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Abstract 
Transonic flight flutter tests of the XF3H-1 

"Demon" Airplane have been conducted utilizing a 
frequency response technique in which the oscillating 
rudder provides the means of system excitation. These 
tests were conducted as a result of a rudder flutter 
incident in  the transonic speed range. The technique 
employed is presented including a brief theoretical 
development of basic concepts. Test data obtained 
during the flight are included and the methodof inter- 
pretation of these data is indicated. This method is 
based on an impedance matching technique. It is 
shown that an artificial stabilizing device, such as a 
damper, may be incorporated in the system for test 
purposes without complicating the interpretation of the 
test results of the normal configuration. Data are 
presented which define the margin of stability intro- 
duced to the originally unstable rudder by design 
changes which involve higher control system stiffness 
and external damper, It is concluded that this tech- 
nique of flight flutter testing is a feasible means of 
obtaining flutter stability information in flight. 

INTRODUCTION 

With the initiation of the first  flight of the 
XF3H-1 Airplane - the prototype version of the F3H-1 

"Demon", Figure 1 - a flight flutter testprogram was 
conducted concurrently with the speed build-up of the 
airplane. This program consisted of the transient 
response technique of flight flutter testing through 
pilot induced control surface impulse motion. How- 
ever, during the course of this flight flutter test pro- 
gram, a neutrally stable empennage flutter condition 
was encountered at a Mach number of 1.04 and an 
altitude of about 30,000 feet. Records taken during 
the flight indicated that the flutter condition emanated 
from the fin-rudder system with a frequency of 20 
cycles per second. A s  aresultof this, a program w a s  
initiated consisting of theoretical investigations in  
conjunction with flight flutter testing in order to 
establish the cause of the instability and to guide in 
the determination of corrective measures. 

This paper concerns itself with the concepts and 
results obtained from the subsequent flight flutter 
test program. The theoretical concepts underlying 
the approach which was utilized, and which involves 
i n  particular a frequency response technique in  which 
the oscillating rudder is utilized as the aeroelastic 
forcing system, have been presented in R. A. Pepping's 
paper, "A Theoretical Investigation of the Oscillating 
Control Surface Frequency Response Technique of 

Figure 1. 
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Flight Flutter Testing", Journal of the Aeronautical
Sciences, August 1954, Volume 21, No. 8. The idea
behind this approach involves the concept of impedance
matching as applied to dynamic aeroelastic systems.

For convenience, a summary of the theoretical de-
velopment is repeated herein.

THEORETICAL BACKGROUND

In order to determine the flutter stability of a

system which has incorporated a servo control me-
chanism, it is important that the dynamic behavior of
the servo be included in the flutter investigation in
combination with the structural, inertia, and aero-

dynamic contribution of the remaining control surface-
primary surface system. In addition to acting as a
control surface restraint mechanism, the servo serves
also as a control actuation system which receives its
signal either from the pilot, a radar beam, or from a
sensing element in the fuselage in which case it be-
comes part of the autopilot system of the airplane.
A method showing the interaction of the servo-control
surface-airplane system is the block diagram repre-

sentation used frequently in the theory of servo me-

chanism analysis which schematically traces through

the events which take place when a signal is received

by the servo resulting in motion of the airplane from

its predetermined or pilot-set path.

Block Diagram Representation of the Aeroelastic
System

The system analyzed consists of the control

surface-airplane flutter system, the servo system,
and the return loop from the airplane fuselage sensing

element (gyro) back to the servo. In block diagram

form, this feed-back system may be represented as

shown in Figure 2. The impedance of the aeroelastic

system and the control system is defined as the

moment applied to each system per unit deflection to
sustain motion at any given frequency. As seen from

the block diagram, the complete system consists of
two feed-back loops. Loop 1, the inner loop, accounts
for the fact that the servo -- which could be, for ex-
ample, a hydraulic actuator -- acts as a root restraint
for the control surface, tending to return the control

surface to neutral upon deflection. Loop 2, the outer
loop, accounts for the servo as part of the autopilot
system, sensing airplane motion away from the set
path with resultant corrective action.

