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ABSTRACT

The subject study addressed computational aspects of (1) flutter opti-
mization (minimization of structural mass subject to specified flutter
requirements), (2) methods for solving the flutter equation, and (3) efficient
methods for computing generalized aerodynamic force coefficients in the
repetitive analysis environment of computer-sided structural design. The
principal results of the study are summarized in a companion report. The pre-
sent report contains supplemental data and supporting information on various
aspects of the study including the following:

Details of a two-dimensional Regula Falsi approach to solving the
generalized flutter equation are presented.

The method of Incremented Flutter Analysis and some of its applications
are discussed.

The use of Velocity Potential Influence Coefficients in a five-matrix
product formulation of the generalized aerodynamic force coefficients is
delineated. Options for computational operations required to generate gen-
eralized aerodynamic force coefficients are compared in detail.

Theoretical considerations related to optimization with one or more
flutter constraints are presented as well as practical experience with an
sotual structural design problem.

Expressions for derivatives of flutter-related quantities with respect
to design variables are presented. Included are flutter-speed derivatives
with variable modes.

A bibliography is included.
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SYMBOLS AND DEFINITIONS

diagonal matrix

[ ] square, rectanguiér matrix

[ ]T transpose of a matrix f
| { } column matrix i
| L J\ romatrix ;

] | determinant
[x1] matrix [X] with last column omitted :
: [x] matrix:[X] with last row omitted

A constant multiplying the additive column of design
variable increments (equation 5.17)

an’an+l amplitudes of successive cycles

[A(ik)] aerodynamics matrix (function of k and Mach number),
modalized aerodynamics matrix

[A(p)] aerodynamics matrix (functibﬁ"df p and Mach number)

o~ o 1.2

[A(p)] - SPTA(R)]

[A,] ' j = 0,1,2,3; defines [A(k)] in cubic spline interpolatian

J (equation h.37)_

Aij,‘Aij(k) generalized aerodynamic force coefficients

[a1C1,[AIC(k)] basic aerodynamics influence coefficients (function of k
and Mach number) defined by equation k4.1

[AIC.] : j = 0,1.2.3; defines [AIC(k)] in cubic spline interpolatiorﬁ{

J ' (similar to equation 4.37) ;
[AW, ] j =0,1,2,3; defines [AW(k)] = [AIC(k)][W(k)] in cubic
J spline interpolation (similar to equation L.37)
B constant multiplying the subtractive column of design

variable increments (equation 5.17)

: e
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SO

c

(k17 [iz[m 2+l [A(ik)]]

wing span

. constant

ratio between m; and P.:m, =C, P, (Section 5.2.3)
i it i i“i :

reference chord
flutter determinant
viscous damping matrix

matrix relating control system dlsplacements to structural

. displacements

differentiating matrix

interpolation and differentiation matrix relating slopes
at downwash collocation points to displacements at struc=-
tural nodes (equation 4.13)

interpolation matrix relating translations at downwash
collocation points to displacements at structural nodes
(equatlon 4.13)

extrapolating matrix

frequency, Hz

structural damping

interpolation maﬁrix relating displacements at lumped
aerodynamic load .points to displacements at structural

nodes (equation 4.17)

Jj = 0,1,2,3;- .defines [HA(k)] = [H] [AIC(k)] in cublc spline
1nterpolat10n (51m11ar to equation 4.37)

.j = 0,1,2,3; defines [HAW(k] = [H] (AIC(k)] [W(k] in cubic

spline interpolation (similar to equatlon .37)

transfer function of automatic control system (function
of p)




displacement at aerodynamic load point in deflection mode i

imaginary part of D(x,y)

interpolating matrix
stiffness matrix, modalized stiffness matrix

base stiffness matrix
incremental stiffness matrix per unit design variable i

(1 +ig)[K], stiffness matrix

reduced frequency k = %f—

knots equivalent airspeed

polynomial multipliers used in Lagrange's interpolatiocn
formula ‘

mass matrix, modalized mass matrix

V2
_Zf[M]’ mass matrix
c

base mass matrix
incremental mass matrix per unit design variable i,

total mass associated with the design variables

design variable associated with structural mass (in mass
or weight units)

general design variable

complex root of flutter equétion for a given flight
condition (p = (y+i)k)

aerodynamic lifting pressure'distribution corresponding
to deflec¢tionmodé § :

vii
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q modal degrees of freedom (modal participation coefficients)

{q} modal column corresponding to solution of characteristic ,
equation : i

RD(x,y) real part of D(x,y) .

] modal row corresponding to solution of characteristic :
equation ;

T(x,y) . defined by equation 2.20 ) 3

A speed, flutter speed

VR required flutter speed (mirimum allowable flutter speed: ;

1.20 Vp for commercial, 1.15 Vy for military) f

Vy unsatisfactory flutter speed ;
VD : design speed according to Federal Aviation Regulations

i
[vepic] matrix of velocity potential influence coefficients :
Wl total mass addition associated with the additive column ‘

of design variable increments (equation 5.21)

Lle’ LWQJ"LW3J’ LWhJ row matrices for numerical integration

[wl,[w(k)] = [DX] + ik[DZ] angle-of-attack generating matrix (funcion of k)
(equation 4.16)

[(wr],[WFD] generalized weighting matrices (Section 4.1.2)
x coordinate in a fore-and-aft direction, general variable
Y coordinate in a lateral direction, general variable
{Z}‘ column matrix of aerodynamic forces
=z} - column matrix of displacements of structural nodes
Fﬁ] matrix of modal columns qf displacements of structural
nodes R
a | angle of attack
Bi | general design variable :

viii



in-flight mode:

flutter mode:

hump mode:

Identification of

Oper
Stor

Cor

= Read

]

1

normalized real part of p = (y+i) k
2 .
(1+ig)Vv™, Lagrangian multiplier

Lagrangian multipliers

air density

aerodynamic velocity potential

“circular freguency, rad/s

indicates derivative of a one-variable function
trailing edge

modal column corresponding to a characteristic solution of
the flutter equation

in-flight mode that becomes unstable within the velocity
range considered -

in—flight mode with a minimum demping point within the
velocity range considered

count formulas XYyZ (Section 4.3.2)

total number of operations
number of matrix element words to be stored for easy access

number of matrix element words to be kept in core for
interpolation

number of matrix element words to be read into core for
interpolation when switching from one k interval to the
next

sequence of multiplication options (equations 4.40 - L4.43)

[W(kl)] is input

- [DX] and [DZ] are input

cubic pgolynomial interpolation

“ -~ cubic gpline interpolation

ix
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M:

N:

K:
D:

¢

R

i

|

S
The ifiterpretation of the matrix dimensions used is as follows:

number of modes used in flutter analysis

number of discréte degrees of freedom: structural displaéements
number of lumped aerodynamic forces

number of downwash collocation points

fraction of non-zero elements in rows of [W{k)] and [H]

Al

In addition:

nG:

number of k intervals needed

n(S + 3
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STUDY OF FLUTTER RELATED COMPUTATIONAL PROCEDURES FOR
MINIMUM WEIGHT STRUCTURAL SIZING OF ADVANCED
ATRCRAFT - SUPPLEMENTAL DATA

By R. F. 0'Connell, H. J. Hassig and N. A. Radovcich,
Lockheed-California Company

1. INTRODUCTION

In a companion report (Reference 1) the authors have presented the
results of the present study that are in most direct response to the objec-
tives of the contract. To generate the results in Reference 1, however,
considerable supporting work was performed that has potential significance
for the worker in the field of structural optimization., The present report
summarizes a major portion of that supporting work.

The two-dimensional Regula Falsi approach to solving the generalized
flutter equation is presented in considerable detail including some experi-

ence with a frequency and velocity sweep method for a global search for
flutter frequency and speed.

The method of Incremented Flutter Analysis and some of its applications
is presented.

In a section on aerodynamics a method is presented for the use of
velocity potential aerodynamic influence coefficients in the basic five
matrix product formulation of the generalized aerodynamic force coefficients.
A method to prevent oscillatory non-convergence, "hunting", in the flutter
solution due to cubic polynomial interpolation of the aerodynamics is pre-
sented. Options for computational operations required to generate general-
ized aerodynamic force coefficients are compared in detail,

Section 5 is an attempt to approach flutter optimization with the help
of elementary considerations. The authors believe this section can aid the
worker in the field of flutter optimization in improving methods of analysis.

Practical experience witii an ad hoc method of optimization is presented.
It indicates that the number ¢f modal degrees of freedom required for a mod-
erately complicated arrow wing supersonic transport design may be considerably
higher than the number used in the numerical ‘examples found in the literature.

~> Expressions for the derivatives of&the in-flight modal damping with
respect to the design variables were derived during the study. They are pre-
sented, together with other derivatives, in Section 7. -

The report concludes with a bibliography.
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2. TWO-DIMENSIONAL REGULA FALSI

One of the objectives of the present study is to survey and evaluate
methods of solving the flutter equation which are suitable for repetitive
use in a structural resizing procedure with flutter constraints. Several
methods have been evaluated and the results are presented in Reference 1.
The two-dimensional Regula Falsi approach was chosen for further development
since it was considered most promising after an overall engineering evalua-
tion, including the generation of some numerical data.

In the following sections the basic mathematical formulation of the
method is developed and the generalized flutter equation to which it is
applied is discussed. One section is devoted to frequency and velocity sweep,
a global search method for flutter speed and frequency that was partly devel-
oped as a result of two-dimensional Regula Falsi investigations. Finally the
Lockheed-California Company's two-dimensional Regula Falsi program as devel-
oped for use in a flutter optimization is discussed.

2.1 Basic Mathematical Formulation

The Regula Falsi and Newton's method are related iterative methods of
solving the non-linear equation f(x) = 0. The basic Regula Falsi is shown
in Figure 2-1. The function f(x) is evaluated at two trial values of x,
x3 and Xp, leading to f; and f5. By linear interpolation or extrapo-
lation a new value of x, X3, is found with the associated f,. Next f+ and
fo> are used to generate x),. In a variation of the method, here called
Type II, the interpolation or extrapolation is done with the latest value of
f and the smallest of all preceding f's (Figure 2-2)

The, basic Newton Method is shown in Figure 2-3. The function f(x) and
its derivative f'(x) are evaluated at a trial value x , leading to f
and fi .. The tangent to the curve at X1 is intersected with the abecissa
leading to a new vaiue of x, xp, after which the procedure is repeated. The
derivative f'(x) can be determined analytically or by means of a finite
difference technique. 1In the latter form Newton's method resembles the
Regula Falsi method even more than in its basic form.

Figure 2-k illustrates how a poor 1n1t1al trial x; may lead the iter-
ation process away from the desired solution in the case of the basic Newton
method. The finite difference’ form of Newton's method might have done better,
especially if a relatlvely large value of Ax were initially chosen.

Obviously the Regula Falsi also can have convergence troubles However,
by trying to choose the values of X1 and  xp such that they tend to
straddle the solution these convergence troubles are minimized.

Both the Newton method and the Regula Falsi can be expanded to n
equations with n unknowns, but, even for n=2, a graphical representation



£(x)

£(x)

Find ) from f(xe) and f(xl),
x, from f(x3) and f("xa),
Xg from f(xl_*) and f(x3),
% from f(xs) and f(xu).

Figure 2-1: Regula Falsi - Type I.

Find %3 from f(x ) and f(x )‘

x), from f(x3) and smallest of f(xl) and f(x ).

x5 from f(xu) and smelle;t of f(xl) f(x ) a.nd £(x,);

¢ from f(x ) and smallest of f(xl) f(x ) f(x3) and f(xl*)
(x6 not\ illustrated)

Figure 2-2: Reguls Falsi - Type 1I.
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£(x)
Fing x, from f(xl) and f?xl)'
xy from £(x,) and £(x,),
x, from £(x,) and ;'(x3),
x5 from f(.xh_) and fix,").
= 1«\‘\\\?( |
By %
Figure 2-3: Hewton's Method,

£(x)

Find x, fron f(x.l) and f'(xl),
x3 from f(xz) and f'(xa).

b

Figure 2-4: Newton's Method - Unsuccessful.




of the procedures is almost impossible. During the present contract, it was
found that for n=2 the type of non-conyergence'suggested by Figure 2-k
occurred rather frequently, even whéen the Regula Falsi was used.

In the following the Regula Falsi is presented in an extension to two
equations with two unknowns. 'In this form it is referred to as the .two-
dimensional Fegula Falsi.

Let
F(x,y) =0 and G(x,y) =0 (2.1)
be the two equations with tﬂ;/two unknowns x and y. Let x.,y, (i=1,2,3)

be three pairs of trial values in the vicinity of the solution to the equa-
tions 2.1. Define a plane f(x,y) = apx + bfy +_cf containing the points

F(Xi’yi) (i=1,2,3) and a plane g(x,y) = a X + bgy + ¢, containing the

points G(xi,yi).

The coefficients 8ps bf and cp are determined by the matrix equation:
_ - .Y [
Xy 1 ag F(xl,yl)
Xy ¥, 1 ) Lo == 4 Flx,y,) o (2.2)
1 1 F
"3 T3 7 ) | (x3’y3)J.
In an cbvious shortened notation:
[ w r‘q‘ 3
af 11
{b, b= [XY)7LF, > (2.3)
c F
. fJ L 3
Similarly,
: r Y Y
ag : Gl N
b..»= [XY G, . 2.k)
{v, p= X174, b (2.4)
e G f
=y \ 34
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Figure 2-5billustraﬁes the procedure. The solution x),y) to the
equations f(x,y) =0 and g(x,y) = 0 is taken as the first approximation
to the equatigﬂs 2.1, This leads to the equations

4/ ,"’ :

apX) + bfy)4 ==~ cp . (2.5)
from which:
-1
Xh ] af bf cf
.= - , (2.7)
Yy, ag bg cg o .

The process is fepeated using the pairs x),y), and two of the pairs
X45¥i (i=1,2,3), eliminating the pair that least satisfies equation 2.1

(e.g. the pairkwith the largest values of |F(xi,yi)| + IG(xi,yi)I). Tt
is continued until ¢onvergence is reached.
Charécteristic of the two-dimensional Regula Falsi is:
1. three pairs of trial values are required to initiate the process
2. the two functions, but no derivatives, must be evaluated once at

each step, except at the first step for which the two functions
‘must. be evaluated for three pairs of values x,y

2.2 The Generalized Flutter Eguation

When using the k method the fluter equation can be written as:

1 o 14 1 , '
_[- 2t o s —V-;-%- (K] - o [A(lkn] {q} = 0 (2.8)

One of several possible methods of solving this equation is to deter-

v : +i ‘
mine the characteristic value A = 2535 for several values of the reduced

frequency k =,%§.’ keeping all other quantities in the equation constant

(Reference 2).
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F(x ) f( .')
G(xry), &(xy)

Fx,7,)

it e

G(x3.y3)
/
/
/0
/ X3,Y3
I -

Figure 2-5: Illustration of Two-Dimensional Regula Falsi,
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In the p-k method the flutter equation is

2
Y tu] o® + (a+ig) (K] - 3 oV [AiK)] | {a} = 0 (2.9)
C

and solutions p=(y+i)k are sought for selected combinations of values of
V and p, such that [A(ik] is evaluated for the value of k that defines
the imaginary part of the solution. The p-k method formulation is con-
venient for the inclusion of viscous damping and control system transfer
functiors (Reference 3). This is accomplished by writing:

2
Liulp? + Lplo + (1+1g)IK] - 3oV° [A(ik) - 2H,(p)[Dy] [{a} =0 (2.120)
. |

where Hj(p), j=1,2.., represents transfer functions of the control system
and [Dj] relates control system displacements to the structural displace-
ments; [D] is a viscous dd&ping matrix.

A further generalization'of the flutter equation can be made by making
the stiffness matrix and the inertia matrix functions of design variables
m;, which is the standard prdgedure for structural optimization. 1In addi-
tion, other quantities, such as [D] , [Dj]’ as well as transfer function:

coefficients in Hj(p) may be made functions of design variables.

Equation g.lo implies that the determinant of the square matrix on the
left hand side(is zero and thus, in a very general form, the flutter equation
can be written \as:

.a ) : Y '

jiz‘\;»?fﬁ/ D { (Y+i )k 585V ,p ’mi } =0 .\‘\;\\ ( 2. ll)
The quantity D is called the flutter determinant. For arbitrary valie ag of
the variables it has a complex value. Thus equation 2.11 represents two **%&
equations equivalent to equations 2.1. In principle. thiey can be solved for -
two unknowns for given values of the other varlabjeq

Letting y = and solving for g and V “corresponds to the tradi-

tional k method of solving the flutter equation. Equation 2.8 can be
written in the form ~

[xm - [B(k)]] {a}=o0  (2.12)




4
and can be solved for A =i by the classical power method and improve-

v2

ments thereof.

Solving for (y+i)k corresponds to the p-k method. According to
Reference 3, equation 2.10 for {(small) values of vy of interest is "almost"
an analytic function of p = (y+i)k and it can be solved by determinant
iteration which is basically a one-dimensional Regula Falsi method.

In the k method and the p-k method the flutter speed is determined
indirectly by interpolation between solutions for several values of k or
several values of V. However, eguation 2.11 can be solved directly for the
flutter speed at a given value of thé structural damplng g by letting
y= 0 and solving for the two unknowns k and V.

Solving equation 2.11 for k and one of the design variables, assuming
all other variables fixed, has found application in structural optimization
with flutter constraints (Reference 1). It forms the basis for the method
of Incremented Flutter Analysis which is discussed in Section 3.

Since equation 2.10 actually is not an analytic function of p = (y+i)k
it should be considered as two equations with the two independent unknowns
y and k. Lockheed's program for solving the flutter equation according to
the p-k method has indeed an option to use the two-dimensional Regula Falsi.
During numerical testing it was found to be slightly less efficient than
determinant iteration in that on the average one more iteration step is
required.

The two-dimensional Regula Falsi Program used in conjunction with the
p-k method is a general purpose multi-dimensional Regula Falsi program.
Initially it was used unchanged to solve the generalized flutter equation for
k and V, and for k and m;. Few convergence difficulties were encountered
during an optimization study of an arrow wing supersonic transport when solv-
ing for k and mj. Initially, however, convergence difficulties occurred
erratically when solving directly for flutter speed and flutter frequency.
To gain an understanding of the problem the determinantal flutter equation
for several fixed configurations was written as

D(w,V) =0 (2.13)

and its behavior as a function of w and V was studied in depth. This
led to an 1myrcved version of the two-dimensional Regula Falsi program,
described in Section 2. 4, and had as a by-product a potential global search
method for estlmatlng flutter speed and flutter frequency which is discussed
in the next section.




