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SUMMARY

&

A method of numerical solution of the Navier-Stokes equations for the flow about
arbitrary airfoils or other bodies is presented. This method untilizes a numerically
generated curvilinear coordinate system having a coordinate line coincident with the
body contour. Streamlines, velocity profiles, and pressure and force coefficients for
several airfoils and an arbitrary rock are given. Potential flow solutions are also pre-
sented, The procedure is also capable of treating multiple-element airfoils, and poten-
tial flow results are presented therefor,

INTRODUCTION

It is imperative in numerical solution of the Navier-Stokes equations that the
boundary conditions be represented accurately in the finite-difference formulation, for
the region in the immediate vicinity of solid surfaces is generally dominant in determin-
ing the character of the flow. The pressure and forces on solid bodies are directly '
dependent on the large gradients that prevail in this region near the surface, and accurate
pressure and force coefficients require that these large gradients be represented accu-
rately. This problem is accentuated at higher Reynolds numbers as the gradients become
more severe.

Therefore, almost all numerical solutions of the Navier -Stokes equations generated
to date have treated bodies for which a natural coordinate system is available — circles,
ellipses, spheres, Joukowski airfoils, and so forth. (Natural coordinate systems as
defined here are those for which the body contour under consideration coincides with a
constant coordinate line.) The paper by Mehta and Lavan (ref. 1) has given a solution
about a modified Joukowski airfoil accomplished by generating a natural coordinate
system with a conformal Joukowski transformation and solving the Navier-Stokes equa-
tions on this system. The basic Joukowski transformation was modified somewhat by
rTounding the trailing edge and contracting the coordinates near the body. Only one case
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was run — a stalled flow at a 15° angle of attack and a Reynolds number of 1000. The
method is limited to those bodies which can be generated by the J oukowskl transformatxon
(symmetric and cambered Joukowski airfoils, flat plates and circular and elliptic cylm-
ders) and does not have general applicability.’ Arbltrary two-dimensional bodies have
not been successfully attacked as yet, primaril'y because of the difficulty of accurate rep-
resentation of the boundary conditions and the large gradients near 'solid surfaces when:
no coordinaté line is-coincident with the body contour. ~Some solutions -have been ™ - .+
attempted with’ mterpolatmn betwéen grid- pomts for boundaries not coincident with coor =
dinate lines, but this necessarlly introduces 1rregular1ty into an otherwise smooth bound-
ary and places the most inaccurate difference representation in precisely the region of -
gi'eatest sensitivity. Dawson (ref. 2) attempted to create a method for general bodies by
the use of two uniform rectangular grids: -a fine, inner grid surrounding-the body and
extending for perhaps one characteristic body dimension, and a coarse outer grid sur-.,.
rounding the inner grid and extending outward for perhaps 10 to 12 body, diameters. The
two.grids overlap to allow for accurate transition between the .two mesh systems., Only .
a-circular cylinder solution was attempted,-and this solution-was restricted to small .
Reynolds numbers (R = 1000) because of ’boundary'instabilities.

A method of automatic numerical generatlon of a general curv1lmear coordinate -
system with coordinate lines coincident with all boundaries of a general multiconnected
region containing any number of arbltrarlly shaped bodies has, however, been developed
which should allev1ate this problem with arbitrary bodies (ref. 3). The curvilinear coor-
dinates are’ generated as the solution of two elliptic partial differential equations with -
Dirichlet boundary conditions, one coordinate being specified to be constant on each of
the boundarles and a distribution of the other bemg specified along’ the boundaries.

These equations are solved in finite- d1fference approximation by successive over-
relaxation (SOR) iteration. No restrictions are placed on the shape of the boundaries,
which may even be time dependent, and the method is not restricted to two dimensions or
single bodies. Coordinate lines may be concentrated as desired along the boundaries.
Spacing of the coordinate lines encirtling the body may be controlled by adjusting param-
eters in the partial differential equations for the coordinates.

Regardless of the shape and number of the bodies and _i'egardless of the spacing of
the curvilinear coordinate lines, all numerical computations, both to generate the coor-
dinate system and subsequently to solve the Navier-Stokes equations on the coordinate
system, are done on a rectangular grid with a square mesh, that is, in the transformed
plane. It is also possible to cause the natural coordinate system to change in time as
desired and still have all computation done on the fixed rectangular grid with square
mesh. This allows the curvilinear coordinate system in the physical plane to deform
with a deforming body, blast front, shock, free surface, or any other boundary, keeping a
coordinate line always coincident with the boundary at all times.  The physical coordinate
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system has been in effect, eliminated from the problem at the expense of addmg two
elllptlc equatxons to the onginal system

Since the curvilinear coordinate. system has coordinate hnes coincident W1th the

. .surface contours of all bodies present, all boundary conditions may be expressed at gr1d
points. Also, normal derivatives on the bodies may be represented by using only. finite ‘
differences between grid points.on cbordinate lines, without need of any interpolation,
even though the coordinate system is not orthogonal at the boundary Numerical solu-- .
tions for the lifting and nonlifting potential flow about Kérmé.n-Trefftz airfoils obtained
with this coordinate- system generatlon show excellent comparlson with the analytlc
solutions.

ir

- This method of automatic body-fitted ‘curvilinear-coordinate generation has been: .
used to construct a finite-difference solution of the full,; incompressible, time-depéendent;
Navier-Stokes'equations for the laminar viscous flow about arbitrary two-diménsional'. =
airfoils or any other two-dimensional body (ref. 4). The Navier-Stokes equations ‘are:" .
written in the vorticity—stream-function formulation, with the vorticity on the body being
determined by a type of false-position iteration so that the ‘no-slip boundary condition-is
satisfied. The solution is implicit in time, the vorticity and the stream-function equa-
tions being solved simultaneously at each time step by SOR iteration. A method of con-
trolling the spacihg of the coordinate lines encircling the body has been developed in .
order to treat high Reynolds number flow, since the coordinate lines must cohcentrate
near the surface to a greater degree as the Reynolds number increases. The solutlon 1s
designed to provxde the velocity field, the surface-pressure distribution, and the lift,
~drag, and moment coefficients. Results are given for separ_ated flow over two alefoxls
and an arbitrary rock. Initial application to multiple airfoils has also been made.

