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SUMMARY

A numerical method is presented which is valid for integration of the parabolic -
elliptic Navier-Stokes equations. The solution procedure is applied to the three-
dimensional supersonic flow of a jet issuing into a supersonic free stream. Difficulties
associated with the imposition of free-stream boundary conditions are noted, and a coor-
dinate transformation, which maps the "point at infinity" onto a finite value, is introduced
to alleviate these difficulties.

Results are presented for calculations of a square jet and varying-aspect-ratio rec-
tangular jets. The solution behavior varies from axisymmetry for the square jet to
nearly two-dimensional for the high-aspect-ratio rectangle, although the computation
always calculates the flow as though it were truly three-dimensional.

INTRODUCTION

The calculation of free-mixing flows has^ in the past, been accomplished through
use of the boundary-layer assumptions in the two-dimensional or axisymmetric Navier-
Stokes equations. The accuracy and validity of-these procedures iiave been ,welldocu- .,
mented in the literature (refs. 1 and 2). However, there are numerous situations where
the flow cannot be considered either two-dimensional or axisymmetric. Jets issuing
from rectangular orifices (see fig. 1), wakes behind any but the simplest bodies, and the
flow downstream of a wingtip are examples of three-dimensional free-mixing flows where
boundary-layer assumptions are invalid. The characteristic feature of these flows is the
importance of diffusion in two spatial coordinates.

These flows have certain characteristics which are common to boundary-layer
flows; e.g., the velocities in the planes normal to the main-stream direction are usually
much smaller than the main-flow velocity. Consequently, one expects gradients that
exist in the cross directions to be larger than the gradients in the main-flow direction.
Also, these are usually constant-pressure flows. Therefore, it might be reasonable to
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use a boundary-layer scaling on the Navier -Stokes equations to effect some simplifica-
tion; however, this yields an inconsistent set of equations. To lowest order, the cross-
stream momentum equations reduce to statements that the pressure is constant, and the
resulting number of equations is not sufficient to determine the remaining unknown
quantities. . . .. . ..

This paper presents the results of a method which overcomes this difficulty and
allows numerical solutions of the parabolized Navier-Stokes equations. The method is
applied to a three-dimensional, supersonic, rectangular jet problem in which the aspect
ratio is varied from one (square jet) to large values representative of slits. The range
of applicability of the procedure is demonstrated from the near axisymmetry of the
square, through a true three-dimensional region of moderate aspect ratios, to a quasi-
two-dimensional flow in the high-aspect-ratio limit which approximates a two-
dimensional jet.

SYMBOLS

A,B transformation constants

matrices defined by equation (15)

D vector defined by equation (15) •:->• '•

•Q convective derivative
Dt

h half-width of unit jet (reference length)

M Mach number

Npr Prandtl number '

p pressure

R Reynolds number

S = S*/Tr

S* Sutherland's constant
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T - temperature "-'" • :

U ' • velocity :

u,v,w component velocities in x-, y-, and z-directions, respectively

x,y,z -coordinate directions . ,

Ax,Ay,Az grid spacings in x-, y-, and z-directions, respectively

W vector of dependent variables (see eq. (16))

Y ratio of specific heats

A dilatation

6 central difference operator

T},£ transformed y- and z-coordinates

H viscosity

p density

* dissipation

Subscripts:

j,k discretized y- and z-positions, respectively

r reference quantity ' , "

00 free stream

+, - upper and lower grid spacings used with nonunlform grid

Superscripts:

1 dlscretlzed x-position
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intermediate step of alternating-direction implicit method

GOVERNING EQUATIONS

Derivation of Equations

The full three-dimensional Navier-Stokes equations are elliptic in character. The
core storage available on present computers is insufficient to practicably handle any but
the coarsest computational grids. Thus, methods to reduce the equations to a form more
tractable for computation must be employed. A true boundary-layer scaling cannot be
used since it yields an inconsistent set of equations; however, some of the concepts from
boundary-layer theory indicate the means to simplify the equations.

The only assumption which can be made is the predominance of the convection in
one main-flow direction. This leads to the (Reynolds number dependent) conclusion that
diffusion can be neglected in this direction when compared with convection. Assuming
the x-direction to be the convective direction, the Navier-Stokes equations become

for x-momentum:

* • *
for y-momentum:

= -3> + M* (3
H V

(2)ay

for z-momentum: • .> . .

