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C
SUMMARY r-

A method of numerical solution of the Navier-Stokes equations for the flow about
arbitrary airfoils or other bodies is presented. This method untilizes a numerically
generated curvilinear coordinate system having a coordinate line coincident with the
body contour. Streamlines, velocity profiles, and pressure and force coefficients for
several airfoils and an arbitrary rock are given. Potential flow solutions are also pre-
sented. The procedure is also capable of treating multiple-element airfoils, and poten-
tial flow results are presented therefor.

INTRODUCTION

It is imperative in numerical solution of the Navier-Stokes equations that the
boundary conditions be represented accurately in the finite-difference formulation, for
the region in the immediate vicinity of solid surfaces is generally dominant in determin-
ing the character of the flow. The pressure and forces on solid bodies are directly
dependent on the large gradients that prevail in this region near the surface, and accurate
pressure and force coefficients require that these large gradients be represented accu-
rately. This problem is accentuated at higher Reynolds numbers as the gradients become
more severe.

Therefore, almost all numerical solutions of the Navier -Stokes equations generated
to date have treated bodies for which a natural coordinate system is available - circles,
ellipses, spheres, Joukowski airfoils, and so forth. (Natural coordinate systems as
defined here are those for which the body contour under consideration coincides with a
constant coordinate line.) The paper by Mehta and Lavan (ref. 1) has given a solution
about a modified Joukowski airfoil accomplished by generating a natural coordinate
system with a conformal Joukowski transformation and solving the Navier-Stokes equa-
tions on this system. The basic Joukowski transformation was modified somewhat by
rounding the trailing edge and contracting the coordinates near the body. Only one case
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was run - a stalled flow at a 15° angle of attack and a Reynolds number of 1000. The
method is limited to those bodies which can be generated by the Joukowski transformation
(symmetric and cambered Joukowski airfoils, flat plates, and circular and elliptic cylin-
ders) and does not have general applicability. Arbitrary two-dimensional bodies have
not been successfully attacked as yet, primarily because of the difficulty of accurate rep-
resentation of the boundary conditions and the large gradients near solid surfaces when
no coordinate line is coincident with the body contour. Some solutions-have been r~ • "'
attempted with'interpolation between grid-points for boundaries not coincident with coor-
dinate lines, but this neces'sarily introduces irregularity into an otherwise smooth bound-
ary arid places the most inaccurate difference representation in precisely the region of
greatest sensitivity. Dawson (ref. 2) attempted to create a method for general bodies by
the use of two uniform rectangular grids: -a fine, inner grid surrounding the.body and
extending for perhaps >one characteristic body dimension, and a coarse outer.grid sur^.j.
rounding the inner grid and extending outward for perhaps 10 to 12 body, diameters. The
twOigrids overlap to allow for accurate transition between the,two mesh systems.. Only .
a circular cylinder solution was attempted, and this .solution was restricted to small - ...
Reynolds numbers (R i 1000) because of boundary instabilities. .; • •

A method of automatic numerical generation of a general curvilinear coordinate
system with coordinate lines coincident with all boundaries of a generarmultico'nnected
region containing any number of arbitrarily shaped bodies has, however, been developed
which should alleviate this problem with arbitrary bodies (ref. 3). The curvilinear coor-
dinates are generated as the solution of two elliptic partial differential equations with
Dirichlet boundary conditions, one coordinate being specified to be constant oh each of
the boundaries, and a distribution of the other being specified along;the boundaries.
These equations are solved in finite-difference approximation by successive over-
relaxation (SOR) iteration. No restrictions are placed on the shape of the boundaries,
which may even be time dependent, and the method is not restricted to two dimensions or
single bodies. Coordinate lines may be concentrated as desired along the boundaries.
Spacing of the coordinate lines encircling the body may be controlled by adjusting param-
eters in the partial differential equations for the coordinates.

Regardless of the shape and number of the bodies and regardless of the spacing of
the curvilinear coordinate lines, all numerical computations, both to generate the coor-
dinate system and subsequently to solve the Navier-Stokes equations on the coordinate
system, are done on a rectangular grid with a square mesh, that is, in the transformed
plane. It is also possible to cause the natural coordinate system to change in time as
desired and still have all computation done on the fixed rectangular grid with square
mesh. This allows the curvilinear coordinate system in the physical plane to deform
with a deforming body, blast front, shock, free surface, or any other boundary, keeping a
coordinate line always coincident with the boundary at all times. The physical coordinate
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system has been, in effect, eliminated from the problem, at the expense of adding two
elliptic equations to the original system.

Since the curvilinear coordinate, system has coordinate lines coincident with the
.surface contours of all bodies present, all boundary conditions may be expressed at grid
points. Also, normal derivatives on the bodies may be represented by using only finite
differences, between grid points on coordinate lines, without need of.any interpolation,
even though the coordinate system is not orthogonal at the boundary. Numerical solu- ..
tions for the lifting and nonlifting potential flow about Karmari-Trefftz airfoils obtained
with this coordinate-system generation show excellent comparison with the analytic, , r

solutions. . . - .- . - . . . ...,.

This method of automatic body-fitted curvilinear coordinate generation1 has beent .
used to construct a finite-difference solution of the-fully .incompressible, time-dependent;
Navier-Stokes equations for the laminar viscous flow about arbitrary two-dimensional'- -
airfoils or any other two-dimensional body (ref. 4). The Navier-Stokes equations are- -1:
written in the vorticity—stream-function formulation, with the vorticity on the body being
determined by a type of false-position iteration so that the no-slip boundary condition is
satisfied. The solution is implicit in time, the vorticity, and the stream-function equa-
tions being solved simultaneously at each time step by SOR iteration. A method of con-
trolling the spacing of the coordinate lines encircling the body has been developed in
order to treat high Reynolds number flow, since the coordinate lines must concentrate
near the surface to a greater degree as the Reynolds number increases. The solution is
designed to provide the velocity field, the surf ace-pressure distribution, and the lift,
drag, and moment coefficients. Results are given for separated flow over two airfoils
and an arbitrary rock. Initial application to multiple airfoils has also been made.