SYMBOLS
a,b,c,d  coefficients 1n equations (5)
Ca axial-force coefficient
Cp  drag coefficient
CDF friction-drag coefficient
CDP . pressure -drag coefficient
CL lift coefficient
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normal-force coefficient

pressure coefficient |

pressure coefficient referenced to trailing-edge pressure

differential operator; two-dimensional region (fig. 1)

rectangular region (fig. 1)

increment of arc length along body surface =~

‘maximum norm ., L

force on body

function

~ computational grid points; i=1. . .

unit vectors -

Jacobian

iteratiqn. counter

summation limits (egs. (5))
indices

unit vector normal to body sﬁrface

amplitude factors (eqs. (5))

_pressure

Reynolds number

body surface

P
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X,y

a,B,y

ry, Fz, . .

I-\* 'r* .

r-o2

stress vector on body surface

time

current time

velocity

ad

tangehtial velocity component
physical coordinates (noniii’rrr';énéiéﬁéiizvé&"by"'airfo-il chord)
coefficients of natural coordinate transformation (egs. (3)) -

I'g curves in-physical plane

*

. 1"§ curves in transformed plane

convergence factor

relaxation factor

free-stream angle of attack
éoefficient in stream-function equation
transformed ‘coordinate's

coefficients in equation (9a)

stream function

valué of Y at body

vorticity

value of w at body
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Superscripts:
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L lower surface v
. * XL A v\‘
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*ai transformation . dE e,
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T ‘diffe'rentiationr-with respect to ix ror 'y

LN s Iy A N . . S N
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differentiation with respectto £ or 79
free stream
BODY-FITTED CURVILINEAR COORDINATE SYSTEM

Mathematical Development

Let it be desired to transform the two-dimensional, doubly connected region D
‘bounded by two closed contours of arbitrary shape into a rectangular region D*, as
shown in figure 1. The general transformation from the physical plane [x,ﬂ to the
transformed plane [& 17] is given by ¢ = &(x,y), 7 = n(x,y). S1m11arly, the inverse
transformation is given by x =x(¢,7), y = y(¢,n). Derivatives are transformed as

follows:

_alt,y)/o(,m) _ Yufe - Vefp
X 3(X,Y)/3(§,77) “J R

_ ol f)/o(,m) _ Xafg +xgly
Y alx,y)/alE,m - J

where J is the Jacobian of the transformation J = XtYpn - Xp¥e.
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Since the basic idea of the transformation is to generate transformation functions
such that all boundaries are coincident with coordinate lines, the natural coordinates
[g,n] are taken as solutions of some suitable elliptic boundary value problem with one
of these coordinates constant on the boundaries. Using Laplace's equation as the gener-
ating elliptic system gives

Mxx + Nyy = 0 o (2b)

with Dirichlet boundary conditions: 7 = Constant =7y on Ty, n=Constant =79 on
g, and £(x,y) a multiple-valued solution with a branch of £(x,y) specified (but not
constant) on I'y and I'9. The curve I'y; on the physical plane transforms to the
lower boundary I‘1 of the transformed plane. Similarly, Tq transforms to Iy, and
so forth, The right and left boundaries of the rectangular transformed plane l"3 and
I"4 are coincident in the physical plane. The curve which transforms to these bound-
aries connects I'y and I'9g and determines a branch cut for the multlple—valued func-
tion £(x,y). Thus the functions and all derwatwes are continuous across this cut.

Now since it is desuable to do all numerical computation in the rectangular trans-
formed plane, it is necessary to interchange the dependent and independent variables in
equations (2). Thus a :

ax§§ - 2BX§17 + YX-’T,’ =0. ' (33.)

@Ygg = 2y + Yy =0 | S (3b)
* where

a= xnz + ynz ‘ o (3c)

B= xgxn +Y£Yy v S o : L . (3d)

with the transformed boundary conditlons x=f 1(§ 77) on I‘l, y= gl(g,nl) on l"l,
X= f2(£,n2) on I'J, and y=gg(,n9) on P* (In the present apphcatxon X and y
are nondimensxonahZed with respect to the airfonl chord. ) :

The natural coordinate system so generated has.a constant 7-line coincident with
each boundary in the physical plane. The £-lines may be spaced in any manner desired
around the boundaries by specification of [x,ya at the equispaced £ -points on the nq- and
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N9 -lines of the transformed plane, Control of the~spacing of the n-lines may be exer-
cised by varying the elliptic system of which £ and 7 are solutions.

Extension to Multiple Bodies

The same procedure for natural coordinate generation may be extended to regions
that are more than doubly connected, that is, have more than two closed boundaries or,
equivalently, more than one body or hole within a singlé outer boundary.: The transfor-

mation to the rectangular field is illustrated in figure 2.

The method requires that the n-coordinate be equal to the same constant on all the
.interior boundaries, that is, on all bodies in the field. Let all the bodies be connected
by arbitrary cuts and, similarly, one body be connected to the outer boundary by an arbi-
trary cut. Since the n-coordinate is equal to the same constant on all the bodies, it is,
of course, equal to that constant on the cuts between the bodies also. By-contrast, the
£ -coordinate is taken constant on the cut between the body and the outer boundary. Since
the locations of these cuts in the physical plane are not specified, the specification of 7
or & as constant on a cut does not overspecify the elliptic problem:

"~ Note that all bodies except one are split into two segments. Each cut appears
ﬁvice on the transformed field boundary, the two segments, of course, corresponding to
the two "'sides" of the cut in the physical plane and thus being reentrant boundaries with
the functions and all derivatives continuous thereon. Thus x and y have been speci-
fied on the portions of the lower boundary of the transformed field that correspond to the
bodies — r; and I'§ for the right body and rv’{ for the left body — and also on the
entire upper boundary, corresponding to the outer boundary in the physical field. The
remaihing portions of the lower boundary and the entire side boundaries are reentrant
boundaries and, thus, neither require nor allow specification of [x,il thereon.

Again an elliptic Dirichlet problem is solved to generate the natural coordinates
(x,¥], as in the previously considered case with only a single body. All computations,
both to generate the’ coordmates and subsequently to solve the partial differential system
" of interest, are again done on the rectangular field with square mesh in the transformed

plane.’