• - c i
< p Dt ~ "9z + ^Hriax"jJ?+ayr'(ayJj + az^i az " JJ ^-'

where the terms in braces are the streamwise x-direction diffusion terms to be neglected.
In addition, since the expression

- ax 9y 9z ':• • . .
' ' . * - • J

also introduces x-diffusion terms in the y- and z-crossflow momentum equations, these
derivatives are also neglected here. .The x-momentum equation is the same as would
have been produced by a true boundary-layer scaling, but since no quantitative assump-
tions have been made concerning the relative sizes of the x-, y-, or z-gradients, the
y- and z-momentum equations are retained, although in somewhat simpler form.
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The energy equation becomes

.where the term in braces is to be neglected,

$ = /lu\2 + /M2
 + 4[/8v\2 _ /ay\/aw\ + /gw\2l + /aw\2 . 2(SSL}(»s\ + /§i\

, (dy) +(dz) + 3 \ayj (dy)(dz) + (dz) + (dy) *(dy )(dz) +\dz)

and the convective derivative ^ is given by

£ = u-j- + v-j- + w-|LDt ax ay az

All x -gradients in the dissipation have also been neglected. Finally, the continuity equa-
tion remains unchanged: .

= 0 (5)

;When these equations are supplemented by an equation of state and a viscosity relation,

(6a)

3/2

where R is the universal gas constant, a system of five equations for five unknowns is
obtained after elimination of the density by the perfect gas equation of state.

The elliptic nature of the Navier -Stokes equations in the x-direction has thus been
eliminated; consequently, the equations are parabolic in x and marching integration
may be used in the streamwise direction. This is significant computationally since it
eliminates the need to store all the field quantities at each x-location which results in a
substantial reduction in computer storage. Thus, the name parabolic -elliptic Navier-
Stokes equations, since the assumptions allow a march in x away from an-initial data
plane, yet retain the elliptic character of the crossflow planes (Y-Z planes) due to the
inclusion of all second derivatives in , y. and z. Flows with swirl or possible cross-
flow recirculation (vortices) in the Y-Z planes can be computed, and only reverse flow
in the main -stream direction is eliminated due to the omission of x-diffusion.

It should be noted that the continuity equation is hyperbolic; however, a march in
the streamwise direction is still possible since the x -derivative can be expanded as
follows:
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.and the px term can be used to advance to the next station. There is no explicit diffu-
sion term present and discontinuities which may be present can be expected to persist
for large x-distances; hence, smooth initial profiles are desirable.

Equations similar to these have recently been used for supersonic flow past a sharp
cone at incidence (ref. 3) and for hypersonic leading-edge flows, where a more formal
analysis and scaling can be invoked (ref. 4). To date, no detailed work has been published
on three-dimensional free-mixing flows.

Validity for Supersonic Jet Flows

Free jet and wake flows are common aerodynamic phenomena. These flows are
generally turbulent, and the calculation of two-dimensional or axisymmetric turbulent
free jets or wakes is difficult (ref. 2) because of problems associated with turbulence
modeling; higher order modeling (two-equation models) is necessary in many cases. For
three-dimensional flows with two essential cross-plane velocities, very few calculations
have been made. To assess the modeling procedures for a three-dimensional flow, a cal-
culation procedure valid for laminar flows, preferably in primitive variables to allow
ease of incorporation of the turbulence models, is required. The parabolic-elliptic equa-
tions (eqs. (1) to (6)) need to be verified for laminar jet calculations prior to their appli-
cation to turbulent flows.

If the equations are cast in nondimensional form by using free-stream values of
Uoo, Poo> and TOO and some suitable reference length which characterizes the problem,
the equations become

-for x-momentum: - ' • . ., .

for y-momentum:

l 9P i /af T af a 1\
Dt yj^ 2 3y R|3y \ 9y 3 )\ 8zr \dz) /

oo ^ L J J

for z-momentum: . - .

PW=--^^ + -< -W->l + ^ i 2 ^-* A ) l> (9)
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for energy:

2u<Y*m2 + /is'2™ \ I - I • I _

^(10)

, f o r continuity: . . .

