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SUMMARY

. Three-dimensional unsteady transonic flow through an axial turbomachine stage is
described in terms of a pair of two-dimensional formulations pertaining to orthogonal
surfaces, namely, a blade-to-blade surface and a hub-to-casing surface. The resulting
systems of nonlinear, inviscid, compressible equations of motion are solved by an expli-
cit finite -difference technique. Separate computer programs have been constructed for
each formulation. The blade-to-blade program includes the periodic interaction between
rotor and stator blade rows. Treatment of the boundary conditions and of the blade slip-
stream motion by a characteristic type procedure is discussed in detail. Harmonic anal-
ysis of the acoustic far field produced by the blade row interaction, including an arbitrary
initial transient, is outlined in an appendix. Results from the blade-to-blade program are
compared with experimental measurements of the rotating pressure field at the tip of a
high-speed fan. The hub-to-casing program determines circumferentially averaged flow
properties on a meridional plane. . Blade row interactions are neglected in this formula-
tion, but the force distributions over the entire blade surface for both the rotor and stator
are obtained. Results from the hub-to-casing program are compared with a relaxation
method solution for a subsonic rotor. Results are also presented for a quiet fan stage
designed by the National Aeronautics and Space Administration, which includes transonic
flow in both the rotor and stator and a normal shock in the stator. '

INTRODUCTION

Flow through a high-speed fan or compressor is highly three-dimensional and can
include complex shock wave systems, In addition, flow through a complete stage consist- -
ing of a rotor and stator or a fan preceded by inlet guide vanes is unsteady even in the
rotating frame of reference. Effects of viscosity and turbulence are known to be signifi-
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cant; in fact, the turbulent wakes may be the predominant source of aerodynamic inter- -
action between the rotating and stationary blade.rows and responsible for the associated
noise. Vortex filaments are known to stream from the rotor tips and undoubtedly inter-
act with the wall boundary layer. Sufficiently far downstream, turbulence generated by B
the first blade row may encompass the entire flow.. Calculation of transomc flow. f1e1d
solutions in high-speed turbomachinery stages is clearly one of the most formldable
challenges to present-day capabilities in computational aerodynamics.

A traditional approach to solution of this complex problem has been taken
Description of the inviscid flow field is addressed first, boundary layer and turbulence
effects being. superimposed as small perturbatlons The basic system of equatlons whlch
is solved numerically consists of the complete nonlinear equations of motlon for an mv1s-
cid compressmle gas:
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p .. .density

_ The only essential sunphflcatmns introduced pertain to reduction of the spatial
dimensions of the problem from 3 to 2.° Solution of the full three -dimensional problem is
reduced toa pair of two-dimensional solutions on orthogonal surfaces. A separate pro-
gram tailored to the particular aspects of each formulation has been developed ‘Both
computer programs which will be discussed herein are intended for analysis of a com-
plete stage, that 1s, rotor and stator, although an isolated blade row can also be treated.

A harmomc type analysis of the acoustic far field due to blade row mteractmns has
also been developed This analysis provides a direct coupling between the numerical”
near field solution and the acoustic far field, with a particular view toward characteriz-:
ing the acoustic far field. This aspect of the flow model will be only briefly outlined A
herein, but a complete description is given in reference 1. The boundary-layer and wake
representations utilize standard integral methods and it is assumed that the boundary
layer and wake are quasi-steady. The reader is again referred to reference 1 for a com-
plete description.

SYMBOLS

Ap,Bp,Cp,. . . Fourier coefficients

a- " speed of sound
| b’ stream sheet thickness or blade thickness

t__ | +. centerline

c chord )

E total internal energy s
e internal energy

H total enthalpy

h " enthalpy 5
M Mach nurrtber
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Vr

vz

590

meridional distance along a blade-to-blade stream surface

s . .
el 1. O

number of blades in ith row

blade -to-blade di sténce

-2

boundary conditions at interface of numerical near-field and acoustic far-

field solutions
pressure

gas constant

radial distance from axis of rotation

entrvopy

distance along the stream path -
temperature

time

a reference velocity -

meridional component of velocity. . .

velocity compdnent parallel to slipstream or blade surface .
velocity vector
circumferential component of velocity

veldcity component normal to slipstream or bla,vde surface. .

radial component of velocity; also circumferential velocity component in

rotating coordinate system

‘axial velocity component



v - é'ir'cumfei'ential'\'relocity cOmpdnent

3 ' meridional distance along a blade-to-blade stream surface

X distance along slipstream.or blade surface )

y ::(:i'rc-:'\;nﬁngéntia‘l &istaﬂce‘ .

iA , _diéta@c; nq_;-mal to slipstrean; ‘or blade éuﬂapé B

z é;:ial ;bordinate

an,Bn acoustic propagation coefficient

v " ratio of épecific heats

6 : circu_mf’grential angle

01,92 blade surface coordinates | = S
P " density | o R

¢ . . angie betwe.en'slipstream orblad; surf'ace' a'nzii meﬂdion'aliﬁlzihél

¥ ratio vof ‘ m;ss flow to tot'alf,nié:gs' flow o

e ~ angular speed of rotor

w | . vorticity; aléo frequéncy . . e

Subscripts: P | e

o initial or reference condition |

* - 7" reference condition ~ .- - - L e s

© free stream
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A circumAflexA (%) over a symbol dénotes an average value. A bar over a symbol
denotes vector quantities except in appendix where it denotes time to frequency transform.