2.3 Frequency and Velocity Sweep

As indicated in the previous section initial numerical experiments with
the two-dimensional Regula Falsi ran into convergence difficulties when solv-
ing directly for flutter speed and frequency. To gain'an,undersﬁanding of
the problem the flutter determinant, D(w,V), for a fixed configuration was
evaluated for many values of w and V. Various types of plots relating w,
V and the real and imaginary part of the determinant were studied. One type
of plot, the argument {or phase) of the flutter determinant versus frequency

and versus velocity, led to results that may be of value in developing a global

search for approximate values for the flutter speed and flutter frequency.
These approximate values could subsequently be used in a local search by the
two-dimensional Regula Falsi method to determine accurate solutions. ‘Since
in most approaches to flutter optimization it is assumed that approximate
solutions of the flutter equation are available to initiate a new solution
process- this global search method was not pursued in the present study. -The
results obtained thus far are summarized in this section.

2.3.1 Frequency Sweep. It was found that if the complex flutter determinant
is evaluated for a speed V; which is less than the lowest flutter speed the

values of w that satisfy the equation - arg {D(m,Vl)} = g— are good approxi-

mations for the flutter frequencies. Three sample cases are presented and
discussed.

All three cases are for symmetric flutter analyses of the arrow wing
transport shown in Figure 6-1 at a Mach number M = 0.9 and an operating
weight empty (OWE) of 321,000 lbs. Further details regarding structural rep-
resentation, structural and vibrational degrees of freedom, and aerodynamics
are presented in Section 6.1. For all cases the structural damping g = 0.02.
Natural vibration modes, including two zero frequency modes, are used in the
flutter analysis.

Figure 2-6 is the f-g~V diagram for Case 1. It results from an
analysis with 20 modes and variable air density (matched atmospheric
conditions). The flutter frequencies and associated speeds are 2.07 Hz,

318 KEAS and 2.44 Hz, 375 KEAS. Figure 2-T shows the argument of the flutter
determinant as a function of the frequency for several values of V. It can
be seen that only those flutter frequencies are detected that correspond to
a flutter speed above the value of V for which the argument is determined.

Figure 2-8 is the f-g-V diagram for Case 2. It results from an
analysis with 20 modes and a constant air density corresponding to 18,000 ft.
To confirm the true character of the fourth and the fifth mode, solutions for
these modes between L4OO and 420 KEAS were determined at very small velocity
intervals (Figure 2-9). The flutter frequencies and associated flutter speeds
are 1.15 Hz, 542 KEAS; 2.7l Hz, 390 KEAS and 4.21 Hz, 609 KEAS. Figure 2-10
shows the trequency sweep: argument of flutter determinant versus frequency
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for V = 250 KEAS. The three flutter frequencies are detected. Another
flutter frequency f = 1.70 Hz is indicated. It is believed if the f-g-V
diagram were extended to higher velocities a flutter speed corresponding to
1.70 Hz would be found.

The f-g=V diagram for a third case is shown in Figure 2-11. This case
is different. from Case 2 in that only 12 modes are used. This f-g-V diagram
is very similar to the one in Figure 2-8. The key difference is that the
curve corresponding to the lowest flutter speed in Figure 2-8 has an S-curve
above the zero damping line and continues steeply into the unstable region,
whereas in Figure 2-11 the corresponding curve turns stable and becomes a
hump mode. : '

The zero damping points in Figure 2-11 occur at 2.71 Hz and 410 KEAS,
3.05 Hz and 450 KEAS, 1.14 Hz and 552 KEAS and, on the back side of the hump
mode, 2.85 Hz and hSl KEAS.

The frequency sweep corresponding to Figure 2-11 is shown in Figufeﬂz—lE;

‘it is very similar to Figure 2-10. The flutter frequencies corresponding to

the backside of the hump mode and the steeply unstable mode, 3.05 Hz and -
2.85 Hz respectively, are not detected. Additional cases very similar to
Case 3 were investigated with similar results.

A preliminary conclusion is that the i =quency sweep as deflned above
can be used for a global search for flutter frequencies. However, there is
no assurance that all flutter frequencies are detected. Further investiga—
tion may lead to a useful method.

2.3.2 Velocity Sweep. It was found that if the complex flutter determinant
is evaluated for a frequency wy whlch is a\llttle less than a flutier fre-

quency the value V that satisfies the equation arg {D(wl,V)} = FT

o=

is a good approximation for the associated flutter speed.

* Figure 2-13 shows the argument of the flutter determinant for Case 1 as
a function of the velocity for several values of f. The highest value of f
that is still below the estimated flutter frequency according to Figure 2-7
is f = 2.00 Hz. For the corresponding value of w, arg {D(wl,V)} = =
satisféed for V = 319 KEAS. The actual flutte’ speed is 318 KFAS (Fig-
ure 2-6).

is

% =

'vA velocity sweep for Case 2 is shown in Figure 2-14 for f = 2.65 Hz,
a little below the estimated flutter frequency of 2.73 Hy indicated in
Figure 2-10. No intersection with the -90Y argument line occurs. A velocity
sweep for Case 3, for f = 2.70 Hz, is shown in Figure 2-15; f = 2.70 Hz ’'is
a little below the estimated flutter frequency of 2.7T Hz indicated in Fig-
ure 2-12. The intersection with the -900 argument line indicates a flutter
speed of 412 KEAS which compares with 410 KEAS as obtained from the f-g-V
diagram (Figure 2-11)
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It is concluded that the velocity sweep is an uncertain method for a
global search for flutter speeds. Possibly further investigations may lead
to an effective approach.

2.3.3 Conclusion. The frequency sweep and velocity sweep, if made reliable,
would provide a global search method for flutter speed and frequency that

does not require the solution of characteristic value problems and that is
free from the problems of mode following associated with the usual modal solu-
tions. This potential gain Justifies further examination of this approach.

2.4 Description of the Basic Two-Dimensional
Regula Falsi Program

Lockheed-California Company's two-dimensional Regula Falsi program
solves the equation D(x,y) = 0 for x and ¥, given a reasonable initial
estimate of x and vy. '

The two equations implied by D(x,y) = 0 are written as:
RD(x,y) =0 and ID(x,y) =0 (2.15)

The two-dimensional Regula Fa151dprocedure is a separate sub-program
which requires the values of RD(x,y) Yand ID(x,y) to be supplied through
a calling list. RD(x,y) and ID(x ,y)\Qare therefore generated outside the
Regula Falsi sub-program and can ea51ly\be adjusted to the problem at hand.

The iteration process is 1n1tlatedﬂby three pairs of values of x and

Y as described "in Section 2.1. These values are defined as follows:
P

X =Xy 5 ¥ =¥, (2.16)
X, = X, + Ry Ax Y, =¥y ‘ (2.17)
Xg =X 5 Yy =yt RI Ay | . (2.18)

Xg and yn are estimated values of the solution, defined by the;user. FOr
the definition of the second and third trial pair the user must define RI,
Ax  and Ay.

. Two modes of iteration are provided: Mode us (unrestrlcted stepsize)
and Mode RS (restrlcted stepsize), to be defined later. A complete iteration-
may ‘consist of one or more searches in Mode RS only, one search in Mode US,
or combinations of Modes US and RS. If a combination .is used, Mode US
- searches are conducted first, followed by the same number, or one less, of”
Moﬁe RS searches. The user specifies the type of search desired and he
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controls the number of searches by defining the maximum number of iterations
per search and the maximum total number of iterations. ZEach time a new
search is entered the iteration is reinitiated by defining new values of
X1,¥1s equal to the values xp,y, of the search just terminated. The
quantities xp and Yy, are defined in connection with equation 2.21.

The guantities Ax and Ay define a search region. Durihg the entire
iteration the values of x and y are restricted to: E

XO-AX<x<xO+Ax ;

(2.19)
yO-Ay<y<yo+Ay

This restriction is necessary to prevent the iteration process from
being led away from the desired solution. If during the iteration either x,
or Yy, or both exceed the boundary, the corresponding x or y that is in
violation of the boundary is replaced according to a formula that depends on
the mode of iteration, as discussed in a subsequent paragraph. Note that the
boundaries are based on x5 and yp and do not change when a new search is
initiated.

The Type II Regula Falsi is used (Figure 2-2). Assume that the trials
xi,yi, X410 yi+l’ Xipos Vigo have led to the next iterated value xi+3, yi+3.
Then for the next iteration step xi+3, yi+3 is used together with those values

of xj,yj(j<i+3) that correspond to the smallest two values of the quantity
T(x ) = T (x + T_(x which is defined by equation 2.20.

LD(xj’yj) -€
T (x,,y.) = the larger of | ——%—+—|~10 ~and 03 L = R,I (2.20)
PR | (% .

LD\xo,yo)

Qhere 10-8 is a convergence criterion (equation 2.25).

For this purpose the program retains the values of RD and ID correspond-

ing to the smallest two values of T(x ,yj), and the associated x pairs as

y

J 373 =

they occur during one search., Whenever a smaller T is encountered it replaces
the larger of the two that were retained. When a new search is entered the

%X,y corresponding to the smallest T of the previous search become the xo,yb
of the new search.

The distinction between the two modes of iteration, RS and US, lies in
the stepsizé. Stepsize is defined by

6x = X (2.21)

xi+3 = m L3 By = yi+3 = ym

where xm,ym correspond to the smallest value of T during the current search.
' 23
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In Mode US (unrestricted stepsize) there is no restriction on 6x and
8y except that equation 2.19 must be satisfied. In mode RS (restricted
stepsize) 6x and &y are restricted according to the equations:

éx € R.R Ax 8y < R R Ay

S'I S'I (2.22)

The user defines the value of RS.

When equations 2.19 and/or eguations 2.22 are violated, corrective
measures are taken. Several possibilities are recognized and treated as
follows: '

1. Mode RS and one of the equations 2.22 is vioclated; e.g.

x> RSRIAX. Then xi+3 resulting from the last Regula Falsi
step is replaced by Xi+3'
X - X
- i+3 m
=x_ + + R R.Ax (2.23)
i+3 m |xi+3 - m| S

Similarly for Y.
2. Mode RS and one of the equations 2.19 is violated. The quantity

in Violation, say Xi+3’ is replaced by ii according to eqgua-

+3

tion 2.23. If X, still violates equations 2.19, the iteration

i+3

is terminated.:
3. Mode US and one of equationézé.IQ is violated. The quantity in

violation? say X4 is repL?g?d by ii+3

- X
= = m
X343 vy 2R Ax (2.24)
m ;
Ir §i+3 still violates eqﬁations 2.19, the iteration is
terminated.
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There are three further conditions under which the iteration is
terminated:

1. A converged solution is obtained. The convergence criterion is:

: -
Doonvergea < 10 RD(x4.y,) and ’

e (2.25)
i IDconvez;ged < 10 ID(XO’yO)
where € .is defined by the user.

2. There are two consecutive occurrences, or three occurrences in total,
of either x or y exceeding the boundaries defined by equa--
tion 2.,19. '

3. The number of iterations exceeds the total number of iterations
permitted as specified by the user.

If the iteration is terminated without convergence either the entire
calculation is terminated, or a recovery module is entered. At present there
X is one recovery module, called the Z-module, which is described in the next
' section. S

i

i
2.5 The Z-Module

The Z-module provides a recovery procedure for the two-dimensional
Regula Falsi program if the iteration is terminated without convergence having
occurred. It is specifically designed to provide recovery under the circum-
stances encountered in an automatic resizing program with flutter constraints.
It can be used, however, where the solution for a basic configuration is known
and the solution for a modified solution is sought.

Let X stand for any combination of the variables x and y. Let

B

DB(X) 4+ AD(X) = 0 the equation for the modified configuration; XB is the

known solufion of DB(X) = 0  and XO is the estimated solution of

D_(X) = 0 be the determinantal equation for the base configuration, and

DB(X) + AD(X) = Of

Assume thét solving D_(X) + AD{X) = 0 with X_ initiating the itera-

B 0

tion led to a termination without convergence. The Z-module then geﬁerates

]
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a new determinantal equation DB(X) + Z AD(X) = O and first trial value

X=X +Z(XO—X

B Z 1s a fraction smaller than unity and in effect the

B)'

Z-module reduces the difference between the modified and the base configura-

tion. If XO is chosen equal to XB, a convenient choice in flutter optimiza-

tion, XO = XB tends to be a better first trial value for D

than for DB(X) + AD(X) = 0.

p(X) + ZAD(X) = 0

The first value of Z is Z = 0.5. If this does not lead to convergence
Z = 0.25 is used. In general 2 = (O.S)n, where 1n is the number of succes-

i}

sive occurrences of non-convergence. The value of Z at which convergence
occurs is identified as ZC and the corresponding solution as XC. New trial

values for the original problem DB(X) + AD(X) = 0 are obtained by linear

extrapolation using XB and XC.

X =X, +——= ’ (2.26)

If non-¢onvergence occurs again, the design condition at Zy becomes
the new base design:

B

(W)

(x)

DB(X) + 7, AD(X) | (2.27)

arid  AD(X)

(l—ZC)FAD (2.28)

and n 1is set at n = 1 and 2 is reset to 0.5.

The reduction procedure is repeated until ancother value of Z at which
corivergence occurs is found. At this point the three known solutions are
used in obtaining new trial values for Z = 1.0.

The above iterative process is continued until either convergence is

obtained at 2 = 1.0 or until n = My where

Ny = maximum allowable successive convergence failures.
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2.6 Numerical Examples

Many numerical examples have been used to develop and test the two-
dimensional Regula Falsi Program and the Z-module. The example in table 2-1
is chosen to illustrate the program. The final solution can be seen. to lie
outside the search region. The initial triai iSimade equal to the base
solution. The first search is terminated because '9f excessive violations of
the search limits. The % module sets Z = 0.5, cutting the difference between
the base problem and the new problem in half. When again there are more than
the allowed number of search limit violations Z 1is reduced tc-:25 for
which value convergence occurs. This solution and the base solution are, used
to generate an improved initial trial value for the new problem (Z=1) which
leads to a converged solution.

3. INCREMENTED FLUTTER ANALYSIS

Incremented Flutter Analysis is a useful tool that can enhance several
methods of optimization with flutter constraints (Reference 1). It is a
method for directly solving for the value.of a design variable that satisfies
a given flutter constraint. In the original presentation of the method
(Reference 4) this basic idea was coupled with a formulation that led to a
jarge reduction of the order of the characteristic value problem to be solved
without losing any of the accuracy implied by the original order. This
formulation is useful for problems with a small number of design variables,
such as the determination of external store parameters satisfying the flutter
speed requirements. When the number of design variables is large, and when
they can not easily be isolated in the mathematical representation of the
problem (e.g., if problem is modalized) the reduction of the order of the
characteristic problem to be solved becomes impracticable. Such is often the
case with flutter optimization. In this section the formulation of
Incremented Flutter Analysis for general application in flutter optimization
programs is presented, together with applications.

It should be noted that the essence of Incremented Flutter Analysis was
recognized elsewhere (Reference 5).

3.1 Form of the Flutter Equation

The characteristic flutter equation can be written as

D(g,v,k,v,mi) =0 (3.1)
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INPUT: Allowable Iterations per search = 7, Allowable Iterations per Z = 10
Allowable Iterations per run = 40, Xy = 2.89, Yo = 453, Ax = .2, Ay = 20

-3
= .2, R .5, = . = . N =
R 2 5, € =10 Xy 2.89 Y 453
RESULTS:
Iteration :
< COMMENTS
Number X Y RD ID Z
1 2.890 453,00 -0.8585 1.1415 1.00 Initial Trials: x, = xg:, Y, =¥,
2 2.930 453.00 -1.1542 1.3529 x, = X, * R A%, ¥, = ¥,
;3 2.890 | u457.00 | -0.8343 | 1.085L Xy = Xg» ¥3 = ¥ * RpAY
k4 2.818 465.00 -0.5746 0.5006 Upper y search limit violated.
5 2.738 k57.00 -0.4335 0.1322 Lower x and y search.limits violated.
,v(Discontinued due to excessive search
limit violations)
6 2.890 453.00 [ -0.8852 1.1148 0.50 Initial trials are the same as at
7 2.930 | 453.00 | -1.0788 | 1.k4557 7 = 1.0 since x, = xp and ¥, = ¥y
8 2.890 L57.00 -0.8186 0.9703
9 2.810 k49,00 ~0.7219 0.41k1 Lower x and y search limits
’ violated
10 3.076 L457.00 ~1.9066 0.8490 Upper y search 1limit violated.
(Discontinued due to excessive search
limit violations)

Table 2-1: Numerical Example of Two-Dimensional Regula Falsi Iteration Including
the Use of the 7 Module
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RESULTS

| 62

I;z;gz;9n* x v RD D s COMMENTS
11 2.890 453.00 -0.8511 1.1489 Initial trials are the same as at
12 12.930 453,00 -0.8566 1.7888 Z = 1.0 since ¥, = ¥z and Yo = Vg
13 2.890 457.00 -0.6953 0.8338
1k 2.926 L55,00 -0.0107 0.7615 Upper y search limit violated.
15 2.906 470.67 0.0958 [-0.1110 =
16 2.904 469.09 -0.0197 0.0128 z
17 2.905 469.32 0.0007 0.007 Converged for Z = 0.25.
16 2.949 518.27 =1.2027 =0.7973 x and y obtained by linear extra-
219 2.989 518,27 1.5326 0.h762 polation using Xgs¥p and xl7, le
20 2.949 522.27 -0.5506 [-2.0998 ‘
21 2.968 517.68 -0.054k2 |-0.0586
22 2.968 517.84 -0.0055 0.0171 :
23 2.968 517.88 0.00008 | 0.000k4 Converged at Z = 1.00
Numerical Example of Two-Dimensional Regula Falsi Iteration Including

Table 21:

the Use of the Z Module (Continued)




The quantity D 1is called the flutter determinant and has a real and
imaginary part. Thus equation 3.1 represents’ two equations. For this
discussion D is considered a function of the etrunuural damping g, the

decay rate vy , the reduced frequency k, the veloc1ty V. and the design
variables mj (i=1-m).