: 0 . . (11)
OA ay oft

and for Sutherland's law:

M = g |̂)T3/2 . - (12)

Rubin and Lin (ref. 5) have shown that equations of this type are singular at M = 1
if the px term is treated exactly and singular at M = 0 if the px term is calculated
in an explicit manner during the numerical calculation. If the px term is neglected
entirely or specified from a boundary-layer approximation, then the parabolic march in
x can proceed without difficulty. Thus, it was felt that since the px term should be
included if necessary, the problem chosen to test the overall method should avoid any of
these obvious integration difficulties. The M = 0 behavior takes place near boundaries
(where u = 0), and therefore, the free jet problem avoids this singular behavior. How-
ever, the jet cannot exhaust into an ambient atmosphere since here too u = 0. Thus a
jet issuing into a moving free stream is suitable. To avoid any difficulties at M = 1
both streams were chosen to be supersonic. Thus, equations (7) to (12) will be solved
for a supersonic jet issuing into a supersonic free stream.

NUMERICAL PROCEDURE

Integration Technique

An implicit numerical procedure was chosen to solve the governing equations for a
number of reasons. The success of implicit methods on the two- and three-dimensional
boundary-layer equations implies that they should be efficient for the boundary-layer -
like parabolic-elliptic Navier-Stokes equations (eqs. (7) to (12)). It is expected that solu-
tions will be required at large distances downstream from the initial data plane; conse-
quently, large x-steps are desirable. The need to eliminate the step size restrictions of
explicit methods leads to a consideration of unconditionally stable methods which are con-
sistent in their marching variation. The particular implicit method used in this study is
the alternating-direction Implicit (ADI) method of Peaceman and Rachford (ref. 6). The
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ADI method is ideally suited for the solution of equations (7) to (12): There is no stabil-
ity restriction on the step size, and hence, large x-steps are permitted. The method has
second-order truncation error in its marching variation,-which is also a requirement for
the type of flow envisioned, since the x-history of the flow must be traced accurately at
each step. Finally, the method does not require the inversion of a sparse-banded matrix,
as a fully implicit or Crank-Nicolson method would. Simple tridiagonal coefficient
matrices are generated at each step which require much less storage and time for their
inversion in relation to sparse-banded matrices. The method has previously been shown
to be effective for a set of equations similar to those used in the present approach (ref. 7).

The ADI procedure is used to difference in x, with the y- and z-derivatives
expressed as central differences, with the option of a nonuniform grid included; that is, :

3U _
-

- [(A**)2 -

(Az+)(Az_)[(Az+) + (Az.)]

(Az.)]u}>

(Az+)(Az_)[(Az+)

An example of the complete differencing scheme is shown for the x-momentum equation;
as follows: .,

+
l,k

Mk+^.VLk j,k

(13a)
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y j'

1+
(13b)

The only difficulty arises from the cross derivatives of velocity present in the y-
and z -momentum equations. These cannot be differenced implicitly since the tridiagonal
structure of the resulting matrices would be destroyed. These are treated in the same
manner as all the nonlinear coefficients present in the differenced equations.

Linearization Scheme

The ADI procedure, which is second-order accurate, centers the x-derivatives about
the point (i + ̂ V (See fig. 2.) This point is not equivalent to the intermediate step of the

\ */
ADI procedure. Hence, a method must be developed to compute all the nonlinear coeffi-
cients (and the cross derivatives) at the i + point. This can be accomplished by a

quadratic extrapolation from the two previous x -stations (i) and (i - 1) (ref. 7) or by use
of the predictor -corrector procedure of Douglas and Jones (ref. 8). Both of these require
additional storage. The procedure used in the present work handles the nonlinear terms
by an iterative technique similar to that used for boundary -layer calculations in which a
Crank -Nlcolson Integration Is used (ref. 9). Any coefficient Q Is calculated at the mid-
point (l + i) by the simple formula

<; (i4)
The value at (I + 1) is not known on the first Iteration and so the Q* value Is used. After
the Integration to (i + 1) has been completed, new values of Qi+1 are computed, and the
Integration step to (I + 1) is repeated to either a specified convergence or a specified
number of iterations. At convergence this yields second-order-accurate coefficients
which match the accuracy of the Integration. The cross derivatives are also treated this
way.
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Solution of Matrix .Equation

The resulting linear difference equations are a set of five equations in five unknowns.
Rather thanj make the quite arbitrary choice of the order of solution if a sequential tech"1-~
nique of solving each equation in turn were elected, the five equations are solved simul- •
taneously. The resulting matrix equation has a block tridiagonal structure which can be
represented as ' .