In this paper we will confine ourselves of the

dynamic character of the inner loop, or Loop 1, since
the autopilot of the airplane is not of immediate

interest. The block diagram for the inner loop,
Loop 1, is again shown in Figure 3 where z z is the

impedance of the servo mechanism, i.e., the hydraulic
actuator, obtained from calculations or from measured

frequency response data, and where MZ is the moment
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required to deflect the control surface through an
angle /3 measured at the point of moment applicRtion.
This can be measured in flight or can be idealized

mathematically by a number of degrees of freedom
such as surface torsion, surface bending, fuselage
bending, and control surface rotation. The equations
of motion for the inner loop are given in Figure 4 in
terms of the ratio of output over input. From tile
equations of motion the characteristic equation defining

the frequency parameters of the system and its
stability is given by the denominator of equation 1.0
as equation 1.1. Neutral stability is determined ff
there exists a finite frequency which satisfies equation
1.1 or, as stated in 1.2, there exists a hinge moment
impedance at some finite frequency which is equal and

opposite to the control system impedance.

EQUATION OF MOTION :

OUTPUT zp '
INPUT _i Z_ 4- I 1 4-

CHARACTERISTIC EQUATION:

,_--;= o

1.0

!.1

NEUTRAL STABILITY CRITERION:

_ (o
,%_ -1 ) I

1.2

:-
BASIC STABILITY CRITERIA

Figure 4.

Idealization of Aeroelastic Impedance

From the theoretical standpoint the aeroelastic
impedance of the control surface can be idealized
s c h e m at i c a 1ly by the three-degrees-of-freedom:

primary surface bending, primary surface torsion,
and control surface rotation as shown in Figure 5.
This idealization is the minimum required to cover

all the concepts of the approach utilized herein --
additional degrees of freedom may be added as neces.
sary without invalidating any of these concepts. The
upper diagram is the idealization of the flutter system.
The lower diagram is the idealization of the control
system. The equations of motion of the flutter sys-

tem as actuated by the driving hinge moment M_ is

Shown in Figure 6, equation 2.1. Solving from 2.1 for

the impedance /4_/_ , equation 2.2 is obtained. As

seen, the rudder hinge moment impedance is the

ratio of two stability determinants: the numerator
is the stability determinant of the aeroelastic flutter
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Figure 5.
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system with free-floating or unrestrained control sur-

face and the denominator is the flutter stabilityde-

terminant for infiniterestraint inrotation or, inother

words, rotation is not a degree of freedom. The

stabilitydeterminant for the denominator would be

the primary surface flutterstabilitydeterminant.

Stability Criterion

Figure 7 again shows the characteristic equa-
tion of the. inner loop as equation 3.1. Substituting
equation 2.2 into equation 3.1, the characteristic
equation is rewritten as equation 3.2 in terms of the

stability determinants of the aeroelastic flutter sys-
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CHARACTERISTIC EQUATION "

ZB+_-_ =O 3.1

FROM 22:

M_ Do

3.2

Z 8 + ,_ -- Ni;r:

FROM 21:

Do*Z_N =D =STABILITY DETERMINANT WITH CONTROL
_ SURFACE RESTRAINED BY Z_ 3.3

FROM 3.3 AND 3.2(b):

M_ D

Z,+ -'_- _ _r: 3.4

3.4 STATES THAT BOTH(Zr;+ _)AND D DEFINE THE STABILITY OF THE

FLUTTER SYS/EM WITH THE CONTROL SURFACE RESTRAINED BY

Zp. THUS THE STABILITY IS RELATED TO THE MEASURABLE

DRIVING HINGE MOMENT.

