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EDITOR’S NOTE

The papers presented herein have been derived primarily from transcripts taken at the Flight
Mechanics/Estimation Theory Symposium held October 15 to 16, 1974, and April 15 to 16,
1975, at Goddard Space Flight Center. In order to achieve a uniform format, a considerable
amcunt of editing was needed and in the interest of time, only a subset of all the papers
presented were prepared for this publication. Abstracts of all the papers are included how-
ever, and attempts will be made to improve the handling of conference material so that in
future proceedings all papers presented will e published.
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N?76-10168

THE DETERMINATION OF ORBITS USING
PICARD ITERATION

Rajendra Prasad Mikkilineni and Terry Feagin
University of Tennessee Space Institute
Tullahoma, Tennessee

The topic of this presentation is the determination of orbits using Picard iteration, which is
a direct extension of the classical method of Picard that has been used in finding approxi-
mate solutions of nonlinear differential equations for a variety of problems. The application
of the Picard method of successive approximations to the initial value and the two-point
boundary value problems is given below.

The initial value problem,

z=F(z,1)

z(tl)=c, n=1,2,...

is solved "»y means of the iterative scheme,
z = F (zn_l, t)
z, (tl) =g,
whereby the nth approximation to the state vector z is computed from the (n - 1) approxi-
mation (beginning with some initial approximation, z,(t)). The computation involves per-

forming a simple integration or quadrature at each stage of the iterative process. The con-
stant of integration is chosen such that each iterate satisfies the initial condition, z (t,) = c.

Similarly, the two-point boundary value problem,
z=F(z,1)
g(z(t)), z(t))) =0,
is solved by means of the iterative scheme,
z, =F(z, ,,1)

n-1’

g(z, (t,), 2, (1,)) =0, n=1,2,...



where g denotes certain constraints or boundary conditions that must be satisfied by the
solution at t, and t,.

This paper presents an investigation of the suitalility of this type of iterative scheme for tie
problem of estimating orbits. In the estimation problem, we again have to solve the differ-
ential equation for the state. However, we are now given a set of imprecise observations,
y(t,) .7, which are, in general, nonlinear functions of the state. The problem is to find

a z(t) which comes close (in some sense) to satisfying the observations. The estimation
problem can thus be written as

z=F (z,t}
subject to the condition that z(t) minimizes some function Q, where
Q=Q[z(t,)z(t,), ...,z (t,). y(t ),y (1), ...,y (t )]

For instance, Q could be the sum of the sguares of the residuals (the residual being the
difference between the observed and ine computed values o{ the observations). Again, the
iteration is set up,

z, =F(z, 1),
now choosing the constant o integration for z_(t) such that

Q [z, (). 2, (1), -2, (), Y (1), -y )]

is minimized. As before, each stage of the iteration requires that a quadrature is performed.
In order to perform the integration, we have chosen to approximate the right-hand side,
F(z, ,,t), by 2 series of Chebyshev polynomials, Tj(r), and to integrate term-by-term.

Thus, the approximation
N ’
F(z, . 0)= 2 b, T, ()
=0

is made where r=1 -2 t/(tm - t,) is normalized time. The coefficients of the series are
determined readiy using the orthogonality properties from the relation

N n

b, = Z F(r) T, (1)

k=0

where 7j = cos (j#/N). The integration can be performed by manipulating these coefficients,

giving N
’

anZ 3 T;()

i=0



where

3=(b, -b, )2 forj=1,2,...N

and a,, = the arbitrary constant of integration that is determined from the requirement that
Q be minimized.

We will now consider the application of this technique to an orbit estimation prok!2n.,
namely, the determination of the orbit of an earth satellite from observations o’ the range
and range rate by several tracking stations.

There are no external forces except the gravity field of the earth. The equations . motion
for the satellite are written as a set of six, first-order equations for the six state variables:

X, Y, 2,u,v,and w. For instance, R (t,) represents the range observed at t, from the fifth
tracking station, and range rate is the time derivative of the range denoted by R, (t,): these
are given. For the computer simulation presented here, we have taken the no-ninal values of
the range and the range rate and added random noise. The standard deviations assumed are
30 meters in range and about 50 cm per second in range rate.

For this particular problem, the Q function should be considered. This is the sum of the
weighted squares of the residuals:

Q= Z f: [R,()-g () W,

s=1 i=1

™

.
DY RG-s W,
=1 i=1

where
g () = {lx()-x(t)]?
+ Iy @)-y, (1))?
+@) -z

and

X, (1), y,(t,), z,(1,) = the fifth station coordinate: a* t,,
R,(t,) = the range from the particular tracking station,
g, = the range computed using the present iterate,
l'ls(ti) = observed range rate, and

W,, = weight for the particulur observation.



We can see that g_is the function of the state at t,, ar.d x represents the coordinates of the
station itself. The minimization of this function Q with respect to the integration constant
is carried out using Newton’s method.

Table 1 provides the data for the three tracking stations we have assumed. The longitude
and latitude, number of observations, and the tctal interval considered—about 1500 sec-
onds—are listed. The elliptic orbit conside.ed has ar. - :centricity of 0.0557, with a semi-
major axis of about 7178 km. This corresponds to a perigee at 400 km altitude, an apogee
at 1200 km altitude, and an inclination of 2¢” to the equatorial plane.

