., 1969]. Although the ephemeris is used 

for deriving the physical libration series and also to some extent in orbit 

determination of the state vector of the satellite, it is not a dominant 

factor, and its metric potentials are ignored. 

As stated at the beginning of this section, this is only a compressed 

review of existing methods, and it should be understood that within each 

method there are numerous variations in approach and treatment which, 

however, do not alter their basic nature as specified above. 
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1. 3 Astronomical Models and Constants 

The Geodesy and Cartography Working Group of the NASA 1967 Summer Study 

of Lunar Science and Exploration held between July 31 and August 13, 1967, in 

Santa Cruz, California, outlined in exceptionally lucid language certain principles 

which were adopted almost literally as the motto in this work. Regarding the 

determination of a datum and its relation to the translatory and rotational 

motion of the Moon as well as to its gravitational figure, it states the following 

[NASA, 1967, p. 298]: 

The interlinked nature of the whole set of topics has the consequence 
that refinements in all topics must proceed at the same pace for 
optimum efficiency. In fact, it is difficult to singularly advance any of 
the topics without advancing some aspects of others. Just enough 
redundancy exists in the proposed program so that the solutions 
obtained can benefit from a consistency check within the total frame­
work. 

Indeed since August, 1967, in some of the interlinked topics mentioned above a 

definite progress has been registered. The brilliance and systematic efforts of 

scientists from JPL and USNO produced in 1969 a new lunar ephemeris which is 

a significant step forward toward the stated objective of 10 m accuracy. The 

presentation of the mascon hypothesis and the determination of a network of point 

masses on the near side of the Moon to model its gravitational potential are 

without doubt another major breakthrough. 

This section summarizes the study of models for the motion of the Moon 

which was undertaken in order to achieve a better understanding of the inter­

relations between the constants involved and in general to enhance the insight 

into some of the problems in dynamical astronomy. 

1.31 Lunar Theory and Ephemeris. 

. The lunar theory was subjected to intensive and detailed study with the
 

following primary objectives:
 

(a). To obtain a sufficient knowledge of the mathematical procedures employed
 

in the various solutions of the lunar theory. The rotating rectangular 
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coordinates method of Hill as developed by Brown was to be investigated in 

particular. 

(b) 	To settle on a minimum number of parameters which govern the lunar theory 

and define the relationship between those constants and the geocentric 

coordinates of the Moon at any epoch. 

(c) 	 To evaluate the latest reports on the consistency of the lunar ephemeris with 

certain observational types and come up with reasonable estimates of the 

remaining uncertainties in it. 

The following is condensed primarily from [Brown, 1896] and [Brouwer 

and Clemence, 1961]. The motion of the Moon about the geocenter is essentially 

a perturbed two body Keplerian motion. The main perturbations are due to the 

gravitational attraction of the Sun while secondary perturbations are due to the 

planets, the nonspherica dynamic shapes of the Earth and the Moon, and to 

tidal forces. 

The solution of the differential equations of motion of the Moon is based on 

the assumption that the motion of the perturbing bodies is a known function of 

time and in general follows Keplerian motion (heliocentric). Small corrections 

for the actual deviations from Keplerian motion are added at a later stage. One 

way of presenting the solution is by expressions for the six osculating orbital 

elements containing, in general, constant, secular and periodic parts. 

The mean orbital elements of the Moon are composed of the constant and 

secular parts, all periodic terms being removed: 

0 = 00 + 01 

where 

t = T-To 

4 

0o 

symbolizes 
epoch T 

is the value 

any of the six mean orbital 

of 4 at the standard epoch 

elements 

To (1900

at the 

.0 for example) 

01 is the rate of secular change in . 
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the six orbital elements are (see Figure 1.2): 

L mean longitude n mean motion in longitude 

longitude of perigee e eccentricity 

2 longitude of ascending node i inclination 

The mean longitude and the longitude of perigee are composite angles 

measured from the equinox to the ascending node and from the node along 

the orbital plane. 

plane of mean orbit 
N ., of the Moon 

plane of the -­

ecliptic". geocenter 
E I 

mean position 
of the Moon 

4K Mi 

TI i 

vernal 
equinox 

-/ 

equinox 
N 

'-" 
point of perigee 

ascending node 

Figure 1. 2 Mean Orbit of the Moon 

According to Figure 1.2 and the definitions outlines above, the following 

relations hold: 

0,TEN 

= T+NEP 

L = W +PEM 

The physical constant g may be considered as the "seventh" element and stands 

for 

i = k2 (E +M) 
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where 

k2 is the Gaussian gravitational constant 

E, M are the masses of the Earth and the Moon, respectively. 

Three more quantities are needed to define the mean orbit geometrically:
1 

a = (/n)W the mean distance
 

(1 -c) n the mean motion of perigee
 

(1- g) n the mean motion of node ,where
 

c, g are functions of the parameters a, n, e, i, and also of the adopted constants of 

mass and motion of the Sun and the planets. Instead of i, a more useful parameter 

is y = tan i. Thus the list of the mean elements can be written as follows: 

L = Lo + nt n = n o 	+ n1 t
 
+
W= Wo+ (-c)nt 	 e = e. elt 

C2= fo+ (1-g)nt 7 = 7o + 
1t 

a = ao + at 

a,, ni, el, y/i are secular variations due to tidal dissipation (Kopal, 1969). They are 

added at the very end of the solution. Thus for the most part of the development 

of the theory, a, n, e,/ are regarded as virtually constant. 

The elements of the mean orbit at the initial epoch To and the values of 

the auxiliary constants (c,g) are determined from observations and are known 

with high precision.As c and g are also functions of (a, a, e, y), the comparison 

of the theoretical c, g with the observed ones serves as a test of the validity 

of the theory. Actually for Brown's theory as corrected by Eckert's work, 

there are still some unexplained differences between the theoretical and 

observed c and g [Eckert, 1965]. 

The practical result of any lunar theory is the lunar ephemeris in which 

the geocentric coordinates of the Moon are given as a function of time. 

The general form of an ephemeris is 
S sin+ 	 (p it + q j )Q = Qo Qlt + tPco 


Cos
 

http:precision.As


where 

Q represents any ofthe three coordinates (longitude, latitude, parallax) 
Qo+ Qlt are the coordinates in the mean orbit 

Pj are algebraic functions ofa, e,y and corresponding solar and planetary 

orbital constants 

qi are linear functions of Lo, wo, 60 and corresponding solar and planetary 

orbital constants 

Pi are linear functions of L1 , 1,, and corresponding solar and 

planetary constants 

t is the independent variable, i. e., ephemeris time measured from the 
standard epoch-1900. 0 (in the original Brown's theory). 

Thus the objective of any lunar theory is to determine the values of Pt, 

pl, q1 . In numerical theories like Hansen's, the numerical values of the 
parameters n, a, e, y, c, g, etc. are substituted at the outset; and the 
series are developed numerically as far as P i is concerned. In such a 
theory, the parameters of the mean orbit which are contained implicitly in 
the coefficients of the harmonic series cannot be separated. In a fully 
algebraic theory like Delauney's, the coefficients P1 are developed in a 
literal form in terms of the primary parameters. Brown's theory is semi­
algebraic as the ratio m = n/n' (n' is the mean motion of the Sun) is sub­
stituted numerically while the other parameters are left in the development 
in an algebraic form. The periodic terms in Brown's theory are thus 
convenient for the calculation of partial derivatives of the coordinates with 
respect to the mean orbital parameters [Eckert, et al., 1954]. As reported 
by Van Flandern, very good approximations for the partial derivatives of 
the lunar coordinates with respect to the mean orbital elements can be 
obtained by differentiating the characteristic part of the major terms in 

Brown's series [Van Flandern, 1970]. An inadequacy was detected in Brown's 
theory, namely, the insufficiently developed planetary part [Mulholland, 1968]. 
Scientists from JPL have largely solved the problem by integrating numer­
ically the equations of motion and fitting to quasi-observations obtained from 
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the theoretical Brown ephemeris. These are the so-called integrated lunar 

ephemerides, the latest reported version being called LE-16 [O'Handley et al., 

1969]. Reports by various users of this ephemeris provide a satisfactory 

proof of the improvement achieved [Mulholland, 1969b; Cary and Sjogren, 

1968; Garthwaite, et al., 1970] and increase the confidence in the estimated 

namely: 100-150 m in position and 50 m in range [Mulholland,accuracies, 

1969]. This error level is of the same order of magnitude as the errors 

in selenocentric position of a circumlunar satellite as determined from 

Doppler data. 

As a result of examining the various lunar theories; and in particular, 

after realizing the magnitude of the task of improving an existing ephemeris, 

the decision was made to adopt the newly developed JPL lunar ephemeris, 

LE-16 and to make use of it in the following manner : The Cartesian geo­

centric coordinates of the Moon are to be regarded as random quantities 

with mean at the nominal value of the coordinates as given by LE-16 and 

standard deviations corresponding to 50 m in range (parallax) and 150 m in 

direction (latitude and longitude). In other words, the uncertainties are 

defined as an oblate rotationally symmetric error ellipsoid with major and 

minor semiaxes of 150 m and 50 m respectively where the shorter (rotational) 

axis is oriented along the Earth-Moon vector. 

1.32 Orientation of the Moon in Space. 

In this subsection, the actual motion of the Moon around its center of 

mass and with respect to inertial space is discussed. As it is well-known 

the Moon rotates around its axis 'of rotation with a rather slow rate as 

compared to the Earth. The rotational period is equal to one sidereal 

month so that this rotation combined with the orbital period of one month 

results in the Moon facing the Earth with the same side. However, since 

the Moon moves around the Earth in an elliptical orbit with a varying 

velocity along the orbit in accordance with the second law of Kepler, while 

16 



its rotational velocity remains approximately constant, the Moon, as seen 
from the Earth, librates in longitude (see Figure 1.3). These are the so­
called optical librations in longitude. Their period is an anomalistic month 

(perigee to perigee) where the amplitude is 7057' [Kopal, 1969]. 

_ ' arth .. Perigee 

Apogee -,-,- &ero metidian ' 

- Moon 

Figure 1.3 Optical Librations in Longitude 

The inclination of the Moon's equator (the plane normal to the rotational 
axis) with respect to the ecliptic (1032') combined with the inclination of 
its orbit with respect to the ecliptic (5008 '43") result in the so-called optical 
librations in latitude with a maximum amplitude of 6041/[Kopal, 1969]. 

Because of the asymmetric gravitational field of the Moon, the Earth 
and the Sun trigger secondary true oscillations of the Moon of a much 

smaller amplitude but of a more complicated nature called physical or true 
librations. 

Mathematically, the rotation of the Moon is defined through the rotational 
motion, with respect to the ecliptic coordinate system, of a selenodetic 
coordinate system which is considered fixed to the body of the Moon. The 
selenodetic system is centered at the Moon's mass center and its three
 
axes are oriented along the Moon's principal axes of inertia.
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In its rotation, the Moon follows very closely the three laws of Cassini 

(see Figure 1.4): 

(i) The Moon rotates uniformly about its axis of maximum 

moment of inertia with a rotational velocity indentical with its
 

mean motion around the Earth (n).
 

(ii) The inclination of the lunar equator (the plane normal to 

the rotational axis) with respect to the ecliptic is a constant (I). 

(iii) The lunar equator intersects the plane of the ecliptic along 

the line of nodes of the Moon's mean orbit so that the plane of the 

ecliptic is always in between the planes of the equator and the 

orbit. 

n north ecliptic pole 

north pole of the .-- north pole of the Moon 

lunar orbit mean orbit of 
-

S/"the Moon 

P\ ecliptic 

lunar equator 

ascending node ofselenocentric 

Moon's mean orbit
celestial sphere 

Figure 1.4 Cassini's Laws 

The physical librations as defined earlier are actually the deviations 

of the Moon from following exactly the laws of Cassini. These are: 

T - the libration in longitude (deviation from law (i) above); 

p - the libration in inclination (deviation from law (ii) above); 

o - the libration in node (deviation from law (iii) above). 
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The instantaneous orientation of the Moon's selenodetic system with 
respect to the ecliptic system is defined by the Eulerian angles P, 4, e. 
The Eulerian orientation angles are composed of elements of the mean 
orbit (through the laws of Cassini) and of the three physical libration 

angles 	as shown in the following formulae and also in Figure 1.5: 

z 

M 6Z y 

YXZ 

descending node of
 
lunar equator 

Figure 1.5 Eulerian Orientation Angles 

where: 

XYZ is a selenocentric coordinate system parallel to the ecliptic 
system 

xyz is the-selenodetic coordinate system as defined above. 

= L +I-Q+--a 

4, = + 

a = I+p 

where: 

L is the mean longitude of the Moon 

fl = 3.1415....
 

6 
 is the longitude of the ascending node df the Moon's 
mean orbit 

I is the mean inclination of the lunar. equator to the ecliptic 

T',a,o 	 are the physical librations in longitude, node and
 
inclination, respectively.
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In formulating the differential equations for the physical librations, two 

namely, that the Moon is perfectly rigid and thatassumptions are made, 

of mass is a known function of time.the geocentric motion of its center 

(Euler's dynamic equations) areThree second-order differential equations 

of the Moon about its center of mass. The solutionformed for the motion 

of Euler's dynamic equations is obtained in terms of harmonic series 

of thehaving fixed coefficients with arguments which are linear functions 

mean orbital parameters of the Moon and the Sun. 

Ai, sin (at+ 52)L A'. 
coss (~ 

where X represents any of the three physical libration angles. The forced 

librations are defined as the particular solution of the differential equations, 

depending on the varying position of the Earth with respect to the Moon's 

general solution contains six constants of integrationselenodetic system. The 

which are defined as the parameters of free librations. Only two of these 

non zero and are determined from analysis ofparameters are considered 

observations. 

The solution of Euler's equations requires the following additional 

information: 

I - the mean inclination of the lunar equator to the ecliptic, and 

f = (C - B)B _ the mechanical flattening representing the ratio 
(C - A)A 

between the principal moments of inertia A, B, C.
 

Assuming these two quantities to be known, the solution is a purely
 

mathematical process, the final product being a model of the physical 

libration angles [Eckhardt, 1965]. observations are necessary, however, 

in order to check the model and also for the establishment of a consistent 

set of constants (including I,f, the free libration constants and other 

auxiliaries). 

The heliometer observations of the Moon were designed to provide this 
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observational material. They are precise measurements of the angular 

distances between an arbitrarily chosen crater at the center of the visible 

moon disc - MiCsting A - and the apparent limb. As stated already, the 

physical librations are modeled as taking place about the center of mass of 

the Moon. In order to reduce the heliometer observations and obtain an 

estimate for the parameters (I, f, free librations, etc.) an assumption is 

made in that the center of the best fitting circle to the apparent limb is a 

projection of the center of mass of the Moon along the Moon-Earth mass 

centers vector. This is equivalent to the assumption that the Moon is 

homogeneous and basically spherical so that its center of mass coincides 

with the center of the best fitting sphere. Recent observations have largely 

demonstrated that certain biases exist between the center of mass and the 

center of the best fitting sphere [Ransford, 1969]. Because of this in­

consistency in modeling the heliometer observations the parameters which 

are being estimated in the adjustment process contain certain biases. 

However, determinations of the gravitational field of the Moon from Orbiter 

tracking data have essentially confirmed the value of f as known from 

reducing heliometer data and have thus demonstrated, at least for f, that 

even if such a bias does exist its magnitude is small [Lorell, 1969]. 

Another troublesome area in the current version of the solution of 

physical librations is in the linearization of Euler's equations prior to their 

solution. This creates a nonlinearity problem in the physical libration in 

longitude 7- for f = .662 with corresponding large uncertainties in the co­

efficient of one of the terms in the series for r". A major development 

in this area as reported in an article by Moutsoulas [1970], is that he 

solves the differential equation of Euler for libration in longitude in its 

original nonlinearized form and thus avoids altogether the nonlinearity 

=problem. Consequently, f can assume values near f .662. 

There are two more problems associated with the current version of a solution 
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for physical librations. As reported above, it appears that the future lunar 

ephemerides are going to be numerical, i. e., obtained by numerical integration 

of the equations of motion rather than by an analytical or semianalytical solution 

(Brown's, for example). , The current solutions for the physical librations are 

based on the lunar ephemeris presented in a harmonic series form only and 

cannot be easily adopted to a numerical ephemeris. Unless the physical libration 

is very insensitive to variations in the lunar ephemeris, this may create serious 

inconsistencies between-the orientation of the Moon and the position of its mass 

center. 

A second problem exists which is of a practical nature. In order to obtain 

least squares estimates for the parameters of physical librations based on the 

minimization of the residuals of a suitable observational data, the partial 

derivatives of the observed quantities with respect to these parameters are 

needed. But the physical libration angles are related to the constants I 

and f only indirectly and in a rather complicated manner. Also it is not 

clear which are the basic (independent) parameters of the physical librations 

in addition to I and f. So it is evident that a method is necessary that 

will allow a straightforward computation of the partial derivatives of any 

relevant data type with respect to a carefully selected minimal set of 

independent parameters. 

Chapter 3 gives an answer to most of the aforementioned problems. 

1.33 	 Fundamental Astronomical Constants. 

As in many other areas, the means for satisfying the aspiration for consistency 

between the astronomic constants became available only late in the 2'Oth century. 

The resolutions taken at almost every congress of the IAU mark the steady 

progress in this area. Important in particular and relevant to the presently 

accepted set of constants is the resolution of the General Assembly of the 

International Astronomical Union at its session on September 3, 1964, in 

Hamburg, West Germany. 
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The constants adopted by the IAU are defined as follows [Transactions IAU, 

1966]: 

Definin : These are constants which are actually adopted without having to 

assess their value by observations. 

Primary: These are a self-consistent set (also consistent with the defining 

constants) of independent constants which are obtained as the result of direct 

or indirect observations. As such they are subject to eventual updating when 

the quality of new observations and mathematical models warrant it. However 

such an updating is permissible only provided the consistency within the 

combined sets of defining and primary constants is preserved. 

Secondary. These are essentially functions of the defining and primary constants. 

Through the functional relationships which are consistent with one another, 

the original consistency within the primary set is maintained throughout the 

secondary group FAENA Supplement, 1961]. 

The establishment of a fundamental coordinate system on the Moon involves 

more than the lunar ephemeris and the physical libration model. Most of the 

observations are ultimately related to the Earth, its size, its geometric and 

dynamic figure and its motion in space. So in order to maintain consistency 

between all the elements to be used in this work another parallel to the 

"IAU-1964" set of constants was considered as reported in JPL's [Melbourne 

et al., 19681. For the most part the differences between JPL and IAU-1964 

are minute, but where they' do exist the JPL constants were adopted. 

Thus, in summary of this section it can be stated that JPL's constants 

and lunar ephemeris data were adopted as a basis for the solutions developed 

in this report. Textbooks like [Mueller, 1969] and [AENA Supplement, 

1961] were consulted insofar as definitions and interrelations between the 

constants were concerned. 
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1.4 General Plan for the Study 

Two basic concepts were laid down at the basis of the solution proposed in 

this work: consistency and uniformity. The brief analysis of existing astro­

nomical theories and models as presented in section 1. 3 made clear that 

consistency is indeed one of the backbones in modern astronomical theory. 

Practically, this means that the functional relationship between the various 

models as well as the constants involved have to be clearly formulated so that 

no contradictory assumptions are made and no constants are used which fail to 

satisfy these conditions. This principle extended to the definition and determina­

tion of fundamental control on the Moon creates one more branch in the list of 

constants and models which together constitute the comprehensive theory of the 

shape and the motion of the Moon. As in any other creation of man, the concept 

of consistency should not be regarded as absolute but rather within the limits of 

the presently available observational material. 

It often so happens that improvements in the quality of the observational 

data uncover new inconsistencies in theory which in turn warrant a new 

reevaluation and eventually a restatement of relationships and finally an 

overall refinement in theory and corresponding computational procedures. 

Considering presently available types of observations, a careful study of 

the existing theories was undertaken and at the end a consistent set of 

constants and postulates were selected to serve as the basis for the datum 

solution. As the numerical treatment in this work is limited to a simulation, 

certain liberty was taken in ignoring known physical realities with the pur­

pose of leaving in only the most important aspects in the situation, namely, 

the geometric and gravitational phenomena. A detailed exposition of this 

simplified environment is presented in Chapter 4. Notwithstanding the 

simplifications, this synthetic environment was designed to be absolutely 

self-consistent. 

The many data types available and appropriate for use in determining a 
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lunar datum prompted the search for a general treatment of them all. This is 

what brought the quest for uniformity. Stripped from instrumental peculiarities 

and particular observing procedures, available data could be grouped into a 

few broad classes with the result that a uniform and compact solution could 

be worked out. Adapting such a general solution to the processing of a real 

data type could be done at a later stage by the introduction of a set of 

parameters pertaining to the particular data (error modelling) so that 

the uniformity in the solution would be preserved. This is the reason for 

grouping the existing data types into two categories: 

-Optical observations from a point in space to points on the surface of the 

Moon. 

-Range and range-rate observations from a tracking station on Earth to a 

spacecraft. 

In the mathematical treatment of the second class certain subdivisions 

were necessary, but on the whole their character and contribution to the solution 

are such that they stand clearly as a single observational group. An odd member 

in the optical observations family is the heliometer observation. Although a 

detailed model and a computer program for their generation were developed, 

their incorporation into the general solution was not worked out in 

detail. The reasons are mainly limitations in time and the fact that this 

particular group of optical observations is not indispensible for achieving a 

solution to the problem. 

There is a whole generation of new types of observations either already 

available or in the process of being developed (or at least being considered) 

which were excluded from the solution. To mention a few, these are: 

(a) 	 Laser ranging from observatories on Earth to reflectors placed on the
 

surface of the Moon.
 

(b) 	 Very-long-baseline interferometeric observations with a base extending from 

an antenna on Earth to another antenna on the Moon. 
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(c) 	 Satellite-to-satellite range and range-rate observations from a synchronous 

satellite of the Moon to a Moon-orbiting spacecraft. 

An entirely new revision of astronomic theory and reduction procedures seem 

indispensible in order to take full advantage of the significantly higher quality of 

these new data types. These types of observations are treated in the work of 

Fajemirokun [1971]. 

Last but not least the old problem of orientation of the Moon in space 

was given another try. Although it has been treated by many distinguished 

scientists, it appears that a new contribution could be registered by the 

application of modern numerical methods and practices. The new solution 

as presented in Chapter 3 of this work compares fairly well with the 

latest and most authoritative model in use today, i.e., that of Eckhardt. 

It would be presumptuous to regard the new solution as superior in quality, 

although as demonstrated in Chapter 2, it has definite advantages in its 

actual use as part of the general solution for fundamental control on the 

Moon. 

Summarizing, the structure of this study is as follows:
 

Chapter 2 presents the solution for an optimal selenodetic control.
 

Chapter 3 contains the elements of the newly proposed model for the physical
 

librations of the Moon. 

Chapter 4 displays in full detail the conceptual and mathematical basis for 

the creation of a simulated Earth-Moon environment and observational types. 

Chapter 5 reports on some experiments made with the simulated and real 

data in which the theories from Chapters 2 and 3 are applied. 

A number of odd topics are discussed in the Appendices. Although relevant 

to the subject, these topics were judged to be out of the main line of thought and 

were designated accordingly as Appendices. 

A guiding principle in writing this report has been the creation of the 

chapters as independent units with minimal cross referencing. The extensive 
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bibliography listed at the end was continuously consulted through all stages of 

this work, although, in the text, referencing to it was kept to a minimum in order 

not to disrupt the continuity of the presentation. This was accomplished at the 

expense of some overlapping between chapters and also the inclusion of some 

theorems and procedures which can otherwise be found in the existing literature. 
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2. THEORETICAL SOLUTION OF THE PROBLEM 

2. 1 Introduction 

The problem of mapping the lunar surface has attracted the attention of 

astronomers for many-centuries. Considering the exactness of the methods 

employed and the quality of the results obtained, it would not be presumptuous 

to state that only in the twentieth century steps have been taken towards 

mapping with geodetic accuracy. Chapter 3 in Prof. Z. Kopal's The Moon 

[Kopal, 1969] contains many interesting details on the long history of lunar 

mapping; however, it is only the past decade of space exploration and 

"oriented" lunar photography which have brought a real breakthrough in this 

field. 

The basic problem in lunar mapping and, unfortunately, the one most 

elusive and difficult to solve is the definition and determination of a datum on 

the Moon. Even if the concept of a datum is confined here to the position and 

orientation with respect to the lunar crust of a Cartesian coordinate system 

only, thus avoiding the necessity of defining a reference figure for the Moon, 

the problem remains far from being solved. The main reason is in the fact 

that there are no observations conducted from the surface of the Moon which 

can claim geodetic accuracy. Traditionally, the only data available have been 

obtained from remote observations conducted primarily from the Earth's 

surface, and in the past five years or so from spacecrafts in the vicinity of 

the Moon. The prospects for extensive geodetic measurements on the surface 

of the Moon in the next five or ten years appear remote at present,even if 

technology which could support such an undertaking has been developed. So 

the problem remains to explore methods which have not been considered as 

yet for the establishment of control of geodetic quality on the Moon. 
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Geodetic quality should not be interpreted merely as high relative­

position accuracy of a number of features on the Moon's surface, but also 

and mainly as the determination of coordinates of points such that the 

coordinate system defined by them is unique, possesses favorable properties, 

and is consistent with observations and theories associated with the Moon. 

This would mean, for example, that the geocentric lunar ephemeris and the 

parameters of orientation in space of the Moon will have to be incorporated 

in any solution for a datum on the Moon. 

The favorable properties of a datum are related to the dynamical rather 

than the topographical figure of the Moon. Assuming the Moon to possess a 

practically invariable gravitational field, the favorable datum can be defined 

as having its origin at the mass center of the Moon and its three axes 

oriented along the principle axes of inertia.As the basic dynamical figure of 

the Moon is that of a triaxial ellipsoid, this definition of a datum holds 

many advantages and appears less arbitrary than others. One important 

advantage is that the basically triaxial dynamic figure governs the rotation of 

the Moon in space as shown in chapter 3. Any other choice of orientation of 

the datum would complicate the equations of rotational motion of the Moon 

and may increase the uncertainties in their solution. There are broader 

problems associated with the dynamic figure and motion of the Moon, the 

solution of which is not enhanced by the choice of this particular datum. 

For 	example: 

(a) 	 The C20 term of the Moon is about 1/5 of the -J 2 of the Earth. 

(b) 	 The equatorial dynamical flattening represented by the C22 term is much
 

smaller than the polar flattening.
 

(c) 	 The spin of the Moon is about 27 times slower than the corresponding 

diurnal rotational velocity of the Earh. 

All these facts imply that the principal axes of the Moon (x, y, z) are not 

so well defined. As a result the use of observations for the determination of 

a datum on the Moon is much less efficient. These considerations lead to the 
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preliminary conclusion that in determining a lunar datum it would be 

unreasonable to expect accuracies comparable to those on Earth. Even after 

lunar surface measurements become available, it would require observations 

of a much higher degree of accuracy and also the use of much more exact 

theories of motion in order to approach geodetic accuracies as known on Earth. 

The requirement for consistency between datum solution and theories 

and models for the motion of the Moon can be interpreted as follows: 

(a) 	 Constants used in the "accepted as exact" models should not be included 

in the list of parameters to be solved simultaneously with the datum. 

(b) 	 The assumptions underlying the various theories and the mathematical 

model for the datum solution have to be fully consistent. 

(c) 	 Limited by feasibility only, a maximum number of parameters should be 

solved together with the datum solution thus enhancing uniformity and
 

implicitly satisfying requirements (a) and (b) above.
 

Before proceeding with the solution for a datum as presented in this 

chapter, a brief exposition is given of the fundamental concepts which 

form the basis of this work. 

For a fundamental orientation frame of reference, a hypothetical 

inertial coordinate system is considered which coincides with the ecliptic 

mean coordinate system at some arbitrary standard epoch and is defined 

as a Newtonian Frame of Reference (Brouwer and Clemence, 1961, p. 3). The orien­

tation of any other Cartesian coordinate system with respect to the 

inertial system is defined through three Eulerian angles necessary to 

rotate the particular Cartesian system into the inertial or vice versa 

(see Figure 2.1). The term inertial coordinate system, to be denoted 

by XYZ, is used for any coordinate system (having an arbitrary origin) 

which is parallel to the fundamental orientation frame. Thus, one may 

have a geocentric inertial system, an inertial system centered at a 

satellite, etc. 
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r (1) - range (range rate) between OD and S 

uC - optical ray (direction) between Op or S and T.}J
us
 

The orientation of a physical body is defined through a Cartesian 

coordinate system fixed to the body. Thus, for example, the orientation 

of the Earth is defined through the so-called average terrestrial coordinate 

system which is fixed to the Earth's crust and related to a geocentric 

inertial system by means of three Eulerian angles. 

There are three Cartesian systems which are of primary importance: 

(a) The average terrestrial system is centered at the mass
 

center of the Earth and is oriented with respect to the crust
 

through the CIO pole and the so-called mean observatory
 

[Mueller, 1969]. It is denoted by UVW.
 

(b) The selenodetic system is centered at the mass center of 

the Moon and is oriented along its principal axes. It is denoted 

by xyz. 

(c) The optical observations reference system is centered at the 

projection center (from which the optical rays emanate) and is 

generally oriented so that the primary axis (B1 ) points towards 

the Moon. It is denoted by B1B2 B3 . 

The general rotational motion of a physical body with respect to the 

inertial system is described by the change with time in the Eulerian 

orientation angles of the appropriate coordinate system (the one fixed to 

the body). Thus, for example, in order to study the rotational motion 

of the Moon, one should consider the changes in the Eulerian angles 

(P, ;), e) which relate the Moon-fixed (xyz) system to the inertial (XYZ) 

system. From this definition of rotational motion, it is clear how 

rotation and orientation of a body are related to one another. As the 

body rotates, its orientation changes and by considering the instantaneous 
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set of Eulerian angles at a particular epoch one has the means for defining 

the orientation of the body at that epoch. 

The rotation of a physical body is governed by a set of equations of 

rotational motion (second order differential equations) in which the external 

forces acting on the body are represented. The solution of these equations 

of motion results in the Eulerian orientation angles as functions of time. 

The position with respect to the UVW system of points on the surface 

of the Earth is defined by three Cartesian coordinates. Points on the 

surface of the Moon are defined similarly with respect to the selenodetic 

(xyz) system. 

The position and velocity (state vector) of points in space with respect 

to a particular inertial coordinate system (selenocentric, geocentric, etc.) 

are defined by Cartesian coordinates (XYZ). Thus, the geocentric state 

vector of the Moon's mass center is given by the LE-16 ephemeris 

[O'Handley et al., 1969] where the inertial XYZ system has been defined 

as identical to the mean equatorial system of 1950.0 . 

All optical observations of the Moon (photographs, direction measure­

ments, etc.) are treated as light rays emanating from a projection center 

whose selenocentric inertial coordinates are known or are being estimated 

in a least squares process. The individual ray from a bundle (the rays 

emanating from the same projection center form a bundle ) is related to 

a reference optical frame B1B2B3 by two angular quantities. As mentioned 

above, the B1B2Bs is related to the XYZ system centered at the projection 

center by three Eulerian angles or in general by an orthogonal transformation 

matrix. 

Recapitulating, the objective of this study is to develop a model solution 

for an optimal datum on the Moon in the form of Cartesian coordinates of 

a network of topographic features on its surface. The solution is to be 

obtained by a simultaneous weighted least squares adjustment of presently 

available types of observations, where the weights are determined from 
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estimates of the observations statistics. Available and newly developed 

physical models are to be used in formulating the problem and its solution 

such that they would share a common basis of postulates and would be 

consistent with one another. 
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2. 2 General Adjustment Model 

In the model to be developed in this section, the Moon is regarded as a 

rigid body. As such its motion in space can be partitioned into two independent 

parts, i.e., a translatory motion of its mass center and a rotation about its 

mass center. 

The numerical solution of the geocentric equations of translatory motion of 

the Moon as provided by JPL in the form of the LE-16 ephemeris (the lunar 

part in the general ephemeris of theSun and the planets called DE-69, see 

FO'Handley et al., 1969]) is considered absolute and constitutes the numerical 

basis for the entire solution in this chapter. Future improvements in the lunar 

ephemeris by the incorporation of more accurate data and further perfection of 

the mathematical model of its translatory motion could be used to reprocess 

the available observations and eventually obtain a new and better determination 

for the lunar datum. It can be shown, however, that accepting the presently 

known uncertainties in the lunar ephemeris as being fair estimates, the effect 

of these uncertainties is well below the noise level of conventional optical 

observations. 

The model for the rotational motion of the Earth in space as specified 

by generally-adopted constants [IAU, 1964] for precession and nutation and 

the continuously monitored polar motion and UT1 variations is considered 

as being exact. The nutation information is to be taken directly from the 

DE-69 tape where it has been computed from Woolard's series as developed 

in [Woolard, 1953]. The total effect of inadequacies in this model resulting 

in errors in the orientation of the Earth in space as well as uncertainties in 

the geocentric (UVW) position of Earth stations performing optical or radio 

observations can be shown to fall below the noise level of the optical obser­

vations. 

The assumptions of adequacy of the lunar ephemeris, Earth orientation and 

station positions on Earth may invoke serious reservations as to their validity and 
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place a question mark on the solution for lunar datum as proposed in this 

study. There is always the possibility, however, to model the station unknowns 

and the Earth orientation parameters (for example, the Eulerian orientation 

angles) although it should be admitted that the application of such a model at 

this stage 'would require considerable work. In the present solution, how­

ever, in order to obtain realistic statistical information for the parameters 

that are being solved, the uncertainties in the lunar ephemeris, the orien­

tation of the Earth and the geocentric position of the observing stations are 

considered in the form of covariances of the selenocentrie position of the 

observing station on Earth. This is done following the approach of 

"Considered Parameters" presented in Appendix D. 

The data to be used in determining coordinates of features on the Moon 

have been defined in general as optical observations. The idea is to regard 

an observation which defines a direction from a point in space,to be called 

the "projection center", to a point on the lunar surface as an optical obser­

vation. The directions in space are considered in principle nonoriented, 

and it is through the a priori covariances in the adjustment process that a 

distinction is made between truly nonoriented and partially - or fully ­

oriented directions. 

Presently the selenocentric position of a spacecraft orbiting the Moon is 

determined by least squares adjustment of range and range-rate tracking 

data from stations on Earth to the satellite. The ordinary orbit determination 

solves for the state vector (position and velocity) at a standard (initial) epoch 

as well as for a number of constants. As some of these constants are 

dominant factors in the rotational motion of the Moon and also as the projection 

center from which the optical observations are made lies along the trajectory 

of the spacecraft, it is necessary to process the range and range-rate tracking 

data together with the optical data and thus obtain a solution for the trajectory 

and for the relevant constants which is consistent with both types of data. Thus 
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the uncertainties in the selenocent ic position of the projection center are 
the combined result of the degree of incompatibility of its adjusted position and 
velocity.with the range, range-rate, and optical observations.
 

Thus far the orientation of the Moon in space was not discussed. 
 It is, 
however, inherent in the definition of the selenocentric coordinates of points on 
the surface of the Moon; and, moreover, it is instrumental in the definition of 
an optimal lunar datum as stated in section 2. 1. For the above reasons and also 
from a practical point of view, i.e., the need to define the orientation of the 
Moon at any epoch by a minimal number of parameters, the theory for the rotation 
of the Moon is redeveloped; and a numerical solution is provided in Chapter 3. 
The solution for the rotation of the Moon as presented in Chapter 3 is consistent 
with the lunar ephemeris (LE-16) as it actually uses the LE-16 as an input in 
the numerical solution. In the least squares adjustment procedure, the 
parameters in the proposed solution are used to model the optical and to a certain 
extent the range and range-rate data. In this sense the solution for the parameters 
of orientation of the Moon can be regarded as an integral part of the general 

adjustment procedure. 

The geometric situation and the observations involved are represented 
schematically in Figure 2.2. 

z z 

M BY 
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Figure 2.2 Geometry of observations 
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The symbols in Figure 2.2 have the following meaning: 

E is the geocenter 

M isthe selenocenter 

S1, (Sk) is the satellite 

XYZ are the inertial Cartesian coordinate systems 

xyz is the selenodetic coordinate system 

1 B2B 3 are reference frames for optical observations 

Oj is an Earth-based station for optical observations 

O k is an Earth-based 
observations 

station for range and range-rate 

Tj is a triangulation point on the Moon where 
selenocentric position vector in components 
xyz system. 

tj is the 
of the 

uE are unit vectors of the optical rays to T from 0, and Si, 

1BB componentsu~ respectively, given in BB2
S
 

rk(rk) are range and range-rate measurements from Ok to Sk 

SEI are the selenocentric position vectors of Oj and Si,
 
SJ respectively at epoch T, in components of the XYZ system
 

s is the initial state vector -6f"the ;satellite S at epoch 
L OJ T0 

q, 4, 6 are the Eulerian orientation angles of the Moon 

(It should be noted that p,$,06 change with time.) 