STABILITY EQUATIONS

Figure 7.

tem. The numerator of 3.2 is the stability determin-

ant with the control surface restrained by the control

system impedance, zz . This determinant is denoted

as D. Substituting 3.3 into 3.2, the characteristic

equation 3.1 is transformed into 3.4 which states that

both (Z_ + Mnl/_) and D define the stability of the

flutter' system with a control surface restrained by

Zz . Thus the stability is related to the measurable

driving hinge moment. The characteristic equation

3.4 will determine the system stability. In general,

the numerator of the right hand side of 3.4, D, is a

differential equation of rth order and the denominator

k'nz is a differential equation of nth order. The

problem then, is to determine if there exist any roots

of the numerator which are characterized by a posi-

tive exponential decay function (divergence) which

would indicate instability or by a zero decay function

which would indicate neutral stability. If the equa-

tions are written in differential equation form, then

the roots of the stability equation or of the stability

determinant, D, may be solved for directly. This is

roughly the case of theoretical flutter analysis. How-

ever, equation 3.4 states that stability may also be

determined as a measure of the driving hinge mo-

ment impedance, Hz/9 , for this is a measurable
quantity.

In the theory of servo mechanisms, a relation-

ship is drawn between the determination of system

stability from the solution of the differential equa-

tions (transient stability) and the results from the

frequency response behavior of the dynamic system.

The frequency response technique is denoted as the

Nyquist approach. In this case the differential eaua-
tions of motion are written in transformed form and

the system is analyzed without solving for the roots

by an examination of the behavior of the response

(Mnl;_ + z z) as the frequency is varied from minus
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infinity to plus infinity. For stability, none of the

roots of the transformed characteristic equation --
the numerator of 3.4 - may have a positive real part.

By the use of a modified Nyquist approach, this

is established by observing the behavior of the re-

sponse vector (Mz/9 + z_) as the frequency is

varied from minus infinity to plus infinity. If there

are any roots with positive real part -- which denotes

instability -- the vector (,vZ/_ + Zz) will perform as

many clockwise rotations about the origin when

plotted on a complex plane as there are roots with

positive real parts. It is possible, however, also to

have roots in the denominator of the vector equation

3.4 with positive real parts. Roots in the denominator

Np_ , are denoted as poles and are the solutions of

the flutter system with infinite restraint in the control

system. In that case, the vector equation 3.4 will

perform as many counterclockwise rotations about

the origin as there are poles with positive real parts.

Since both conditions can exist simultaneously, then
for the system to be stable -- or no unstable roots in
the numerator of 3.4 -- the direction of rotation of

the vector (,v_/2 + z z) about the origin must be

counterclockwise and the number of rotations must

be equal to the number of unstable poles.

If there are no unstablepoles, or inother words,

there are no unstable roots in the denominator, and

therefore, the primary surface is flutter-free with an

infinitely restrained control surface, then for the

system to be stable, the vector (MZ/,3 + Z;_) must
not envelop or rotate about the origin. In this latter

case, simple energy concepts will also lead to the
same conclusions regarding the definition of stability,

for example, Pepping's paper referred to previously

discusses the energy approach.

Figure 8 presents the ground rules for applying
the modified Nyquist stability criterion to the imped-

ance stability plots. It should be noted that in actual

practice the frequency variation can be limited to a

reasonable range enveloping the suspected flutter

frequency. Figure 9 indicates aparticularapplication

of the impedance plots and shows a speed which would

be unstable and a neutrally stable speed and relates

this to the well known flutter stability, plot of velocity

versus control surface rotational frequency.

Quite often instead of utilizing the complex

plane plots of the impedance vector an alternate

method is applied which makes use of the so-called

phase margin plot. This is shown in Figure 10.

The significance of the impedance matching ap-

proach is as follows. The aeroelastic impedance,
M_//_ may be calculated or measured. It is then a

given known quantity for a given set of conditions

independent of the restraint, Z_. The restraining

impedance, Z_, may be measured or calculated. The



MODIFIED NYQUIST STABILITY CRITERION:

1. For each forward velocity and a reasonable frequency range, measure

or calculate M_//fl vs. c_.

2. Add to M_/_ the measured or calculated control system impedance Z_
and obtain M_/_+Z_ vs. co . Plot on a complex plane for each forward
velocity.

3.