PRI

" BLADE-TO-BLADE ANALYSIS SR

In the blade -to-blade formulation the previously stated equations of motion are
expressed in a curvilinear coordinate system alined on an axisymmetric stream surface
as shown in figure 1. This stream surface is considered to have small but finite thick-
ness b(z) and variable mean radius from the axis of rotation r(z). The velocity com-
ponent normal to the stream surface is neglected; as a result, a two -dimensional approx-
imation to the flow field is produced. (See refs. 2 and 3.) When the m,8 coordinates -
‘are transformed toa rotatmg system by - s - :

y =r(6 - Qt) A o ; (x= Cpnstant) . (8)
and the circumferential velocity compbnent is.transformed by .- .~

vp=v-Qr - | . ' o )|

then the following system of governing equations result:
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. 9pEp 3 _(ov. puly drb dr e . :
R sy PrHn) = =5t - pu & (@r + vy) L
‘where the relative total energy and total enthalpy are defined by

Hp=H - Qrv R - e

S P c :
The terms on the right hand side of the equations result from' the variations in érdss'-
sectional area and radius of the stream surface, which are intended to account for the
_effects of vamatlons in hub and casing radii. The terms on the left-hand side of the

equations correspond to the familiar.set of two- d}men51ona1 unsteady e_quatlons of motion
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of an inviscid compressible gas. Note that the relative total enthalpy is not the same as
_ the total enthalpy defined on the bas1s of velocity components in the rotatmg frame )
Numerical solution of this system of equations at interior grid pomts is accomphshed by
the MacCormack algorithm (ref. 4). Systematic rotation of the order in which the non-
centered differences are evaluated is employed to minimize any bias in the solution due
to the alternating directions of the noncentered differences. No artificial damping or
stabilization is used. ‘ o

-~ As shown in figure 1, the computational domain is divided into a maximum of seven
segments; not all of which need be included in every case. The grid network extends
axially:from an inlet station to a discharge station and circumferentially across one _
blade -to-blade passage. -The inlet station is located either 1 axial chord length upstream
of the first blade row, in which case domain 1 is deleted,.or an arbitrary distance
upstream exceeding 1 chord length. Placement of the discharge station can be selected
in the same manner as that employed for the inlet station. Domains 2 to 6 are each lin-
early mapped into a unit square which is spanned by a rectangular grid network. In
domains 1 and 7 a linear stretching of the axial coordinate is used to map these domains
into unit squares. The axial grid spacing in domains 1, 4, and 7 is determined by the
locations of the axial boundaries of.these domains. The lateral boundaries of domains 1
and 2 lie on extensions of the mean camber line. The lateral boundaries ‘of domains 3.. .-
ahd 5 lie on the blade surfaces. The instantaneous locations of the blade slipstreams
form the boundaries of domains 4, 6, and 7. Domains 1 to 4 are attached to the first
blade row and domains 5 to 7 are attached to the second blade row either of which may be
selected as the rotating row. It is assumed that the number of blades in the second row -
equals or exceeds the number in the first row. '

‘It is ' emphasized that a periodic solution due to the aerodynamic interaction of the
rotatmg and stationary blades is anticipated. The formulation is thus a numerical coun-
terpart of the problem for which Kemp and Sears (ref. 5) obtamed an analytic solution
pertaimng to thin, slightly cambered bladés of low solidity in an lncompre351ble flow.
Linearized solutions have more recently been obtained for compressible flows, but the
authors are not aware of any other attempt to develop nonlinear solutions for.the periodic
blade -row interaction problem at transonic or supersonic conditions

In connection with the periodicity of the subject problem two main pomts of depar-
ture from other numerical solutions for transonic airfoils or cascades should be recog-
nized.  First, the slipstreams.are moving surfaces of discontinuity across which jumps
in tangential component velocity and in total pressure can occur, Only static pressure
and the component of velocity normal to the surface must be contmuous It should be
noted that the - jumps’in tangential velocxty across the slipstreams are related to'the -
unsteady variations in lift of the blades and therefore cannot be obtained from the con-
gervation form of the equetions of motion through a limiting process as'in the case of -
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shock waves." -Tréatment‘ of the slipstreams as surfaces of discontinuity in the present . :.
model is therefore warranted for two reasons: . It allows attainment of an accurate peri- :
odic solution without requiring a very large grid point density to approximate the slip-
stream discontinuities, and tracking of the slipstreams is necessary to determine the
'trajecto:ri’es of the viscous wakes which diffuse outward from the inviscid slipstreams,
The second point is that in the case of an unequal number of blades in the two rows, the -
angular perlod of the circumferential variations in the flow field is not the width of a
blade -to-blade passage but it is the circumference divided by the difference between the
number .of blades in the rotor and stator, Furthermore the flow pattern rotates with an
angular veloc1ty Wthh in general is a multiplé of the wheel speed. Numerical repre--
sentation of this perlodlclty condition pertaining to the lateral boundary points of the grld
network, as well as to those points along the interface between domains 4 and 5, is "'~
accomplished by a cyclic procedure which is discussed later.

BOUNDARY CONDITIONS

" The calculation of boundary points and indeed the exposition of proper boundary .
conditions .is facilitated by recasting the equations in‘the form of characteristic compati- ,
bility relations pertaining to'a quasi one-dimensional unsteady wave system (as suggested
by Moretti and Abbett (ref. 6) and Serra (ref. 7)). = Although actual numerical implementa-
tion of the characteristic formulation is far more complex than the finite-difference pro-.
cedure used in‘the interior points and can possess certain drawbacks, such as inconsis-

: tency with the interior point solutlon it is nevertheless adopted here for the partlcular .
; advantages it offers w1th respect to the shpstream 1nlet and dlscharge point calculatlons.