Since equation 3.1 represents two egnations it can be solved for two
unknowns. In the traditional %k method of solving the flutter equation
Yy = 0, m, is fixed and for a series of values of k equation 3.1 is solved

for g and V. In the p-k method of solving the flutter equation g and mj
are fixed, and for a series of values of V +the equation is solved for vy
and k.

Letting v = 0 and giving g and m; fixed values, equation 3.1 can
be used to solve directly for the flutter speed and the associated reduced
frequency. This use of the flutter equation has gained importance in
connection with structural optimization with flutter constraints.

Incremented Flutter Analysis is characterized by the addition of mj
to the variables of which D is a function. Thus the meaning and use
of the flutter equation is generalized. When in equation 3.1 the values of
g, Y, V and all but one of the my's are fixed it can be solved for the
value of k and the variable mj. If a real solution exists, the value of the
unknown mj is found that, together with the fixed my's defines a structure
that at the given speed and structural damping exhibits the giwven rate of
decay. If y = 0, the given V 1is the flutter speed, and thus a structure
has been defined with a preset flutter cspeed.

3.2 Application to Finite-Difference Technique

Most methods of structural optimization with flutter constraints require
the evaluation of the derivatives of the flutter properties with vespect to
the design variables. Analytic expressions for the flutter-speed derivative
(Reference 6) and the derivative of the logarithmic increment (Section T7.2)
have been derived and applied successfully. However, derivatives cobtained by
the finite-difference technique have also been used successfully
(Reference T). This section shows how the forward finite difference quotient
of the flutter speed with respect to a design varisble can be determlned with
the help of the Incremented Flutter Analysis. Technique..

Let {mi} define a structure with a known flutter speed V. Define &
perturbed structure by {mi} , where {mi} is obtalned’from {mi} by
increasing the single jth element by Amj. Assume‘this.dhange ifAcreases the

flutter speed an amount AV,
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Write the flutter equation as: ﬁj x
D(g, Ys k, V, (W}, Ami) =0 : (3,'2),
Let y = 0, g * structural damping, V the original flutter speed and
{ﬁi} constant. BSolve for each Ami (i = 1»n) separately, and the associated
k value {which is of interest only for. checking purposes). Eaéh Ami found

is the amount that must be added to the ith’design variable in the perturbed
system such that each Ami by itself restores the flutter speed to its

original value. By definition

(Am.);_y = - Am, * (3.3)

The values of Am.i thus determined can be used to approximate derivatives

of the flutter speed with respect to the design variab;@s.
iy , (3.4)

This requires the numerical evaluation of AV. For certain procedures, only
normalized flutter speed derivatives are needed. Let the subscript R refer
to a reference design variable. Then:

v
LI i (3.5)
om, v Am, '
+ norm BmR 1

and there is no need to compute AV.

3.3 Determining the Magnitude of a Resizing Column

When raising the flutter speed from an initial, deficient value to the
required value, and in several methods of structural optimization with
flutter constraints, it is necessary to determine the magnitude of a given
design variable distribution column such that the flutter equation is
satisfied at a given flutter speed.

Incremented Flutter Analysis provides a technique for determinlng this
magnitude directly, without need of generating several solutlons to be used
in an interpolation procedure.
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The statement of the problem is: given a structure with an unknown

.flutter speed, defined by {mi} R and a distribution of design variable

_increments {Ami}, determine a scalar C such that the structure defined by

{mi} + C {Ami} has a given flutter speed V.
The solution is found by writing equation 3.1 as:
D (g, ¥s ks V, {m ], C{am.}) = 0 ‘ (3.6)
and solving for C and k.

An extension of this procedure can be used to determine the relative
magnitude of two resizing columns as might be needed in a one-dimensional
minimization routine such as the one described in Section 6.6 of Referpnce 1.
For this purpose equation 3. 6 is written in the form:

Digs ¥s ks Vs {m .}, C {am }, C{Mm.}) = 0 (3.7)

Let y =0, and g, V, {mi } . { Aﬁi } and {Ami} be fixed. For

successive values of C the corresponding values of C can be determined
such that the flutter speed has the desired value. The one-dimensional mini-
mization then consists of determining the value of C .for which

AM = CZAm + CZAm “is minimum.

3.4 Concluding Remarks

The finite difference technique using Incremented Flutter Analysis has
has been used successfully for approximating flutter speed derivatives in
the numerical evaluation performed for the method of optimization described
in Section 6.6 of Reference 1. It was concluded, however, that as the number
of design variables with respect to which the derivatives need to be
determined increases, the analytical approach to determining flutter speed
derivatives (Reference 6) becomes relatively more efficient. Nevertheless,
the technique described may be useful in specilal cases.

Determining the magnitude of a column of design variable increments such
that a flutter speed is exactly satisfied’ can be a useful tool in all methods
of optimization dlSCUSSQd in Reference 1, except the penalty function method.
It eliminates the need for more than one solution of the characteristic
flutter equation and subsequent interpolation.
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4. AERODYNAMICS

One of the objectives of this study is to determine general, efficient
and accurate computational forms in which to cast the unsteady aerodynamic
parameters necessary for use in structural resizing required to meet flutter
constraints., This effort, however, did not involve evaluation of gerodynamic
theories. A general discussion and conclusions are presented in Reference 1.
Additional discussion is presented in this Section.

Reference 1 indicates that an aerodynamic theory based on the use of the
aerodynamic velocity potential leads to the same basic five matrix product
for the generalized aerodynamic force coefficients as the kernel function
approach of Reference 8. Section 4.1 presents more detail.

The problem of "hunting" when using aerodynamic matrices, interpolated
for arbitrary values of k = %;, may occur if the interpolation is piecewise,

i.e., each interpolation covers only part of the range of -k +values. This
problem is mentioned in Reference 1 as related to jumps in the derivative
when the third degree polynomial interpolation formula is simply differ-
entiated. Section 4.2 discusses a form of "hunting" which can occur even if
no derivatives are used. "

As part of the present study an effort was made to come to definitive
conclusions regarding details of an efficient procedure for computing the
generalized aerodynamic force coefficients for use in the repetitive calcu-
lations required in a structural weight minimization procedure. Formulas
for the number of computational operations needed to generate the aero-
dynamics matrix have been derived and sample calculations have been made.

This work is summarized in: Section 4.3.

4.1 The Use of Velocity Potential Influence Coefficients

A generally useful formulation of the unsteady aerodynamic forces is one
in which a matrix of aerodynamic influence coefficients, [AIC(k)], expresses
lumped aerodynamic loads at an aerodynamic loads grid in terms of angles of
attack at downwash collocation points:

{z} = [AIC(k)] {al (4.1)
Such a matrix can be obtained regardless of which aerodynamic theory is used.

Two types of theoretical approach are widely used: one is based cn the
use of the acceleration potential, the other on the use of the velocity
potential. Three methods of computing unsteady aerodynamic forces are
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commonly used: subsonically, the integral kernel formulation of Reference 8
and the finite element approach of Reference 9, both based on the use of
the acceleration potential; supersonically, the supersonic mach box approach
of Reference 10, which is based on the use of the velocity pgtential. ‘

Recently the velocity potential approach has received increased attention
as a common basis for the computation of subsonic, transonic and supersonic
aserodynamics (References 11 through 15), and the question arose whether
a formulation in terms of velocity potential influence coefficients, VPIC,
might have computational advantages when used in an optimization procedure.
Therefore in the following, theoretical expressions are developed to express
the generalized aerodynamic force coefficients in terms of the five matrix
product of Reference 1, assuming velocity potential influence coefficients
are available.

4.1.1 Basic equations. The generalized aercdynamic force is defined by

Ai,j = ff pj hidxdy ‘ (4.2)

where ©psy 1s the lifting preSere distribution associsted with the jth mode
and hi the displacement associated with the ith  moge.

The pressure distribution can be expressed in terms of the vélocity
potential ¢. The linearized Bernoulli equation gives:

= e ‘ ) + 1 ’
. 2 (Sﬁ- ik¢ (4.3)
where k is the reduced freguency: k =-%§.

Thus equation 4.2 becomes:

Aij = -EJﬂ%%j + ikq;j) hy dxdy (W)

Direct integration of equation 4.4 gives:
b/2 T.E. T.E.

; ' 3

A,, =- =2 ik¢; h.dx + n. =9 dx b ay (k.5)
1 1

v/2 L.E. L.E.

3k B ' =

- ‘2 i

Jrras e e pary gy

UM Mol S

T e e




CARR ok AT o e S

Integrating the term with 3¢ by parts gives:

29X
b/2 T.E.
= e i +
A5 2 k¢, hydx (hi¢j)T.E.
. -b/2 L.E.
(4.6)
T.E. o,
- ¢j 5;— dx dy

L.E.

In performing the integrations in equations 4.5 and 4.6 by numerical
integration one may consider first doing the chordwise integration at
several stations 'y = constant along the span, and then doing the spanwise
integration. In following this procedure it is found that inconvenient matrix
formulations result in which mode-dependent and mode-independent parts are
intermixed. Therefore the numerical integration is formulated as an area
intregation. Thus equation 4.5 is written as:

h/? T.E. b/2 T.E. 3¢
- N J
Aij = -2 J f 1’?“’3 hidxdy -2 j f h, 5 dxdy (4.7)
-b/2 JL.E. -b/2 JL.E.

and equation 4.6 as:

rb/2 T.E. *b/2 T.E. Bhi
= - 1 + [
Ajy 2 ik¢. h dxdy + 2 ¢j 55— dxdy
. : -b/2 JL.E.

J-b/2 JL.E
(4.8)
[o/2
-2 (hi6:)p g 9
-b/2

Equation 4.8 has one more term than equation 4.7 but has the advantage
‘chat the integrand’does not become infinite at the leading edge.

4.1.2 The two-term integration. Written in a form for numerical integration
equation 4.7 becomes:

AiJ'= -2ik [le [hi] bj: -2 |.w2_|' [hi] ::%1: (4.9]
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where LWlJ ahd LWQJ are integrating matrices associated with intggration
points at which hi is defined. The option that LWIJ # LWQJ is included

to provide the possibility of adjusting the integrating matrices to the shape
of the functions to be integrated.

Let hy ©be defined at y=constant stations at which ¢; is defined,
but assume the general case that h; and §; are defined at different
points in the x direction.

Let [IPHX] %be an interpolating matrix and [DPHX] a differentiation
9¢.
matrix such ¢j and 3;3 at the integration points are defined,

respectively, by

[ TPHX ] {¢j} and [DPHX] {¢j} ‘ (4.10)

Substituting the expressions 4.10 in equation 4.9 and interchanging the
W and h matrices gives:

Aij =lhiJ -2ik [wl] [1PHX] -g [WZJ [DPHX ] {¢j} (4.11)

which, with -2 [wl] [1PHX] = [WF] and -2 [wg] [DPHX] = [WFD], corresponds

to equation 5.11 of Reference 1, generalized to non-coinciding hi and ¢i
stations. The velocity potential can be expressed as the product of a matrix

of velocity potential influence coefficients and an angle-of-attack
distribution. i :

{¢j} = [vpic] {aj} (4.12)
The angle-of-attack distribution can be related to the structural displace-

ments, {z}, by a differentiating matrix [DX], generating %% , and an

interpolating matrix ik[DZ], generating the frequency dependent equivalent

of

<i|eoe

{uj} = [[DX] + ig [DZ]] {zj} (h.13)
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Combining the equations 4.11, 4.12 and 4.13:

Ay = LhiJ -2§g?[wl] [IPHX] - 2 [WEJ [ppHX] | [VPIC] [[DX] +‘ik [DZ]] {zj}

(4.14)
Let [AIC] = |-2ik [wl] [TPHX] - 2 [w2] [ppHX] | [VPIC] (k.15)
[w] = [DX] + ik [pz] (4.16)

LhiJ is obtained from the structural displacement inJ by interpolation:

2] 2] 07

With equations 4.15, 4.16 and 4.17 equation 4.1L4 becomes:
A, =|= | 5] [AIC] (W] (2.} (4.18)
ij i | 3 *
For several modes zi and 'Zj this bec~mes

(a;;1 = 1217 (0" (azC) (W] (2] (4.19)

This equation is identical to equation 5.12 in Reference 1 and the [AIC]
matrix can be evaluated by any suitable method.

4.1.3 The three-term integration. Write equation 4.8 in a form for numerical

integration:
A.. = -2ik Lw J [h-] {$p.} + 2 [W J oh, {¢.} +
ij 1 i 3 3 J

. 0X

(4.20)

-2 Lw J h. ¢
LB 1p.E dp. g,

3T
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After interchanging the W and h matrices equation 4,20 beccmes

oh, -
= _o3 Y
Ay = -2ik l_hiJ [wl] {¢j} +2 [3XJ [W3J {¢j} +

(4.21)
-2 |n, [w ]{4, }
L ]‘T.E.J LR
As before {¢j} is replaced by [IPHX] {¢j},
Similarly:
¢ ) ,
{JT.E.} LEp] teyh: (k.22)

where [EP] extrapolates {¢j} to the trailing edge.

l%{lJ is formed from I_hi_l with the help of a differentiating matrix @HX]

~<?:L%%X ling ) [hiJ [pHx]” : (4.23)

and Lhi J is found”%y extrapolation similar to equation L4.22.
T.E ‘

I_hiT . J = I_hi_] [EH]T (4.2k)

Combining equations 4.21 through 4.24 the expression

Ay = l_hi_l -2ik [wl] [1PHX] +2 [DHX]T [w3] [IPHX] +

t

- 2 [z [Wn] (el | (4, (4.25)

is obtained.
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[AIC] = | -2ik [wl] [IPEX] +2 [DHX]T [W3J [IPHX] +

(4.26) !

T !

- 2 [&M] [wh] [ep] | [veIc)

and following the procedure that led to equation 4,19, again an equation é
is obtained that can be written as ‘
T T ;

[Aij] = [z]” [H] [AICc] [wW] [Z] (4.27) \

4.1.4 Conclusion. It has been shown that rather simple matrix equations ;i
relate the generalized aerodynamic forces to velocity potential influence f
coefficients. Whether equation 4.7 is followed or equation 4.8, the same
expression for the matrix of generalized aerodynamic influence coefficients is
found when using aerodynamics based on the velocity potential as is found
when using the integral kernel function approach (Equation 5.12 of

Reference 1).

-

G

4.2 Hunting Due to Piecewise Interpolation

It is.generally accepted that when the matrix of generalized aero-
dynamic force coefficients, [A(k)], is determined for a discrete set of
values, kg , of the reduced frequency, interpolation is adequate for
approximating [A(k)] at arbitrary values of k. One method of interpolation,:.
used successfully at the Lockheed California Company, is the cubic
polynomial. ‘

For the cubic polynomial Lagrange's interpolation formula is considered
to be most efficient since it expresses [A(k)] directly in terms of its

value [A(kz)] , -at discrete values k £ =1, 2, 3, 4:

2' ?

[A(k)]'= ifﬂg(k) [A(kg)] (4.28)

=1




where 5?l(k) is defined such that:

) k-k3) (k'kh)

(
' (4.29)
2) (kl_k3) (kl'ku)

1\b]

{k-k
Ql(k) = (kl_k

Cyclic substitution leads to 22, 23 and .Q’h.

The interpolation formula 4.28 is considered most accurate for the

interval k2 < k < k3. For the interval k3 < k < kh the index £ must be

increased by one; for kl <k < k2 the index must be lowered by one.

Reference 1 indicates that direct differentiation of equation 4.28 leads
to jumps in the derivative of [A(k)] at all values k =k, if the cubic

polynomial formula is reindexed as k moves from interval to interval. The
jumps in the derivative can be avoided if the differentiation precedes the

interpolation. This is accomplished by evaluating [A'(k)] at kl and

determining [A'(k)] - for arbitrary k from [A'(kg)] in the same way as
[A(k)] is determined from [A(kz)]. These jumps in the derivatives of the

aerodynamics matrix could lead to oscillatory non-convergence ("hunting") cof
the structural resizing if the resizing procedure used requires the deriva-
tives of the flutter speed. The problem does not occur if one interpolation
formula is used for the entire k range or if special provisions for con-
tinuity are made at the initial set of discrete k values: kl' The latter
is the case if cubic spline interpolation is used.

A possibility of hunting exists that is not related to jumps in the wvalue

R.of the derivative. It has occurred while solving the flutter equation accord-

ing to the p-k method (Reference 3). In the p-k method a modified one-
dimensional Regula Falsi is used to solve for the stability roots p = (y+i) k
at constant velocity (see also Section 2.2). In the Lockheed-California
Company's p-k method computer program, cubic polynomial interpolation is
used for the aerodynamic matrix. As the value of k moves from one interval
to the next during the iterative solution process, two different aerodynamic
polynomials are actually used in solving the p. This can lead to hunting,
in which the solution is sent back and forth between two adjacent k inter-
vals. This type of hunting has been overcome by allowing k to take values
that lie some distance into an adjacent interval without changing the inter-
polation formula. Thus the interpolation formula for the 32-k3 interval

Lo
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is actually used if k2 - € <k« k3 + €. Only when k moves out of this

modified interval is the interpolation formula for the modified adjacent
interval used. Thus for a k range equal to 2e, straddling each kg, the
aerodynamics matrix is not uniquely defined. Actual experience with the

modified interval is restricted to e equal to half the adjacent interval.
This has not led to practical difficulties.

4.3 Comparison of Options for-Forming
the Aerodynamics Matrix

The matrix of generalized aérodynamic force coefficients was formulated
in equation 4.19 as:

T

[a(x)] = (217 [8]T [AIc(k)] [W(k)] (%] (4.31)

where [AIC(k)], a function of the reduced frequency k = %%- and the Mach

number, is the core of the aerodynamics. It is independent of mode shape and
can be evaluated by any suitable aerodynamics method. Its elements are basic

aerodynamic influence coefficients defining lumped aerodynamic forces {Za}

at an aerodynamic force grid in terms of the angles of attack at downwash
collocation points: :

{z,} = [AIC (k)] {al} .

The matrix. [W(k)] = [[DX] + ik[DZ]] relates the angles of attack to the

structural displacements ‘{z}. It is independent of mode shape.
The matrix [H]T is independent of k and of modeyshape, and distrib-
utes lumped aerodynamic forces and moments to the structural grid.