SYMBOLS

a,b,c,d coefficients in equations (5)

axial-force coefficient

drag coefficient

j>p friction-drag coefficient

, pressure-drag coefficient

CL lift coefficient
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Cjj normal-force coefficient

Cp pressure coefficient

Cp pressure coefficient referenced to trailing-edge pressure

D differential operator; two-dimensional region (fig. 1)

D* rectangular region (fig. 1)

ds increment of arc length along body surface

E maximum norm .... . » ' . . . -

F force on body

f function

i,j computational grid points; i = 1 . . . I; j = 1 . . . J

i,,̂  unit vectors

J Jacobian

k iteration counter

M,N summation limits (eqs. (5))

m,n indices

n unit vector normal to body surface

P,Q amplitude factors (eqs. (5))

p pressure

R Reynolds number

S body surface
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Tn stress vector on body surface

t time

tn current time

V velocity . " • • ' " : * 'rc :*v '

Vt tangential velocity component

x,y physical coordinates (nondimensionalized by'airfoil chord)

«,/3,y coefficients of natural coordinate transformation (eqs. (3))

rl» r2» • • •> rs curves in physical plane

ri' ^2' ' •' r8 curves in transformed plane

e convergence factor

6 relaxation factor

9 free-stream angle of attack

\ coefficient in stream-function equation

£,T? transformed coordinates

a,r coefficients in equation (9a)

4> stream function

?//b value of \j/ at body

u> vorticity

o^b value of u> at body
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Superscripts:
" - . . ,' , !<.''• • '

L lower surface • - • • • • /
• ' ' ': • • : • ' . • ; a% ' • .

U upper surface •' ' ' • ' • ' ' '

*r,X'i transformation

Subscripts:

L •'- "-' " lower'surface l •'- : '• " •'-•"• v ~ : ' • * ;' • '• '-•" '•-* ' "' •<."•&••; ^-,- " ' • : : • . - . - ,M .<»;

o '- •''- trailing edge (fig.]4)—^ • •-' •>'• .r " - • • • • . - - "" -•> •-• •& -J- • L- 'v.^J.,

' :i.f

: trailing edge

U K "''"''" "upper surface - .-.•>->••• •-. s;:-«-. •-.-v ....,, ;« ,; -' ?*..•-.,'...; -vi
-. • . > • - • .- .• . , ; • • • ! • . - : 1 -. - , .v" :' . . - • t .

- • • • • • • • . ' • • • • • / • ! . . • ' ,-,' , . , ,0-., -

x,y • ... differentiation with respect to. ;x -or "y . . •, .. . '• • _, . -,

^,77 differentiation with respect to | or 77 . . ' : • :" • • ' ' :.

00 free stream

BODY-FITTED CURVILINEAR COORDINATE SYSTEM

Mathematical Development

Let it be desired to transform the two-dimensional, doubly connected region D
bounded by two closed contours of arbitrary shape into a rectangular region D*, as
shown in figure 1. The general transformation from the physical plane [x,y] to the
.transformed plane [£,77] is given by £ = £(x,y), 77 = 77(x,y). Similarly, the inverse

' ' - . • " - • ' ' l

transformation is given by x = X(£,TJ), y = y(£,7i). Derivatives are transformed as
follows: . .

x - 9(x,y)/9(|,r,)

_ 8(~
?) J , ,

where J is the Jacobian of the transformation J
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Since the basic idea of the transformation is to generate transformation functions
such that all boundaries are coincident with coordinate lines, the natural coordinates
[|,ijj are taken as solutions of some suitable elliptic boundary value problem with one
of these coordinates constant on the boundaries. Using Laplace's .equation as the gener-
ating elliptic system gives

< n + « y y - ° ' ' ' <2a)

0 (2b)

with Dirichlet boundary conditions: 77 = Constant = 77 j on Fj, 77 = Constant = 7j2 on
P2, and £(x,y) a multiple -valued solution with a branch of £(x,y) specified (but not
constant) on Fj and 1^. The curve F^ on the physical plane transforms to the
lower boundary Fj of the transformed plane. Similarly, ^ transforms to Fl", and
so forth. The right and left boundaries of the rectangular transformed plane Fj and
Ft are coincident in the physical plane. The curve which transforms to these bound-
aries connects Fj and F2 and determines a branch cut for the multiple -valued func-
tion |(x,y). Thus the functions and all derivatives are continuous across this cut.

Now since it is desirable to do all numerical computation in the rectangular trans-
formed plane, it is necessary to interchange the dependent and independent variables in
equations (2). Thus • ,

= 0 (3a)

m - 0 (3b)

where

a = xrj2 + jjf (3c)

. . (3d)

y = x4
2 + y£2 ' (3e)

with the transformed boundary conditions: x = f I(£,T/J) on F^, y = gi(^,J7j) on F?,.

x = f2(£»f?2) on ^2' an(* v = S2^»^2^ on r2* ^ tlie Present application, x and y
are nondimensionalized with respect to the airfoil chord.)

The natural coordinate system so generated has a constant 77 -line coincident with
each boundary in the physical plane. The £ -lines may be spaced in any manner desired
around the boundaries by specification of [x,yj at the equispaced 4 -points on the TI\- and
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7/2-lines of the transformed plane. Control of the spacing of the rj-lines may be exer-
cised by varying the elliptic system of which £ and 77 are solutions.

Extension to Multiple Bodies

The same procedure for natural coordinate generation may be extended to regions
that are more than doubly connected, that is, have more than two closed boundaries or,
equivalently, more than one body or hole within a single outer boundary. The transfor-
mation to the rectangular field is illustrated in figure 2.