Consider first the inlet station sketched in fxg'ure 2, Asis well known, the momen-
tum and -energy-equations can be rewritten in the form: = e e

%TS= 0 ' .or: S =’~éonetant on‘.,éTx; % %At - . T . ' (16) '
_D(w/p) g=" S Ax _Ay _ R ;. :
. Dt 0 or p Constant on £ vy " At . R (17),

By assummg that no flow reversal occurs at the inlet station, the values of the entropy
and ratio of vorticity to density at the inlet station are, therefore, solely properties of the
incoming flow and may be specified a priori; both the entropy and vorticity of the incom-
'mg.flow are assumed to be zero. Three options have been considered with regard to '
physical interpretation of the inlet boundary conditions. First, if the inlet station repre-
sents an open end of a finite length duct, _the static pressure can be specified as

.p=p_°° e : - - (18a) .
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Second; if. it is an arbitrary station in a duct of infinite.length, the Riemann'invariant on
the- downstream travelmg wave -can be specified as T

IS AN

Spey _3".;- '.-lﬂ‘hu _ _“i+uw S R . P - (18b)

. RIS IS WP
Use.of this. relatlonsh1p 1mp11es that the outward travehng waves are one -dlmenswnal

(i.e., either:planes.or helices). As a third optlon the numerlcal solution can e matched
to the acoustlc far-field analys1s at the inlet statxon, in which case all acoustlc modes

are properly accounted for. This procedure is outlined in an appendlx In any of these B
cases.the, solutlon of the inlet boundary points is. completed by first usmg a compatiblllty
relatlon on the, upstream runmng wave which orlgmates within the computatlonal domam
at point C in flgure 2; that is,

a - au aalogp .o avp dlogrb"
7Alogp-Au-[(x./r-vo)(ay S ay) aay ‘—ua o JAt

- fon Ax. Ay’ -
(on Ar-u-2 and at = vo) -(19)
and second by solvmg the following angular momentum equatlon whlch only mvolves
spatial derivatives of the dependent variables in the mrcumferentlal direction, by the
MacCormack finite -difference algorithm:

| lavr__ du r, 19 dr o e

Bt - <8y Vr 3y 3y +pay+u9dx S A R (20)_

Thls characterlstlc compatlblhty relatlon .may be mterpreted as pertammg to the pro;ec- |
tlon of the true characteristic conoid on a reference plane which is alined norma.l to the
inlet station and translates in the circumferential direction with an'arbltrary velocity v, -
for example, vy from the previous time step. The acoustic far-field analysis can be
used to.replace equation (18a) or (18b)

A similar procedure is employed at the dlscharge boundary pomts but here the
entropy and vorticity are determined by tracing a particle path from within the computa-
tional domain (point B in fig. 2) to the boundary point. The system of equations pertain-
ingtoa dlscharge boundary point are stated below for the case of either a finite length
duct or an infxmte duct :

R T )

y-1 Y -1

’ *
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Use of -the acoustic model would replace equation (21a) or (21b)

S=S* ‘ ' V “ (j
Y 0 ' (on Ax =43 - at) T (22)
F=pr -

%Aibg’p+4u= [;(Vr-vo)(ln aalogp) A2 ua dlogrb:l .

8y ¥ 9y dy dx
fon Ax - Ay Y
' ._(on M=u+a and Xy vo)_ o (23),,
ov_ [ Bu, . 1ap odr) . ;
ot (u 5y + vr Aay +5 ay +- 2pu X+u dx), ) 4 (34)

The boundary condition at the blade surface pbints'is simply‘vanié.h‘mg of the com-
ponent of velocity normal to the surface. At the trailing edge the Kutta condition is sat-
isfied by requiring the pressure to be continuous and the velocity component normal to .
the mean of the camber line and slipstream to be zero. On the slipstream the pressure
and normal component of the velocity must.be continuous. - Imiplementation of these condi-
tions is facilitated by recasting the equations into a characteristic form Similar to that -
described; however, in this case the reference planes are normal to the surface and
translate in the streamwise direction, as shown in figure 3. Combination of the continu-
ity equation and normal momentum equation results in the followmg pair of compatlbllity
relations: )

aAd 1pgp:t,y'Ai'('r',.= (ani-sz)At _ ém %tz;ir i..a .".éridmz_feﬁo)_ (2:521‘
where R - . L ' L
Q1=-(u-uo)-%+2—;+7u—gi—rb | o T (28) -
*?Qz=-(uj‘-uo)3,%'“9_°08¢%] R

T
-

The energy equation is stated as

L

DS_ o N
o .
A (on AX=T At and Aj=vAt) .  (28)

S = Constant
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-and the streamwise momentum equatio'n"is solved in the LaGrangian form"

\-Dg_ a2alogp uvrgdrv e L @)
Dt 7 s a R

where q2 -\u2 v2 and ds/q = dX/T = dy/V = dt. T

It is pomted out that the form of the compatlblhty relatlons glven by equatlon (2 5)
provides an algebraic solution for the quantities which are continuous across the blade.

shpstream namely, the pressure and normal velocity. Thus, the boundary conditions on
the blade slipstream can be satisfied without iteration, other than that _necessary to locate
the characteristic geometrlcally (pomts A and D in fig. 3) by successive approxnmatlons

. of which two are usually sufficient. However, at the trallmg edge an- 1teratlon is requlred
to determine the shpstream angle whlch satlsfles the Kutta condltxon .