The matrix [2] is the matrix of modal columns in terms of the struc-
tural displacements {z}.

The matrices [AIC(k)], [ﬁ]T and [W(k)] are constant during an opti-

mization procedure. They will be used many times during the design process

of an airplane with a given external configuration. It is therefore advan-~
tageous to form these matrices in a special aerodynamics: computer program.
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Each time during an optimization procedure that a remodalization takes
place [A(k)] must be recomputed. Depending on the dimensions of the
matrices in equation 4.31 it may be more efficient to compute the triple
matrix product

0 . v
(HAW(k)] = [H]™ [AIC(k)] [w(k)] (4.33)
in the aerodynamics program, or to perform one or both of the multiplications
[H]T and [W(k)][{Z] in the optimization program.
In this section the possible sequences of multiplication in edua-

tion 4.31 in the form given, and with [W(k)] replaced by [DX] + ik [DZ],

are examined and compared. They are identified as Options Hla, Hlb, HZ2a.
H2b, H3, Hba, Hib and H5 and they are defined in Section 4.3.2. In all
options it is assumed that thu derivative of the aerodynamics matrix with
respect to k is needed. E

Since the aerodynamics matrix and its derivative need to be evaluated
at arbitrary values of k, interpolation is necessary. Two interpolation
options are considered: cubic polynomial and cubic spline.

For cubic polynomial interpolation the value of the aerodynamics matrix
[A(kl)] and its derivative [A'(kl)]’ evaluated at discrete values k =k,

are used in a Lagrangian interpolation formula:

L
[AG)] = > 2, (k) [Alk,)] (4.34)
g=1
and
L
[A'(k)] = z 2, (k) [A"(k)] (L.35)
=1
where:
(k-k,) (k-k )(k—kh)
Z_ (k) = 2 3 ; (4.36)
1 (k,-k,) (k) =) (5, =Ky )
and cyq}ic substitution leads to 3?2, 5?3 and 5?h‘
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For cubic spline interpolation the expressions for [A(k)] and [A'(k)]

[f(k)] = [Kb] + [Ki] (k=k,) + [Ké] (k-kl)Q + [Ké] (k_k2)3 (5.37)

are:

and

[A'(k)] = [Ki] + 2 [Ké] (k=k,) + 3 [Xé] (k-kl)e (4.38)

For option H3, where fAIC(k)] and [W(k)] are input as the product

[AW(k)] ér[AIC(k] [W(k)] and option HS, where [H]T,»[Aic(k)] and [W(k)]
are input as the product [HAW(k)] = [H]T [aTCc(k)] [W(k)], the A quantities
are obtained from corresponding AW anrd HAW quantities which in turn are
obtained from all KW(kl) and HAW(k

L

For options Hlb, H2b and HYb, where [DX] and [DZ] are input, rather
than [W(k)], the formulas equivalent to equations 4.37 and 4.38 are more
complicated as shown in Section k4.3.2.

) according to cubic spline theory.

The matrices [A(kz)] and [A'(kl)] in equations 4.34 and 4.35, the
matrices [Kb] , [Ki]v, [Ké] and [Ké] in equatidns .37 ahd 4,38 and the

A matrices used in Options Hib, H2b and H4b are formed in the flutter opti-
mization module by appropriate pre- and postmultiplications, depending on -
the option. Always, however there is an aerodynamics input recognizable
that is related to the set of discrete k values kg and that is generated
outside the flutter optimization module. .

4.3.1 Basis for Comparison. The count formulas in Section 4.3.2 are
developed according to the following rules. Accuracy is not used as a basis
for comparison. For given dimensions of the matrices used to form the gen-
eralized aerodynamic force coefficients matrix the accuracy of the aero-
dynamics depends on the theory used, including the method for integrating or
lumping the pressures and interpolating and differentiating the structural
displacements.

1. Only the computational requirements for repetitive calculations
inside the.flutter optimization module are determined. Preparing
the input for the flutter optimization module is non-repgtitive and .
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its impact on the total optimization is small. Note, for example,
that interpolation by cubic spline requires considerably more com-
putations outside the flutter optimization module than does inter-—
polation by cubic polynomial.

2. The number of computational operations associated with matrix-matrix
multiplications and scalar-matrix multiplications are counted. 1In
general one computational operation is one multiplication followed
by one addition. ©Since an addition takes only about 1/10 the time
of a multiplication, in the few places where only multiplication
occurs, the multiplication is counted as one operation. Additions
are not counted when occurring alone. Generating one element of a
real matrix product requires N operations if N 1is the number of
columns in the premultiplier. Generating one complex element of the
product of a real and a complex matrix takes 2N operations. One
complex element of the product of two complex matrices takes LN
operations.

3. Matrices [H] and {[W(k)] , both with .N columns, may be sparsely
populated. This enters into the computational requirements by
indicating that each row in these matrices has ¢N non-zero ele-
ments. Multiplication by zero is assumed to cost no computer time.

4. The number of computational operations (Oper) includes only the
formation of the matrices that enter into the interpolation formulas,
but not the operations for the actual interpolation.

5. The number of matrix element words (one word for real, two words
for complex element) to be stored (Stor) for easy access by the
flutter optimization module is determined.

6. Since it may be desirable to keep the matrices involved in the
interpolation of the aerodynamics in core during the optimization
procedure, thez required core (Cor) space in terms of the number of
matrix element words is determined.

T. During an optimization the value of "k may drift from one interval
to the next. If the matrices involved in the interpolation aré kept
in core, then it is of interest to know how much of the core must
be replaced as k drifts tc the next interval. This is called the
read-in count (Read).

4,3.2 Count Formulas. Consistent with the preceding general discussion,
specific count formulas for several options are developed in this section.
The following may assist in interpreting the formulas.
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The matrices [A(kl)] and [A'(kz)] are the matrix of generalized

aerodynamic force coefficients and its derjvative to be evaluated outside the

flutter optimization program for discrete values k = kg. These matrices are
to be used in a Lagrangian interpolation'formula corresponding to a cubic E
j polynomial. The number of kl values required is ny = ng + 3, where ng

is the number of k intervals needed. The matrices [A(k)] and [A'(k)] are

the interpolated aerodynamics matrix and its derivative. These symbols are
used in connection with the cubic spline options.

The barred quantities: [AICj] R [Kﬁg] . [EKE] and [HAWj] s to be used

in equations of the form given in equation 4.37, are functions of all k, i

> Frdd e fen T el e

values and a set of four (j=0,1,2,3) is computed for each interval, as
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required, with the help of cubic spline formulas.
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Additional shortened notation is used:

[HA(k)] = [H]T [ATIC(x)] , [AW(k)] = [ATC(k)][W(k)] (4.39)

Multiplications contributing to the number of computational operations
to be performed in the flutter optimization program are indicated by a heavy
dot. The sequence of multiplication is indicated by Arabic numerals. Prod- 5
ucts, already evaluated, but re-used in another part of the same option lack ’?
the multiplication dot and are assembled within matrix brackets; e.g.

[[z]T [HJT] .

F The dimensions of the matrices to be multiplied are summarized below.
The symbol ¢N 1is used when the actual dimension is N, but there is a pos-
sibility that the matrix is sparse.

&
i

;
i

E
g
i
3
i
3

£

The interpretation of the‘matrix dimensions used is as follows: L
M:  number of modes used in flutter analysis ‘

N:  number of discrete degrees of freedoms: structural displacements

K: number of lumped aerodynamic forces

D: number of downwash collocation points

¢: fraction of non zero elements in rows of [W(k)] and [H].
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Options H1 and HZ2

1T T [are(s] [W(k)] 7] | (k.10)

‘[E‘T
(M,N) (¢N,K) (K,D) - (D,¢N) (N,M)

Option H3

iz1T it lawk)] [Z1 (4.41)
" (M,N) (¢N,K) (K,N) (N,M) :

Option Hh

(1T [HA(K)) [W(x)] [z} (4.42)
(M,N)  (N,D) (D,¢N) (N,M) '

Option HS

Z1T [Haw(k)] [Z] ) (4.43)

(M,N) (w,N)  (N,M)

Option Hla Cubic Polynomial

[A(‘kl)] - [;]T : [H:IT : '[AIC(kQ)] - o] - [Z]

. [ v
—_ ~
1 2
~— J
Y
3

} Y
h :

[A'(kg)] = [[z]T[H]T] . [Axé-'(kz)]. [£w(k2)] [_Z_]] 5

\ )
; Y
L . > _
r
6

R [ (z1" m],T,[AIc(k,L)]] . 1 [pz] (7]
T

4 )
v
8
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Computational operations:

sequence 1 2 3 L
number ¢NMK 2n, $NMD 2n, KMD hnADMZ
sequence 5 6 T 8
number 2n, KMD kn, DM® $NMD 2n, DM

Total number of operations:

Oper Hla Poly = ¢NMK + (2nA+l) ONMD + hnAKMD + lOnADM2
Required input quantities: [H], [AIC(kz)] . [AIC'(kz)] . [W(kl)] and . [DZ]
Stor Hla Poly = ¢NK + bnAKD + (2nx+l) ¢ND
Required for interpolation: [A(kz)] and [A'(kl)]' for four k values

Cor Hla Poly = 16 M°

Required read-in for new interval: [A(kz)] and ‘[A'(kz)] for one k value

Read Hla Poly = 4 M2

Option Hla Cubic Spline

L

(0] = Y 1E" - ” - IAT,1 - 0] - [ (ki)
dJ ; L
R

j=0 ——y——
J=0 1 2
[\ ~ J
3
- )

B

g
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3
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J=0
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In the Hla sequence [W(k)] is computed for each interpolated k
value, which is accomplished by evaluating [W(k)] = [DX] + ik [D7] There-

fore, Option Hla Cubic Spline is identical to Option H1lb  Cubic Spline.

Option Hlb Cubic Polynomial

[a(k)] = (217« (5]" - [AIc(x,)] » [DX] - (2] +

Y Y
1 2
“ J
%
- J
v

+x, [ 12" 1 (4ot ¢ (o2 (2 ]

(G V)

Y
10
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| asm
=3
?
=
| U—
]
| D—

ik [;]T] . [AIC'(kQ)] . [ [px] [57] +

— J
~
5

r
L

Y
6

S kz[[E]T[H]T[AIC'kQ)]:H:i[DZ][E]] . [['z']T[H]T[AIC(kl)]]-i- [p2] - [7]

A ) 7'
f N
11 N
- s 8
12 . —— -/
9

Computational operations:

sequence 1 2 3 N 5 6
number $MNK $MND 2n, KMD 2n, DM° 2n, KMD 2n, DM°
sequence 7 8 9 10 11 12
number $NMD 0 2n, D4° on M 2nkDM2 2n, M

Total number of operations:
Oper HIb Poly = ¢NMK + 2¢NMD + ln,KMD + 8nADM2 + LnAMg
Required input quantities: [H] , [AIC(kz)] . [AIC'(kR)] , [DX] and [DZ]
Stor Hlb Poly = ¢NK + hnAKD + 2¢ND

Required for interpolation: [A(kl)] and [A'(k_ )] for four k values

2
Cor Hlb Poly = 16 M°

Required read-in for new interval: [A(k, )] and [A'(k

. )] for one k value

A

Read Hlb Poly = UM®

k9
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Option H1lb Cubic Spline

[px] « [Z] (k-k)J +

[A(k)] }: ik - [ATC, ] -
§=0 \_W_J T
. v J )
3 .
L hY _J

3 .
) [[E]T[H]T[KTGJ.]] . [pz]

3= 3
\ —~ J
6
, _ S J— =1, -1
(ar0) = Y [ @A) o) (7] 5 (e ) 7 4
5=0
3 Y
S [@mEe) e @] (eeky)?
j=0
3 : .
) [ "t (aTe, ] [02) (7 ]:| ey (ientey )
J=0

Computdational operations:

. (7] ik (k-kl)j

seguence

number

1 2

SNMK $NDM

BnGKDM

8n6DM

$NDM

8n6DM

Total number of operations:

50

Oper Hlb Spline =

$NMK + 2¢NDM + Bn KDM + 16n6DM2
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Required input quantities (fof\definition of barred quantities see the

beginning of this section and edyation 4.37):

(1] , [AIC,

Stor Hb Spline = ¢NK + 8n KD + 26Nb*

Required for.interpolation:

[E]T[H]T[mj] [DX] [Z] and {E]T[H]T[KTEJ] [pz] [Z] ,

four of each per interval (j=0,1,2,3).
Cor Hlb Spline = 16 M
Required read-in for new interval: Replacé complete core

Read Hlb Spline = 16 M

Option H2a Cubic Polynomial

1, [ATC,) , [ATT,] , (ATC,] , [DX] and [DZ]

[A(k)] = (217 [8]7 « [ATC(k)] « [W(k)] - (7]
\_—Y——J L_wE_J
— : J/
» Y
\ 3 J
Y .
L
()1 = [ 10|z o) | it 16 | + [ 270" [ arote) |- stpatim
- J .
T
}f . J
- J 4}{
Y “ . ,
9
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Computational operations:

sequence 1 2 3 b
number $NMK 2n, $NMD hnXKDM 2n>\KM2 ;
sequence 5 6 T . 8 9 :
number Ln, KDM on, KM° $NMD 2n, KDM ' on. KM ;
| A A A A L
| .
i
% Total number of operations:
Oper H2a Poly = ¢NMK + (2nA+l) $NMD + 1OnAKDM“+ 6nAKM2 |
Required input quantities: [H] , [AIC(kZ)] . fAIC'(kl)] . [W(kl)] and [DZ] ;

Stor H2a Poly = ¢NK + hnAKD + (an+l) ¢$ND
Required for interpolation: [A(kg)] and [A'(kk)] for four k values i

Cor H2a Poly = 16 M

Required read-in for new interval: [A(kl)] and [A'(kl)] for one k value

Read H2a Poly = 4 M2
b
Option H2a Cubic Spline %3
f
) 3
1 _ —T S - J
[A(k)] = [z]" « [H]" « [ATC,] = [W(K)] - [Z] (k-k))
; \ . -
Y
3
~— v
Y
l

e,
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In the H2a sequence [Wk)] is computed for each interpolated k
value which is accomplished by evaluating [wW(k)] = [DX] + ik [DZ}. There-

fore Option H2a Cubic Spline is identisal to Option H2b Cubic Spline.

Option H2b Cubic Polynomial

[A(k,)] = (71" - [’ - [A1C(k )] - [DX] - [ZJ +

~

vk, - [ oty 1 02 (3]
g —
Y i

11
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i ) g
vt [T . _ ;
(A'(k,)] = | [Z][H] - [ATC'(kx,)] « | [DX] [Z] | + »
N J “
8 },
“ ' > J :
Y
6
— 7T T .
rxy s [EWT] - e - e 3]
L g J
Y
12
“ v,
Y
- 13
\ Y]
Y
1k
— T AT -
+ [0 - tarot)i - 5 - o1 - 13
< T,
v
8
V/ A\ J
Y
L 9 2
iy Y
10
Computational operafions: y
sequence | 1 2 3 in 5
number MK SNMD 2n, KDM 2n, KM 2n, KDM
sequence 6 7 8 9 10
number 2n, KM ONMD 0 2n, KDM on, KM
sequence 11 12 13 14
// ‘ ] o 2
P number‘: 2n)\l'Vl : 2n}‘KDM 2n>‘KM Qn}‘M
7 . :
/ .
{ Total number of operations
\ .
\\ Oper H2b Poly = ¢NMK + 2¢NMD + Bn KDM + 8n)‘KN‘2 + hnAMg
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Required input quantities: [(H], [AIC(kl)], [AIC(RE)], [DX] and [DZ]'

Stor H2b Poly = ¢NK + hnAKD + 2¢ND

Required for intetpolation: [A(kz)] and [A'(ki)] for four k values

Cor H2b Poly =16 M2

Required read-in for new interval: [A(kz)] and [A'(kl)] for one k value

Read H2b Poly = L M°

s Option H2b Cubic Spline

3
(a1 = Y 21" - ” - (') - ok - (7] (ko))
3=0 e — ——
| . . 2 J
3

— J

Y
L

i

i 3 i .
¥ [-[;]T [H]T-lg [ATC,] - [DZ] * [z] ik (k-k,)J
J:

oL

- 2 J
: Y
6
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3 ‘
(vl = > | 121" (117 (KTE,] [ox) [2]] 5 (ki)™ s
J=0

p—

[
1]
o

(207 (1" [AIC,] (2] (2] |1 (kk))d +

3
+ Y | 121" " (AT, (o) (71| ik g (k)P

j:Q L -
Computational operations:
sequence 1 2 3 L 5 "6 T
number ¢NMK | gNDM | 8n kDM 8n6KM2 ¢4MD | Bn kDM | Bn v

Total number of operations

Oper H2b Spline = ¢NMK + 2¢NMD + l6n6KDM + l6n6KM2

Required input quantities: [H], [AICO], [AICl], [AICE], LAIC3], [DX] and [DZ]

Stor H2b Spline = ¢NK + Bn kD + 2,ND

Required for interpolation: [B]T [H]T [AICj] [DX] [Z] and
-T T == - .
[z}~ [H] [AICj] [Dz] [Z], four of each per interval.