" ~~?1-1 = 5," ;: (15)

where the unknown vector Wj contains all the five unknowns

Tj = (uj.Vj.Wj.Tj.pj)1 (16)

the coefficients [A], [B], and [c] are simply the matrix coefficients of each particular
unknown; that is,

a!2j a!5j\

a21j

V: a55j/

(17)

and the vector D is a source term in each equation. The components amnj represent
the coefficient of the nth unknown from the mth equation at point j.

:^v • ' _

The inversion of this block matrix is particularly simple. It consists of rewriting
the usual tridiagonal algorithm with all multiplications replaced by matrix multiples, and
all divisions replaced by matrix inversions. This simultaneous solution procedure was
used previously by Krause, Hirschel, and Bqthmann (ref. 9) where the pressure,- of course,
was not one of the unknown variables due to the boundary-laye?; assumptions. The proce-
dure is quite advantageous because, in addition to eliminating the previously mentioned
choice of solution order, it models the physics more precisely by allowing changes in any
variable to be instantaneously sensed by all the others. It is also believed that this pro-
cedure aids in the convergence of the iteration since it eliminates the use of lagged infor-
mation previously calculated in a sequential solution. Thus it is fully implicit in the
sense that a sequential solution is much like a Gauss-Seidel iteration which is explicit.

b1'1' ' - •, .
The number of grid points used for the calculation was governed by conflicting

requirements. !£ or. acceptable resolution, many points were desirable in the shear layer
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between the jet and free stream and in the-jet itself. Also, reasonable distances away
from the high shear region were necessary to allow boundary conditions in the free
stream to be applied without distorting the results interior to the computational domain.
However, excessive mesh points result in unacceptable machine storage requirements,
increase computational time extravagantly, and impair job turnaround time. An initial
compromise was to use a 41 x 41 grid to compute the quarter-plane of the jet flow, using
the symmetry axes of the jet as boundaries. An equally spaced grid of Ay = Az = 0.1
was first utilized, thereby placing a jet half-width at five grid spacings away from the
axis and the outer edge of the domain seven times beyond this (40 grid spacings away
from the axis). The required computer storage was 130 OOOg on the CDC 6600 system.

Initial Conditions

The initial conditions at the data plane representing the orifice location x = 0
were chosen in a very rudimentary manner. Since too many points would be necessary
to describe the merging of the free stream and duct flows just past a jet exit, and storage
limitations were severe enough before this consideration, the initial velocity profiles
were chosen as shown in figure 3. The jet and free stream are represented by two dis-
tinct in vise id flows separated by a sharp boundary. Computationally this yields a one-
grid-point discontinuity between Ujet and U«>. This initial condition is probably the
most severe that can be imposed while still generating an eventually realistic flow
description. The initial conditions on the crossflow velocities were also modeled simply
and were set equal to zero.

The pressure distribution was chosen to be uniform at the free-stream level since
an unmatched static pressure would undoubtedly produce shocks. These were not con-
sciously sought as part of the problem, and the initial conditions were set to try to avoid
their generation. The streamwise velocity and temperature levels were computed by
assuming constant total temperature in the jet and free stream and specifying the jet and
free-stream Mach numbers.

The free jet problem was expected to encounter few boundary condition troubles due
to the avoidance of all u = 0 boundary conditions. The conditions placed on the variables
were symmetry with no crossflow on the axes of-the jet and consistent free-stream con-
ditions. Difficulties encountered with the application of these conditions are discussed in
the next section.

RESULTS AND DISCUSSION

A standard test case was chosen to check the numerical procedure: the free-
stream Mach number was set equal to 5.0; the jet Mach number at the initial station was
7.5. The reference length was set equal to the minimum initial orifice'width of a
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1 x 1 square jet. . The Reynolds number based on this reference length was set equal to
1()3, and the Prandtl number was set equal to 1.