[

Numerical Solution

The relation between the transformed and physical fields for a single airfoil is
shown in figure 3(a). The physical coordinates of I points describing the body surface
[x,ﬂ provide the boundary conditions along the j= 1 line; those of I points on the
physical remote boundary, usually a circle with radius 10 or more chords, supply the
boundary conditions along the j =J line of the transformed field. Since the side bound-
aries of the transformed field are reentrant, corresponding to the cut in the physical
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plane, then fI,j = fl,j and fI+1,j = fz,j for all j. Note that the values of x and y
are not specified on these side boundaries. All derivatives in equations (3) are approx-
imated by second-order, central-difference expressions (A and An are both unity by
construction, the actual values of & and 7 being immaterial):

) “(fé)‘ij z%(fidrl,j N fi'-l,l’)‘ | o ' : ' o .(4a)
(ol =301 - g0 - e

Mij ~ 2 1,.]+1‘ ~1.,]-1 ‘ -
(fgg)u z fi+1,] 2f1] +f_ 1 ] .. - . ) : o | . (40)
(trm)s = fi,j+1~' 265 + 1151 N U 7
(Eem)y; z%(f‘i+1,j+'1 - fi+1,j-1 - fi15+1 + £i-1,5-1) o (de)

The resulting set of 2I(J - 1) nonlinear difference equations, two for each point [i,j]
for i=1,2,...,1-1 and j=2,3,...,J -1, were solved by accelerated Gauss-
Seidel (SOR) iteration. The iteration was considered to have converged when the maxi-
mum absolute change on the field between iterations was less than 10-9, A range of
acceleration parameters was examined, and a value of 1,85 was nearly optimum foi‘ the
. bodies considered.

The relation between the transformed and physical fields for two airfoils is shown
in figure 3(b). The physical coordinates of body 2 at points i=1. . .I1, those of
body 1 at points i=12. ., . I3, and fina‘llly the remaining points i=I14. . .1 on body 2
are input as boundary conditions on the j =1 line in the transformed plane. The
remaining points i=(1+1)...(02-1) and i=(13+1)...(4-1) onthe j=1
line are reentrant points corresponding to the cut between the bodies in the physical
plane. Therefore values at thesé points are not specified, but rather the relations

fIl+k 1=114 k,1 and fIl+k 0= 114 -k, 2 for k=1, ., .(I2-11-1) hold. The rest of
the procedure is unchanged from the case of a smgle airfoil, except that two difference
equations at each of the points [1 1] for i=(I1+1)...@02-1) are added to the sys-

tem, so that the total number of equations is now 2I(J - 1) +2(12 -11 - 1),

Control of Coordinate System

Several procedures for controlling the spacing of the coordinate lines in the field
are available and the general philosophy of such control is discussed in reference 3. .
One particularly effective procedure is to add exponential inhomogeneous terms to the
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Laplace equations for the curvilinear coordinates, so that the coordmates are generated
as the solutions of

vt § et
N R T ;;_ LTt e e ~
+Zlb“le bl o 4o/ toowyreo e

. l . LSRR S . 1,'"‘

7 -Tm

-7 ] exp (—cml"l -77m|)

Nxx + Nyy = Z am

1-A:..“!' ~>l1'--'.

Z '°"|Z Z:l [dn\/(ﬁ -éin)z+(n-nn)2_|"E Q - (5b)

where the amplitudes and decay factors are not necessarily the same in the two equa-
tions. Here the first terms have the effect of attracting £-lines to the £m-lines in the
¢ -equation, and attracting 7n-lines to the 7y, -lines in the n-equation, The second terms
cause £-lines to be attracted to the points [En:ﬂn] in the £-equation, with a similar
effect on 7-lines in the n-equation. .

In the transformed plane these equatlons become
Xgp - 28x£n + Y&y = -Jz(PxE + @‘77) ' (6a)A

aygy - 28V, + vyny = -32(Py; + Quy) - " (6v)

POTENTIAL -FLOW SOLUTION

Laplace Equation and Boundary Conditlons

.. The two-dimensional irrotational flow about any number of bodies may be descrlbed
by the Laplace equation for the stream function . y:

wxx + ‘Pyy =0 : | o .(7)‘
with boundary conditions c o _
On the body surface, . ' - - | ) |

V/(x’Y) = ‘po ’ . : L . | o ’ (8a)
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At infinity, -
Y(x,y) =ycos b -xsinf ' (8b)

where 6 is the angle of attack of the free stream relative to the positive x;,axis. Here -
the stream function is nondimensionalized relative to the airfoil chord and the free-
stream velocity. When transformed to the curvilinear coordmate system thlS equatlon
becqmes . R _:;;;. ‘.- . . . “

¥y - 2%y + 7’"’17# + °’7"n + T%;: 0 | - A
where a@, B, and y are defined by equations (3c) to (3¢) and o and T are given by
‘ .

Yg(DX) - Xg(DY)

o= _ | RN T ey
. ’ . ,
_‘ - X(Dy) ; yn(DX) } o ~w - " (9¢)
with
DR g Thesg T T ey
B P )

Note that Dx and Dy, and hence ¢ and 7, vanish when no coordinate contraction is
used, that is, when the generating system is simply equations-(3). -The transformed
boundary conditions are

On 7 =1y (i.e., on I"i),

.
i

| w(Em) = v (10a)
On 7 =1y (i.e., on FE) PR ST TR I SR VS
w(& 772) (§ 772) cos @ - x(§ 772) sin 6 : (10p)

R

The umqueness is 1mp11ed by msxstmg that the solution be periodic in - < £ < %o,

R LES n2 The coefficients a, B, y, o, and T are-calculated during the generation
of the natural coordinate system. For the approximation of equations (9), second-order;’
central differences are used for all derivatives, and the resulting difference equation is
solved by accelerated Gauss-Seidel (SOR) iteration on the rectangular transformed field.