Core H2b Spline = 16 °

Required read-in’ for new interval: Replace complete core

Read H2b Spline = 16 M2

UG ekt it i

e
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* ” : ?v 1
Option H3 Cubic Polynomial i ;f
_.T _ :
(AT = (2]« (11" - [mW(k)] * (2] ;}:
1 2 ) ' s
. <
Y #
3
vt v1 - =T T : _
(A" )] = | [2]7 [H]™ [+ [Aw (k)1 ¢+ [2]
.
v
L
“ J
Y
° :
Computational operations:
+ sequence 1 2 3 | oy 5
nurmber  GNMK 2n, KV on, KM 2n, KIM on Kk ;

Total number of operations:

Oper H3 Poly = ¢NMK + hnAKNM + hn}\KM2

Required input quantities: [H],\[AW(kg)] and [AW(km)]

“Stor H3 Poly = ¢NK + bn KN

Required for interpolation: [A(kl)] and [A'(kz)]yfor four k values |
: = 2
Cor H3 Poly = 16 M

Required,read-injfor new interval: [A(kz)] and [A'(kl)] for one k. value

Read H3 Poly = U M° ) .
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Option H3 Cubic Spline

3 .
[alk)] = z (717 -t - (W] + [7] (k- )
3=0

—_—
1 2
“ _J
Y
3
3
- T - S -
(a1 =y (217 ()% (&) (7)) ek’
=0
Computational operations:
sequence 1 2 3
number- dNMK BnGKNM 8n6KM2

Total number of operations:

Oper H3 Spline = NMK + 8n KNM + 8n6KM2

Required input quantities:

Stor H3 Spline = ¢NM + 8n6KN

Required for interpolation:
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four (217 [H] [&W,] (2]

Cor H3 Spline = 8 M°

‘ Required read-in for new interval: Replace complete core

Read H3 Spline = 8 M2




Option Hlia Cubic Polynomial

—+T -
[a(k,)] = (207« [HAGk,)] - [W(k,)] ~ [2)
- \ 7 . _— |
Y Y
1 2
- 7 J/
T : _ T : _
(W01 = (217 - [HA (k)] -[[w(kln [z]] + 121" a1 | - 1 - [p2] (7]
N J
N .
L 6
“ J . )
Y
> « 7 J
Y~
8
; Computational operations:
|
sequence 1 2 3 h 5
number 2n, MND 2n, ¢NMD hnADM 2n, MND - ié
sequence 5 6 7 8 ‘ é
. 2 | o
number hnXDM $NDM 0 2n,DM %
E hﬁ
/ i
. Total number of operations: i
i

Oper Hha Poly = hnANMD + (an + 1) ¢NMD + lOn}\DM2

Required input quantities: [HA(k )], [HA'(kQ)], [W(kz)] and [DZ]

L

- Stor Hla Poly = hanD + (2nx+l) $ND
Required for interpolation: [A(kg)] and [A'(kl)] for four k values

Cor Hha Poly = 16 M
Required read-in for new interval: [A(k )] and [A'(k,)] for one k value

Read Hha Poly = k4 Me
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Uption Hba Cubic Spline

3
(a1 = > (217 - (@] - W) - (7] (kek,)]

J %
,J=O - g [ v -
1 2
[ W J
Y
3
3 -
[av(k)] = z [[E]T [ﬁj] [w(k)] [E]]J (k-k,b)"'l +
J=0
N 3 .
4+ [[E]T [EA'.]] - [pz] - [Z] i (k-kz)'J
J ——
Jj=0 L
\ J
Y
5

In the Hha sequence [W(k)] is computed for each interpolated k
value, which is accomplished by evaluating {W(k)] = [DX] + ik [DZ]. There-
fore Option HlYa Cubic Spline is identical to Option H4t Cubic Spline.

Option HYb Cubic Polynomial

[4(k,) = (217 [ACx,)] - (o (2] + 1, [ 1217 [a,)] 5 Do) 171

h 48 v
s | . 7
oo 1 2441 Y

Y T

3 ‘

J — -
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—
4
L v
Y
“ > J
: Y
6
Computational operations:
sequence 1 2 3 . L 5 6 7
2 \ 2 2
number QnAMND k¢NMD 2nADM ¢$NMD 0 2n,DM QnAM
sequence 8 9 10 11
2 2 2
number 2n. DM 2n. M 2n,MND 2n. DM
A A A A
Total number of operaticns:
Oper HLb Poly = 2¢NMD + hnANMD + BnADMz + hnAM2
i  Required input quantities: [HA(kg)], [HA'(kR)], [DX] and [DZ]
Stor Hlb Poly = hnAND + 2¢ND

Required for interpolation: [A(kl)] and [A'(kg)] for four k values

Cor H4v Poly = 16 M2'

Required read-in for new interval: [A(kz)] and [A'(kz)] for one k value

Read " HUb Poly = 4 M°
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Option H4b Cubic Spline

A(K)] = z (21" - (] - o - (3] CEMER
1 2
\ Y v
3
. 3 | ' .
+ 22 [[E]T [ﬁisl] ' [Dz] - [Z] ik (k-k))
,J=0 1 S——
\ G h -’
Y
5
3 ! s
(A" (k)] = 2 [[E]T [HA,1 [DX] [E]]j (ke )97+
3= :

3
+ > | =17 (A1 [v2] L2]

. A
i (k—klz +

S e
.

g1 s s e sma s

j=0 L -
3 r -
I Jp— ... §m
+ > |13 (7R, [pz] 7] | ik 3 (keic )™
=0 L -
Computational operations
sequence 1 2 3 L 5
number BnGNMD $NMD 8n6DM2 ¢NMD 8n6DM2

Total number of operations:

Oper H4b Spline = 2¢NMD + 8n6NMD + 16n5DM2
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Required input quantities: [ﬁﬁo], [ﬁll], [ﬁig], [ﬁﬁ3], [DX] and [DZ]

Stor H4b Spline = 8n6ND + 2¢ND

Required for interpolation: [E]T [EKS] [Dx] [Z] ana [Z]T [ﬁKﬁ] [pz] [Z] .

Cor H4b Spline = 16 M°

Required read-in for new interval: Replace complete core

Read HUb Spline = 16 M°

Option H5 Cubic Polynomial

T - =T -
[A(k, )] = [2]7 - [HAW(k )] - [Z] (A'(x )] = [Z]" - [HAW'(k,)] - [Z]
Y Y :
1 3 /
— -J
—v ’L Y J
2 4
Computational operations:
sequence 1 o 3 L
number EnANEM 2n>‘NM2 ZnANgM 2n>\NM2

Total number of operations:

Oper H5 Poly = hnANeM + hnANM2

Required input quantities: [HAW(kz)] and [HAW'(kz)]

Stor H5 Poly = hn}N2

Required for interpolation: [A(kz)luand [A'(kl)] for foir k ~ values

‘Cor HS5 Poly = 16 M2
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Required read in for new interval: [A(kz)] for one- k value

Read H5 Poly = b M

Option HS5 Cubic Spline

3
(0] = Y (717 - [ [F] (k)
j= b_—Y_——J
1
w J
v—
2
3 -
(ar0] = Y |57 A 121 [ 3 i) P
J=0
Computational operations ;
sequence 1  ; i 2
| 2 ; 2
number 8n6N M i 8n6NM

Total number of operations:

Oper H5 Spline = 8n6N2ME+ BnGNMg

Required input quantities: [HAWO], [HAWl], [HAW2] and [HAW3]

Stor H5 Spline = 8n6N2 ”

T

Required for interpolation: [Z] [HAWJ] [Z]

Cor H5 Spline = 8 M°

Required read-in for new interval: Replace complete core

Read H5 Spline =8 M2

64

T

3



4.3.3 Comparisons. The formulas developed in the preceding section are
tabulated in Tables 4-1, 4-2 and L-3. A summary of the comparisons is
presented in Reference 1 and is repeated below.

Input Storage Requirements - If the number of k intervals to be used
is three or more, cubic polynomial interpolation for arbitrary values of
k requires less input storage than cubic spline interpolation for all
options H1l through H5.

Core Space - For options H5 and H3 cubic polynomial interpolation for
arbitrary k requires two times as much core space as cubic spline inter-
polation. For all other options both methods of interpolation reguire the
same core space.

Read-In - Cubic polynomial interpolation for arbitrary k requires less,
read-in than cubic spline interpolation as the value of k moves into an
adjacent interval.

Number of Computational Operations - Cubic polynomial interpolation
for arbitrary value of k requires fewer computational operations than cubic
spline interpolation under the following conditions:

options H3 and H5: if the number of k intervals is mofé;fhan three.
options H1 and Hi: if the number of k intervals is more than four.
option H2: if the number of k intervals is more than five.

Which of the options Hl through H5 is most efficient is strongly affected
by the dimensions of the matrices. From equation L.40 it can be seen that
if K and D are small compared with N it becomes advantageous to perform

the multiplications [z]T [H]T and [W(k)]) [Z] in the flutter optimization
module. If K and D are equal to N or larger, then it becomes

advantageous to form the product [H]r'[l [ATC(k)] [W(k)] outside the flutter
module. The relationships defining when one option is better than another
are complicated and no simple criteria have become apparenﬁg
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Number of Computational Operations

Option Number of Operations
Hla Polynomial ONMK + (2n +T) ¢NMD + L(n +3)KMD + lO(n6+3)DM2
H1b Polynomial ¢NMK + 2¢NMD + h(n6+3)KMD + 8(n6+3)DM2 + h(n6+3)M2
Hla Spline 2
H1b Spline }- $NMK + 2¢NMD + BnSKMD + 16n6DM
H2a Polynomial ¢NMK + (2n6+7) ¢NMD + lO(n6+3)KMD + 6(n6+3)KM2
H2b Polynomial $NMK + 24NMD + 8(n6+ 3)KMD + 8(n6+3)KMg + l¢(115+3)M2
HPa Spline 2
Hob Spline} ¢NMK + 2¢NMD + 16n6KMD + l6n6KM
H3 Polynomial dNMK + h(n6+3)1<1\1M + h(,n(s+3,)m/12
H3 Spline $NMK. + 8n6KNM + 8n6KM2
Hia Polynomial h(n6+3)¥ﬁﬁ\} (2n6+7) oNMD + lO(n6+3)DM2
Hbb Polynomial 2¢NMD + h(n6+3)NMD + 8(n6+3)DM2 + h(n6+3)M2
Hha Spline 2
Hib Spline} 2¢NMD + 8n6NMD’ + 16n,DM
HS5 Polynomial h(n6+3)N2M + U(n 6+3)1\1M2
: 2 2
H5 Spline 8n6N M + 8n6NM
M number of modes used in flutter analysis
N number of discrete degrees of freedom: structural displacements
K number lumped aerodynamic forces
D number of downwash collocation points
¢ fraction of rion-zero elements in rows of [Wlk)] and [H]
n(S number of k & intervals to be considered
Table L4-1: Comparison of Number of Computational Operations

in Forming the Aerodynamics Matrices
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Storage Required for Input Quantities

Option Storage 0

Hla Polynomial ¢NK + h(n6+3)KD + (hn6+l3) ¢ND
Hlb Polynomial ¢NK + h(n6+3)KD + 2¢ND
Hla Spline
H1b Spline }- ONK + SnGKD + 2¢ND
H2a Polynomial ¢NK + h(n6+3)KD + (2n6+7) ¢ND
H2b Polynomial ¢NK + h(n6+3)KD + 2¢ND
H2a Spline ~
oD Spline} $NK + 8n6KD + 2¢ND
H3 Polynomial PNK + L(n +3)KN
H3 Spline $NK + 8n KN
Hba Polynomial h(n6+3)ND + (2n6+7) ¢ND
H4b Polynomial h(n6+3)ND + 2¢ND
HYa Spline
Hib Spline} 8ngND + 2¢ND
H5 Polynomial h(n6+3)N2

. o
H5 Spline 8n6N

. U =R =

o}

number of discrete degrees of freedom:

number of lumped aerodynamiﬁ;forces

number of .downwash colloca&@on points

structural displacements

fraction of non-zero elements in rows of [W(k)] and [H]

number of k

Table h-2:

intervals to be considered

Aerodynamics Input Storage Requirements.
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Core Space for Interpolation and Read-in for New k Interval

SPSRE S, RSN

| Core Core Space Read-in

. ’ . 2 2
Hla Polynomial 16M LM
H1b Polynomial 16M° e
Hla Spline ' : 2 2
Hlb Spline } | 16M 16M
. . 2 2

H2a Polynomial 16M UM
. : 2 2

H2b Polynomial 16M UM
H2a Spline 2 2
Hob Spline } 16M 168
. 2 2

H3 Polynomial 16M UM
H3 Spline | e 8M°
. 2 2

Hia Polynomial 16M LM
HYb Polynomial 16M° e
Hha Spline 2 2
H4b Spline } : 16M 16M
. 2 2

H5 Polynomial 16M LM
H5 Spline ' aM° aM°

M

number of modes used in flutter analysis

Table 4-3: Core Space and Read-In Required for Interpolation of
the Aerodynamics Matrices

5. THEORETICAL CONSIDERATIONS RELATED TO
OPTIMIZATION WITH FLUTTER CONSTRAINTS

5.1 Introduction

For a better understanding and appreciation of the methods of optimi-

zation witli flutter constraints discussed in Reference 1 it is helpful to
reduce the problem of optimization to simple terms.
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The elementary considerations presented in this section are based on
the assumption of satisfying a minimum flutter speed requirement for several
flight conditions and minimizing the structural weight.

The design variables are structural sizings, such as cross-sectional
areas of caps, skin and web thicknesses, as well as non-structural mass
(pballast). These design variables lead to a linear relation between the
total mass and the design variables. It is convenient to define each design
variable by the mass it represents. Then:

n
M= ) m, (5.1)
i=1

where M 1is the total mass associated with the design variables mi.

Structural elements with a stiffness defined by two design variables lead
to a nonlinear relation between M and my; for instance, if a beam cap
is defined by a width and a height as design variables. Another example of a
nonlinear relation between total mass and a design variable is the stiffness
of a constant width bending element; its mass is proportional to the cubic
root of the design variable. Adequate finite element structural repre-
sentation is possible without such nonlinearities and thus equation 5.1 has
sufficient generality.

If all structural coordinates defining a structural model are retained
in the vibration and flutter analysis, the stiffness matrix is a linear
function of the design variables. If for reasons of practicability a number
of structural coordinates must be eliminated this relationship may become
nonlinear. Any nonlinear relationship between the stiffness matrix and the
design variables is implicit in the relationship between the flutter speed
and the design variables, V(m;), which is nonlinear even if the stiffness is
a linear function of the design variables.

If there is only one flutter speed constraint the optimization problem
can be stated as: minimize M{mj) while the condition V(m;) = Vg is
satisfied, where VR 1is the required flutter speed. With the help of the
Lagrangian multiplier A this problem can be formulated as n+l equations

with the n+l unknowns m; and A:

ﬁ—i M(mi) + A {V(mi)r - VR}] =0

(5.2)
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Bquations 5.2 reduce to

oV

om,
i

==L .
== and V VR (5.3)

The interpretation of the equations 5.3 1s that at the optimum condition ,
all partial derivatives of the flutter speed with respect to the design .
variables are equal. The equation is only valid for free design variables;
i.e. variables which, at the optimum point, have not reached a minimum or
maximum allowable value.

In a realistic design environment equations 5.3 cannot be solved
directly. The usual procedure is that starting with a non-optimum design a
sequence of design changes is generated which leads to the optimum design.

In the following sections such sequences of design changes are discussed. ¢
Separate sections are devobted to increasing the flutter speed to a desired i
flutter speed with a minimum mass penalty, to minimizing the mass while
keeping the flutter speed constant, and to considering multiple flutter speed
constraints.

5.2 Increasing the Flutter Speed with Minimum Mass Penalty :

Let Vy %be the unsatisfactory flutter speed of an initial design and Vg
the required higher flutter speed. The problem of increasing the flutter
speed from Vi to VR can be illustrated with a system with two design S ;
variables m; and mp. Figure 5-1 is obtained from a realistic numerical .
example. The structure is a simple beam representation of the wing of a g
subsonic transport. Design variable m; defines the incremental torsional §
stiffness over the center one third of the span of the exposed wing and mp 4
the incremental torsional stiffness of the outer one third. Contours for
constant flutter speed and constant total mass increment over a reference mass
are indicated. By definition m; = 0 and mp = 0 for Vy = 450 KEAS. The
desired flutter speed is VR = 550 KEAS. Sequences of design changes in the
direction of the Vg =550 KEAS curve are indicated. TFour different starting
points are examined: O, A, B and C, and it is assumed that the starting point :
defines minimum allowable values for m; and mp. Two optimum design points §
are marked in Figure 5-1. One is a free optimum, not affected by a minimum
allowable value of either my, or my. It is the tangential point of the
550 KEAS contour and a constant total mass line. The other optimum design
point on the 550 KEAS contour is not-an extremum in the mathematical sense;
it is a minimum mass design consistent with the constraint imposed by the
minimum value of my. i

EARTE I LT TR

Consider two criteria for determining the direction in the my, My

design plane: direction of steepest ascent and direction of maximum %ﬁ .
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emsmmenane Velocity Gradient Paths

== e == Maximum dV/dM paths
(starting point defines
minimum m, and ma)

‘ O Optimum Point
0

End Point of Velocity Gradient
Path

600N

Flutter Speed

Figurév 5-1: Resizing Paths as Functions of Two Design Variables.
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5.2.1 Direction of steepest ascent. The direction of steepest ascent is a

dm dm 5 o 5
direction; defined by the direction cosines P and T (ds = dml + dmé)
for which g%— is maximum. It can be shown that this maximum occurs when

dm, ) av/om, dm, i aV/om, (5.1)
ds ’ ds
BV \Z [V \ 3V & . [ av)\2
3m * (Bm ) m ) M b
1 2 A\ 2
.and -
ﬂ = (ﬁ/’.)2 + (_.SV )2 (5 5)
ds aml 8m2
Equations 5.4 define a ratio between two infinitesimal increments of
ml and m2 given by:f
dml g 8V/3ml
dm, ~ 8V/om, (5.6)
The tangent to a constant flutter speed contour is defined Dby.
dml BV/Bm2
== (5.7)
dm2 BV/aml

Thus the direction of steepest ascent, at any point, is perpendicular
to the constant flutter speed contours.. A finite design increment step in
that direction can be defined by:

Am dm. /ds av/om. | .
1 = As 1 - » As 1 (5.8)
Am2 dme/ds (3V’)2 . (3V’)2 'c)V/'am.2
aml 8m2
BV/Bml
The column is called the gradient of V .with respect to
BV/'am2

the design variables.
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Am

In equation 5.8 the stepsize is defined by the magnitude of

AmB

As, the distance travelled in the ml,m2 plane. With the help of equation
5.5 equation 5.8 can be written as: )

Am oV/om
1] _ AV 1
= (5.9)
T
Am2 (}ﬂ)E . (ﬂ)E 8\/8m2
Bml 8m2

which relates the step size to an increment in flutter speed.

Design paths following the direction of steepest asceﬂt‘are indicated

in Figure 5-1. Tt is noted that they do not lead to the optimum design
point.

5.2.2 Direction of maximum %% . The direction of maximum %ﬁ is the

direction in which the increment of the flutter speed per unit increment of
total mass is maximum. v

At an arbitrary point in the ml,m2 design plane there is no direction
dIn .