Effect of Initial Conditions -.:,-

The initial behavior (small x) for all cases computed regardless of the grid config-
uration or boundary conditions applied was essentially the same. The discontinuous
velocity and temperature profiles were smoothed out by the diffusive terms, but the con-
tinuity equation reacted to these discontinuities differently. The initial and subsequent
u, T, and p profiles are shown qualitatively in figure 4. Referring to the figure, in
the region below the initial discontinuity, ux < 0 and Tx > 0, and above, ux > 0 arid
Tx < 0. The x-gradients in the continuity equation appear as follows:

fS-^U^y and Z gradients)--* fE (18)

Above the original discontinuity then, px < 0, and below, px > 0, neglecting the y- and
z-gradients which are smaller here than the x-gradients. Hence, the pressure develops
a blip around the initial discontinuity (see fig. 4) which persists for some distance before
the profiles lose the influence of the initial conditions. This high-pressure-gradient pro-
file causes divergence of the normal velocities about the initial breakpoint until the
entrainment-induced boundary-layer-like velocities away from the jet axis are established.
Eventually the pressure profiles smooth out to the expected constant case, but since the
continuity equation is hyperbolic and contains no damping, ripples in the pressure profile
of 0.2 percent of the free stream are commonplace. However, this initial behavior is of
no concern, except in its influence on the downstream results, since the parabolic approx-
imation .is not valid in this region of very high x-gradients.

Since the pressure is expected to be approximately constant in the developed jet, an
attempt to artificially drive the pressure to its constant value more quickly was made.
An artificial diffusion term was introduced into the continuity equation in the hope of
quickly smoothing the pressure profile. However, it was found that any introduction of
these terms generated more diffusion in the other variables as well. Only values of an
artificial viscosity larger than the actual flow viscosity had any significant effect and no
improvement was effected by the incorporation of these fictitious terms. Thus, the flow
was permitted to naturally adjust to the initial discontinuity. If this was smoothed ini-
tially over a few grid points, the pressure disturbance was smaller and shorter lived.
Consequently it appears that no difficulties will be encountered if correct initial data are
prescribed from experiments or boundary-layer calculations.
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Problems Associated With Application of Boundary Conditions

The expectation that the elimination of solid walls and stagnant regions would ease
boundary condition difficulties was not realized. The boundaries of the computational
domain were the axes of symmetry of the jet and the point in the free stream considered
to approximate infinity. The conditions to be applied at these axes were symmetry of all
quantities except the cross -plane velocity normal to the axis which was equal to zero.
Thus at y = 0, for example, the conditions to be applied were uy = wy = Ty = py = 0
and v = 0. Writing the governing equations differenced on the boundary (see fig. 5) and
using the above relations to eliminate the unknown points outside the domain created by
the central differences resulted in the values of the functions on the boundary be'coming
an additional row of unknowns to the vector W,- in the block tridiagonal system. The
inversion technique thus allowed the simultaneous solution of the boundary values as well
as the interior points, and the resulting solution was smooth for all variables except the
pressure. At the symmetry plane the pressure profile contained a spike (see fig. 6) and
the other unknowns had gradients which differed from zero. This entire difficulty was
eliminated by imposing a quadratic fit for the zero gradient condition onto each of the
variables. The relation

insures a zero gradient with second-order accuracy, which matches the truncation of the
difference scheme, and retains the tridiagonal aspect of the solution matrices.

The "infinity" boundary conditions must be imposed at boundaries in the free
stream. These boundary conditions could be imposed at a suitable distance from' the
symmetry plane if asymptotic conditions could be derived far from the jet. However,
asymptotic conditions are not known for the three-dimensional jet, and even if they were,
the question arises as to a suitable distance at which they could be applied. Treatment
of these boundary conditions can be classified into two groups: alterations in the actual
conditions imposed at the last grid point and, concurrent with these, changes in the grid
size. ' -:: . -• -

At first, all variables were specified at their free-stream values; that is,
u = T = p = 1 and v = w = 0 at the last grid point in the domain with a uniform grid.
The calculation proceeded smoothly, but after the usual jet crossflow velocity established
itself, a sharp, one -grid-width gradient developed at the outer edge of the computational
domain due to the difference between the negative entrainment velocity and the imposed
zero value. (See fig. 7.) , To alleviate this condition, an expanding nonuniform grid was
used in place of the uniform one. Where the uniform 41 x 41 grid had y = z = 4 as the
last grid point, the nonuniform grid using the same number of points allowed the edge to
be displaced to y = z = 17.5, after remaining uniform to y = z = 1. This resulted.in a
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delay in the appearance of this boundary gradient until the solution marched further
downstream; however, it did not eliminate the problem.