The method requires that the 77-coordinate be equal to the same constant on all the
interior boundaries, that is, on all bodies in the field. Let all the bodies be connected
by arbitrary cuts and, similarly, one body be connected to the outer boundary by an arbi-
trary cut. Since the ^-coordinate is equal to the same constant on all the bodies, it is,
of course, equal to that constant on the cuts between the bodies also. By contrast, the
£-coordinate is taken constant on the cut between the body and the outer boundary. Since
the locations of these cuts in the physical plane are not specified, the specification of 77
or | as constant on a cut does not overspecify the elliptic problem^

Note that all bodies except one are split into two segments. Each cut appears
twice on the transformed field boundary, the two segments, of course, corresponding to
the two "sides" of the cut in the physical plane and thus being reentrant boundaries with
the functions and all derivatives continuous thereon. Thus x and y have been speci-
fied on the portions of the lower boundary of the transformed field that correspond to the
bodies - F* and r£ for the right body and T* for the left body - and also on the
entire upper boundary, corresponding to the outer boundary in the physical field. The
remaining portions of the lower boundary and the entire side boundaries are reentrant
boundaries and, thus, neither require nor allow specification of fx,yl thereon.

Again an elliptic Dirichlet problem is solved to generate the natural coordinates
[x,y], as in the previously considered case with only a single body. All computations,
both to generate the coordinates and subsequently to solve the partial differential system
of interest, are again done on the rectangular field with square mesh in the transformed
plane.

Numerical Solution

The relation between the transformed and physical fields for a single airfoil is
shown in figure 3(a). The physical coordinates of I points describing the body surface
fx,yj provide the boundary conditions along the j = 1 line; those of I points on the
physical remote boundary, usually a circle with radius 10 or more chords, supply the
boundary conditions along the j = J line of the transformed field. Since the side bound-
aries of the transformed field are reentrant, corresponding to the cut in the physical
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plane, then fT . = f i . and fui i = f? i for all j. Note that the values of x and y
i>l *•>! J-Ti»J ">J

are not specified on these side boundaries. All derivatives in equations (3) are approx-
imated by second -order, central -difference expressions (A£ and A?/ are both unity by
construction, the actual values of £ and rj being immaterial):

(4a)

fi-l,J-l) ' (4e)

The resulting set of 2I(J - 1) nonlinear difference equations, two for each point fi,jl
for i = 1, 2, . . . ,1-1 and j = 2, 3, . . ., J - 1, were solved by accelerated Gauss -
Seidel (SOR) iteration. The iteration was considered to have converged when the maxi-
mum absolute change on the field between iterations was less than 10 ~5. A range of
acceleration parameters was examined, and a value of 1.85 was nearly optimum for the
bodies considered.

The relation between the transformed and physical fields for two airfoils is shown
in figure 3(b). The physical coordinates of body 2 at points i = 1 . . .11, those of
body 1 at points i = 12 . . .13, and finally the remaining points i = 14 ... I on body 2
are input as boundary conditions on the j = 1 line in the transformed plane. The
remaining points i = (II + 1) ... (12 - 1) and i = (13 + 1) ... (14 - 1) on the j = 1
line are reentrant points corresponding to the cut between the bodies in the physical
plane. Therefore values at these points are not specified, but rather the relations
fll+k,l = f14-k,l a*"1 fll+k,0 = f14-k,2 for k = i : •• (12-11 -1) hold. The rest of
the procedure is unchanged from the case of a single airfoil, except that two difference
equations at each of the points [i,l] for i = (II + 1) . . . (12 - 1) are added t'o the sys-
tem, so that the total number of equations is now 2I(J - 1) + 2(12 - II - 1).

Control of Coordinate System

Several procedures for controlling the spacing of the coordinate lines in the field
are available and the general philosophy of such control is discussed in reference 3.
One particularly effective procedure is to add exponential inhomogeneous terms to the
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Laplace equations for the curvilinear coordinates, so that the coordinates are generated
as the solutions of

Ixx
m=l

5 P

M

N

n=l i '

where the amplitudes and decay factors are not necessarily the same in the two equa-
tions. Here the first terms have the effect of attracting £ -lines to the £m -lines in the
4-equation, and attracting 77-lines to the rjm-lines in the T]-equation. The second terms
cause | -lines to be attracted to the points [^n^n] m tne £ -equation, with a similar
effect on r\ -lines in the r\ -equation.

In the transformed plane these equations become

(6a)

- _.T2flJ,, t j_ C\n.\ /QJj\

POTENTIAL-FLOW SOLUTION

Laplace Equation and Boundary Conditions

, The two-dimensional irrotational flow about any number of bodies may be described
by the .Laplace equation for the stream function «//: .

^x + V 'yy -O (7)

with boundary conditions:

On the body surface, .

r^(x,y) = ̂ 0 ; , (8a)
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At infinity,

<Mx,y) = y cos 0 - x sin 0 (8b)

where 9 is the angle of attack of the free stream relative to the positive x-axis. Here
the stream function is nondimensionalized relative to the airfoil chord and the free-
stream velocity. When transformed to the curvilinear coordinate system, this equation
becomes . .,, -,„..-.,. ; : ; -':-

.= 0 (9a)

where a, /3, and y are defined by equations (3c) to (3e) and a and T are given by

_ y^(Dx) - x^(Dy) ;. , ; „ , , . - ; • . < . > . ' " . , "'".--A.
a= j — -.. .- •- . .^

^^i.:..:.-::r-- .-. . ,. >'' <-,
with

' :> Dx s

. . . . - .... _ . . , . ; . • , , ; ; . . . _ > . , / . , r(9e),

Note that Dx and Dy, and hence a and r, vanish when no coordinate contraction is
used, that is, when the generating system is simply equations (3). The transformed
boundary conditions are

77 = ?7j (i.e., on

On ?? = % (i.e., on T*V
*\ A/ ••/;(_ >,-r •'•

cos 0 - x7? s in

The uniqueness is implied by insisting that the solution be periodic in -°° < £ < °°,
r]-^ = rj = 7/2. The coefficients or, /3, y, cr, and r are -calculated during the generation
of the natural coordinate system. For the approximation of equations (9), second-order,"
central differences are used for all derivatives, and the resulting difference equation is
solved by accelerated Gauss -Seidel (SOR) iteration on the rectangular transformed field.