"~The overall scheme for 1mposmg the boundary -conditions along the blade surface

. and slipstream points is - shown schematically in figure 4. The time axis projects verti-: -

4, cally out of the page in this.figure. The dashed lines represent-the intersections of the -
translating reference planes with the axisymmet_ric stream surface and the intersections
of the:particle paths with the stream surface during a:time step At. -« - B

]

PERIODICITY CONDITION

‘ Illustratlon of the nature of the cychc procedure dev1sed to enforce the perlodlcxty
- of the solution can best be accomphshed with respect to the followmg s1mphf1ed conflgu-
ration. Consxder flrst a stage havmg three rotor blades and three stator blades ThlS -

conflguratlon is shown in ﬁgure 5 in both axial and cascade prOJectlons At tlme to all’ e

rotor and stator blades are almed whereas at t1me to. + At the rotor has moved through
a fraction of a revolutlon and none of the blades are now. alined. It is clear in thlS case

. that the geometrlc conditions which determine the flow through the stage are 1dentical in
each blade-to-blade passage at any time. 1 In this case.the solution along an exterlor grld
row 0 can be equated to that along the interior grld lme B and 51m11arly that along
exterior line @ canbe equated to that along mterzor line ¥ at any mstant Cons1der ’
" now the case with three blades in the stator and four blades in the rotor as shown in fxg- '
ure 6. Attime to rotor blade 2 is alined with stator blade b, whereas at tlme to + At
rotor blade 3 is alined with blade c. In this case the geometric condltlons pertammg to
the passage between blades a and b are obviously dlfferent from those for the passage
between blades 'b and ¢ atanytime. However, it may be noted that;those pertalmng )
to paSsage bec at tg + At are precisely the same ‘as. those which pert;ain to passage ab

11t is assumed, of course, that the boundary conditions imposed at the inlet and dis-
charge stations are spatlally umform so that the blade geometry provides the only scale
for circumferential variations.
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at the previous time to. Therefore, the flow, conditions along exterior grid line § at
time to + At can be equated to those along mterior grid line B at the earlier tlme to.
However in this case those along exterior grid lme a attime to+ At cannot/be
equated to those occurring in passage ab at time to, but must be equated to those

occurring along line y atan earlier time. Thus a phase Shlft is mtroduced in applica-

-tion of the. lateral boundary conditions. The necessary boundary mformation /ls acquired

during the passage of time, and therefore the deswed periodiclty is attamed asymptotl-

cally in time. . . - : ' o . : /

 NUMERICAL ExAMP_LE: BLADE,TQ-BLADE PROGRAM },;i
: . :
Results from the blade-to- blade program have been compared w1th data for a hlgh-
speed (1500-fps) fan tip section for which experimental data are reported in reference 8

n)

The casing wall was instrumented with an array of fast response pressure gages from

which a contour plot of the rotating pressure field around the tip section was recon-
structed “This fan was preceded by a set of guide vanes and followed by a row of stators.

However, the unsteady interaction was neglected in this case and only the rotor was con-
sidered. The grid network was very coarse and consisted of 9 grid rows in the circum--~

ferential direction and 11 in the axial direction in éach of 3 domains, that 1s, a total of o

- 297 grid pomts

The experimental pressure contour plot is reproduced on the left-hand side of fig-
ure 7. The data mdlcate the presence of an oblique shock off the leadmg edge of the
upper blade which reflects off the lower blade and reimpinges on the upper blade near the
trailing edge A lambda ‘() type shock is apparently formed on the aft portion of the
upper blade because of the boundary layer separation. The 1sobars constructed from the

QT

numerical solutions are shown on the right-hand side of ‘this figure. The numerical * * ' *

‘results exhibit qualitatively similar behavior, although boundary-layer effects have not
been included and the grid is admittedly very coarse. Although a qualitative correlation
is apparent with respect to the main features of the flow field, a quantitative comparison
is somewhat difficult. Therefore, the experimental isobars have been used to construct
pressure distribu’_tions'along the suction and compression surfaces of the blade and along
a mid-channel line. The accuracy of the data obtained in this manner may be somewhat
suspect, but the agreement between the data and the numerical soiution shown in figure 8
is considered to be very encouragmg .

Numerical solutions for mteracting blade rows have thus far been limited to 1dea.l-
ized test case configurations for which no comparisons with other solutions or experi-

mental data are available. However, results for the full stage consisting of fan and sta- B

tor tip sections from reference 8 are included in reference 1.
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. HUB-'f‘o-CAsmG ANALYSIS

Attentlon is now shifted to the second program, which considers a hub-to- casmg

~stream surface The coordinate system and grid network is illustrated in fxg-ure 9. The
finite -difference grid lies on a meridional plane extending from hub to casing and from an”
inlet station to a discharge station. Circumferential variations are removed in this case’
by integratlon of the governing equatlons with respect to 6 from one blade to the next
and defining average properties over this angular interval. The angular velocity compo- h

nent and angular momentum equation are retained because of the presence of a pressure

force exerted by the blades. The effects of blockage of the flow area due to the blade
thickness and boundary-layer dlsplacement thickness are included. Multiple blade rows
can bé considered but the effects of periodic interactions betweén the blade rows are .
necessarlly neglected because of mtegratmn of the equatlons ‘with respect to the angular
variable,