. for which %%— is an extremum. Consider, for instance, point A as an
2

initial design point and move along an M=constant contour towards the

m, axis: V increases, M remains the same, thus %% = @, A design change
along an M=constant contour, however, is not feasible in view of the
original assumption that at the initial design point m; and my, are at
their minimum values. From simple geometric considerations it follows that

the maximum feasible value of av is in the direction of thé coordinate for

aMm
. v, . av av .
which —— 1is largest. At point A <— > —— 'and a design change parallel
am Bm2 aml
to the m, axis results in the largest gain in flutter speed per unit mass
added until the locus for which E%¥ = égL is reached. ©Since this locus

2 1
connects points representing minimum total mass designs as a function of
flutter speed, following this locus leads to the optimum design at
VR = 550 KEAS.
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dm .

Along this locus the direction dm; is deétermined from the requirement
2
2
2 2 2 3V
d(ﬂ = d(é;&)’ from which a_% dm, + %\é"m_ dm,, = Tri’%n‘ dm) + —5 dm,
om, my dmy 1°72 2% om,
and
2 2
dml 9 V/am2 - BQV/Bmle2 .
= (5.10)

dm. .2 2 2
2 3 V/aml -9 V/8m28ml

Paths following maximum feasible %ﬁ from the initial design points
0 and B are also indicated in Figure 5-1.

Note that an initial design defined by point C, leads to a minimum weight
design at which V = 550 that is not an extremum condition, due to the
minimum value imposed on m .

5.2.3 Discussion. Figure 5-1 shows that following a direction defined by the
gradient of the flutter speed, in the case shown, leads to a design configur-
ation close to optimum. This result cannot be generalized. In a multi-design
variable system it is not unlikely that several design variables remain at
their initial value for the otpimum design. If that is the case the result of
following the steepest ascent direction generally will be farther from the
optimum Aesizn than is indicated in figure 5=1.

Generalizing equation 5.9 to n design variables leads to the following
expression for the column of design variable increments:

{om,} = AV E{Bi" : (5.11)
i

£ E)

Generalization of the path of maximum %ﬁ- approach to many design

variables takes the following, albeit impracticable form.
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Assume, as before, that at the initial design ?oint all design variables
are at their minimum allowable value. Obtain the largest gain in flutter
speed per unit mass by increasing the design variable corresponding to the

largest %%—. As this design variable is increased it most likely becomes

less effective in raising the flutter speed and after a certain amc¢unt of
change there may be two design variables with the largest value of

v

el Then these two variables can be changed according to the relaﬂionship

given by equation 5.10. Wnhen three %%-'s are -equal the three associated
variables can be changed in a ratio that follows from'a reasoning similar to

the reasoning that led to equation 5.10, Successively more 's

o

become eqgual. When the desired flutter speed is reached the %%—’s associated
with the design variables that have been increased above their minimum value
are all equal, as was found before as a condition of optimality

(equations 5.3).

Tt should be remarked that the procedure is only presented to provide
some insight in the process that leads to an optimum design.

Although it is noted that a path of steepest ascent does not lead to
the optimum design, it does lead to a favorable initial configuration from
which to start minimizing the total mass while keeping the flutter speed
at Vi . It was found (Reference 1, Appendix A) that an efficient approach
to defining such an initial configuration is to use a resizing column

_ v
{Ami} = c{ami}g (5.12)

where C is determined by requiring that the flutter speed is raised to V
in one step. It leads to an initial weight only little higher than that
which results from a multi-step approach, but at a considerable reduction in
computational effort.

The presentation in the preceding sections is considerably simplified by
defining the design variables in terms of mass units. In Reference 1

it is shown that the distribution in a resizing column defined by %%— ’
m, i
where Pi is a generalized design varisable: Pi =-Ei » depends on the
i

individual scaling of the design variables. E.g. Ci for -skin thickness
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as a design variable is different from a C; for cap area as a design
variable. Since obviously the best distribution in a resizing column should
be independent of the scaling, the effect of scaling must be eliminated by

a normalization. The simplest normalization is to let Ci = 1.

5.3 Minimizing the Total Mass at Constant Flutter Speed

5.3.1 Elementary Steps. Minimizing the structural mass while keeping the
flutter speed constant has considerable practical significance. 1In

Section 5.2 it was shown that the rather straightforward method of steepest
ascent does not lead to the optimum design. However, the method of following

a path of maximum g%% is rather intricate.

There are practical methods of minimizing the structural mass which may
be used once the flutter speed has the desired value. Several are discussed
in detaill in Reference 1. It is instructive to consider an elementary
approach, based on simple reasoning, since it provides insight into practical
methods.

The elementary approach is based on the following basic design change:
take away material where it causes the smallest decrease of the flutter speed
per unit mass removed and add material where it causes the largest increase
of the flutter speed per unit mass added.

The mathematical formulation is as follows:

Let the flutter speed, V, be given by: '

V= V(ml,m2,...mn) = VR (5.13)
Then
v oV —
am, dm, + o, dm, + ... =0 (5.14)

Let 8V/3ml >0 and 3V/3m2 > 0, SV/aml the largest and 8V/3m2

ﬁé the smallest of all dV/dm's. Reducing m2 to mz-Am2 causes the smallest

1 decrease in flutter speed per unit mass removed. From equation 5.1k it
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follows that the amount to be added to my to maintain approximately
constant flutter speed is:

8V/8m2
Aml = 5675;EfAm2 (5.15)
The total mass change is
8V/8m2
MM = Am. - = f—-
my = bm, av/om, o (5.16)

which is a reduction.

Small steps Am;, Amp can be taken in succession and all derivatives
recalculated after each step. As long as BV/aml and 8V/8m2 remain
the largest and the smallest of the 23V/dm's +the same design variables are
changed. As soon as a third derivative BV/Bm3 equals either 3V/dmy or
3V/8m2 it must be considered in determining the next step in a manner
similar to what is discussed in Section 5.2.2. If mp reaches its minimum
allowable value the design variable with the next to the smallest value of
9V/8m is used instead. It is not difficult to see that a stage is reached
in which the 9V/om's associated with design variables that are not at their
minimum allowable value are all equal. Nothing can be gained by increasing
one and decreasing another variable by a small amount: +the optimum design is
attained.

Of interest is the case in which some %%—'s are negative. With
3V/Bm2 being the smallest oV/dm this implies 3V/3m2 < 0 and decreasing
mo increases the flutter speed. The initial resizing steps, therefore,
should be to reduce mp .and let the flutter speed increase.  Successive steps
of reducing mo can be taken until occurrence of either one of the following:
mo reaches its minimum allowable value, 3V/8m2 equals another negative
avV/dm, or dV/dmp  has become positive and as a result the gain in flutter
speed is cancelled.

5.3.2 Composite Resizing Columns. It is recognized that the elementary steps
described in the preceding section as well as those described in Section 5.2.2
are an inefficient approach to optimization. It is also recognized that a
resizing column proportional to the gradient of the flutter speed {equa-

tion 5.12) to a certain extent satisfies the basic notion of adding most
material where it causes the largest increase of the flutter speed per unit
mass. However, material is also added where, according to the reasoning in
the preceding section it should be subtracted. This is indeed the very
reason why following the direction of steepest ascent does not lead to an

7
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optimum. What is needed is a resizing column that removes the most mass where
it causes the smallest decrease of the flutter speed per unit mass. A logical
candidate is a resizing column that is the sum of two linearly independent
distributions and leads to the desired effect. Equation 5.17 shows a simple
approach to following this concept:

_ v 9V _ oV
Adm b= Adgr p- B (Bm) o, (5.17)
1 ax 1
This can be written as:
- 3V v
{Ami} = (A + B) {a—m—}- B (ﬁ) {1} (5.18)
1 max
or
= WVl g
{tm,} = A'{ami} B' {1} (5.19)

which is a form identical to the resizing column for the gradient projection
search at constant flutter speed of Rudisill and Bhatia (Reference 6 and
Reference 1, Section 6.2).

Macs removal where it causes the smallest decrease of the flutter speed
per unﬁt*mass is emphasized if the second column of equation 5.17 is

1
replaced by 37735;

_Jav 1
{Aml} = A Eﬂ; - B 57 3mi (5.20)

The constant A is related to the total mass addition, Wy associated
with the first column:

Wl :
A =T Gav/om, s.an

v

The constant B can be determined from the condition
3V _ '
AV = |,3m1_| {Am, } = 0 (5.22)

which would result in zero change in flutter speed if V were a linear function
of the design variables mj.
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Applying equation 5.22 to equation 5.20, for example, leads to:

n
2
AN (v
B = Z (Bm.) (5.23)
i=1 * ,

Due to the presence of nonlinearities, however, equatioﬁ 5.23 does, in
general, lead to a finite change in flutter speed.

A condition somewhat more complicated than equation 5.22 follows from
the requirement that the flutter speed is to be kept exactly constant. It is
determined by solving equation 5.24 for k and B according to the method
of Incremented Flutter Analysis

W {av/ami} |
Dlgs v> k, V, {m;1, BEERE B {W}] =0 (5.24)

where {VM} corresponds to the second column of either equation 5.17 or
equation 5.20.

The value W; can be chosen arbitrarily or it can be based on a step
size criterion, such as discussed in Reference 1, Section 6.6.

The resizing column defined by equation 5.20 has been used successfully

for a case in which all %%Js had positive values. Results are presented
in Reference 1.

When there are negative aV/om's the 3V/dmy contribution in
equations 5.17 and 5.20 tends to remove most mass where it increases the

flutter speed most. On the other hand the -377%5— column in equation 5.20

adds to design variables with negative g%} and tends to outweigh the %%—
i

contribution.
Figure 5-2 shows, graphically, possibilities of modifying the columns
in equation 5.20 to accommodate negative 98V/dm's. The elements are

arranged in the order of increasing value of 5V/dm on the vertical axis.
The value of each element is measured along the horizontal axis.

Figure 5-2(a) shows, for reference, the components of the resizing
column of equation 5-20, but for positive 8V/dm's only. Figure 5-2(b)

extends into the range of negati&e gg%'s. For negative values of 3V/dm
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value of element value of element L
= 8V/am o !
aV/dm ;
(a) Positive 8V/@m'sonly :
| e— i
value of element value of element
= 3V/am
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(b) Replace Negative 57/ am by Zero
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!
3
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(¢) Two Non-Negative Columns
——— B/Z
—_— —_—
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Figure 5-2: Composgiite Resizing Columns,
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the elements in the second column are set to zero to avoid the problem

associated with large negative values of avlaﬁ . Q

Figure 5-2(c¢) is a variation of Figure 5-2(b) in that the negative

v,

sm S have been moved, with opposite sign, from the first to the second

‘ column. Thus neither column has negative elements. This has advantages
i for including minimum size constraints in resizing algorithms.

e 5 o i e o St L

Equation 5-17 is represented in Figure 5-2(d), also with the modifica- '
tion that avoids negative elements in the component columns. :

Since in an actual airplane design several or many oV/dm's may be
. 1 .
very close to zero, the column 37735;}.may contain extremely large elements.
If this would constitute a problem a limit could be set on the value of
Sv%gﬁ-, or the problem could be avoided by using the resizing column of i

: Figure 5-2(4).

5.4 Multiple Flutter Speed Constraints

5.4.1 Introduction. When the flutter analysis of an airplane design indi-
cates significantly unrsatisfactory flutter characteristics, it often happens

§ that for different loading conditions (full fuel, no fuel, full pay load,

; ete.) and/or Mach number several instances of flutter speeds less than the
required VR occur. BEven for one loading condition and one Mach number
several zero modal dampings at speeds below VR may occur. . When resizing the ,
structure to satisfy the flutter speed constraints one may think of trying to ‘i
move all zero damping intersections up to VR. Whether or not this is
possible is irrelevant from a practical point of view, since it does not
necessarily lead to the lightest siructure, as is shown in the next paragraph.

ST e

Assume a structure with two flutter speeds, Vy and Vo , both below
Vg In some fashion (uniform increase of stiffness level, steepest ascent,
or other) the structure is modified such that V1 = Vg. Assume that now il
Vo > VR. A one-flutter-speed-constraint mass minimization, keeping Vy = VR,
ca. now be performed. Consider the case for which Vp remains above Vg b
until vhe minimum mass for V) = Vg is reached. Then that is the minimum e
mass for which the flutter constraints V; 2 Vi and Vp 2 Vg are satisfied.
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To lower V2 to Vi while keeping V,=VR, if it is at all possible,
requires an increase in mass since the minimum weight for which V5=V is
already attained.

If in minimizing the mass for V; =V, Vo decreases to Vg, then both
flutter speeds should be maintained at - Vg until a minimum mass condition is
reached.

When there are more than two flutter speeds to contend with, minimizing
the mass is usually accomplished by the following procedure.

Considering the complete set of flutter characteristics (complete f-g-V
diagrams for various Mach numbers and loading conditions) of the initial
structure, it is estimated which of the zero damping intersections is most
critical. The structure is modified to move this intersection to Vg. If
there still remains an intersection at a speed below Vg the structure is
further modified. The result is an initial non-optimum structure with
Vl==VR and Vi =Vg (i=2,3,..v). A one-flutter-speed-constraint mass mini-
mization, keeping V;=VR, is performed until a minimum mass design is
reached, or until another flutter speed, say Vp, decreases to Vo=VR. 1In
the latter case the weight minimization is continued with two flutter speed

constraints: Vi =Vo=VR. Eventually a third and more speeds may be drawn
into the minimization procedure.

The following section provides mathematical background for the above
discussion.

5.4.2 Mathematical background, If two flutter speed constraints are active
the optimization problem can be stated as: minimize M(mj) while the
conditions Vj(mj) = VR1 and Vo(m;) = Vgo are satisfied. (Note that dif-
ferent flight conditions may have different -Vg). With the help of the

Lagrangian multipliers Al and Ao this problem can be formulated as n+2
equations with the n+2 wunknowns mj, A7 and Ap: ‘

) -
- [M(ml) 2 (v (m)=v 1+ A, (Y (m )—VRQ}] = 0
(5.25)
vl(mi) - Vg, = 0 ’\lz(ml) - Vg, = 0
These equations reduce to
v, av,
—_— —— = } = )
A o, + 12 o, 1 V 0 i=1l,2,...n (5.26)
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Consider three of the equations 5.26, say for i = 1, 2 and 3:

av av N
M . A 352'+ 1=0
1 1
ov BV2 o
Mot —+1=0 } (5.28)
2 ) 2
aV av
1 2 -
M, thom t1=0
3 3 J
Only non-zero values of A and A can satisfy equation 5.26 for
1 2
ov oV
finite values of —— and ——

P i The condition for non-zero solutions for
i i

Al and AQ follows from equations 5.28:

1 1 1
av Y av

1 1 1
v - Fvas =0 (5.29)
3ml 8m2 8m3

b

3V2 8V2 8V2

aml am2 om

Since the subscripts 1, 2 and 3 are arbitrarily assigned, equation 5.29
must be satisfied for all possible combinations of three design variables.

In the case of oﬁe flutter speed constraint equation\5.29 reduces to:

1 1
EXL av, | =0 (5.30)
Bml om
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from which:

v Vv

_._l=—']___
Bml am2

which chresponds to the first equation of equations 5.3.

Extension of equation 5.29 to v flutter speed constraints leads to:

1 1 i ) ) 1
av, av, oV,
aml Sml 8mv+l
v, oV, oV, ,
omy om,, Mmool =0 (5.31)
5V 5V 5V
v r v
Bml 8m2 Bmv+l

which must be satisfied for any set m , m,,..,m . within ml;mg,..mn

(n =2 v+1).

Equation 5.31 is satisfied if any row of the determinant has equal
elements.

oV aVl BVi
e . (5.32)

i
[\V)
o

This is the minimum mass condition for one flutter speed constraint. It
means that if the mass is minimized while satisfying one flutter speed con-
straint Vi=VR1 and all other flutter speeds exceed their associated VR, the
minimum mass for Vi 2 Vgri (i=1,2,..v) is obtained rega~dless of the values
of the derivatives in the other rows. This conclusion was reached by
informal reasoning in Section 5.L4k.1.
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Another special condition for which equation 5.31 is satisfied is:

ov oV oV v oV oV
1 1 2 1 2
__...+ - = — = e e e = — —
kl am k2 om kl 3m * k2 am kl om * l('2 om (5.33)
1 2 2 n n

where kl and kg are arbitrary constants.
This condition occurs when the mass is minimized while keeping two
flutter speeds at their corresponding Vg. If all other flutter speeds equal

or exceed their associated VR , then the minimum mass for Vi 2z VRi
(i=1,2,..v) is obtained regardless of the values of the derivatives in the
rows not represented in equatiorn 5.33. The reasoning can be expanded co cover
any number of active flutter speed constraints.

The same restriction is imposed on equation 5.31 that is imposed on
equations 5.3: equation 5.31 is only valid for free design variables; i.e.
design variables which, at the optimum point have not reached a minimum or
maximum allowable value.

5.4.3 Discussion. Considerable background on optimization with one flutter
speed constraint has been published and more is provided in Reference 1. The
elementary considerations related to the one-flutter-speed-constraint opti-

mization in preceding sections, therefore, relate directly to published
material.

Although several methods of optimization appear sufficiently generelly
formulated to be applicable to the case of multiple flutter speed constraints
the literature does not provide any examples. The following discussion,
therefore, is rather speculative.

5.4.3.1 Increasing the Flutter Speeds

In the case of one flutter speed constraint a simple resizing column is
defined, proportional to the initial gradient of the flutter speed (equa-
tion 5.12), to increase the flutter speed tc Vi in one step. Numerical
examples have shown that this provides a favorable initial design from which
to start a mass minimization process at constant flutter speed.

The resizing distribution defined by equation 5.12 follows the notion of
adding to each variable an amount proporticnal to its effectiveness in
increasing the flutter speed. Extending this notion to the case of several
unsatisfied flutter speed constraints a resizing column could be conceived in
which each element is proportional to the effectiveness of the associated
design variable in increasing all submarginal flutter speeds. This could
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constraint mass minimization. If there is one flutter speed, say V

lead to a resizing column that is proportiocnal to the sum of the gradients of
the flutter speeds:

u
= _d ;
{am,} = C 2 (5.34)

(Vj = flutter speeds below Ves J = 1,2..u)

However, one flutter speed may be close to its Vr, another far below.
Obviously, design variables favoring the latter should be weighted more
heavily than variables favoring the former. This leads to a resizing column
based on a weighted sum of the gradients of the flutter speed:

U v .
{Ami}= C z (VR —vj>a—mJ— (5.35)
FERANE '

The scalar C should be determined such that one flutter speed V1=VR1

and all other flutter speeds Vj > VRj (3=2,3..u).