The meaning of the subscribts is as follows: 

i indicates quantities at epoch T1 

k indicates quantities at epoch T k 

j indicates the sequential number of a triangulation 
point on the Moon 

Two orthogonal transformation matrices are defined as follows: 

me for a transformation from B1 B2B3 into XYZ 
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MM for a transformation from xyz into XYZ 

where 

MM = R 3 ( 1 (6)Rs(-9o) 

2.21 Condition Equations for an Optical Observation. 

The vector triangle defined by the selenocenter, a particular triangulation 

point on the Moon and the projection center (see Figure 2.2), allows the 

formation of a vector condition equation - one for each observed direction. 

A double subscript notation is used as follows: 

i identifies the bundle or, actually, the projection center, 

j identifies the serial number of the particular triangulation 
point on the Moon to which the direction is being observed. 

The distance between the projection center and the triangulation point is 

denoted by Pij. 

From Figure 2.2 and using the notation described above, it follows: 

p1 J.Miv* uU - MMi.tj = 0 

* 1-M (2.21.1) 
FIj = Mai"' Pi (si - Mi , tJtj) 0 

pi, can be evaluated from equation 2.21.1 as follows: 

J = [5s - MI." tj]T. [si - Mm1 - tjl = [si - tt*y. Is, - tJ] 

where 

t'j = M, .tj 

It should be pointed out that the three components of uj are interdependent 

through the following equation: 

uJi uI i 

The components of u, are not measured directly. They are functions of 
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two independently measured quantities which are defined in this study as the angles 

x and V (see Figure 2.3). Actually, in order to assure orthogonality, the 

quantities qlj defined below, rather than x and v, are used, The following 

two equations define ujj and q,, in terms of x, and v,, 

ui iCOS X q. 

sinv. sinxj qj sinv • x 

Figure 2.3 Optical Observations 

As shown in Figure 2.2 the projection center can be along the trajectory 

of a satellite (S1), or it can be an observing station on Earth (0 l). The notation 

for the vector equation remains unchanged except for subscript B indicating 

that sE is a selenocentrie vector pointing at the station on Earth instead of s 

being the selenocentric vector to the satellite S1. In sections 2. 3 and 2: 4 this 

distinction is expanded further in the nomination of appropriate parameters 

and the subsequent linearization. 
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2.22 Condition Equations for Range and Range-Rate. 

Condition equations for range and range-rate observations are developed 

under the assumption that for an epoch Tk ---T the point Sk E S or, in other 

words, there is no parallax between the projection center (S) and the focal 

point of the radio transponder (Sk). Actually these two points are assumed to 

coincide with the mass center of the satellite. The subscript in the diagram 

for range and range-rate observations is k to indicate that even if the 

satellite is the same one considered in the optical observations equation (S), 

the range and range-rate observations are being conducted at an essentially 

different epoch Tk. 

According to Figure 2.4 and using slightly different notation, the 

following two condition equations can be written: 

Gk = (Rk •k) 2
- rk = 0 (for range) (2.22.1) 

=Hk = !_ T . Rk - ;k 0 (for range-rate) (2.22.2)
rk
 

where 

rk is the observed range at epoch Tk
 

r k is the observed range rate at epoch Tk
 

z Ak 

/ "", 

II 

. \'0initi al 
0state vector ....

Sc, 

Figure 2.4 Range and Range-Rate Observations 
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The symbols used in Figure 2.4 have the following meaning: 

M selenocenter 

Sk satellite at epoch Tk 

o k radio tracking station on Earth 
topocentric (tracking station) state vector of Moon in X, Y, Z components. 

Xtpk Implicit in Lx j are r ithe following: vlunar ephemeris,trackingo station 

position, orientation and rotational velocity of-the Earth.
 

k selenocentric state vector of satellite in X,Y, Z components
 

[R]R topocentric state vector of satellite in X,,y, Z components. 

It should be noted that in forming the equations Gk and Hk the topo­
centric state vector of the satellite . is obtained from the following 

vector relationship: 

2]R = XJ [S] 
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2.3 Parameters in the Solution 

The subject treated in this section is the selection and definition of the 

parameters in the general adjustment model. The nature of the observational 

material is fairly well known. The quantities of direct interest, i.e. , the 

coordinates of features on the Moon' in the particular (optimal) coordinate system 

are also well defined. A number of additional parameters are needed, however, 

for the purpose of modeling the observations and also for the definition of the 

selenodetic system itself which are not so easily available. Before describing 

the parameters chosen for this analysis; a short discussion is presented on the 

general problem of parameters in an adjustment process. 

The basic relationship between parameters and observations in an adjustment 

process is that the observations processed have to be fairly sensitive to variations 

in the parameters. Unless this is so, the parameters cannot be estimated from 

analysis of the observations and,vice versa, there is no need for these parameters 

as they cannot model the observations. , However, even after it is clear from 

experience, logic or intuition what type of parameters are necessary to model 

a particular physical or geometric situation, there are still a number of options 

left for selecting a particular set of parameters. Thus choosing a set of 

parameters in an adjustment problem is of necessity somewhit arbitrary. 

Unless there is past experience or the parameters are physically obvious, the 

only guidance in making the final selection is provided by physical or numerical 

considerations. 

Once chosen and utilized, the criteria for evaluating the success of a 

particular set of parameters are trifold: 

(a) 	 The estimated values for the parameters should be stable, i. e. , the 

solutions obtained from processing different batches of data should be 

consistent within the estimated covariance of the solutions. 

(b) 	 The parameters should fully model the situation at hand. 

(c) 	 It should be numerically possible to arrive at solutions for the parameters 

which are well separated. 
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The first and the third criteria are easy to check. The second is difficult 

as the only means one has of checking it is through inspection and analysis of 

the observational residuals after the adjustment. But even if the residuals 

appear well behaved, i.e., showing no residual systematic effects, one is 

seldom sure that criterion (b) above has been fully met. 

A case can be envisioned in which some parameters may be tolerated even 

if they do not satisfy criterion (a). This means that the values of these parameters 

are of no interest; and they are used in the adiustment as nuisance parameters. 

Numerically such parameters are not solved explicitly, but rather their solution 

is "folded in" the solution of the other parameters (see section 2. 5). 

As implied in section 2.2, the parameters figuring in the general model are 

selected so as to model only the geometric and gravitational aspects of the 

situation. Parameters associated with the instrumentation involved or with 

physical phenomena such as refraction, solar pressure, etc. are left out. The 

mathematical interpretation of this would be that the effect of the parameters 

left out is.perfectly known, and the raw observed quantities involved in the 

process can be fully corrected prior to the adjustment . A direct result 

of this assumption is that the observations can be regarded as noncorrelated 

quantities. By a proper definition of orientation paihmeters, directions 

observed simultaneously (from the same projection6centei) can also be 

regarded as noncorrelated with one another. In accordance with the "Generalized 

Approach, " the actual observations are regarded and treated in the adjustment 

as another group of parameters [Uotila, 1967 1 

Two broad classes of parameters are considered: 

(a). 	 Permanent: These are the parameters which are displayed as the results 

of the ,analysis. Implied by this is that they should satisfy completely all 

three criteria mentioned above. 

(b) 	 Transient: These are parameters which are necessary in constructing the 

mathematical model, yet they are either different for different data batches, 
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or their nature is such that there is no particular interest in their adjusted 

values and the appropriate covariance matrices. The actual observations 

belong to this class although it may be of interest to study their residuals 

after the adiustment. 

The parameters chosen for this analysis are presented in Table 2.1 

followed by brief -comments on each of the 11 parameter groups. 

Description Class Symbol 

Parameters: 

1. 	 Cartesian coordinates of triangulation points on 
the Moon in xyz system. P L, 

2. 	 Orientation parameters of the Moon at a standard
 
epoch Too 
 P L2 

3. 	 Physical constants of the Moon (low degree) P L3 

4. 	 Higher-degree gravitational parameters of the 
Moon (in mascon form) T L4 

5. 	 State vector of a satellite at a standard epoch To
 
in XYZ system. 
 T L5 

6. 	 Exterior orientation elements of B1 BB 3 with 
respect to the XYZ system T is 

Observations: 

7. 	 Optical observations (two independent quantities 

per direction) T L7 

8. 	 Range T . 

9. 	 Range-rate T L9 

Considered Parameters (see Appendix D 

10. Selenocentric position of Earth observatory or 
tracking station in XYZ system L10 

11. Selenocentric velocity of Earth observatory or 
tracking station in XYZ system L, 

P - permanent ; T - transient 

Table 2. 1 Parameters in the General Adjustment Procedure 
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Parameters L1. Cartesian coordinates were chosen to relate points on the 

surface of the Moon to the xyz selenodetic coordinate system. The advantage 

in the use of Cartesian coordinates is in having simpler mathematical formula­

tion and an easy derivation of partial derivatives. Associated.with Cartesian 

coordinates, however, is the lack of distinction betweeh horizontal andvertical 

control which may be considered as a disadvantage. There is the inconvenience 

in analyzing the positional uncertainties of the points after an adjustment and 

also in case the points are to be used for densification of control or for 

navigation. However, transformati6n into polar coordinates is a simple 

matter for the Moon which is basically spherical in shape. 

Parameters L2 . These are the physical libration angles and their time 

rates at a standard epoch. Variations in the orientation parameters of the 

Moon at a particular epoch (the Eulerian angles) are related to L2 by a 6 x 6 

matrix of partial derivatives called the state transition matrix (see section 

3.32 in Chapter 3). This is a significant asset in the parameterization of the 

model. No matter at how many epochs the Moon is observed, the parameters 

of orientation of the Moon remain six. 

Parameters Ls and L4 . These are the parameters defining the dynamic 

figure of the Moon. The reason for their separation into two groups is 

technical. I does figure in the equations of rotational motion of the Moon as 

well as in the satellite motion, while L4 affects the motion of the satellite only. 

Also with reference to the classification as permanent and transient, 'IS are 

considered permanent while L4 are regarded as transient. This would niean 

that the adjusted L4 can.be different for different satellite arcs. The values of 

L. are solved implicitly by the "fold in" matrix operation (section 2.5). 

Parameters Ls. This is the selenocentric state vector of a particular satel­

lite arc at the initial epoch. This would mean that iffor various reasons,data 

from the same satellite are processed in several arcs, there will be several 

sets of initial values. For this and other reasons as shown in section 2. 5, the 
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data are processed one arc at a time.As in the case of parameters L2, there is 
a single set of six parameters for the selenocentric position and velocity of the 
spacecraft at any epoch along the same arc. An appropriate state transition 
matrix is used to relate variations in the state vector at a particular epoch to the Ls 

parameters (see Appendix F). 

Parameters 16. The choice for exterior orientation parameters was made 
following in general [Rinner et al. , 1967]. These parameters are defined as 

three 'differential rotations applied to the Cartesian reference system B1B2 Bs . 
These rotations together with a nominal (approximate) orthogonal transforma­
tion matrix MB (see section 2.2) bring the B1B2B3 reference system into the 
inertial XYZ system. The mathematical treatment of these orientation parameters 
is much simpler than the one using the traditional gimbal axes (x, (D, w) and is 
more appropriate to the general model developed in this chapter. No matter how 
the nominal orientation of the BIB2B3 system is determined: by star background 
photography, by a separate camera, by star-lock devices, inertial navigator, 
etc., the mathematical treatment of the exterior orientation elements remains 
invariable. The only difference is in the a priori values of the covariance matrix 

of the orientation parameters. 

Parameters 1,7, 16, L9. These are the actual observations and need little 
or no explanation. The optical observations (1,) were chosen to be two 
independent quantities relating an individual ray to the reference B1B2 B3 

Cartesian system. The B1B2B3 system is the same for all rays observed at 
the same epoch (see also section 4.7 in Chapter 4). As shown in section 2.4, 

the linearized mathematical model does not have to be altered in order to 
accommodate a different choice of observed quantities. 

Parametershj 0 and 11 1 . These are the selenocentric Cartesian components 
of the position and the velocity of an observing station on Earth in the XYZ 

system. These parameters are not solved. They are used as shown in section 
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2.4 for deriving partial derivative matrices of the F, G, and H functions in 

order to be employed later in evaluating the covariances of the permanent 

parameters. Throughout this chapter, these are the "considered parameters" 

in the adjustment (see Appendix D). 
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2.4 Linearization 

The linearization of the mathematical models for optical, range, and 
* 

range-rate observations is obtained through partial differentiation of the F, 

G, and H functions (equations 2.21. 1, 2.22.1 and 2.22.2) with respect to 

the parameters. As usual, the linearization is valid provided the functions 

are fairly linear over the range of the corrections to the observed quantities. 

For the partial derivatives with respect to parameters L3 , h, and J6, use 

is made of the state transition and parameter sensitivity matrices as derived 

in section 3.32 and also in Appendix F. Accordingly, in this section, these 

matrices are assumed known. 

2.41 	 Optical Observations; 

Mathematical model for projection center on a satellite (equation 2.21. 1): 

F = F(LL , , L , , ) = 0 
S 8 

Mathematical model for projection center on Earth (equation 2.21.1): 

F = F(LtI, ,U, L, It) = 0 
E E 

where L[o are considered parameters ( see, Appendix D 

and V, are the adjusted, L are the observed and Xi are the corrections to 

the observed parameters. The following expressions are needed for the 

linearization: 

F (Lb, L2, Q g, L , I , I1 ) W s
* 	 * F 

F(La L, a o) = WEa, L,
Er 

6F 6F
* E3 	 * E 

The 	linearized models for optical observations are as follows: 
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F =0o 
F = s+BX 3X X +BX X 3 - 3X = 0 (2.41.1) 

F = 0 --W IxI+gxs±+6xs+ +BX +B7 X7 = 0 . (2.41.2) 

E F r E P F F 

The partial derivatives matrices Bi are obtained by differentiating

F
 

equation 2.21.1 with respect to the parameters L1 (i = 1,2 ..... 7,10).
 

* 1 (2.21.1) 
Fj, = MB,i" u*1,J + - (s - MM,i" tj) 

. ,',__I Mm,i ti ]j
 
i Bj]Mll
* ~, llj= s- -[-MB,iulju UIM TMU Mm, (2.41.3) 

F1 - LI,j t- pi,1 

where 

L1, 29t 

L, and Li,= tj= tIY 

B ar*pi. __ , 3v* 
F - L2 'aPi vi L2 

0: 0' 0 " 
-I F - h -~.tj Is.MM,I-t :-R.(-Oi)'I9,'R,(Oi)'l (-cpi)'tj I ' ] 

- -i 0 , 

o. o .2
 

*1 -1 0 

0 0 1 0 

0 0 1 
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where 

P5 = [Poe C&Wf7
 

V,= rr cr p &g5gI{
 

L2 = [Irup T
 

U =_v which is the state transition matrix for the 
M' L2 physical libration angles (see section 3.32). 

i 


MM, = R3(-j)'R(Oj" R3(-(o 

1h1, h 2, h 3 are Lucas matrices used to differentiate the rotation matrices 

(see Appendix E). 

* * * * * as 

F*
*I *
 

'L7] a4L5F~F ~ .s E J =7I 6,63as L 

-_~ ~ p Sbl.. + FS] r­~, 

jO6p ',F ] -s .
II P, QI:OI 4 QQ, U, (2.41.5)Q_ 


where
 

L 3 = EC 2 Cp20]T are low-degree harmonics of the gravity field of the Moon;
 

=
(C-A)/B ; A, B, C being the principle moments of 

inertia of the Moon 

L.= [Mi1, /.2, ...]T are mass concentrations on the surface of the Moon repre­

senting the higher-degree features of the gravity field of 

the Moon. The conditions imposed on the solution of 1-4 

are as in Appendix C. 

, is the initial state vector of the satellite arcL5 v
i 

Q, = L is the parameter sensitivity matrix for the rotation of the Moon 
.-: 

[Q1 QI1 = L_" is the parameter sensitivity matrix for the motion of the satellite 
s- s2 LL3 

L 4 
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[-FS ,
 

U1 - 6j, is the state transition matrix for the motion of the satellite 
Ui-L9 -

pi, v,I _ , are the same as defined or derived for B2 above 
av 1 ' 6pi F 

is derived in section 3,32 

Q1, Q
21, U, are derived in Appendix F. 

at s 

In equation 2.41.5 above, the expression for 3 is evaluated as 

follows: LS i1 

Fi _me. i Ujj UT, 3 M, 0, 

The expression for Br. is actually part of F as follows: 
* *s 

10  F -F 

sl[I - MI u u-,= M ,1 ] (2.41.6) 

The matrix-Biwis not part of the linearized mathematical model (2.41.2) 
but is needed for

r 
the evaluation of the contribution of the considered parameters 

LIO to the covariances of the parameters which are being solved (see Appendix D). 

The exterior orientation parametrs were defined in section 2. 3 as small 

rotations (el, eR, e3 ) around B1, B2, B3 , respectively. The approximate values 

of e1 are set to zero, and it is assumed that the M4 matrix transforms the 

B1B2B3 system very closely to its "true" orientation with respect to the XYZ 
* 

system so that the e1 , e2,e 3 are small quantities. 'The derivation of Be is 
F 

presented in what follows: 

u, = M ,1 " Me,{ . u113 

F e. -e.]
 
= R3 (e,s)" R2 (e,. 2). R1 (e, 1 ) [ -e. 1 el
 

e2 5e2 
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The approximation is based on the e,, e2, e3 being small angles so that
 

sine, - e1 and cose 1.
 

* / F0 e,3 -ei 	 F0 e2]
U, M " I+es 0 e , =MBlUh+MBie 0 ejIU.,Uee-el 0y' =IL-e3M 	 O-eO4L eij uii 	 l i , 

2-e10 	 01 

Fo 	 - 1u2 .e',]*til l 	 MB , r Uj , j +± , L+ U 0 -U 2 I 

L_
U ji,j e3i 

The last algebraic operation is based on the following identity: 
--) --4 -4 -­
elxu 	 ,j = -Ux, j x ei 

Using the expressions developed above and realizing that 
= ee 

the expression for i3 follows directly: 
F 

a M U30 us-usi 0 U3* 	 u 1-u 0 u 1 

= uie ) B .j-u 1 
1 	 0 (2.41.7) 

-113 

F 6L6 i aee -

U2 -111 0 Jis 

The partial derivatives matrix for the optical observations is evaluated as follows: 

B7 = = 	 (2.41.8) 

At this point a transformation will be performed from F to F functions with
 

corresponding tranJormation of the B, matrices into B,. The purpose of this
 

transformation is to reduce the number of condition equations per observed
*
 

direction from 3 (F) to 2 (F) so that the normal matrix to be obtained sub­

sequently from the optical observations is of full rank. The new L,7 param­

eters are defined as follows:
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L 7 , i,1 

L7, 1,2* 

= L7*2 , 1 L 7,'j = q1,j = 	L; L 1 ,, u, 
L sinM"' x i, 

L7, 

L 

[-sin v 1 
6L7, 6 = * 6qi,j =Ieost= cos X -sin x 1 . 6L 7 ,1 , = E1 , • 6L 7,1 4,L7 ,1 ,j = u qj,-- L cos sin c cosxj 

Using this relationship 

B 7,i1.i* X7 ,1 , j= 97,1,?1 E1,9j X7,i,j = B7, i.i X 7 , 1,3j (2.41.9) 

(2.41.10)B7,i, = MB,i Eij . 

An important property of E1 ,j is that it is orthogonal, i.e., 

ET,• Ej = 

As MB,, is orthogonal too, By, , j is an orthogonal matrix, i.e., 

B , ~j*B7,i.j 

The linearized function F is premultiplied by BT: 
F
 

F = BT F = BT(BX+... + B7 X+Ws) = 0
FF FS F S 

The same is done for F. The resulting linearized model is denoted by the 
omission of (*). 

E 

+ + + +BIXI + B2 X 2 + IX + B4 X B B XG WS = 0 (2.41.11)3 5 X5 6 X 7 
FF 	 FF F 	 F 

BjX1 + 	 + B8 6 + X7 + WS= 0 (2.41.12)X2 + ]X3 	 X 

In what follows the expressions for 	B1 are summarized: 
F 

BI 	 fI - K U, uIUT6 
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, E,, M.r(FMM, tt 

VS V4 13 tj L3 MM'it -R 3 (-* 1 ) IT1 R1 ( G)Bg(-O j)tj 0 0 0 

[1-1 0 1 
0 1 0 0 

01-- *UQ1:0 

:1-1 0 M , 
0 0 1 O, 

0 01 

+0- Uoj uo ,MB,,0 0 _m. 	 (2.41.14) 

F 0 l3s-UalBG~lj I -u u29,ii = ETi-u1 0 u (2.41.15) 
[ U2-ul 0' 

=B 7 , I 	 (2.41.16) 

wj = E 	 j M, fMB,i uj5i + I-- (st - MMi tj)] (2.41.17)Pt1 ,j 

T=o,ii= E, j MO, - MB'lui, u MT, 	 (2.41.18) 

2.42 Range and Range-Rate Observations. 

The 	mathematical models for range and range-rate (equations 2.22.1 and 

follows:2.22.2) areas 

=SG G(I, 	 I-, M J9,ILo) = 0 (range) (2.42.1) 

H = H(L2, 	L, IA, g, L , L, 11) = 0 (range-rate) (2.42.2) 

As for Earth-based optical observations, here too L10 and L11 are 

considered parameters (see Appendix D). 

Utilizing notation similar to the optical observations model, the linearized models 

are as follows: 

G = BsXs 	+ B 4 X4 + B5 X5 + B8 X8 +W = 0 (2.42.3)G G G G 	 G 

H = B 3 X3 +B 4 X4 + BsX5 +B9 X9 +W = 0 	 (2.42.4)
H H H 	 H H 

The models G and H as defined in section 2. 2 will be presented again with 

slightly different notation consistent with that for the optical observations:, 
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-G, (Fs - SY - [S - Sl,)'
I 

r, 	 (2.42.5) 

S E£ S E 

"k -[A - A] TI S - S k 	 (2.42.6) 
rk s L s E 

where 

F s - is the selenocentric state vector of the satellite 
__s-

S 

Fsi is the selenocentric state vector of the tracking station on Earth. 

"S 
E 

The partial derivatives matrices B1 and B, are derived by the 
G H 

differentiation of equations (2.42.5) and (2.42.6) with respect to the param­

eters L, figuring in equations (2.42.1) and 2.42.2), respectively: 

BS-B, S , F 	 ii 

F-	 L3 -IL 4 5 I (2t 2.J2.9)16B4- ., 	 ] . 
1. in T r: -.	 i Ir 

BBIk =;-S 	 [S 

_4 	 (2.42.8 and 2.42.9)B.3 48 G -- s- tsi ish(2.42.7) 
FL 1 0  F 

LIk L6jk 

G10 k LGk = E k(2.42.10) 

_,]r gB 	 ,[ 
H100,_jok rk s E k(2.42. 11) 

k Lrk ,, E k 	 (2.42.12) 

For the derivation of Q, Q, U, see Appendix F. 
sl 	 s2 5 
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2.5 Formation and Solution of the Normal Equations 

The 	development presented in this section is based on the following premises: 
(a) 	 A large batch of data (optical, range, and range-rate) is to be processed
 

simultaneously. 
 The 	batch includes data from several satellite arcs and 

also from Earth-based observations. 

(b) 	There have been data processed prior to the present batch so that there is 
an a priori knowledge of values for the parameters and their covariance 

matrices. 

(c) 	 The covariance matrix of the permanent parameters LI, L2 , L3 (see
 
section 2. 3) is nondiagonal while those of the transient parameters 
are 

diagonal or at least block diagonal. 

The notation used is as in section 2.4, and the solution follows according
 
to Appendix D. The two 
cases of optical observations-satellite borne and 
Earth-based-are treated separately, and at the end it is demonstrated how the
 
separate normal equations are combined into the final solution for the whole
 

batch. 

2.51 Satellite-Borne Optical Observations (Single Arc). 

The solution as developed is for processing data from a single satellite arc.
 
The linearized models 
as from section 2.4 are: 

F 	 BlXl+BXs+Bx 3 +s 4 X4 +BD 5 +X = 0X+n3 
F F F F F F 

G = BsX + B4 X4 + BsXs - X9 +W G = 0 
G G G(2.51.1) 

H B3 X2 ±tB4 X4 .+3 5sX5 	 -X 9 +WN = 0
H H H 

GCX4 +We = 0 

The 	conditions (C4) imposed on the X4 parameters are identical to the ones 

presented in Appendix C. 

The 	minimizing function ep is defined in the usual way: 

(D = [XIX 2 ... X91 S'D[X'Xj... X9] 2E[FTGTHTCT] (2.51.2) 
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where 

I = [4\ V]T 	 is a vector of Lagrange multipliers 

S 	 is the a priori covariance matrix of all the parameters 

involved in the adjustment (t 1, I...L9 ). 

It is clear from the formulation of (p that the weight matrix is obtained by 

inverting the covariance matrix where the variance of unit weight is defined as a 

dimensionless number -equal to one. 

In order to facilitate the formation and solution of the normal equations, the 

submatrices are blocked in terms of auxiliary matrices. 

1 ,2,3; r2= -. ; l10,1
 

0 L5 0 Le
 

B,B2B BL 	 L9 o
.Iool

[ 0 	 [9 B5 A =10 i 0 0! B10 0 

= 
Ao	 ; A= I; Az = 

A B4 B5 0 0 0 -O B10 0i 
S0 C 0 0 0 0 0 

I [F IF 

= 
 1;
Y X2 Y2 	 = 4; Y3 z =[X ; U [ i FXF 

LWc [xX8
X L 

The normal equations are obtained [Uotila, 1967] using the auxiliary notation: 

00-- 0 A T]F 

0 r2 0 A2 
(2.51.3)0 -~ A Y O 


A1 A 2 A 3 0 KI -I 3.
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The solution for Y, is according to Appendix D 

Y, = -PA TM-1, 3 U (2.51.4) 

(r ± A M2, 3 A1) 

where 
M2 ,3 ­= (A2 r 2 A2 + AS13A 

The covariance matrix of the adjusted YI parameters is 

r= p + PAl M M3 M1, 3 AP (2.51.5) 

where 

M,= AZ rZ AT 

2.52 Earth-Based Optical Observations. 

In this case there are no accompanying range and range-rate observations; 

the parameters X., Xs do not appear in the model, and the solution is consequently 

much simpler. Auxiliary notation similar to that for the satellite observations 

is used: 

r,= E, 2 ,3 r 3 =[E 0]; rz = S, 

= =A, [BI B21333; A3 [B8 I]; Az - F1O0F F F F F 

XIYY, -i s ; z F X1o 1 
y y 3'X2 

LX3A X7 ' LX III 

U = W ; K XF 

The solution for Y, and the covariance matrix of the adjusted parameters Y, are: 

Y, -P A' MAU (2.52.1) 

1= P+ PAIM:31 M AIP (2.52.2) 

where 

(rm i M3 A,)-
M3 = AsI'3A3T 

M. = AZrzAT 
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2.53 Combined Solution. 

In case more than one satellite arc are processed, the parameters L4 , Ls 

are different for each arc. L4 may end up being the same for all the arcs 

although this is not enforced by the solution, i. e., L are allowed to adjust to 

different values for different arcs. The a priori values and covariance 

matrix for L4 used for the different arcs are the same. This is so as the 

processing of the arcs is regarded as simultaneous even if numerically the 

arcs are processed one by one. 

The normal equations of all the observations in the batch (k satellite arcs 

and Earth observations) can be written as follows (see normal equations for a 

single arc (2.51.3) ): 

(2.53.1)
L_r'Abi [1=0
T 

where 

r 2 o 
o r,!1 o 

,r 
I I 

4­
r = t-.. . -.. . -

o o r., 

A1,2 A2 A3 2 0 

A,=!; A =. .+ 
0 A A 

A', 
,-__ 

, 
Al,k + Lk 

A S ' E 

E j 

K2' U2 

K = : U=
 

Kk Uk 

KE jUE
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The solution of such a mammoth system of normal equations is a straight­

forward matter due to its banded block diagonal structure FBrown, 1969]. The 

operations with the large matrices are replaced by a summation. The procedure 

is well known and at the end the adjusted values of the permanent parameters and 

their covariance matrix are as follows: 

Setting P, PE, Pl as 
k 

P= r + P + P13 PE = (AT M3 A1)E ; Pi = (Al ,3 AI)1 

it follows 
k 

P" U)i] ° 
= - +(A 3 U)j (2.53.2) 

Ya YbI (A:TMM1 l 

1=1 

= P + (r1+ PE)'(AT MIMZMaAd(r> PE) 

k 

+ (rt+PI)' (AJ ML, M-2,3 A1)i (r- '+ p1)- (2.53.3) 

i=i 

As shown in Appendix D, P is the covariance matrix obtained by ignoring 

the contribution of Z. It should be noted that the covariance matrix evaluated is 

identical numerically to the weight coefficients matrix as the variance of unit 

weight is assumed to remain unchanged after the adjustment (it was set initially 

to one). 
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2. 6 Programming Considerations 

The analysis in section 2.5 resulted in a solution which was considered 

feasible due to the banded block diagonal nature of the normal matrix. Yet 

even the elements within the summation sign involve operations with matrices 

of immense dimensions which cannot be handled direbtly even by the largest 

computer systems available today. Fortunately, the actual situation is much 

less alarming as those expressions are composed of matrices with a favorable 

pattern such that the formation and inversion of the large expressions can be 

performed in parts. 

The objective in this section is to analyze the various matrix expressions 

obtained in section 2.5 and to develop algorithms for their evaluation under 

the assumption that a computer system of the rank of IBM 360/75 is available 

with its core size, auxiliary devices (magnetic discs and tapes) and matrix 

inversion subroutines. 

The expressions that will be considered are as follows (see section 2.5): 

Satellite-Borne 

1. (Al M2, 3 A 1)i 

2. (A M-1,wu) 
-1
3.(r-+ P-'(AT M2,5 M2 M2, 3 A1)1 (r1+ Pi)

where i represents satellite arc #i 

Earth-Based 
4(AT M3 

I.(
t M A 1)E
 

5. (AT MEU) 

-
M;1M6. (rI+PE) (AI A)E (r l) 

In order to illustrate better the logic of the algorithms developed, the 

matrices involved in each of the six expressions will be shown diagramatically 

emphasizing the submatrices which are full vs. those composed of zeros. 
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Expression 1: AT M-s1 A 

The auxiliary matrices from section 2.5 are partitioned further as follows: 
A A2 A 3
 

A = [ ; A2 = 1; As = [j
 

A4i, 	 ' .- ;.:....... ;......i. exposure 1x::.. 
A , exposure 2 

* .	 . . .. . 

1A, A 	 exposure m
 

A1 	 'range
G 
GA 	 range-rate 

A2,1 

* 	 F.
 

A2
G .............iiii~
 

A2 
.
 

F '2 iii~~~iiiiiiiiiii 
+.~~~~~~:iii:iiiiii~~i:iiiiiii:i!::>:::.........


S, o2
 

* 0 
* A	 _I 

o GamH Gj H 
CA fA1, 2 A1 I 2%	 

A22 ,2 	 A2, A 
=
C2= C A , G: AI /H A

2
=
1 G A2 "H. 


Ll: 	 [2 
" 

A2 

A2A 1 -2. o[A T~::irt:] & 
:A ASI [ 	 r. 0J Nr 	NI=C-=2: :1[.2	 3 N2 
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where 

M2,3= 	 AJ 2 A' + A3 rA.
 

A2 1 CT
=N2 


= C2 2 CT
N2 

2 ,3 	 Q1!i2 

From Uotila, [1967] it follows: 
* T9T 	 - -2 -1-T V

(M2,(M T- ) = M-N22, 3+M ,3 N2 (N2-N1 Mp, 3 N2 )'NJ lV 

The only element in M ," needed is Q1 as 

irQ -

T MQ T1A 1 	 T 
AIMl , 3	 Ai = [AiO]LT Qj[o = Al Q1 A, 

The covariances are blocked as follows': 

24r1 "=- 1,2 ,3 IN 
5.7
 

0
 

L= Cr2 I 

g 

Evaluating the M2, 3 matrix: 

S(M.3 + Ar 2 AY' = M; - MAA+Ma A2)A 2 Ma 
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-. 

MF'F3,2 0* * 	 I ,!'S2 

M1= A- = ... 
1F 3,m0[ 

8 

, = EA3 LE6 AT + Gr2 T]I 
F' F' 	 1 

F3' F 

G 	 H 

4M' 2 =.~ ~	 AMM-1 ± 23AA21 A2 ,3A 21 1	 +-2 
S J- G GN jTH 

-(r2A+ AM 	 ...T= A 	 ..... 

M-01 

2,3~ 	 2, , 
F''s 

............
 

K' rn1 	 o]
M2- 1-

1 	 H2, 
r 

.. 

0 	 mn 0
 

m 

A.2M -1-M-15 

1 y 2, 
G6 

42, J Y A2 ,3I 

c.2, r2r A~*2TCTcI2 A Ecr2AT I C2 r2 A2T . 2 2A G~ 2 2 

65
 



N IV! N2 = C21r2 AST.i 1,, A,I r 2 02++C r 2 j'2,J ', A ,j r 2 ol + 

+ 2 rSA2kflA 2 krTc+_.c, , Mk k,r2 C2 
H-N H H' 

R (N2 - N M-T--­

QQ,l0
0F Ql, 2. 

FFQl = M2,3 + M1,3 N2 R N2 2, 3 0 

0 11 

1L0 
G 

0 q 
, 

L H~g 

=n 3o r 3 2 ,,2 0,_cor 2 A;.,n 2T'I M-II~ 1I'lM13'i+ Ml'~ A2 .r. CT R C2 f F,= , F ' F 2 

m*l, = m" + rrA,.,2 CT R C2 r, AT 

C2, =I~ n + +. R+, (T.
U = A ; AU=* * U .+ UA=Aj + 

A k MkExrsso A2 k: 

+ /Ai1k qi1 k Al~ (.61 

Expression 2-: AlT M~, 

1 
U4'-

= U A~ 
HH 

F I 
I66
IFU.2 Ia c,9 
a'HH 

U 
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Some of the auxiliary matrices defined for Expression 1 will be used again: 

rU-
T -1F I 

1 3 U AQI U + Q2 U 

* °
 

' N =-M ,3 N2R - - -" "'""= 

..........
2 -. 

92, ...........
 

-M 
... . . . .. ...
 

.:'--F =' 92 ::::
 

F' F 

= -m A2 r2 R 

A CT
2k =-Tk 

H ' 2H 

As before, due to the block diagonal structure of M2, 3 , Expression 2 is 

obtained by summation:
hl .sU A,. .U, , + A,,, (ql,j Uj % U 

TL 1 ' Q + Q U) +F F F' C G0''G'GC QQJTJ)
i 

r T+ AITk (QL;kUk + Q2 k ' (2.6.2)
H. H 2 ' C 

Expression 3: ( +P)*(AT M 3 Mz Mg 3 A,))(r- - P)' 

P is equal to Expression 1 which was treated above. 

.3- =-[ = :::: 

0 ... 6 

6'7 



0 1
 

A.-2
 

2A* 

H 

L ­

0 

G -,A' o, ] 1 
I I 

M 2=AzrzAh[ 0 z Hz j= 

,TZ' 0 0H 0 

M , ; M= I M'Lo zj L H. 

=z~ Az,k L7,4 Az~ 
iI HH 

Using auxiliary submatrices as defined for Expression 1 above, the 

resulting algorithm is: 

AQI MZQA, + AT 91 Mz Qi AATMt2S3MZ ML,3A, A, 1 
G a G C G H H H 

A A + M A, A (2.6.3) 
j I 

Expression 4: (A T M A) E 

Because of the absence of range and range-rate observations the situation 

is much easier to handle. Parameters L4, L5 and also the conditions imposed 
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on L. do not figure in the mathematical model for Earth-based observations.
 

Ai,]
 

I.A1 , ........
.


n is the number of earth-based exposures in the batch. 

A3 I 
00
 

L E3,. :.., 

0 A~0 

Az 

The covariance matrices ri, r 3 , r are identical to the ones defined for 

Expressions 1, 2, and 3. 

0 M 0] 

2 
' 

=A
E3 Lei A T 2 

E ' E' aF~ 

Following the same logic as for Expression 1 

(ATM;'A1)E = 7A Ti;~~, 2.6.4) 
i 

Expression 5: (AJT U)E 
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Using results from Expression 4, it follows: 

(Ai M U) T= E 1 'U 	 (2.6.5) 

Expression 6: (r'+ PE)I (Al M M M A)E (r + PE)" 

IEis equivalent to Expression 4 and was treated above. 

Mz'01 
E 0 

Ml_ = Az rAT 0 ... 