The solution of equations (9) on the transformed field is constructed in the same .
manner that has been previously described for the solution of equations (3). The single’
equation (9a) replaces the two equations (3a) and (3b), and the boundary conditions are
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given by equations (10). The total number of difference equations thus is .I(J.- 1) fora
single airfoil and I(J - 1) + (I2 -I1 - 1) for two airfoils,

e

Kutta Condxtlon

The boundary value of ¥ on the body. npb is determined by imposing the Kutta

condition. The Kutta condition arises from physical considerations and basically asserts

_ that the flow must leave the sharp trailing edge of an airfoil section in a smooth fashion.
In 2 mathematical sense this smoothness condition is guarantéed by insisting that the
veloclty on the surface of the airfoil be contmuous The contmulty 1mp11es that the limit
of ‘the veloclty ‘at any pomt on the surface ex1sts and is the same regardless of the path
along which' this pomt is approached “Tn partlcular the veloclty at the tralhng edge’ of
the airfoil must be the same when approached from the upstream ‘directlon along'the

(> upper and lower surfaces. It is easily shown that the above 1deas 1mp1y that the trailing
edge is a stagnation pomt for airfoils having an included trallmg edge fangle greater than
zero, but only a common (possibly nonzero) upper and lower surface velocity limit is
required for cusped trailing edges. . The common=limit condition has also been applied
by Giesing (ref 5) in a solution utilizing superposmon of smgularxtles

‘ Since the normal velocity component vanishes identically on the a1rf011 surface,
only the tangential velocity component. neéd be considered.: .If Vt (. 1s the component

4

of V. tangent to a constant 11-lme then - T L T T S
(m1) _V?¥n
g

DR S A

~

" On the surface the £ -derivatives are approximated by the second-order, central-
difference expressions of equation (4a), as in the interior of the field, at all points except
those onthe cut i=1 and i=I, where second-order, one- 51ded expressmns are used.,
Thus

), =1(fq y+4foq -3 . (12a)
(f2) 1,1 = 3 (f3,1+ 42,1 - 31,3) o a
o .
(e)y ; = 3r-2,1 - 41,1 + 3f1,1) o (12b)
Hd . .
The n-derwatlves on the surface are approximated at all points by simllar one-sided
- expressions:
(fn)l 1° %(‘fi 3 + 4 g - 3f; 1) R (12¢)

L
*

To implement the condition of a common velocity limit numerlcally, the tangent1al veloc-
ity component at the airfoil trailing edge is approximated by a three-point, quadratic

...480



extrapolation' in which the threeé points on the airfoil surface immediately adjacent to the
trailing-edge point on both upper and lower surfaces are utilized.- This procedure is
{llustrated in figure 4. The extrapolated values are :

: (Vl)o(m - (Vt)lu 1” -?’.(Vt)zn 1+ (Vt)sy,n . S =)
O T N N S OTY R £ S R e A S P A T 5 5 C A S L A T
| ( ) EE ( )lLl 3(vt)2L'1 (vt)sL 1 o : L as)

. where the subscripts o, 1U 2U 3U lL 2L and 3L refer to the g-ﬁeld pOSl-
tion as indicated in fig-ure 4 All n-ﬁeld position indices are of course umty The
common -limit condition is then .

LB

:;‘_1
e L e, .
IR [FRCEPE L SILIR S IS SR B PO

RS T - EEEER (14)

L]
X3

A
STy -
el

e Tl TET v

Superposition of Solutions-- . -

Since the system to be solvéd is linear in ¥, the solution for a single airfoil at
any angle of attack may be obtained by superposing three component solutions:. (1) a
solution at 0° angle of attack with no circulation, -(2) a.solution at.90° angle of attack
with no circulation, and (3) a solution with circulation but zero free-stream velocity.:
" These three component solutions, written w(k) (¢,m), where k=1, 2, 3, each satisfy
" equations (9), with the respective boundary conditions

w§1}'=o . aet...p (15a)
wfl,; y,'J o | G=1...D ‘(15b)
T ' w§f}=o | o i=1...0 (16a)
wf,z} = Xy 3 i=1...0 (16b)
w{f‘}= 1 | o | i=1...0 (17a)
'wfa} 0 | (1= 1...0) (17b)
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The complete solution with arbitrary circulation then is

wig,nn) = ¥ (E,n) cos 0 + W (E,n) sin 6 + xpBe,n) - (8)

The Kutta condition is then satisfied by choosing the coefficient X such that equation (1‘4)
is satisfied. Thus it is only necessafy to solve the system of difference equations three
tlmes for a given airfoil. The solution at any angle of attack may then be obtamed w1th- |
out re- solving the difference system

Surface Pressure and"Force Coefficients

The pressuré coefficient at any point: in the field may be obtained from the.veloc- .
ities via‘the: Bernoulh equation, which in the present nondimensional variables:is® ¢ .i¢ *.

RS SRR PR AT DT RTINS S X L I ST & ANS b SO S

2 ) y g
A Cp,—-l-—|V| AR AR AT N A (0L e ~;":»'1‘(_19.)z:'

[ P Sk ‘

On the body surface this becomes, through use1 of equatlon @,

MR SE T ) . hEE S PR

- . i - P sd1
C

1-—-2"»02 L S S I .*,.‘ . . o ',;:,(20)_
J

with the derivative evaluated by a second-order one-sided dlfference expressxon The

nondimensional force on the body is'given by .

p-

F= _§Cpg ds ' ' T o (21)
where n is the unit outward normal to the surface, and ds is an increment of arc

length along the surface. The lift and drag coefficients are

Cy, = § Cp(-x§ cos 6 - yg sin 6) d: (22a)

Cp= §Cp(y§ cos 6 + xg sin 0)d§ S "~ (22b)

These integrals were evaluated with numerical quadrature by means of the trapezoidal
rule. ‘

Multiple Airfoils

With two airfoils, the boundary condition of equation (8a) is replaced by the two
boundary conditions:

On.the surface of body 1,
YU(x,y) = ¥ ' (23a)
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On the surface of body 2,
V(xY) = Yy S (23b)

With reference to figure 3 and the discussion in the previous section of the coordinate

system solution, these boundary conditions become, in the transformed field,
I EEEE DA A E A N R RS B R A

llbll"’”l

Ly .
[ |'. RN N |

PR

V1= ¥y '. ... G=1...71 and 1= B...1 (24b)

As inthe.case of the coordinate system solution,,the. remaining portions of the j=1
line are reentrant boundaries, so;that points ther_eor}.g;‘ej treated as field points.rather
than boundary points, The £-derivatives at the surface poihts I1, 12, I3, and 14 on
the cuts between the bodies are also evaluated by using the one-sided expressions of
equations (12) in the calculatwn of the veloc1ty on the surface

i 1 ! . R ; i‘.;

The Kutta condition must be apphed on each body. Therefore a fourth component
golution is added, and the four component solutions each satlsfy equatlon, (9a), with the
boundary condltlons

wf b Yig G=1...1 (25b)
fzi-o =1, ., .1, WL L) .“(26a)!
52}‘ Xi,J i=1...0 (26D)
;pf’i;o_ '-(i.=.-1. mom. .y (27a)
wff’}= 1 | (=12...1) (270)
wi=o s =1L (27c)
w§f’}=1 | | (t=1...1, 4...D (28a)
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(4)

¥i1=0 ' (=12...13) (28b)
w =0 | Gi=1...1) (28¢)

‘The complete solution with arbitrary-circulation about each body is

(3) ()

w(E,mA1,0g) = w(l)(é,n) cos 6 + w(z)(s,n) sin 6 + X 1¥° "(§,m) + Ay " (§,7) (29)

The Kutta condition is then satisfied by choosing the coefficients A; and X9 such that;

' equation (14) is satisfiéd on each-body. This requires only the simultaneous solution of ...

