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APPLICATION OF MULTIVARIABLE SEARCH TECHNIQUES

TO THE OPTIMIZATION OF AIRFOILS IN A

LOW SPEED NONLINEAR INVISCID FLOW .FIELD
t"

i

By D. S. Hague and A. W. Merz

^s SUMMARY

Multivariable search techniques are applied to a

particular class of airfoil optimization problems. 	 These -'

are the maximization of lift and the minimization of dis-

turbance pressure magnitude in an inviscid nonlinear glow

field.	 A variety of multivariable search techniques contained
K

in an existing non-linear optimization code, AESOP, are

applied to this design problem.	 These techniques include

elementary single parameter perturbation methods, organized.. f

search such as steepest-descent, quadratic, and Davidon lW	 `'
3

11

methods, randomized procedures, and a generalized search

acceleration technique.	 Airfoil design variables are E

seven in number and define perturbations to the profile of

an existing NACA airfoil.	 The relative efficiency of the

techniques are compared.	 It is shown that elementary one

parameter at a time and random techniques compare favorably

with organized searches in the class of problems considered.

It is also shown that significant reductions in disturbance

pressure magnitude can be made while retaining reasonable

I
i

lift coefficient values at low free stream Mach numbers.
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The optimal solutions reported here were obtained by

application of a generalized multivariable search code,

AESOP, orginally constructed under contract to the National

Aeronautics and Space Administration's Office of Advanced

Research and Development. Original documentation of this

code is given in references 1 to 3; an outline of the analysis
underlying this code is presented below.

MULTIVARIABLE SEARCH

The general non-linear multivariable optimization problem
is concerned with the maximization or minimization of a pay-off

or Performance function of the form
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A

The a i are the independent variables whose values are to be

determined so as to maximize or minimize the performance

function ^(ai)	 subject to the constraints of equation	 (2).

T,he	 ai may ^be looked upon as the components of a control
vector,	 a,	 in a space R N of dimension N.	 Since maximization

of a function is equivalent to minimization with a change

of sign,	 it suffices to discuss the case in which the per

.formance function is to be minimized.

' Multivariable optimization problems 	 involving inequality

ninstrainta may also be encountered,	 If the constraints are

,applied directly to the 	 independent variables

- <
aL	 a i 	aH	

(3)

i	 i

the inequality constraints define a region of the control

space within which	 the	 solution must lie.	 Inequality con-

straints on functions of the independent variables similarly

restrict the'region 	 in which the optimal	 solution is to be

obtained.	 In this case

Ek(a i )	 <	 E k ( a i )	 t	 Ek( a i )	 (4)

- Inequality constraints can be used to restrict the search

'f region directl y,y,	 or,	 alternatively,	 they may	 be	 applied	 in -an

- indirect fashion by a transformation to equality constraints.

Several	 transformations may be used for this purpose. 	 For

example, let an equality constraint, C k , be defined by the

transformation

( Ek - Ek 	 Ek < Ek (5)

C k_	 0	 Ek <EktEk

f (Ek _ Ek)2 ^	E k < Ek

.,	 3
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Constraining C k to zero will result in the constraint of

equation (4) being satisfied.

Problems involving equality constraints can be treated

as unconstrained problems by replacing the actual performance

function, 0(ai), by an augmented performance function, 0*,

where
P

4* _ $ + E U i 
c 

i 

2	
(6)

3=l

It can be shown that, provided the positive weighting constants

U  are sufficiently large in magnitude, minimization of the per-

formance function subject to the constraints,equation (2), is

equivalent to minimization of the unconstrained penalized

performance function defined by equation (6). This approach

permits search techniques for finding unconstrained minima

to be applied in the solution of constrained minima problems

at the cost of some increased complexity in the behavior of

the performance function, the performance response surface.

In practical application, the weighting constants U  are

determined adaptively on the basis of response surface be

i

;t

havior.

Alternatives to this approach are available, notably

Bryson's approach to the steepest-descent search, reference 	 rY
R

4. This method has been exploited in connection with the	 p

numerical solution of variational problems encountered in 	 -

the optimization of aerospace vehicle flight paths, refer

}

	

	 ences 5, 6, and 7. However, the use of such techniques

implies smoothness of the response surface. This smoothnessx

may not be present in general; hence, the AESOP code is

limited to the less restrictive penalty function approach of 	 t"

equation (6)
^i
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Numerical	 Solution of Non- Linear Multivariable

Optimization Problems

This section	 is devoted to a discussion of the search

; algorithms	 for	 solution of non-linear multivariable optimi-

zation problems available in the AESOP code.	 A wide variety

of search algorithms 	 have been devised for the solution of

multivariable optimization problems. 	 Many of these algorithms

Are restricted to 	 the	 solution of	 linear or quadratic problems.,

Algorithms of this type must be supplemented by more general

search procedures 	 if generality of solution is sought;	 for

engineering	 problems	 tend to lead to non-linear formulation

with the possibility of discontinuities 	 in both the performance

function	 response surface and	 its derivative.	 Most of they

searches which prove effective in these problems combine a

direction generating algorithm,such as 	 steepest-descent,	 with

with a one-dimensional 	 search.	 Distance traversed through

- the control	 space in the selected direction	 is measured by a

step-size,	 or perturbation parameter, DP. 	 The object of the

'• one-dimensional	 search is to determine the	 value of DP which

minimizes the performance function along the chosen ray and to

establish the corresponding control	 vector.

In	 practice,	 the diverse nature of non-linear multivariable

optimization problems	 leads to the conclusion 	 that no one

search algorithm can be uniquely described as 	 being the "best"

in all	 the situations which ma 	 be encountered	 Rather	 ay

combination of searches, some of which may be of quite elemen-

tary nature, provides the most reliable and economical conver-

gence to the optimal solution.
k

s
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One-dimensional search. Multivariable search problems

are reduced to one-dimensional problems whenever a search

algorithm is, used to establish a one-to-one-correspondence

between the control vector and a single scalar perturbation

parameter, (DP). In such a situation

a i = ai(DP), i - 1, 2, . . 0  N	 (7)

so that equation (1) becomes

0 = 0(a i ) = $( DP )	 (8)

Similarly, the right hand sides of equations (2) and (6)

become functions of the scalar perturbation parameter.

The relationship, equation (7), specifies a ray through

the control space. As noted above, the objective of the

one-dimensional search along this ray is to locate the value

of DP which provides the minimum performance function value.