M,,, are block diagonal matrices composed of (2 X 2) submatrices. 
E 

-M1MzM 1 = ,A 
At.. 3E' * ' 

M 
E ' E ' E 

(2.6.6) 

As stated at the beginning of this section, the algorithms were developed 

of the solution as presented in sectionin order to demonstrate the feasibility 

2.5 	and also to serve as the mathematical basis for the massive computer 

out an actual reduction of data.programming effort, necessary for carrying 
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3. 	 NUMERICAL INTEGRATION OF THE PHYSICAL 

LIBRATIONS OF THE MOON 

3.1 Introduction 

The orientation of the Moon in space or more specifically, the orien­

tation with respect to the ecliptic mean coordinate system of a Moon-fixed 

selenodetic coordinate system is a problem of primary importance 

in the solution for a datum on the Moon. As explained in Chapter 1, the 

problem can be reduced actually to the solution of the physical librations 

of the Moon. Although a satisfactory solution for the physical librations 

does exist [Eckhardt, 1970], there are several important aspects which 

require an entirely different approach. 

There has been considerable discussion in the literature [Kopal and 

Goudas, 1967] on the problems created by the linearization of Euler's 

dynamic equations prior to their solution. The prevailing opinion is that 

the unstable solution for one of the terms in the physical libration in 

of the constant f (where f = (C-B)Blongitude (Tr) at a particular value 
(C-A)A 

and A, B, C are the principal moments of inertia of the Moon) does not 

necessarily exist in the actual rotational motion of the Moon, but is due 

to the linearization. Thus, if a solution of Euler's dynamic equations 

in their original nonlinearized form is possible, it could avoid the afore­

mentioned problem. 

The consistency of the existing solutions for physical librations with the 

new generation of numerical lunar ephemerides cannot be maintained due 

to the manner in which these solutions were obtained. The particular 

solution of Euler's dynamic equations (the forced librations of the Moon) 

is composed of harmonic terms with arguments which are linear combina­
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tions of the arguments in Brown's lunar ephemeris [Koziel, 1948; Eckhardt, 

1965]. Even if the solution for the physical librations is not so sensitive 

to small variations in the lunar ephemeris [Eckhardt, 1971], the fact 

remains that the present solutions are inconsistent in principle with the 

best available lunar ephemeris. 

As pointed out in section 1.3, it is difficult to evaluate all the effects 

of the bias introduced by the "center of figure" assumption made in the 

reduction of the heliometer observations. Thus, a solution which is entirely 

independent of this assumption could provide a clue as to its real effects. 

The adjustment procedure, as developed in Chapter 2, presents a prob­

lem of parameterization for the solution of the physical librations (section 2.3). 

The analysis of observations which are sensitive to the orientation of the 

Moon and, consequently, to the physical librations of the Moon, requires 

the definition of a minimal number of mutually independent physical librations 

parameters. It is also advantageous for these parameters to be explicitly 

present in the mathematical model in order to enhance its linearization. 

There are two additional aspects which have been neglected so far. 

The existing solutions ignore the motion of the ecliptic coordinate system 

and do not account- for the direct gravitational effect of the Sun. The 

effect of these approximations is marginal in view of uncertainties in the 

present knowledge of the dynamical figure of the Moon and the quality of 

presently available optical observations. However, as shown in this chapter, 

the incorporation of these effects in the solution requires little additional 

effort and in view of observations of a superior quality which are becoming 

available (like laser ranging to the Moon) it appears that the objective in 

any new attempt at solving the physical librations problem should be to 

obtain as complete a solution as possible. 

The solution for the physical librations in this chapter is presented in 

three main sections: 

(i) Derivation of the equations of rotational motion of the 
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Moon in the form of second order differential equations of the 

physical libration angles and the subsequent solution of those 

equations by numerical integration. 

(ii) Development of the adjustment model for observations 

which are sensitive to the physical libration angles. 

(iii) Development of the mathematical theory for a least 

squares fit of one set of physical libration angles into 

another. 

The solution in this chapter is based on the following three postulates: 

(i) The Moon is regarded as perfectly rigid [Eckhardt, 1970]. 

(ii) The translatory motion of the Moon's mass center about 

the geocenter is assumed perfectly known and taken directly 

from the LE-16 lunar ephemeris [O'Handley, et al., 1969]. 

(iii) The effect of the spherical harmonics of the lunar 

gravitational field of degree higher than the second is neglected. 
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3. 2 Equations of Rotational Motion of the Moon 

3.21 Euler's Dynamic Equations. 

The differential equations of rotational motion of a rigid body about 

its mass center as referred to an inertially oriented system are known 

in the literature as Euler's dynamic equations. A brief account is 

brought of the derivation of these equations for the rotation of the Moon. 

Two right-handed Cartesian coordinate systems are considered, both 

centered at the mass center of the Moon: 

X Y Z - inertially oriented coordinate system (see section 2.1). 

x y z - selenodetic coordinate system where x,y,z coincide 

with the principal axes of the Moon. 

Principal axes of a rigid body are defined such that the moment of 

inertia tensor is a 3 / 3 diagonal matrix where the three diagonal elements 

A,B,C are the principal moments of inertia with respect to axes x,y,z, 

respectively. 

The two coordinate systems X Y Z and x y z momentarily coincide 

for the purpose of this analysis. 

The rotational (angular) velocity of the Moon with respect to the x y z 

-
rotating system is expressed by the vector *0. The components of W 

along x,y,z are the rotational velocities around the x,y,z axes, respectively. 

In matrix notation 

The angular momentum of the Moon in its rotation with respect to 

the x y z system is denoted by vector h and defined as 

_> Jdmr> -->* ­

h J dm r x w xr (3.21.1) 

where 
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is the position vector of a mass element dm
 

M is the total mass of the Moon
 

Using matrix notation for the vector cross product and substituting 

the moment of inertia tensor of the Moon, h assumes the following form: 

4sFh4k:B]D[:~j (3.21.2)
h - -D C]. WZ . 

The coordinate system x y z was defined to coincide with the principal 

axes of the Moon which for the products of inertia D, E and F would mean that: 

D=E=F=O 

The expression for h simplifies further to 

[A-wo 1h= B-wi (3.21.3)=[c.wxj 

The angular momentum of the Moon in its rotation with respect to the 
inertial X Y Z system is denoted by H. The following important relation 

holds between H, h and w [Smart, 1951]: 

H= + xh (3.21.4) 
and are the time derivatives of H and h, respectively. 

In the matrix notation, considering A, B, C as time invariant, the expres­

sion for A can be written as follows (see Appendix E): 

FAx] .-Ae ][ 
W y.] A wf4 = [i6] + 

0 -w 
0 -U), B wy (3.21.5) 

i z C (LZJ -WY x J L C J 
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4_ -4 

Moment of a force T acting on the Moon is denoted by Q and is
 

defined as
 4 _4 
Q = jMdm R x T (3.21.6) 

M 
where 

R is the selenocentric position vector of the mass element din. 

The second law of Newton applied to rotational motion states that the
 

moment of a force acting on a rigid body is equal to the derivative with
 

respect to time of the angular momentum of the body. As in the case of
 

Newton's second laws for translatory motion, the moment and the angular
 

momentum are referred to fixed (inertial) axes -in our case - X, Y, Z.
 

QH= 

In the matrix notation denoting the components of Q along X,Y, Z as
 

L,M,N, respectively, it follows:
 

[t](C - A) w, w= (3.21.7) 
Loj L(B - A) wx oy] 

- Three moment of inertia ratios are defined as follows: 

C-B C-A B-A 
A B C 

The differential equations written now in their final form are known
 

as Euler's dynamic equations:
 

Wy + -p 0 = j, M/B (3.21.8) 

L + 0 0 y N/C 
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The external forces acting on the Moon are primarily the -gravitational
 
attraction of the Earth and 
 that of the Sun. The moment caused by the 
attraction of the planets is insignificant and in this analysis it is 

neglected.
 

The potential of the Moon at a distant point and for a unit mass can be
 
expressed by Mac Cullaugh's formula: 

V=lks 
Lr+ 2 r 3 (A+B +C-3I)j (3.21.9) 

where 

M is the mass of the Moon 
r is the distance between the mass centers of the Moon and the 

disturbing body 

A, B, C are the principal moments of inertia of the Moon (about the 

x,y,z axes)
 

I is the moment of inertia about an axis defined by the
 

mass centers of the Moon and the disturbing body. 

The position of the disturbing body in the x y z (rotating-) system 

X 2
is XDYDZ D such that r' = +y2 + Z, 

In terms of A,B,C and XD,Y ZD, the moment I can be expressed as follows: 
12
 

I=- (A. x2 + B. y2 + C .Z 
r2 D D 

The potential of the Moon for the total mass D of the disturbing body 

is then 

k2 DM + k2 FA + B +0- - (A-x< + By + CIZD) (3.21.10) 
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In this formula the effect of harmonic terms of the Moon's gravitational 

field of a degree highier than the second are neglected. The error intro­

duced in the moment caused by the Earth is in the ninth significant digit 

while for the Sun it causes an error in the fifteenth significant digit 

[Eckhardt, 1970]. 

If a differential rotation 60 is introduced to the Moon, the work done 

by the disturbing moment is equal to the change in potential of the Moon. 

Inspecting the expression for V it is obvious that the only term that 

depends on the Moonts orientation is I. Thus, the variation in V is 

obtained as follows: 

3k 2D6V s---" (A'xD'6x0 + Thy-6y + xCZD.6Z0 )r [6xD]
3k 2D [A*x BY C.ZD 6YD (3.21.11) 

6ZD 

6x 0 , 6Y0 , 6zD are related to 60 according to the following expression: 

6x 600 % X-11 0 XD YD 

6zj 6Y16 -0 YDZDJI K ? -Yo) X0L-My 6e. 0j Dx ft .066 

The work done by a moment Q along the angle of rotation 66 is equal to 

the dot product of the two vectors and is denoted by 6U: 

r,.66"i 

6U = [LM NI-j 69y (3.21.12) 

According to the law of conservation of energy and for an arbitrary rotation 64 

OV+6U = 0 (3.21.13) 

Substituting (3. 21. 11) and (3. 21. 12) in (3. 21. 13) it follows: 
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[ x z
LMN] A'x zk-27 -YD,XD3kD By O C"ZD[-hD 0 (3.21.14) 

SYD -XD 0J 

L r (C B) yo z,
 

N 3 (B A) xDyo
 

IL/A] 33 aI 0 0lFyDozol 

M/B t r 5 0 - X01Z (3.21.15) 

N/C L 0 0 ' xDyDl 

Denoting the mass of the Earth by E and that of the Sun by S,Euler's 

equations can be written now with an explicit right hand part: 

0o0o2/irZFaryz I ,i1[3k 2E30 y [ 
C 0-A 0 -r xz + r-F I XW. (3.21.16) 

o r xyJ Lxr [W O 

It would be of interest to compare the perturbing effect of the Sun to that 

of the Earth. 

(a) Gravity coefficients 

k2 S .99.10 
r ~ 1.53.1024 .00029 day 2 

k2E _.298.l0i0 a 
rE 3.84. 10 .0525 day- 2 

.00029 1
 
.0525 - 200
 

(b) Range for rz x z ,-4 
S2 r 

jf II 1 ~I 

Sun <.026 <.026 <.707
 

Earth <.014 <.12 <.12
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2 ](c) Total effect in L,M,N in [day - : 

Moment E arth Sun Sun/Earth 

L/[3 (C- B)] <. 00073 <.0000075 '-1. %
 

M/[3(C-A)] <.0063 <.0000075 -0.1%
 

N/[3 (B-A)] <.0063 <.000205 -3.2%
 

The ratios between the Earth and the Sun in generating the disturbing 

moment as calculated should be viewed as an estimate of the order of magnitude 

only. It is realized that at zero libration in longitude (yE= 0) or at zero 

libration in latitude(z = 01N and M,respectively,are composed solely of the 

effect of the Sun. Generally, however, the Earth dominates the Sun in 

generating the L and M components of the disturbing moment. In N 

the effect of the Sun can be considered as marginal. Programming the 

inclusion of the Sun in Euler's dynamic equations is simple and the extra 

computer time needed to evaluate and include the contribution of the Sun 

at each step of the integrations is negligible. In order to keep the 

approximations and neglected effects in the derivation to a minimum with­

out having to pay an unreasonable price Euler's dynamic equations are 

extended to include the effect of the Sun. 

3.22 Transformation of Euler's Dynamic Equations. 

Euler's dynamic equations have been derived (Equation 3.21.16) without 

referring explicitly to the Eulerian orientation angles of the Moon o, 4, 6. 

However, it is the Eulerian angles which are of interest, rather than the 

rotational velocities W,, w,, w, , as they define the orientation of the 

selenodetic coordinate system with respect to the mean of date ecliptic 

coordinate system (see section 2.1). The mean of date (MOD) ecliptic 

coordinate system is defined by the instantaneous (of date) plane of the 

mean orbit of the Earth around the Sun (mean ecliptic) and the instan­

taneous mean vernal equinox [Mueller, 1969]. Denoting the MOD ecliptic 
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coordinate system by XYZ and the selenodetic coordinate system by xyz, 

the transformation from XYZ into xyz is obtained by a sequence of three 

rotations through the Eulerian angles as follows: 

fxi. fx 1 

S R) R() i y = T Y (3.22.1) 

ZJ z [ z 
In this section, Euler's dynamic equations are transformed into second 

order differential equations of the Eulerian angles of the Moon. The first 

step in the transformation of Euler's dynamic equations is made by rotating 

the time derivatives of the Eulerian angles (q, ), 6) into the x y z system. 

The resulting components are equivalent to the rotational velocities of the 

Moon about the x,y,z, axes (see Figure 3.1). 

W = R3(p) R3(@) 0 + 0 

0 -sinp sin.9-costcD 

0 ro sp sin sinrt • (3.22.2) 

_ i Cos 0 0 { 

z 
* i 

x 
X y 

\\Y 

Figure 3.1 Euler's Geometric Equations Diagram 
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These equations are known as Euler's geometric equations. The 

implicit assumption made in deriving them is that the vector a represents 

the total rotational motion of the Moon, i.e., that the X Y Z system is 

motionless (inertial). The equations developed in section 3.21 and in 

particular the relation between the rate of angular momentum and moments 

of external forces hold for a XYZ system which is inertial in the Newtonian sense. 

Traditionally, the motion of the MOD ecliptic system has been neglected 

because of the small magnitudes involved and mainly because of difficulties in 

obtaining an analytical solution of Euler's dynamic equations. 

If the MOD ecliptic system has a rotational motion of its own with respect to 

the Newtonian Reference Frame,denoted as e, the total rotational motion of 

the Moon will be the sum of the two motions, i.e., w + e. As stated 

above, in order to keep the approximations to a minimum, the implication 

of the motion of the MOD ecliptic coordinate system in transforming 

and solving Euler's dynamic equations is analysed. 

There is, of course, the possibility to relate the x y z system to an­

other coordinate system like the mean equatorial system of 1950.0. However, 

as it is shown in section 3.23 there are considerable advantages in 

using the mean ecliptic as the reference system, mainly due to the Cassini 

laws. 

The motion of the MOD ecliptic coordinate system consists of slow 

rotation of the plane XY (the plane of the ecliptic) by rotational velocity 

it about an axis contained in the plane of the ecliptic at longitude II, 

and a comparatively fast rotation about the Z axis by the rate -p 

(regression of the vernal equinox), (see Figure 3.2). 
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-P 

xl 
Xz
 

Figure 3.2 Motion of the MOD Ecliptic Coordinate System 

The expressions for lI,7rand p as a function of time given by 

Newcomb are as follows [Mueller, 1969]: 

fl= 1730 571 06 + 54.77 t 

in = 0!"4711 - 0!.'0007 t 

p = 50!12564 + 0"222 • t 

where 

t is in tropical centuries since 1900. 

wr and p are annual motions. 

The components of the rotational velocity vector of the MOD ecliptic 

system e along the X,Y,Z axes, denoted by e., ey , ez are as follows: 

=y P 1 01 =iirIsinfi 
Ie, 1 0 - p-P 

Euler's geometric equations extended now to include the vector e, are 

I 3 0 +R8 (3.22.3) 
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Euler's geometric equations differentiated with respect to time, where 

e is regarded as time invariant, are 

0 +R3(0).I e,=b -6K6 [R 3 (p) t I 
]oL. R,(-6) +R3(0) "e 

ey (3.22.4)
[e,
)3Ro)[P r0 ).+R 3 R 1 

e,
L 


The terms containing q, $, " are developed further as follows:
 

0 0 -sinsin ) -cos' I F~1 

-cos (sin6 sino -W.
(Ri(-6) j 0 + 0 =10 

L 1 0os Lj 

The inverse of W obtained analytically is:
 

/ sin~cot6 eosqoeot6 1 ] 

WXV= -sinqocsc6 -cos(ocsc6 0 (3.22.5) 

L-cos 0 sinto 0j 

IF
 

The expressions for Idy from Equation 3.22.4
 

L)zj
 

are substituted in Euler's dynamic equations (3.21.16). All the terms 

in [ , &y C ,]T except the ones containing [w 4 6]T are transposed to the 

" 
right hand side. Then both sides are premultiplied by W 'and result in 
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.1. O .a yz]eE 3 -F 

W0 -P 0 --- xz +- " XZ - X W ( -y YzjW'. 
- .rE r.0iIxyJ
Lvi
L6J E'00 W 

3J, (3226 

eex
 

-R 3QoD) *Ri(R),- 60X} (3.22.6) 

Fwy wz 
n the above equations the vector w, W, is expressed in terms of (p, e, 

, 4, 0 through equation (3. 22. 3). L W, WY 

The only quantities that have not been treated yet are the selenodetic 
rx x 

position of the Earth Y and that of the Sun Iy 
Z I E Z'S 

The geocentric ephemeris of the Moon and of the Sun can be obtained 

from the DE-69 ephemeris in the mean equatorial (mean equator and equinox) 

coordinate system of 1950.0. The transformation from this 1950.0 system 

to the MOD ecliptic coordinate system can be performed through a series of 

rotations through the precession angles z, Co 6 and through the obliquity of 

the ecliptic angle E [Mueller, 1969]. (In this paragraph, 6 is different 

from the Eulerian angle 6). The transformation is carried out as follows: 

Y = iR(E)Rs(-z)R2(6)R(-)o)- = RT" zj 
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where the subscripts a and 6 denote the equatorial system of 1950, 0 . 

The selenocentric coordinates of the Earth mass center in any coordinate 

system are the same as the geocentric coordinates of the Moon, only with 

opposite signs. In the differential equations (3.22.6), the coordinates of 

the Earth appear always in products of two (xy, yz, xz), so changing the 

sign of all three coordinates does not make any difference in these products. 

Therefore, the ephemerides of the Moon can be used as given in DE-69 

without reversing their sign. In a similar manner the selenocentric coor­

dinates of the Sun are obtained as the differences between the geocentric 

coordinates of the Mooi and those of the Sun. 

The transformation from the MOD ecliptic system to the selenodetic 

coordinate system was shown to consist of three rotations (Equation 3.22.1). 

So combining the two transformations, the coordinates of the Earth or of 

the Sun in the selenodetic xyz system are obtained as follows: 

x Fx 

y GTRT - ; Y 

z[j LzJ ,6 

where 

GT was defined in Equation (3.22.1) 
and 

RT = R3(()Ri(-B)R3() 

This completes the transformation 	of Euler's dynamic equations 

(3.21.16) into the second order differential equations of the Eulerian 

orientation angles p, 4, 6 (3.22.6). The second derivatives of P, 4, 6 

are expressed in (3.22.6) in terms of the angles p, 0, 0, their first 

derivatives with respect to time, information from the DE-69 ephemeris 

and a number of constants (a, 8,7, etc.). 

The solution of equations (3.22.6) is possible using available computer 

subroutines 	for numerical integration of ordinary differential equations. 
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By analogy to the numerical integration of orbits of planets and satellites, 
the solution for the Eulerian angles P, 4, B obtained by the numerical 
integration of Equation (3.22.6) can be regarded as an integration of 
Cowell's type and, consequently, Equation (3.22.6) is referred in this 
study as Cowell's equations of motion of the Eulerian angles of the Moon. 

3.23 	 Differential Equations of the Physical Libration Angles. 

The equations of motion (3.22.6) as derived in section 3.22 can be 
integrated numerically and this was done successfully for a variety of 
initial epochs. There are, however, certain refinements of these equations 
which, without adding much labor in terms of computer programming, 

introdude definite improvements in the solution. 

As in any numerical solution of differential equations, the number of 
"correct" significant digits in the integrated quantities is crucial. Correct 
is set in quotation marksas all the numerical integration subroutine can 
detect and take care of,are the local discretization and round off errors 
at each step of the integration. No reliable and general way of monitoring 
the cumulative effect of these errors exists. In textbooks and reports 
one is advised to experiment with functions which are close in tonature 

the actual differential equation and which have an analytical solution.
 

One 	principle generally accepted in numerical integration is that the 
smaller the number of "correct" significant digits needed in the integrated 
quantities, the better the chances are of obtaining a withoutsolution 

running into numerical problems or having to spend excessive computer 

time. 

Long before electronic computers were available for numerical solution 
of differential equations Encke devised a modification of the "raw" equations 
such that in order to achieve the same absolute accuracy, fewer "correct" 
significant digits are required in the integration. Encke introduced a 
differential equation of a reference function which has an analytical solution 
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and is close in nature to the original [Brouwer and Clemence, 1961, p. 176]
 

The quantity integrated is then the difference between the two functions.
 

If the reference is chosen close enough, the magnitude of the differences
 

integrated is much smaller than the original function.
 

Encke's artifice is particularly applicable to Euler's dynamic equations 

in view of Cassini's laws for the rotation of the Moon. The mathematical 

interpretation of Cassini's laws is that the Eulerian angles can be approxi­

mated by power series of the independent argument (time). Actually these 

series are combinations of the elements of the mean orbit of the Moon 

around the geocenter as referred to the MOD ecliptic coordinate 

system. The implication of Cassini's laws is that the Eulerian angles 

0,04,6 and their first and second time derivatives can be presented as 

power series of time with known coefficients plus small periodic terms 

(perturbations). Thb main property of these perturbations of interest in 

this case is their small magnitude. For example, the perturbations in 

1 and in (w40-ir) are of the order of two minutes of arc. Those in 

can reach a magnitude of less than one degree. 

Thus, after an appropriate modification is made, the quantities to be 

integrated numerically for the solution of Euler's dynamic equations are 

the small periodic perturbations 'in the following Eulerian angle combinations: 

p + -r * and 9 

It is easily seen that these perturbations are the physical librations 

of the Moon as follows: 

1 longitude fP 0+-IT
the physical [ are equivalent to the +
 

a i node j 4
 
librations in .operturbations in 

o I inclination! 1 

Unlike numerical integration of satellite trajectories where occasional
 

rectifications of the Encke reference orbit are necessary in order to keep
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the perturbations to the reference orbit small, in this case the reference 

Eulerian angles (the power series) are stable in the sense that the pertur­

bations i-, a, p are composed solely of periodic terms of constant amplitude. 

The two parameters of the mean lunar orbit needed to separate the 
physical libration angles from Euler's angles are the mean longitude L) 

and 	the longitude of the node C%. 

According to [AENA Supplement, 1961] and in general notation 

LD) Lo + L(T-To) + L2 (T-To)2 + I,3(T-To)s 

(3.23.1)
=o + Q, (T-To) + Qa (T-To)2 + Q(T-To)3 

a 

where (T- T o) is the time interval since the standard epoch To 

Through Cassini's laws and the definition of the physical libration
 
angles, the Eulerian angles can be expressed as follows:
 

p= LI) + T1,T 2+1 
l=+i- (3.23.2) 

ID + P 

where 

I) is the mean inclination of the Moon's equator to the ecliptic. 

From the above relations 

I ) + 17 = 	 a L)I[ 

Differentiating with respect to time, it follows: 

L 	 L[0 J
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A second differentiation yields 

• . 

a- I (3.23.3) 

The derivatives of Ly and CD are obtained by formal differentiation of 

the power series with respect to time : 

L, = Li + 2L 2 (T-TO) + 3L 3 (T-To), 

+Lb = 01 202(T-To) + 323(T-T0 )
2 

and 

= 2L 2 + 6l (T-To) 

=2- + 6g%(T-To) 

This completes the transformation of Euler's dynamic equations 

from Cowell's form (3.'22.6) as presented in section 3.22 to Encke's 

form (3.23.3). On the left side of the equations (3.23.3) are the second 

derivatives of the physical libration angles while on the right side there 

are rather complicated expressions which depend, however, on the 

angles Tr , , ap,P, on power series with known fixed coefficients 

(Lb, OD), on numerical information from the DE-69 ephemeris and on 

a number of physical constants ( k2 E, k2 S, a, 8, y, etc.) . 

The only additional information needed to solve these equations by 

numerical integration are the values of T,u,p, -r, a, p at some arbitrary 

standard epoch, the initial values of the numerical integration. The 

only way these six values can be determined is through analysis of obser­

vations which are sensitive to the orientation of the Moon. In a sense 

these six quantities correspond to the six arbitrary constants in an ana­

lytical solution of the three second order differential equations. 
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3.3 Adjustment Theory 

The differential equations (3.23.3) developed in section 3.23 and their 

solution depend on a number of parameters. The purpose of this section 

is to develop the adjustment theory for the least squares estimation of 

those parameters so as to provide the means for carrying out the general 

solution for a datum on the Moon as presented in Chapter 2. 

The solution of the differential equations (3.23.3) is performed by 

numerical integration. In complete analogy to other situations in which 

differential equations of certain quantities are solved by numerical 

integration (satellite trajectories, planetary orbits, etc.), the param­

eterization of this problem is straightforward. The values of the inte­

grated quantities at any intermediate epoch (between the initial and the 

final epochs of the integration) depend on two sets of parameters as 

follows: 

(i) The values of the quantities at the initial epoch - in this
 

case, the initial values of the physical libration angles and
 

their time rate, to be referred as initial values.
 

(ii) A number of constants which appear explicitly or in­

directly in the differential equations - in this case, physical
 

constants associated with the gravitational field of the Moon,
 

to be referred as physical constants.
 

These two sets of quantities have been chosen as the parameters 

which govern the solution for the physical librations. Through an adjust­

ment process, these parameters can be estimated following known pro­

cedures (orbit determination of. satellites from tracking data, for example). 

In the following subsections, the general outline of the mathematical 

model designed to process data sensitive to the physical librations is 

presented. The derivations necessary for the generation of the so-called 

state transition and parameter sensitivity matrices are presented also 

in full detail. 
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3.31 Mathematical Model. 

The mathematical model for the adjustment of observational data 

sensitive to the physical librations of the Moon follows in general ideas 

and procedures of Warner [1964] and notation as of Uotila [1967]. 

A general situation to be considered is that the data being processed 

are sensitive to the physical libration parameters (initial values and physical 

constants) and also to additional groups of parameters which are irrel­

evant to the physical librations phenomena. These will be referred as 

additional constants. The selenodetic coordinates of observed features 

on the surface of the Moon are an example of such a group of parameters. 

For any of the quantities figuring in the mathematical model, the 

meaning of the superscripts is as follows: 

La 

L 

represents 

adjusted 

approximate 

observed 

quantities 

L correction to observed 
or to approximate 

The 

follows: 

quantities involved in the mathematical model are denoted as 

Parameters
 

Initial Values
 

'TO' r 

- . 
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where 

70 , ( 0, Po are the initial values of the physical libration
 
angles at the standard epoch T. .
 

O,6, 2o are the initial values of the time rates of the
 
physical libration angles at T.
 

Physical Constants 

P, 5C 1 n +( 

c20J L6C2oJ 

where 

C20  are second degree harmonics of the
 

C22 gravitational field of the Moon.
 

8- C-A is a ratio between the principal

B moments of inertia of the Moon.
 

There are other physical constants which figure in equations (3.23.3). 
However, their values are well known from other sources and it can be 
shown that the physical librations are insensitive to small variations in 
these constants. Another consideration against their inclusion in P is in 
the fact that these constants have been estimated in the solution for the 
lunar ephemeris LE-16 [O'Handley, et al., 1969] and the ephemeris is 

treated here as fixed. 

Additional Constants 

>.x ; k 6x ' ; Xe=X+X 
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As specified above these are parameters which depend on the partic­

ular data type, but are irrelevant to the physical librations. They are 

left in general notation. 

Observations 

L I i~ I 

- +
L=bb L LaL L L

.1 ~ Ij 

I I 

Covariance Matrices 

(a priori statistics of Lb, yO°* (p °, ) 

ELb - observed quantities 

Z - initial valuesV 

- physical constants 

EXo- additional constants 

as the function FThe mathematical model is defined 

F(LV a,va, Xa) = 0 (3.31.1) 

The function F is linearized under the assumption that L, Y, (P, X, 

are vectors composed of small quantities so that the second degree terms 

in Taylor's expansion of F can be neglected. 
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' L + yaFF +__F +F. X+ FO6 L a +-.-a" b+pa a = 0 (3.31.2) 

where 
°FO = F(Lb, _°, (o ° , O ) 

FThe expressions - and - rl5 are developed further in keeping with 

the nature of the numerical integration process. 

6F = F b[rT U p . & T] p
 

a 2)r (TapP aya PI, = APL U
 

6F = APL a p r a p = APL Q 

where 

S[Tap ]T 

,,,a 

69a 

In the literature U is referred to as the state transition matrix and Q
 

as the parameters sensitivity matrix.
 
SF f F the linearized mathematical
Denoting B for - and C for ­

model is written as follows: 

B.L + APL(U+QQ) + C. X+FO=0 (3.31.3) 

Least squares adjustment is applied under the assumption that Lb is 

a vector of random quantities with mean Lgand variance and covariance 

matrix Zj. 
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The well known procedure will result in estimates for the parameters 

and their variance covariance matrix obtained through the minimization of 

the function ( L T Z' L) and in keeping with the constraints imposed 

by the a priori statistics of the parameters (L o ) 

F ° The matrices B, APL, C, and depend on the particular data 

type processed while the matrices U and Q are general for all obser­

vational types and depend solely on the numerical integration of the 

physical libration angles. All partial derivatives matrices are evaluated 

for Lb, v, , . 

3.32 State Transition and Parameter Sensitivity Matrices. 

The state transition and the parameters sensitivity matrices were 

defined in section 3.31 as 

7TU= rrap 
bya 

and 

Q = ra O ] 
T 

where 

and 

(a=[C22gC2Cr 

The only mathematical expressions that relate indirectly the quantities 

[Tr,g p,, b] at a particular epoch to the vectors yaand 9are the second 

order differential equations (3.23.3) derived in section 3.23. Of the 

many methods known for the formation of the matrices U and Q [Escobal, 

1965] the one presented by Anderson [1964] will be used as a basis for 

the developments in this section. In denoting differentiation with respect to 

yaand oathe superscript a will be omitted hereafter. 

The following vectors are defined: 
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Equations (3.23.3) and the U and Q matrices can be written in the new 

notation as follows: 

U J (3.32.1) 

6P] (3.32.2) 

From the discussion on the nature of the numerical integration process 

in section 3.31, the following variational equation can be written: 

J J4] - 6[ + -j. = .
[]+ .&@] 6 (3.32.3) 

The variation in [T4T] T is developed in terms of 6y and 6 p 

=
•6Y + 1 6(P U " + Q .6(p (3.32.4)
 

Substituting equation (3.32.4) inequation (3.32.3), itfollows: 

6 e. u. 6y+ (E Q +H) . 6(p (3.32.5) 
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But the variation in [.j can be obtained also by differentiation with respect 

to time of 6 which yields 

6+ 6 (3.32.6) 

A variational equation holds for an arbitrary variation in the independent 

variables so the coefficients in front of 6Y and 5p can be equated one by 

one. Two first-order differential. equations are the result of this operation: 

(3.32.7)
 

Solution of these two sets of differential equations can provide the 

two matrices U and Q. So the problem narrows to the derivation of 

expressions for the matrices ( and D, which then can be used to integrate 

numerically the equations U and Q and result in the determination of the 

matrices U and Q along with the integration of the physical libration 

angles (4). The Sand It- have been defined as follows: 

Euler's dynamic equations (3.22.6) were formulated for [rpOB] rather 

than for [rap] and also the quantities [L6Y] rather than [C22 C ] 

appear in the expressions. So the chain rule for partial differentiation 

is employed as follows: 
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4 ] At d l ~(3.32.8)
 

LP -__ (3.32.9) 

"" - 0 .7(3.32. 10) 
C22 

a a 8 a 8 

The functional relationship between [;p 61 and [T a.] is stated 

again: 

0 IZ + Q (3.32.11) 
0 P~+ 1) I 

Equations (3.32.-il) are differentiated with respect to time and yield 

(3.32.12)L[ -J 
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The inverse relationship is derived from equation (3.32.12) and is 

differentiated once more 

.. 
.I =Io ' +.-~ (3. 32. 13)a-~ 

IP] L j 
can 

performed easily: 

Now the partial differentiation of [r a p] Twith respect to ['P Of be 

(3.32.14)- = 1 

From equations(3.32.11) and (3.22.12) it follows: 

* 1 0 

- 00 1 0 (3.32.15) 

-f0 0 1 

P
 

L P 


From Appendix A and substituting A,B,C in the expressions for a,-, y 

it follows 

• (Cx +2C.) 
C~o -(2-48)"- C22 

= 0 (3.32.16) 

-48C2 
(1 + Cao - (2-2/)- C2 
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The squared denominators are defined as auxiliary quantities DI and D2 

D = [Co- (2-4). C2] 2 

(2-2 ).CA2=D2 

Differentiating equations (3.32.16) and simplifying the results 

45 I 48(1-0)- C2 , CO - CL -48 (1-) •C2 
ID Di D, 

L = 0 1 0 (3.32.17) 

(1+8) - 2 -, 

4f3 D2I CI D2(C--C ID24C2 , $ i 

It should be pointed out that the a , 8, y ratios are not independent 

from each other. They are related by the equation 

=U -$ + Y - i87 0 (3.32.18) 

For this reason, the matrix of partials (3. 32. 17)is of rank two. 

Appropriate measures will be taken, in the adjustment to avoid singularity. 

Equations (3.22.3) and 3.22.6) as derived in section 3.22 

are rewritten as a starting point in deriving the three remaining partial 

derivatives matrices: 

I~ 

S [] [,]
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j0 0 xz + 4Y [ 
0 0 7 1+ 

xy xyrs x 15 W, W2 
rex] 

I+L ez 

rety 

R().•R (-) • . . . eI (3.22.6)-

[ez 

=E ( 6) ( 0 + R3(0) e + .(3.22.3) 
0) \L 4' J L ezj/ L 

From section 3.22, the following relations 'hold: 

Y[XIMMf.zE XI 
where 

M = R3(p) , Rl(-e) •a(o) 

The matrix W" was derived in section 3.22 as follows: 

[ sinc cot0 cos pcot6 1] 

W = -sinp csc e -cos csc 0 (3.22.5) 

[-cos p sinp 0 

Euler's dynamic equations are written again substituting auxiliary 

vectors TA, Ts, Tc, and TD 
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" TD ; TD 0 TA -TBPo Tc (3.32.19)"K 
-


o o i
 

where 

TA -E z -xz !-- . WS (3.32.20) 
r E Jr -­x y x y s o . 

TB = Ln. R 3 ( ) •R 1(- G)* -R(p). R 1(-6) L .6 (3.32.21) 

(For differentiating rotation matrices, see Appendix E) 

e xjF-0[ 
Po = 0 +B(@) ey (3.32.22) 

r e J 

Tc = M I] ey (3.32.23) 

lez 

A series of intermediate differentiations are performed 

xyz T =r, I I"1 

"3. I-I I M .L3. -3(P) Rl(- L)'- R3 Y 

II-Lzj 


Ca1
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6 

'Ci 

Two .3 x 3 matrices are evaluated; one for the Earth C2 and
 

[CI-
 CS 

another for the Sun C2 

I Fedj~~o e oiM -Rs(g)" Rj(-6). 1," Po5P~~~ h'3P-R(-)T ,W, se ­
w'eW I1

ez ] lEE] 
[ .I 
 0 o -1 ] 

= R(]PR3 ).R 1(-6) 0 0 of+1 0 [F]0 

o1 0 J L' 0 o J F_, 

rcosPcote -sin Pcot0 0
 

-cos Pcsce sinp csc o
 

0 J
sing cosP 

-sinp cscO -cos s e 6 0 
sing cot 6 csc 6 cosfcot ecsce 0 

L 0 0 0 

Now the three partial derivatives matrices necessary for the for­

mation of 0- and P can be evaluated:
 

+ -1 a Tr, (3.32.24) 
, [J 6 T TT D 0 [ oT 
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=TWj1 6 (3.32.25) 

TA(1) 

] 0 TA(2) 0 (3.32.26) 

_____ _ - w j- 0 0 

6[aBy]T W a[&8 yIT 
;80 
 0 TA(3) 

where 

-= 
1 

oT 0] (__T' PQ) 'aT,oT •j B_
8[¢ d. [ o] - [(T o1P[p) el 

~p4,6 to0o 0] I 4 J 

.TA _ 3kE i[z-z yT 3kS [yz-xz yST
 

p ] rE r.
 