. Im this analysis the basic system of equatlons given by equations (1) to (6) are stated
in cylindrical coordinates, multiplied by dd and integrated from 61(r,z) to 63(r, z)
which are the surface coordinates of two adjacent blades, as 1nd1cated in flgure 9. Out- 4 '
side a blade row, the integration interval is taken as 27/Nj. The blade-to-blade passage ‘
wldth 18 defined by

(Within_a blade row) )'

_ _ (30)"
(Outside a blade row) 2
Ci-rcumf_erentially averaged values of the dependent variables are defined“by | -+
p = n-IN; 2 pr do o : - (31)
91 . . - s
PVy = n"INj ; prv, do . (32)

It is assumed that the blades are thin and sharp and hence the local blade surface -
angles can be replaced by the mean camber line angles: R

A m—m—— | am——

39_1_;'392_89 . , : o C. (33)
oz 9z ZlCamber line : :
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~—-.—

T|Camber line

Furthermore, differences between root-mean- square (rms) values and mean squared
values are neglected:

. ,I‘A’Zz - ;’zzl << a2 | - I S . _‘ (35)

[o575 - 9, << a2 R o © (36)

{4
[N

The following system of equations is thereby obtained?2:

a(pn) 8 (p nv )+—(anr) =0 _' | | ' 'ﬂ . (37)
Y ;.'a 2) . 8 (oo = 9P 26 -

a—t(QnVZ) fgz-(pnvZ ) + ﬁ(pr,Wr). =-n2+ap (r 'ai) . o o 38),

pnv S

gaf(pnvr) + %(pnvrvz) + air(pnvrz) = -n -g—g + —9— + Ap( 39) ) | (39)'

9 5 ' 2 _ | S |

Et-(Pnrve) + 3E(pnrvevz) + 8—r(pnrv9vr) = -r Ap. - (40)

' igat-(onE)} -(%(puvzlll fJ%(puv.rH) = -rQ _Ap ' S (41) )
where : - . L : o i
Ap(r,z) = p(r,z,83) - p(r,z,01) S (42)

Thus the variable n represents the circumferential distance around the annulus, reduced
by the cumulative blockage due to all blades, at fixed r and z. The term Ap repre-
sents the cumulative pressure differential across the blades, that is, the pressure differ -
ential across each blade times the number of blades. The terms involving Ap in the
momentum equations represent the three components of the pressure force exerted by the
blades. The term on the right-hand side of the energy equation is the work performed by
the rotating blade row, ' - ‘

2The superscript notation to denote average quantities is dropped in the following -
discussion. A
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Within a blade row the veloclty vector is assumed to remam tangent to the mean
camber surface at all times:

" vg = - Or + vz( 39) + vr(r g—g) ) ' . | o (43)

The tangency condition is used within the blade rows to determine the arigulaxj velocity
component, and the blade pressure differential Ap is obtained from the angular momen-
tum equation. Outside the blade rows Ap =0 and the angular momentum equatlon is
used to determine the angular component of velocity.

Representation of the inlet and discharge boundary conditions and numerical solu-
tion of these boundary points follows the general approach described in connection with
the blade-to-blade program. However, since a steady, rather than periodic, solution is
sought in this case, somewhat less care need be taken in modeling a physically correct
boundary condition. In particular, the "infinite duct'" condition discussed previously has
been replaced in this case by prescription of the total pressure at the inlet station. Sim-
ilarly, prescription of the components vorticity of the incoming flow can be replaced by
direct statement of the flow angles or of the radial and circumferential velocity compo-
nents. At the discharge boundary the static pressure is specified. ‘Solution at the bound-
ary points along the hub and casing surfaces is accomplished by restating equations (37)
to (41) in a body-oriented coordinate system similar to.that used to derive equations (25)
to (29). In this case, the boundary condition ¥ =0 replaces the normal momentum
equation. The same finite-difference procedure as used at the interior points is used to
accomplish the solution of the remaining members of the system of equations. Noncen-
tered differences are used for the derivatives normal to the walls, which only involve
gradients of the normal velocity component. The accuracy of this procedure: has been
found to compare very well with that of the interior point’ solutlon with considerable less
complexity than the characteristic procedure used-in the blade -to-blade program.

NUMERICAL EXAMPLES: HUB-TO-CASING PROGRAM

The present hub-to-casing program is analogdous in many respects to the relaxation
method program developed by Katsanis and McNally at NASA Lewis Research Center.
Their program MERIDL (ref. 9) solves the stream function equation on a: meridional plane
through a blade row for steady subsonic conditions by use of a finite -difference method.
The comparison between the present program and their program has been carried out for
-'a case in which their solution should be very accurate. The rotor configuration selected
corresponds to the test case used by Katsanis and McNally in reference 9.

The relative swirl angle is shown in figure 10. This angle is defined as that
between the velocity vector and the projection of the velocity vector on a-meridional plane,
measured in a rotating frame of reference. The three curves pertain to the hub surface,
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the tip or casing surface, and a mid-channel surface. Within the blade row the relative
swirl angle along the hub and casing is completely determined by geometric constramts
However, everywhere else it is obtamed from the solution for the three velocity compo-
nents. The agreement between the two programs is’ considered to be quite:satisfactory.