Numerical	 search for the one-dimensional minima can be

carried out in a	 local	 fashion,	 by the Newton-Raphson method,

for example,	 or by a global	 search of the ray throughout the

feasible	 region.	 The	 localized polynomial	 approximation	 is

appropriate to the terminal convergence phase in a problem

solution when	 some	 knowledge of the	 extremal's	 position	 has

been accumulated by the preceding portion of the search and	 the

problem involves	 a	 smooth function.	 The global	 search can	 be

used to advantage in the opening moves of a search.	 In the

early phase of a	 search	 the object is	 tc	 isolate the approx-

imate neighborhood of the minimum performance function

value as	 rapidly as	 possible,	 usually with little or	 no

foreknowledge of the performance function behavior. 	 One

measure of the effectiveness of a search algorithm in such

i
6
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a situation is the number of evaluations required to locate;

the minimum point to some prespecified accuracy. It can be

shown that the most effective method of locating the minimum

point of a general unimodal function is a Fibonacci search,

reference.4. In this method, the accuracy to which the mini-

mum is to be located along the perturbation parameter axis

must be selected prior to the commencement of the search.

Since the accuracy required is highly dependent on the behavior

of the performance function, this quantity is difficult to

prespecify.

Prespecification of the accuracy to which the extremal's

position is to be located can be avoided for little loss in

search efficiency by use of an alternative search based on the

so-called golden section, reference 8.	 This is the method

employed in the AESOP code one-dimensional search procedure. 	 z

Search by the golden section commences with the evaluation

of the performance function at each end of the search interval

and at G = 2/(1 + V5-) = . 6180339887 of the interval from both of
	 4

these bounding points. This is illustrated in Figure 1.
F

The boundary point furthest from the lowest resulting

performance function value is discarded. The three re 

maining points are retained, and the search continues in a

region which is diminished in size by G. The internal point

at which the performance function is known in the reduced

interval will be at a distance G of the reduced interval

from the remaining bounding point of the original interval

for (1 - G) = G 2 . The search can, therefore, be continued

in,the reduced interval with a single additional evaluation

of the performance function. It follows after Q evaluations'

of the performance function that the position of the extremal

point will be known to within R of the original search regionsy

/

Y	 .





where

R	 G(Q-3)	 (9)

To reduce the interval	 of uncertainty to 	 .00001	 of
^ l

Oe original	 search interval,	 about 27 evaluations of the

performance function are required. 	 For a reasonable number

of evaluations of the performance function this type of

search is almost as efficient as a	 Fibonacci	 search. i

It should	 be noted that search by the golden section

proceeds under the assumption of unimodality; 	 hence,	 it will .^

often fail	 to detect the presence of more than one minimum

when the performance function 	 is multimodal.	 If more than

one minimum does exist, the one located depends on perfor- ^

mance function behavior within the original 	 search interval.

Multiple	 Extremals	 on One-Dimensional	 Rai.	 The one-

dimensional	 section	 search described above	 is	 unable to

distinguish one local 	 extremal	 from another;	 it will	 merely

find one local	 extremal.	 This difficulty can	 be largely

eliminated'by the addition of 	 some	 logic	 to the search,	 at

least for moderately well	 behaved performance 	 functions;

that is,	 for functions	 having a	 limited number of extremals

in the control	 space region of interest.	 An effective method

for detecting multiple extremals 	 is to combine	 the one-

dimensional	 search with a	 random one-dimensional	 search on

the same ray	 through the control	 space.	 This	 is	 illustrated

in figures	 2 and 3.	 In figure ? the response contours of

a performance function having two minima are illustrated

together with	 the	 initial	 points	 used	 in a	 global	 one-

dimensional	 search by the golden 	 section method.	 The

behavior of the function at these points 	 is	 shown	 in j

figure 3,	 The left hand minimum is not apparent from

these points.	 If a single random point 	 is added	 in the

interval Lo,	 the probability of this point revealing the

•
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presence Qf the second minimum is

P 1 = L l /L o	 (10)

for any point in the interval AB indicates the presence of

a local minimum somewhere in the interval AB, and any point

t	 in the interval BC indicates the presence of a local maximum

somewhere in the interval BC. In this latter case, there
f

!	 must be a minimum of the function both--to the left and to the

right of the newly introduced point.
{

j, If R random uniformly distributed points are.added in the

interval Lo, the probabi<lity of locating the presence of

the second minimum becomes	 .
a

P R = 1.0	 (1.0 - L 1 /L o ) R	(1')

i

The function (L 1 /L 0 ) is a measure of the performance

function behavior. For a given value of this behavior function
the numberof random

	

points which must be added, to the one-	 o

dimensional search to provide a given probability of locating

a second minimum can be determined.

The presence of multiple minima on a one-dimensional cut

through an N-dimensional space does not necessarily indicate
that the performance function possesses more than one minimum

ina-,multi-dimensional sense. It may be that the performance

function is merely non-convex. This is illustrated by figure

s 4.' The performance function behavior on the one-dimensional

search in figures 2 and 4 is identical. In figure 2 this

indicates the presence of two local_extremal 	 in figure 4,

anon-convex performance function. 	 -

When a one-dimensional search detects the presence of

multiple extremals in the local sense above, a decision must

12
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be made as to which of the apparent extremals is to be 4

pursued during the remainder of the search. 	 Here, without

foreknowledge of the performance function behavior, logic

must suffice.	 Typically,	 the left or right hand extremal,

the extremal which results in the best performance, or

even a random choice may be made.

It should	 be noted that logic of this	 type	 is' not cur-

rently available in the AESOP code.	 The AESOP one-dimensional

search procedure has three distinctive phases.	 First,	 each

search algorithm defines an	 initial	 perturbation using either

past perturbation stepsize information or a perturbation mag-

nitude prediction as	 in the quadratic search below.	 Second,

a 'perturbation	 stepsize doubling	 procedure	 is	 employed until

a ,point exhibiting diminishing 	 performance	 is	 generated.
Third,	 having coarsely defined the one-dimensional	 extremal

•	 position from steps one and/or two,, a golden section search

is employed to locate the extremal with reasonable precision.