3[ep_$ ]T 

3k2E C2* Zi+ C Y-C k-2S5 H * z C s Y G2. Ws +Gs ]-C3z ] 
-l:C-,s"-
 -•G t- ]s -- 3 G ' 

LCl' Y+ C2"' X Ecl. y+C 2 'X s Gj • ()2 G2- (1 

a (Ts - F) = T I 'eip 0B ISs-Ts. Po TB- Is,. R3(0). ey -TB h .PO
I 

' 

Pez
 

,Fex 't o x 

[(p = ]Tc 193 " "T iM"i 's - )1 eeJ
 
Lez 
 L e..J 
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6 _ 0 B 01 6[CA 2 WpWW W,?] aj7
 
[e46T a t,]T 	 T a 

z0 	 I 
0 0/i 

F F2 W3 + Fs W2 
F W.,o
IT =,]	I -F, ctb 


L F1 . C2 + F2 W
 

F(T" ln) [Is" R3 (€)"R1(-e)"po 0 -lt(Q)R(-G)" T + T[ 0 

10 1 0 

- 0 4 	 "Tc 0 

This completes the derivation of the G and P matrices. No attempt 

was made to simplify the results and to put them together as the only 

criterion used to judge the final forms was the efficiency with which they 

can be coded. 

U and Q matrices were generated by numerical integration using the 

coded e and 4) matrices over an interval of several months. For the 

same interval another set of U and Q matrices were generated using 

numerical differentiation [Escobal, 1965]. The agreement found in the 

corresponding elements of U and Q was usually better than five significant 

digits. This was considered as an indirect check on the derivation carried 

out in this section. 



3.4 	 Fitting Numerically Integrated Physical Libration 

Angles Into Existing Solutions 

The approach taken by J P L in creating the numerically integrated 

lunar ephemeris was discussed in section 1.31. Fitting the numerically 

integrated ephemeris into Brown's ephemeris was defined as the product of 

minimizing the differences between the position vectors at a series of 

corresponding epochs along the lunar orbit. There are other criteria that 

could be used to define the minimizing function ; however, it appears that 

fitting one trajectory into another does not represent conceptual difficulties. 

In order to test the proposed method -for the solution of Euler's 

dynamic equations and also to come up with provisional standard epoch 

values for yo (section 3.31) an attempt is made to fit the numerically integrated 

physical libration angles and time rates into an existing solution. 

Eckhardt's solution for the physical libration angles using Koziel's 

values for f = and ID is used to generate "observed" physical libration 

angles [Eckhardt, 1970]. The basic problem to be clarified prior to the 

actual fit is the definition of a "best fit" of one set of physical libration 

angles into another. The main difficulty is in the fact that unlike the case 

of trajectories, the physical libration angles are used invariably as a 

means for determining the orientation of the xyz selenodetic 

coordinate system with respect to the MOD ecliptic system after an appro­

priate conversion into Eulerian angles. It may be possible to come up 

with two different sets of physical libration angles that will result in the 

same transformation matrix from MOD ecliptic into the selenodetic 

system. If the transformation matrix is the goal, it seems reasonable to 

seek minimization of the differences between the corresponding elements of 

the "observed" transformation matrix and the numerically integrated one. 

Another approach to the 'best fit" problem can be developed by 
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analyzing the relations between variational rotations around the x,y,z axes 

and variations in the physical libration angles. The following two sub­

sections will treat these two approaches. 

3.41 	 Spatial Angles Approach. 

Two xyz coordinate systems are considered: 

Z zbl 'z0 

It 

lI
 

Sy 

y b 

XC tx : y 

xxxx 

Figure 3.3 Spatial Angles Diagram 

(a) An "observed" [xyz]b system defined in space by three rotations 

from the ecliptic mean system XYZ through Eckhardt's Eulerian angles. 

(b) A "computed" [xyz]0 system defined in the same way like (a) 

but using the numerically integrated Eulerian angles. 

Actually "observed" and "computed" are the physical libration angles 

r, a, p which are transformed into Eulerian angles through LD, 01), and I)) 

(section 3.22). 

The best fit is defined as the solution for y/ and p (section 3.31) 

that minimizes the spatial angles t., t, t. between the "observed" and 

"computed" axes x, y and z, respectively (see Figure 3.3). 

Mathematically, the two xyz systems are defined by the respective
 

transformation matrices
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xx 
b b)  Y = Rs( " (-O •R3(0~b). Y -- B Y(3.41.1) 

Z Jb z 

Rs((pBT"CY. Rl(-e)"J RY Y C. Y (3.41.2)
zI o L j z 

=B and C are orthogonal so B"m Bf and 

Z 
 b
 

Substituting 
 Y in the equation for 
 y_Z -z o
 

B Tx C.- y = D y (3.41.3) 

Z thZ 
 Z b 

D is an orthogonal transformation matrix from the "observed" to the 
"computed" xyz system. 

D will be the identity matrix in case B =C, i.e., when the two 

systems coincide. 

Examining the diagonal elements in D 

d~i are the cosines between xb and x0
 

dz, of the spatial 
 the yb and y' respectively 

d33 angles t X ty t z axes I zb and z0 
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For D = I (identity matrix) 

=
dI= d2 = dw 1 

and the spatial angles are zero 

tx = ty = t = 0 

The adjustment process is defined as the estimation of ya and q' 

that will minimize the spatial angles t,, t,, t, at a series of consecut 

epochs. 

The following notation is used: 

Parameters: 

nominal initial values 0 PO s I ,T° go, 0 , II}Om physical constants C2, 8, C 

4a adjusted 

{
corrections in the sense Y 
q ~ = (po +p 

Quasi Observations:
 

spatial angles
t 
calculated by the use of Eckhardt's and the 

°
 tz nominal (based on y , o) angles. 

tX la 

ty adjusted spatial angles. 

t J 
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The mathematical model of the least squares fit can be written now 

t . ja tta t t ,]j 

ty L:;i + [i " (3.41.4) 

Introducing the U and Q matrices (section 3.32) 

1 0+ brt. t, t, IT 

LtI [t] + M[T(IT ]T [U:Q] [)'J
tZ t
 

In auxiliary notation 

Vi = + Ati [U 1 Q [i j 	 (3.41.5)L i 

- The subscript i indicates the i set of observation equations corre­

sponding to the i epoch. 

The function that is minimized is 

l t + i + Z T V 1 	 (3.41.6) 

And the solution follows according to Uotila [1967]: 

ug,-- UT Ii"< A[.:
SA 	 At [U - QQ AtJ Li 

(3.41.7) 

The matrix At and vector L will be developed explicitly in terms of 

Eckhardt's 	and the numerically integrated angles. 

Assuming the t., ty, t. angles to be small 
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______ 

sint, = 1 2-d 

t _ sint, = 1-d2 

A, = 	[nJ ]
-dX
 

~~[r apP 1 1 112~c48] 	 1~~[d d 

[t ty 	 t . t_ d_
 

rl di03 l fo scin2.2
 

d0 0
[dt. dy. dtjT d,
 

1 -
o 01o 0
 

1l -1 	 0 
]Tr GI0 0 = (from section 3. 32) 

0 0 1 

The transformation matrices B and C as defined above are partitioned 

B = B ; =[C21B11 	 C2 
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di C, "B,
 

d C2. B2
 
c I C3 BIt 


SBCs. BJBj
 

6 d__d2d___ ] B 
rp[ toa] T = I bC 2 .cBJ . . . . . . . 

C -__aBJT.C B 
3C 3 

C = R3 (o) • R1 (-6) R3(0) 

Matrix C is differentiated using Lucas matrices L, L ., L1s (see 

Appendix E). 

__~ = L. LCac


6C
 
_-- = -R 3 (P) - R, (-0) - L • R,(0) 

The fit over a large number of epochs is simplified and the computer 

memory requirements are minimal because the normal matrix and also the 

vector of constants are created by a process of summation. As the 

numerical integration of Eler's dynamic equations progresses, at pre­

determined epochs or at regular time intervals, a layer is added to the 

normal matrix and to the vector of constants until the whole interval over 

which the fit is performed has been covered. 
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3.42 	 Variational Rotations Method. 

The variations in the physical libration angles are transformed into 

variational rotations around the x, y, z axes of the selenodetic system. 

The least squares fit is defined then by. the minimization of the variational 

rotations around the x, y, z axes. 

Euler's geometric equations (3.22.2) are used to transform 89p, 8 , 86 

into 5 , 8 ,, 5 

,-0] 
6 R3(D) R1(-6) + r o 

L 6 I + & 

where 6 , 6 ., 6 tare variational rotations of the Moon around the x, y, z 

axes , respectively. 

z 

5gy
_6 	 66$ 

Y 
x
 

Figure 3.4 Variational Rotations About the xyz Axes 
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From the relations between q, 4, 0 and T, a, p (section 3.23) and 

after some regrouping 

B ] = 0 -cossin6 sin 8a EM* Ba I. (3.42.1) 

[ I cos6-1 0 j 6p 8p 

The variations in r, a , P are identified in the adjustment process 

with the differences between Eckhardt's r, a, p and the numerically 

integrated angles. Through the EM matrix these differences are trans­

formed into rotations around x, y and z axes. Thus, the function to be 

minimized in accordance with the opening statement in this subsection is 

(62+ 6CY2 +6 2 

It is interesting at this point to express X2 in terms of 8r,8aSp 

and compare it with X1 from 3.41. 

8 X 8 I
[S 8WT 68 6 T 8a W] -E- _ EM. I = 

I Cos60-1 0] ITJ7 
0 0 1 6 p 

-= 87 2 2. (1-cos0). 6rT 8a+2. (1-cos 6) W2 +8P9 (3.42.2) 

For the Moon 6 is a small angle of about 1°30 so for the purpose 

of this comparison only 

cos e _ 1­

2 
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The result is then 

8r + (. +66 C+ 8E 2 ++ 6 ' 6oT) (0- + • 82. 6 

Considering the orders of magnitude of To and 8T, bc, Sp the last 

(fourth) term in the expression obtained is by an order of magnitude 

smaller than the rest and will be neglected. The sum of squares of the 

variations (Xa) is theii in an approximation to the first order 

X2= 6X + 5 + 8 z2 _ 5 2 +(6 • 8O)2+89 (3.42.3) 

From 3.41 

x 2t+tY2 +tz 

%X 

r~tt 

I 

6 y 'z 
/ -- 0 

/ tz byXb 

/ y 

X0 t 

Figure 3.5
 

Equivalency Between Spatial Angles and Variational Rotations
 

The comparizon is made only for a single epoch T1 in order to simplify 

the notation; however , the results are valid for any number of epochs. 
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From inspecting Figure 3.5 and as the t, ty t. spatial angles are 

small, it follows that 

X1t +t / +tY = (5 + v)+(6P + 6) + (6&2 + 5 ) = 2X 2 (3.42.4) 

The conclusion to be drawn from the last equation is that within the 

approximations made in deriving equation (3. 42. 4) the two methods are 

equivalent. However, the computational effort involved in applying method 

2 is considerably lighter. 

The mathematical model for method 2 and the consequent solution 

follow the same logic as for method 1. 

Notation: 

F 1o rotations around x,y,z computed from Eckhardt's 
yI - angles and numerical integration of ', a, p

[ ~J based on (y', Qp°) 

[y - adjusted rotations 

y 0', y, a y, q, are the same as defined in 3.41 

= y [U Q (3.42.5)= +' 1 U[rp (] [UQ 

From results obtained in this subsection 

rb 
oI T 

a0LI ar 
0I[P - pb J 
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Using auxiliary notation as in 3.41 an observation equation set i 

can be written as follows: 

Vi = Em," Li + [EmI 0]. [U1 Qi] (3.42.6) 

The solution minimizing > V T Vi is 
i 

- [ J" 0 [Emi 0]'[Ul Q] Q| L " Emi"- Li 

(3.42.7) 

Method 2 was used to perform a series of least squares fits into 

Eckhardt's angles over various periods . Results and diagrams are 

given in Chapter 5. The residuals after the fit were not subjected to 

extensive analysis as the purpose of this mathematical development was to 

demonstrate the compatibility of the new method with conveitional solutions 

and also to obtain provisional initial values for the physical libration angles. 

The residuals in T, a, p shown in Chapter 5 suggest patterns which may 

lead eventually to a better understanding of the differences between 

Eckhardt's solution and the one based on numerical integration. However, 

such an investigation appears to be well beyond the scope of the present 

work. 
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4. SIMULATION OF ENVIRONMENT AND OBSERVATIONS­

4. 1 Introduction 

In Chapter 4 a sustained effort has been directed towards the creation of a 

self-consistent simulated environment of the Earth, the Moon and man-made 
satellites in which a variety of observational activities take place. The celestial 

bodies involved move and rotate according to the laws of Newton and Kepler; 

the satellites revolve around the Moon in accordance with the forces acting on 

them. The observations are generated realistically, while at the same time 

they are free of any unaccounted effects. The solution presented in Chapter 2 

aims at estimating certain parameters which represent existing physical pro­

perties of the real Moon; it solves for the initial state vector of a satellite 

orbiting the Moon and in general the situations treated are rather complex. 

All this implies that any simulation short of accounting exactly for all the 

gravitational phenomena taking place (which are solved afterwards) cannot be 

useful for investigating numerically the feasibility and merits of the theoretical 

solution proposed in Chapter 2. 

Simulation of environment and observations has become a standard 

tool for testing theories and computational procedures in many fields of 

science. In a sense, use of simulation in research can be considered 

indispensable. 

Sooner or later any scientific research reaches the stage when the 

theories and procedures developed have to be tested by exposing them 

to actually observed phenomena. Discrepancies between theory and 

observations lead eventually to an improvement of the theory and also to a 

better understanding of the phenomena involved. 
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Sound as it is, this approach is rather expensive in time and effort 

required on the part of the research worker-a great deal of luck is 

needed too. Observations are never free of unaccounted effects, and it 

is with a large degree of optimism that one makes the convenient assumption 

that they are randomly distributed and as such can be handled by statistical 

analysis. 

With the advent of the electronic computer, a new option became 

available to the research worker. Very complicated situations can be 

programmed, and observations can be simulated with an absolute knowledge 

of the effects embodied in them. The simulations are usually designed 

to follow closely the actual (true life) situation. In the early stages of 

a study, it is helpful to have a reasonably representative model which is 

absolutely free of unknown phenomena in order to acquire a better 

insight into the problems involved and also to develop a feeling for the 

general.behavior of quantities which play an important role in the area of 

study, For this purpose the simulated model can be rather simple so 

that the main structure is clearly visible. It is judged qualitatively 

and not quantitatively.' In later stages of the study it becomes more 

important for the simulated model to follow as closely as possible the 

true situation. It is necessary for the smooth transition from the 

simulated to the true environment. This would require a very compli­

cated model up to the inclusion of marginally significant effects. 

The problem of designing a simulated model of the Earth-Moon 

environment was solved by a compromise. It was clear that the scope 

of the present study does not justify the design of too complicated a 

model. On the other hand, the results of this study will have to be 

applied at a latter stage to the true case. The compromise was the 

design of a moderately complex simulated model that exceeds the needs 
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of the present study, but holds the promise for future applications in 

more advanced stages of the research. 

Whatever the level of 

care­

complexity of a simulated model, it has to be 

fully consistent. Consistency is to be understood here as conceptual as 

well as numerical. The basic set of constants are to be selected 
fully so that the exact relationship among them in accordance with the 

model of simulation are absolutely valid - no' discrepancies or contra­

dictions of any kind and magnitude can be tolerated. Numerically, the 
quantities generated should contain sufficient number of correct signifi­

cant digits to conform to the anticipated noise in the observations. For 

example, if the noise in heliometer observations is believed to be about 

0'.'02 - 005, the lunar ephemeris needed to simuiate the heliometer 

observations will have to be precise to the degree that will insure 

observations better than '001. 

There is certain danger in relying too heavily on conclusions reached 

from the analysis of a simulation. The models used to generate the 

simulation are occasionally the same ones employed in the reduction 

procedures. Unless programming errors interfere, the procedures will 

prove to be invariably successful. However, the first contact with 

reality, i.e., the use of actual observations will cause a serious shock 

which in some cases may shatter the whole theoretical structure of the 

analysis. So, useful and convenient as it is, numerical simulation should 

be utilized with utmost care and watchfulness. It is the real world that 
we want to analyze and not the simulated model, no matter how skillfully 

it has been created. 

The design of a simulated model of the varth-Moon environment presented 

a unique opportunity to develop some new ideas in astronomy. Instead 
of formulating and programming models based on concepts and expressions 
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as published in textbooks, a difficult but promising approach was taken. 

The theories, models and constants relevant to the Earth-Moon Environment 

were subjected to intensive study. The objective wag to gain a profound 

understanding of the basic problems and postulates which have served as a 

starting point in developing the conventional solutions. Another goal was 

set to determine a minimal set of independent parameters. The astronomical 

problems were solved then consistently using a new approach. The result is 

a compact and geometrically well-defined astronomical model. No attempt is 

made to point out differences or similarities. As this development is confined 

to the simulated model only, it was felt that there is no need or justification 

for comparison. Rather a continuous exposition is made, and the theories are 

developed as if no other ways exist for solving the same problem. 

It would be presumptuous to regard the developments in this chapter as 

applicable to the analysis of actual astronomical observations. However, 

changes in relevant astronomical'models in the future should not be ruled 

out. The impact of computer technology has left many areas in astronomy 

unaffected; in many cases the computer has been employed as a mere 

substitute for the human in performing the calculations without bringing 

substantial changes in the approach to the problems. Instead of triggering 

a critical examination of concepts and fundamentals, the computer produced 

merely amendments to the available procedures. 

In the following sections of this Chapter the simulated environment 

is unfolded step by step beginning with definitions and fundamentals, adopting 

a set of basic constants, through development of the equations of motion and 

finally presenting the theory for the generation of the various data types. In 

order not to refer too often to definitions and facts already stated in Chapters 1 

through 3 the liberty is taken to repeat some of those without indulging in 

lengthy discussions. 
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4. 2 Fundamentals of the Simulation 

The celestial bodies descirbed in this Chapter carry the names Earth 

and Moon and in their properties closely correspond to the real Earth and 

Moon. However, by definition they are part of an abstract model. As 

such anything related to them is or is based upon abstract assumptions. 

So in stating the "facts" and "constants" of this model it should be 

remembered that these are facts and constants existing only in the 

abstract model created in this Chapter. 

The simulated Earth-Moon environment is composed of the Earth, 

the Moon and one or more man-made satellites usually in the vicinity of 

the Moon. The mean distance between the Earth and the Moon. is of the 

same order of magnitude as in the real case. The basic framework in 

the simulation is an inertially oriented right handed Cartesian coordinate 

system (XYZ). It is defined implicitly by infinitely distant fixed stars 

so that all the directions to any of these stars from points within the 

Earth-Moon environment are perfectly parallel. Numerically this 

coordinate system is chosen identical to the mean ecliptic system of 

some standard epoch. 

An infinitely distant illuminating source serves as the "Sun" in the 

simulation. It moves on the XY inertial plane in a positive direction 

(from X to Y) with an angular velocity similar to that of the mean sun. 

All the illuminating rays of the "Sun" crossing the Earth-Moon environ­

ment are perfectly parallel. The "Sun" does not have any gravitational 

effect on the Earth-Moon environment. The only celestial bodies which 

exert gravitational attraction are the Earth and the Moon. Man-made 

satellites in the system have negligibly small masses. The center of 

mass of the Earth and the Moon ( the barycenter of the system ) is 

regarded as an inertial point in space, i.e., it is considered to be 

stationary or moving at a constant speed in a certain direction. 
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The particular inertially-oriented system (XY Z ) centered at the 

barycenter is the fundamental coordinate system of the simulated environ­

ment. The motion of the Earth, the Moon and any of the man-made 

satellites is defined with respect to this system. In some cases, how­

ever, it may be convenient to transform the motions to non-inertial 

points like the geocenter or the selenocenter. 

The Earth is a perfectly rigid body. Its topography is identical to 

that of the true Earth. Its reference figure is a rotationally symmetric 

ellipsoid. Four radio tracking stations measuring range and range-rate 

and three optical observatories are defined at locations where actual and 

presently active stations are engaged in observations of the appropriate 

type. Two additional optical observatories are defined which were used 

in the past for conducting heliometer observations of the Moon. 

An average terrestrial right handed Cartesian coordinate system is 

defined (UVW) which is fixed to the Earth, centered at its mass 

center and is oriented so that it coincides with the principal axes of 

inertia of the Earth. Where such axes are not defined (on the equator 

of a rotationally symmetric Earth) the UW plane contains a certain point 

on the Earth's surface (Greenwich). The total motion of the Earth with 

respect to the fundamental coordinate system is defined by the translatory 

motion of its center of mass and by the rotation of the average terrestrial 

system about its origin. 

The gravitational field of the Earth is given in terms of a spherical 

harmonies expansion. The only coefficient in the expansion apart of the 

central (zero degree) term which is not zero is the J2 . The three 

principal moments of inertia of the Earth (A, B, C) are consistent with 

the value of J2 and the ratio g= C-A For derivation of a value for
A 

g to be adopted in the simulation see Appendix B. 

The Moon is a perfectly rigid body. Its topography is that of an 

exact sphere. The center of the sphere is shifted from the center of 
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mass. On the front side of the Moon (the side facing the Earth) 30 

triangulation points are chosen evenly spaced and in areas on the true 

Moon where there is an abundance of craterlets of 3-7 km diameter 

range. The crater MiSsting A and also the crater Bruce in Sinus Medii 

are among the 30 points. 

A selenodetic right-handed Cartesian coordinate system is defined 

(x y z) which is fixed to the lunar body, centered at its center of mass 

and is oriented so that it coincides with the principal axes of inertia of 

the Moon. The motion of the Moon is defined in a manner similar to 

that of the Earth. 

The mass of the Moon is related to that of the Earth by a constant. 

Dynamically, the Moon is a more complicated body than the Earth. It 

is a triaxial ellipsoid with a set of 12 mass-points superimposed on its 

triaxial dynamic figure. C2 and C2 are the only non-zero coefficients 

of spherical harmonics expansion of the triaxial ellipsoid, apart of the 

zero degree term. The 12 mascons are selected so as to satisfy 

certain conditions. The conditions are that their total mass and also 

their first and second moments are all zeros. This was considered 

necessary in order to retain a basically rough gravity field as far as a 

close lunar satellite is concerned and at the same time not to complicate 

unnecessarily the equations of motion of the Moon itself. The three 

moments of inertia (At B', C') are consistent with the C2D, C2 valuesI IA 
and also with the ratio 8 -sr--- taken identical to the presently 

accepted value of 8 for the true Moon. 

The man-made satellites are defined as bodies of negligible mass 

and physical dimensions. No parallax exists between mass center, the 

calibrated point of the transponder for radio measurements and the 

principal point of its camera or other sensor. No orientation jets or 

other physical effects disturb the perfectly gravitational motion. In 

designing the various satellite orbits no consideration is given to their 
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trajectories prior to the circumlunar orbit. 

In order to define exactly the position and orientation of the Earth 

in the fundamental coordinate system six quantities are necessary-three 

for the position of its mass center and three more for the orientation of 

the UVW system. The same applies to the Moon where six more quantities 

are needed to define its position and orientation with respect to the funda­

mental inertial coordinate system. Because of the fact that the barycenter 

always lies on the vector defined by the centers of mass of the Earth and 

the Moon and moreover, its distance from the Earth (or from the Moon) 

is a constant fraction of the total distance between the two mass centers, 

it is sufficient to define the barycentric position of the Moon, that 

of the Earth being along the same radius vector at a known fraction of 

the Moon's distance from the barycenter. This reduces the total number 

of independent quantities needed to define the position and orientation of 

the Earth and the Moon to nine (see Figure 4.1). 
I 

-S/1 -

X/• ! L 

Figure 4. 1 Position and Orientation of the Earth and the Moon. 

The meaning of the symbols in Figure 4. 1 is as follows: 
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E - Earth 

M - Moon 

B - barycenter
 

XYZ - fundamental inertial coordinate system
 

UVW - average terrestrial coordinate system 

xyz - selenodetic coordinate system
 

7f, X, E - Eulerian orientation angles of the Earth relating the UVW
 

system to a coordinate system centered at E and parallel to 

the XYZ system. 

p, 4, 6 - Eulerian orientation angles of the Moon relating the xyz system 

to a coordinate system centered at M and parallel to the XYZ system. 

4. 3 	 Constants of the Simulation 

The best known presently values were selected as basic constants. The 

list of constants adopted by the IAU in its resolution of 1964 was the main 

source. Additional constants were taken from NASA and JPL publications, 

also from reports by other scientists or groups working in this area of study. 

4.31 	 The Earth. 

k2- E = .297556 1016 km3/day 2 - Earth's gravitational constant 

J2 = .0010827 - second degree zonal harmonic 

a. = km ­6378.16 	 equatorial semi-diameter of 

reference ellipsoid 
f = 1/298.25 - flattening of reference ellipsoid 

C- A = .00227802' - dynamical "flattening" where=A 

A, C are the equatorial and 

polar moments of inertia 

WS = 6. 300388098 rad/day - diurnal rotational speed 
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No. Name Type U V W 

1 TUCSON OPT -1996. 0051 -5042. 6961 3360.7748 

2 PIC DU MIDI OPT 4686.1252 11.6385 432.1. 0499 

3 JOHANNESBURG OPT 5058.2628 2698.0251 -2799.8019 

4 GOLDSTONE RRT -2351.1949 -4655.5944 3661.0605 

5 WOOMERA RRT -3978.5840 3724. 8986 -3302. 3278 

6 JOHANNESBURG RRT 5085.4787 2668. 3035 -2768. 7011 

7 MADRID RRT 4845.7274 - 360.0147 4125.7615 

8 BAMBERG HEL 4051.6351 779.4787 4864.3305 

9 KAZAN HEL 2369. 2457 2707.8489 5266. 5740 

OPT- Optical, RRT- Radio, HEL- Heliometer, U, V, W in kilometers 

Table 4. 1. Geocentric Cartesian Coordinates of Observatories. 

4.32 The Moon. 

E 

M = = 81.3 - ratio of mass of the Earth to that of theM 

Moon 

= -. 000207C20  

- second-order harmonics 
C22 . 0000207i 

= 3.6696 - ratio of equatorial semi-axis of Earth 

ellipsoid to mean radius of the Moon 
C' -B' A 

= .000629 - ratio between Moon's principal moments 

of inertia 
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No. Mass x y z 

1 19.0694 1619.1766 - 433.5269 449.3554 

2 -20.0394 1532.2877 559.6170 593.9678 

3 15.3805 1497.0175 866.7468 - 151.9861 

4 -11.8910 1630.7870 1.0000 - 594.9678 

5 11.7378 938.9899 - 940.4899 -1117.7341 

6 -12.7844 1110.4827 -1325.4011 - 151.9861 

7 2.8233 750.1227" -1302.5808 868.5538 

8 - 6.0431 836.9416 - 223.9277 1504.7454 

9 10.0246 715.6442 856.8510 1330.9677 

10 - 8.0542 582.9365 1609.4737 301.3192 

11 8.1149 750.1227 1304.5808 - 869.5538 

12 - 8.3384 750.1227 435.5269 -1505.7454 

Mass in 1 - of Moon's mass; x,y, z in kilometers 

Table 4.2. Mass and Selenodetic Coordinates of Mascons on the Moon. 

No. x y z 

1 284.7144 - 164.8233 1705.6738 

2 267.3828 742.4968 1548.1653 

3 298.9995 -1050.4536 1350.2634 

4 950.9536 ­ 484.8089 1369.1476 

5 897.8094 293.5282 1457.1998 

6 297.0151 1298.3423 1116.7341 

7 1013.5746 -1088.6066 894.6916
 

8 1453.2020 - 75.2901 
 946.1413
 

9 1076.7970 844.2392 
 1069.5859
 

10 
 341.1861 -1615.9158 536.6048
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11 1506.4731 

12 1577.2501 

13 341.1861 

14 1157.6880 

15 1735.3430 

16 1106.4064 

17 1726.6207 

18 490.5786 

19 1499.1838 

20 294.7339 

21 1211.2688 

22 1511.8985 

23 1004.3727 

24 257.4499 

25 1155.7211 

26 1055.5706 

27 449.7967 

28 940.5390 

29 377.2905 

30 305.4515 

- 767.8602 


544.9516 

1617.9158 

-1287.5193 

1.0000 

1322.5432 


- 150.2785 

-1611.7874 

733.4201 

1686.6973 


-1091.8823 

- 131.4927 

1244.3842 


-1221.9682 

- 614.8371 

741.8690 


1120.4735 


83.5052 


-378.7905 


368.0022 


x,y, z are in kilometers 

390.4892
 

478.5874
 

536.6048
 

120.7443 

29.8342 

211.3220 

- 91.4655 

- 420.9863 

- 479.5874 

- 302.3192 

- 594.9678 

- 843.1513 

- 679.6328 

-1207.8911 

-1140.8012 

-1163.5211
 

-1250.7900
 

-1458.1998
 

-1653.5386'
 

-1671.2764
 

Table 4.3. Selenodetic Coordinates of Triangulation Points on the Moon. 

The selenodetic coordinates of the center of the Moon's sphere are as 

follows: 

-2.5; y = 1.0; z = -0.5 (inkilometers).x = 
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4.33 Illuminating Source "Sun". 

The longitude of the "Sun" measured from X in a positive direction (to Y) 

is given by the angle X: 

X X + X(T-To) 

) = 4. 8815286 rad 

X1 = .0172027913 rad/day 

T epoch for which X is required inJD. 

To = 2415020.0 JD, standard epoch (1900.0). 

4. 34. Initial Values for Position and Orientation of Earth and Moon including 

Linear and Angular Velocities. 

The inertial (barycentric) position and orientation of the Earth and the 

Moon are obtained from the solution of the differential equations of motion. 

As shown already, because of the particular configuration of the mass centers 

of the Earth and Moon with respect to the barycenter, the position of only one 

of the mass centers has to be solved, that of the other being obtained in a 

trivial way. Thus the total of 12 = 2 x (2 x 3) second-order differential 

equations is reduced to nine. The solution of these equations requires the 

determination of eighteen arbitrary constants of the integration. As it is 

shown in section 4.4, the integration is performed numerically, so the 

arbitrary constants are actually the initial values of position, orientation 

angles, and their time rates. The differential equations for the translatory 

motion of theMoon's mass center are written with respect to the geocenter so 

that the eighteen initial values that need to be defined are as follows: 

X0 , YO, Z o, X0 , YO, Zo - geocentric position and velocity of 

the Moon 

(PO,,o ,'o, . 0 , eo - Eulerian angles and their time rates 

defining the orientation of the seleno­

detic system (x y z) with respect 

to the inertial (X Y Z) system 
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7o , ko, Eo , 7o , 0 o Io 	 Eulerian angles and their time rates 

defining the orientation of the average 

terrestrial system (UVW) with respect 

to the (XYZ) system. 

These eighteen initial values are defined for a given epoch at which the 

numerical integration begins. In order to be flexible in the choice of such 

initial epoch no fixed numerical values are given for a particular initial epoch, 

but rather the method and the equations are given with the aid of which the eighteen 

initial values for any desired initial 	epoch (TO) can be evaluated. 

4.35. Motion of the Mass Center of 	the Moon. 

X These six values are the geocentric position and velocity 

YO components of a Moon that moves in a Keplerian orbit. The 

Zo parameters of this orbit are taken identical to the mean 

tko orbital elements of the true Moon at epoch To. (020, wo, o,
 

mean
t io, eo, no -longitude of node, argument of perigee, 

Zoj anomaly, inclination, eccentricity, and mean motion). These 

parameters are explicit functions of time as follows: 

Q -4.523601515 -0.9242202943 -10' +0.271952 •10-1 +0. 07156 •10 ­

-2 1 2 3 1w o 1.3115 5 0 0 2 4 +0. 2868588296 .10 -0.162264 . 10- -0.5009 . 10 


-1 2 ­to 5.168000340 +0.2280271350 +0.120256 .10 40.43616 .1 0 20 d 

i 0 0.0898 0.0 0.0 0.0 d2 

ee 0.0549 0.0 0.0 0.0 [d3 

- 3 	 ­1 1 02042 10 0.0-no L0. 2299715030-0. 296454 10 +0. 1 20 
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The coefficients are in radians or radians per day' (i= 1, 2, 3); d = To- Too
 

in Julian days; Too = 2415020.0 J.D. The coefficients are from [AENA
 

Supplement, 1961].
 

The transformation from Keplerian elements to state vector param­

eters Xo, Yo, Zo, Xo, Yco, Zo is performed using an iterative solution of
 

Kepler's equation and well known formulae as given in textbooks .[Mueller,
 

1964].
 

4.36 Eulerian Angles of the Moon. 

+'Po- Wo ,5o+ IT -] To - go­

o )o 0 o-aeoj I + *Po, 

o P0 
0 01 

where
 

IT = 3.14... radians
 

00, o,to are the same as defined for the Moon'sKeplerian orbit. 

-,wo, o are the time derivatives of the same quantities. 

r, co, Po, To, 0o,po are the physical libration angles and their time rates 

at To. 

The physical libration angles are obtained from the following expressions: 

1o = 0.026769 radians 

o=1.7 
/I 
sin a1 +916 sin % -!.4 sino% 4:2. sin a4 - 3 5. sine% - 16.9. sin a6 

/

+if0. sin a7 +153. sine2 +10.'O sin a9 

Io'co =-3.0 sin a3 -106 sin Oot-23"'8 sin ai+2"5 sin a4 -100."6 sin a6 
Po =-31i cos al -1of8 cos 1 I0+23'8 cos o 98.4 cos a.%-1'9 cos a4 -

The coefficients for the physical libration angles are taken from [Eckhardt, 1970]. 
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a1 2F o - 2Do U 7 = 2-t 0 - Zo' -2D 

= 8 = 2 -2F 

U 3 = t o - to - Do a 9 = 2t o -2D 

O 4 = o -2Do ao = 2Fo 

= t0 Do 1 1 = to -2Foa 5 

ase = "to 

Table 4.4 Arguments of the Terms in the Physical Librations Harmonic Series. 

The arguments a i are linear combinations of the so called Delaunay 

arguments as given in Table 4.4 . 

to, 1.o, Fo, Do are Delaunay arguments composed of parameters of the 

mean orbits of the Sun and the Moon and are explicit functions of time. They 

are evaluated for T o. The coefficients are taken from [AENA Supplement ,1961]. 

Fo = Lio + t o 

to = to 
-14 d2 - -0 2 d.1075.10to = 6.256583523 + .01720196977d - .196240310
 

" " d
Do = 6.121523941 + .2127687117" d - .18786737 "l0 d2 + .068.10 - 2° 

The coefficients are in radians or radians per dayi (I = 1, 2, 3); d = To- Too 

in Julian days; Too = 2415020.0 (1900.0). 

to' is the mean anomaly of the Sun 

Do is the mean elongation of the Moon from the Sun 

For ro, 60, o, the trigonometric series for r, ci, o are differentiated and the 

values for to, to, Fo, Do are obtained by differentiation with respect to time 

of the series for these quantities. 
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4.-37. Eulerian Angles of the Earth. 

-
70 -1.73993589 6.300388098 0.506407.10 ' 0.0
 

xo 0.0 0.0 0.0 0.0 1 

Eo 0.4093197475 -0.6217959-10-8 -0.214556 10-16 0.18.10-21 d 

70 6.300388098 1. 012814' 10- 4 0.0 0.0 f 

0.0Loo.0 0.0 0.0
j 
"
 o -0.6217959"10' -0.429112" 101 6 0.36 10- 1 0.0 

The coefficients are in radians or radians per day (i = 1,2, 3); d = -Too 

in Julian days; Toc = 2415020.0 JD (1900.0). The coefficients are taken from 

[AENA Supplement, 1961] and also from [lVueller, 19691. 
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4.4 	 Equations of Motion 

The constants and postulates as outlined in sections 4.2 and 4. 3 are 

used to derive the equations of motion of the bodies in the simulated system 

with respect to the fundamental inertial coordinate system (X Y Z) centered 

at the barycenter. However in order to generate data sets of the same nature 

as the ones available for the real Earth-Moon environment and also to generate 

observational data that will conform with the reduction model as proposed in 

Chapter 2, various transformations of origin will be introduced to the equations 

of motion. 

The 	data sets to be generated are as follows (see Figure 4.2): 

(a) 	 Cartesian coordinates of the Moon's mass center with respect to 

an inertially oriented geocentric coordinate system (X Y Z). 

(b) 	 Eulerian orientation angles of the selenographic coordinate 

system (x y z) with respect to an inertially oriented seleno­

centric coordinate system (X Y Z). 

(c) 	 Eulerian orientation angles of the average terrestrial coordinate 

system (U V W) with respect to an inertially-oriented geocentric 

coordinate system. 

(d) 	 Cartesian coordinates of a satellite in an inertially oriented 

selenocentric coordinate system (X Y Z ). 

The inertially oriented systems in (a), (b), (c), and (d) are all parallel 

to the fundamental coordinate system as defined in section 4.2. 