Tab'c 1
Statior: and Orbit Data
Station
Parameters 7

1 2 3
Latitude (deg) 18.0 12.0 10.0
Longitude (deg) 0.0 28.0 14.0
Number of Observations 10 20 30
Interval Between Observations (s) 168.0 79.0 52.0
Semimajor Axis (km; a = 7178.145
Eccentricity e = 0.0557
Inclination (deg) i =200
Long:tude of Ascending Node =00
Argument of Perigee w= 0.0

Some of the results obtained are depicted in figure 1, which shows the error as a function
of time for different iterations. The initial guess is off by about 70 km rrom the true solu-
tion, and with two iterations the error is brought down to something like 15 km.

In order to sce the convergence properly, the log of absolute error is plotted as a function
of the iteration number in figure 2. The error is plotted for several pnints along the trajec-
tory. The first point is T =0, and the last point is T = 1513.1. 't is scen that the conver-
gence is linear as was expected because of its relation to the classical Picard method.

One of the disadvantages of this metkod is that the convergence is obtair.=d only for arcs
of length less than at "1t one-third of a revolution. Another problem is that of developing
a procedure for con .. nag tw/0 successive arcs.
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Figwre 1. Error as a function of time for different iterations
(elliptic orbit).

On the other hand, there are many advantages: For example, the method is quite simple and
does not require the linear perturbation equations. The solution is in the form of a poly-
nomial and is convenient to store. There is no interpolation required, should the solution

be needed at some intermediate point. The error in representing this by a polynomial can,
of course, be estimated by observing the last few terms of the polynomial. Also. the method
is not sensitive to a poor initial guess. As we have seen here, the initial guess was off by
about 70 km and even then the process will converge without difficulty.

The question is, is this method really more efficient than a more traditional approach to
solving a problem? Actually, we have not compared it with the existing methods. However,
we have some estimates on the time taken for this particular problem—it takcs about 30
seconds on the IBM 360/65.
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A FINITE ELEMENT GRAVITY FIELD?

J. L. Junkins
University of Virginia
Charlottesville, Virginia

The paper details an approach for constructing a globally valid, piecewise continuous family
of locally valid potential functions. The thesis put forth here is that the higher frequency
terms of the geopotential can be more efficiently computed from such locally convergent
approximations (typically three variable power series of order less than 5) than from any
globally convergent gravity representation. This approach appears to be a step in the direc-
tion of voiding the recent trend that the better model we have of the geopotential, the more
expensive it is to integrate orbits with it! Numerical experiments conducted thus far confirm
the validity of the approach and that acceleration errors of 0 (10'® km/s?) are achievable.
The trade-offs involved in selecting the finite element shape and size, and the order of the
loca’ approximations versus resulting accuracy, computational speed, and storage require-
ment., are currently under study.



MEAN RATES OF THE ORBITAL ELEMENTS OF A SATELLITE
PERTURBED BY A LENS SHAPED MASCON

M. :. Ananda
Jet Propulsion Laboratories
Pasadena, California

A set of mean orbital rates are computed for a satellite perturbed by a lens shaped mascon.
A disturbing potential in terms of the orbital elements of the satellite and the mascon
parameters is developed. The partial derivatives of the potential with respect to the orbital
elements are formed. These partials are averaged over the pcriod of the satellite orbit to
eliminate the short periodic terms. The averaged partials are substituted into the variation
of parameters equations to give the mean orbital rates. In the limiting case, when the radius
of the lens shaped mascon reaches zero the mean orbital rate due to a point mass is ob-
tained. The orbita! rates developed by the method described here are compared against the
rates obtained by numerical diffcrencing. The method developed here is used to reduce the
Apollo-15 and -16 subsatellite data for lunar {arside gravity determination.
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ON THE FORMULATION OF THE GRAVITATI'NAL
POTENTIAL IN TERMS OF EQUINOCTIAL VARIABLES*

Paul J. Cefola
Computer Sciences Corporation
Silver Spring, Maryland

One year ago | presented a paper at this symposium that described some work we had been
doing with the method of averaging. One of the aspects of that paper had to do with a par-
ticular choice of nonsingular variables that were called equinoctial variables. In particular,
we investigated analytical averaging techniques in the equinoctial coordinate frame. Some
very good results were obtained, and we developed some expressions for fairly low-order
perturbations. We developed explicit expressions for the disturbing potential for the zonal
harmonics up to J, and the third-body harmonics up to (a/R, )¢, where a is the semimajor
axis of the orbit and R, is the distance to the third body.

After that we reconsidered the problem and decided that one of the shortcomings of that
work was the lack of general expressions for the disturbing potential. This lack was a prob-
lem for several reasons: First, serious problems were encountered in extending the results

to higher degree terms. The need to extend the results occurs, for example, in mission anal-
ysis, where the problem of including the effect of one higher degree third-body term or in-
cluding the effect of an additional zonal harmonic occurs frequently. Second, having explicit
expressions for each term made software development complicated because, for each new
t"rm, rdditional software wus required, and there was the possibility of errors at each stzp.