Multiple	 extremals	 -	 general	 procedure.	 The multiple

" extremal	 search technique	 included	 in AESOP	 is	 based on	 -

topoZogicaZZy invariant warping of the performance response

surface.	 The response surface is warped in a manner which {
retains	 all	 the surface extremals but alters 	 their relative

s `° locations and regions of infZuence. 	 The region of influence.

of an extremal	 is defined	 as the hull	 or collection of all

points which lead to the extremal 	 if a-gradient path is

followed.	 -Reducing the region of influence of an extremal

'RECEDING PAGE B	
w
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.
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decreases the probability of locating a point in the neigh-
borhood of the extremal if points are chosen at random.

 i
Again, in an organized multivariable search, the probability	 4

of locating an extremal having a small region of_.influence
is less than that of locating an extremal having a large

region of influence. For example, suppose the extremals

of the one-dimensional function of figure 5 are to be deter-r;
mined in the range a  < a < a  by the sectioning approach.

The four initial values employed in this technique are

denoted by 
f l to f4' $.

Following evaluation at these four points, f4 is dis-
carded, and the function is evaluated at f 5 . Atthis point	 E
the right-hand extremal, e2, has been eliminated from the

search which now inevitably proceeds to the left hand extre-

mal at el.
k

a

To find the second extremal, the Function F is warped	 p

by writing

F(C)	 F(a) (12)

i	 16
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F a-a* 2N
(OH-a* )	 +	 >

H
(
I x

2N
a*-a

+	 >	 (13)
I

% where N	 is	 a	 positive	 integer,	 and a*	 i s 	 the	 location of the

left hand extremal.
Qit

A typical	 relationship	 between	 and a is	 shown in

f igure 6 for the case N = 1.	 Differentiation of equation
(13)	 with respect to a when N	 1	 results	 in

2[a-a*]	
a	 a

aH -a*]

it 2[0-a] a < a	 (14)
C,

[a*-aL]

Note that as a	 a*,	 0 from both the left and
ri'ght.	 At a	 aL and	 at a	 a H ,	 2.	 In	 the	 regions

aL < a <	 a	 and	 a*	 < a < a H 1	 varies	 parabolically
with a.	 Figure	 6	 illustrates	 these	 points.	 It can	 be
seen that a	 region Aa l	centered	 about a* transforms	 into
a smaller region AEl	 located in the neighborhood of

(x*.	 On the other hand,	 a region Aa2 situated in the

17
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neighborhood of the upper search limit, a H , maps	 into a

wilder region in	 the neighborhood of C = L%H.	 In general,

the slopes at a = aL and a = a H are given by 2N;	 the
k	 A.

f
greater N;	 the greater the warping becomes.

The effect of introducing a moderate warping trans-

formation	 on the function of figure 5	 is	 shown in figure

^ 7.	 It can be seen from figure 7	 that the region of influ-

ence of el is	 reduced,	 and	 the	 region of	 influence of e2

is	 increased.	 On	 the warped surface search	 by sectioning

commences with evaluations of performance at f^ 	 to f4.
;r

N Following	 these	 initial	 evaluations	 fj	 is	 discarded	 (as

opposed to the discard of f4 on the unwarped surface),

and the function is evaluated at the additional po,.nt f5.

The points f3 and f5 straddle the extremal e 2 which is

now inevitably located by further sectioning evaluations.

Figures 8a and 8b illustrate the warping transformations

f	 for N = 1 and N = 10 when the transformation is applied

at the point a* = .5, the symmetric case. It

f	 can be seen that when N = 1, twenty per cent of the

warped control space corresponds to approximately 45 per

K	 cent of the unwarped control space in the vicinity of

the transformation origin (a = 5) 	 When N = 10 twenty

per cent of the warped control space transforms into

ninety per cent of the unwarped control space.

Section-ing Parallel to the Axes. The independent

variable perturbation algorithm in the sectioning search

is

Aai = 0
9,	

i # r

= DP,	 i = r r _ 1, 2,, .	 N	 (15`)

Y
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This is simply the parametric or univariate search

approach. All but one of the independent variables are held

cc'^stant while a one-dimensional search parallel to the Rth

variable axis determines the best value of the remaining

variable, ar. The variable ar is then set to this value,

and the process is repeated with one of the remaining

independent variables. When all N independent variables

have been perturbed in this way, a sectioning search cycle

has been completed.

The N-dimensional search can then be continued with

another cycle of sectioning or by one of the other search

techniques described below. In practice, it has been found

advantageous to perturb the independent variables in a

random order within each sectioning cycle. The method can

be used in conjunction with either a local or a global

search as outlined in the two preceding sections. The

behavior of this search in the solution of a straightforward

two-variable optimization problem is illustrated in Figure 9.

It may be noted that the AESOP node searches from boundary

to boundary in each variable using a golden section search

procedure.

-	 Sectioning to	 Define Local	 Sensitivities.	 The	 sec-

t,ioning	 search can readily be applied	 to	 the	 problem of

performance or constraint sensitivity determination.	 Thus, I

by the device of omitting the	 updating	 of each control

variable a r following the sectioning	 search	 on	 the	 rth

parameter,	 the sequence of sectioning	 searches	 is	 performed

about a fixed nominal	 point. When such a	 search	 is	 per- a

'formed	 in	 the vicinity of a	 known extremal	 point,	 the

penalties	 for off-optimal design	 can	 be	 assessed.	 Away

from an extremal point,	 the search merely provides	 local

sensitivities in a	 similar manner to the manual	 perturbation

methods employed in conventionaZ triaZ and error design

evolution.
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Steepest - Descent Search.	 The steepest - descent search

algorithm is

{pa}	 .•[W]'1 {	 } - C3Ci]T[K31 -1{K2}

x	 DP)z_	 DC	 [K3]-' {DC}
Jy K1 _ 	K2	 [K3]'{K2}

..	 [W]-1 [aa] T 	 [K 3 ]-^	 {DC}	 ('6)

Here, the matrix W is the metric tensor of the control	 space

and serves to define a generalized measure for the magnitude

of a control	 vector perturbation.	 The vectors { a^/aa} and

{ aC/ aa } are defined as

µ

Dal	 '	 aa2'	 aan

and
aC	 ac	 aC
aa l	aa2	aan

respectively.	 The K matrices are defined as

do I

{K 2 }= [aa][W^l{aa}	 (18)

[K3]- [ aa][ W ]-' [aa1T
	 (19)

Y;;
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The perturbation parameter;'(DP), 	 is defined by

°(DP)	 _	 LAaj [W]{oa}	 (20)

The Vector	 is the desired- change__ in the constraint

functions.	 for an unconstrained problem,(16) 	 reduces to

Vj^D
2

Kl8a

The performance function change associated with the pertur-

bation of equation	 (16)	 is

D^(KI-	 ^K2^ [K37-{K }	 5	 (DP) 2 - LDC^ [K3J i {DC}	 5 2

N _	 +	 LK[K 3 ]_
1
 {DC}	 (22)