‘two linear algebranc equations -Generalizing-to N bodies, it is necessary to solve the ...-

difference equation system N'+‘2 times for a given multiple airfoil system. The solu-:,
“‘tion at any c_)rlentatmn of the free stream may then be obtained without re-solving the -
difference system.

Results and Comparisons

The coordinate ‘system for a KArméan-Trefftz airfoil having an integral flap is
~ shown in figure 5, and the streamlines and pressure distribution for this airfoil are com- .
pared with the analytic solution (ref. 6) in figure 6. Similar excellent comparisons have .
been obtained with other Kdrmén-Trefftz airfoils. Figure 7 shows the coordinate sys-
tem for a Liebeck laminar airfoil, the solution for which is-compared with experimen-
tal res,ults (ref. 7) for the préssure distribution and lift curve in figure 8. Finally, the
coordinate system for a multiple-element airfoil is shown in figure 9, with the stream-
lines and pressure distributions shown in figure 10. Here coordinate system control _
was employed as discussed above to attract the.coordinate lines into the concave region
formed by the intersections of the cut between the airfoils. '

APPLICATION TO THE NAVIER-STOKES EQUATIONS

Basic Equations

The stream -function—vorticity formulation of the two-dimensional, incompressible,
viscous -flow equations is given by

Wxx + Wyy

R .(30)

Wi + ll/ywx - ll/xwy =
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where ¥ is the nondimensional stream function, w the nondimensional vorticity, and
R the Reynolds number based on the characteristic velocity and length used to nondi-
mensionalize the basic equations. The transformed equations are

T Yawi - Yrw AWig - 2BWiy + YWppn + OWp + TW :
P B ki R Ml MR (32)
g . | J'R .

aVyp - Whyy + vl + Uy s g = TR0 e

where the coordinate system parameters @, B8, ¥, J, 0,and T have already been
" given. Recall that these coordmate system parameters are fixed and need be calculated~
only once

_ Boundary Conditlons
The boundary condltions are given by
On the body surface,

U(x,y,t) = ¥y, = Constant I : o (34a)
oy _ . o |
E(X’Y’t) =0 . | (34b)
At infinity, | | .
W(x, y,t)'=‘_y cos O -x sin 6 ' S . - ‘ » (35%1)
w(x,y,t) =0 ' |  (35m)

_where n is the unit vector normal to the body surface The functlon describlng the ’
' variation of the vorticity on the body wb(x,y,t) is unknown and must be calculated as part
" of the solution, Initial conditions at t=0 are those resulting from an impulsive start.
Equations (34) and (35) may be transformed to yield boundary conditions for equations (32) -
and (33) in the transformed plane. This procedure yields the following relations:

Qﬂ‘7l=7l1 (1e on’ I‘i)

Wnat)s v Constant |  (362)
?w,,(e,npt)w . B - (36b)

On 7 =1, (i.e.,.on I‘i),

Y(Emgt) = y(Emg) cos 8 - x(E,ng) sin6 - : (37a)
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w(Eng,t) = 0 | o (37b)
v o
where 7; and 75, are the values of the 7-coordinate for contours 'I"; and T,
respectively, in the transformed plane (fig. 1). - The condition specified by equation. (36b)
guarantees that the velocity component tangent to the transformed body surface vanishes
on'the body surface. Since the component normal to the body surface vanishes identically,
the satisfaction of equatlon (36b) implies that the viscous no-slip condition IS satisﬁed
on the’ body surface (1 e., along I* or equivalently I‘l) ' '

;... Most solutions in the computational fluids field have_ relied on a-modified evaluation
of equation (33) on the boundary to determine the vorticity on the body surface wp (£,11,t).
The modiflcatlon is introduced in an attempt to insure that equation (36b) holds — that ls,
to satisfy the no-slip COndltlon A variety of numerlcal procedures along these lines are
| documented in reference 8. The principal problem encountered with such an approach is
that the vanishing of the tangentlal velocnty component is implied only indirectly rather
‘than directly. . Israeh (ref, 9) has shown that these procedures are not only unreliable in
producing a zera tangential c0mponent but may, in fact _even be numerically divergent
‘Israeli suggests that wy (.g N l,t)_ be calculated with an iterative algorithm of the form

(k+1) (gpnl’tn) ( )(§1,7I1;tn) - 6[ (gi’nl’tn)] B .' (38) |

for all’ 1 Si'sI-1, where £ refers to the §-pos1tion along the body, Ny denotes the
l;n-value for contour l"1 tn is the current tlme k dendtes the iteration’ counter at N
step tp, and 6 is a relaxation factor (possibly variable). Obviously, such a procédure
can only be employed with implicit methods which require iteration of the:parabolic vor-
ticity equation at each time increment. Note that convergence of the vector sequence

s 3 k |. ) k . T S : .
wg )(E'i,nl’tn) lImplies convergence of ['g%(gi’nl,tn)]( ) to that function which inherently

- satisfies the no-slip boundary condition.,

Pressure Coefficlehts '
If the primitive variable formulation of the Navier -Stokes equations (velocity-

~ pressure) is evaluated on the body surface, the time derivative and inertia terms vanlsh

_to yield ‘

_lo2vy o | I
Vp =2 39
Ww=svey | ( )
where P is the nondimensional pressure, V the nondimensional velocity, and R the
Reynolds number based on the characteristic flow parameters. Utilizing a vector lden-
tity to eliminate v2Y gives
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~:_=%(ij-ti) o . : (40)
The pressure differential in the transformed plane then is '
= Loy - vogds . .. A 1)