It is emphasized that the authors are not aware of any numerical evalu-
ation of the suggested procedure.

5.4.3.2 Minimizing the Mass

Consider first the case of one active flutter speed constraint:

Vl = VRl s Vj = VRj (§=2,3..v).

Use the resizing column of equation 5.20, with A replaced by the value
given by equation 5.21, and compute the resulting increment of the flutter

speeds Vj (3#1):

X » v,
§ Lo {avy/oamg} {omy || By 1/9ms § o™y )
If all A‘.’j 2 0 the optimization can be treated as a one=flutter-speed-
s for
which AV2 < 0 there is a possibility that the resizing column of
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equation 5.20 reduces V2 below VR2 » and a condition for Wl can be

established by equating AV2 to its largest allowable negative value:

VR2 - V2 .

' W, Iav
Vo= Vga = Vo © [1] oV 7om} [omy aV /am (5.37)

Since B is an implicit, non-linear function of Wy (equatlon 5.24),
an iterative process, such as a one-dimensional Regula Falsi approach, should
be ubed to determine W from equation 5.37. If W, satisfying equa-
tion 5.37 is smaller than the Wy that follows from the step=size criterion
a33001ated with equations 5.20, 5.21 and 5.24 the former defines the value
of Wp to be used for the first resizing. Otherwise the resizing is based
on the criterion used in the case of one active flutter speed constraint.

If Wl as follows from equation 5.37 defines the step size, by defini-

tion Vl =V and V

R1 5 = VR2 . For further weight reduction, while keeping

Vi and V2 constant, the following may be considered.

In accordance with the basic resizing concept expressed in Section 5.3.2:
add where it does the most good and subtract where it does the least harm, and
taking equation 5.20 as a model, the following resizing column can be formed:

v av

1 2 1
X = — 4 - —_—_— .
{dm;} = A dm,  om, Bl v_ L (5.38)
i 1 + 2
om, om,
1 1

The requirements AVl =0 aﬁdirAVQ = 0 lead to the following two com-

plex determinantal equations which comprise four equations with the four
unknowns: two reduced frequencies k and k2 > and A and  B.

1
aVv av :
A DR AR | W
D g5Y s k-] SVRla 51’[1_. + 5-171— ~, B W ¥=0 : (5-39)
i i 1, .2
om,. om
/\- ‘,q ‘ | 87
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D g,YakeszgsA a—m—-"_aT > B EV——S—V—— =0 (5.)40)
. 1 1 _—l. + 2
) am,  Om
i 1 ;

Although 2quations 5.39 and 5.40 suggest unique solutions for A and B,
and the k values associated with VRy and VRp , these solutions may be
complex values and thus without physical meaning.

It 1s noted that the two complex equations 5. 39 and 5.40 with the four
unknowns A, B, k and k2 can only be formulated because of the non-

linear character of the relationships between the flutter speeds and the

design variables. Keeping AVl = 0 and AV2 = 0 on a linear basis leads to:

3v v v [ A
1 1 2 1
RS Y S S S - QY PR (N Y (5.41)
Bmi Bmi ) Bmi} 4_81@ 3V2 -
om om.
- L 1‘
v v 3V (i 3
2 1 2 ‘ 1 _ A
EEN R EENT e v vl O Rl (5.42)
i i i 1 2
—_—
: om, om,
. 1 i)

which are two homogeneous equations with essentlally one unknown: A/B, and
in general no solution for A and B separately.

Tt is also noted that, if real values of A and B are found, the
distribution of {Ami} as well as its magnitude is defined. This may well

lead to convergence difficulties.

A more promising approach is 4o select three linearly 1ndependent col-
umns , such as shown in eguation 5.43 or equation 5.4}.

| v, v, L |
= — et —— —— ]+ .
tam ) = A=t 5t Blww ¢ {1} (5.43)
i i S + 2
om om

: ; 1 -2 1. 1
{Am, } Ad——+ —=F%_- B Joo—"tu | - (: ~—————;1 (5.44)
i | ami ami | {BVl/ Bmi} {avg/ Bmi )
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A value of A, defining stepsize, can ﬁe selected, and equations equiva-

- =—=Ferit"to equations 5.41 and 5.42 make it possible to relate B and C to A.

Since equations 5.41 and 5.42 are linear, _Vl and Vo, are not maintained
exactly at VRf{ '

Iavl ayg"
5.4.3.3 The Distribution 4+—-+ —
L&m. am,
= i i
BVl BV?
Support for the use of the distribution ryou + 552 as a guide for
i i

generating a resizing column is found in the feasible directions procedure of
Reference 16. Tt has been shown (see discussion in Reference 1, Section 6.5)
that with the procedure suggested in Reference 16 (push-off factor 6 = 1)
the distribution of the resizing column can be determined from the following

equations: o
oV, ave* (-1 )
smallest —8-m_+m— -1
1 1
BVl 8V2 .
om, | am.
2 S
< 2% —> {8} = < “k & (5.45)
) S+l
lar\tst EX&-+ Ezg
g am am
. I nj \ /
BVl
15 v + {1} =0 (5.116)
i
8V2 >
sl 5—f* (11 p =0 (5.47)
1
The values of the elements Sk and ‘Sk+l follow from the two equations

with two unknowns: 5.46 and 5.47.

e




BVl oV

Thus design variables for which — + —
om om
SVl v ,
for which -—= + ——— 1is small are decreased.
am om

Numerical results thus obtained were in exact sgreement with results
obtained using the Simplex method as suggested in Reference 16

5.5 Optimality Condition, Ballasting and Stiffening
The optimality condition for one flutter speed:

N ) A | (5.48)

for free design variables is discussed in connection with practical considera-
tions regarding ballast and stiffness design variables

; The literature pays little or no explicit attention to ballast (dead
welght) as a design variable. The reason for this omigsion is understandabile:
any method of optimization that can handle design variables representing
related stiffiiess and mass 'changes can handle a de31gn varlable representing
a mass chanpe only.

The need to consider mass ballast as a design variable is an additional
argument in favor of using mass as the dimension of design variables.

It should be noted that a stiffness change with zero associated mass
change cannot be represented by mass units. Such a stiffness change, however,
must have some other penalty such as drag or production cost, and the objec-
tive function to be minimized cannot be the sum of structural and ballast
mass.

Inclusion of design variables representing ballast obviocusly increases
the number of design variables. Although ballasting design variables are
less costly in term of computer time and problem formulation than stiffness
design variables, an indiscriminate increase is an unwelcome burden. In
Reference 1 it is suggested that it may be convenient to first optimize the
structure using stiffness design variables and their associated mass only and
then to determine whether any mass change by itself is more efficient than the
stiffness changes in raising the flutter speed. Alternately, the values of
flutter speed derivatives with respect to ballast mass, determined at a stiff-
nesg| optimum, may be used in an attempt to further lower the total mass. The
Iollow1ng procedure could be followed '
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. Let mo(c = l,2,...,n0) represent stiffness design variables and
mB(B = nc+l, n0+2,...n) ballast design variables. Then, after stiffness

optimization:

e R A (5.49)

for those m not constrained by a sizing limit. Any m for which

B

7 S (5.50)

can not be used to reduce the total mass if it is assumed that initially there
is no ballast present. This follows from the fact that equation 5.50 implies
that the total mass can be reduced if mg can be reduced &and m increased.
If, however, there is a ballast configuration for which

av N Vv
om om
o

B

(5.51)

then a mass reduction by ballasting is possible.

Thus, after an optimization in which only stiffness design variables are
used, a new optimization may be initiated that includes all stiffness vari-
ables and those ballasting design variables that satisfy equation 5.51.

Although sizing limits are usually thought of as lower limits, upper
limits can also occur. Ballasting, for instance, has an upper limit defined
by space available and specific weight of acceptable ballasting material.
Even structural members may have upper limit constraints; for instance in
areas where control surface actuators must be housed in a wing box. Thus the
optimality condition of equation 5.48, when taking note of the thought
expressed by eguation 5.5l can be generalized as follows:

Let mg, be a design variable at its lower sizing limit, m, & design
variable at its upper limit, and m; a design variable satisfying the condi-
tion of equation 5.48 then the generalized optimality condition is:

oV ' v Vv
_r . = . c oy o ' .
om, ~ C om, om_ . C (5.52)
i £ u
The conditions 5.52 can be used to check the result of an actual opti-
mization process.
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6. PRACTICAL CONSIDERATIONS RELATED TO OPTIMIZATION
WITH FLUTTER CONSTRAINTS

Concurrent with the present study the Lockheed-California Company con-
ducted work on contract NAS1-12288 with NASA, Langley Research Center (Refer-
ence 17). Contract NAS1-12288 is a design study for a supersonic transport
with an arrow wing planform (Figure 6-1). During Task I of that contract
' three design concepts were evaluated, which included the determination of the
weight penalty for satisfying the flutter constraints. On the basis of the
results of Task I a design concept for Task II was chosen and further refined,
One of the investigators in the present study participated in the weight mini-
mization part of the arrow wing contract, with benefits for both studies.

Of importance to the present study is that the arrow wing contract pro-
vided a realistic design environment for flutter optimization.

The approach to flutter optimization consisted of a judicious choice of
the most critical flutter condition followed by the actual optimization by
means of an interactive Computer Graphics program, using the method of
Incremented Flutter Analysis to determine the sensitivity of the Flutter
speed to design variables.

The practical experience gained can be demonstrated by examining the
significant findings during the Task I design of the arrow wing based on the
chordwise stiffened design concept.

In the following the structural model and the flutter analyses of the
original strength design are discussed. The structural regions delineating
design variables are defined and the non-linear relations between elements
of the stiffness matrix and the design variables are demonstrated. Finally
the design experience as related to the number of modes used in the flutter
optimization and the modal updating is presented.

6.1 Structural Model and Vibration Analysis

The Task I structural model of the wing is symmetric about a midplane
parallel to the x-y plane. Vertical deflections of the nodes on top and
bottom surface of the wing are assumed equal and in the same direction, defin-
ing the overall deflection of the wing. Deflections in the horizontal plane
on top and bottom surface are assumed equal and opposite and thus there are
no elastic deflections parallel to the x-y plane in the mid-plane of the
wing. At each node the structural degrees of freedom are translations in the
directions of the three axes. The fuselage is represented by a simple beam.

The total number of structural degrees of freedom per side is 1042. TFor
symmetric modes 250 of these are translations in‘the z direction and, on
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the fin, 14 are translations in the y direction, describing the overall
motion of the lifting surfaces. For antisymmetric modes 25 "z translations
‘on the fuselage are replaced by 25 y translations. The vibration and
flutter equations are formed on the basis of 188 degrees of freedom for sym-
metric analyses (Figure 6-2) and 178 degrees of freedom for antisymmetric:
analyses. Consistent inertia and aerodynamics matrices are based on the more
than 250 out-of-plapg translations. A static reduction is used to reduce the
structural degrees of freedom from 1042 to 188 (178 antisymmetric). A corre-
sponding reduction is used for the inertia and aerodynamic matrices (Guyan
reduction, Reference 18). :

Vibration‘analyses are conducted to determine the lowest 50 natural fre-
quencies and mode shapes. Table 6-1 summarizes the vibration characteristics
of the initial, strength designed, configuration.

6.2  Aerodynamics and Flutter Analysis

Doublet lattice theory (Reference 9) is used to form 26L4th order aero-
dynamics matrices for M = 0.6 and M = 0.9, using 233 aerodynamic boxes
per side on the wing and 15 on the fin. They are subsequently reduced to
188th order by the Guyan reduction method (Reference 18).

The degrees of freedom in the flutter analysis are reduced by post and
pre multiplying the flutter matrix by a modal matrix and its transpose.
Twenty vibration modes are used in the flutter survey of the initial
configuration.

Sample results of the flutter analysis are shown in Figures 6-3 through

6-6.

The use of twenty modes was based on engineering Judgment in reaching a
compromise between accuracy and cost. Cost considerations included not only
the direct cost per flutter analysis, but also the cost of assuring that the

number of modes chosen, if low, is adequate.

An example of the sensitivity of the flutter characteristics to number
of modes used is presented in Figure 6-7. For this condition it appears 15

“modes would have given acceptable results for the flutter analysis. Regard-
~less of this answer, hovever,_ twenty modes was considered the absolute mini-

mum number of modes requireg/@or a meaningful optimization. The effect of
increasing the number of modes on one flutter speed is shown in Figure 6-=8.

To increase the underqtandlng of the nature of the flutter modes, modal
participation coefficients were plotted to make visible the amount of part1c1-
pation of each of the Tweﬂty natural vibration modes in in-flight modes of

interest as a function of speed. Examination of these plots revealed that the_

flutter mode labeled bending and +o§s;qu§nd the one labeled hump mode

ol
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Figure 6-2: Symmetric Degrees of Freedom for Vibration Analysis.

MODAL FREQUENCY - HERTZ
MODE DESCRIPTION SYMMETRIC ANTISYMMETRIC
OWE FFFP OWE FFFP
WING 1ST BENDING 1.009 0.933 1.228 0.908
FUSELAGE 1ST BENDING 1.381 | 1.206 1.998 1.949
ENGINE PITCH IN PHASE 1.641 1.627 1.51k 1,457
ENGINE PITCH OUT OF PHASE 1.817 | 1.815 1.821 1.805
FUSELAGE 2ND BENDING 2,784 2.261 3.370 3.056
WING 1ST TORSION 3.288 3.104 3.034 3.056

Operating Weight Empty (OWE) = 321,000 LBS

Full Fuel Full Payload (FFFP) = 750,000 LBS

Table 6-1: Summary of Vibration Characteristics; Initial Design.
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probably could benefit from wing stiffening. However, the mode marked stabil-
ity mode proved to be composed of the first elastic mode and rigid body modes
and it was not expected to gain significantly in flutter speed by wing stif-
fening. In view of its strong dependency on the rigid body stability char-
acteristics, which during Task I were not well defined, this mode was not
considered during the Task I optimization.

Additional insight was gained by a flutter analysis of a configuration
rigidized inboard from butt line 470 (Figure 6-9). The flutter mode with a
flutter speed of 418 KEAS is very similar in character to the bending and
torsion mode of Figure €-h with a flutter speed of 379 KEAS.

On the basis of the results shown, and additional flutter results for
other combinations of Mach number and weight, the symmetric bending and tor-
sion flutter mode at M = 0.9 and 750,000 pounds was chosen for the optimiza-
tion task.

6.3 Optimization

As indicated in the previous section the full fuel, full payload,
750,000 pounds configuration, chordwise stiffened concept, at M = 0.9 was
chosen for the optimization procedure. The flutter speed of the symmetric
bending and torsion mode of the initial configuration was 379 KEAS. The flut-
ter optimization task was to resize the structure to increase the flutter
speed to 1.2 Vj (468 KEAS) with a minimum weight penalty.

To reduce the optimization task to a managable size relative to available
resources the wing planform was divided into eight regions (Figure 6-10). For
each region a design variable related to the torsional stiffness and a design
variable related to the bending stiffness were defined. Increasing the tor-
sional stiffness was accomplished by increasing skin thickness and beam web
thickness, which resulted in increased bending stiffness as well.

Increasing the bending stiffness was accomplished by increasing the beam
cap areas and resulted in a small increase in torsional stiffness due to dif-
ferential bending. Design regions 9 and 10 are the bending stiffnesses of
the engine supports. They were not varied during the Task I optimization
procedure.

The static reduction of the stiffness matrix from 1042 to 188 degrees of
freedom led to non-linear relations between elements of the 188th order stiff-
ness matrix and the design variables B8, as illustrated in a few examples in
Figure 6-11. The stiffness matrix, as a function of all design variables B,
was approximated by:

16
k(e)] = k(@) + > (1a0 + 8, (3,1 + 62 1c)) (6.1)

i
i=l
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It was found that interaction between the design variables was minor so
-that the BiBj terms were neglected in the approiximation.

The optimization technique used is an interactive Computer Graphics pro-"~
gram, u51ng the method of Incremented ¥lutter Analys1s, in which successive
combinations of design variables with decreasing total mass are generated
while keeping the flutter speed exactly at the desired value. The effective-
ness of design variables in increasing the flutter speed per unit mass is
determined similar to ‘the procedure described in Section 3.2. On the basis of
the current values for the effectiveness the next resizing is determined by
engineering judgment, after which new sensitivities are determined. The proc-
ess is continued until the sensitivities have become approximately equal and
no further weight reduction is possible. If the number of design variables
that play a role is small, say smaller than 20, this technique is very effi-
cient in terms of resources required and elapsed time.

The basic computer program in this optimization technique is executed
with fixed modalization, although it can be interspersed at will with modal
updating. The increase of the flutter speed to the desired value can also
be done in several steps. The practical experience gained while following
one particular sequence of steps is discussed. Reference is made to
Table 6-2.

The initial configuration (Sg3) and its natural vibration modes obtained
from a 188th order vibration analysis (VMg) had a flutter speed of 379 KEAS.
The flutter equation was modalized with the lowest 20 of these modes. An
optimization using fixed modes was performed and it was found that to reach a
flutter speed of L68 KEAS, 1105 pounds per side had to be added. This first
"optimized" solution (S;) consisted of 682.5 pounds of structure for the
torsion design variable and 422.5 pounds for the bending design variable in
Region 8 (Figure 6-10). For the configuration thus defined, a new vibration
analysis (VM;) wusing 188 degrees of freedom was conducted followed by a
20 mode flutter analysis. The resultant flutter speed was LL3 KEAS, 25 KEAS
less than the desired value. Re-analyzing this structure using the original
20 vibration modes led to the desired flutter speed of 468 KEAS, indicating
that it was the use of fixed modes that caused the optimization process to
result in a deficient structure.