Symbols in the derivation of the equations of motion, 

k - universal gravitational constant 

E - mass of the Earth 
E 

M - mass of the Moon 

A, B, C - principal moments of inertia of the Earth, where A = B
 

A', B', C',- principal moments of inertia of the Moon, where X < B' <C'
 

a, - major semiaxisof Earth reference ellipsoid.
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Earth mass center 
Moon mass center 
barycenter 
satellite 
Eulerian angles of the Moon z zTR 
Eulerian angles of the Earth 
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Figure 4. 2. The Simulated Earth-Moon Environment, 

Orthogonal transformation 
matrices: 

TE = R3 (r), R(-E) Rs(X) 
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, 	 - radius of Moon reference sphere 

J2- second-order zonal harmonic of the Earth 

C 20 ,C 2 2 - second-order harmonics of the triaxial (basic) 

Moon dynamic figure
CC-A
C- A 	 dynamic "flattening" of the Earth 

C'A 

6= C-	 A' - dynamic "flattening" of the Moon
B~ 

-M - ratio of mass of i - th mascon with respect to the 

total mass of the Moon. 

4.41 Equations of Motion of the Moon's Mass Center. 

The potential of the Earth and the Moon integrated over the masses of 

the two bodies is given by MacCullagh's formula FBrouwer and Clemence, 1961, 

p. 132 	] 

V=k2 + E [A' +B'+C'-3(A'a'+ BB'f' +C'C'T)] 

2 + C 2	 1} (4.41.1)
-2p [2A+C- 3(A'o? +A­

where 	 p absolute magnitude of vector E m (distance Earth-Moon) 

a, , y direction cosines of Earth in UVW system 

a', Y', direction cosines of Moon in xyzv' 	 system. 

The potential V is interpreted as being equivalent to the work to be done 

in bringing the Moon from infinity to its instantaneous position and orientation 

in the fundamental barycentric coordinate system, while the Earth is kept fixed in its 

instantaneous position and orientation [Plummer, 1918]. The potential ofthe mascons 

is ignored in this analysis which is permissible regarding the specific way 

by which the mascons were designed (see Appendix C). 
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Because of the rotational symmetry of the dynamical figure of tile Earth the
 
following hold:
 

+ 2+.y2 = C;2-F " =1-V
 

A ) Cv 2 = A + (C-A)v2 

The expression for the potential V (4. 41. 1) is transformed in terms of auxil­
liary expressions in order to facilitate its subsequent differentiation.
 

EV=k2l: EM +E ' )-3 "Y 0B 0 0ME0Lp-9PP('B+C),[ # ] 0 B'0 C/Ci i] 

(CA)(I_3')'
+ - (4.41.2) 

From Appendix A it follows 

2
SEMa E a
SMamF-(39 + )C2 0 (6-6 C2 2] .. 2" D ; (4.41.3) 

S: Ma -C2 o+ (2 -4 )C2 2 
 0 
 0
 
0 B' 0 


0 0 C 
0 -C2 0+2C 2 2 00 0 CC2+.qo+(2_2 A)C2 2 

2m a G (4.41.4) 

C-A = Ea. J 2 
 (4.41.5)
 

According to Figure 4.2 and setting X = EN, 

X3 
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X1 , X2, X3 being the vector components of EM in the inertial coordinate system, 

the following expresgions hold: 

Tm' and [ = TE. -x 
Y
 

p was defined earlier as p = (XI++X X (XTo X) 

Another 3 x 3matrix is defined: 

(4.41.6)=0 0 1 

0 0 1
 

Substituting the array of new symbols in V and after some rearrangement 

V lekEL+ 2 m}V.2( XTtGTM ) 

+ . -J2 1 h2 XTTE LTEX 

k2E +a 2 ' D + 2 T T 
SaS \ X TMGTMX + TT x](4.41.7) 

InL9 2e9 K*- 2 ) - 2p 8.SXTPEL Xj 

This is the final form of the potential which will be differentiated with 

respect to B. and BE to obtain the barycentric equations of motion of the 

Moon and of the Earth. 

Let 0 be a function of X and implicitly of BE and Em(as X = BM - BE) 

5BE 6X NB a8BE 3X B
 

X -11X 

aBE 5X D~ X; 5B 
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The equations of motion of a body are identified With the second deriva­

tives with respect to time of its position vector and are denoted by the 

symbol of the position vector with two upper dots. 

Thus 

X is the position vector, of the body X 

:k is the velocity vector of X 

x is the acceleration vector of X identified with the equations 
of motion of the body X. 

The equations of motion of the Moon (BM) are obtained as the derivatives of 

the potential (V) with respect to the barycentric position vector of theMoon (BM) 

divided by the total mass of the Moon (M) [Brouwer and Clemence, 1961, p. 132]. 

Similar procedure is applied for the Earth. 

d . 1 -M rbV-:T 
d 2 B M ....... i - (4.41.8) 
de2 M L~jB~i E .- 6X i 

deB
dt2 

e 
EE 

I 
-

F6V -T 
--

1F 
; 

V T 

-Xj (4.41.9) 

The points E, B, and M are on a straight line and so it follows 

X = Bm - BE (4.41.10) 

Equation (4. 41. 10) differentiated twice with respect to time results in the 

geocentric equations of motion of the Moon : 

T F aV - T
N VV - M+lIt. 1 

X~1. _ BE _ f m+-- {-__~ = nIi [~~V 
x E B I - i = E L-Xij (4.41.11) 
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Equation (4.41.7) is differentiated with respect to X using rules as developed 

in Appendix E. 

a2 aZX D 9± ... . .. XTTT GT-, +
TkE r X 


LuXj n +o 2pm \3 B'

r v FL 4 

-+ J2XTTETLTEX) - 3a s (2TMTGTMX + 2J2 TETLTEX) J] (4.41. 12) 

A new set of auxiliaries is defined: 

-T - 3a.2 

P p 2 TMTG T; Q= 3a J 2 TE TLT,p. 

- 3 a 2 3 a J, 
26E 2 

Rearranging L and substituting the auxiliaries: 

2 H+E 22- XX T (P+Q) + P__-_V -, kE 1 
p53 7 ix-6x J In 07 p 5 

1­
k 2 E 2 _+ (p2 I - XXT P+Q) 

L 3 +-- m + pp ( + x (4.41.13) 

I is the 3 X 3 identity matrix. Equation (4.41.13) is substituted in (4.41. 11) 

m+ T 2 1 Fl ii+ ( 0 2I - 2' XT)(P +Q)­
p 7Fv =- k E(1---)--+ 3 .

E " V + P PVxJm -p +X 
(4.41.14) 

These are Cowell's equations of motion of the Moon's mass center with respect
 

to a geocentric inertially oriented coordinate system.
 



4.42 	 Equations of Motion of the Selenodetic Coordinate System with Respect 

to a Selenocentric Inertially Oriented System. 

The motion of a rigid body about its center of mass satisfies Euler's 

dynamic equations (Plummer, 1918, p. 292) 

= 0 0 NY - WW% . (4.42.1) 
¢%L 0 0 y N, L W Y 

For this section only, a and v are defined as follows: 

C' - B/ 
c= A' 

A', B', C'are principal moments of inertia of the Moon 

B' - A' 
C' 

C' - A' as defined already. 
B' 

LW 
are rotational velocities of the Moon around axes x, y, and z

' yW, 

respectivelyL W 

NJ 
are moments of external forces acting on the Moon around axesi y
 

x, y and zN 
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As it is the equations of motion (second time derivatives) of the 

Eulerian angles (,p, , 0 , which are of interestEuler's geometric 

equations are used to relate the rotational velocities ( ), W y , CC )to the 

angles ( q, 4 , Gj and their time derivatives (see Figure 4.3) 

Z 
z 

~E 

0z
 

9 'M WY
'I y 

y 

x 

Figure 4.3 Eulerian Angles of the Moon 

IFo r 0 -sin sin E -cos( F'x I 

i= 0 -cosp sine sin( 4 (4.42.2) 

1 cos@ 0 1 

Differentiating Euler's geometric equations with respect to time 

CC, 0 -sinp sin9 -cosw'- 0 -cospsinG sin cp I[y 0 -coscosin6 sinp + 0 sin sin6 cosp 9. + 

ooa Ios1 10 0 0, [ 

0 -sinp cos 6 0 1 

+ 0 -cosp cos6 0 •(4.42.3) 

o .-sin 0 o42 
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Regrouping 

-sinosinG -cos IP -singpcosG -cosOnsin s 

(i 0 -coscpsinb sin P + -cos(Pcose sinqsine cosso O(D 

IL I cosa 0 j -sine 0 0oj_ 

(4.42.4) 

This expression (4.42.4) is substituted into Euler's dynamic equations (4.42.1), 

the matrix in front of I is inverted and the second term is transposed 

to the right hand side. The results are the equations of motion of the angles 
, 4J, 6" 

0-sinqsinpl-oscp]' 0 o] NYV I. 0 0 - W w 

! -cos~sin6 Sin9 !0 -B 01.'N.-w.wz 
I I 

L"j 1 Cosa 0 \,0 0 NJ -. W, 

-sincpeos S -cospsinO sin9p 4 8 

-cos pcosG sinqisin{S cosp p 4 (4.42.5) 

-sinG 0 b0 be 

The moments N,, NY, N, are functions of the mass of the disturbing 

body (theEarth) and its position with respect to the x,y,z system.x
I
 
The position of the Earth in the selenodetic system y can be obtained fromzJ
 
the geocentric ephemeris of the Moon given in the XYZ system. A change in 

sign and a transformation through the Eulerian angles ((p, 4), 6) is necessary to 

perform the conversion as follows: 

145 

http:01.'N.-w.wz


Ix] 
[ =T " (-X) 

where 

as defined in earlier 
TM.= Rs((p).-R, )$() sections of this chapter 

X 	 is the geocentric position of the Moon in the XYZ system 

p 	 is the distance between the centers of mass of the Earth 

and the Moon. 

The moments of the external forces are obtained as follows: 

-NjI 	 ry * z 
3'.k2E L I 

Ny I I z (4.42.6) 
N2 x.y_ 

The moments of inertia A', B', C' can be expressed in terms of the second 

degree harmonics as follows (see Appendix A): 

-	 -C2 + (2-49) • C. 

B' Ea 2 	 " " m. 8 • -Co 2 -C 	 (4.42.7) 

C' 	 -- u -(1+ )°d 2o + (2-28). C22 

All quantities on the right side have been numerically defined as basic 

constants of the simulation in Section 4. 3 and also 

C' - B, 	 B1 -< 
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Performing the inversion in equations (4.42.5) analytically and substi­

titing (4. 42. 6) it follows: 

f cosesinp/sine cosecos P/sin@ i / r 0 0-1 Fy z 

= -sing/sin6 -cosp/sin6 0 • 0 -q x. z 

L i ,L -cos p sin(p 0 0 x. y 

wUy W, F -sinp cos -cospsin6 sing a 
-O cos.-p sinpsin cOSp . 

Wxy/ -sine 0 0 Gg / 

1are functions of p, 4, 6, g, 4, 6, through Euler's geometric 

equations. 

Equations (4.42.8) are Cowell's equations of rotational motion of the Moon 

about its mass center. On the right side of these equations there are functions 

of the following quantities: 

P, 0 0, , b X1,I X2 , X3 ,p and also 

k2 E , ae, m, , , C2 0o, C22 

The first group is composed of quantities that are being integrated as shown in 

this section and also in 4.41. The second group is composed of basic constants 

of the simulation. 

4.43 Equations of Motion of the Average Terrestrial Coordinate System with 

Respect to a Geocentric Inertially-Oriented Coordinate System. 

The approach is similar to that applied to the motion of the Moon. 
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However, these equations are considerably simplified due to the rotational 

symmetry of the Earth's gravitational field. The following relations are 

defined where A, B, C are the principal moments of inertia of the Earth. 

C-B 

A 

C-A 

B 

B-A 
Y= 
 C
 

A = B 

A=B C-A 

y=0
 

ZI 

W
 

I / 

/ V-

Y
x / 7 

Figure 4.4. Eulerian angles of the Earth 

The disturbing body in this case is the Moon with mass M = E 
m 
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Euler's dynamic equations assume the following form:
 

-" 4 30k E r VW 
 W 

'- ~ M. _ ~ W.UW (4.43.1) 

As a result of y = 0 it follows: 

=
&w 0
 

w, = constant = w an adopted constant in the simulation.
 

Euler's geometric equations (see Figure 4. 4) 

[wu 1 0 -sinnsinE -cos j (443
 

W 0 -cost7sinE sin 7 (4.43.2)
 

W Ii cos E 0
 

From the third equation in (4. 43.2) 

= 17 + Cos E X (4.43.3) 

=but wd = Cd constant; so it follows: 

bw= 0 7 + cosE'K - sinE. (4.43.4)
 

-=sinEEX - CosEC
 

Now the first two geometric equations (4.43.2) are differentiated and regrouped 

- sin? si o 71 P -sminlcosE -costisinE sin?? 
I-~~ srn ;~ -s? 7csn[X 
-cos 7sin E sin ??_ E-cosl-qcos E sml?sin E Cos?? I h 

From equation (4.43. 3) it follows: 

-" = Ct 3 - cosEX (4.43.5) 
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The coordinates 	of the disturbing body (the Moon) are obtained as follows: 

FVU=TE..X 
LW 

where 

U, V,W - are the vector components of the moon mass 
center in the average terrestrial coordinate system. 

TE = R3 (vf).Rt(- c).Rs(X) as defined earlier. 

The same mathematical procedure is followed as for the Moon and the 

expression is 

*W~ 	 ~ Lsin?7sinEsi E 	 L-[-1[:Z::Z y~ 	 -cs:;7Lb
 
E cos?7sinE 	 - sinti1 X[sint7cos

+ 	 cos?7cosc -sinA sin -S -Cos EX) (4,43.6) 

S (W. - Cos Ei) 

The inversion 	is performed and after some regrouping the final form is 

i(! U +)-coscosinW VW 

[COsnth sin-07/I , . (sa- *-	 _ ± 

1+[ sinl7cos E COSl7Sin E -sil17 +A) o 
+[costjcoscE-sinn7sinE -cost7 	 - cosEj / (4.43.7) 

= sinE.EX -	 cos X 
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These are Cowell's equations of motion of the Earth about its mass center. 

On the right side there are functions of the following quantities: 71, X, c, t, X, 

X, , X'2 , X3 , p whichX1 are integrated functions and also k2 E, m, ., W. which 

are constants of the simulation. 

4.44 	 Equations of Motion of a Satellite with Respect to a Selenocentric 

Inertially Oriented Coordinate System. 

The approach is somewhat similar to the one used for the geocentric motion 

of the Moon's mass center. 

Additional symbols in this section are: 

Components inInertially Oriented System 

R)2R = ES P0 = (RI+R2+P) 2 (RT. vector from Earth to satellite 
1 1 

S =M p. = (5 2 + S 2 + 3 2) 2 - (ST • S) 2 vector from Moon to satellite 
1 1 

P) 2P1 _ P1 p = (P 12+ P1 + P1 )2 = (P. vector from mascon to satellite 

The potential of the Earth and the Moon at a point in space and for a unit 

mass is defined as follows: 

V = k 2t--E + --L (C-A)( - 3y) +H--+ [A!+B'+ C'- 3(A +B'pI2+ C'] + 
p . 2 p .	 pm 2 om 

+ 	 £ J (4.44.1)
I 

Substituting the auxiliaries L, D and G defined in section 4.41 

1 	 i 

+ aeJ2 (1 - 3y)+ 

1 F3a0
2 D 3 2 

12 	 IT(4.44.2)+ P 	 G 
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where 

TM" SLn = [!= TE" R 

The auxiliaries L , D and G are substituted in (4.44.2): 

OE + J2 3 aJ 2 . RTT TLTER + 1 

4.44.3)3 a2 STTMGTMS + S.P, }j . (.4+2$ a22 Dpm 2$ 2 Ps~ 

In general V is a function of the vectors R, S and Pi 

(4.44.4)V = fI(R) + f2 (S) + f(2+o (P1 )
L 

Applying the chain rule in partial differentiation and noting tl 

Bs = BE+R 

Bs = BM+S 

Bs = BM+Mi +Pi 

the differentiation of V can be performed in parts as follo
 

__- af_, ._R . -- = x so aB5
 

613s ;R 5 Bs
B 2Bs 5l
 

where I is the identity matrix.- Following the same pattern
 

a 5S "as
 

and also
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6f 2+1 af2+ 
aB 3 aP i
 

The equations 
of motion of the satellite with respect to the barycenter are 
obtained in a way similar to those of the Moon and the Earth: 

Hj = av = 61 1 + af - f2B3 5 R s r Pi (4.44.5) 

The functions fl(R), f2 (S) and f(2+q(P j) are written explicitly 

V=k2 E (-I + s.Ja _ e 2j RTTLTER
 

s 

\Pe 2pe3 2p 0 C 

m mE-	 2+232 STTMT GTMS 

In L pi (4.44.6)
i 

Differentiating functions fl, f2, f2+1 (i = 1;.-12) by R, S and 	P1,respectively 

2 5 2 j 	 2j
25 	 T T -e v2_+ 	 a-kEJ_2p 1 -eau2 RRTT LT + 3a 8 JTJLTE)R+ 

3 aeD 3a2 +li 1 	 15 a 
- +S - 2BC2p? SS T TGT flTIp 5 1JGT)S+ 

+ 	 PI i; (4.44.7) 
i 

Substituting the auxiliaries P, Q, E, H as defined in section 4.41 
+ + 

+ 
1 -- RRT)Q 1 H + (p? -- 5SST)r­"B3 =k2E I\PR 5 p7 + -L- +k P 

P 	 -(4.44.8) 
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These are the barycentric equations of motion of the satellite. However 

S= BS- N 

= E S - :6, (4.44.9) 

where BM are the barycentric equations of motion of the Ivoon. Expressions for 

b. as obtained in section 4.1 (part of equation (4.41. 11)) are substituted in 

equation (4.44. 9) and result in 

r Fl H (I - -SS) P +i- + 

+ F I h+ (P~i2IRR)Q
Lp3 p5 o221-5 T jR 

+ _H+E (p2I -gXX)(P + Q) ( 
Lp3j (4.44.10) 

These are Cowell's equations of motion of a satellite with respect to a 

selenocentric inertially oriented coordinate system. As shown before, the 

right side of the equations is composed of functions of the integrated quantities, 

i. e., S, X, 0, , 6, t,. X, E and of constants as adopted for the simulation. 

4.45 Numerical Integration of the Equations of Motion. 

The equations of motion derived in 4.41 through 4.44 are second-order differential 

equations of a rather complex form. Their analytical solution, if possible at 

all, is a task well beyond the scope of this work. Particular real cases have 

been solved after introducing many simplifying assumptions. The cost was 

enormous in terms of time spent by the best talents in dynamical astronomy. 

As the solutions are needed for the purpose of simulating a synthetic 

physical environment there is no justification whatsoever not to resort to 

more convenient, yet, over a short time interval, not less accurate, methods. 

The availability of the electronic computer makes the simultaneous solution 

of the 9 or even 12 second-order differential equations by numerical integration 

a straightforward process. The simultaneous solution is needed as the three 

(or four) sets of equations (4.41. 14, 4.42: 8, 4.43. 7, 4.44. 10) share informa­

tion on the right sides of the equations. 

154 



Control over the accuracy of a numerical integration process is exercised 

through the so called local error criteria. However there are other means by 
which the potential accuracy of the process can be enhanced. One such method is to 
reduce the number of significant digits in the integrated quantities and still 

maintain the absolute accuracy needed. This can be done by modifying the 
original equations of motion from Cowell's to Encke's type. A reference 

case of motion is defined which has an analytical solution of its equation of 
motion.The differences between Cowell's equations and the equations of 

motion of the reference case are called Encke's equations of motion. The 
new quantities integrated are the perturbations of the reference case of 
motion. By proper choice of the reference case and favorable nature of 
the original equations of motion the perturbations can be reduced to a small 
magnitude, and consequently a fewer number of significant digits, compared 

to the full quantities, will result in the same degree of absolute accuracy. 

This is particularly appropriate to the cases of the Moon's motion, its 
orientation, and the orientation of the Earthfor the following reasons: 
(a) The lunar orbit is very close to a Keplerian orbit. (b) The Eulerian 

angles of the Moon follow very closely Cassini's laws. (c) The deviations 

of the rotation of the Earthfrom secular motions such as precession, diurnal 

spin, mean inclination are much smaller than the full quantities. 

The perturbations in all three cases are periodic in nature, or, if there 
are some secular effects left in,because of the particular choice of constants 

and initial values, over short periods of time (one to three years) their 

accumulated effect will remain small enough not to require a rectification of the 
reference case of motion. 

The application of Encke's modification to the equations of motion of the 

lunar satellite is not so clearly advantageous,as the nature of the perturbations 
is less predictable and for a very close lunar satellite (Apollo-type orbit) after 
one revolution the perturbations may be as large as the full components of the 
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selenocentric radius vector. However, an efficient computer subroutine was develop­

ed(SKEPTR)with the help of which the rectification of the reference Keplerian 

orbit can be performed in a fraction of a second with absolutely no loss in 

accuracy. Through occasional or even frequent rectifications of the reference 

orbit, the magnitude of the perturbations can be kept below a predetermined level, 

thus enhancing the use of Encke-type equations of motion for a satellite of the 

Moon as well. 

The transition from Cowell- to Encke-type equations is straightforward. 

Using general notation: 

X = f (X, X) are Cowell's equations of motion 

=
No f(Xo, Xo) are the reference case equations of motion. 

There has to be an analytical solution for X0 as a function of time which satisfies the 

differential equations XRo. Thus defining 

6 = X -Xo as the perturbations vector it follows by differentiation 

= X- O = fV(X, X) - f(Xo,X0o) which are Encke's equations of motion. 

The main condition for the effectiveness of the transition to Encke's equations 

is to choose the function fo sufficiently close to f so that 6 remains small. In 

case grows beyond a certain limit, the reference case is rectified, the 

values Xo, oare set equal to X, kC, and the process is carried on. 

In what follows the reference cases for the four sets of equations of
 

motion are discussed.
 

(a) Geocentric motion of the Moon.
 

I -F I H+E (p2 j -- XXT)(TP+Q)-X

oL :7f(X) =-k2E(1 -+ 

-k2E +-m + K which are Cowell's equations. (4.41. 14) 

K stands for the second and third terms in the square brackets
 

multiplied by X
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The reference case is defined as a Keplerian orbit: 

x
0 (Xo)=-k 2 E (1+ 1 (4.45.1)\ m/Tp3 

where Xo is the geocentric positionvector of the reference Moon in a Keplerian 

orbit around the Earth. 

- -k 2 E I Encke's'+(X)f0 (X0, = 1 Xo\ +K- '4.45.2' 
\m)kP3 T} KJ equations. 

The mean elements of the lunar orbit are used to generate Xo. 

(b) Eulerian angles of the Moon. 

It is known from observations of the actual Moon that in its rotation about 

its mass center it follows Cassini's laws very closely. The reference Moon, 

thus,is defined as following these laws exactly, the angles CPO, 60o, eo and their 

time derivatives o, o, bo being explicit functions of time. As the integration 

is not carried out over extensive periods of time, the perturbations can 

absorb some small secular effects. So the reference equations of motion ro 

are defined as follows: 

6cj[0~ : [0[ 601 0 

0ol- .o 0 
:oo 

+ 
0 

ory 0 ;i =oo 0 $ t (4.45.3) 

The four constants poc, (o,o Ooo, o, are derived from the mean elements of 
2
the lunar orbit where terms in Z o, woo and owith powers, of t higher than the 

first are deleted and 0 o is set equal to Io (see Section 4.3). 

Subtracting (4.45.3) from (4.42.8) it follows: 
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=] t " =' 1 which are Eneke's (4.45.4) 

0 I equfations of motion. 

L ,LO j e 
it is evident that in thi6 case,formally, the Encke equations are identical to 

Cowell's. It is only the initial values (6, ) used and further integrated which 

make the difference. 

(c) Eulerian angles of the Earth. 

The rotational motion of the Earth is dominated by the diurnal spin about 

the W axis. So the reference case to be chosen may be even simpler than that 

for the Moon. 

fo 4 o 0 ; 6 0 1 o = 1 . (4.45.5) 

The constants 7oo, Eo are taken from the expressions in section 4.3 where 

for Eo all terms except the constant and for 7o the terms beyond the one having 

t in the first power have been deleted; W3 is an adopted constant . Here 

too the Encke equations are identical to Cowell' s, the only difference being in 

the initial values of the integration. 

(d) Selenocentric motion of a satellite. 

The reference case of the satellite orbit is chosen as a Keplerian orbit 

having the following equations of motion: 

(4.45.6)f°(SO) = -k2 

where So is the selenocentric Dositionvector ofa satellite in a Keplerian orbit 

around the Moon and 

p.o = (SJSo)2 
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Equation (4.45.6) is subtracted from (4.44.10) and the result is 

= f-fYo= -k 2Ef.lI /---- SC,
ff1 k / - 1 +mK . Encke's equations. (4.45.7) 

As mentioned before, too rapid growth in 5 may preclude the advantages of 
a transition to Encke-type equations for a satellite of the Moon . 

(e) Encke transformation [see Brouwer and Clemence, 1961, p. 177]. 

Establishing Encke-type equations in cases (a) and (d) may lead to a 
considerable loss in significant figures when the quantities subtracted are close 
in value. In case (a),E(X/) - (Xo/o3) is such a set of differences, and in case (d)

/S So>\ /R X\ 
there are even two such sets of differences: _-S-5-S and / - Itt sol\P,~~ =o -_S- should 

be remembered that X, S, R, Xo, So are all column vectors.
 

,To overcome this problem, 
 Encke has devised a simple transformation: 

6 = X 

X Y 6-FX 
-P6P Po3a 

where 

F= 
(I + 2 q)32
 

1 r -T
 
q :2 iX o + -6 

F is usually a small number; however, the number of significant digits carried 
in 6 through the numerical integration is not lost. This procedure is applied in 

all three cases in (a) and (d). 
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4.5 Total Librations of the Moon. 

The disc of the true Moon as seen by an observer on Earth appears to 

be oscillating about its center. This phenomena is called libration of the 

Moon and is a combination of a true oscillation of the Moon with respect to 

its mass center called physical libration and an apparent one due to the 

eccentricity and inclination of the Moon's geocentric orbit and the diurnal 

motion of the observer about the geocenter called geometrical and topocentric 

libration,respectively. This distinction is made mainly for the purpose of 

evaluating the components as in the end all three are summed up. to result 

in the total libration of the Moon. 

In the simulated environment all the quantities necessary to establish 

the geometric relationship between an observer on Earth and the selenodetic 

coordinate system can be obtained from the results of the numerical solution 

of the equations of motion. In this section the equations are derived for the 

direct evaluation of the total librations of the Moon. 

Total libration in longitude and latitude are defined (Figure 4. 5) by 

the polar angles tT, bT of the selenodetic vector.to the observer Y. 

Position angle is measured counterclockwise from the plane defined by OP 

and OW' up to the plane defined by OP and Pz'. It is denoted as Pp. 
Z
z z 

/ 

wb . T­-

/ / V ,- "- -Z \-, T T.A" / y 

\. o 

Figure 4.5. Total Librations of the Moon. 
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The following vectors are defined : 

X geocentric position vector of the Moon 

Q topocentric (observer) vector to point P In components 

WE unit vector of spin axis (W) of the MEarth 
Wof the XYZ system. 

W,4 unit vector of spin axis (z) of the Moon 

O position of observer in the UVW system 

P position of point P on the Moon in xyz system. 

Two orthogonal transformation matrices are defined: 

TE from XYZ to UVW systems 

T from XYZ to xyz systems 

The computational procedure set to evaluate tT, bT and Pp is as follows: 

Y = E.(WT O-X) 

LT =tan-' Y--­

bT - sin-' ' 

Vi = Q xWE 

V2 = Q XWM 

1p4 CS f Vosl*VV2\ 

To determine the sign of P. another vector is evaluated: 

V, = WM X WE 

zVT Q 

If s is positive, P. is positive and vice versa. 
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4.6 observations 

of the purposes of creating the simulated environment was toone 

have the capacity of generating absolute observations for any desired epoch. 

As in the case of the environment itself, certain simplifications are 

introduced for the observations too so that a purely geometric situation be 

at this stage to physical andcreated with no consideration being given 

dealing with actual observations.instrumental problems encountered when 

The following additional assumptions are made in generating the 

and velocities of pointssituation defined by positions 

simulated observations: 

(a) No atmosphere (troposphere, ionosphere) exists around the earth. 

(b) The velocity of electromagnetic wave propagation (including light) 

is infinite. This excludes any relativity theory implications. 

(c) No distortion whatsoever is caused by using man:-made observing 

instruments or recording materials. 

(d) No solar radiation pressure exists. 

Thus the observations are the result of the instauitaneous geometric 

in space. The equiv­

alent of these idealized observations in the real world would be the fully 

corrected and compensated actual observations. The random noise left 

in other words ,the total of the unknown or unaccounted effects would beor, 


the only difference between those observations and the absolute observations
 

generated in the simulation.
 

4.61 	 optical Observations. 

No ,matteroptical observations are defined in the most general way. 

by which means the observations were obtained, they can be reduced to a 

bundle of rays emanating from a point to be called the projection center. 

Each ray in the bundle points from the projection center to 	a particular. 

point on the Moon (30 such points have been defined on the 	Earth side of 
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the Moon, section 4.3). The rays in the bundle are related to a reference 

Cartesian system (B.,1 B2, B3 )which is centered at the projection center and is 

oriented with respect to the inertial coordinate system by means of three 

Eulerian angles (p 1, p, 3). The apriori covariance matrix of these 

angles will provide the distinction between an oriented and a floating 

(unoriented) bundle of rays. This concept allows a uniform treatment of all 

optical observations obtained from Earth-based or satellite lphotography and 

from direct angular observations taken on board a spacecraft (Apollo). 

ZB2 

/ 

IB, 

YX1
/y 

X i 
Y 

Figure 4. 6. Reference Frame for Optical Observations. 

S or 0 Projection center on a satellite (S) or on the Earth (0) 

M Selenocenter 

P Point on the Moon being observed 

XYZ Inertialy oriented coordinate systems 

B1H2B Reference frame for the optical observations 

p (p (ps Eulerian angles relating B1B2B3 to XYZ. 
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Conditions for a Valid Optical Observation Ray 

In order to be generated, an optical ray has to satisfy all of the 

following conditions: 

(i) 	 At the Earth station it is night (the "Sun" is 180 below 

the horizon). 

(ii) 	 The observation ray is at least 200 above the station 

horizon. 

(iii) 	 The angle between the observation ray and the Sun rays 

is smaller than 1200 (to prevent glare). 

(iv) 	 The observed point is on the front side of the Moon's disc 

(front side defined with respect to the projection center) 

and 200 off the lunar limb. 

(v) 	 The observed point is illuminated (50 from the terminator 

in the illuminated portion of the disc). 

(vi) 	 The observation ray is within the "aperture frame" - (to 

simulate photography). 

con-As the constraining angles defined in the conditions are fairly 

servative, the station's zenith (and horizon) can be defined by the geo­

than by the normal to thecentric radius vector to the station rather 

reference ellipsoid. 

The rays in the bundle are referred to the B1 B 2 Bs system 

through two angles (Vi, ti) or through three unit vector components 

(direction cosines) (ui, 1 , u1 , 2 , uj,s). 

As the orientation of B3 with respect to XYZ is arbitrary aB1 B 2 


standard orientation is defined common for all situations:
 

B1 - points to the Moon's mass center.
 

B2 - is parallel to the XY plane.
 

B3 - completes the right handed Cartesian system.
 

164 



Iui,2 
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B2 

Figure 4.7. Optical Observations 

Z B3 

0 //
 

/x /,P 

- IC 

Figure 4. 8. Determining the Eulerian Angles q1 , ,
 

The Eulerian orientation angles of B 1 32 B3 ((A], p2, os) are defined 
then by the selenocentric position of the projection center (0) as follows: 

0-2
 

P2 tan -' + 2 

QI
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where Q is the vector from M to 0 in component of the XYZ system (see 

also Figure 4. 6). Using these angles the transformation matrix from the 

XYZ system to the B1B 2B system is defined in the usual way: 

Ts = R3(Po) * Rl(- 3 ) •R 3 (9 2) 

Flow of Computations for the Establishment of the Bundle of Rays. 

(a) For the particular epoch for which the bundle is to be generated 

the geocentric position of the Moon, the Moon's orientation, the Earth's 

orientation and if a satellite is involved , the selenocentric position 

of the satellite, are all assumed known. The positions of the observing 

stations on Earth are known in UVW components. The positions of 

the points to be observed on the Moon are known in the x y z 

system (see Figure 4.9). 

Ob observing station in UVW components 

P - Moon point in x y z components 

X - geocentric Moon position 

.% - observation rays 

'I 	 inXY ZS selenocentric position 	 cn enYs 

components0 of projection center 

N illuminating vector (Sun) 

U observation ray in B1 B2 B3 components 
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Figure 4. 9 Vector Diagram of Optical Observations 

TE, TM, as before, are transformation matrices from the XY Z system 
to UVW and xy z systems, respectively. 

(b) All the vectors are transformed into XYZ system and the unit vectors 

of the observation rays are computed as follows: 

0 T. O-X 

QS = T1 " P - S 

(c) Check on observing conditions is carried out by vector operations in 
which the spatial angle between any two vectors is obtained from their dot 

product. This angle is compared to the appropriate criteria as set above 

(conditions i through vi). 

(d) The observation ray is established in the B, B8 3 system, after the 
T. matrix has be'en calculated. The unit vector of an observation ray (U) 

is a function of the observed angles v and x according to the following 

relations: 
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UI CoSisV
 
U = = sin Cos xU 2 

u 3 sifLsinx 

The reverse relationship follows directly (see Figure 4. 7) 

v = cos - (u1 

= tan" (--a­

'The 	 unit vector U is obtained by the following transformation 

U = 	TB Q 

or 

U = 	 TB" Qo 

and the division of the U vector by its absolute Value 

* 

uu
 

4. 	62 Range and Range Rate Observations from an Earth Station to a
 

Satellite of the Moon.
 

The range between a radio tracking station on Earth (0 in Figure 4. 10) 

and a satellite of the Moon (S)can be derived from the following quantities 

which are either defined as constants (Section 4. 3) or are obtained as a 

result of the numerical integration of the equations derived in Section 4. 4. 

These are: 

[X ] the geocentric state vector of the Moon 

SS the selenocentric state vector of the satellite 
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the Eulerian angles of the Earth and their time rates 
7 

0 the station position vector in UVW components. 

The evaluation of the range-rate between the tracking station and the satellite 
requires in addition to the previously mentioned quantities the knowledge of the 
linear velocity of the station referred to ageocentric inertially oriented X Y Z 

system, to be denoted as P. 

S 

T 	 -* 
S 

0-

P.-
E 

Figure 4. 10. Range and Range-Rate Diagram. 

E geocenter 

0 tracking station on Earth 

M Moon's mass center 

S satellite 
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The vector P is obtained as follows: 

Euler geometric equations relate the instantaneous rotational 

velocities of the Earth around axes UVW to the quantities 

77, X, E (see section 4.43) 

i 0 -sinsinE -cosl7 77
 
Wvj 0 -CossinE sinv
 

W.i L Cos E 0 J 

(WAJ 
= T." , X 0
 

Wv' 

where 

TE = R3 (n) • R1(-E) %R(X) as defined before is the transformation 

matrix from the XYZ system to the UVW system. 

In order to have all the vectors involved in the computation referred to 

the XYZ system vector 0 is transformed into vector P: 

P= T -0 

The range and the range-rate can be calculated at any desired density 

along the satellite orbit from the following expressions 

r = ITI range from 0 to S 

r = T range rate from 0 to Sr 

where 
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T X+S-P 

r = (T' T). 

T TT 
r 

The sign of r is defined as positive for r increasing (S getting
 

away of 0).
 

Conditions for the Existence of Range and Range-Rate Observations. 

The conditions considered are two: 

(i) The satellite is at least 100 above the tracking station horizon. 

(ii) The T vector passes no closer than 60 kilometers from the 

Moon's surface. 

-,S 

- (T - S) M 
-/ E aM 1800kin 

radius of grazing sphere 

Figure 4.11. Conditions for Existence of Range and 
Range-Rate Observations 

The two conditions are checked as follows: 

T
check (i) = Jp -Tsin100 

= sin"1 ' a'~--
JIT-S ) 
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p' • (T-S)~ ­" = check (ii) 

The constraints 100 and 60 km were chosen arbitrarily. Any other 

set of values derived from experience can be easily substituting in the 

scheme. 

As in the case of the other observation types only those observations 

are retained wihich meet the two conditions. 
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5. NUMERICAL EXPERIMENTS 

5.1 Introduction 

The main purpose of this study is to develop a method for the 

solution of an optimal datum on the Moon from conventional data types. 

This is accomplished mainly in Chapters 2 and 3 where the models of 

solution for a datum as well as a new method for the solution of the 

physical librations of the Moon are presented. Section 2.6 in Chapter 

2 goes as far as to display a detailed algorithm to serve as a basis for 

the extensive computer programming necessary to carry out a complete 

numerical solution. The complexity of the solution and the number of 

different types of observations and-parameters involved as reflected in 

section 2.6 clearly indicate that programming the complete solution and 

running an extensive experimentation program is a task of considerable 

magnitude well beyond the scope of the present study. However, there, 

are certain elements in the solution which, although mathematically 

correct, need some numerical confirmation of their feasibility and use­

fulness. This is true, in particular, regarding the newly proposed method 

for the solution of the physical librations of the Moon. It is true also for 

the novel approach taken in treating the Earth-bound optical observations. 