Equation	 (16)	 does	 not specify a one-dimensional
6

._. search directly since the perturbation parameter 	 (DP)
-

and each component of the constraint vector change DC

can	 be	 independently specified. 	 This	 difficulty	 is

conveniently eliminated	 if the components of DC are

expressed	 in terms of the perturbation parameter. 	 Let
a

(DP)	 and DC	 be,arbitrarily assigned,	 say	 (DPO)	 and DCD,

respectively.	 Now consider the one parameter set of

values for DC defined by

DC(pP0) •	DC D	(23)

It	 follows	 from equations	 (16)	 and	 (22)	 that	 (23)	 spec-

ifies a one parameter family of perturbations 	 in which

the non-linear performance and constraint functions vary

linearly with (DP),	 to the first order.
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Equations (16) to (22) are valid for small pertur-

bations in the independent variables provided the der-

i,vatives involved are continuous in the region of the

control space defined by equation (20). In practice,

when this condition is not satisfied, the steepest-

descent algorithm can be used to locate a promising

direction for a one—dimensional search provided the

derivatives are computed numerically. 	 In this case,

however, equation'(22) ceases to provide an accurate

indication of performance function behavior along the

specified ray.

When dealing with performance and constraint

functions	 having continuous	 first derivatives,	 the

perturbation	 parameter value	 to	 be used	 in	 equation	 (16)

can be	 determined	 from a	 second order Taylor's 	 expan-

sion of the	 performance function	 behavior in terms of

DP.	 The	 coefficients	 in this	 series	 expansion can	 be

readily obtained from the conditions of zero change for

DP = 0,	 linear slope for DP = 0, 	 and from the actual	 value

of the performance	 .function at a	 point	 in	 the	 neighborhood

of the point at DP = 0.	 This method for determining 	 the

best perturbation 	 parameter value	 is discussed	 in	 some

detail	 in	 references	 5 and	 6.	 When	 dealing with	 less	 reg-

ular	 functions,	 the one-dimensional	 search	 by	 sectioning

can be used	 to determine the perturbation parameter value.

This	 is	 the	 technique employed	 in the optimization program,

AESOP, references 1 and 2	 for the'AESOP code 'converts all

f -

t
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constrained optimization problems to unconstrained problems

by the penalty function device, equation (6). The resulting

response surface combines both performance function and

weighted constraint functions. Inevitably, this surface has

a more complex topology than that of the unconstrained per-

formance function. Program AESOP is also limited to the

penalty function approach to constrained optimization, and,

hence, it utilizes the reduced algorithm of equation (21)

rather than the explicit constraint algorithm of equation (16)

Y

Steepest-Descent Weiqhtinq Matrices. The weighting

matrix	 introduced	 in equations	 (16)	 and	 (20)	 must be positive

definite	 to assure a positive distance between any two non- s

' coincident points 	 in	 the control	 space.	 Apart from this

restriction,	 the	 choice of weighting matrix 	 is	 arbitrary.

Inspection	 of equation	 (16)	 reveals	 that	 any descending

direction	 is	 a	 steepest-descent path for some choice	 of 4
the weighting matrix W. 	 This	 can	 be	 simply	 illustrated

when	 only	 two	 independent variables	 are	 involved.	 Figure	 10

depicts	 a	 small	 region of the control 	 space	 R 2 .	 The	 per-

formance	 function response contours appear as a 	 series of

parallel	 lines	 on	 this microscopic	 region	 of	 the control

space.	 The	 perturbation zones	 corresponding	 to three

weighting matrix choices are shown. 	 The first zone corres-

ponds	 to	 the choice of a	 unit matrix for W.	 It follows	 from

equation	 (20)	 that for a	 given	 value of	 (DP) 2	the	 search

on	 iz	 e	 s	 a	 circle of	 radius	 (DP).	 The	 steepest	 descent

direction	 is that in which the performance improvement is

greatest.	 This	 is the direction of a line from the origin

28
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of the circular search zone to that point on its circumference

which provides the smallest value of the performance function

^(a). With this choice of weighting matrix, the steepest-

descent direction is perpendicular to the response contours.

Paths of this type are illustrated in figure 11 by the solid

lines emanating from points A and B. From the nominal point 	 a

•, A. search perpendicular to the performance response contours

is very efficient. From point B, however, this type of

search results in the meandering path illustrated. 	 It is

assumed here that once a steepest-descent direction is located,

an exhaustive search for the minimum in that direction will

be;undertaken in view of the high cost of recomputing the

derivatives in many problems. Even if this were not the

case, search normal to the response contours can often be

improved upon. For example, it is obvious that even in the

straightforward two-dimensional problem of figure 11 the

dashed search direction is superior. This di recti on requires

a priori knowledge of , the extremal's position, information

not normally available. 	 --

Returning to figure 10, the second search zone

depicted corresponds to the choice of a diagonal matrix

f:
for W. The positive-definite constraint on W requires

that all diagonal elements of the weighting matrix be

positive.	 In this case the search zone becomes elliptical

with the major and minor axes of the ellipse being parallel

to the coordinate axes. It may be noted that as either of

the diagonal elements of W becomes large in relation to the

remaining element, the corresponding element in W inverse

	

:U	 together with the predicted change in the associated inde-

pendent variable becomes small. In the limit this reduces

	

'	 the search to a one-dimensional search in the remaining

coordinate. The perturbation zone then becomes a slit

29

r,

<_._ :^ . AC



^, ^,.





I	 - 'i	 I-----1 	I	 I	 1;	 J:
^t

parallel to that coordinate axis of length 2 .,,(DP), as

a.
	 illustrated in figure 10. In the case illustrated, the

b
	

steepest-descent path is in the descending a l direction.

Finally, the search zone corresponding to the choice

of an arbitrary positive-definite weighting matrix is

shown.	 From equation (20) and the positive-definite con-

straint on W, the search zone remains elliptical, but the

principle axes may now have an arbitrary orientation to

the axes of a l and a2. It follows that since the elliptic

search zone can have any orientation and eccentricity, any

direction in the control space is a possible steepest-

descent path;. for in all cases, the path of steepest-descent

lies in the direction of a line joining the search zone

origin to the lower point of tangency between the boundary

of the search zone and the performance function response

contours. The discussion above may readily be extended

to control spaces of higher dimensionality.