These are some of the reasons why it was desirable to develop generzl results for the disturb-
ing potential in this coordinate frame, and that is what 1 propose to discuss now. We are
going to consider the gravitational potential and will use several special functions—the Legen-
dre and associated Legendre polynomials and the Q,  , which are called the derived Legendre
fun stions. Recently there has been a fair amount of interest in these functions in the context
of the gravitational potential. (For example, Pines, 1973.) The various disturbing potential

expansions are listed below. )

* A significantly expanded version of this paper was presented at the AIAA Aerospace Sciences meeting in January 1975,
Copies of the preprint are availabie from the author,



Disturbing Function Expansions

Perturbation nth Term

Third-body harmonics a n
My a I
—_ <—> <“> P_ (cos ¥)
R, R a

3

Zonal harmonics
u Re n a n+l
-1 =\—=\- P (cos )
a a T

Arbitrary geopotential

n n+l
term (n, m) k(R a
—{=) =) ¢

(C,p, cOsmA + Sm Sin mA)
A=a-0

Here we are considering the third-body harmonics and the zonal harmonics, in particular.
(It was originally planned to have some expressions for the tesseral case, but they are stiil
in the process of being checked.) We have introduced the semimajor axis into these expres-
sions, even though it is not required, because we are going to average these expressions and
want to use existing results in two-body mechanics. For the third-body harmonics, the
angle will be the angle between the vector to the satellite and the vector to the third body.
In the case of zonal harmonics, ¥ will be the colatitude.

In averaging these potentials, a two-step process is used. The purpose of step 1 is to obtain
expressions for the Legendre functions in terms of equinoctial orbital elements. In step 2,
the averaging is performed.

One of the important questions in deriving potentials in terms of classical or equinoctial
elements is how to get the fast variable motion into the potential. There are several different
options, and they have a direct effect upon the amount of manipulation and on the com-
plexity of the final results. Also related to these options is the level of accuracy that can be
achieved. For third-body harmonics, there are really two options: We can use the mean
anomaly for both the satellite and for the third body and end up with a very general potential.
This was done by Kaula in 1966. Or we can use direction cosines (relative to an orbital refer-
ence frame) to get the location of the third body. If direction cosines are used, there is not
quite the flexibility in modeling that is had with the Kaula approach, but the expressions are
a lot more compact. In our work with the method of averaging, the use of the direction co-
sines is quite appropriate.

For zonal harmonics, we bring in the motion of the fast variable by using the orbital true
longitude. For the arbitrary geopotential term, by which is meant tesserals, there are \wo
options that are somewhat related to the two options that exist for third-body harmonics:
We can use the mean variable ior the satellite and Greenwich sidereal time, which is particu-
larly appropriate for the study of resonance cases; or we can use the true longitude of the

10



satellite and Greenwich sidereal time, which appears to be most appropriate if we want to
assume that the central body rotational angle is fixed during the averaging. Such a potential
might be particularly appropriate for lunar satellites.

Several expressions for cos ¥ are listed below. These correspond to various attempts to
develop the third-body potential. The first expression listed for cos ¥ in terms of right
ascension and declination of the satellite and the third body was used by Kaula. He then
used the addition theorem and the definition of the inclination function to obtain expres-
sions for the Legendre polynomials in terms of the classical elements. These results have
great generality because we can impose all types of resonance constraints on them, yet they
are also very complex.

Expressions for Cosine

cosy =acosv+fsinv
a=R,-P,f=R,"Q
cos Yy =acosu+fisinu

u=v+w,a=ﬁ3'ﬁ,ﬁ=ﬁ3'M

cosy =acos L+8sinL

L=vtw+Q,a=R, =R, g

More recent work in third-body perturbations uses the concept of expressing third-body
motion by direction cosines relative to an orbital coordinate frame. Kaufman in 1970 and
Lorell and Liu in 1971, in particular, worked with the apsidal coordinate frame. Subsequently,
Kozai worked with a coordinate frame where the orbital x-axis was along the nodal crossing
and the third axis was in the orbit plane. Essentially, he used the argument of latitude as

his fast variable. At about the same time, we used the true longitude as our fast variable and
also used the direction cosines of the third body relative to the equinoctial coordinate frame
(FGW), in which the x-axis points at the origin of the latitudes.

One of the problems involved in working with Legendre polynomials and, in particular, with
the direction cosines formulation, was that there did not appear to be an addition theorem
for that case. In most of the work using that approach, the basic recursion relationships

have been used to generate the Legendre functions. There have not been general formulas

for the required Legendre functions with the argument a cos L + § sin L. This is the same
problem I reported on a year ago. Recently, we took another look at the addition theorem,
looked at the expressions in terms of the direction cosines, and found that we could reformu-
late the problem in such a way that the addition theorem still applied; the steps in that deriva-
tion are shown in equations 1 and 2.