It seems desirable to have some results which would demonstrate that the 

numerical solution for the permanent parameters (see section 2.3 in 

Chapter 2) is possible and the correlations between those parameters are 

tolerable. Chapter 5 is designed to provide this numerical support for 

the theory developed in the aforementioned chapters,although it should not 

be regarded as a complete numerical solution for a datum on the Moon 

from a combination of Earth-bound and satellite-borne observations. 
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In the development of a simulated environment and observations, as 

shown in Chapter 4, particular care is taken to avoid any inconsistencies 

and obtain simulated data which are realistic and closely correspond to 

the 	real situation. All the equations derived in Chapter 4 have been 

fully programmed in a way such that generating the various data sets is 

easy and straightforward. So it is clear that the additional effort necessary 

to bring to completion the extensive numerical experimentation, although 

time consuming, involves mainly computer programming of mathematical 

expressions developed in this study and a large number of computer runs. 

Such a task could be easily handled by a person whose knowledge extends 

no further than computer programming. 

The 	following three problems are treated in Chapter 5: 

(i) A least squares fit of the numerically integrated physical
 

librations to angles simulated according to Chapter 4 is per­

formed and analyzed.
 

(ii) A least squares fit as in (i) above, is performed to angles 

generated according to Eckhardt's [1970] model and using real 

lunar and solar ephemerides as given in the DE-69 tape 

[O'Handley, et al. 1969]. 

(iii) A datum solution is obtained consisting of the following: 

a. 	 Coordinates of a network of 22 triangulation points 
on the Moon. 

b. 	 Physical libration angles and time rates at a standard 
epoch (1969.0). 

c. 	 The constants C20, C2, 8 featuring the low degree 
terms in the gravitational field of the Moon. 

Simulated Earth-bound optical observations are used for this solution. 
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5.2 Fitti!ng Numerically Integrated to Simulated 

Physical Libration Angles 

The main objective in this section is to demonstrate the feasibility
 
of the adjustnient model as developed in section 3.3 and 
to test the 
numerical- efficiency of the algorithm in recovering the "errors" intro­
duced in the nominal parameters. The correlation matrix is regarded 

as an indicator of the capability of the procedure to separate 

the various parameters being estimated. 

There-is another problem which is investigated. The solution for 
physical libration in longitudewhere the value of the constant f is 0.662, 
presents a nonlinearity problem mentioned 3.1.as in section Koziel has 
reported that there appear to be two minima in the solution depending 
on the starting value of f [Kopal and Goudas, 1967]. Two different sets 
of starting values for f are used to find out if they both converge to the 

same adjusted value of f., 

As there is no previous experience in similar solutions, the assumption 
for, linearity of the function X2 (see section 3.42) over the corrections to 

the starting (approximate) parameters is tested. This assumption is the 
basis and justification for the. linearization of the mathematical model. 

The test is performed by iterating the least squares solution and denoting 

the speed of convergence to the final (in this case the theoretical) 
parameters and also by examining the residuals after each iteration. In 
the following paragraph, a short account is given of the numerical tools 
developed for the purpose of this experimentation. 

A simulated ephemeris of the Earth and the Moon was created for a 
period of ohe year beginning at 2440222.5 JD (1969.0) and up to 2440592.5 

JD. The mathematical formulation and constants used follow exactly 
those given in Chapter 4. The subroutine used to integrate numerically 

the differential equations of motion is the so called DVDQ a variable-
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step, variable order Adams integrator [Krogh, F. T., 1969]. The geo­

centric position and velocity of the Moon, the Eulerian angles and time
 

rates for the Moon and for the Earth were created and recorded at half
 

,daily intervals. In order to facilitate interpolation for the 18 quantities 

at epochs which fall between the tabulated values, a fifth-order modified 

Everett interpolation formula was employed [O'Handley, et al., 1969, 

p. 25]. For this purpose, the second and fourth differences of the 

tabulated quantities were modified to include linear combinations of the 

sixth and eighth differences. Subsequent tests of the differences between 

interpolated quantities and directly integrated ones. showed that the inter­

polation is satisfactory and produces results which are correct within the 

nominal number of "correct" significant figures obtained in the integration 

of the differential equations. The final product was a three dimensional 

matrix of 3 x 18 x 740 quantities which contained, in double precision, 

all the information necessary to obtain the position and orientation of the 

Moon and the orientation of the Earth for any epoch during the year 1969 

with a precision. of 0.0001 km and 0.0001 km/day for the lunar ephemeris 

and 01'003 and 0.003 "/day for the orientation angles and time rates of 

the Earth and the-Moon. This ephemeris is used to obtain the selenocentric 

position of the Earth needed in the integration of -the physical librations ­

(see equation 3.23.3 in section 3.23) and also as a source for "observed" 

physical libration angles needed in performing the least squares fit 

accoiding to section 3.42. 

Programs developed for the integration of the physical librations of 

the real Moon are used in this experiment,the only difference being that 

the gravitational constant of the Sun is set-to zero (no Sun which exerts 

gravitational attraction exists in the simulated environment) and also the 

motion of the ecliptic MOD system is set to zero. The last provision is 

justified by the fact that the reference XYZ frame in the simulated environ­

ment was chosen to be the ecliptic system of 1969.0 which is inertial by 

definition 	 (see section 4.2 in Chpter 4).
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The mean longitude and the longitude of n6de of the Moon needed in 
the transformation between the Eulerian angles and the physical librations 
of the Moon are determined through the following expressions:
 

LI = 1.196721511 + 0.2299715022 - (T - 2440222.5)
 

QD= 0.080512750 - 0. 0009242189 - (T - -2440222.5) 

where LD and Q, are the mean longitude and the longitude of node in 
radians 'and T is the epoch in Julian days (see Section 4.35).
 

The mean inclination of the lunar equator to the XY 
 plane (ID) is 

defined as follows: 

ID = 0. 026769 radians 

The nominal (theoretically exact) values for the six initial values of 
the 	physical librations for 2440222. 5 JD and the three physical constants 
(Cm, 8 , C2o) are as follows (see Section 4.36): 

= -0.000060718 'r = 0.000027449 Cm= 0.0000207 

= -0.008818575 ; a = 0.005304188 ; B = 0.0006290 

p 0.000606182 5 = 0.000062452 Cm -0.0002070 

where r, aY,o are in radians, , p are in radians per day and C2, 8, Cm 

are 	dimensionless. 

The value of f that corresponds to the chosen physical parameters is 

f = 0.6668 
which is quite close to the critical value of f (0.662). 

Three types of adjustment were performed as follows: 
(i) The nominal (absolute) physical constants were used as
 
starting values while the initial values for 244022.5 of the
 
physical librations were shifted. The normal equations were
 

generated and solved 
only for the six initial values. 
(ii) The absolute initial values of the physical libration
 
angles were used as starting values while C2 and 8 were
 
shifted from their absolute values. The normal equations
 

were generated and solved for C. and 8 
 alone. 
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(iii) All the parameters with the exception of C20 were 

shifted from their nominal values. The normal equations 

were generated and solved for the 8 parameters (initial 

values, C. and $). Two cases were run with different 

starting values to test the convergence in both to the 

same solution and also to test if starting with f values 

on either side of the critical f(0.662) will have any adverse 

effect on the solution. 

The following is a display of the results of the three adjustment 

experiments: 

(i) 	 The starting (approximate) values were set at the following: 

T = -0.0001 1 0.00001 C2. 

0.01 	 equal to thecr = -0.01 ; 


P = 0.0 = 0.0001 C20 nominal
 

After 	three iterations all the residuals in T, sin e" a and p were 

smaller than 1/10000 of a second of arc and the adjusted values of the 

six initial angles and time rates were brought back to the nominal values. 

Computer time for the run on the IBM 360/75 was 4.4 minutes. The 

inverted normal matrix (weight coefficients matrix) and the corresponding 

correlation matrix after the third iteration are as follows: 

r a pap 
T 7.8D-3 1.9D-4 -3.4D-6 -1.3D-5 1.7D-5 -8.1D-6 

a 0.00 7.5D-0 -4.7D-3 1.3D-5 -7.9D-2 -2.4D-2 

P -0.00 -0.02 5.2D-3 7.9D-6 2.OD-2 1.4D-5 
r -0.33 0.01 0.25 1.9D-7 6.4D-5 6.2D-8 

a 0.00 -0.07 0.68 0.35 1. 7D-1 3. ID-4 

P -0.01 -0.71 0.02 0.01 0.06 1.5D-4 
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The upper right triangular submatrix is the weight matrix.while the 

lower left triangular matrix is the correlation matrix without the diagonal 

elements. This pattern in presenting the weight and the correlation 

matrices will be used hereafter. The solution appears satisfactory in all, 

respects. There are, however, somewhat larger correlations between b and (T and 

also between a and p. 

(ii) The starting initial values and C20 were set equal to the
 

nominal while C2 and f were shifted as follows:
 

C22 = 0.0000217
 

0l = 0. 000619
 

The corresponding f value is f = 0.653.
 

After two iterations, the residuals in all three angles throughout the 

year (1969) were smaller than 0!'0006 and the adjusted parameters were 

back at the nominal, differing at the seventh significant figure for Cz and 

in the tenth significant figure for B. There is no doubt that a third 

iteration would have brought all the residuals to zero and the parameters ­

to the exact nominal values. The weight coefficient and correlation 

matrices after the second iteration were as follows: 

C2 B 

C22 3.ID-7 -1.4D-6 

B -0.42 3. 7D-5 

The two parameters appear to be separated at a tolerable level. The 

solution, for C2 and B crossed the critical value in f without any deterio­

ration in the solution (from f = 0.653 to f= 0.667). 

(iii) The starting values for case (a) were as follows:
 

T -0. 0001 T- = 0.00002 C22 = 0.00002
 

a = -0.009 ; a = 0.004 B3 = 0.000627
 

p = 0.0005 p = 0.00008 Co = 0.000207 (nominal)
 

The f value corresponding to the starting physical parameters is 

f = 0.676. 
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After three iterations (4. 1 minutes computer time on the IBM 360/75) 

the residuals in all three angles were smaller than 0!'0005 and also all 

the 8 parameters were back at the nominal values. The correlation 

matrix after the third iteration is presented below: 

T
 

0.03 a"
 

-0.06 -0.02 p 

-0.78 -0.03 0.11 

-0.10 -0.08 0.68 0.16 a 

-0.05 -0.45 0.02 0.06 -0.07 I 1 

-0.76 -0.11 0.08 0.99 0.13 0.06 / C L 

0.01 0.77 -0.01 0.00 -0.04 0.00 -0.10 8 

The large correlations, as exhibited in solution (i), show up in this 

solution too. However, the correlation between C2 and ;r is of a much 

more disturbing magnitude (0.9889) and places a question mark on the 

capability of the procedure to separate the two parameters. In spite of 

the high correlation between C2 and T, the solution for these two param­

eters converged satisfactorily. It appears that this is another of those 

cases where a high degree of correlation between parameters does not seem 

to affect their solution adversely. 

As it is shown in the next section, this phenomena is common to the 

true case also, i.e., it is not typical to the simulated environment. 

The starting values for case (b)were set as follows: 

T = -0.00003 - 0.000035 C = 0.000024 

= 
or -0.007 ; & = 0.007 8 = 0.000633 

p = 0.00075 = 0.00004 C = -0.000207 

The f value corresponding to the C2, 8, Cao as chosen is f = 0.624. 
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After three iterations, all the residuals fell below 0'0003 and the 

parameters were back at the nominal values. The correlation matrix is 

almost identical to the one displayed for case (a). To illustrate the 

pattern of the residuals after the first and the second iterations, the 

residuals in T are plotted in Figure 5.1. The residuals in sin e- a and 

in p, not shown in Figure 5. 1, fell below the 0!5 level already after 

the first iteration and exhibited, in general, a monthly period. A 

similar monthly period in addition to a secular or a very long periodic 

effect show in the T residuals (Figure 5.1). 

Three preliminary conclusions can be drawn from the results presented 

in this section as follows: 

(i) The adjustment procedure developed in Chapter 3 is 

capable of solving for the parameters of the physical
 

librations.
 

(ii) The critical value of f does not affect the solution in 

any perceptible way and there appears to be definitely a
 

single minimum.
 

(iii) The separation between the parameters C2 and T appears 

to be poor although the adjustment procedure converges to the
 

correct solution. The correct values of and + were known
C2 2 

in this case as they are parameters in the simulation. 
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5.3 	 Fitting Numerically Integrated to Eckhardt's 

physical Libration Angles 

In the introduction to Chapter 4, a warning was issued against 

relying too much on conclusions reached from processing simulated data 

alone. In the case of the new solution for the physical librations, it 

was felt .that if there is some hidden incompatibility of the procedure as 

applied to the real world, this study may be seriously compromised if 

not completely devalidated. For this reason, a large amount of time was 

spent in testing the solution for the physical librations of the real Moon. 

Technically, this was not too difficult as an excellent ephemeris of the 

real Moon was at hand (LE-16) and also a good and frequently used 

version of the physical librations was available too [Eckhardt, 1970]. 

The objective of this sectionwas set to compare the new solution for the 

physical librations with Eckhardt's, or more specifically to fit the numeri­

cally integrated to Eckhardt's physical libration angles. Numerically, the 

treatment was similar to the one used in section 5.2, only here the gravi­

tational attraction of the -Sun (the real Sun) and also the motion of the 

ecliptic MOD coordinate system were included in the solution. As 

mentioned in section 5.2, the programs used were literally the same. 

Only several constants had to be changed in the main program (the pro­

gram which calls the integrating subroutines). 

The problem in dealing with real data is that the "true" solution is 

unknown and actually it remains unknown in spite of good estimates of the 

solution which may be obtained. Also, when differences are examined, 

it is occasionally a matter of opinion who is right and who is wrong. In 

this case, a hypothesis was suggested to explain some of the observed 

phenomena. 

The experiments were performed in two stages: 
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(i) A least squares fit was performed over one year (from 

2440222.5 JD and up to 2440588.5 JD) of Eckhardt's angles and 

a variety of starting values were used with several different 

sets of solved and fixed parameters. 

(ii) The residuals of the experiments in (i) above prompted 

a soul-searching operation at the end of which some modifi­

cations and "corrections" were applied to Eckhardt's expressions 

for T, the physical libration in longitude. Then another set 

of least squares fits were performed which, as it is shown at the 

end of this section, confirmed the assumptions made and brought 

some more light into the problem of the physical librations of 

the Moon. It turned out that the problem was hidden in the 

troublesome term in the harmonic series for T (argument 

-(2F-2to) and coefficient of 15V3 according to Eckhardt [1970]). 

The coefficient of this term is extremely sensitive to small 

variations in f and as f is not known too well, the value of 

this coefficient has a large uncertainty [Kopal and Goudas, 

1967]. 

One important result in so far as the numerical integration 

procedure is concerned was that the normal matrices behaved 

in very much the same way as in the simulated case (section 

5.2) and, actually, for fits over one year to Eckhardt's 

angles there was little difference, in the covariance matrices of 

the estimated parameters. As stated in Chapter 3, the objectives 

of this study do not include analysis of the differences between 

the numerically integrated physical libration angles and those 

obtained from conventional solutions; therefore, as soon as 

positive conclusions could be reached about the feasibility and 

compatibility of the numerical solution of the physical librations 

of the Moon, the harmonic analysis of the differences was halted. 
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In the following paragraphs of this section, a brief description of the 

experiments is presented together with the nimerical results. 

(i) Eight different cases of adjustment were run as follows: 

In cases 1 through 4, the gravitational effect of the Sun and the motion 

of the ecliptic were set to zero and the starting values of the physical 

parameters (C22, 6, Caj) were set so that f = 0.633 and q = 0.0006268 which 

are the so-called Koziel's values [Kopal and Goudas, 1967]. 

In the second group of cases 5 through 8, the effects of the Sun and the 

motion of the eclipticwere included and the values of C22 and C20 used were 

the ones adopted by NASA in the so-called Apollo gravitational model of 

the Moon [Ransford, et al., 1970]. 

In each of the two groups, the nine normal equations generated were 

solved in four different ways as follows: 

(a) Only initial values solved (6). 

(b) Initial values and C22 solved (7). 

(c) Initial values and 8 solved (7). 

(d) All the parameters with the exception of Cm solved (8). 

If a parameter was not solved, like Co in all cases or C22 in case (c), 

for example, its value was kept fixed in the solution. 

The solutions of cases 4 and 8 were iterated two more times to find 

out if significant changes in the solutions would occur. 

The results of the eight cases of adjustment are displayed in Table 5. 1; 

the correlation matrices are given in Tables 5.2 and 5.3 and the residual 

differences between the numerically integrated and Eckhardt's r angles 

are presented in Figure 5.2. The residuals in sin 0 aa and in p are not 

displayed as they behaved after the various adjustments quite satisfactorily, 

There were no differences larger than 3" in absolute magnitude and they 

were evenly distributed with respect to the zero line. The residuals in 

r exhibited some unusual persistence and could not be brought to order, 

no matter what starting values or solution combination were used. The 
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Sol. a P r C f 

Start -0.000070687 -0.008406005 0.000607810 0.000028399 0.005360716 0.000059528 0.00002302 0.0006268 .633 

1 23967 8578287 608580 28130 5363364 59440 2302* 6268* .633 

2 26125 8576564 608424 28262 5362402 59427 2315 6268* .631 

3 24416 8400416 609138 28160 5363646 59446 2302* 6275 .633 

4 26241 8401163 608999 28272 5362826 59435 2313 6275 .632 

Start -0.000026241 -0.008401163 0.000608999 0.000028272 0.005362826 0.000059435 0.00002313 0.0006275 .632 

4+2 25563 8401807 609046 28232 5363123 59439 2309 6275 .632 

Start -0.000070687 -0.008406005 0.000607810 0.000028399 0.005360716 0.000059528 0.00002070 0.0006268 .667 

5 +0.000017248 8570615 611982 25632 5380387 59748 2070* 6268* .667 

6 -0.000049625 8535498 608102 29033 5356752 59422 2385 6268* .626 

7 +0.000016689 8377966 612588 25663 5380708 59755 2070* 6275 .667 

8 -0.000049765 8396385 608555 29042 5357078 - 59429 2384 6273 .626 

Start -0.000050000 -0.008400000 0.000609000 0.000028000 0.005360000 0.000059400 0.00002384 0.0006274 .626 

8+2 26200 8405344 609252 28349 5361191 59483 2335 6273 .632 

* These parameters were held fixed in the solution. 

+2 Results after two more iterations of the appropriate case (4 or 8) 

For cases 1 through 4+2 C20 was held fixed at -0.0002048. 

For cases 5 through 8+ 2 C20 was held fixed at -0.000207. 

Table 5. 1 Starting and Adjusted Physical Libration Parameters for Solutions Numbers 1 Through 8. 



.00 'a 

-0.00 -0.02 L p No.1 

-0.35 0.01 0.25 r 

0.00 -0.07 0.68 0.35 a 

0.00 -0.70 0.01 0.01 0.06 p 

-0.03 a 

0.11 -0.03 p No. 2 

-0.88 0.03 -0.12 

0.12 -0.07 0.68 -0.12 -

0.05 -0.70 -0.02 -0.06 0.07 p 

-0.88 0.03 
 -0.13 0.998 -0.14 -0.06 C.
 

IT 
l (-0* 08 

002 0,!0 1No. 3
 

-0.30 0.60 0.27 

0.00 -0.03 0.67 0.23 a 

-0.01 -0.44 0.02 0.02 0.06 p 

-0.11 0.77 0.14 0.78 0.01 0.01 8 

-0.03 car 

0.11 0.10 p 

-0.88 0.04 -0.11 No. 4 

0.12 -0.03 0.68 -0.12 a 

0.05 -0.44 0.02 -0.06 0.07 10 

-0.87 -0.01 -0.13 0.996 -0.14 -0.06 

-0.02 0.77 0.15 0.03 0.02 0.01 -0.04 8 

Table 5.2 Correlation Matrices for Cases 1 Through 4. 
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T 

0.00 ac 

0.00 

-0.29 

0.00 

0.00 

-0.02 

0.01 

-0.07 

-0.70 

p 

0.25 

0.68 

0.01 

0.35 

0.01 

a 

0.06 p 

No. 5 

T 

-0.03 

0.11 

-0.84 

0.11 

0.05 

-0.83 

a 

-0.03 

0.04 

-0.07 

-0.71 

0.04 

p 

-0.12 

0.68 

-0.02 

-0.13 

-0.12 

-0.06 

0.998 

a 

-0.07 

-0.14 -0.07 C2 

No. 6 

-0.07 

-0.02 

-0.25 

0.00 

-0.01 

-0.10 

a 

0.10 

0.61 

-0.03 

-0.44 

0.77 

p 

0.26 

0.67 

0.02 

0.14 

r 

0.22 

0.02 

0.79 

a 

0.06 

0.01 

p 

0.01 fl 

No. 7 

T 

-0.03 i c 

0.10 

-0.84 

0.11 

0.05 

-0.83 

-0.01 

0.10 

0.04 

-0.03 

-0.44 

-0.01 

0.77 

p 

-0.11 

0.68 

0.02 

-0.13 

0.15 

-0.12 

-0.06 

0.996 

0.02 

a 

0.07nn 

-0.14 

0.02 

-0.07 

0.01 

C2 2 

-0.05 

No. 8 

8 

Table 5.3 Correlation Matrices for Cases 5 Through 8. 
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the same as those in section 5.2,correlation matrices are almost exactly 

only'here the large correlations are slightly larger. As in section 5.2, 

the main problem remains the separation between '" and C2 (correlation 

0.996). As could be expected, the Sun and the motion of the ecliptic do 

not have significant effect as far as the correlation matrices are concerned. 

In the solutions, however, and mainly in the solution for initial values for 

T and for r and also for the constant C?, there are two distinct subgroups, 

i.e., 5 and 7 vs. 6 and 8 (see Table 5.1). The answer lies in the param­

Eckhardt's angles were apparently large and 

eters chosen to be solved and those left fixed. In cases 5 and 7, C2 was 

held fixed at 0.0000207 while in cases 6 and 8, it was solved for. Another 

reason for the unusual behavior of the solutions 5 through 8 as compared 

to those of 1 through 4 was that the corrections in CV required to fit to 

too more than one iteration 

was necessary to overcome the nonlinear behavior of the minimized function 

two more times (denoted as 8+2 
(see section 3.42). Thus,case 8 was iteratedX2 

in Table 5.1) and converged to a solution very close in initial values and in 

f to the solution obtained after two more iterations of .case 4 (denoted as 

4+2 in Table 5.1). There were no significant changes in the correlation 

matrices of cases 44 and 8 as compared to the ones of cases 4 and 8, 

respectively. 

The conclusions reached after running all the experiments in (i) were 

that in crand in-s, the numerical solution for the physical librations of 

the Moon is quite satisfactory. Actually, the small magnitude of the 

differences was surprising and encouraging. The only problem remaining 

in the solution for T-, in view of the large differences and,moreover,was 

in view of their pattern. It was not clear at all if graph A in Figure 5.2 

would continue to grow indefinitely which is improbable in view of the laws 

of Cassini and the long history of observations of the Moon. The experi­

ments undertaken to clarify this problem are presented in the following 

paragraphs.
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(ii) If a solution exists for the numerically integrated physical 

libration angles all one has are six initial"values for some standard 

epoch and three (actually two) physical paramneters which govern the 

integration. Theoretically, if the solution is perfect and the integrating 

subroutine does not have any cumulative numerical errors, the physical 

libration angles could be obtained by numerical integration for any 

desired epoch, even an epoch which is beyond the interval in time used 

to obtain the solution. The question thus arises if using an actual 

solution which is not perfect,an "extrapolation" of the kind described 

above can be performed without losing control ovler the integrated angles. 

In the present case, the initial values and physical constants obtained 

after the second iteration of case 8 2 above were used to perform an 

integration over approximately four years (1400 days). The results of 

this integration in terms of differences between the numerically integrated 

and Eckhardt's angles are given in Figure 5.3. Two interesting phenomena 

are evident: 

(a) The solutions in a and in o (from case 8+2) are good and 

could safely be "extrapolated" over three years (beyond 2440588.5 JD). 

There is some secular trend in p but on the whole, the solution 

is satisfactory and brings a partial answer to the question if a 

numerical solution could be used over extended periods of time. 

(b) The residuals in T exhibit a clearly periodic character as 

suggested by Eckhardt [1971]. Actually, the period of the large 

differences is almost exactly three years, same as the period of 

the problematic term in T. It seems quite likely that if the 

initial epoch for the one year fits performed in (i) above was 

chosen to be 2440750, the residuals in that experiment would 

have been an exact mirror image of the ones displayed in 

Figure 5.2. 

In order to investigate the cause for the periodic differences in T 
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an adjustment was run over the 1400 days beginning at 2440222.5 JD, 

only to discover that the parameters changed insignificantly and the 

residuals in T remained the same. Now it was clear that there is 

some defect in Eckhardt's model and the value of the coefficient of the 

term (2F-2to) should be checked. A careful 'search in the literature 

revealed that Kopal [1970, p.41] reporting on Eckhardt's solution as of 

1965,' gives the coefficient of that term as 311'1, much larger than 15!"3 

as givenby Eckhardt in his later solution [Eckhardt, 1970, p.267]. The 

difference of 15!'S was increased slightly in view of the amplitude of the 

A graph in Figure 5.3 and a least squares fit was performed to Eckhardt's 

angles where the term in the harmonic series for T- has been increased 

up to 32!13. Two iterations of the adjustment over 1200 days, beginning 

at 2440222.5 JD were run (computer time on the IBM 360/75 'was 8.3 

minutes). The solution for the parameters (the six initial values, C2 

and 3 were solved) is given in what follows while the residuals are displayed 

in Figure 5.4. 

T = -0.000032358 V = 0.000028992 C2 = 0.00002302 

a = -0.008383211 a = 0.005370362 8 = 0.0006274 

p = 0.000615345 p = 0.000059711 C2 = -0.000205 (nominal) 

f = 0.633 

The correlation matrix of the 8 parameters is given below: 

7 

-0.14 a 

0.13 0.13 b 

-0.41 0.23 -0.35 T 

0.22 -0.15 0.69 -0.53 5 
0.13 -0.50 0.21 -0.34 0.30 0 

-0.40 0.19 -0.41 0.986 -0.57 -0.35 C2 

-0.09 0.72 0.33 0.08 0.01 0.03 0.02 0 
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The correlation matrix compared to the ones in (i) shows a 

significant increase in the smaller correlations while there is some 

mellowing in the larger ones. For instance, the 0.996 correlation 

between r and C2 is down to 0.986, still large but less alarming. It 

is not clear exactly what caused these changes although the fitting interval 

is considerably longer and may be related to this phenomena. 

The residuals in T still remained far from the zero line and as can be 

seen in Figure 5.4, the coefficient of Eckhardt's term' (2F-2to) could 

be increased by some 2 to 3 seconds of arc to eliminate completely 

the periodic part. A second search in the literature revealed that there 

may be effects of a very long period (18.6 years, for example) which 

may be the ones causing the remaining large difference in T [Eckhardt, 

1970, p.274]. By inspection, the coefficient and the zero point of an 

additive harmonic term with a period of 18.6 years (6794 days) were 

determined as follows: 

AT = 12". sin (3600 T - 2438700 

6794 

where T in Julian days is the epoch for which T is evaluated. 

Eckhardt's model was corrected by introducing the additive term in 

Tr.and increasing the coefficient of the (2F-2to) term to 351'3 and a single 

iteration of the adjusting program was run. The solution shifted slightly 

from the previous one as follows: 

* = -0.000035338 T = 0.000029111 C2 = 0.00002303 

=
* -0.008481583 a = 0.005366544, 8 = 0.0006274 

p = 0.000613573 = 0.000059654 Co = -0.000205 (nominal) 

f = 0.633 

The correlation matrix was almost exactly the same as in the previous case 

of 1200 days. The residuals are displayed in Figure 5.5. Finally, the 

residuals in T are distributed uniformly about the zero line. There is 
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still evidence of short periodic effects, the dominant being a clear one­

month period (27.3 days). The, residuals in p display some secular 

tendency of about 2" per 1200 days. It is possible to go on-and correct 

additional terms in Eckhardt's model by rigorous harmonic analysis of 

the remaining differences although the real value of such an improvement 

is questionable. The fact remains that two totally different solutions 

agree over a period of more than three years to better than three seconds 

of arc. Until observations with noise level corresponding to less than 30 

meters on the lunar surface become available (1" measured from the 

selenocenter 'is roughly equivalent to 10 meters on the surface of the 

Moon) there is no point in correcting the presently available solution of 

Eckhardt except for-the (2F-2t o) term and the additive long periodic term 

introduced above.
 

During the various phases of the experimentation reported in this 

section, the mathematical developments presented in Chapter 3 and pro­

grams written accordingly were checked repeatedly to uncover any 

possible error. After the numerous tests run with this program and the 

satisfactory results as reported in this section, it can be stated with 

confidence that the procedure for the solution of the physical librations of 

the Moon as developed in this study and programmed is fully capable 

of solving the problem. It remains to obtain real data and process it 

according to the theory developed in Chapter 2, in order to fully utilize 

the potentials of the new method. 
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5.4 	 Selenodetic Control Solutions From Simulated 

Earth-B6und Optical Observations 

In this 	section, a series of experiments designed to analyze the 

quality of various solutions for a control network on the Moon from sim­

ulated Earth-bound optical observations are presented. As the data imply 

(Earth-bound observations), the control extends only to features on the front 

side of 	the Moon. 

The selection of the triangulation points (features on the lunar sur­

face) was done so that two different control networks are defined, each 

consisting of twenty-two points. Z 

z 	 yi 

~h / 'M:.:.....:. %...'..30 

x 
View from North Pole of the Moon 	 View from the Earth 

Figure 5.6 Typical Areas for Positioning Triangulation 

Points on the Moon. 

The two 	networks are defined as follows (see Figure 5.6): 

a. Network I includes points from areas A and C. 

b. Network H includes points from areas A and B. 
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This distinction -is made in order to enable experimentation with 

solutions of "center and limb" network9 (I) vs. "limbless" networks (II). 

In a way, the heliometer observations which traditionally have been used 

for the, solution of the physical libration constants can be regarded as an 

extreme case -of a network of type I where there is only one point in 

area: A (Mbsting A)while the points in area C are all on the limb itself. 

Network II can be associated to the set of 150 triangulation points solved 

by Schrutka Rechtenstamm (1958) in which there are very few points in 

the limb area C. 

From a total of 30 points as defined in the simulated environment 

(section 4.32), 14 points are common to both networks (I and II) and the 

remaining 16 points are split evenly between the two. networks (see Figure 

5.7). 

2@ Nets I and II 

5 60 0 Netc I Only 

7 9 oNet II Only 

0 @I 1512 016 ,1 

17 x
 
18 °21 

19 0@2 23 
2
 

°25 28 2
 
2 @ 27 

29 30 

Figure 5.7 Distribution of Points in Control Networks I and II. 

Optical observations conducted from the Earth have to be obtained 

at epochs of extreme libration offsets in order to allow a fair solution 

(see section 1.2). For this purpose, the total geocentric librations (total 

199
 



libration as seen from the geocenter) for the year 1969 were generated 

and then fifteen epochs with large librations evenly distributed along the 

year were selected as the approximate observation epochs. Another 

criterion in selecting the approximate epochs was the phase of the Moon. 

In order to have a maximum number of rays per bundle, the epochs 

were selected around Full Moon. The observatories at Pic Du Midi 

and at Johannesburg were defined as the observing stations (see section 

4.3i) and then it was left to the program to choose the exact epoch of 

the optical bundle, one for each station, in the proximity of the epochs 

discussed above so that the observing conditions would be optimal. 

In this way, a total of thirty optical bundles were created which 

contained from twenty-two and up to thirty rays per bundle . The 

exact librations and other auxiliary data, in addition to the optical obser­

vations themselves, were recorded. From this raw data two sets of 

thirty bundles each were created according to the control points figuring 

-the networks I or II. It should be remembered that all of these calcu­

lations are based on the simulated ephemeris for the year 1969 as 

described in section 5.2. 

The libration subpoints '(intersection with the lunar surface of the 

vector from the observing statibns fo the selenocenter) of the thirty bundles 

are shown in Figure 5.8. 1 1 $614 L5 16 1 
13 6o0; 

1812 13* 
040 

02210 	 20 
, _40 _2oj 20 40 1 E 

S .024 

07 -20 23 

6 4 2 8 *2605 4 -4 *25 

4 301 6. 0 

10 j 29 

Figure 5.8 Libration Subpoints 	 of the Thirty Optical Bundles.
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The adjustment procedure for processing Earth-bound data as developed 

in Chapter 2 was programmed and applied to the simulated optical data for 
a solution of selenodetic control. Before going into detailed discussions 

on the various experiments carried out with the simulated optical data, 

the logic of the adjustment program is outlined briefly. 

The backbone of the adjustment program is the numerical integration 

program for the physical librations of the Moon discussed in sections 5.2 

and 5.3. The sequence of steps is as follows: 

1. 	 The integrating program is operated up to the "next" epoch 

at which a bundle was observed. 

2. 	 The integration is arrested And the information generated 

by the integrating program for that epoch (physical libration 

angles, state transition and parameter sensitivity matrices) 

together with information gathered by the optical bundle are 

used in evaluating the ,partial derivatives as developed in 

section 2.4. 

3. 	 A layer of the normal matrix, the constant vector and the 

considered parameters contribution matrix is generated and 

added to the corresponding matrices where layers from 

previous bundles have been accumulated. 

4. 	 The integration is resumed until the epoch of the "next" 

bundle and so on, until all the bundles in the batch have 

been processed. It should be remembered (section 2.52) 

that the normal matrix generated is that of the permanent 

parameters only, the solution for the auxiliary parameters 

being "folded in". 

5. 	 The apriori covariances of the permanent parameters are 

added to the normal matrix followed by inversion and sub­

sequent evaluation of the solution vector (corrections to 

the starting values of the permanent parameters) and the 
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full covariance matrix of 'the corrected (adjusted) paran­

eters. Full covariances mentioned above imply the 

inclusion of the effect of the considered parameters (see 

Appendix D). 

This complex procedure is not particularly fast, not even on the IBM 

360/75 computer. It takes about twenty seconds to process a bundle of 

twenty rays with intervals between bundles of sixty days. 

In the remaining paragraphs of this section, the experiments carried 

out are described, followed by results and discussion. First the a priori 

covariances of the parameters used in the various solutions are pre~ented. 

The units of the a priori covariances (and also of the a posteriori covariances) 

are as follows: 

km2 - kilometer squared for coordinates of the triangulation points. 

2sec - seconds of arc squared for initial values of the physical 

librations and also for the physical constants (C2, fC00). 

sec2/day 2 - seconds squared per day squared for initial values of 

the physical libtation angular velbcities (f etc.). 

The values for the covariances were selected carefully to conform with 

the level of uncertainties in the present knowledge of the various quantities. 

= . 0. 1(66 x 66) [km 21 coordinates of triangulation points 

Z2 [ physical librations initial values 
0 n2,2 

= 2]S2,1 1000.0'I(3 x 3) sec

2,2 = 250.0-I(3 x 3) [sec2/day'l 

0.25 0 04.0 0 physical constants (C2, G0)Fsec2 ] 2,[0 

0 0 0.0002
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6= 0.21(3 x 3) [see2 ] low 

Z6 = 0.1.1(3 x 3) Fsec 2l normal quality orientation parameters 

.r = 0. 02.1(3 x 3) fsec 2 I high 

>2 = 0.1 [sec2 ] low 

Cr-, = 0.02 [see2] normal quality optical observations 

2 = 0.01 Fsec2 l high 

[.004 0 0 

fkm2 1  lo = Tq{0 0.04 considered parameters 
0 0 0. 04 

where TM is an orthogonal transformation matrix from the selenodetic to 

the inertial coordinate systems. It should be remembered that the magnitude 

and character of Sic are determined primarily from the uncertainties in 

the lunar ephemeris. 

Exptriment (i). 

The first experiment was designed to test the quality, of the solution for 

selenodetic control by analysing the covariance matrix (the inverted normal 

matrix augmented by the effect of the considered parameters) of the permanent 

parameters. The starting values of all the parameters involved were kept 

at their theoretically known (from the simulation) values. In a way the 

covariance matrix obtained in such a solution could be regarded as a result of 

the last in a series of iterative adjustment solutions where the one before the 

last iteration has brought the parameters very close to their final values. The 

specific objectives of this experiment were threefold: 

(a) To determine the rate of improvement in the quality of the solution 

with the gradual introduction of more data. 
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(b) To evaluate the effect of variations in the quality of the optical
 

observations on the solution for the permanent parameters.
 

(c) To check if there is a significant difference in the quality of the 

solutions of Network I vs. Network 11. 