4,

Calculate the flutter speed or speeds of the system with infinite

control surface restraint. This is designated as Vf0"

For velocities less than VF0 the system is stable if the vector M_/fl+ Z_
does not envelop the origin.

5. For velocities greater than VF0 the system is stable only ifthe

number of counterclockwise rotations about the origin of MB/_ +I#_

is equal to the number of VF0'S.

6. For any velocity the system is neutrally stable Z_ M#/_+ Z# passes
through the origin.

Figure 8.
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vector sum of the two determines the stabilityof the

total system. Additional devices which modify the

restraining impedance Z_, may be evaluated without

further experimental work in flight once the aero-

elastic impedance, M_/_ has been established
uniquely.

TEST CONFIGURATION

The flutter testing of the XF3H-1 rudder is

based on the theory presented in the previous discus-

sion. The hinge moment M_ was supplied by the

hydraulic actuating _ylinder through sinusoidal opera-

tion of the actuator valve. This is shown in Figure 11

which presents a schematic of the shaker system.

I_RUDDER HL

BELLCRANK 19-61390- _ INSTRUMENTED
WITH ACCELEROMETER I_F,x _J_PUSH RO D

i_ p,L--,_/f 19.6130 S. 905
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CRANK 19-04186 \ II _-/

& ECCENTRfC _"_'JL,"_/_.,._ /.FLEX SHAFT

co--GEAR 80X & COUNTER

FLEX  t EX ,,ER O'OR
SHAFT COVER _ _--_"

RUDDER EXCITER INSTALLATION

Figure 11.
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Also added to the system was a viscous damper for
stability reasons. Figure 12 indicates the type of

instrumentation employed on the airplane for these

tests. One of the strain gages shown in this figure

was installed on the control rod leading directly
into the rudder and gave a definition of the driving

hinge moment, M_, and the other was installed on the

control rod just upstream from the damper to define

the hinge moment of the rudder as restrained by the

damper. The damper was a non-linear velocity

squared damping device.

TEST PROCEDURE

The general technique of testing consisted of
stabilizing the airplane at a constant Mach number at

about 30,000 feet altitude (this was the altitude at which
all the test data was obtained and varying the fre-

• VERTICAL ACCELEROMETER

• LATERAL ACCE LEROMETER

• AUTOMATIC CUT-OFF SWITCH

A POSITION (NDrCAFOR

o STRAIN GAGE

_ENTATION SET-UP

Figure 12.
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quencyof oscillationthroughtherangeof about5
through35cps. This rangewaschosenas being

sufficient to envelop the flutter frequency previously
encountered.

Oscillations were introduced through hydraulic
actuator displacement of the rudder through suitable

valve motion. The rudder driving hinge moment
upstream and downstream of the damper was measured
as well as the rudder angular deflection. This pro-

cedure was repeated at successively higher values
of Mach number to establish the trend of stability
with increasing Mach number.

Rudder static deflections of approximately a

degree and a half were employed. The frequency
variation was accomplished by an automatically oper-
ating rotary switch located in the cockpit and aDproxi-
mately 3 seconds were devoted to each frequency
point. Sufficient fatigue strength was provided in the

power cylinder back-up structure and in the connecting
links so that these components were good for 50,000

cycles of rudder limit hinge moment. Strategically
located acceleration sensing devices were tied into
the circuitry of the drive motor which were set to
turn off the drive motor whenever excess accelera-

tions were encountered. Dynamic measurements
throughout the airplane were taken during these tests

and the data were recorded on the airplane oscillo-
graph.