Integration of equation (41) along. I, starting at the trailing-edge position ylelds

_ C3() =p(&) -pr g, = % S: %(ng- - ywy)dg' ' . (43)
wl‘nere': &y E " is the £-\'ralu‘e' corresponding to the body trailing edge. The symbol Cp
,ls used instead of the more conventional Cp to mdxcate that the reference pressure ls
the tralllng-edge value P, E rather than the free-stream value pw Note that all
quantltles in equation (42) must be evaluated on the body surface (i e.,along 7= 1;1)
Central-dlfference approximations. were used for all ¢-derivatives appearing in equa-’
tion (42), while second-order one-sided expressmns were used for the n-derlvatlves.
The numerical quadrature was performed by the trapezoidal rule, ‘

Foree Coefficients

The force coefficients associated with the stress vector are obtained by lntegratlng
the stress vector over the body surface Let, F =iCp + ] Cn be the total force actlng
on the body and let Tp =1 (T,_,)1 +] (Tn)2 . be the stress’ vector on the body surface haylug
outward unit normal n. Then, S ‘

=S'S’ngé' 1 ‘, 4(.45)

where S 1is the body surface. The stress vector components (T“)l and (Tn)z: may
be expressed in terms of the primitive variables as

| (Tn>1— -2pny +4(v1) 1+2[(V1)y (Vy) ]'_g o («a)_
(Tn)p = '2P“2+2[(V2)x+(Vl)y]%+4(vz)yn—1% )

where ny and' ng" are the x- and y-components of the normal to the body surface u.
‘The 1ift and drag coefficients may then be calculated by means of the conventlonal wlnd-

. axis transformatlon as follows:
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0 - 0 '
Cp= 2Sm gcose—x§sin9)C*d§+2§maxygsm Rx§ e wa (45a)
€min gmm ’
Cy = -2 5 {cos 0(x€C* - %) + sin e(ygc* - xf:,):l d¢ . ‘ _ A: (45b)

-The two integrals in equations (45) are referred to as the pressure and friction drag
coefficients and are denoted CDP and CDF respectively. These integrals were eval -
uated numerically by use of the trapezoidal rule, The £-derivatives were approximated
. with second-order central -difference expressions.

leference ‘Equations-

A ﬁrst-order backward dlfference 1s used to approx1mate the txme derivative,
while second-order central differences are used for the space derivatives in equa- -
tions (32) and (33). The resulting coupled difference equations, two for each point in the
field were solved simultaneously by point SOR iteration at each time step.

Implementation of the Boundary Conditions

As indicated earlier, the basic idea used to calculate the vorticity on the body sur-
face wp(£:m1,t) is to select this function so that the no-slip condition is satisfied. An
approach suggested by Israeli (ref. 9) has already been cited in equation (38). This is
‘basically the parallel- chord method (see ref. 10) and has only a linear convergence rate.
Another method similar to false-position iteration was used to accelerate the conver-
gence. The iterative sequence is generated by the algorithm
: oK) (k-1) - S
wgkirl) = “’gk% -6 — “i,1 - ‘ 1,} 6/%' t//n>.(k) ' . )
J T Vi1 .

where 0 1is again an acceleration parameter. The derivatives in this equation were = ~
approximated with second-order one-sided differences for the n-derivatives and central
differences for the-§ -derivatives. - Another method was used when numerical overflow .
problems were encountered with the quotient in equation (46), This consisted of modi -
fying the second term on the right side of equation (38) with the algebraic sign of the dif -
ference quotient, rSeveral other approaches documented in Roache (ref. 8) were also
tried.. None of these were as successful as the methods discussed above.
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Calculatmn Procedure

The vorticity and stream-functlon ﬁelds are converged by means of the point SOR:
technique. New boundary values of the vorticity are calculated as discussed in a previ-
 ous section, Three conditions must be met before the time step is considered to be
converged: ' -

(1) E(@,k) = e()

(2) E(w,k) = e(w)

o o)< )

on

‘where the terms E(y,k), E(w,k), and E(Qﬁkk) are the maximum norms of the change
E(y, k) = Hw(k) W(k 1)” The terms mvolvmg € -are 51mply the required convergence
criteria, <Nom1na1 values for e(lll), e(w), ,and e(%—'e) are 10~ 5, 10"’, and 10~ 2, respec-

tlvely.) This procedure is repeated until convergence.. Once a time step has converged,
time is incremented and the process begins again.

NAVIER -STOKES RESULTS

_Solutions About Vérious Bodies

To illustrate the versatility- of the natural coordinate system.approach, viscous
flows about three different bodles are presented The bodies and associated flow condi-
tions are ) '

(1) Flapped KArm4n-Trefftz airfoll: . 8 = 159, R =200
(2) Gottingen 625 airfoil:” 6 = 59; R = 2000 |
- (3) Cambered rock: 6 =5° R =500
The coordina’tes of these bodies are given in reference 4..

Several problems arose with the body vorticity calculations. At times the iterative
method used to calculate the body vorticity produced mildly oscillating: va'lues_ along the
body boundary. The principal cause of this result was that the method was-applied point .
by point along the boundary. -Thus, the only "communication" between the body points
was through-the field iterations. This tendency was overcome in two ways: First, only
small surface vorticity changes were allowed at each body station at each iteration.
Second, after the new vorticity values had been calculated, a three-point weighted aver-
age was used to smooth the new surface vorticity distribution. '
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A second problem developed with those bodies havmg a sharp trailing edge. To
preserve continuity of the vorticity, the vorticity at the trailing edge was held at zero -
Since the vorticity gradients are extremely large in the neighborhood of the trailmg edge,’
the numerical solution had a tendency to oscillate near this point. This phenomenon is
generally known as '""wiggles' and, as shown in Roache (ref.-8), is actually the solution of
the difference equations. In reality the wiggles are caused by the inability of the net -
function to resolve large gradients near boundaries o

£

- Flapped Karman-Trefftz Airfoil

The coordinate system for the flapped Karman Trefftz a1rf011 profile whlch pos-
sesses a camber of 22 percent at the 0. 55- chord point, is shown in figure 5. The free-
stream Reynolds number was taken as 200 and the flow angle of attack was 150, Other
data concerning the solution are given in table 1. ’