The magmtude of the velocity vector in the rotatmg frame is shown in flgure 11.
The mid- channel values were deleted from thlS figure for clarity. The only 31gn1f1cant
dlfference between the two solutions occurs near the leadmg edge Both programs allow
gr1d columns to cross the leadmg and traxlmg edges in an arbltrary fashlon However
Katsanis and McNally s program accounts for the effects of bluntness of the leadmg edge'_ ’
in some detail whereas the present program assumes that these edges are sharp

Next, a transonic fan istage designed by NASA LeW1s Research Center for the Qulet
Fan Program has been considered. Designated the QF-1 stage it combines:an 1100-fps:
tip speed rotor with a stator having highly "leaned" blades (up to 450 at the tip). A range
of stator positions relative to the rotor location are possible.with this stage; position VI
was selected in this case. The rotor and stator are relatively close in this position, less
than 1 chord length apart. :

'The pressure dlstrlbutlons along the hub and’ casmg surface are shown m flgure 12
and the absolute Mach numbers are dxsplayed in flgure 13. ‘The supersonic region which -
develops in the stator along the hub;" due to the combmatlon of the hub curvature’ and blade .
. thlckness is terminated by a normal shock. This shock is spread over about 4 or 5 grld '
points, or about 25 percent to 30 percent of the 16 grid points which cover the stator '
'axxally in this case. Only 10 grid points cover ‘the ‘rotor tip section; consequently,
shock in the rotor would be difficult to detect with the present grid point den51ty ‘A I‘apld’
'compressxon is ev1dent on the aft portlon of the rotor tip section, which corresponds toa -
reduction in relatlve Mach numbers from 1.12 near the leadmg edge to 0.64 at the: trallmg g
edge. Therefore the rotor-tip compressmn substantlally exceeds the normal- shock - L
compressmn by itself. ‘

“

x

' COMPUTER EXECUTION TIME AND.STORAGE REQUIREMENTS

The blade-to-blade program will fit in small-core memory of a CDC 7600 computer,
that is, about 160K octal words, with a maximum of 1000 grid pomts (not mcludmg the =
exterior pomts required for the boundary pomt calculatlons) exclusive of the. storage ,
requlred for the perlodlc boundary data needed for unequal numbers of blades. In its
present form, disk storage is used for ‘the periodic boundary data, although use of the .
large -core memory would undoubtedly be more efficient. The blade-to-blade program_
requires approximately 2 X 10-4 second per grid point per time step for execution on a
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CDC 7600 computer by usmg the FTN (opt = 2) compiler to generate the bmary code. The’
results presented in figures 7 and 8 required less than 1 minute of executlon time,

The hub-to- casmg program also fits in_ small core memory with a mammum of .
1600 grid points. It requires approximately 4 X 10-4 second per grid point per time
step for execution The additional time relatwe to the blade to-blade program is
believed to be associated with calculation of the blade pressure differential Ap, solution
of an additional momentum equation, and contmuous reevaluation of the maximum permis-
sible time step. (A variable time step is not allowed in the blade-to-blade program '
because of the procedure for storing and retrieving boundary data. ) The subsomc rotor
case discussed in conriection with fig'ures 10 and 11 required’ less than T minuté of exéci-
tion time with a 27-by 17 grid network. The transonic stage results shown infigures 12
and 13 requlred approximately 7 minutes of execution time. - R

CONCLUDING REMARKS

A blade-to-blade formulation and a hub-to-casing formulation have been developed
for analysis of transonic unsteady flow through an axial turbomachine stage and imple-
mented in two computer programs Both employed an explicit finite -difference techmque
for solution at the interior grid points, and a characteristic type procedure at the mlet
and discharge boundaries. The blade -t_o-blade program can treat periodic interactions
between rotating and stationary blade rows, and particular attention has been given to
correct representation of the blade slipstreams and their motion due to unsteady blade
loading. A c_omparison with experimental measurements of the rotating pressure field of .
a high-speed fan tip section is consi'dered to be very encouraging. The computer execu-
tion time for this case was very modest, less than 1 minute on a CDC 7600, and useofa
higher grid point density to improve the numerical accuracy is therefore _practical. ' '

The hub-to-casing program compares favorably with a relaxation time solution for .
a flow condition when the latter should be very accurate. Results have also been obtained
for a quiet fan stage which includes transonic flow in both the rotor and stator and a nor-
mal shock in the stator. The program resolves the shock reasonably well, although a
higher grid point density would probably be beneficial in this case.

These programs offer a substantial improvement in the predictive ' capabilities
available to aerodynamicists involved in désign and evaluation of high-speed turboma-
chinery stages. However, it is clear that a complete description of the three-dimensional,

unsteady, turbulent flow prevailing in such stages w1ll require contmued development of

the computational models.
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APPENDIX
ACOUSTIC FAR-FIELD ANALYSIS

Under the conditions typically prevalent in highly loaded transonic fan or compres-
sor stages, the linearized, small-perturbation approximations to the equations of motion
cannot be expected to be descriptive of the flow in the vicinity of the blades. Thus, '
recourse is made to the numerical solution of the complete nonlinear system of equations
as discussed in connection with the blade-to-blade program. However, sufficiently far
from the blade rows, the amplitude of the flow disturbances will decé.y to acoustic levels
and the linezirized, small-perturbation approximations will be descriptive of the far field.-
. Therefore, an intermediate region in which both analyses are valid should exist at some °
distance from the blades. The inlet and discharge stations of the blade -to-blade compu-:
tational domain can serve as the interfaces between the near-field (numerical) and far- -
field (acoustic) analyses. The present far-field analysis is formulated with respect to an
" infinite duct model, namely, outgoing waves should propagate without reflection. It dif-
‘fers, however, from conventional inlet duct analyses. in that the signal rnay begin with an

arbitrary.trgnsient, associated with the deviation of the assumed-initial data in the near ..,
field from the periodic-solution which is sought as the asymptotic limit in time. There-,

- fore, -the. acoustic analysis must recognize that a transient signal will occur during  , ...
startup and that a simple harmonic time dependence which is the usual basis of mlet ‘duct
acoustics, cannot be assumed. - The analysis should allow the transient to radiate. outward
Wlthout reflection, and should be capable of identifying the attainment of a perlodlc solu-. .
tlon by the growth of discrete harmonic components in the solution.