11



First, we introduce a phase angle, L', and define the trigonometric functions—cos L' and
sin L'—to fit the form of the aduicion theorem. Then a, 8, a,, and 6, must be defined.

a=1L cos 6= 1
@=L sin =0 )
c0583=\/a2+[32 sin83=\/1-a2~52=‘7

Here those angles are treated as arbitrary quantities. By substituting equation 1 into the
addition theorem:

o-m) @B, @) cosmiL-L).

f:‘ (cos )= l:l(o) l:,('7) +2 (n +m)! m

m=1

2

In equation 2, v is the direction cosine of the third body relative to the vector normal to the
orbit plarne.

If we define some C_ | and S_ polynomials in a and g similar to the w~ - Pines did in 1973,
the addition theorem can be simplified. The final result is

Rl W) =ROBM*+2 ) ((:+ :;: Bn(0) Q) [Cl@ B cosm L +S (@, H sinm L] (3)
m=1

where

C (@B =Re (a+ip™ (4)
and

S (@) =1 (@+if)f* (5)
Because P = = 0 for n ~ m equal to an odd integer, Q, . gives even powers of the 7 function.

It can be expressed quite well in terms of a polynomial in « and 8. Again, it is finite, so we
have a general form, a modified addition theorem, that is useful in this case.

To give an idea of what these polynomials look like, the first one that appears in the third-
body perturbation is evaluated as follows:

3
B cos L+ fsinL)= -.‘1; 3y%-1) e [(@®- /%) cos 2L + 20 sin 2L}

= —2—[—2- (a’+B’)+7 (c?- %) cos 2L + 30f sin 2L - l]

This checks against the results that were presented in our paper a year ago. It has been
checked for several cases and gives exactly the resuits obtained previously through very
long and arduous manipulations; in fact, some errors were found in those previous results
through comparison with the general formula.

12



Another major point of this paper is to emphasize the computation of the potential by
using the recursion formula, and below are listed the recursion formulas (equations 7 to 10)
that are appropriate to the computation of P, (a cos L +fsin L).

m+HP () = (@n+hyP ()-nP (M )]

(n-m)Q_ () @-D7Q,, ,(M-m+n-1DQ , () (8)

o€, (@8)-BS, (@ 5) Q)

Cprey@B)

S (@) BC, (.8 +aS,(@p) (10)

Equation 7 is the standard recursion for the Legendre polynomials, and equation 8 is the
recursion for the derived Legendre functions (this is given in Ananda and Broucke, 1973, and
Pines, 1973). Equations 9 and 0 are the recursions for the C_ and S_ polynomials, respec-
tively.

The final formula for the averaged potential also has the same C_ and S polynomials, with
k and h as the argument, and the same recursions will still apply. We are interested in ob-
taining averaged potentials, and we want to average with respect to a time-oriented variable,
so we average with respect to the mean longitude. In equation 11, we take the standard
formula for the average of (r/a)" cos m v and recast it in terms of the true longitude:

" n
1 (_’_) emL g
2n a

m - - -
- (_l) (n+m+l) (k4 b (m n-1 ’ mzn m+Lne i ) (n
m

2 2

It should be noted that the formulas are a hypergeometric series and that the polynomial
previously referred to as appearing in these integrals has the argument k +jh. The symbol
j is the square root of -1,

We wanted to obtain a recursion formula for computing the right-hand sides of these integrals,
and it happens that one has already been derived and is presented in Cook’s paper on the PROD
program (1973). The formula for these integrals is as follows:

2m m
1 / (L) dmL 43 = (__l_) (.”_1_’2:_].) (k+ih)™ BT . (h¥+k?) (12)
2 . a 2 m "

where
®+k)(®-k-1)

4k (k+ 1)

; K. R 2,12y pk+t
B =0,B"' =1,B§"' =B} + (h*+x*)BE*

13



So along with P (a cos L + 8 sin L), the hypogeometric series and the eccentricity poly-
nomials can be reached recursively.

The following is a result for the nth term in the thizd-body potential expressed in terms of
equinoctial elements and the direction cosines:

n

() nor, o, 6t
R, \R, V) Pasa

n n

Hy (2 _
+2 E;(E:) E Vo o BO, (82 +K3)Q, L @) [C, @A C, (k,h)+S, (@0, (kh)]

where 13)

_ 1 m (n-m)! /n+m+1
Von™ (5) Tam® i (F2).

All of the terms in equation 13 can be obtained recursively. In writing a program, we would
probably initially compute the coefficients V_ _ and then store them as data at the beginning
of the program. We do not obtain all of the terms indicated in the equation. We get approx-
imately (n/2) terins in that summation because some of the associated Legendre functions
with zero argument are zero, depending on whether n ~ m is an even or odd number. We have
a finite, closed-form expression, and we verified several of the results presented a year ago
with this formula. The next step is to show how the same analysis is done for zonal har-
monics. The potential due to the ntk zonal harmonic is

p (R\" ;ay*?
5= (——) (—) P, (cos ¥) (14)
a a r
where V¥ is the colatitude. Cos { can be expressed in classical elements by
cos ¥ =sinisin (v+ w). (15)

In equation 15, i is the inclination and v is the true anomaly. We can express cos Y quite
well in terms of the equinoctial elements as is shown in the next equation.
-2p 2q .
sy = ———— cosL+ ———— sinL (16)

In equation 16, p and q are equinoctial elements. If we assume auxiliary variables defined
by
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.2p

= ———
1+p’ +¢?
7
and
2q
ﬁ‘:‘
1+p* +q%,

the argument of the Legendre function in equation 14 has the same form as it did in *he
third-body case, and we can use the addition theorem we derived previously for P, (acos L +
Bsin L).