Using the newly computed vibration modes (VMp) in a fixed mode optimi-
zation process indicated the need of an additional ele) pounds per side (for
a total of 1597 pounds per side added) to reach a flutter speed of LE8 KEAS.
This second solution (85) had 1470 pounds of bending material and only
126.7 pounds of torsion material. Thus, it appears that for twenty modes this
process of fully optimizing and then performing a vibration analysis may not
converge on the optimum distribution among the several design variables. This
approach was considered unpromising and has not been pursued further. No
updated flutter analysis of configuration 82 was performed. '

)
i
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Flutter Analysis

Optimization

Resultant Configuration

€0t

Vibration Weight Added to Base
Analysis Flutter Configuration, lbs per Side
Configu- 188th Modes Speed | Modes Identi-
ration Order Used Order KFAS Used Order | fication | Region | Torsion | Bending | Total
) ! VM v - . >
SO (base) V!O I 20 379 VMO 20 Sl 8 682.5 h2p.5 1105
S M VM. 20 LL3 VM 20 S 8 12€.7 | 1470.0 | 1596.
1 1 1 1 2
VM L
IIO 20 68
VM 50 LLs VM 50 S T 82.0
° i 3 b i 5
8 861.4 778.4
S VM VM 50 L60 VM 50 S : 4 490.0
3 3 3 3 . 1949.
8 T704.0 755.0
Table 6-2: Arrow Wing Optimization




To maximize the possibility of obtaining a meaningful optimized configu-
ration the maximum number of modes, 50, that could be accommodated on the
interactive system was used. First configuration 871 was analyzed, using
50 of the VMjy modes. This resulted in a flutter speed .of 445 KEAS, very
close to the L43 KEAS found with 20 VM; modes. Using the 50 VM3 modes
another optimization was performed, leading to S3 with 861.4 pounds in tor-
sion and-778.l4 pounds in bending added in Region 8 and 82 pounds in bending
in Region 7. A 188th order vibration analysis of S3 resulted in the modes
VM3, 50 of which led to a flutter speed of L60 KEAS. A second 50 fixed modes
optimization was performed using the VM3 modes. This led to the configu-
ration  8y: 704 pounds in torsion and 755 pounds in bending in Region 8 and
490 pounds in bending in Region T, for a total weight penalty of 1949 pounds
per side.

It was Jjudged that remodalizing the Sy configuration would lead to a
50 modes flutter speed acceptably close to 468 KEAS and that the modes would
change little, indicating that a minimum weight was approximated.

6.4 General Conclusions

Some of the practical experience with flutter optimization in:a realistic
design environment gained during the Contract NAS1-12288 flutter task is
illustrated in the preceding section. Additional experience was gained dur-
ing Task I' with two other structural design concepts, and during Task II with
a-mixed chordwise stiffened-monocoque design. Each optimization was done for
a 750,000 pound configuration at M = 0.9. During Task II an optimization at

= 1.85 was added since the M = 0.9 optmization led to a flutter speed less
than 1.2 Vp at M = 1.85 (Reference 19).

The practical experience gained by the present investigators during the
entire arrow wing contract can be summarized in the following cone¢lusions.

L. An airplane with relatively complicated in-flight modal character-—
isties was optimized considering only one Tlutter speed at a time.

2. The optimization of the arrow wing configurations was accomplished _

) with the help of man-in-the-loop techniques. The resulting restric-
tions regarding the number of design variables and structural and
modal updating empha51ze the need for more powerful optimization
programs.

3. Reduction of the stiffness matrix and the associated non-linearity
leads to the structural analysis being a dominant part of the cost
of optimization. Future optimization studies should aim at reducing
this cost. Such cost reduction may be found in using a simple struc-
‘tural model or in.using approximate methods. (See als 0 dlscusslon
in Reference 1.)
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4. TFrequent updating of the vibration modes assists in speeding up the
attaining of a converged optimum design. An error in Jjudgment,
underestimating the frequency required, however, will be caught when
‘the final, supposedly coptimized design is remodalized and a check
flutter analysis performed. Such a check should be a routine pro=-
cedure. The use of too low a number of vibration modes, or insuf-
ficient design regions, however, is not "automatically" checked for
accuracy, but would require effort outside the mainstream of the
optimization procedure.

T. DERTVATIVES WITH RESPECT TO DESIGN VARIABLES

The resizing of the structure in a structural optimization with flutter
constraints is directly related to the sensitivity of the flutter speed with
respect to the design variables., In 1947, van der Vooren (Reference 20) pub-
lished a method of expressing the flutter speed and mode of a slightly per-
turbed configuration in terms of the flutter speed and mode of the original
configuration and the perturbation. More recently, and directly in connection
with flutter optimization work, Rudisill and Bhatia (Reference 6) have
derived expressions for the derivative of the flutter speed with respect to
design variables. A compact description of the method is included for com-
pleteness in Section T.1.

Section 7.2 is based on work performed during this study. It presents a
method of obtaining derivatives of the damping at a given speed with respect
to design variables.

; For both types of derivatives, the derivatives of the mass, stiffness
and aerodynamics matrices are needed. Present finite element structural mod-~
elling technique leads to satisfactory structural representation for aero-
elastic purposes while maintaining linear relationships between the mass and
stiffness matrices and the design variables. Thus the mass matrix [M(mj)]
and the stiffness matrix [K(mi)], for arbitrary values of mi, can be written
as:

n B
Mim)] = D] + D m [am,] (7.1)
i=1l
and
n
(Kn)] = (K] + > m [aK,] (7.2)
i=

hid

e
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where [MO] and [KO] are base mass and stiffness matrices, respectively,

and [AMi] and [AKi] are incremental matrices corresponding to a unit of

m, .
1

If the order of the stiffness matrix is too large for efficient repeated
vibration analyses, as required in an optimization procedure, static reduc-
tion may be necessary; this may destroy the linear relationship shown in
equation T7.2. However, as described in Reference 1, the derivative of the
stiffness matrix for m, = 0 can be obtained from an expression identical

to equation 7.2. For each design variable for which m.i # 0, new matrices
[KO] and '[AKi] must be computed to determine the derivatives.

The derivative of the aerodynamics matrix can be obtained by finite
difference techniques or by the methods discussed in Section 5 of Reference 1.

7.1 Derivatives of the Flutter Speed

The flutter speed, V, and the associated reduced frequency,' k = L&

are obtained from the characteristic flutter equation:

-1 2 , 1+ 1 /.
) V;g (K] - S ¢ [A(iK)] |fa}= 0 (7.3)

where g 1is the structural damping

Since at flutter v=0, equation T.3'is valid for the k-method approach
as - well as for the p-k method approach.

The matrix {q} 1is the modal column associated with the flutter solu-
tion. For the same determinant, but associated with the transposed matrix

problem, there exists the corresponding column {r} . Thus:
1 2 1+i 1 ..
Led| -5 ] &% + =B k] - 20 [a(1K)] | =0 (7.4)
c v ,
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The derivative of equation 7.3 with respect to the design variable m
is:

1 [aM],2 2 3k 2(i+ig) 3V | 1+ig [3K
'2[amk“2[M]kam 3 o YT ||t
i ' v
(7.5)
1 [aA7 8k 1 2 . 1+ig 1 . agl _
- epl:ak s | fad * 5 [M] k™ + == [K] - T o [A(iK)] Eﬁ}’
e c v
f’Pre—multiplying 7.5 with |_r_] and invoking equation 7.4 leads to:
1 oM 2 2 ok 2(1+ig) 8V
‘—e(ra—mq)k - (M) kg - = gy (k)
c c - v :
(7.6)

1+ig ( 9K\ 1 9A ok
+ 2 = - = —_ —— =
2 \F'amq) P T =0

Equation 7.6 is a complex scalar equation. The scalar r % gy ctands

for |_r_| l: :l {q}. Similarly the other triple productsﬁ between parentheses
stem from triple matrix products. In equation 7.6 k, V, {q}, and [r] are

known solutions of the equations 7.3 and T.4. Equation 7.6 represents two

k
linear equations from which the two unknowns oK and al can readily be

om om
obtained.

Iti may be of interest to return to equation 7.5 and determine the deriv-

ative of the flutter mode: g—;—-}
. ok oV - . gl ..
With m and ™ determ;ned from equation 7.6, {am} is the only

unknown in equation 7.5. Since equation 7.3 defines only a distribution for

“{a}, {q} can be normalized. Let {q} be normalized to the last element,

which then, by definition, is a constant. It follows that the last element
of {g—:nl} is zero, which can be omitted if the. last columns of the matrices

pre-multiplying: {%} are omitted. Equation T.5 then has one more equation
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than there are unknowns %%- and, arbitrarily, the equation corresponding

to the last row of all matrices is omitted.

If [M|] means the last column of [M] is omitted, and [M] means

the last row is omitted, the solution for {%%} can be written as:

: -1
sal_ _t_ 1 2, ltig X - Sl oA M) R2
{am | 5 Ml + =2 [k]] - 50 [AGK)]] 5| % *
= c Ve e L=
(1.7)
2 ok 2(1+ig) av 1+ig | 9K 1 A’
- — c—— o i Dl e + —— 2 | = - = —_—
sk = 3 o K+ 5 m| 2P |3l | 19
c v v —.
e} . .
The complete m column is given by:
N LR
3 am
{ﬁ}: £ (7.8)
0
The second derivative of the flutter speed is used in some methods of
optimization that use a defined step size (Reference 1, Section 7). 'Two
2 2 '
equations with the two unknowns- —— and 2V can be derived by assum-
amiamj amiamj

ing the derivatives in equation 7.5'are with respect to m:.L and then differ-

2
entiating with respect to . mJ. . Because of equation 7.1, —359—51%— =0 .
2%k | 3k
It can be shown that for mi =0, . am. = 0 . The unknowns moem and
: i ] LoJ
32V : :
M can be expressed in terms of the originally known quantities and
i J ’ . .
. - .9k 9k oV v 9q 9q | -
the quantltles to be comput’ed.. sm. ° Bm. ? aml ® m ° lam. and cye I
7y ) i J i J i J)
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T.2 Derivatives of the Flutter Root

The flutter root, p, defines the frequency and damping of an in-flight
mode at a given speed. It satisfies the characteristic equation of the
flutter equation:

V2

L] o7 + (1+ig) [K] - 3 ov° [A(2)] | {2} = O (1.9)
c

Let p=(y+i)k be a root of equation 7.9 and {g} the associated modal

. d - . .. . .
column. The derivatives 5%- would be required in an optimization process in

vhich there is a damping constraint. Damping may be a flutter constraint (as
discussed in Reference 1, Section 7.3), but could be a constraint related to
airplane stability characteristics. '

21- can be obtained from EE = a+ib:
om om

3 _a-yb ‘
™ o ) (7.10)

%E- is obtained from equation 7.9 as follows:
m

For a given Mach number and altitude V2/c2 and %pV2 are constant.
2

To simplify the notation 'XE_ [M]  is replaced by ([M], (1+ig) [K] by [K]
c

and %~pv2 [A(p)] by [E(p)]. Equation 7.9 then becomes:
[[MJ 2+ [R] - mp)]] (@=0 (7.11)

Differentiation of equation 7.1l with respect to the design variable
m leads to: :

Tol] 2, 5 5y p 22 4 [2K] _ [oK] 22 | ;
[am] p-+2[Mop om * [Bm] - [Bp} on {a} + k (7.12)
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D 1

Pre-multiplication by LrJ s Where LrJ satisfies equation T.1l3 for the
. 3 . .
flutter rdot of interest, leads to the expression for 5% given in

equation T.1k.

| [[m b2 + [R] - [z(p)]] =0 | (7.13)
Lr] ;%%: + p° [%%J {q}
9 — .
= . - (7.14)
L) |[2] - 20 1| 1)
.

Following a reasoning similar to that in Section 7.1, the derivative of
the flutter mode can be derived:

-1

b= - | [ ] »® + [11] - [Aeeut]| |[B] 5% ¢ e 32+ (7.15)

s ek "9A ap.
5 - (5] | e

Assuming the derivatives in equation T7.12 are with respect to- m; , this

i
equation can be differentiated with respect to mj and an expression
o ,

8 K3
for am_gm, can be obtained, from which
i3 ,
2 a,b, - 2yb.b, + a. b,
8%y _e=yd i3 T VP55 T %40 (716)
om, am, k ) .
1i.,4Jd k ’

The a, b, ¢ and d quantities in equation 7.16 are defined by:

5p . 3 : 52p . o
— IR . * —_ = + . e .
ami al lbi amj aj le amiam ¢+ id (7.17)

110




Since it is not certain whether acceptable approximations to [A(p)] can
ve derived from [A(ik)] given at discrete values kl , an alternate

Y

approach to determining e is presented for consideration.
In the p-k method (Reference%B) equation 7.1l is written as:
[[M] o2 + [R] - mikn] {a) = 0  (7.18)
Differentiation gives:
M| 2 ~.  9p K 9A7 ok
— = 4+ | —] = =] = + .
[Bm] po+2 [Mp 5 [Bm:l l:ak] om | () (7.19)

op Yy 7o ,sy 0K

———— T s + + —_— .

om Bm.k (y+1) am (7.20)
Multiplyiﬁg quation 7.19 by LrJ and substituting equation T7.20 leads

to the following complex scalar equation with the unknowns %%-and %% :

M \ 2 - 3y o .\ 9k 3K o8 | ok _ C
(r 5 q) p + (rMa)apk —- + (rMq) 2p (y+i) =t (r - q) (r q) 0

As before, T %%~q, is a short notation for the scalar quantity

LrJ [%%] {q} , etc. | _

No numerical evaluations have been made of methods to compute %%“.

TGS AN e S s e e R
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7.3 Derivatives of the Vibration SolutiomJ

Tt is customary, and for practical reasons often mandatory, to reduce
the number of degrees of freedom of the flutter equation by modalization. In
general the modalization is accomplished with the help of vjﬁration‘modes.
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During an optimization process, in which the structure is resized in several
~steps, updating of the vibration modes is often necessary. Every update

requires the solution of the vibration equation.

Possibly the number of updates can be reduced if the change of vibration
modes due to the changes in design variables is used. E.g., for the xth .

mode:

| [sz
Z =4z +
k K am | tomy)
: ; 1

The procedure of Section 7.2 is followed.

The vibration equation is:

]:- M) o2 + [K]] {2} =0

For a root w = w,
. )
[- 00w+ 1] a0 = 0

and, because [M] and [K] are symmetric matrices:

[ [- 00 + 0] = 0

Differentiation of equation T7.24 with respect to mi gives:

2 o

du | 5z
aM 2 1k oK 2 K\ _
- [Bmi] Y T (u] Bmi * [ami] {ZK} * [_ (] mk * [K]} ami =0

8w2

om
i

Premultiplication by szJ leads to a solution for

2
oW
k_ 1 M ] 2, [aK
am - szJ [M] {z,} LZkJ - [Bmi] w * [Bmi] {Zk}
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Following the reasoning in Sections 7.1 and 7.2 the derivative of the
vibration mode can be derived:

92, 2 . aM ] 2 awi 5K (7.28)
—_— = o - - —_— - — . ndhdet} 1 .
am, [Ml:, “k *:[El] [Bmi] w - (1] am, [ami] tzy}

from which

sz
0z om
k .
vl ::% (1.29)
i 0

A new modalization matrix is formed by assembling columns.{:zk }ﬂ
new,

for as many values of k as there are vibration modes to be u

sed, into one
matrix.

3w2

At any step in the optimization process the quantities defining Bmk

i
according to equation 7.27 are available. However, the inverse in
equation 7.28 must be evaluated once for every mode and the total expression
in equation 7.28 must be evaluated for every mode as well as every design
variable.. Whether, in view of this considerable number of computational oper-
ations this derivative method of updating the vibration modes is more effi-
cient than repeating the characteristic value solution followed by a determin-
ation of the modal columns, seems doubtful and has not been investigated.

T.4 Flutter Speed Derivatives with Variable Modes

When modalizing the flutter equation with natural vibration modes, these
modes can be considered as a new set of coordinates suitable for defining
approximate flutter solutions for configurations similar to the configuration
for which the vibration modes are determined. In determining the flutter
speed and flutter root derivatives these modes are then considered constant.
The formulation of the derivatives in Sections 7.1 and 7.2 is based on the
assumption of constant modalization matrices.

part of modalization, then the modalization matrix cannot be considered con-
stant, and additional terms with derivatives of the modalization matrix must
be included. This is pointed out in Reference 21. A procedure, based on the
results of Section 7.3, is outlined in the following paragraphs, g

If, however, the use of updated vibration modes is considered an integral
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Consider [g%} in equation 7.5. If equation 7.3 is a modalized flutter
equation, [M] 1is a modalized mass matrix.

M] = [z0] (] [Z] (7.30)

where [M] is the basic matrix and [Z] is a matrix of modal columns.

It follows: -

- o | i

The second and third term on the right hand side of equation T.31 are
extra terms due to letting the modes be functions of the design variables.
An equation similar to equation T7.31 can be written for [%%]

9
The expression for [5%] becomes:

x - T
[gﬁ] = fET] [g%] [Z] %% + fET] [A] [gﬁ] + 35_.[E] [Z] (7.32)

om

9z
The matrix [g—;:l is formed by assembling columns {—E)Ik} s given by
| .

equation 1.29, for as many {Zk} as there are vibration modes used in the
modalization: '

Inclusion of [g%] in the formulation of the flutter speed and flutter

root derivatives is expected to lead to more accurate derivatives and con-
sequently to fewer resizing steps in the optimization process. This,
presumably, will reduce the number of vibration analyseé required for remodal-

ization, which is the same result as is expected from the procedure presented
in Section T.3.

That a potential for an increase in efficiency due to the inclusion of
[gﬁ] exists, follows from the following consideration.

In choosing design variables, practical considerations may favor local
stiffnesses as independent design variables. To reflect the effect of a local
stiffness Vvariation in the modalized flutter equation, the "resolution power"
of the modes must be sufficient to recognize this stiffness variation. - When
the flutter speed and flutter root derivatives are determined under the

11k




assumption of constant modes it seems self-evident that mcre modes are
required for derivatives of a desired accuracy than when the modes are con-
sidered functions of the design variables. In the latter case, if the
resolution of the unmodalized vibration equation is sufficient to recognize
local stiffness variations, then this resolution power is partially

preserved through the inclusion of the [gﬁ]' terms.
4 . )
Numerical investigations to confirm the above expectations are

recommended. .
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