The expanding jet both deflects the crossflow away from the jet axes and entrains-
fluid from the free stream. An interaction between the jet and variables such as v, w,
and possibly p is quite likely to be present, and consequently, the specification of values
for these-quantities at some finite near point would be of doubtful validity. Instead, the
equations should determine the necessary boundary effects. To do this, a quadratic

. extrapolation consistent with the second-order differencing was imposed on v, w, and
p by using both the uniform and nonuniform grids. The pressure solution quickly deterio-
rated and the cause was traced to the lack of actual specification of a pressure level.
With zero gradient conditions on the axes and extrapolation at the outer edge, no fixed
pressure value is specified. Hence, the extrapolation was limited to the crossflow veloc-
ities, which proved more successful, and the x-marching proceeded to a distance of
approximately 20 jet widths. However, difficulties again occurred at the outer edge of
the domain as shown in figure 8. The expected crossflow velocities appeared and the
extrapolation did not affect the profiles. But, as the jet proceeds downstream, it-grows
and the zero velocity point of the crossflow moves out from the axes. Eventually, as
shown in figure 8, this point moved completely out of the computational domain, leaving
only outflow from the centerline which is not characteristic of a jet.

Until this point was reached, the development of the profiles showed the correct,
trend for the streamwise velocity (see fig. 9) but, as later calculations Indicated, the
greatest x-distance achieved was well ahead of the end of the jet core region, even if the
nonunif orm grid was used. For the square jet initial profile, all the .variables were com-
puted symmetrically about the jet axis, and the pressure became uniform to within 0.2 per-
cent of the free-stream value. • " L.

All these difficulties with edge conditions arise due to the growth of the jet with x
when it.is computed by using the unsealed, spatial coordinates. To overcome this prob-
lem area a transformation was introduced in the Y-Z plane to contain the jet totally
within the computational domain. '

Transformation of Coordinates

.The objective in transforming the coordinates is to aid in the imposition of "infinity"
boundary conditions. The uncertainty in these.conditions can be overcome only if the
exact free-stream conditions can be imposed. To enable this to be accomplished, the
point at infinity must be mapped to a finite point in the transformed space. One of the
simpler transformations by which this can be accomplished is

(20a)
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^ ~ i + BZ ;

which maps zero onto zero and infinity in the physical plane onto unity in the 77-{
With equations (20) the governing equations are as follows (with | * x) :

(20b)

plane.

+. [pv + 2Aji(l - 77)] A(l - 77)% + [pw + 2B|Li(l - ?)]B(i -

lJA2(l-r,)4(M B2(l -

Pt
*

(21)

fpv + 1 AM(! - 77)JA(1 - 77)% + [pw

A2(1 -

(22)

pv

AB(1 - (23)

r 2u , xipuTt + pv + ̂ *— A(l - 77)
[ NPr J

pw

vA(l - wB(l - B2(l -

AB(1 -

w??2 + 4 B
2(l .. C)4 4

(24)
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up £ - puT^.+.pu^ + A(l - Tj)^ - pvT^ + pv^) + B(l - 0(wp ? - pwT^ + pw^) = 0 (25)

These equations were cast in finite difference form and solved numerically by using the '*
same ADI method, linearization scheme, and block tridiagonal solution algorithm :as pre- :

viously discussed. The boundary conditions u = T = p = 1 and v = w = 0 are imposed
at 77 = 1 or C = 1, corresponding to infinity in the untransformed plane. A coarse
21 x 21 equally spaced mesh was used on the unit square in the 17 -£ plane to reduce the
core storage to more acceptable levels (6 3000g) for computation.

Results Computed in Transformed Plane

Cases comparable to the ones calculated on the untransformed variables were com-
puted successfully for a variety of initial geometries with no difficulty. The loss of
entrainment velocities never occurred, confirming the usefulness of the transformation.

The first test case was a square jet with unit sides. The streamwise centerline
velocity decay of this jet is presented in figure 10. After a lengthy core, region the cen-
terline velocity quickly decays according to the laminar relation for axisymmetric jets
x~l (ref. 1). Thus, although the equations compute the flow as if it. were truly three-
dimensional, the axisymmetry is reproduced. Another square jet was computed to test
the transformation. A large jet with sides of length equal to four was formed by taking .
unequal scalings of y and z. That is, five points in £.. sufficed to give z = 2 (half
the jet width), while 11 points in f] were necessary to give the equivalent y = 2. The
centerline decay for this case is also shown in figure 10. After a much longer core than
the 1 x 1 jet (since the initial shear layer is fpur times farther from the axis), this con-
figuration also very rapidly begins to decay along the axisymmetric curve. In fact, if the
1 x 1 curve is displaced to the right by the difference of core lengths, the decay curves
coincide.