The 30 bundles were processed in a particular order, to enhance the 

achievement of the above objectives and to save in computer time needed 

for the experiment. The 30 bundles were divided into 5 batches of 6 bundles 

each, as follows: 

batch No. 1 consisted of bundles 1, 6, 11, 16, 21, 26
 

batch No. 2 consisted of bundles 2, 7, 12, 17,.22, 27
 

batch No. 5 consisted of bundles 5, 10, 15, 20, 25, 30. 

As can be seen in Figure 5. 8 because of the particular pattern of the libration 

ansubpoints of the bundles each batch as defined above could be used to obtain 

independent solution. A solution based on a batch consisting of bundles 1 through 

6, on the other hand, would certainly run into numerical problems and would 

produce meaningless results because of the extremely narrow resection basis. 

Test (a). A series of 5 solutions were obtained. Starting with a solution 

from batch No. 1 alone,additional batches (Nos. 2, 3, 4, 5) were introduced 

in the subsequent solutions so that in the fifth solution the normal matrix 

was formed from processing all 30 optical bundles. Tables 5.4, 5.5, and 5. 6 

present samples of the results. 

Table 5.4 presents diagonal submatrices of the covariance matrix and 

the corresponding correlations of the solution based on all 30 bundles. The 

correlations appear tolerable where a clear pattern of the higher correlations 

can be observed as follows: The x coordinates are correlated among them­

selves and the same applies also to the y and z coordinates, respectively. 

One possible reason for this phenomena is that the orientation of the 

selenodetic coordinate system is part of the general solution (physical libra­
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0.483 0. CC9 -0.001 0.303 
 C,009 -0,000 0.271 -0.CCI -0.C01

0.,661 0.047 G.000 -0.019 C.046 0o000 -0.C37 0.018 0O0CI


-U.008 0.01 L.015 0.001 
 C-000 0.012 0.COC
0.001 0.01OI
 
.624 -0128 00 0.48 -C.023 -00001 0,309 -0.007 -0.003
0.060 0.953 C,0C2 -0.146 0.050 C0G0 -0.039 0.19 0.001 


-0.004 0.018 0.818 -0.009 0.018 0.0 14 -0.001 
 0.000 0.011I

0.529 -0.229 0C.(8 0.600 -C.238 -0.G12[ 0.544 -0.012 -0. 0 0 2
 

-0.C09 
0.679 0.025 -0.077 0.669 00015 -0.135 0.015-0.0001 

-C.0C8 0.023 
 0.664 -0.031 0.022 
0,755 -0.023 -0.010 o.o15
 

x y ,z x y z x y 
 z
 

17 
 18 
 19
 
C.480 -0.007 0.001 0.283 -0.002 0.002 0.309 -0.007 0001
 

-0.044 
 0.058 -C.000 0.040 0.023 -0.001 -0.027 0.050 0,COU

0.014 -0002] C.014 -0.001 -0.000 
 0.012 0.002 -0.000 0.0121
 
G.551 0.226 -0.01-L G.551 C.CC8 -0.005 0.261 0.035 0.000


-0.022 G.740 -0.013 0.0831 
0.017 -0.000 -0.CC8 C0.22 0.000 

C.C28 -0.033 0.818 -C.059 -0.030[ 0.016 0.004 -0.001 0.011
 
0.639 -0.162 C.024 0.505 -0.1E7 0.041L 0.485 -0.027 0.000


-0.045 0.954 -0.012 0.214 
0.765 -0.045 -0.177L 0.047 0.C00

0.C08 0.017 6.822 0.005 0.780 0.014
0.006 0.006 0.014 

x y z x y z x y 
 z
 
27 28 29 

0.490 -0.013 -C.0CC 0,300 -0.019 0.001 0.294 -0.010 0.002
 
-0.144L2.017 
0.001 -0.005 0.018 -0.000 -0.000 
 0.015 -0.000

-0.CC5 0.042LC.014 -0.000 0.001 
 0.011 0.000 0.001 0.011'
 
0.629 -0.059 -0O0C3 
0.466 -0.007 0.002 0.2S7 -0.C(4 0.002
 

-0.161 0.840 0.046 -0.0621 C.028 -0.00 
 0.004 0.018 -0.001

G.C17 -0.020 C.800 0.025 -0.0171 0.014 0.001 -0.000 0.011I
 
0,60.4 -0.003 0.006 0.625 0.034 .-014 
0L.484 -0.001 0,001


-0.1C6 0.859 0,049 -0.048 
 0.813 -0.026 -C0101 0.017 -0.0011 

0.021 -0.028 0.7S5 C.020 -0.028 G.828 0.009 -0.033 0.0141
 

Table 5.4 Covariance and Correlation Matrices for Solution 

of Network I From 30 Bundles. Triangulation Points. 
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-0.340-03 -0.110-02 ).320-01 0.130-02 -C.12C-01 0.550-01 0.760-r3 -0.7SD-02 0.110-02 a 
-fj.60-01 C.42C-01 -0.770-Cl C.41D-01 0.14D-C1 -0.240-01 -0.530-01 0.380-01 -0.810-01 P 

l.290- M C.100 UO 0.430-01 C.250-01 0.470-01 0.39D-01 0.120-Cl G1.SD-01 0.220-01 ± 
0.16U-02 -0.23C-02 -C.12D 00 -0.580-02 -0.140-01 0.220-01 -0.360-02 -0.100-01 -0.140 00 a 

-0.620-Cl C.i41-CI -0.260 CC C.740-01 0.870-Cl -0.330 00 -0.110 00 0.110 O0 -0.810-01 P 
g -0.340-02 C.520 00 0.450-01 0.150 00 0250 00 C.230-01 -0.830-01 0.49D 00 0.33D-01 C22 

-C.1;90-01 C.780-01 -0.240 00 0.220-01 0.85C-01 -0.280 00 -0.10D 00 0.110 O0 -O.qiD-oi 
-0.540-05 0,81D-03 0.710-04 0,240-C3 G,40D-)3 C.360-C4 -0,130-03 0.770-03 0.510-04 C2o 

x y z x y z x y z 

27 28 29
 

0.17D 00 -0.360 O0 -0.IOD-Cl -C. 18D-C2 -0.6CD 00 -C.19D-01 -1.610-01 -0.300 00 -0.740-02 T 
0.340-02 -0.35D-01 -0.290-01 0.380-02 -¢.32C-1 0.13D-01 0.460-02 -0.480-01 0.18D-01 a 
0.840-01 0.21C-02 -C.400-C1 C.550-Cl 0.180-01 -0.520-01 0.120 00 -0.5.90-02 -0.230-01 P 
-0.150-01 C.350-01 -0.110-01 0.120-01 0.71D-01 C.210-01 0.620-02 0.240-01 0.16D-01 f 
-0. 160-01 -0. ,410-01 -0.730-01 -0.180-01 -0.38E-01 -0.72D-Cl -0.220-01 -0.550-01 -0. 130-01 
-0.38D-0 C.230 Co 0.140 00 -0.790-Cl 0.230 00 -0.120 00 -0.280-01 0.280 00 -0.120 00 
-0.990-01 C,230 00 0.160-02 -0.570-02 0,400 00 0.230-01 C,50D-01 0.190 00 0.120-01 C22 
-C.420-CI 0.2CD 00 0.100 00 -0.740-01 0.20C 00 -0.110 00 -0.270-01 0.240 00 -0.110 00
 
-0.150-03 0.360-03 0.250-05 -0.890-05 C.62f-C3 0.37D-04 0.780-04 0.300-03 0.I00-041 C20
 

Table 5.5 Covariance and Correlation Matrices for Solution of Net I From 30 Bundles. 

Physical Libration Parameters. 



tions initial values). On the other hand the coordinates of an individual 

triangulation point are almost completely noncorrelated . Another 

typical result to be noted in Table 5.4 is that the x coordinates are deter­

mined much less accurately as compared to y and z. Also for points near 

the zero meridian of the Moon (points with small y coordinates) like points 

Nos. 11, 12, 17, 19 and 28 (see Figure 5.7) the coordinate z is better deter­

mined than y. Points on the limb like 13 and 18 have larger than average 

uncertainties in x;however their y coordinates are as well determined as 

their z coordinates. This phenomena is sometimes referred to as the 

"poor planimetry and fair altimetry" of the limb points on the Moon and 

vice versa for points in the central region. 

Table 5.5 presents the portion of the covariance/correlation matrix 

of the 30 bundles solution pertaining to the physical libration initial values 

and the physical constants. At the top the covariances and correlations of 

the physical libration parameters are presented while at the-middle and at 

the bottom the correlations between the physical libration parameters 

and the coordinates of some of the triangulation points are shown. The 

striking feature of the solution for the physical libration parameters is the 

poor quality of 'r and the complete insensitivity of the data to q and 6. As 

can be seen in the table the covariances of Cr and & remained after the solu­

tion at their a priori values indicating that the solution could not bring 

any improvement in a and in &. The improvement in Tr is from 1000 sec2 

down to 472 sec2 which is not too impressive, considering the large amount 

of good data involved (optical observations of normal accuracy). It is 'hard 

to find a good explanation for this phenomena. One reason may be that one 

year is too short a period for a solution of a quantity (a) defined by the 

intersection of two planes which form an angle of only 1 5. As for r it 

should be remembered that in longitude a selenocentric angle of 10" is 

about 85 meters on the lunar equator and much less in northern or southern 
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Without Considered Parameters Effect 
x y z xy z 

1 

6 

(". 5625840 CC 
30.6763740 CC
10.6C98280 C0 

8 ('.4803550 CC 

0.1633 30-01 
C.175525C-01 
C.161221C-0 
C.444248D-01 

C.1435110-01 
0.1632S?1j-01 
0.,154263'-0)1 
C,1404650-Cl 

0.6182830 0 
C.4737330 00 
0.4878970 00 
C.6943990 00 

).165249D-01 
0.2547110-01 
0.2822170-Cl 
0.170668C-01 

0.1505040-01 
C.1344440-01 
0.1485150-01 
0.1711520-01 

2 

7 
5 

10 
11 4.482887C0 00 0.4667610-I 0.1501720-b1 0.4878560 00 0.5Z'16830-01 0.1372190-01 12 

17 
1i 

19 

'.5442610 CC 
C.4794 20 CC 
0.4852160 Cr 

r.1547610-01 
0.57759l0-01 
0.4722840-01 

0.1479030-01 
0.1444880-Cl 
C,1361180-01 

0.481852C 0O 
C.551096C CO 
C.596558 C 0 

0.5815630-01 
0.1738170-01 
0.1597620-01 

0.1428640-01 
0,1556200-01 
0.15 51480-01 

15 
18 
20 

22 C.4705240 00 C.4807310-01 C.1418660-C1 0.7651890 00 0.1773410-01 C.1733450-01 24 

29 
27 0.4898470 00 

0.4835120 CO 
0.1716490-01 
G.167971D-01 

0.136552W-Cl 
0.1361110-01 

0.466157f) CC 
0.5332340 00 

0.277558D-Ct 
0.1655230-01 

0.135506C-01 
C.1400260-01 

28 
30 

T 0.4724910 C3 C.SS51400 C3 CIC.2920 02 0.6320280-01 0.2489940 03 0.1299540 01 
j. 1532510 CO 0.3124940 00 C0.999980-04 & 

C22 8T 

Including Considered Parameters Effect 
1 0.62588 CC 0.1671210-01 C.1623000-Cl C.7109220 C 0.1709710-01 0.1721690-01 2 

6 

I 

17 

o3 C.(36631U CC C.172560-01 
0.701103D 0C ('.1U39480-01

8 0.5402410 00 )*455234D-01 
0.5348C10 CC 0.477950-C1 

13 0.6Cb8340 0( .155563U-01 
0.5367430 0 C C.547670-01 

C,1918C6D-01 
0.1771190-Cl 
0.1559420-01 
C,1687950-01 
0.1668860-Cl 
0,1609650-01 

0.532098C 00 
C.g%3917C0 CC 
0.745345C 00 
0.5493980 00 
0.5404930 00 
0.604126r 00 

0.2601960-01 
0.2864900-01 
0.1693680-01 
0.5156970-01 
0.5S88040-01 
0.1751090-01 

Ca1481710-01 
'. 1668660-0 1 
0.2004980-01 
0.1512880-01 
0,158776D-01 
0.1773500-01 

5 
7 

10 
12 
15 

18 

22 
19 0.54282t CC 

0.5236610 CO 
.Ef67710-01 

0.4962370-01 
0.1497720-Ol 
C.1576160-01 

C.6879610 CC 
0.448370 0O 

0.1579270-01 
0.1777770-01 

0.1784230-01 
C.2C38300-01 

20 
24 

- 27 0.5422461) CC G.1743420-C1 0.1507540-01 C.520372C 00 0.286634C-01 0,1494590-01 28 
29 0.543744D00 0.1726710-01 0,15C6390-01 C.5573910 00 0.168387D-01 0.1569280-01 30 

r 0.4723821) '3 C.9"97441) 03 0.1431850 02 0.649856C-01 0.2490070 03 0.17157q0 01 
0.153286D CC C.3838GS0 (o0 C.9999980-04 T & 

Table 5.6 Diagonal Elements of Covariance Matrix for Solution of Net I from 30 Bundles. 



I 

latitudes.: So it appears that the poor determination of r and the somewhat 

poorer solutions for y (Table 5.4) of points near the zero meridian are 

interrelated. Actually this is clearly demonstrated by the high corr6lations 

between T and the y coordinates of points 17, 19 and 28 (see Figure 5. 7). 

One encouraging result in the somewhat grim picture is the tolerable 

correlation between i- and C2 which in Sections 5. 2 and 5. 3 was a cause 

for considerable concern. Actually the solution for i has a comfortingly small 

covariance corresponding to a standard deviation of about 0.25 sec/day, much 

better than in the solution for j. 8 is also well determined corresponding to a 

solution good to almost four significant figures. 

Table 5.6 displays the diagonal elements of the covariance matrix with­
out and with the inclusion of the effect of the considered parameters: It is 

somewhat surprising to find out that it is the x coordinates which are affected 

mostly by the considered parameters while in y and in z there are much smaller 

effects. This is surprising because the uncertainties (LSo) in the x direction 
were set at about ± 60 meters (one-a) while in y and in z they were ± 200m 

It is possible that the constraints in orientation of the bundles (cr ±0.'3) 

together with the great abundace of data reduced markedly the effect of the 

considered parameters on y and on z. The considered parameters seem 
to have little or no effect on the covariances of the physical libration initial 

values and the physical constants. 

Table 5.7 presents the improvement in the solution with the introduction 

of the second, third, etc. batches into the solution. One pattern which is 

typical for almost all the coordinates as well as for the physical libration 

parameters (with the exception of a and of 6) is the sharp improvement 

between the one and two-batches-solution. After that the degree of improve­
ment levels off.The preliminary conclusion to be drawn from this result is 

that a greater abundance of data does not necessarily mean a significant 

improvement in the solution. 
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x y z x y z 

18 0.176139D 01 0.692431D-01 0.7811850-01 0.1444160 01 0.1258750 00 0.6848130-01 19 
21 0.1425480 01 0.1012620 00 0i7350690-01' 0.141730D 01 0.127616D 00 0.703892D-01 22 

23 0.1445550 01 0.8873450-01 0.6858580-01 0.1416910 01 0.994833D-01 0.710220D-01 25 
26 0.1434560 01 0.933615D-01 0.681500D-01 0.1513670 01 0.6720120-01 0.6913050-01 27 

28 0.143714D 01 0. 756650-01 0.6855960-01 0.l794710 01 0.6990430-01 0.7368990-01 29 
T 0.7611600 03 0.999774D003 0.5407280 02 0.168057D 00 0.249078D 03 0.5019240 01 

C22 0.2204570 00 0.1619440 01 0.I00000D-O3C2o t & 
18 0.1076110 OL 0.380048D-01 0.404382D-01 0.9293290 00 0.825495D-01 0.3594870-01 19 

21 0.9192010 00 0.643828D-01 0.389790D-01 0.9086280 00 0.8402640-01 0.3709900-01 22 
23 0;934644D 00 0.5449910-01 0.3595590-01 0.907293D 00 0.628216D-01 0.3747370-01 25 

26 0.920359D 00 0.579767D-01 0.357077D-01 0.9655380 00 0.3739450-01 0.362165D-01 27 
28 0*9151880 00 0.5347290-01 0.3596110-01 0.1031680 01 0.378328D-01 0.3696630-01 29 

T 0.635183D 03 0.9997650 03 0.29676CD 02 0.1198900 00 0.2490410 03 0.2843200 01 
C2 0.1923210 00 0.822275D 00 0.999999D-04C2o t & 
18 0,8162520 00 0.2688570-01 0.2757050-01 0.7301510 00 0.6854910-01 0.2445700-01 19 

21 0.718152D 00 0.5187940-01 0.270988001 O0.710210D 00 0.6991810-01 0.2548270-01 22 
23 0.732519D 00 0.428245D-01 0.2441080-01 0.7056720 00 0.5044930-01 0.2579470-01 25 

26 0.7169040 00 0.4602690-01- 0.242196D-01 0.7458790 00 0.2690980-01 0.2460580-01 27 
28 0.7080000 00 0.4183800-01 0.2445440-01 0.771500D 00 0.269052D-01 0.2483750-01 29 

T 0.5704430 03 0.9997620 03 0.2119100 02 0.1017390 00 0.2490320 03 0.2303960 01 
C 2 2 0.1774360 00 0.6313980 00 0.9999990-04C 2 o t & h 
18 0.691025D 00 0.2122600-01 0.2124200-01 0.6141860 00 0.5922400-01 001855250-01 19 

21 0.6006030 00. 0.439205D-01 0.2073110-01 0.5933630 00 0.603483D-01 0.1937860-01 22 
23 0.616607D 00 0.357920D-01 0.185267D-01 0.5893970 00 0.4256050-01 0.1963820-01 25 

26 0.6009750 00 0.3861 80-01 0.1834750-01 0.6195960 Q0 0.211823D-01 0.1866780-01 27 
28 0.5907930 00 0O3471380-01 0.1852580-01 0.6326860 00 0.2096020-01 0.1872840-01 29 

T 0.5224660 03 0.9997590 03 0.1640860 02 0.874166D-01 0.2490190 03 0.1853800 01 
C22 0.1659650 00 0.4512180 00 0.9999990-04Cao t 6 
18 0,6220280 00 0.1797350-01 0.1766760-01 0.5411400 00 0.5403720-01 0.149676D-01 19 

21 0.526608D 00 0.394302D-01 0.1699130-01 0.5200530 00 0.550847D-01 0.1572450-01 22 
23 0.5435760 00 0.3173950-01 0.1495340-01 0.515901D 00 0.3814350-01 0.159698D-01 25 

26 0.5275420 00 0.3441970-01 0.1477550-01 0.5408270 00 0.1779590-01 0.150734D-01 27 
28 0.5163420 00 0.3068750-01 0.1493380-01 04547017D 00 0.1750020-01 0.1505260-01 29 

T 0.4944290 03 0.9997570 03 0.139085D 02 0.7918050-01 0.2490110 03 0.1669740 01 
Ca 0.1593490 00 0.3712490 00 0.999999E-04Co 1 6 

Table 5.7 Diagonal Elements of Covariance Matrix for Solutions from 6 ,12 ,18 ,24 and 30 Bundles 



x y z x y_ z 
3 0.4631130 01 0.1864861) 00 0. 1929430 O0 o.3980I. O1 0.1828310 00 0.1526121) 0 5 

6 0.5845700 01 0 .2082760 no 0. 22)464) 00 0. 3614,0) 01 0. 18651 ) , 0 0.163o350 0 7 
8 0. 361317t.) O1 0.24 I0105 1 00 0.1562270 00 0.428456D 01. 0.1620961) 00 0.1F 10240 CC 10 

11 0.3592200 01 C.24 3932) r0 0. 1640801) (10 0.362549D 01 0.2579730 00 0.1532110P0 12 
13 0.423848)0 01 0.1651120 00 0.1756850 CO .3606080 01- 0.2 24 51) OC 0.157245n 0015 

17 0.35915CD C C. 2,2806651) 00 0.1985870 00 0.42539A0 01 0.165835D o0) 0.1813640 " 18 
19 0.3503211) 01 C.2471211) CO C.152536) 00 0.5310909 C1 0.20546Q0 00 0.2272520 0') 20 

22 0.3545760 0 .24q1670 00 0.156906D 00 0.5405980 01 0.107440 00 0.1999750 0C 24 
27 0.3661440 C C.157071 ) 00 0.155708D 00 0.357152D 01 0.1876221) 00 0.1530610 0) 28 

29 0.4328760 )1 0 .1699450 00 0. 1706610 0 0.433676r 01 0.1688741) 00 0.170141I: D' 30
T 0.8643321) 03 0. P997851) 03 0.145248£ 03 0.2511190 00 0.2491970 03 0. 1324451) C? 

C22 0.2365841 00 0.280966) Cl 0. 1000CCD-CC2o & p
3 0.1860230 01 0.7118550-01 0.8093870-01 091464550 01 0.8191870-01 0.6837920-01 5 

6 0.2879260 Cl 0.7685430-01 C.9263660-01 0.147935C 01 0.8548700-01 0.7311220-01 7. 
8 0.149505D 01 0.114147D 00 0.7023230-01 0.1726770 01 0.6627940-01 0.7838720-0110 

11 0.147992D.01 0.1176280 00 0.735201D-01 0.1498700 01 0.1242730 00 0.6891570-01 12 
13 0.-1840770 CI 0.67928D-01 0.75434203-01 0.1495340 01 0,1383690 00 0.708470D-01 15 

17 0.1487500 01 0.1376620 00 C.7141990-01 0.1696150 01 0.693115D-01 0.7850840-01 18$N 19 0.1471720 Cl 0.1192450 00 0.685125D-01 0.255675C 01 0.7352900-01 0.905539D-0120 
22 0.1448950 Cl 0.121051D CO C.705838D-01 0.2422390 Cl 0.7406790-01 0.8412230-01 24 

27 0.150877D 01 0.6757090-01 0.6913300-01 C.1455410 01 0.8617210-01 0.6862260-0128 
29 0.1765330 01 C.7030940-01 0.7380400-01 0.177893C 01 0.6903150-01 007344950-01 30 

T 0.717898D 03 0.9997630 03 0.5402910 02 0.142740D 00 0,2490670 03 0.529.8070 01 
Ca: 0.2078760 00 0.1573080-01 0.9999990-04 CPo It 6 P 

3 0.1185571) 01 0.223830)-Cl C. 32351bD-01 0.10051 30 01 O.3447440L-O1 0.237653)-)1 5 
6 0.2082760 01 ).2611(370-01 0.402626n-01 C.1004750 01 0.37b6000-0L 0.2721020-01 7 

8 0. 1039270 C1 C.6036130-Cl 0.252909[,-01 0.1104930 all 0.204262 0-01 ).3064411)-C 110 
11 0 .1018969 01 0.6334970-C1 C. 2765200-01 0.1039670 0l 0. 6840020-01 0.24349? (-01 12 

130.1274050 01 0.2188250-01 0.2826600-0l 0.1038290 01 0.7954700-CI 0.25P1900-01 15 
17 0.1030450 01 C. 7904300-01 0.2622900-01 0.107194f) 01 0.233938D-01 0.3073170701 18 

19 0.100616D ) 0 . 5545[)-01 0.2400840-01 0. 1856200 01 0.21081 8[-01 n.3q821lD-01 20 
22 0.9871080 00 0.6611740-01 0.2555840-01 0.1607940 01 0.2506 17D-01 0.3460170-C 24 

27 0.1n00520 Ol 0.2237970-CI C.2401570-01 0.9722100 00 0.3815730-01 0.239570-0 128 
29 0.112661D 01 .2 161t77n-o1 0.2735440-01I 0.1138870 01 0.2226850-Cl 0.2702610-01 30

T 0.6237700 C3 C. 9997570 03 0.388401C 02 0 .105590 00 0.2490450, 03 0.37(0850 C1 
Ca2 0.1868220 00 0.1135130 Cl 0.9999990-04 Co .T 

Table 5.8 Effect on the Solution of Different Optical Observation Accuracies 
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Test (b). Only one batch (6 bundles) was used to generate normal 

matrices at three different quality levels of optical observations: low, normal 

and high. As it could be expected, the quality of the solution is directly 

proportional to the quality of the optical data. In Table 5. 8 the diagonal elements 

of the covariance matrix are presented for the three solutions beginning at 

the top with the low quality optical data and ending at the bottom with the 

solution from the high quality data. The results of this test clearly indicate 

that the general quality of the solution for selenodetic control strongly depends 

on the quality of the optical obserrations. It should be noted that optical 

observations of a higher quality imply that not only the directions in a bundle 

relative to each other are known better but also that the orientation of the 

bundle has smaller uncertainties. 

Test (c). A parallel solution to the one discussed in (a) above was run with 

30 bundles simulated for Control Network II. At all levels of the solution 

(6, 12, etc. bundles) the differences in the covariances were found to be insig­

nificant and what is more important no clear pattern could be detected in the 

differences. It is possible that the reason for this similarity is in the positions 

of the points chosen for Net I and for Net I. As it can be seen in Figure 5. 7 

the points chosen for the two networks do not follow exactly the definitiof 

of "center and limb" vs. "center only" networks as stated at the beginning of 

this section. The deviations from these rules may have removed the distinc­

tion between the two networks and consequently may have produced two 

different networks but of the same intermediate type. 

Experiment (ii). 

The second experiment had a more limited objective. Three tests were 

run to find, out the ektent to which the 'adjustment program is capable of 

recovering shifts introduced in the starting parameters (approximate values 

of the parameters). In a manner similar to that employed in Section 5.2 

the three tests were designed as follows: 
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(a) Only the coordinates of the triangulation points were shifte'd'from 

their known absolute values (simulated coordinates). 

(b) Only the physical libration initial values and the parameters C2 2 

and 0 were shifted while the coordinates were left at their absolute values. 

(c) All the permanent parameters (with the exception of C2o) were shifted. 

Even before examining the results it should be clear by now from the 

discussions presented in (i) above that no spectacular results can be expected 

'from the program and the particular Earth-bound simulated data. This is 

true in particular considering the fact that only one iteration of the adjustment 

per test case was performed and the data used consisted of only one batch of 

6 bundles of optical data. 

Test (a). Table 5. 9 presents the absolute coordinates of the triangulation 

pbints and the solution vector (negative) after one iteration of the adjustment. 

The starting (shifted) coordinates were set simply by removing from the 

absolute coordinates the decimal fraction. So the degree of recovery can be 

assessed by comparing the negative value of the solution vector with the 

fractional part of the corresponding absolute coordinate. The degree of 

recovery of the shifts is impressive more so considering the low quality of 

the solution as exhibited by the covariances (see (i) above). A general pattern 

can be recognized in the difference in the degree of recovery of the x- coordinates 

as compared to that in y and in z. It can be seen in Table 5.9 that in x the 

recovery is much less efficient. As stated earlier the main reason for this 

as well as for the higher uncertainties in the solution for x lies in the poor 

geometry of the optical observations of the Moon conducted from the Earth. 

Test (b). Only the starting values of the physical libration parameters 

were shifted as follows: 

=Ar = 4ff27 AF = -1. 54"/day 021A C22 
=Lkao 45ff09 ; A = -62. 70"/day; A P =-0f41 

=p = -5.'40 A = -2.57/"/day A Co 0"00 
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Solution Vector 

x y z x y z 

1 I-0.,24:1O5b 00 0.-3101670 D0 -0.6716820 00 0.4512320-01 -0.5CSC6CD 00 -0.164511D 00 2 
3-0.487323) 4)0 f.4390740 00 -0. 26350 31 00 -0.3418440 00 -0.5406490 00 -0.1075840 00 5 

6 0.3390171 0") -0.3545130 no -0.7345390 00 -C. 1245630 00 0.5943230 00 -0.6887960 or 7 
8 0.2139PM) 00 0.276AIOD 00 -0.1397550 00 0.2160750 00 O.QO44010 00 -0.600C761) CO 10 

11 -0.2890360-01 0.3466370 0C -0.4857660 00 0.1717670 00 -0.9637410 00 -0.5836460 On 12 
13 0.21668()D D) -. l . 280990 00 -0.6017100 00 0.872806D-01 -0. 132q570-01 -0. 8301960 00 15 

17 -0.1672220 00 0.2n48720 00 0.468104000 -0.1280610 00 0.7752670 00 0.9875630 ,0 18 
19 0.2280C,) CO -C. 330,650 CO C.5900060 00 -0.2580440 O0 -0.7103170 00 0.3211860 O0 20 

22 -0.4241280 00 0.478q410 00 0.15517A0 00 -C.936816D-02 C.954561l O0 0.8933470 0024 
%)7-0.33182D20 00 -0.4867260 00 0.7929P60 00 -0.949658 D-01 -0.51758 10 00 0.2C45170 CC 28 

29 0 .12Q6450 00 0. 7770901) C0 0. 54359f) 00 -0.1547550)-01 -0.15371q0-01 0.2802520 o0 30 
T -0.122154n 00 0 .5497170-0? -0.6251510-01 -0.2673450-03 -0. 1F5 1.7D-01 -0. 5030320-02 

CG2 -0. 2252110-02 -0. 1I3683D-Cl -0.9008430-07Co 64 

Absolute (Simulated) Coordinates of Triangulation Points 
x y z x y z 

1 2PA.7]4 -164.8233 1705.(738 - 26t.3P28 742.&1t8 1548.3651 2 
3 29R.99CS-1f0.4536 1350.2634 R97.8094 293.5282 1V57.1998 5' 

6 2C7.0!li 12cR.3L-23 1116.73I 1013.57A6-1088.6066 894.6916 7 
8 1A53.2020, -5.2901 946.1413 A41.1861-1615.9158 536.60aR 10 

11 506.a7?3 -767.2602 3Q0.4302- 1577.2501 544.9516 478.5874 12 
13 -41.1P61 161 -.- 15P 536.6042 1735.3 &0 1. 29.8342 15 

17 172,.6207 -150.27P5 -qi.4655 4Q0.5786-1611.7874 -420.9863 18 
19 1499.11?8 73$.L2C -479.5874 294.7339 1686.6973 -302.3192 20 

22 U11.pcP5 -111.4927 -843.1513 257.4409-1221.9682-12f7.8911 24 
27 49.7967 11§C.4735-1250.7900 940.5390 83.5052-1458.1998 28 

29 377.2C05 -37k.7005-1653.53R6 305.4915 368.0022-1671.2764 30 

Table 5.9, Solution Vector for Test (a) in Experiment (ii) 



Coordinates of Triangulation Points 

x y z 

1 0.4955070-01 0.146467D-01 -f.675561D-02
 
3 0.563968D-01 0.128893D-Cl 0.506945D-03
 

6 C.632931D-02 0.9495640-02 -0.1901100-01
 
8 0.6369970-01 0.198328D-01 -0.5729260-01
 

11 u.5831o70-0l 0.152075)-C1 -0.5289880-01
 
13 -0.1734040-Cl C .6958680-02 -0.2373500-01
 

17 C.3660910-01 0.132C600-P1 -0.6739250-01
 
19 -0.3971020-02 0.8442020-02 -0.6528710-01
 

22 -0.27C3040-C2 0.5016090-02 -0.5833880-01
 
27 -0.7364130-01 -0.718958D-02 -0.244009D-01
 

29 - .8224540-01 -0.1039940-01 -C.7548570-02
 
2 0.261417D-01 Y.127403D-01 -0. 1366030-01
 

5 0.5221300-01 0.1982200-01 -0.3532250-01
 
7 03.6254660-01 0.1557500-01 -0.2977550-01
 

10 0.1891510-01 0.8283830-02 0.3006380-02
 
12 0.4461550-01 0.1746470-01 -0.662771D-01
 

15 0.395322D-tI 0.143886D-01 -0.6898750-01
 
18 -0.108077D-01 3.8055180-03 -0.3733860-02
 

20 -0.3794870-01 0.7484650-03 -0.2297280-01
 
24 -0.745666D-01 -0.6454700-02 0.4016780-02
 

28 -0.5097740-01 -0.5217150-02 -0.358179D-01
 
30 -0.9813790-01 -0. 1092560-01 -0.1133170-01
 

Param~eters of Physical Librations 

a p 

Solution C.409329,0 01 -0.5416810-01 0.1771G80 01 

Shift -4"27 -45!'09 5 :'40 

Solution -0. 1654280 Cl -0.5471280-01 -0.1954230 01
 

Shift 1.54 '/day 62.70 "/day 2.57 T day 

C2 P C20 
Solution C.1551930-01 -0.2222570 O0 0.6507590-06 

Shift -0'1 0"41 0'.'00 

Table 5.10 Solution Vector for Test (b) in Experiment (ii) 
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Table 5. 10 presents the elements of the solution vector. The recovery 

is excellent for T and f; it is fair for 0 and 0; it is poor for p and C22; and 

it is non-existant for a and 6. This is rather surprising as the covariances 

(not shown) are very much the same as in the cases discussed in (i) above. 

p is not as well determined as one would have expected but on the other hand 

r is really excellentmuch better than indicated by the covariance of the 

solution for . No final conclusions can be reached from this experi­

ment as it is felt that one or two more iterations would have brought the 

physical libration parameters closer to their absolute values. However, 

the problem with the inability of the procedure to solve for a and for & 

remains and further investigation is necessary in order to determine the 

exact cause of this disturbing phenomena. The shifts iitroduced in a and 

in & were set actually larger than the a-priori covariances (1000 sec 2, 

250 sec2/day) in order to find out if any correction in the right direction 

would occur. It did not produce any results and the solution remained 

insensitive to the shifts in ar and 6. The coordinates of the triangulation 

points received "corrections" - generally small - which is another way of 

demonstrating the small but nevertheless existing correlations between the 

physical libration parameters and the coordinates of the triangulation points. 

It should be noted by examining the solution vector that the "corrections" or 

actually errors introduced in z are slightly larger than those in y probably 

due to the error remaining after the adjustment in the value of p (the physical 

libration in inclination). 

Test (c). The shifts in all the permanent parameters were set as for 

cases (a) and (b) put together. Table 5. 11 presents the solution vector and 

the absolute coordinates of the points (as in Table 5. 9) as well as the shifts 

introduced in the physical libration parameters. There is no significant 

difference between cases (c) and (a) as far as the recovery of shifts in the 

coordinates are concerned and the same applies to cases (c) and (b) for the 
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Solution Vector 

x y z x y z 
I -n.20c8080) nr 0.824526D0 0 -0.678571D 00 0.7057240-01 -0.4964630 00 -0.178005D 00 2 
3 -(.4329000 GO- 0.4518510 00 -0.2632320 00 -0.2801110 00 -0.5213310 00 -0.233920D 00 5 

6 0.3448120 00 -0.344246D 00 -0.7531930 00 -0.6370590-01 0.6099420 00 -0.7188520 00 7 
8 C.279927D 00 0.2971190 00 -0.196453D 00 0.2380250 00' C.9125470 00 -0.5978330 00 10 

11 0.2591900-01 0.862415D 00 -0.5390650 00 0.2160770 00,-0.9464190 00 -0.6504710 0C 1213 0.1972410 00 -0.9203700 00 -0.6252500 00 0.1263600 00 0.1485740-02 -0.899227D 00 15 
17 -0.1311860 00 0.2783510 00 0.4006700 00 -0.1363400 00 0.776199D 00 0.9839710 0018 

19 0.2271961) 00 -0.4245270 00 0.525079D 00 -0.2951570 00 -0.7085800 00 0.2982130 00 20
 
22 -0.426854D 0C 0.483852D C0 0.9671440)-01 -0.7905650-01 0.948349D 00 0.8974960 00 24
 
27-0.4090140 00 -0.494354D 00' 0.7689830 00 -0.1475720 00 -0i5226530 00 0.1683470 00 28
 

29 C.457082D-01 0.7669900 GO 
 0.5353450 00 -0.1148850 00 -0.2627010-01 0.269267D 0030
 
T 0.3927390 01 -0.4852980-Cl 0.1715270 01 -0.1653660 01 -0.7350390-01 -0.1956940 01 

C2 0.1455430-01 -0.240210D 00 0.6102970-06Cao " " /5 

wAbsolute (Simulated) Coordinates of Triangulation Points 

x y z x y z 
117.1 - 23IOR.647;R 2h67.382,8H 4 1 tdu/,-I -' > 271'46 

3 2c0R, cAc lr'0 ./ ,36 l35fl.263 . f(7. RfnlO/t 22 i.2t' ldb/.I "C, 5
6 ;c'r1iC) 1 c FI t23 l11A.7341 in]? -6 2C3.A 7c z 0(

8 i-A%52(;0 -7 CmC] c4(i.1413 41. I A Il, .9] 56F.6n1-. 10 
11 106.4773 -6 --. (,(P 300.4Ro2 I577. )(n v,iA.C%16 47t'Si 71, 12 

13 34) 1 P61 1537.918P 93A.60L 8 1735. 'A . ; J.) "/4? 15 
17 126.62P- -!(.27S5 -0.1 .1-65 49.i7q6- 1 Al 1.7117 -L20.9BAz 18 

19 i1-c. IFP 7"q . 620 -/,70.5A74 204.73%9 1 06 .607Z -302.3 226 
22 1E1].cC5 -13i.4027 -r. 3.1513 2b7.4a/L91]21..682n7 .,c1] 24 

27 4z9. 7(/7 1320.17-12'm07qn4" fl)3 0f0 8 3, 42-1 .cOC1 28 
29 -3", 7005-13 177.2pc...z3,6 - _.27A, 303 t'5 


Table 5. 11 Solution Vector for Test (c) in Experiment (ii) 



physical libration parameters. It is another proof of the relative independence 

in the solution for the coordinates of the points in the control network on one 

hand and the solution for the parameters of the physical librations on the 

other. The covariance matrix (not shown) is almost exactly the same as 

for cases shown in (i) above. 