When attempting the	 solution of optimization problems
J

by the	 steepest-descent method, 	 the analyst	 is	 constantly

" faced with	 the	 problem of choosing a	 satisfactory weighting-

matrix for the search continuation.	 The	 problem is com-

pounded	 by the	 fact that the-slopes of the performance

function	 with	 respect	 to	 the	 independent	 variables	 can,

and frequently do,	 vary.by many orders of magnitude. 	 The l
arbitrary choice of a	 unit matrix	 in	 such	 situations can

lead to	 distressingly slow convergence of the 	 numerical

r
search;	 for it	 is	 in the nature of many problems that in

those directions	 in which the slopes are greatest the re-

sponse surface is highly non-linear.	 Only small	 pertur-

bations	 will	 be	 successful	 in	 the	 direction of	 these	 strong

control	 variables.	 In those directions	 in which	 the	 slopes-
1

are small, the contours are often relatively linear, and

Varge perturbations may be required in these weak control

variables'.

t 32 '
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In such situations the local steepest -descent direction

for (W) _ ( I) is misleading. With this choice of weighting

matrix perturbations are in proportion to the response

surface partial derivatives. However, the best direction

in;which to proceed may involve large perturbations in the

weak control variables of small slope. This behavior is

illustrated for a two-dimensional case in figure 11 by the

dashed line emanating from B.

The problem of choosing a satisfactory weighting matrix

also arises when the steepest-descent search is applied in

its variational form, reference 5, and when a combination of

continuous control variables and parameters are encountered

as in the optimization of multiple-arc problems in flight

path optimization problems, reference 6. In these references

it is suggested that the weighting matrices be based on the

first derivatives of the unconstrained performance function

with respect to the control 	 This approach can be used in

the solution of multivariable optimization problems also, by

writing

Wi j

	

	 A i + B	 aaj 	- j

= 0, i t j
I

^	 In practice, alternate use of the resulting combined weighting

matrix and the unit matrix tends to provide a reasonable con-

vergence rate at points well removed from the extremal. The

AESOP code employs such a matrix in combination with a search

range non-dimensionalization term and a lear ni ng factor. The

learning factor emphasizes perturbation of control parameters
`a	 which change in a monotonic direction and de-emphasizes those

perturbations which fluctuate in sign.
t

G'

	

	 Random Ray Search. The difficulty of defining a

suitable control variable metric tensor together with

33
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the fact that any descending path is a steepest-descent

direction for some choice of metric tensor suggests the

possibility of searching along a random ray through the

control space. The algorithm for random ray search is

,
Aai = R i (IDP).	 i - 1, 2, e . .,N	 (25)

where the R i .proportional to the direction cosines of the

e
ray, are uniformly distributed random numbers satisfying

j	 -1.0 < R i < +1.0 9 i = 1 9 2 9 . .	 N

The positive sign in equation (25) is taken if	
dP

d	 isDP
Inegative; the negative sign is taken when this derivative

is _positive. The method is equivalent to a steepest-

descent search using a randomly generated metric tensor.

Quadratic search . An alternative systematic approachlA^

	

	
to, the definition of an arbitrary or empirical weighting

matrix is provided by second order or quadratic method. It

can be shown, for example, in reference 1, that on an

elliptic second order response surface the weighting

matrix
a2^

wij _ 8aiaaj	 (26)
'i

when used in the steepest-descent method w.^.11 =ediately define
the cptimal point

t

*Also known as the Newton- Raphson method
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where (da) is computed from equation (21) with (DP) = = .5K1.

On a more general non-linear response surface, equation (27)

merely defines a direction for subsequent search in the

manner of the steepest-descent technique. This is illus-

trated in figure 12. Here, the approximating elliptical

contours computed at point 0 define an approximate extremal

location at P through equations (26) and (27). Subsequent

search along the ray OP results in the definition of a one-

' dimensional	 extremal.	 This	 point is	 then used to fit another

approximating elliptic contour,	 and the process	 is repeated

A
until	 the extremal	 point at Q is	 located.

Theuadrat.ic search procedure can beq	 p	 quite	 rapid	 in

control	 spaces	 of low dimensionality. 	 In high order	 spaces

the approach	 is	 usually	 impractical	 as	 a	 result of	 the

requirement to establish the second order weighting matrix

of equation	 (26).	 In many practical	 engineering	 problems

these derivatives cannot be obtained 	 in closed	 form;	 in	 such

cases	 the derivatives must be obtained	 numerically,	 for

example,	 reference 1.	 Computation of these derivatives

requires at least	 (N+1)(N+2)/2 evaluations of ^ at each

point where an approximating quadratic 	 is employed.	 Clearly,

for large N-this computation may become impractical in

computational time.

Davidon or Fletcher-Powell	 Method.	 Davidon's method

is a hybrid first order/second order technique.	 The objec-

tive of Davidon's method	 is to	 arrive at a	 reasonable

approximation to the second order weighting matrix of

n- equation	 (26)	 without the	 use	 of	 (N+1)(N+2)/2	 evaluations

of m.	 It can be shown that on a quadratic	 (second order)

u response surface-N steepest-descent searches performed in
x:

i'
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the manner described previously will 	 lead to definition of

the weighting matrix of equation	 (26),	 if the following

formula is employed:

[W]i+1	
[W]i	

+	 [A] i 	+	 [6] i 	(28)

where	
Aa (29)

[A] i
.n

Leal i {
	 • a--a }

i

f ^w^i1{^• 	 } i LA•^Ji
[W]	 i

183 1 _ -	 30)

LA 
ftlj	 W

s:il 1	 —l	 -[ W ] -	 [I]	 (31
b.
M

Here,	 Leaji	 is the change in position during the i th one-

dimensional	 search and

g

LA • raji a

is the change in gradient vector between the beginning and

end of the	 th one-dimensional search. 	 On a numerically

well-behaved function this technique may work well. 	 It

will find the optimum of an elliptic quadratic function in

N`successive searches.	 When appreciable numerical noise

is present in the calculation, or when the one-dimensional

extremal along the ray is not defined with precision, the

method may produce erratic convergence, or convergence

failure. I

Pattern Search'.	 In the present report, pattern search

refers to a search which exploits a gross direction revealed

by one of the other searches.	 The search algorithm is
i

Dai	 =	 ( a 2
	 -	 ai)	 (DP),	 1	 1,-.2,.	 ..	 N	 (32)
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before and after the use of a preceding search technique.