For averaging over the mean longitude, we have to somewhat modify our averaging formula.
We could use the previous averaging formula with negative values of n, but that would result
in an infinite series in the eccentricity, which can be seen by examining the hypogeometric
series involved. Essentially, we made a quadratic transformation in the hypogeometric series,
changed the arguments a little, introduced a variable x defined as 1A/1 ~h? -k? , and found
that we could get a finite series in the eccentricity and x for the required integrals:

\ 27 an,” . 1\ ™ n-1
e f (5) emta(Z)" (1) @m wrmrazet v, as)
T r m
0

We also use the same polynomials, the P_ » polynomials in this case, which can be used in
computing the potential for both third-body and zonal effects. There will be another saving
in computation if both effects are included.

Next we give a general expression for the potential due to a zonal harmonic, that is, the
averaged potential in terms of the same eccentricity functions, derived Legendre functions,
and the same o polynomials:

MYLAY
-J,,(")(— P_(0)P, (y) x*™" B, (h® +Xk?)
a a (19)

u R.. n n-1
-21,,(—')(—) z , W, xmIB™ P +k3)Q, () [C,, @B C (k,h)+S (a.p)S,, (k,b)]
a - ’ ’

m=1

wh.ere
1\ (n-m)! [n-]
Yon (3] T @ o ()

Again, everything can be derived recursively; terms that are useful in the the third-body case
are useful here, and terms that are useful for the lower order zonal harmonics can be used to
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compute the higher order ones. Therefore, I suspect that a very efficient computation pro-
gram can be tuilt using this formula, with the added advantage of having only one formula
rather than many to verify.
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SOME RECENT INVESTIGATIONS IN NUMERICAL AVERAGING

David Wexler
Aeraspace Corporation
Los Angeles, California

Our interest in averaging techniques stems from a requirement to conduct large-scale mission
planning exercisas on a system of computers that gets overloaded whenever si"ch a study
arises. These studics have been conducted a* Aerospace using a Cowell propagator simpiy
because of the necessity for accuracy in a high drag environment. However, due to limited
computer resources, a project has been initiated to develop a better method, which will
involve using an existing algorithm or developing a new one.

This paper presents two topics, the first of which concerns a feasibility study that was con-
ducted using two programs, MAESTRO and PECOS, to,see if averaging could be accurate.
The second topic concerns some continuing investigations and some new ideas, generally
untested. It is assumed that the idea of averaging with respect to trajectory propagation is
familiar to everyone so it wil. not be reviewed here.

The MAESTRO program, developed by Chauncey Uphoff and Dave Lutzky of Analytical
Mechanics Associates, was obtained by Aerospace for a feasibility test. It was initially
designed as an interplanetary mission analysis tool for the Radio Astronomy Explorer-2
(RAE-2) lunar orbiter. Scveral choices of variables and propagating techniques are available
in MAESTRO. For instance, a Cowell integrator, an Encke integrator, and several variation-
of-parameter techniques, ‘ncluding the numerical averaging of the Gaussian variation-of-
parameter (VOP) equations, are available.

The forces in the program are given in the radial. circumferential. and polar directions.
MAESTRO has a fairly simple exponential atmosphere and has a precision averaging startup,
wiich means that osculating initial conditions in several choices of reference frames czn be
insut and the program will automatically provide the initial mean state.

The Aerospace version of MAESTRO has been merged with a program called PECOS.
PECOS. itself, is a test bed for orbit planning simulations. The interplanetary calculations
were stripped out of MAESTRO and the force evaluations from PECOS are now used by
both MAESTRO and PECOS.

The output can be plotted by an auxiliary pr.x . available at Aerospace. In particular,
overlays of PECOS precision and MAESTRO averaging output can easily be accomplished for
comparison purposes. Two versions of mean-to-osculating * - are ueed.
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On output, the Kozai form is used, and within the averaging quacrature, the Iszak form is
used. There is no particular reason for this order except for the program’s historical develop-
ment. Fortunately, Iszak is very good for use under the quadrature because it is nonsingular
at low eccentricity.

With present program limitations, only certain parameter sets and integration types from
MAESTRO are available. For instance, the Cowell integration is not available. Only two out
of the original eight techniques are being used. They include the integration of a parameter
set which is nonsingular at low eccentricity. This set is similar to. but not exactly the same
as, the equinoctial elements. The averaging technique uses the sume cleciments.

The initial conditions for the test case that were used for the feasibility study were chosen
from typical orbits of interest to Aerospace. They were initially compiled for Terry Harter
to run at GSFC on a test using the Goddard Trajectory Determination Svstem (GTDS). At
Aerospace they were run by Stan Navickas in the Mission Analysis Department with the
MAESTRO/PECOS software.