The solution of equations (9) on the transformed field is constructed in the same
manner that has been previously described for the solution of equations (3). The single
equation (9a) replaces the two equations (3a) and (3b), and the boundary .conditions are
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given by equations (10). The total number of difference equations thus is .I(J .- 1) for a
single airfoil and I(J - 1) + (12 - II - 1) .forjtwp airfoils.

. . . ' : • • v ' * * '

Kutta Condition

The boundary value of t// on the body, i/^, is determined by imposing the Kutta
condition. The Kutta condition arises from physical considerations and basically asserts
that the flow must leave the sharp trailing edge of. an airfoil section in a smooth fashion.
In a mathematical sense this smoothness condition is guaranteed by insisting that the
velocity on the surface of the airfoil be continuous. The continuity implies that the limit

• ; > ; < . ! > • • • • • ' • ' .- - ' - r ! . i - '• i •• ?;• ; .< • j'.i ' • • • . ' '.,- _ ,.}. ,1 . , -(,v. ... - ,,-... vi ,
of the velocity at any 'point oh the surface-exists a'nd: is the same regardless of the path
along which' this point is approached. "In particular,' the velocity at the trailing' edge of
the airfoil must be the same when approached from the upstream 'direction along 'tHe
upper and lower surfaces. It is easily shown that the above ideas imply that the trailing
edge is a stagnation point for airfoils having an included trailing -edge 'angle greater than
zero, but only a common (possibly nonzero) upper and lower surface velocity limit is
required for cusped trailing edges. - The common -limit condition has also been applied
by Giesing (ref. 5) in a solution utilizing superposition of singularities.

Since the normal velocity component vanishes identically on the airfoil surface,
only the tangential velocity component need be considered. If. • V^' • is the component
of V tangent to a constant 77 -line; then • • . - - . ' . . - , ' ' • : ; ; . • '

' : ' ' ~ ' '" ' '" ' f ;"" ' •" ' " :

• • : - • • • : , • , t . , . . (11)

On the surface the £ -derivatives are approximated by the second-order, central-
difference expressions of equation (4a), as in the interior of the field, at all points except
those on the cut i = 1 and i = I, where second-order, one-sided expressions are used.
Thus

<12a>

(12b)

The 77-derivatives on the surface are approximated at all points by similar one-sided
expressions:

• • • (12c)

To implement the condition of a common velocity limit numerically, the tangential veloc^
ity component at the airfoil trailing edge is approximated by a three-point, quadratic
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extrapolation in which the three points on the airfoil surface immediately adjacent to the
trailing-edge point on both upper and lower surfaces are utilized. This procedure is
illustrated in figure 4. The extrapolated values are

(13b)
'~£LitL- • \ ~'dL,l

'- ' • ' • < • * ' • - . • • ; : - : .< . • : Ci ' • • ; . > • , . • - . - . . - - . - ' ; - V : - , i T .« . . >..« • . - • • . . . i - - . :
where,the subscripts, o, . 1U, 2U,,.,3U,. 1L, .,2L,,and 3L refer to the ^-field posi-
tion as indicated in figure^. ;All ,77-field position Indices are of course unity. .The
common.-limit condition is then . , _ . r , f ( . - r ( .> (i . , ... • ••

' • • • - . : . . : • Superposition o f Solutions r

Since the system to be solved is linear in «//, the solution for a single airfoil at
any angle of attack may be obtained by superposing three component solutions: (1) a
solution at 0° angle of attack with no circulation, (2) a solution at 90° angle of attack
with no circulation, and (3) a solution with circulation but zero free-stream velocity.
These three component solutions, written <//(k) (£,??), where k = 1, 2, 3, each satisfy
equations (9), with the respective boundary conditions

dl\ = 0 . (i = 1 . . . I) (15a)1,1

^i,j"yi,J ( i = l . . .1) (15b)

[̂2} = 0 ( i = l . . .1) (16a)

^ifj=-xi,J (i = l. . .1) (16b)

^{fl = 1 (I = 1 ... I) (17a)

/o\
*ij = 0 (1=1. . . . I) (17b)
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The complete solution with arbitrary circulation then is

iM = </>(1)M) cos 9 + <//(2)U,77) sin 0 + \<//(3)(|,77) (18)

The Kutta condition is then satisfied by choosing the coefficient \ such that equation (14)
is satisfied. Thus it is only necessary to solve the system of difference equations three
times, for a given airfoil. The solution at any angle of attack may then be obtained with-
out re -solving the difference system. '

Surface Pressure and Force Coefficients

The pressure coefficient at1 any point'in the field: may be obtained from the^veloc
ities via' the: Bernoulli equation, which in'the present nondimensional variables is c~ .<

• • » I li 1: ; • > ! : > ! ! ! : j : 7 " : v ; , - , . . i : i . . Jf . . (• -,i ; ^ ., • , ', <>'

• • I . ' * . > ' «

On the body surface this becomes, through use of equation (11),

C p = 1 ^.^2 ' - . • • • . . . , . . , . : . : , - • ' , : . • ' • ' . / / . (20)

with the derivative evaluated by a second-order, one-sided difference expression. The
nondimensional force on the body is' given by .

F = - Cpn ds (21)

where n is the unit outward normal to the surface, and ds is an increment of arc
length along the. surface. The lift and drag coefficients are

CL = § cp(-x| cos 6 ~ v£ sin 6) d^ (22a)

D = y cos 9 + x sin

These integrals were evaluated with numerical quadrature by means of the trapezoidal
rule.

Multiple Airfoils

With two airfoils, the boundary condition of equation (8a) is replaced by the two
boundary conditions:

On -the surface of body 1,

<Mx,y) = !// (23a)
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On the surface of body 2,

<Mx,y) = i//2 • (23b)

With reference to figure 3 and the discussion in the previous section of the coordinate
system solution, these boundary conditions become, in the transformed field,

& i = tf'o (i = 1 ... II and i = 14 ... I) (24b)1>A ^ . ' • • • :~ • - • i-- • .