This type of search is illustrated in figure 13 following

a section'search. The combination of a section search

and a pattern search in the problem illustrated leads

directly to the neighborhood of the extremal. Repeated

sectioning,	 on the other	 hand,	 would	 be a	 very	 slowly t

converging	 process due to	 the orientation of the contours

with respect to the axes of the	 independent variables.

! It may be	 noted that a	 simple rotation	 of the	 independent

variable axes	 by 45°	 results	 in	 sectioning	 alone	 becoming

` a	 ra	 idl	 convergingp	 y	 g	 g	 process	 in this	 example.	 The	 pattern

search can also be used to acceleratethe 	 steepest-descent

process provided	 it follows	 two successive descents as	 in

figure	 14.	
-

h

Adaptive Creeping Search.	 Adaptive creeping search is

a form of small scale sectioning; however, instead of locating

the position of the one-dimensional extremal on each section
1

parallel to a coordinate axis, the coordiate is merely perturbed

by a	 small	 amount,	 Aa r ,	 in	 the descending direction.

I
` The search commences with a	 small	 perturbation	 in one

of	 the	 independent variables- , a r ;	 a	 positive	 perturbation

ins_ first made;	 if	 this	 fails	 to	 produce a	 performance
k

E

E improvement,	 then	 a	 negative	 perturbation	 is	 tried.	 If

neither of the perturbations produces 	 an	 improved perfor-

mance	 value,	 the	 variable	 retains	 its	 nominal	 value,	 and

Aa r	is	 halved.	 If a	 favorable	 perturbation	 is	 found,	 the

r variable a r	is	 set	 to	 this	 value,	 and	 Aar	 is	 doubled.	 The.

r process	 is	 repeated	 for each	 independent variable	 in turn,

the order	 in which the variables are perturbed being
h

chosen randomly.	 At this point an adaptive search cycle

E; is complete, and the cycle is then repeated.	 A two

38







dimensional illustration of this search is presented in

figure 15.	 In the particular problem illustrated, the

method converges rapidly reaching the neighborhood of the

extremal within six evaluations.

The search algorithm can be written in the form

Dar =	 (Sr-Tr 	 (DP)	 (33)

where S r is the number of cycles in which the search has

successfully perturbed the r th independent variable, and

Tr is the number of cycles in.which a perturbation of the

r, variable has proved unsuccessful. While this search

can be	 looked	 upon as	 a	 one-dimensional	 approach,	 this

vi',ewpoint	 is	 somewhat	 artificial.	 Here,	 the	 scalar	 quantity

(DP)	 merely defines	 an	 initial perturbation 	 for each	 inde-

pendent variable.	 Once	 started	 the	 search	 proceeds	 inevi-

tably	 to	 its	 conclusion,	 the	 perturbation	 in each	 independent

'	 variable	 being adaptively determined	 according	 to	 equation

(33)	 on	 the	 basis of the performance function	 response

contour behavior encountered during 	 the particular	 problem

solution.	 This	 search can	 be quite efficient when	 used in

'	 combination with	 the	 pattern	 search acceleration	 procedure.

+	 Magnification.	 When	 studying	 discrete models	 of con-

tnuous	 systems	 of the	 type encountered	 in certain engineering

problems	 such as	 aerodynamic	 shaping	 or	 structural	 design

}	 problems,	 there is a	 tendency on the	 part of	 some	 search

algorithms	 to achieve a	 favorable shape	 before	 satisfying

the desired	 constraint	 levels.	 In	 such	 cases,	 when	 it	 is k

known	 that the unconstrained extremal 	 is the null	 vector,

^	 a	 simple magnification	 search can	 lead	 to	 rapid convergence

to the desired solution.	 The magnification algorithm is

i Aai	
= ai	

(DP),	 i	 =	 1,	 2	 .,_N	 (34)
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Here (DP) is positive and all components of the control

vector are to be simultaneously perturbed. Generally,

the unconstrained extremal point corresponds to the null

vector; this method may prove efficient.

Arbitrary Ray Search.	 In practical design optimization
j	 a search along an arbitrary multidimensional ray can be of

utility. For example, when two minimal extremaZ solutions	 r
appear to be possible, a search on the ray connecting the

two points should reveal the presence of a maximal extremaZ

somewhere on the ray between the two minimal extremals. The m

algorithm for this search is
2	 1

Aa i = ( a i - a i ) ( DP),	 i = 1, 2 9 . . . , N	 (35)

where al and a. are the two minimal extremal points. In

 general, a
i
 and ai may be any two points in the control space. e

Random Point Search. A straightforward Monte-Carlo

search which examines point designs distributed in a uniform

random manner within the feasible region is often of utility

when the response surface is of a complex nature. Such a

search is included in the AESOP code primarily for use as a

nominal point design generation procedure.
F
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AIRFOIL OPTIMIZATION RESULTS

Results have been obtained for a number of different low

speed (M = .1) aerodynamic shaping problems of practical

interest.	 Potential flow analysis is based on solution of the

two-dimensional potential flow equation

f

2 -	 2 )	 2	 2(a	 u	 ) 0yy - 2uv Oxy = 0Oxx + (a	 - v

where jd is the velocity potential, u and v are the velocity
` components

u = 0x ,	 v = 0y

and a is the local speed of sound determined from the energy

equation and the stagnation speed of sound

a2 = ao2 - ( Y	 1 )	 ( u2 + v2)2

Solutions are obtained by Jameson's finite difference scheme,

reference 10.

The study used all of the numerical search methods described

... above.	 The nominal airfoil configuration was the NACA 64-206

airfoil.	 This airfoil was subject to modifications which en-

hance its aerodynamic capabilities.	 The modification was the

sum of two components:

a.	 A continuous binomial additional thickness distribution,

applied to the upper surface, of the form,

d yt ( x )	 = A x el (1 - X)	 (0	 X!51)

where A, e l , and e 2 are variable parameters to be

optimized by multivariable search.	 The quantity A

is given by

Y( 
el +	

E2) 
1	 +	 E 2

A	 = Fl	 , E2

e 1 E2



1t

where y is the maximum additional thickness to the

airfoil.

b. An additional camber distribution of the form,

xC
YC

^.