The inlet and dlscharge stations indicated in fxgure 1.as the axial boundarles of
Adomams 1land 7 (or possibly of domams 2 and 6 if 1 and 7 are deleted) form the axxal
‘boundaries of the acoustic far field. 'However, the lateral boundary should extend over
- that fraction of the circumference which corresponds to the fundamental period of -the .

. stage confxguratxon (that is, an integer number of blade-to-blade passages). This will *
‘require storage-and retrieval of numerical data along this mterface in the same manner
as is performed along the interface between domains 4-and 5 of the. near field. -

As discussed in connéction with the characteristiciprt)cedure used at the inlet and:
‘discharge boundaries, the compatibility relation on the outward running waves (eqs. (19)
and (23)) provide a connection between the combination of pressure and axial velocity on
the ‘boundary points at time t+ At and the known interior point solution at time t. . This
information provides the mechanism for matching the acoustic far-field solution with the -
numerical near-field solution on a point-by-point, step-by-step basis. Since the blades.
‘are capable of producing a vorticity field which will convect downstream, additional infor- -
mation is necessary to define the downstream far field. (Recall that the inlet flow is
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assumed to be irrotational.) If the standard'small-disturbance‘ approximations are
employed, the numerical data to be provided at the inlet consist of

P(y,t)—p Do (U - U) 3 (A1)

p-oo -OO

and at the discharge station

Q(y,t) =_I:);ap°°°2+(u-uoo) o . T (a2)
R(y,)=v | S ‘ (A3)

3 .
where the subscripts denote the reference states at X = oo, Whlch are not necessarnly
the same. Equatlons (A1), (A2), and (A3) form, in effect, the boundary conditions for the
far -field ana_lysw from which the msta.ntaneous values of the pressure perturbatlon and
velocity perturbatlon at the inlet and discharge stations are obtained.

With these preliminaries in hand, attention is now focused on the acoustic far-field
analysis. In the following discussion the subscript ( )o Will be used to denote the refer-
ence conditions for either boundary, that is, x — +w, and all variables without subscript
" will Tefer to perturbations with respect to the reference state, namely, p=p - p, and
u=u - ug. T

Since the present effort is addressed toward a cascade formulation, the governing

_ equations are written in a two-dimensional Cartesian coordinate system. It is noted that
the two-dimensional problem could be described by a solution of the wave equation alone,
were it not for the fact that the time dependent force distribution on the blades is capable
of producing a convected vorticity field (as well as a correspondmg entropy field, which, ’
however, is not relevant to the present problem). It will be seen that the convected vor-
ticity field (chéracteriz'ed-by a solenoidal velocity component) does not contribute to-the
acoustic pressure field by itself, as distinguished from the irrotational component of the
velocity field which is directly coupled with the acoustic pressure. Therefore, the veloc-
ity'perturbatien field downstream of the discharge boundary station and upstream of the
inlet boundary station is characterized by the sum of an irrotational velocity vector u;
and a solenoidal velocity vector Uy, which satisfy the linearized conservation equations3:‘

-

P, pyao2v - T=0 - ‘ ' o T (Ag)
dat . .

~ SNote that ug = 0 upstream of the inlet; however, the analysis is developed with
respect to the more general case pertaining to the flow downstream of the discharge
station,
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%ta 'a°2%te=}c%%=° | (A6)
yhere
| VXlUg=w#0 %=%+U%

v-up=0 Uy =iug+jvy
| vXxup=0 Uy = fug+jvy

-,ﬁ=ﬁ1""-ﬁ2l | U = Moao ;

It can be implied from these equations that solutions for p. and U are purely radia-
tive (propagating acoustically in a coordinate system convecting at the mean flow veloc-.
ity U) whereas solutions for Ty are purely convective; These results can be
expressed in terms of a Fourier integral representation: ' '

p(x,y,t) | | poéoAn(w) | i _ |
ul(x,y,t) ? =>Ze'm‘n‘y S:: Bn(w): ei(wt-an) Qﬂﬂ | o (A"l)
vy(x,y,t) " L Cn(w) .

J
ug(x,y,t)

T S"’ eiw(t-x/U) do | L (as)
s Vz(X,Y,t) n - En(w) : A

The boundary data can be expressed as

(Plyt)  (Feee)

{ w0 ’-'=Zg-iany S°° Qn°(@)) eiot do R (U
Treol * R i I |
-~ ) _ - J

where a bar over-a. symbol denotes the tlme to frequency transform, and the superscript
o indicates transformatlon from spatlal location. y to spatial harmonic n which will -
be discussed later.