It would be premature and rather presumptuous to state that definite 

conclusions can be drawn from the few experiments with simulated data per­

formed in this section. As it was declared in the introduction to this chapter 

the main purpose was to demonstrate the feasibility of the adjustment program 

and to develop a feeling for the many problems that lie ahead. With a 

large degree of reservation it can be stated that from the experiments 

described in this section it appears that the coordinates of a selenodetic 

control network can be solved rather efficiently from processing Earth-based 

optical observations and scaling the network by the lunar ephemeris. The 

solution for the physical libration parameters is less spectacular and there 

remains the problem of the inability of the procedure to solve for a and a. 

In general however the results demonstrate convincingly that the theory 

developed in Chapter 2 is sound and it is possible to solve simultaneously for 

the coordinates of the control network points and for the orientation parameters 

of the selenodetic coordinate system. 
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6. SUMMARY AND CONCLUSIONS 

This study was undertaken to solve the problem of determination of 

an optimal selenodetic control network on the Moon. Selenodetic control 

is defined by the coordinates of a network of well identifiable features on 

the lunar surface with respect to a selenodetic Cartesian coordinate system 

which is fixed to the lunar crust, is centered at its mass center and is 

oriented along the three principal axes of inertia of the Moon. The solu­

tion of this problem, although closely related to the dynamical properties 

of the Moon, is not a comprehensive datum solution for the Moon which 

by definition includes in additibn to the fundamental selenodetic control 

also the parameters of the lunar gravitational field and the elements of 

its general geometric figure. 

In order not to compromise the generality and rigor of the solution, 

the method, as developed in this study, is fully consistent with the 

theoretical and numerical models for the motion of the Moon in space. 

For this purpose, the definition of the selenodetic coordinate system and 

its orientation in space are given particular attention. Actually, the 

parameters of orientation of the selenodetic system with respect to the 

mean ecliptic coordinate system were made an integral part of the 

solution for selenodetic control. 

The solution in this study is based on processing optical, range and 

range-rate data obtained from photography or direct angular observations 

of the Moon and range or tange-rate measurements from tracking stations 

on Earth to satellites orbiting the Moon. As all the observations are 

either taken directly from the Earth or are related to it (a satellite 

photographing the Moon is tracked from stations on Earth) the geocentric 

ephemeris of the lunar mass center and also the geocentric coordinates of 
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the stations engaged in relevant observational activities are incorporated 

in the solution. Inorder not to expand unnecessarily the scope of the 

study, the geocentric lunar ephemeris and coordinates of observing 

stations on Earth are kept as fixed quantities in the solution although 

their uncertainties are reflected in the covariances of the solved parameters. 

In the solution, the Moon is regarded as a rigid body rotating in space 

in a complicated manner under the influence of the gravitational attraction 

of the Earth and the Sun, the effect of the planets being neglected. The 

defined through three Eulerian anglesorientation of the Moon in space is 


relating the selenodetic coordinate system to the mean ecliptic system.
 

The value of these angles (or rather the so-called physical libration angles)
 

at any epoch consitutues the solution for the orientation of the Moon.
 

Around the Moon in space there are a variety of sensors engaged in optical
 

as the directionobservations of the Moon. An optical observation is defined 

in space from a projection center (the sensor) to a particular feature on 

the lunar surface. The optical observations are usually grouped in bundles, 

i.e., directions emanating simultaneously from the same projection center. 

These optical observations modeled in terms of the parameters of the 

solution are processed by a weighted least squares adjustment procedure 

and result in estimates for the following parameters and their covariances: 

a. the selenodetic coordinates of a selected number of features 

on the lunar surface; 

b. six parameters of orientation of the Moon in space (physibal 

libration initial values); 

c. three parameters featuring the low degree terms (second 

degree) in the lunar gravitational field. 

In case the projection center is on board a spacecraft, in 

addition to the optical data, range and range-rate measurements from the 

Earth to the spacecraft are incorporated in the adjustment process. A 

standard orbit determination procedure is applied to the range and range­
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rate data which results in estimates for the selenocentrie state vector 

of the spacecraft and also in estimates of parameters of the gravitational 

field of the Moon. As the position of the spacecraft is identified with 

the projection center and also some of the parameters of the gravitational 

field of the Moon figure in the model for the optical observations, it is 

necessary for the optical data taken from the satellite to be processed 

simultaneously with the range and range-rate measured from Earth to 

the satellite. 

In order to test numerically the mathematical procedures developed 

in this study, a simulated environment was created which reflects very 

closely the true world. The Earth, the Moon and a variety of satellites 

move and rotate in this simulated environment strictly according to the 

laws of Newton and Kepler. The observational material generated is 

absolutely free of any unaccounted phenomena and although certain sim­

plifications were introduced, it simulates very closely real observations 

that could be obtained through photography or by Doppler tracking as the 

case may be. 

A number of experiments run with the simulated data served as a 

test for the mathematical development in this study and provided also a 

sample of the quality of results that could be expected from processing 

real data with the same characteristics. Tests of the net model for the 

physical librations of the Moon demonstrated that the adjustment procedure 

is capable of estimating the parameters of physical libration and with one 

exception, the correlations between the parameters are tolerable. 

Experiments were run in which the modelalso with real data for the 

physical librations was compared to an existing model. The results of 

the comparison indicated a surprising simularity although the approaches 

taken in developing the two models were entirely different. 

A complete selenodetic control solution was attempted using as source 

data thirty simulated bundles of optical rays taken from the Earth. The 

results confirmed once more the limitations of the Earth bound data. The 
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covariance matrices indicated a comparatively poor determination of the 

with standard deviations in the hundredscoordinates of the lunar features 

of meters. The parameters of the physical librations of the Moon were 

not determined much better, i. e. , the standard deviations of the initial values 

of the physical librations were of the order of tens of seconds of arc. 

The primary reason is that the attempted solution was limited to Earth 

bound data thus only letting the poor geometry and the great distance 

There is little doubt that the inclusion of satellite-bornehave their say. 

optical data would have changed the situation entirely. 

There are many problem areas which can be seen as a natural 

continuation of the present study. Actually, at almost every step in the 

course of the research, there were new questions raised, new avenues 

of research laid open, tempting and promising, interesting and previously 

unknown answers, just around the corner. A great deal of restraint had 

in order to keep the present study within the predeterminedto be applied 

scope and time limits. The main problem areas are outlined in the form 

of questions and brief comments: 

a. 	 What is the comparative value of optical observations 

obtained from a low orbiting spacecraft, (perigee of less 

than 100 miles) as compared to observations from a high 

spacecraft (perigee of more than 1000 miles)? There 

are two conflicting aspects, i.e., the scale of the photo­

graphs taken vs. the perturbing effect of the fine (and 

not so well-known) features of the lunar gravitational 

field. 
b. 	 Are the covariances of the coordinates of the lunar features 

as obtained in the sample solution indicative of the uncertainties 

in the relative position of the points in the control network 

or they only indicate that the coordinate system itself is 

poorly defined while the relative positions are much better? 

It appears -that applying inner adjustment constraints to the 

solution may bring an answer to'this question [Meissl, 1971]. 
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c. What is the quality of a solution for, the physical libration 

parameters from analysis of heliometer observations as 

compared to the solution from ordinary optical observations 

as proposed in this study? It would be of great interestIto -
F 

fiAd out if the vast number of heliometer observations 

accumulated over more than a century could be put to use 

in deriving a new solution for the physical librations. 

d. As in any other theoretical study, it is extremely interesting 

to find out what new problems will be brought up when ab 

attempt is made to use real data for a selenodetic control 

solution. 

At the end, the main characteristics of the solution for selenodetic 

control, as developed in this study, are summarized: 

a. 	 The solution is consistent with the motion of the Moon in 

space. 

b. 	 The solution for the orientation of the Moon in space is 
part of the general solution. 

c. 	 Optical data obtained from the Earth or from a spacecraft 

are processed uniformly, thus avoiding inconsistencies between 

solutions based on either of the two sources of data. 

d. 	 All the observations needed for the solution (optical, range, 

and range-rate) are processed simultaneously in a weighted 

least squares procedure where the parameters are constrained 

according to their apriori covariances.. 

e. 	 The adjustment procedure cain be programmed for use with 

available electronic computers where the core size required 

and the computer time for processing the data are reason­

able and make the application of the solution to processing 

real data a feasible proposition. 
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APPENDIX A 

Equivalency of MacCullagh's Formula to a Spherical Harmonics Expansion 

The problem treatedin this Appendix is to compare expressions for the 

apotential of a triaxial ellipsoid using MacCullagh's formula with that of 

spherical harmonics expansion. 

"The Earth", p. 176):MacCullagh's formula (Jeffreys, 


V = k2 /M.+ A+B+ C-31 (A. 1)
 

Spherical harmonics expansion: 

k 2PM F1 + "C20 + P22'C2 2cos 2X' (A. 2)
p .- ', \ / 

1,S2 2 are equal to zero, which meansThe second order harmonics C2 1,S1 

that the axes (x, y, z) are identical with the principal axes of inertia. 

Symbols used and their meaning: 

k gravitational constant 

M mass of the body 

a scaling quantity (usually taken as equal to the major semiaxis of 

the reference ellipsoid) 

C coefficients of the second order in a spherical harmonics 

02 2 ) expansion of the gravitational potential 

Pa-P2 J Legendre polynomials 

p,Xp polar coordinates of point (Q) at which the potential is evaluated 

with respect to the principal axes of the body (x,y, z). 

The following relations hold between the polar coordinates of a point Q and 

its Cartesian coordinates: 
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V COos
 

r[L .. L cos 
= p[V[cos:c: sin> 

where a, y, a are the direction cosines of Q (see Figure A. 1). 

z 

ZZ
 

MQ p
 

Figure A. 1 Polar Coordinates 	of Point Q. 

Iis defined as the moment of inertia of the body about an axis defined by 

a, , 6 as follows: 

I=A?+ BY'+C C a-	 B 6 1 =-: rT [ B r .(A. 3)
0 .j2- _ 0 0 

The Legendre polynomials are expressed as a function of the latitude (D 

[Mueller, 19641: 

P2= 1 
2 

(A. 4) 
P2 2 = 3eos 2 (0 

The principal moments of inertia are related to the spherical harmonics coef­

ficients by the following formulae [Mueller, 1964]: 
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I /A-+-B
C2 Ma2 K 2 C) 	 (A. 5) 

1a2 B-A4ClVa 

C 	 - A is a ratio between the moments of inertia A, B and C. 
B 

The relationship in (A. 5) can be reversed so that A, B and C are expressed 

in terms of C20 , C2 2 and fP: 

C2a2 

S 1 o B i= Ma2 C2 2j (A. 6) 

2 (A. 7)
20 

LI 	 (1 -n 2j.(A)-	 -(1 +6) 

So finally: 

2 C2 2" (2 -4B)0+FAm 
B] -CP, o+C2 2- 2 (A. 8). 

Li-C2 . (1 +) + C2 20 (2 - 2P)J 

The following intermediate developments are necessary for the comparison 

of (A. 1) and (A. 2): 

= 9"2 2sing, =-., cos 2 ql=- Z2

2 ­

p2p2 C2 p 

2 Xl; 2-x22 x+y; cos
cos2X= cos 2 -sin 2X; sin 	 sin 
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= 2 (sn.oi 2p' 2 2p2P 1=I(3si~q-1) 1 (3z-x-y _ 1 (2z 2 -X2 -y) 

p2 2 = (3 +Y) 

- x + y2 - 2y ­cos2)X = 1 2 Y2 2x+ y2x + y2x2+Y2 

In what follows the spherical harmonics expression (A. 2) is to be transformed by 

substitutions so that finally it is expressed in terms of the same quantities as 

MacCullagh's formula (A. 1): 

a2kVM F I x2 A +B-2C 3(kx+Y' (B-A) (x2 -) 
p2v = (2i'1+- y 4Ma2 (x+y) -l . 

After rearrangement 

V = k__M1 F 2. (-4A+2B+2C)+y2(2A-4B+2C) +z2(2A+2B-4C)]J. 
Lp Mp3 4p2 "x 

Adding and subtracting in the square brackets the expression 

x 2 6A+y26B+ z2 6C 

the result is 

1 i +± 2 +z 2 6 2
V = kM + (2A+2B+2C---pxA+yB+z)p Mo '. 4p3 4 p 

but 

p2 = x +y+z2 

so finally 1 ± A• B cf~ JK 0 o ] (A.9V = k2MV . +-- A+B+C- 1- Cxyz I" B "0 . . (A. 9) 

0 LZ-


The expression (A. 9) is identical with MacCullagh's formula (A. 1) where I 

has been substituted by (A. 3). This completes the proof of the equivalency of 

(A. 1) and (A. 2). It holds only where in both expressions for the potential 

the terms beyond the second degree have been neglected. 
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APPENDIX B 

Derivation of a Numerical Value for the Ratio 

between the Equatorial and Polar Moments 

of Inertia of the Earth. 

In analysing the motion of the average terrestrial system with respect 

to the center of mass of the Earth the following ratio is needed in the integra­

tion (see Chapter 4, Section 4.43): 

C -A 
A 

are the polar and the equatorial moments of inertia of the Earth. 
where C and A 

In the literature the values given for g vary in the third significant figure and 

'Plummer,
there is no clear indication of the method used to derive this constant 

1918; Jeffreys, 19701. 

are used for deriving a numerical value for p:
In what follows two methods 

Method (i) From Woolard's expressions for nutation 	in obliquity 

Woolard, 1953].using the constant of nutation adopted by the IAU in 1964 

Method (ii) - Using formulae given by Jeffreys F1970] and 

in 1964.evaluating the value of g for constants adopted by IAU 


The constants to be used are
 

2
k 2M = 4902. 86593 km3 sec gravitational constant of the Moon 

N = 9/210 coefficient of major term in nutation in obliquity for 

the epoch 1900.0 

= . 0000729211507 rad/see spin velocity of the Earth 
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= a 384400.0 km. mean distance to the Moon 

= 1. 06969941 10 rad/sec rate of change of the node of the 

lunar orbit. 

a, = 6378.16 km. major semiaxis of Earth reference ellipsoid 

f = 1/298.25 flattening of the reference ellipsoid 

k2 E = 398603 km3 sec gravitational constant.of the Earth. 

Method (i) 

From Woolard's "Astronomical Papers" p. 124 for the solution of Poison's 

equations for the motion of the Earth,through integration of the term "s.in Q2", 

the following expression is obtained [Woolard, 1953, p. 124]: 

.
-kM -3 C- A 1 -. 041166
W -C cos 9f21- cosD 

C-A 9.21 1.06969941-10 -. 729211507-104 3844003 
C 206264.8062 .041166 3 4902.86593
 

C-AC-
 = .00326731. 
C 

Method (ii) 
C-A
 

From Jeffreys [1970, p. 189] a formula for C-A is given as follows: 

frm 
C-A 2 

C 1 ­ • -

where
 
5m
 

a = f- 2 

M = k.2 b and b = (1 -f) ae is the minor semi-axis of the 

reference ellipsoid. The constants listed at the beginning of this Appendix 

are substituted in the above expression and result in the following: 
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m = .003449801472
 

ia = .572258243
 

and finally 

C-A = .003266166 

C 

The difference between the values obtained is in the fourth significant 

as the constant N = 9.21 is based on astronomic observations anddigit and 

as it is important to remain consistent with the set of constants adoptedC-A 

by IAU in 1964 (N being one of them) the value for -A to be adopted is 

0.003267.
 
C-A g = -A 

A simple algebraic manipulation results in 

g .00327802. 

Compared to the dynamic flattening of the Moon (fi = B .000629) 

is about five times larger. 
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APPENDIX C 

Design of a set of Mascons on the Moon. 

Dynamically the simulated Moonis a triaxial ellipsoid with a set of 12 
mass concentrations laying on the surface of the Moon sphere. They are super­

imposed on the basic triaxial figure. 

The mascons had to be designed in a way such that they do not alter the 
low degree terms of the spherical harmonics expansion (up to and including the 

second degree). This would mean that the total contribution of the mascons 

to the mass of the Moon, to its first moments and to its second moments and 

products of inertia is zero. 

The 12 mascons were all chosen to lay on the front (Earth side) of the Moon 
at locations which correspond to mascon models as solved and reported recently. 

Mathematically this is an overdetermined problem as the 12 masses have 
to satisfy a total of nine independent conditions. The symbols used are: 

mi - mass of i mascon 

x. y1 z, - Cartesian coordinates of mascon in the selenodetic system (x,y, z). 

The nine conditions are as follows: 

zero degree term 1 L m1 = 0 

2 Lmjx = 0
 
first degree terms 
 3 5mjy = 0 

4 mz = 0I 

S is the smnmation symbol over the i mascons 
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a,22_ J2+ 

C0= 0 5 M z 2/ 

Cal = 0 6 Zmxiz
 

second degree terms C22 = 0 7 (41m­

-
C21 = 0 8 Tmiyl z1 

C22 = 0 9 Sm i x1 y 

The condition equations are linear in the parameters and so the solution 

follows directly. 

The mathematical model is given by 

BM + W= 0 

where 

X1 X2 . . . 16m 

Y .1 .... .Y12 6m 2 w2 

B = M 6.3 W
 

2 M12
 

xIy x 2 Y2 . . . XIPY12 

.6m1, 6m, are corrections to initial values for the masses mo1,M0 2 ,. M012. .. 

The least squares solution for M is 

M = -P'T (BP-Br)'W 

where P is the weight matrix for M (in this case it was defined as the identity 

matrix). Two of the masses were set to predetermined initial values while the 

rest (ten masses) were set to zero. 

Three consecutive iterations of the adjustment problem were run. The 
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second and third iterations produced identical results and the vector W 

after the third iteration contained quantities smaller than 16 5 . 
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APPENDIX D 

Considered Parameters in a Least 

Squares Adjustment Process 

Parameters in aleast squares adjustment process are estimated either 

without conditions (functional or weight constraints)as free variables, i.e., 

being imposed on their solution or as observed quantities having an a priori 

estimate of their covariances. These a priori covariances constrain the 

in their weight coefficientssolution of the parameters and figure also 

In what follows the second case is treated where a priori infor­matrix. 

mation on the parameters does exist. 

In order to solve for the parameters one should have reasons to 

expect that the data processed areof a type and quality such that the esti­

after the adjustment,mates of the parameters are going to be improved 

i.e., the trace of the a posteriori covariance matrix (the scaled weight 

acoefficients matrix) will be. smaller as compared to the trace of the 

priori covariance matrix. There are cases, however, where for various 

reasons some of the parameters have to be held fixed through the adjust­

ment or even if they can be allowed to vary it is realized beforehand 

that no improvements in their a priori values can be expected as a result 

treated asof the adjustment. If this is the case, such parameters are 


approach:
constants. There is one -major flaw in such an 


In estimating the covariances of the parameters that are being
 

adjusted, the effect of uncertainties in the "fixed" parameters 

on these estimated covariances is implicitly ignored. This 

implicit omission is seldom justified as the "fixed" parameters 

themselves have been obtained, most probably,earlier through an 
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adjustment process and have a covariance matrix associated
 

with them.
 

The problem to be treated in this appendix is to derive expressions 

for the contribution of uncertainties in "fixed" parameters on the estimated 

covariance matrix of other parameters which are being solved for in a 

least squares adjustment process. The development here is a generalization 

of the method of "Considered Parameters" as used by JPL and outlined by 

Anderson [1964]. 

The mathematical model used is in accordance with the so called 

"Generalized Approach" in which all the quantities involved are treated as 

observables with associated a priori covariance estimates [Uotila, 1967]. 

The following notation is used: 

Lb observables which are subject to adjustment 

Xb - observables which although possessing a covariance matrix 

are held fixed 

S a priori covariance ) Lb 
,respectively. 

' matrix of ! b 

I / 

The mathematical model F is then 

=F = F(L , Xb) 0 (D.I) 

where La are the adjusted observables. 

L L + V (D. 2) 

The mathematical model is linearized under the assumption that F is 

fairly linear over V 

=F = BV + W 0 (D. 3) 
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where 

B -F and W = F(Lb, X) 

In what follows the sequence of formulae is well known from Uotila 

[19671 and is presented, therefore, without comments: 

= VTI-'V 2XT(BV + W) (D'.4)-0 


BT
I-b iT- 0 DZ=V B 

~Lbv J O~V T 

(D.5)x -WB 0 

W = -BT M'W (D. 6)V -B (B S BT) 

La L +V L - BTM-W (D.7) 

Two fixed vectors L0, X° are defined which are close in value or 

even identical to Lb, Xb so that 

Lb = LO + L 

e = L + L* 

X" = X* + X 

,

The vectors L, L*, X have the same covariance matrices like L , L 

Xb, respectively as X and LO are constant vectors. 

Using the partial derivatives matrix B 

W = W ° + BL + BX (D. 8) 
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where 

WO = F(L0, X) and B, =--

The equation for L' is written again 

L° + L* = LO + L -F B TM-W° - ZBT M-1BL - ;BTM-'BxX 

L* = - EBTMlWO+ [I _ DBT M1B] L- BTM-B X (D. 9) 

The only elements on the right side which possess covariance matrices 

are L and X. An assumption is made that no elements in Lb are correlated 

to any elements in Xb. The covariance matrix of L* (or La) is evaluated 

according to the law of propagation of covariances. 

Z,* = [I- BTM B] F [I-BTM1BF]+SBTMlBjBMlB (+. 10) 

Setting
 

M, = BXSXB T
 

and also as 

[I-DBTM-lB] Z [I-BTMlBD] = [I-IBTlM-tB]F 

it follows that 
=IL*= ZL- [I - IBTM-'B] F + ZBTM'l4 M'BB (D. 11) 

This is the expression for the estimate of the total covariance matrix 
of La where the first term on the right side is the covariance matrix of La 

obtained without considering the contribution of xb. 

In practice the vector of observables Lb is usually partitioned into 
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- the actual observations 

and 

t_' - the parameters. 

The solution for the corrected observations is occasionally of no 

in" the solution for the parameters. 

L 

interest and is "folded 

An assumption is made again that there is no correlation between L. 

and I2 

[V1= Lb=- ; 01; B [B, B2] 

The solution for V as obtained above is then 

L2 o Zi=B21 iBJ11 W 

M,= B, E BT ; M2 B%= 2 BT 

(D. 13)V2 = - B T (MI + M 2 .W 

A matrix inversion identity is used according to Uotila [1967]. 

(M + M2)-' = (M1 + B2 E2 B )-' = Mt - M 1B2 (Z:+BTM 1 B2 )-Th' M2
"' (D.14) 

Through a trivial matrix manipulation it follows: 

(D. 15)
= (7'+ B2M'B ,'B M1 WV2 


The covariance matrix of L is partitioned as follows:
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IL -L 21 

T 

where DZb are the covariances between L and I. F2 is the lower 

right submatrix in FLa . The expression for Ee is developed further to 

obtain L'2 explicitly. 

0 _D0 0 B; o 

° 
.;(MI + M2 )"[B1 B] j 
10 I2] 0 Z2 BTB 0 

I [ 0I 01 
1 '- MV+2 )1 M.(M1 + M 2 ).'[B 1 B2 ].,L o fiB2 o 

Skipping several obvious steps 

2 +ua2 = Z2 - LB T (MI M 2 )-' B 2 Z2 + 
2 

r,- BD(MI +M-)'M- (M + M2 ) BQ (D. 16) 

Using the matrix inversion identity mentioned above 

(W +'B+ -1) 2 - 3;(M -2Mi = Z2 +M 2 )t B2 

It was shown already that 

1 2 BT (Ml + M2 )'I ( E+ BTM'13M 2 ) B T
 

= 
2 )

" 
so after setting K (E_'+ B2
T M1B the covariance matrix for L can 

be written as 
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Dta2 = K+KBTM1 'M,.M 41 B2 K (D. 17) 

As for the Za matrix, here also K is the covariance matrix of the 

Le parameters obtained if the contribution of uncertainties in Xb is 

ignored.
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APPENDIX E
 

Rules for Differentiation of Matrices
 

(a) 	 Partial derivative of a scalar function (D with respect to a vector X 

is the row vector Y. 

aX -X (X2 bX ..... . 

(b) 	 Partial derivative of a matrix A by a scalar c is a matrix C. 

aA "
 
C 
 ac­

where each element in C is the partial derivative by c of the 

corresponding element in A. 

(c) 	 Partial derivative of a vector Y with respect to a vector X is a 

matrix C. 

aX 1 FX2 	 a Xm 

C by aXi 

6X
 

F- XI .6X ..... aX. 

X X "" 
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(d) 	 Partial derivative of a matrix A by a vector X is a three dimensional 

matrix C. 

A
C IX
 

A is partitioned into column vectors 

A = [A, A2 A3 . . . . . . . Al] 

The layers of C are obtained by differentiating sequentially the columns 

of A 

?jA.C, 	 = 
ax
 

where C, are layers of the three dimensional matrix C and are 

matrices obtained according to (c) above. 

(e) 	 Partial derivative of the product of a matrix A and a vector Y by a 

vector X is a matrix C. 

6X
 

-

According to case (c)
 

L 6XI Y)(AFjX2 -Y)- .... 
• 6XM
 

C =C 1 + A C2 

where
 

b AA
C= bA . 6 y . . . . __A6A .y 1. . . .


C-X 3X2 	 ""X2 -a 
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and 

-Y
C2 ax
 

In -hat follows two particular vector forms are differentiated applying 
the rules as developed above. 

(f) Partial derivative of the vector form A by the vector X is the 

matrix C. 

A- TD -(XT. X)/ 

where D is a matrix which is not a function of X -

A
C 
F)X
 

S (XTD. X) I C1 

C (XX= )(j + 2)/ 

If instead of D there is the scalar d which like D is not a function 

of X the resulting matrix C is 

dT I - d.X- X=C X)'Y2. X"x)(j +22 

(g) Partial derivative of the vector form A by a vector X is the matrix C. 
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A=X.X'TD.X
 

where D is a matrix which is not a function of X
 

A
0=C6-x 

This can be treated like case (e) 

c = 	 Fj[xx) •. (D. X)I _ C, + C2 
ax 

where 

C2 =XXTD 

C3L X2 	 ax. 

0 

[0 0 o .... X..0] + 
-x'- = 

a xT 

0 

C 1 = XXTDT + X T DXI 

C = XX T (D+DT) +XTDXI 

(h) 	 Rotation matrices R j(p) i = 1,2,3 are differentiated with respect 

to the angle of rotation p using auxiliary matrices Lo1 as given by 

Lucas 1963]. 
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0 

Rotation matrices about the three Cartesian axes, respectively are: 

f1 0 0 cosq 0 .-sinp ] cosP sing 
Rj(o) = 0 cosc sin ; R2()=[ 0 1 0 ; R1(p)B= sinp cos p 0 

0-sincosp sinp 0 cos 9 j 00 

Lucas' auxilliary matrices used to differentiate the rotation 

matrices are: 

ILojj 00 

-j 

0 

0 

if;
1 

0 0Lo2 

L-

= 0-100 0 j; 

o00 -1] 
0 1!1o--00 

[-j01010 
t0-1 0 L1 0 o 0 0 

The differentiation is straightfbrward: 

Sp) = L i • R (P ) = R1 ( ) L ei 

In the case of a negative rotation (-p) 

6R 
Fjp 

-= Lo" R, (-g) •(-) =-tc1 R (-(p) 

Products of Vectors in Three Dimensional Space 

Performed by Equivalent Matrix Operations 

(a) Dot product of vector A and vector B is equal to the 

scalar c. 

-> -­> 

I- B, 

c = AT. B=BT- A=[A1A2 As] B2 

B 



(b) 	 Vector product of vector A and vector B is equal to
 

vector C.
 

-4 .-- .4 . --4 4-

C =Ax B=-BX A
 

il f, 0 -A3 A2 1 1 [0 B3 -B2 [A,
rB
2I= 0 -A B- =-B 0 B1 ' A2-A3 1 3 


B
A, 0 BJ[	 0 J A3 JLC 3J 	 -A 2 3 2 -B 1 
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APPENDIX F 

Orbit Determination Routine for a Satellite of 

the Moon in the Simulated Environment 

During the past, decade with the advent of space exploration, and the 
availability of electronic computers many and highly sophisticated orbit 

determination routines were developed. To mention only a few, O.D. 
(orbit determination) routines were programmed and used successfully by 

JPL, Langley R.C., MSC, TRW, etc. The difference between the various 
routines, where it does exist, is mainly in the types of data being pro­

cessed and the particular application the routine was designed for. 

None of the above programs was found appropriate for use in the 
simulated environment. In general, they are much too complicated and have 

an extensive list of parameters which irrelevant to the simulation.are 

The observables are real and so extensive error modeling is included 

in the routines. On the other hand, if such an 0. D. routine is to be 

used with the simulated data, the mathematical model of the simulation 

would have to be altered to conform with the particular model implied 

in the O.D. routine. 

Because of all the above reasons, it was considered essential to 
design and program an O.D. routine which will be capable of processing 

the simulated range and range-rate data and will solve for initial state 

vector and a set of physical parameters consistent in form with the ones 

used in generating the data themselves. The approach taken follows very 

closely that of JPL's ODP as reported by Warner [19643 and by Anderson 

[1964]. It is based also on theory as presented in textbooks like[Brouwer 

and Clemence, 1961] and [Escobal, 1965]. 

The essential elements in the O.D. routine are two: 
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of motion 	of the satellite.(a) 	 Numerical integrator of the equations 

(b) 	 Generator of partial derivatives of the state vector with respect 

to the initial state vector (state transition matrix) and to the 

parameters 	 of interest (parameter sensitivity matrix). 

given actually in section 4.44The mathematical formulation for (a) is 

of Chapter 4. The expressions for (b) are developed in this Appendix 

using as a starting point Cowell's equations of motion of a satellite in the 

simulated environment as given ig section 4.44. The notation to be used 

is identical to the one used throughout Chapter 4.in this Appendix 

Cowell's 	 Equation of Motion of a Satellite
 

(See Figure F.1)
 

1 2±­
2k.. F 	1 H_ (pI-i ssf)p 

P j R	 (4.44.10)
+(04ALRi 

T) Q 

T2 51 

L7I + - +=+ (P P 	 •I-,XX) (P+Q)j.x
 

z
 
'Z
 

it-t" Y. P, 

, 	 Y S E - geocenter/ 

x RR	 selenocenter 

X/ x 	 M, - mascon i 

S - satellite 

E
 

Figure F. 1. Vector Diagram fora Satellite of the Moon.
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0 = (XTX)2 

Prn = (STS) 2 

Po = (RT R) 2 

TM = R3 (P) •R	 1 (-O)- R3(*) -

Tm is orthogonal transformation matrix from XYZ into xyz. 

M, is the 	position vector of the i-th mascon in xyz system. 

k0 E is the Earth gravitational constant. 
E 

m= E ratio of mass of the Earth to mass of the Moon. 

R=S+X
 

P = S - TMT . M, 

8 a TM 	G Tm 

Q, + (2-4 C, 0 	 0 
=G 	 0 -C2o +2 C22 0 

0 0 -(1 +fl C 2D+ (2 	 2 6) C 22 

H 23-, [-(3 +P)C + (6-6P9)C2] 

Q, E, ae, 	 are quantities which are not functions of [ J 
Pi and p2 . 

P rp, 	 are the physical parameters as follows: 
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pi [= I -a•• *ihJ] 

where
 
C20, C2 are second degree spherical harmonics of the
 

gravitational field of the Moon.
 

C-A 
= where A, B, C are the principle moments of 

B 

inertia of the Moon. 

-p is 	the ratio ,of the mass of the i-th mascon to the 

total mass of the Moon. 

Most of the above is copied from Section 4.44. 

The two 	matrices sought in this Appendix are: 

r -the state transition matrix SS L J 

and 

the parameter sensitivity matrix 
Q 1s 2 	 =[. I 

F-S
 

As the state vector at a particular epoch L i is the result of the 

numerical integration of the equations of motion S, the differentiation of with 

respect to the initial state 'ector IS "I' ,and the parameters Pl,ndAp2 is carried 

out through differentiation of S with respect to [- j P P2 A 

shown by Anderson [1964] two sets of linear differential equations can be 

derived as follows: 

[-1 
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U 	 8.u (F.1)S s 

Q Q += 	 (F. 2)
S $ 

where 

FS rp 

rS and .6p 

The derivation of these equations as applied to the rotation of the 

Moon is presented in section 3.32 of Chapter 3. 

o 	 1 o1 
0= ¢ CJ1 = as as 

bpiP P2 

In what follows the derivation of expressions for the three partial 

derivatives matrices IL8 Lg a *P is presented. Rules for differ­-

entiation of matrix forms are outlined in Appendix E. As in the case of 

the matrices derived in section 3.32, the expressions are simplified only 

in so far as this is required for enhancing the coding in FORTRAN 

computer language. 

as
The matrix as
 

2 F-I 3SST 5: SHSST - 5PSS'a-V-s -T- + HI - + P -o 

5SSr(p+p) 35SSTjSST SSTPsI P. i 39PIPI - 7 +
2 22pm 	 + 1k Pi Pit 

i 

I 3RRT ElI 5ERRT - 5QRR T SRRT(Q5 +Q)T) 

35RRTQRR 5R T QRIj 
+ 	 2p 2p 7 (F. 3) 
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Slight regrouping is in order and the final form is as follows: 

1 F I H I (pSS.)2 

1 L -	 + g.- + (pm 5 T
Is s+ ss + 

2 

_T,SSTp- -
s 

)- V-3'I 	 5111 5(O2I ~sTp 

5 TS 
PmP_,P_ Pm 

e+6 + 7 + 2 S S 

SpS , SST P) 

PPi
 

Lheatrix PJ. 

5 T 

Tpi(RTQRI +RR QT (F. 4) 

The matrix 

]TP1 = [C2? C2 

In section 3.32the following two partial derivative matrices are 

derived. 

1 -I 0 

0 1 0 

6[r ap T ] 
0 0-1 

1 -1 0 (.5(F.5) 

0 0 1 0 

0 0 1 
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and 

Q 
M 

t 
6 Pi 

p (F. 6) 

FK 
LL 

Q 
M 

where 

K = r 0[OITl 

ap, 

The differentiation is performed as follows:--­ ~T ~P 

__ t 1 F I HI( Is -. " SST )I 

-­i 

(F. 7) 

. 

i,"_+ 

( 

+ HP 

The following intermediaries 
6H 3a 2 6 3) 

P L(6-

6pP3 P 

( V .X 

are needed: 
3(CC - 2Cm) 

-

ap, 

oP *X 

(3 + 6) 

(.8 

P 

2)(P -S) - aPp-6pa=-i----. s 
aBaC 

. S'-SI 
20 

a 1 
aP, 

is obtained similarly substituting X for S. 

P 3a 2 

L 

T 

m 

aT 

Tm+ 2T0 

aTM 

p 3----F ($ + TM 
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T 3 LT " TM + 2TTG 

where 

G 

and 

JG 

Ca 
S 

r 

L 

2-48 
00 

0 

0 
0 

0 

-1 
0 

0 0 
I 

0 2-26 

0 

0 
-(4+8) 

-

(C20 - 2CM) 

The partial derivatives of Tm 

-T TM_. 

(€F Tm Q)T • K 

are evaluated as follows: 

(K was defined above) 

A3. = TM Lc • TM 

A2 

As = 

aTm 

Tm 

= 

= 

TM "LO2 

-1R3 (p) - L" R.(-0) R3 (0) 

(see appendix I 

6T 

bC22 

= A," K1, I + A 2 " K2,1 + A3 K3,, 

6T = A,- K,,2 + A 2 " K2 , 2 + As K3,2 
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6C = A, K I, a + A 2 K2 , 3 + A3 Ka, 

=- LoP, 3 p j [Al . M , T 1 i A1W M11 

The last expression is based on the following identity 

AlT = -_TM T - aT; 

The matrix 6­

-- O -E= ' P , P-k
 

mP2 p .........
Lp 3 

This completes the derivation of all the expressions necessary to 

evaluate e and 4. Using numerical integration, the matrices U and- Q 

are evaluated along the orbit together with the 
S S 

state vector itself. In case 
the number of parameters (number of columns in Q) is excessive, the 
differential equations Q = SQ + CDcan be solved 

S 
by quadrature using 

S SSimpson's or other appropriate methods (see Anderson, 1964). 
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