The three-dimensional capabilities of the method were tested on rectangular jets of
varying aspect ratios. A rectangular 2 x 1 jet gave results for velocity decay shown in
figure 10. The initial core region was of the same length as the 1 x 1 square jet.
However, the decay was slower than the 1 x 1 jet, and in fact there was a region where
the two-dimensional laminar jet decay x"1/^ described the flow. Eventually though,
the decay increased and approached the axisymmetric behavior seen before with slope
x-1. Only this far -field behavior could be described by an axisymmetric boundary -layer
analysis, whereas the length to its asymptotic decay could not.

A rectangular 4 x 1 jet is more two-dimensional than either of the previous cases,
as indicated by its decay. (See fig. 10.) After the initial core length, characteristic of
the distance needed for disturbances one width away from the centerline to reach the axis,
the decay curve obviously follows the two-dimensional slope for a greater distance down-
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stream to about x = 500 (see fig. 10) where it also gradually starts to approach the
axisymmetric curve. The length x = 500 is not too surprising, for this is the core dis-
tance of the 4x4 square jet, the distance needed for disturbances four widths away to
reach tiie axis. The even higher aspect ratio 8 x 1 jet continued the established trend
and is also shown in figure 10.

; Finally,.-note the advantage gained through the use of the transformation. Prior to
its use, by using a greatly expanding mesh in the untransformed plane with extrapolation
at the last mesh point, complete loss of entrainment took place at approximately x = 20.
Even at this point the accuracy of the solution is questionable, and this is not even half-
way to the end of the core region as computed by using the transformation and depicted
in figure 10.

CONCLUDING REMARKS

The parabolic-elliptic Navier-Stokes equations have been shown to be a viable '
method for computation of three-dimensional supersonic jet flows. The difficulties asso-
ciated with the unbounded domain of the jet can be eliminated by incorporating a transform
mation into the equations so that the points of infinity in the cross plane are mapped^to a
finite value at the transformed plane. -

Although the character of the computed flow can be predominantly axisymmetric in'
the case of the square jet or approach a two-dimensional limit, as is the case for the
8X1 rectangular jet, no prior assumptions to this effect are required. The solution
computes the particular flow under investigation as though it were three-dimensional,
allowing the initial geometry of the prescribed jet to determine the ultimate nature of
the solution.

The present calculations have been for laminar jets; however, jet flows are gener-
ally turbulent. Thus, even if some simpler method could be used instead of the present
integration scheme to recover the gross characteristic of the laminar flow, the inclusion
of turbulence modeling in the fully elliptic crossplane requires numerical treatment.

" ' . ' " " •'"•t

A subsonic analog of the parabolic-elliptic Navier-Stokes equations, where the
streamwise pressure gradient is correctly accounted for, is currently being investigated
so that the more advanced state of the higher order incompressible turbulence models can
be drawn upon for inclusion into the governing equations. If this proves successful, then
the supersonic equations will be used as a means to test various modeling procedures for
compressible turbulent flows.
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(a) Upper surface blowing. (b) F-15 with proposed rectangular nozzle.

Figure 1.- Examples of three-dimensional jets in aerodynamic flows.

(i) (*)
Figure 2.- The ADI procedure: first step implicit in z, explicit in y; second step

implicit in y, explicit in z.

561



Jet source
f

(engine) \

Figure 3.- Conceptual model of three-dimensional supersonic jet flow.

•U

(a) Profiles at x = 0.

—T
(b) Profiles downstream of initial plane.

Figure 4.- Initial x-behavior of solution prof lies.
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Figure 5. - Differencing used on a boundary.

Figure 6.- Qualitative pressure behavior
attributed to boundary differencing.
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Figure 7.- Crossflow prof lies when
free-stream conditions imposed:
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Figure 8. - Crossflow profiles when free-stream conditions extrapolated.
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Figure 9.- Computed velocity prof lies at various stations.
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Figure 10.- Centerline velocity decay for three-dimensional jets.
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