Substitution of thesé integral forms into the governing equations gi\}éS'

Bn D - o ,
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Ep = -2 D, : L (A11)

208n

) R | .
Bn = ——35~ g, 0 o - , : (A12)
Ap+ By + Dp=Qp° . - S ; o (A13)
Cp + Ep = Rp° ' T ' : (A14)

The value of Ap, d4nd thus Bp, Cp, Dp, and Ey, can thereby be expressed in terms of
the transform of the boundary data as ’ S

_ . w-U R S L o

An = ’n (“’Qn’r UapRpO) - 4 ('Al 5)

C W (a0 - U)an + Uaoozo2 S e

The propagatlon coefﬁment Bn is determmed by substltutmg the mtegral relatlon for
pressure into the convected wave equation as '

: 1/2
_ -wMg i[wz - anz 2(1 ~ Moz)] B .
Bn = — 5 S (A16)
' ao(l - Mg ) , o :
where the + sign refers to downstream propagatlon (the discharge boundary) and the
- sign to upstream propagation (the inlet boundary)

s The selected representation of the solutxons and boundary condltxons as Fourler
iserles in the y-direction is appropriate for enforcement of the perlodlclty boundary condi-
tion pertaining to spatial variations in this direction. The coefficient ap is defined

. accordingly as :

.an=g€.—n : - ' T (A1T)

.where Y is the fundamental period of the stage cascade configuration.. In addition, the
- fact that the boundary data are specified at a discrete number of grid points, say N, on
the boundaries implies that the Fourier series can only include N terms, that is,.
n=0, 1, 2 - 1. Since the distance y to each point can be written as . mY/N,
Where m = O 1 2 ., N -1 also, the Fourier series can be expressed in the stand-
ard Dlscrete Fourler Transform (DFT) hotation: ’ ot

P(y,t]) (P P,O(t)
_ N w1 ) . |

Qb P = Qu(t) p = Z QO p g-2rinm/N (A18)

Ry,t) Bt) "0 (R0 - |
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The inirerse DFT is then’

P,0(t) | Pm(tf

N-1 »
Q) =_1ﬁ-z Qm(t) ) g2rinm/N - : (A19)
ROt ™0 |Rp@)

The desired solut1on for the pressure perturbation on the boundarxes is accom-
plished after some manipulation as : ‘ '

- N HpO(t) * QuO(t) + JnO(t) * RyO(t)
Py (t) = poa0 Z e-2minm/N . R o N (A20)
n=0 ) Kno(t) * Pno(t)

where pm(t) refers to the value at one of the N boundary grid points‘on the inlet or
discharge boundary. Use of DFT techniques for Pp(t), Qu(t), and Rpy(t) and similar
DFT expansions for Hyy, Jm; and Ky, then:leads: to the convolution: - :

pyy(t) = P02 - o am)

~ on the discharge and inlet boundaries, respé"ctively Thus a double convolution over both
time and distance (in the y-direction) is requxred " The functions Pm(t), Qm(t), and
Rm(t), therefore represent the pomt sources of time -varying strength which are almed
along the con51dered boundarles ‘spatial resolut;on being consistent with the number of
grid pomts specified. The functions Hm(t) Jm(t), and Kpy(t) are the duct fesponse'
‘ functlons defined by : R

Hun (8 Bow) o [hee] . (0
1 o N ] S 1 N2 o e I
Tm®) = > {300 Y eBrinm/N L {0y N 000 e2minm/N L (agy)
"m0 | | = U e
Km)| - |[K20) | .%G(t) RO
» . .
O+ R G sz o - L,
O TR SN
InOr) = __l___ ” (® - Tp)el®7 92 , | (A24)
n (1 _M02>S‘°0 e 2 - )
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KpO(7) = ' 1 y (sz TR + MoTn)eIQT gﬂ ' (Azs)
a1 - M2 + M) , |

whére 8 is the Dirac delta functibn and

| Tn=[522 (- Mz) ]1/2 ,.

Q=%‘)—ao
=0
T aot
a=2"
Y

A group of subroutines including an efficient Fast Fourier Transform routine has
been developed for use in conjunction with the blade-to-blade computer program to carry
out the indicated convolutions numerically. Results have been thus far limited to test
cases with a simple harmonic input signal. For exaxixple in one of the calculations the
discharge station was assumed to be divided into 8 intervals covering a total circumfer-
_ 'ential distance of 0.1 foot. The selected reference (average) Mach number of the dis-
charge flow was 0.8. The flow was assumed to be irrotational so that only one input
function Q(y,t) was required, and the second input function R(y,t) could be considered

as a response function (that is, it was calculated from Q(y,t)). The input function
Qly,t) = cos(ﬂ'r - %) with Q(y,t) =0 for T <0, was selected for this case, where

7= 2rNagt/Y, n=1,2,... N, N= 8 Y=0.1 foot, ap =103 fps,and Q=1. The
input function Q and 'response function R at n =1 are plotted in figure (Al), It
should be noted that the response function is initially out of phase with the input function
because of the assumption that Q =0 for 7 < 0.. However, the effect of the transient at
=0 dies quickly, and after about 1/3 millisecond the response function closely apprax-
imates the input function and indicates the desired harmonic solution is being approached
asymptotlcally 'The nondimensional perturbation pressure is plotted in figure (A2). The
complete history is shown for the point n = 1, whereas the history of the points n=2
and 3 is only shown at early times, where a difference in amplitude as well as phase
exists. At later times (that is, after about 1/3 millisecond) the pressure solutions at

the various grid points only differ noticeably by the phase angle corresponding to the
input fuction, as the differences in amplitude asymptotically decay.
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Figure 11.-'Comparison of relative velocity distributions through a subsonic rotor.
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