Table 1 shows that the four cases here have perigees ranging from 67 to 92 n.m. and apogees
ranging from 156 to 223 n.m. The inclinations are all between 90° and 110.5°. The life-
times range from about 4.5 days to 2 months: case A-1 has a 2-month liteiane and case

B-1 has a 4.5-day lifetime, and those are the two cases that will be discussed here.

Figures 1. 2, and 3 are time histories of elements for case A-1, which had approximately a
2-month lifetime. The computer runs were limited to 7 days because it is so expensive to
run the Cowell integration in PECOS. This is the orbit which does the least of the four
test cases.

Table 1
Initial Conditions for Four Test Cases

Perigee Apogee
Case H,(n.m.) H, (n.m.) Inclination (deg) Cp A/W(f1? /Ib)
Al 92 156 96.43 0.0007295
10.002099)
A2 85 161 94.55 2.0007295
(V.002099)
Bl 67 207 96.57 0.0062981
10.001286)
B2 69 223 110.5 0.0062981
(0.001286)
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The semimajor axis is plotted in figure 1. The oscillating line is the output from the Cowell
technique in PECOS, and the line down the center is the mean element output from
MAESTRO. There has been no correction to put the short-period variations back on.

Figure 2 is the eccentricity from the same trajectory. Again the oscillating curve is the out-
put from the Cowell integration translated into Kepler elements. Figure 3 is the argument
of perigee. Figures 4,5, and 6 are for case B-1, which dies i~ 4.5 dayvs. The dark line down
the center is the mean output from MAESTRO. It can be seen tha: the program tracks the
elements all the way to the end of the lifetime.

Figure 6 is the argument of perigee, and, as expected, the envelope of the oscillations grows
rapidly as it approaches the end of the lifetime and the eccentricity drops. The orbit be-
comes circular, so the argument of perigee begins to oscillate more and more wildly. But
the mean argument of perigee is still being tracked and follows the center of the oscillation
envelope.

Figures 7, 8, and 9 give the comparison between the Cowell in*egration and the corrected
average propagation at about 4 days into the case having a 4.5-day lifetime. The orbit is
generally tracked. The phasing and the magnitude have tracked quite well at the end of 4
days. I am very hesitant to interpret the small errors there, because we have a problem with
the interpolator in PECOS/MAESTRO right now. The step sizes in the integration for the
averaging process are 90 minutes, but the output is roughly every 2 minutes.

If the output of mean elements were plotted on a finer scale, it would be seen that the result
has a small wiggle. This wiggle is probably due to the interpolator. There is some suspicion
that the errors in the oscillating elements are due to that wiggle, but that is still a qualitative
judgment. The iniportant thing is that the orbit is being tracked.

We interpreted these plots as proof that the averaging technique does work. At this point,
there had been no attempt whatsoever to make this program efficient. MAESTRO was sim-
ply merged into a larger system using some of the logic from that larger system, so timings
from these runs were totally meaningless. Using the results proving the feasibiiity of the
technique, we decided to go ahead and attempt to modify MAESTRO to make it a stand-
alone version that would be efficient, using essentially the same logic that it has always had,
but using a more accurate force model than it had when it was developed for GSFC.

The modifications and developments which will g0 into this further study will be discussed
now.

The purpose of the current investigation is to increase the accuracy a-1, if possible, to de-
crease the computation time: this will of course involve a compromise between the two.
Cu-rently, we are developing MAESTRO as a stand-alone version with modification for
accuracy in a high drag environment, to run on the CDC 7600. The next step will be to
replace the independent variable with the true anomaly and to remove the fast variable.
Another concurrent activity, being handled by Dave Lutzky of Vector Sciences, is treating
the short period effects within the averaging quadrature and for output with a Fourier ex-
pansion from which the coefficients of the harmonics are computed automatically and
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numerically. This is work which was developed under funds from GSFC. The results will be
inserted into MAESTRO to see if they will help to make the program more efficient and
accurate.

Now I would like to discuss some of the work I am doing. It is all formal at this time, none
of it has been implemented in the program yet.

Or.e of the disadvantages of using time as the independent parameter is that the averaging
period is always difTicult to interpret. For instance, it is possible to use the mean motion,
which is determined by the initial oscillating elements or by the initial mean elements, to
determine the period. But, however it is done, it will probably be difficult to be consistent
and to initially choose the right time.

Another problem is that the equations for the averaged elements have a term in their exact
form which depends upon the time rate of the period. This is generally referred to as the
Leibnitz term, and it depends upon the time rate of the period, the values of the true
elements at both ends of the averaging period, and on the mean element at the midpoint of
the averaging interval.

Still another problem arises if constant time steps are chosen: For instance, if the integration
step is chosen as the initial period of the orbit, then, farther on down the line, the time step
will no longer correspond to the period, and there will be drift with respect to perigee or any
geometric event in the orbit. If the true anomaly is chosen as the independent parameter,
none of the above disadvantages apply. Another effect is that we get automatic regulariza-
tion of the orbit sampling. Points are automatically clustered near perigee where most of the
action occurs for the high drag situation.