As in? the, case of the coordinate system;solution,jthe. remaining portions of the J = 1
line are reentrant, boundaries, so;that points thereon are; treated as field points .rather -t ,
than boundary points. The | -derivatives at the surface points II, 12, 13, and 14 on
the cuts between the bodies are also evaluated by using the one-sided expressions of
equations (12) in the calculation of the velocity on the surface.

• • • » ' " - • • ; - • - . • • • • • - - , . . : . . . . - • • • • ;'.;
The Kutta condition must be applied on each body. Therefore, a fourth component

solution is added, and the four component solutions each satisfy equation (9a), with the
boundary conditions

^1 = 0 (i = 1 . . . II, 12 . ... .13, 14..-. . , . I) . . . (25a) .

"• • ^ ' *

^=.y l fj (i = !.:.!) (25b)

( 2 \ ' • • • - . - . .
I//.- i = 0 (i = 1 ... II, 12 ... 13, 14 ... I) (26a)1> i

^(f] = -*if j (i = 1 . . . I) (26b)

^f3j = 0 (i = 1 ... II, 14 ... I) (27a)
• - » . •

^f3] = l (i = I 2 . . . I 3 ) (27b)1>J-

V/[3] = 0 • ( i = l . . .1) (27c)

(i = 1 ... II, 14 ... I) (28a)
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^{ = 0 (i = 12 ... 13) (28b)

i//^] = 0 (i = 1 . . . I) (28c)

The complete solution with arbitrary circulation about each body is

^W cos 9 + ̂ (2)(|,77) sin 6 + Xi<//(3)(|,7;) + \2^\^) (29)

The Kutta condition is then satisfied by choosing the coefficients \\ and \2 such that; .
' equation (14) is satisfied on each-body. This requires only the simultaneous, solution of ,; ,

two linear algebraic equations. • Generalizing to N bodies, it is necessary to solve the
difference equation system N'+'2 times for a given multiple airfoil system. The solu-- , ,
tion at any 'orientation of the free stream may then be obtained without re -solving the , ., . .
difference system.

Results and Comparisons

The coordinate 'system for a Karman-Trefftz airfoil having an integral flap is
shown in figure 5, and the streamlines and pressure distribution for this airfoil are com- .
pared with the analytic solution (ref. 6) in figure 6. Similar excellent comparisons have
been obtained with other Karman-Trefftz airfoils. Figure 7 shows the coordinate sys-
tem for a Liebeck laminar airfoil, the solution for which is compared with experimen-
tal results (ref. 7) for the pressure distribution and lift curve in figure 8. Finally, the
coordinate system for a multiple -element airfoil is shown in figure 9, with the stream-
lines and pressure distributions shown in figure 10. Here coordinate system control
was employed as discussed above to attract the coordinate lines into the concave region
formed by the intersections of the cut between the airfoils.

APPLICATION TO THE NAVIER-STOKES EQUATIONS

Basic Equations

The stream -funct ion — vorticity formulation of the two-dimensional, incompressible,
viscous -flow equations is given by

(30)R
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where i/> is the nondimensional stream function, u> the nondimensional vorticity, and
R the Reynolds number based on the characteristic velocity and length used to nondi-
mensionalize the basic equations. The transformed equations are

J2R

= -J2w (33)

where the coordinate system parameters a, j3, y, J, a, and r have already been
given. Recall that these coordinate system parameters are fixed and need be calculated
only once.

* . - . . ' ' ' -

Boundary Conditions

• The boundary .conditions are given by

Oh the body surface,

)//(x,y,t) = i//b = Constant (34a)

||(x,y,t) = 0 ®4b) -

At infinity,

i//(x,y,t) = y cos 9 - x sin 9 (35a)

u>(x,y,t)=0 (35b)

where n is the unit vector normal to the body surface. The function describing the
variation of the vorticity on the body u>b(x,y,t) is unknown and must be calculated as part
of the solution. Initial conditions at t = 0 are .those resulting from an impulsive start.
Equations (34) and (35) may be transformed to yield boundary conditions for equations (32)
and (33) in the transformed plane. This procedure yields the following relations:

On 77 = 77! (i.e., on Tj), .- ,

Constant (36a)

On 77 = 77? i.e., on

cos 9 - x sln 6
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0 (37b)
: • '

where 77 ̂  and r/g are the values of the rj -coordinate for contours r* and rt,
respectively, in the transformed plane (fig..l). The condition specified' ty equation, (36b)
guarantees that the velocity component tangent to the transformed body surface vanishes
on the body surface. Since the component normal to the body surface vanishes identically,
the satisfaction of equation (36b) implies that the viscous no-slip condition is satisfied
on the body surface (i.e., along r*, or equivalehtly

;;.-; Most solutions in the computational fluids field have relied oji a modified evaluation
of equation (33) on the boundary to determine the vorticity on the body surface ^(l^jft).
The modification is introduced in an attempt to insure that equation (36b) holds - that is,
to satisfy the no-slip condition. A variety of numerical procedures along these lines are
documented in reference 8. The principal problem encountered with such an approach is
that the vanishing of the tangential velocity component is implied only Indirectly rather
than directly. . Israeli (ref. 9) has shown that these procedures are not only unreliable in
producing a, zero tangential component, but may, in fact, even be numerically divergent.
Israeli suggests that fc>£»?'>t be calculated with an iterative algorithm of the form

(38)

for all i ^ i = I - 1, where ^ refers to the £ -position along the body, 77^ denotes the
T]- value for contour P* tn is the current time, k denotes the iteration counter at
step tn, and 6 is a relaxation factor (possibly variable). Obviously, such a procedure
can only be employed with implicit methods which require Iteration of the parabolic vor-
ticity equation at each time increment. Note that convergence of the vector sequence

jtn) implies convergence of |^(4i,^i,tn) to that function which inherently

satisfies the no-slip boundary condition. ...