Stream-function contours are given for two time steps in figure 11 The contours
at the earlier time indicate clearly the large flow velocities over the upper surface of ’
the airfoil and the consequent large difference in overall boundary- layer thickness

. between the upper and lower surfaces. The manner in which the zero streamhne leaves '
the traillng edge indicates that flow separation on the upper surface is imminent. The
contours for t=1,06 illustrate a fully developed laminar separation The boundary-
layer thickness over the aft half of the upper surface has mcreased approx1mate1y

' 300 percent ‘

In order to gain some insight into the development of lammar separation, a series

- of. four.velocity profiles are shown in figure-12, The profiles for t= 0.08 illustrate
the upper-surface flow shortly after the impulsive start. The boundary layer is very '
thin at this time. Separation has already begun at t = 0.22, as evidenced by the profiles.
on the flap portion of the airfoxl Figures 12(c) and 12(d) indicate that the upper - -surface
separation point has moved rapidly upstream to approx1mate1y the 70 -percent-chord ‘
point. . Reverse flow has been well established at t = 0.54. Note that the upper -surface
_.‘boundary -layer thickness has increased substantially over the time span shown '
Géttingen 625 Airfoll B ‘
The flow Reynolds number was 2000 at an angle of attack of 5°, Additional sum-
., mary data of the solution for the Géttingen 625 airfoil appear in table 1. The coordinate
system shown in flgure 13 was used in this solution. The high density of constant n-lmes
near the airfoll surface is the result of contraction to the first 15 n-lines. In particular
the amplitude factor appearing in equation (5b) ranged from 20 000 at 7 = 1 _to 13 000 at
n=15 (increments of 500/line), while the decay factors were held constant at 1.0 for
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n'- 1 to 14 and were 0. 4 for the 15th n-lme ' The functlon P(x y) defmed by equa-
tion (5a) was set to zero as were the pomt-attractmn parameters of equatxon (5b)

This solution developed wiggles near:-the sharp trailing edge. The effect. of the
wiggles is dramatically: illustrated in figure 14, which shows ¢ and w. contours at_ .
several times after the impulsive start. Note the distortion of the vorticity contours
near the trailing edge. The oscillatory effects-are carried upstream along.the lo_nrer .
surface of the airfoil and are proceeding downward, away from the trailing edge. The
disturbance proceeds away from the airfoil without much damping but has little effect
on the flow in the v1c1n1ty of the airfoil after the start, as can be seen in figures 15(a)
and (b), which show ¥ contours at later times. A feature of interest in figures 14(a) o
and (b) is the starting vortex which is formed and shed at the trailing edge '.I‘h_,is"t;orjtéx'
appears just above the dlsturbance due to the nggles '

Figure 14(c) indicates that flow separation has been mltiated on the trailing-edge
portion of the airfoil upper surface, The separatlon point moves rapidly upstrea.m to
approximately the half-chord point at t = 1. 012. At this time the upstream movement
of the separation point slows down cons1derab1y The thickness of the separated region,
however, begins to increase, as illustrated in figures 15 and 16, The remainder of the
stream-function contours in figures 15(a) and (b) illustrate the growing thickness of the
separated region, the increasing back flow and the separatlon of flow eddies. At
t=2.23 a bubble begins to form on the trallmg edge. This bubble continues to grow and
is followed by the formation of another bubble at t = 2.53. The extent of both bubbles
continues to increase until a single bubble is formed at t'= 3.13. The final - ¢ contours .
given indicate that the single bubble has become much larger. The thickness of the sep-
aration region is roughly 1.25 times'the airfoil thickness at this tlme, with the forward-
separatlon point at approximately 31 percent of .the chord ' :

The separatlon process may also be exammed by v1ew1ng the series of upper-
surface velocity profiles given in figure 16. The proflles given in flgure 16(a) 111ustrate
attached upper - -surface flows shortly after the impulsive start, There is a noticeable
increase in the boundary-layer thickness at t=0.336. The remaming parts of figure'16
track the growing thickness of the separated reglon and the upstream movement of the
separatlon point. :

Pressure and force coefficients at an eariy time are illustrated in figure f?(a).'
The friction drag constitutes more than 65 percent‘of the total drag at this time. As the.
boundary layer becomes thicker, the friction drag decreases rapldly and causes a cor-
respondmg decrease in the total drag The effects of the laminar flow separation are
shown in figure 17(b). The peculiar variation in the CB dxstrlbutlon at the tralling '

‘edge is again due to inaccuracies in the body vorticity dlstrlbutfon
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Cambered Rock

To show that the natural coordinate method could be used with arbitrary shaped
bodies, the viscous flow about the cambered rock at a Reynolds number of 500 was
developed. The contracted natural coordinate system used in the solution is given in
figure 18.- The same amplitude} and decay factors given for the Gottingen 625 airfoil °
were used to create this system. Other summary data are presented in table 1. '

With a body such as the cambered rock, reliance must be placed on one's physwal
intuition m evaluatmg the resultmg flow. For this reason an extended discussion of the
flow past the cambered rock will not be given, Instead a significant number of ¥ and
w contours will be given. These are shown in figure 19. However, it is felt that some
remarks are appropriate. - A glance at figure 18 indicates that the rock possesses sev:"

eral concave areas. ‘Intuition would imply that f_low stagnation areas should develop quite '

rapidly in these ‘regions. This, in fact, does occur, as figure 19 indicates. -In addition

R

one would expect laminar flow separation and the consequent shedding of vorticity from--": -
the body. ‘These ‘events are also-borne out by the contours. The.ever-increasing size of- -

the region of significant vorticity is quite apparent from the figures., Finally, velocity

profiles and surface pressure dlstributlons are shown in figures 20 and 21, . SUAPN

v,

e Ge _; o Computer Time Requirements

Numerical solutions to parabolic ‘partial differential equations require extenswe kR

amounts of digital computer tlme The total CPU times (UNIVAC 1106) used to generate kS

the three solutions discussed in thlS study are documented in table'1. The average time -

required to converge each time step is also shown. (No attempt was made to quantify the -

effects of time step size’ -on ‘the average tlmes given ) : Nt

C ON CLUSIONS

LI
el

The objective of this study was to develop methods to obtain numerical solutions of -

the two-dimensional, incompressible, time-dependent Navier-Stokes equations about . .
arbitrary bodies. The solutions followed the development of a general numerical curvi-
linear, coordinate.transformation which produces a natural coordinate system having a .
constant, coordinate line coincident with each. boundary contour in the physical plane.