SYC(x) 
=	 C

x-x
y` [1 - C 1	 (XCS x4 1)

- xc)
E	 ^'

f

C -

f

where 
xc' yc' E3, and	 e4 are variable parameters to

be selected by multivariable search. 	 parameters

denote the location and geometric form of the camber
';f l

of both upper and lower surfaces.--

The seven independent parameters of these equations can

1 be used to generate a variety of curs=:s, many of which, however,

are impractical for airfoils.	 Nevertheless, it is important

to note that the thickness and camber distributions are both

"smooth", so that the slope is continuous everywhere except

}
at the leading and trailing edges of the airfoil. 	 Also, it a

will be found that certain of the parameters can be varied

only through rather _small numerical ranges, in order to retain

important practical features of the airfoil. r

' Results are presented below in three sections, corresponding

to the following specific applications:

1.	 Unconstrained optimization of high-camber airfoil,

2.	 Comparative search optimization of low-camber airfoil, and
1

A 3.	 Constrained optimization of low-camber airfoil.

The principal purpose of the present study is a demonstra-

tion of the versatility and relative efficiency of various

` multivariable search options of the AESOP code in the two-

dimensional airfoil shaping problem. 	 The applications can
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Parameter Minimum Initial Maximum

y 0 .06 .0e
Thickness
(upper)

Cl
.25 1.0 1.0*

E 2 1.0* 1.0 3.0

x_ .1 .25 .9*

Camber _ yc _ 0 005 .04*

(upper
lower) E3 1.0 2.0 3.0*

1.0 2.0 3..0*

therefore be regarded as representative, rather than exhaustive.

This also means that the results obtained can be easily extended

c

	

	 to include other optimization criteria or other values of the

reference airfoil or shaping parameters.,

High-Camber Unconstrained Airfoil Optimization 	 u

To demonstrate the AESOP code in the optimization of the 	 y

general airfoil shaping problem, a seven-parameter modification

to the NACA 64-206 ,airfoil was tested. The performance cri-

terion was the lift coefficient of the airfoil, and all of the

shaping parameters were allowed to vary for this purpose.

Each of the parameters was given an initial value and

4y1	 extreme upper and lower values, as listed in Table I below.

r

'	 TABLE I INPUT PARAMETER VALUES IN LIFT MAXIMIZATION

(*Signifies optimal parameter value.)
y

t	 The optimization procedure was limited to 50 iterations usin g^	 P	 P	 g

uniform random ray and pattern searches. No other constraints

were placed on the aerodynamic or geometric properties of the

airfoil.	
s
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The results of the optimization study can be presented
,

both graphically and numerically.	 The final, optimal airfoi-1

and its associated pressure distribution are shown in Figure 16,

and the terminal values of the parameters are all at their

maximum values, except for e 2 , which is at its minimum allowable
f, value ( see Table I).

^y

The following observations can be made concerning these

f results:

1.	 The thickness and camber parameters have been combined

to give a configuration resembling a flapped airfoil,

which is a standard method of increasing the lift

coefficient.

2.	 The shape of the airfoil is such that separation would

occur near the trailing edge of the upper surface if

leading edge stall did not occur first. 	 The pressure and

lift coefficients are therefore somewhat unrealistic, and

would presumably require refinement using a viscous theory.

3.	 The methods of optimization used are the random ray

and pattern search methods, and no improvements in

lift were obtained after the 19th iteration for all j

parameters are then at their bounding values.	 The r

initial lift coefficient of 1.347 is increased to

2.770, as shown in Figure 17(a). 	 This is the limiting
r

theoretical lift coefficient for the parameter range

studied.

4.	 The adverse pitching moment increases with the lift.

As shown in Figure 17 (b), this variation is nearly

linear, as was found in earlier optimization studies

(References 7 through 9).

For this example, it is seen that practically all performance

improvements occur between iterations 11 and 18. 	 This type of

response will be characteristic of unconstrained optimization
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This portion of the study served to compare the different

methods of optimizing airfoil performance. For brevity the

comparison was done with the emphasis on the upper-surface

parameters, y, E1 and e 2 . Two nominal configurations were

examined, corresponding to approximately 3% and 6% additional

thickness variations. The nominal values of the seven para-

meters, and the corresponding calculated aerodynamic character-

istics of the resulting airfoil at M = .1 and a = 6 0 , are

given in Table II. The geometric appearance of the airfoil,

and the pressure distribution about the airfoil are shown
for the 6% modification in Figure 18 using the parameter

values y = .06, e l = e2 = 1.0.
The following representative optimization criteria were

chosen for the present brief study:

a. Minimize peak pressure C
Pmax

b. Maximize lift (CL)

c. Maximize lift (CL) for a given moment (CM)
.. '

Additional input data relates to the optimization

methods to be used, the number of iterations to be computed,

and the tolerances permitted on any constraints.

t'	 1

a

I'

problems which are solved using effective numerical methods.

Another conclusion of this study is that the constraints can
comprise an important part of the input data. Thus, in this

example, the peak pressure coefficient changed from -5.84 to

-11.01, but if it had been constrained to a more realistic

level (greater than -4.0) a very different airfoil contoury
would have resulted.

Low-Camber Comparative Search
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Parameter Mod.	 1 Mod.	 2

y .06 .03

E 1 i.0 .75
E2 1 -0 1.0

xc .25 .25

yc .005 .005

E3 2.0, 1.75

E4 2.0 2.0

CL 1.347 1.086

Cm -.168 -.094

'

- 

C -5.844 -5.191
Amax

s

y

TABLE II. NOMINAL AIRFOIL CHARACTERISTICS

a. Minimize Peak Pressure

Minimization of the high pressure peak at the leading
df _ 	 _ O

r	 edge of the reference airfoil at M 	 .1 and a	 6	 is a

good illustrative performance criterion, because small

geometric airfoil changes can cause large variations in this

pressure value. Results were obtained using 11 different

§	 optimization methods, all of which cycled through 100

iterations on airfoil modification 1 of Table II. The

results of these calculations are presented in Figure 19,

which show the improvements in peak pressure as a function

of iteration number. Also shown in these Figures are the
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<r^4 final airfoil shape and pressure distributions. It is seen
that several methods converge quickly to the minimum "optimal"

value, while other methods perform poorly. The eleven methods

are ranked in order of final pressure coefficient in Table III,

which sums up the final 'values of Figure 19. Notice that the

best results follow from randomized and one parameter at a

time search methods, while "steepest descent" and "quadratic"

methods give very poor results. It should be noted that the

computational times include compiling several subroutines,

program reassembly, loading the combined Jameson/ASEOP codes

and computer generated plotting. Computation times would be

smaller if an absolute program element were employed, plots

omitted and only the relevent parts of AESOP employed. Never-

theless, the computational times quoted serve to measure the

relative effectiveness of the eleven searches.