Pressure Coefficients

If the primitive variable formulation of the Navier -Stokes equations (velocity-
pressure) is evaluated on the body surface, the time derivative and inertia terms vanish
to yield

yp = Iv 2 V (39)
Jtv "̂

,' i" . • 'i -• •> • . " • • • ,•

where p is the nondimensional pressure, V the. nondimensional velocity, and R the
Reynolds number based on the characteristic flow parameters. Utilizing a^vector iden-
tity to eliminate v2 Y gives
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(40)

The pressure differential in the transformed plane then is : ;.

Integration of equation (41) along Fj starting at the trailing-edge position yields

1 P* 1
•cg(*)ap(«)-PT.E. "si j(0w£-yc^)d|f (42)

where IT g is the £ -value corresponding to the body trailing edge. The symbol Cp
Is used Instead of the more conventional Cp to indicate that the reference pressure Is
the trailing-edge value PX.E. ratner than the free-stream value p^. Note that all
quantities in equation (42) must be evaluated on the body surface (i.e., along i\ » jjA
Central-difference approximations were used for all |-derivatives appearing in equa-
tion (42), while second-order one-sided expressions were used for the 77-derivatives.
The numerical quadrature was performed by the trapezoidal rule.

Force Coefficients

, The force coefficients associated with the stress vector are obtained by integrating
the stress vector over the body surface. Let, F = iC^ + j Cj^ be the total force acting
on the body and let Tn = i, (Tn) + j (Tn^ be the stress vector on the body surface having

outward unit normal n. Then, ;

TndS . (43)
S ~ ' :• ' . . ' ' ' '

where S is the body surface. The stress vector components (Tn^ and (Tn)2
 : may

be expressed in terms of the primitive variables as

a (Mb,

where nj and 112 are the x- and y-components of the normal to the body surface n.
The lift and drag coefficients may then be calculated by means of the conventional wind-
axis transformation as follows: ' ' - '
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f^max > ' P^max 7* sin 0 - xt cos 9
CD.= 2 J (y^ cos 9 - X| sin 0) C* d| + 2 J -S ^ w d£ (45a)

^min *min

r _ ? «
 >max

T — j
'min

cos0(x^C*-^-) + sin0(y^C*-^Jd^ . (45b)
*»- /I '.

The two integrals in equations (45) are referred to as the pressure and friction drag
coefficients and are denoted CD- and CDF, respectively. These integrals were eval-
uated numerically by use of the trapezoidal rule. The 4 -derivatives were approximated
with second-order central -difference expressions.

Difference Equations

A first -order backward difference is used to approximate the time derivative,
while second-order central differences are used for the space derivatives in equa-
tions (32) arid (33): The resulting coupled difference equations, two for each point in the
field, were solved simultaneously by point SOR iteration at each time step.

Implementation of the Boundary Conditions

As indicated earlier, the basic idea used to calculate the vorticity on the body sur-
face ^b^'^l't) is to select this function so that the no -slip condition is satisfied. An
approach suggested by Israeli (fef. 9) has already been cited in equation (38). This is
basically the parallel-chord method (see ref. 10) and has only a linear convergence rate.
Another method similar to false -position iteration was used to accelerate the conver-
gence. The iterative sequence is generated by the algorithm

»• (46)

where 6 is again an acceleration parameter. The derivatives in this equation were
approximated with second-order one-sided differences for the rj -derivatives and central
differences for :the £ -derivatives. Another method was used when numerical overflow .
problems were encountered with the quotient in equation (46). This consisted of modi-
fying the second term on the right side of equation (38) with the algebraic sign of the dif-
ference quotient. ./.Several other approaches documented in Roache (ref. 8) w,ere also
tried. None of these were as successful as the methods discussed above.
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Calculation Procedure

The vorticity and stream -function fields are converged by means of the point SOR
technique. New boundary values of the vorticity are calculated as discussed in a previ-
ous section. Three conditions must be met before the time step is considered to be
converged: .

(1) E(t//,k) i eO//)

(2) E(o),k) i £(W)

where the terms E(i//,k), E(u>,k), and E(-|^,kj are the maximum norms of the change
E(i//,k) sJ|i//W _ ̂ (k-1) | The terms involving e are simply the required convergence

criteria. (Nominal values for e(i//), e(w), and e(-|^j are 10~^, 10"°, and 10 , respec-\ Aon/ • ......
tively.J This procedure is repeated until convergence. Once a time step has converged,
time is incremented and the process begins again.

NAVIER -STOKES RESULTS

Solutions About Various Bodies

To illustrate the versatility of the natural coordinate system. approach, viscous
flows about three different bodies are presented. The bodies and associated flow condi-
tions are

(1) Flapped Karman-Trefftz airfoil: 0 = 15°; R = 200

(2) GSttingen 625 airfoil:' 0 = 5°; R = 2000

(3) Cambered rock: 0 = 5°; R = 500

The coordinates of these bodies are given in reference 4..

Several problems arose with the body vorticity calculations. At times the iterative
method used to calculate the body vorticity produced mildly oscillating values along the
body boundary. The principal cause of this result was that the method was applied point
by point along the boundary. Thus, the only "communication" between the body points
was through the field iterations. This tendency was overcome in two ways: First, only
small surface vorticity changes were allowed at each body station at each iteration.
Second, after the new vorticity values had been calculated, a three -point weighted aver-
age was used to smooth the new surface vorticity distribution.
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A second problem developed with those bodies having a sharp trailing edge. To
preserve continuity of the vorticity, the vorticity at the trailing edge was held at zero. '
Since the vorticity gradients are extremely large in the neighborhood of the trailing edge,'
the numerical solution had a tendency to oscillate near this point. This phenomenon is
generally known as "wiggles" and, as shown in Roache (ref. 8), is actually the solution of
the difference equations. In reality the wiggles are caused by the inability of the net
function to resolve large gradients near boundaries.' • - . " • • - • •

v Flapped Karman-Trefftz Airfoil . . .