Once the natural coordinates are developed for a given physical domain, the set of partial
differential equations of interest may be transformed to the natural system and solved
numencally in the transformed plane without regard to the geometry of the physical ‘
region. In effect the natural coordinate method eliminates all geometrical considera-

~ tions from a given solution, as all physical regions have the same appearance in the
transformed plane. The computer software -utilized to generate the natural coordinates
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is independent of the set of partial differential equations whose solution is to be carried
out on the transformed plane. The partial differential equations governing potential and
viscous flow differ drastically.” However, for a given body geometry, the same natural
sysl:em was used herein for both solutions. ' The second major advantage. of using natu-
ral coordinates is that the computer software generated to approximate the solution of a
given set of partial differential equations is completely independent of the physical geom-
etry of the problem. The same computer program was utilized to develop all the solu-v
tions for the wide variety of bodies discussed herein. Only the mput varies with the A
body. Such a procedure obvmusly has s1gn1flcant ramlflcatlons 1n numerical mathemat- A
_ lcs and all areas of phys1cal sclence. .

Sigmﬁcant viscous-flow results were obtamed for three dlfferent bod1es ‘These
included two general airfoil sections and one completely arbitrary body. The a1rf01l
solutions developed computatlonal wiggles near the sharp trailing edge at the start of the

' impulswe flow. The wiggles were generated as a result of large vorticity gradlents '
which appeared in this region at the start. This disturbance was convected away from
the body essentlally undamped, but produced no significant disturbance near the ‘body at
later times.- The solutions show the formation and development of the boundary layer,
laminar eeparation bubbles, and completely' separated flow. Present."results extend to a
Reynolds number of 2000. Although the magnitude of the calculated force coefficients
cannot be compared with experimental data, as none exist at this.low Reynolds number,
the time variation of these parameters agreed quite well with the flow pattern develop-
ment, The cambéred-rock solution proved that the natural coordmate methods could be
apphed to very general bodies. The manner of this flow development also agreed with
intuitive physxcal reasoning ' )

There appears to be no basic barrier to higher Reynolds number solutlons, since
the means are at hand to contract the coordinate system about the body as much as
desired. Prelumnary runs at a Reynolds number of 10000 have already been made.
Work is also in progress on the solution for multiple airfoils with viscous flow... -~
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TABLE 1.- SUMMARY OF DATA FOR VISCOUS-FLOW SOLUTIONS

L - . .| Average number ,
. Field Convergence criteria Time steps of iterations . Total Total
Body den R - ' o ‘ solution CPU
) eg size v w 5= | Initial | Final | Initial | Final | time | time, hr
%* ) ‘
1 |15 | 200] 3828 |10-5.| 10-5 | 10-2 | 0.01 | 0.03 280 280 | . 1.15 7.104
(66 x 58) . o
2 5 | 2000 | ‘4350 | 10-5 | 10-5 | 10-1 | .001|-.01 | 130 | 220 | 38.35 | 3240
(75 x 58) ‘ | o
3 5 | 500 | 3132 [10°5 | 10-5| 0.5 | .005 | .005| 55 95 | 1.30 6.40
o | (54 x58) ' |
*Body code:

1 Flépped Karméin-Trefftz airfoil
2 Géttingen 625 airfoil
3 Cambered rock -
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(a) Sing;é—ﬁody-region.
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() Two-body region.

|
i=1

Figure 3.- Computational grids - single and two-body regions.
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Figure 4.- Velocity éxtfapolation at airfoil~tréiling'edge.
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Figure 5.~ Coordinate system for flapped Kirman-Trefftz airfoil.
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Figure 6.- Analytic and numerical potential-flow results for flapped

Kirman-Trefftz airfoil.
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Figure 7.- Coordinate system for Liebeck laminar airfoil.
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" Figure 9.- Coordinate system for'multiple airfoil. |



{a) Streamlines.

ial-flow solution for multiple airfoil.
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'Figure‘lo.— Concluded.
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Figure 11.- Concluded.
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- Figure 12.- Velocity profiles for flaﬁped Kirman-Trefftz airfoil.

t = 0.38.
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Figure 13.-' Contracted coordinate system for the Gottingen 625 airfoil.



(a) t = 0.118.
Figure 14.- Stream-function and \rorticity contours for Gottingen 625 airfoil.
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(b) t = 0.336.
Figure 14.- Continued.
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Figure 14.- Concluded.

-516



e =y
T e
%ﬂ— =T

_:z;—"—d__——"——'_“—“——_d———.___——_‘_“_%—‘“—-h\-‘
——\;—__—b‘hﬂ__\_-‘_—h____z.— —

e == =
—= e el
_,."'5"'_’""’#-: -":-"_f';—::r"-"-o—’:’;ﬁ""_p e e e T

S e e ——
== e
-«—’”35;ﬁi:ﬁézgggéégégggﬁ— e S

= 2
=

t=1.83
(a) t =1.53 and 1.83.

Figure 15.- Stream-function contours for Gottingen 625 airfoil.
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(b) t = 3.13 and 3.33.
Figure 15.- Concluded.
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t=0.336

t=0.658

(a) t = 0.118, 0.336, and 0.658.
Figure 16.- Upper-surface velocity profiles for Gottingen 625 airfoil.
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t=1.012

t=1.53

t=1.83

t = 1.012, 1.53, and 1.83.
Figure 16.- Concluded.
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(a) t = 0.118.
Figure 17.- Pressure distribution for Gottingen 625 airfoil.
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(b) t = 3.33.
Figure 17.- Concluded.
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Figure 18.- Contracted coordinate system for cambered rock.
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function and vorticity contours for cambered rock. -

) -t =0.

a

(

Figure 19.- Stream-

524



t = 0'5’

(b)
Figure 19.-~ Continued.
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'vFigure 19.

- Concluded.
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Figure 20.- Velocity p'rdf:lles for cambered roék.
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() ot o= 1.2,
Figure‘ZO.-VCOncluded.
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Figure 21.- Pfessure distribution for cambered rock.
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Figure 21.- Concluded.
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