It is also possible to make repeated use of terms in the mean-to-osculating transformations,
particularly if step size is chosen properly within the averaging quadrature. Also, the mean-
to-osculating formulas appear in closed form, at least to first order in J,. Thisis due simply
to the fact that the disturbing potential can be expressed in a finite number of terms, de-
pending upon the true anomaly.

In changing the propagation algorithm. we wanted to chooss a state vector which is nonsin-
gular for low eccentricity and inclination. For convenience, we chose to use the same state
that MAESTRO now uses, except for the fast variable. If the independent variable is now
chosen as the true anomaly, then the angle-time relationship must be tracked through an
equation other than the one we had before. If the new fast variable is itself chosen as the
time, we then have a new differential equation:

dt 2
E = h/r* + perturbations.

Because this leaves us with large oscillations, it is a poor choice for averaging. Suppose
that, instead, the parameter Q (Stern, 1960) is chosen:
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Q=M+w+Q-it

i =(-2c)? u

where € is the orbital energy. Then fidetermines the period of the true anomaly. The Q
will always be a slow variable, aad, in fact, for the Kepler problem, it is a constant.

The equations for the new system ace given by

wher: I s any eiement

E=F(E.t0.

f+x
Eee / E(f) df
21(f

The exact averaged equations are

- +
dE 1 dt
Ef——;; FE(E,f',t)df'-a;-
f-=

To make averaging efficient, the force evaluation is accomplished by approximating the
elements in the integrand to the mean elements, plus a correction, as in the standard second-
order averaging technique. Also, since the time no longer appears explicitly in the state, it
must be the result of a similar correcting transformation. This mean-< that the mean-to-
osculating transformation is required at every step, as it is in all second-order averaging

techniques.
Formally, the mean-to-oscufating transformations are simple to derive. The equations
needed are indicated below in abbreviated form:

E*=E + 3E,

If it is assumed that Af is 2#/2K, then values of the tngonometric functions of the harmon-
ics of the true anomaly can be tabulated and never recalculated, because the same values
will be repeated in true anomaly from revolution to revolution. This should save a signifi-
cant amount of calculation and make for an efficient mean-to-osculating transformation.

In the equations,

N

dE

Ef— = CONST + E (An cosnf+B_sin nf)
1
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and
N
8E, = E (<A, sinnf+B_cos nf)/n,
i

A_ and B are derived from the Lagrange planetary equations with the J, perturbation only.
The [A, B, ] are slowly varying functions of the state vector and supposedly would not
need to be recalculated more than once per revolution, and probably not that often. This
depends upon the strength of the perturbations.

The evaluation of d(_)/df is fairly obvious, and it is used here as an example: The forcing
function, FQ ,is(M+w+ S ~n)+(n-n)-~nt. Time appears explicitly, which may create
som. difficuities, at least formally, although it is doubtful that numerically this will give
any trouble. The factor dt/df, which appears in the integrand, is given by

dt h+ urbati
—=— urbations.
daf 2 pe

r

However, since all the parameters in the state are slow (there is no fast variable), probably
the two-body rate, or just h/r?, is good enough for the function dt/df. That will probably
require some experimentation, but, since there is no fast variable, there is no purpose in
carrying higher order terms in this factor. The term i is related to the time derivative of
the energy, and that relates (at least in its dominant term) to the time rate of the semimajor
axis due to drag for the cases where drag is the most important perturbation aside from J,.
The quantity (n - 1) is proportional to the disturbing potential and (M + w + §2 - n) is
given by the Gaussian VOP equations. The MAESTRO propagator will be used as the basic
software tool in the implementation of these techniques.

Still to be considered are techniques for calculating an accurate argument of perigee at low
eccentricity. There are some probiems because there is a mix of the true mean anomaly
and the mean argument of perigee in one of the transformations; some experimentation is
still required.

The exponential instability in Q, which is due to the presence of ﬁt, must also be investigated.
This is a problem which will most likely be more apparent on computers with short word
lengths. With the CDC computers and their essentially infinite word lengths, we have tried
experimenting to see when we can make the equations blow up in a simple form, and we

have been unable to find the instability numerically. That may give us trouble, though,

and it will require more experimentation to see if there really is a problem.
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AUTONOMOUS NAVIGATION FOR ARTIFICIAL SATELLITES

Pranav S. Desai
Computer Sciences Corporation
Silver Spring, Marylond

The term “autonomous navigation™ refers to the possibility of providing a satellite with the
sufficient number and type of sensors, as well as computational hardware and software. to
enable it to track itself. In other words, there is no ground trackirg involved.

There are two classes of such autonomous navigation: passive and active. Passive means

that the satellite does not get cooperation from the ground or from other satellites; active
means that the satellite do=s get active cooperation from either the ground or from another
satellite like the Trackir rata Relzay Satellite Systen RSS). This active coopera-
tion could come in ti.e .2dio signals, laser beams, u. uther kinds of signals or beacons.,

The basic reason for usi: . .tonomous navigation is to reduce the necessity for ar-und track-
ing, thereby reducing the over. ~~ding of ground tracking facilities and also reduc.ng the cost.
There are also other techn: :al reasons. For example, with a fast satellite, if there is a gap

in the ground tracking data set, especially if there are drag and other prominent effects
present, an autonomous navigation system could increase the accuracy of prediction between
the two data sets. Another reason could be that the reaction time for noticing changes in

the satellite orbit would be reduced by autonomous navigation. even if it is used as a

backup to ground tracking.