The coordinate system for the flapped Karman-Trefftz airfoil profile, which pos-
sesses a camber of 22 percent at the 0.55-chord point, is shown in figure 5. The free-
stream Reynolds number was taken as 200, and the flow angle of attack was 15°. Other
data concerning the solution are given in table 1.

Stream-function contours are given for two time steps in figure 11. The contours
at the earlier time indicate clearly the large flow velocities over the upper surface of
the airfoil and the consequent large difference in overall boundary-layer thickness'
between the upper and lower surfaces. The manner in which the zero streamline leaves
the trailing edge indicates that flow separation on the upper surface is imminent. The
contours for t = 1.06 illustrate a fully developed laminar separation. The boundary-
layer thickness over the aft half of the upper surface has increased approximately
300 percent.

. In order to gain some insight into the development of laminar separation, a series
of four,velocity profiles are shown in figure 12. The profiles for t = 0.08 illustrate
the upper-surface flow shortly after the impulsive start. The boundary layer is very
thin at this time. Separation has already begun at t = 0.22, as evidenced by the profiles
on the flap portion of the airfoil. Figures 12(c) and 12(d) indicate that the upper-surface
separation, point has moved rapidly upstream to approximately the 70-per cent-chord
point. Reverse flow has been well established at t = 0.54. Note that the upper-surface
boundary-layer thickness has increased substantially over the time span shown.

Gottingen 625 Airfoil

The flow Reynolds number was 2000 at an angle of attack of 5°. . Additional sum -
mary data of the solution for the G'dttingen 625 airfoil appear in table 1. The coordinate
system shown in figure 13 was used in this solution. The high density of constant 77-lines
near the airfoil surface is the result of contraction to the first 15 77-lines. In particular,
the amplitude factor appearing in equation (5b) ranged from 20 000 at 77 = 1 to 13 000 at

** ' • • '%

77 = 15 (increments of 500/line), while the decay factors were held constant at 1.0 for
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rj = 1 to 14 and were 0.4 for the 15th 77-line. The function P(x,y) defined by equa-
tion (5a) was set to zero as were the point-attraction parameters of equation (5b).

. This solution developed wiggles near-the sharp trailing edge. The effect of the
wiggles is dramatically illustrated in figure 14, which shows t//.. and co contours at
several times after the impulsive start. Note the distortion of the vorticity contours
near the trailing edge. The oscillatory effects are carried upstream along the lower
surface of the airfoil and are proceeding downward, away from the trailing edge. The
disturbance proceeds away from the airfoil without much damping but has little effect
on the flow in the vicinity of the airfoil after the start, as can be seen in figures 15(a)
and (b), which show t// contours at later times. A feature of interest in figures 14(a)
and (b) is the starting vortex which is formed and shed at the trailing edge. This vortex
appears just above the disturbance due to the'wiggles.

Figure 14(c) indicates that flow separation has been initiated on the trailing-edge
portion of the airfoil upper surface. The separation point moves rapidly upstream to .
approximately the half-chord point at t = 1.012. At this time the upstream movement
of the separation point slows down considerably. The thickness of the separated region,
however, begins to increase, as illustrated in figures 15 and 16. The remainder of the
stream-function contours in figures 15(a) and (b) illustrate the growing thickness of the
separated region, the increasing back flow, and the separation of flow eddies. At
t = 2.23 a bubble begins to form on the trailing edge. This bubble continues to grow and
is followed by the formation of another bubble at t = 2.53. The extent of both bubbles
continues to increase until a single bubble is formed at t = 3.13. The final ^ contours
given indicate that the single bubble has become much larger. The thickness of the sep-
aration region is roughly 1.25 times the airfoil thickness at this time, with the,forward"
separation point at approximately 31 percent of the chord;

The separation process may also be examined by viewing the series of upper-
surface velocity profiles given in figure 16. The profiles given in figure 16(a) illustrate
attached upper-surf ace flows shortly after the impulsive start. There is a noticeable
increase in the boundary-layer thickness at t = 0.336. The remaining parts of figure'18
track the growing thickness of the separated region and the upstream movement of the
separation point.

Pressure and force coefficients at an early time are illustrated in figure 17(a).
The friction drag constitutes more than 65 percent of the total drag at this time. As the
boundary layer becomes thicker, the friction drag decreases rapidly and causes a cor-
responding decrease in the total drag. The effects of the laminar flow separation are
shown in figure 17(b). The peculiar variation in the Cp distribution at the trailing
edge is again due to inaccuracies in the body vorticity distribution.
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, , Cambered Rock

To show that the natural coordinate method could be used with arbitrary shaped
bodies, the viscous flow about the cambered rock at a Reynolds number of 500 was
developed. The contracted natural coordinate system used in the solution is given in
figure 18. The same amplitude and decay factors given for the Gbttingen 625 airfoil :
were used to create this system. Other summary data are presented in table 1.

With a body such as the cambered rock, reliance must be placed on one's physical
* . - „ • . . ' . i '

intuition in evaluating the resulting flow. For this reason an extended discussion of the
flow past the cambered rock will not be given. Instead a significant number of t// and
(i) contours will be given. These are shown in figure 19. However, it is felt that some"
remarks are appropriate. A glance at figure 18 indicates that the rock possesses sev-
eral concave areas, Intuition would imply that flow stagnation areas should develop quite
rapidly in these regions. This, in fact, does occur, as figure 19 indicates. In addition
one would expect laminar flow separation and the consequent shedding of vorticity from"''-
the body. These events are also borne put by the contours. The ever-increasing size of.
the region of significant vorticity is quite apparent from the figures. Finally, velocity
profiles and surface pressure distributions are shown in figures 20 and 21. . . -

'-'• > . " " ' • Computer Time Requirements

Numerical solutions to parabolic partial differential equations require extensive
amounts of digital computer time. The total CPU times (UNTVAC 1106) used to generate
the three solutions discussed in this study are documented in table 1. The average time
required to converge each time step is also shown. (No attempt was made to quantify the
effects of time-step size on the average times given.) ..'•*.