TEST RESULTS

A typical oscillograph trace is shown in Figure
13. The instrumentation was somewhat primitive by
present day standards; however, the test was con-
ducted in 1952 and much of the more sophisticated
types of recording transducers and data reduction
machines were not available at that time. Several
problems which were encountered with this instru-
mentation were:

(1) Rudder angles of about a quarter of adegree
or less were difficult to measure and some
drift in the measurements occurred. Con-

tinuous calibration of the position indicators
was required in order to hold down the

errors from this source

(2) Aecelerometers in the tail assembly were
not temperature compensated and no ac-
curate definition of the characteristics of
the tail oscillations could be obtained. Tem-
perature measurements were recorded for

several locations in the tail assembly and
this data was used to correct the measured
test results

(3) Power cylinder valve displacement and power
cylinder output displacement could not be
obtained correctly.
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The data shown in Figure 13 were manually
reduced and typical plots for various Mach numbers

of the test results are shown in Figures 14 and 16
through 18. The plots cover the Mach number range
of .85 to 1.16 and are representative of the impedance
data taken through M = 1.26 for the system with and

without damper. Data for each Mach number plot
were obtained during several flights as indicated.

Positive phase margins indicate stability. Negative
phase margins indicate instability. To determine the

stability of the actual restrained rudder, this data
must be combined with the control system impedance,
[z_]. Stability is determined by the phase margin

existing when [/4Z//31 is equal to [zzl. The hinge

moment data obtained at M = 1.04 were utilized in a
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theoretical study in order to determine which of the
possible critical degrees of freedom of the aeroelastic
system are influential in the flutter system. It was
found that utilization of the two degrees of freedom,
rudder rotation, and rudder torsion, was sufficient

to describe reasonably well the variation of the hinge
moment and phase margin with frequency atthis Mach
number. This is shown in Figure 15.

The measured test results have been plotted
for two restraint conditions of the rudder; one, the

degree, and the other, that of the final control system -

1740 in. lb/degree. This is shown in Figure 19, for

the idealization of the impedance of the control sys-
tem as a pure spring without hydraulic damper.

As noted, this data does not indicate a zero

phase margin point at M = 1.04 which was the Mach

number of the flutter experienced during the initial
stages of the flight flutter testing of the airplane.
However, the frequency of flutter is correlated.

Tests of the hydraulic actuator impedance in-
dicated that in this frequency range the system was

not acting as a pure spring but that some negative
phase margin was contributed by the actual impedance
of the hydraulic power cylinder. A measure of this

loss in phase margin is indicated as the shaded area
around M = 1.04. An increase in control system
stiffness to 1740 in. Ibs per degree which was basically
obtained by a more powerful power cylinder is shown

by the dashed curve. This increase in stiffness in-
creases the stability of the rudder around M = 1.04;
however, it also indicates that the second unstable
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Mach number range around M = I.I isnot stabilized
markedly by this stiffnesschange even thoughsome

improvement inphase margin isindicated.From this
data, it was concluded that stiffnessalone willnot

eliminatethe flutterinstabilityon the rudder. The
stabilityofthe system with the damper andthe stiffer

control system (final configuration) is indicated in
Figure 20. An additional gain in phase margin is
shown with adequate stability existing throughout the
applicable Mach number range. Similar plots were
constructed for various combinations of damper and
power cylinder impedance characteristics.
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CONCLUSIONS

On the basis of this discussion, the following

is concluded:

(1) The impedance matching technique of de-

termining stability is a feasible means of

conducting flight flutter testing.

(2) The interpretation of the test data is straight-

forward and revolves mainly around the

determination of the aeroelastic impedance

vector of an oscillating control surface.

(3) The aeroelastic impedance can be deter-

mined in flight utilizing a control surface

which has been stabilized artificially and

information from this data may be obtained

for a variety of artificial stabilization sys-

tems. These stabilization systems may

take the form of external dampers or

stabilizing feed-back signals.

1.

2.

3,

4.
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SYMBOLS

#_ = oscillatory rudder hinge moment.

= rudder deflection.

#_/_ = flutter impedance of the rudder aeroelastic

system.

z_ = rudder control system impedance.

RJk + = oscillatory flow aerodynamic

Ijk derivative. See

%jk = inertia derivative. Equation

2.1
_j# = natural frequency of a degree of

freedom in equations of motion.

--circular frequency.

= air density.

bo = reference semichord.

--phase margin -- 180 ° less the phase angle.

Subscripts:

o = output.

= input.

E = error or input less output.
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