A

i
is

i

1

I

f

TABLE III. RELATIVE PERFORMANCE OF OPTIMIZATION METHODS-

Method Amax
^CI

Iterations

Comp. Units
for 100
Iterations

Uniform Random Ray 1.68 32 1105
Creeper 1.73 64 1029

*Davidon 1.77 98 1083

Directed Random Ray 1.85 24 1156

Sectioning (12 Evaluations
on ID Search) 1.86 52 1351

*Steepest Descent (Variable,W): 1.96 81 1112

Sectioning (6 Evaluations
on ID Search) 2.00 42 966

Monte Carlo 2.10 13 290***

*Jacobson (Homogeneous Functions) 4.09 87 682

*Steepest Descent (W = I)- 5.40 98 875

**Quadratic 5.74 59 728

* Methods using lst derivatives

** Method using 1st and 2nd derivatives

** Only ran 15 airfoils
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The large variations in these "optimal" airfoil shapes

emphasize that certain numerical methods are much better than

others in this type of application, and that speed of conver-

gence should be a major consideration in the choice of numerical

algorithm. The ranking of the results is roughly in the same,

order as the computational cost, as measured in the last

column of Table III. Computation times can be significantly

reduced by elimination of the coding associated with searches

not used in a given calculation. This was not done in the

present study however. It can also be noted (Reference 9) that

the five best methods developed airfoils which have two equal

pressure peaks on the upper surface, but which are otherwise

noticeably different. In cases where two peaks are developed the

forward sharp pressure peak tends to be a result of the potential

flow analysis employed. In real flows this forward peak is modified
by viscous effects. ,Once an airfoil having two equal pressure peaks

is developed by the searches further progress in the'Cp minimization

becomes more difficult for only those airfoil perturbations which

simultaneously reduce both peaks provide further improvement.
b. Maximize Lift

The lift coefficient was again chosen as a performance

criterion for airfoil modification 2, and four optimization

methods were compared in a 50 iteration test. The thickness

parameter y was allowed to vary over the interval 0s'y x.06,

and the exponents for the leading and trailing edges were 	 €
required to satisfy .25- :t-'_E !S 1.0, and 1.0.5c 2 :53.0, respectively._

The absence of camber parameters excludes the possibility

of developing a "flap-like" airfoil having a very high lift

coefficient.

(i	 The results of the optimization methods are shown in	
t

Figure 20, and it is seen that the methods produce essentially	 a
equal lift coefficients. All of the methods (directed random

ray, uniform random ray, steepest descent, and creeper) convergedy	
to the maximum additional thickness after 20 to 30 iterations,

t:	

after which no further gains in lift were generated for limiting
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values of the exponents were attained. These values were y .06,

E1 = e2 = 1.0. The final values of lift, moment and pressure
coefficients are as given in Table IV.

Method CL Cm C
Amax

erected Random Ray 1.347 -.168 5.842

Uniform Random Ray 1.342 -.165 5.572

Steepest Descent 1.347 -168 5.843

Creeper 1.347 -.168 5.843

TABLE IV. LIFT MAXIMIZATION BY FOUR NUMEaICAL METHODS

C. Maximize Lift for a Given Moment

The incorporation of Ka constraint function into the

optimization problem adds realism to the problem statement.

In the present case, the desired moment coefficient was chosen

at a moderate	 but representative value, CM = -.1, and

_airfoil modification 1 was taken as the nominal airfoil. The

significant initial airfoil parameters and associated lift,

moment and pressure coefficients have been given in Table II.

The additional thickness parameters were then adjusted

using a combination of pattern and random ray techniques,

with results as summarized in Figure 21. The actual compu-

tation was carried out for the unconstrained maximization of„ w	
the performance index,

J = CL -k (CM - .1)2

so that the degree of violation of the constraint can be

controlled by the choice of the scalar, k. In the present

case, it was given the initial value 10,000. This constraint

<:k
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penalty weighting function value is then internally adjusted

in the AESOP code.

The final values of the significant parameters were:
y.

y	 .0867

e l = .895

E2 = 1.678

all of which are in the mid-range of the allowable values of

the parameters. As shown in Figure 21, the moment constraint

initially causes the lift to decrease, after which a modest

steady increase in lift is achieved. The initial airfoil

shape and pressure distributions have been shown in Figure 18,

and the final results are given in Figure 22, which shows

the strong sensitivity of the pressure di-tribution to small

changes in the parameters. The final values of the lift,

moment and peak pressure coefficients in this example are:



1

.f
r	 . ^: 1.6

1.4 p
eveCL

1.2 Q^ ,..c^...... o O r

1.0

. 2

Constraint
.1 • — p—A- -	 -	 p a— o ^--_

Value, CM	 -.1
E^

}}
t

-

10 20	 30	 40	 50

Iteration, n

F1

FIGURE 21.	 LIFT MAXIMIZATION WITH CONSTRAINED MOMENT

3

5

65,

Y^



t

_	 ..,1

{	 ^;;^

I ^^ §	 ^
j

u



CONCLUSION

The ability of multivariable search procedures in the

solution of two-dimensional non-linear inviscid low speed

aerodynamic shaping problems has been examined. 	 In general the-

non-linear inviscid optimization problem yields results as

readily as the linear inviscid problem, Refe-rence 11.	 Elementary

one parameter at a time and random techniques appear to achieve

better results than organized searches which require derivatives.

Only one organized search out of those employed comes near to

the elementary searches in solution of the present problems.

This organized search is the first-order Davidon method.

It is clear from these results that unconstrained lift

maximization is primarily accomplished by modifications to the

airfoil trailing edge. 	 In particular this is accomplished by

G

l

the generation of "flap-like" airfoils.

When pressure peak magnitude is reduced the more successful

searches define an airfoil which has two equal pressure peaks.

The first peak lies near the leading edge. 	 The second peak is

30% to 40% aft of the leading edge and is of a broader more

gradual nature than that at the leading edge. 	 The forward peak

is both sharper and narrower,.and would be considerably
3

attenuated by the effects of viscosity. 	 Subject to the limitations

of the viscous theory, however, the pressure optimization process r
yields a logical conclusion.

? It is clear that significant modifications can be made to

airfoil using a few carefully selected shaping para-an existing	 g
meters.	 At low speeds three parameters appear to be sufficient

for upper surface shaping, seven parameters suffice for both

upper and lower surface shaping.	 Use of a small number of

-shaping parameters for two dimensional airfoil shaping indicates

that successful three dimensional shaping is quite feasible at
0

the present time.

,.
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