CONCLUSIONS

The objective of this study was to develop methods to obtain numerical solutions of
the two-dimensional, incompressible, time-dependent Navier-Stokes equations about „
arbitrary.,bodies. The solutions followed the development of a general numerical curvi-
linear. cpordinat<?:transformation which produces a natural coordinate system having a
constant, coordinate line coincident with each boundary contour in the physical plane.
Once the natural coordinates are developed for a given physical domain, the set of partial
differential equations of interest may be transformed to the natural system and solved ,
numerically in the transformed plane without regard to the geometry of the physical
region. In effect the natural coordinate method eliminates all geometrical considera-
tions from a given solution, as all physical regions have the same appearance in the
transformed plane. The computer software utilized to generate the natural coordinates
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is independent of the set of partial differential equations whose solution is to be carried
out on the transformed plane. The partial differential equations governing potential and
viscous flow differ drastically. However, for a given body geometry, the same natural
system was used herein for both solutions. The second major advantage of using natu-
ral coordinates is that the computer software generated to approximate the solution of a
given set of partial differential equations is completely independent of the physical geom-
etry of the problem. The same computer program was utilized to develop all the solu-
tions for the wide variety of bodies discussed herein. Only the input varies with the
body. Such a procedure obviously has significant ramifications in numerical mathemat-
ics and all areas of physical science.

Significant viscous-flow results were obtained for three different bodies. These
included two general airfoil sections and one completely arbitrary body. The airfoil
solutions developed computational wiggles near the sharp trailing edge at the start of the
impulsive flow. The wiggles were generated as a result of large vorticity gradients
which appeared in this region at the start. This disturbance was converted away from
the body essentially undamped, but produced no significant disturbance near the body at
later times. The solutions show the formation and development of the boundary layer,
laminar separation bubbles, and completely separated flow. Present results extend to a
Reynolds number of 2000. Although the magnitude of the calculated force coefficients
cannot be compared with experimental data, as none exist at this low Reynolds number,
the time variation of these parameters agreed quite well with the flow pattern develop-
ment. The .cambered-rock solution proved that the natural coordinate methods could be
applied to very general bodies. The manner of this flow development also agreed with
intuitive physical reasoning.

There appears to be no basic barrier to higher Reynolds number solutions, since
the means are at hand to contract the coordinate system about the body as much as
desired. Preliminary runs at a Reynolds number of'10'000 have already been made.
Work is also in progress on the solution for multiple airfoils with viscous flow. J ' ' ."
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Physical Plane

Region D*

Transformed Plane
(Natural Coordinates)

Figure 1.- Field transformation - single body,
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Figure 2.- Field transformation - multiple bodies.
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Figure 4.- Velocity extrapolation at airfoil trailing edge.
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Figure 5.- Coordinate system for flapped Karman-Trefftz airfoil.
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(a) Pressure distribution.

,.1.00

Figure 6.- Analytic and numerical potential-flow results for flapped
Karman-Trefftz airfoil.
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Figure 7.- Coordinate system for Liebeck laminar airfoil.
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(a) Pressure distribution.

Figure 8.- Experimental and numerical potential-flow results
for Liebeck laminar airfoil.
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Figure 8.- Concluded.
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Figure 10.- Continued.

508



550Tr > 8£- . . . . .

-0. 12p .

-1.12U - .' • .

' -•"-[-:
-3.12;_';

'

-6.12L- : " 1
-7. 12j_" . : '

-8. 12 LI', ' :_ . . i

• -9.12JJ • ., . ^ !

-ll.lt •

-13.lt" '• . .

-Hi.lL : . . -
cp -is/it: •• • ' ' " i

-16.lt' . .
-17.lt '

-19.lt L.IFT COEFFICIENT = 0.1318280

-20. it' . •. ' ' . :

-21. it
-22 it OFif:|G C0^101^1" = 0.1.72 187

-23.11L.: ' ' • " .

-2!4.1iL_- MOMENT CCEFFICIENT = -0.597190

-26.lt ' .

-27. !£.. -

-28.1£_ . .

-an. I P ' • . ' • • " •
0.00 . ' ' O.SC*

f x
/

j
!

1 ' •-
1

I '

! • <* ' '

.••"""" '

i .

i

i

i
00

X .

(c) Pressure distribution - aft body.

Figure.10.- Concluded.

509





511



On

512



oM
-l

Mi-lCOg00(34JCO>»030)

•OMOOu•o(U

- I•COrH0)M3>•H

513



(a) t 4 0.118'. 

r e  4 .  - str.am-function and vorticity contours for Gb.ttin$en 625 air fo i l*  



(b) t = 0.336.

Figure 14.- Continued.
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(c) t = 0.658.

Figure 14.-' Concluded.
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t=1.53

t=1.83
(a) t = 1.53 and 1.83.

Figure 15.- Stream-function contours for Gottingen 625 airfoil.
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t-3.13

t»3.33

(b) t = 3.13 and 3.33.

Figure 15.- 'Concluded.
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t=0.658

(a) t = 0.118, 0.336, and 0.658.

Figure 16.- Upper-surface velocity profiles for Gottingen 625 airfoil.
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(b) t = 1.012, 1.53, and 1.83.

Figure 16.- Concluded.
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(a) t - 0.118.

Figure 17.- Pressure distribution for Gottingen 625 airfoil.
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(b) t = 3.33.

Figure 17.- Concluded.
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(a) t = 0.15.

Figure 19.- Stream-function and vorticity contours for cambered rock.
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(c) t = 1.0.

Figure 19. -.Concluded.
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PRESSURE-- DISTRIBUTION

CflKBEREO'ROCK

flNGLE OF flTTflCK=5.00 REYNOLDS NUMBEfi=500

o
o

Cp=5. 139651

TIME=0.1DOO

C, =-0.281309

=11.913617 =0.526034

0.00 0.25 0.50 0.75 1.00

(a) t = 0.1.

Figure 21.- Pressure distribution for cambered rock.
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