This work is a conceptualization effort made by Don Novak, Paul Beaudet, and the author
at Computer Sciences Corporation. The literature is not exhaustive, but it should be noted
that Howard Garcia’s paper has a summary of sensors as well as some discussion of the new
sensor interferometer landmark tracker.

The following considerations are important in such a feasibility study: First of all, it is
necessary to be aware of what types of sensors are available (or could be made available} on
a satellite to help in autonomous navigation. Then the observability arising from combina-
tions or configurations of these sensors should be checked. In other words, it should be
determined whether a given set of sensors is sufficient under various conditions for
determination of attitude and orbit of the satellite. The accuracy of the selected system
and its reliability should then be studied to determine that, should one of the components
fail, the other components would be enough to back it up. The choice of sensors basically
depends on the estimation algorithm, in that we might choose either a coupled attitude
and orbit determination scheme or a decoupled scheme. The computational hardware is
still another factor.
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Some potential sensors for use in autonomous navigation are listed below, but this is
by no means an exhaustive list. Some satellites that have used, or are presently using, these
sensors are listed:

o Inertial measurement unit—=ATS-F, OAO-2, OAOQ-C
® Star mapper—ATS-F, CTS, OAO-2, 0AO-C, OSO-I, 0SO-7, SAS-B, SAS-C, SSS-A
@ Magnetometer—AE, AEROS, GEOS-C, 0SO-1, 0SO-7, SAS-A, SAS-B, SASC

o Solar sensor—SE, AEROS, ATS-F, CTS, GEOSC, IMP-H, I, J, RAE-2, SAS-B,
C, SSS-A, Nimbus

@ Horizon senscrs-optical -IMP-H, 1, J, RAE-2, SSS-A

@ Horizon sensors-infrared—AE, AEROS, ATS-F, CTS, SAS-C, TIROS, Nimbus
o Interferometer landmark tracker—ATS-F

@ Scanner/camera—SMS, Nimbus, Landsat

The first is an inertial measurement unit, which is a system of gyros and accelerometers
for determining inertial attitude and inertial acceleration of the spacecraft. it has been
used on the Orbiting Astronomical Observatory (OAQ). The star mapper is probably the
most accurate of the attitude sensors for determining inertial attitude and has been used
on many satellites. The magnetometer determines attitude with respect to the magnetic
field of the earth, or the central body, and if there is a good model available for the
magnetic field of the central body, it indirectly determines the satellite attitude. The
solar sensor comes in many varieties, but basically it provides angles to the sun from the
spacecraft frame. Horizon sensors can be either optical or infrared. For example. an
optical horizon sensor was used on the Radio Astronomy Explorer-2 (RAE-2) mission; but
infrared is more common and is used in a large number of missions. The interferometer
landmark tracker (ILT), a new type of sensor. will be discussed later.

So far the discussion has been limited to attitude-type sensors;: however. they are by no
means the only sensors that could be used for autonomous navigation. We could consider
using non-attitude- or non-navigational-type sensors, including meteorological cameras
and scanners that could be used in a ]Jandmark determination scheme, in which there is
currently an interest.

There are two other sensors to be considered: the one-way Doppler and the image correlator
(IC); however, the image correlator has not yet been put on board. The one-way Doppler
would determine range rate to known radio stations on the ground or to a tracking satellite.
The image correlator is an advanced version of the landmark determination-type scheme
where a computer would determine, through pattern recognition, the direction cosines in

the spacecraft axes to a known landmark.



It is also necessary to decide how to combine the sensors for autonomous navigation, and

a decision has to be made as to whether attitude and orbit should be determined in a
coupled or decoupled schme. There is an argument in favor of a decoupled scheme be-
cause orbital parameters, on the whole, vary less rapidly than attitude parameters. There-
fore, longer spans of data can be used for orbit determination than for attitude. A

coupled scheme would not take into account this difference in the memory span require-
ment of the two. However, an initial determination could very well be coupled, so perhaps
the best method would be to first determine a coarse orbit and attitude in a coupled
determination, followed by fine attitude determination, followed by fine orbit determina-
tion. So, for this discussion, it is assumed that we are going to determine attitude first, then
orbit.

The ILT (figure 1a) has a pair of antennas (at A and B), and its functicn is to determine the
phase difference between the received signals that arrive at the antennas. The ILT must

be initialized as to what radio signal frequency it is looking for, which means that the
approximate position in orbit must be known. If the satellite is geosynchronous, orbit
determination does not have to be done continuously.
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Figure 1. Interferometer landmark trackers phase shift geom-
etry and circle of ambiguity. (a) ILT phase shift geometry;
{b) ILT circle of ambiguity.
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We determine the path difference, d cos 0, by determining the phase difference, because
the two are proportional, and this gives us the angle 8 between the direction line to the
emitter and the baseline of the ILT. However, as seen in figure 1b, there is a conical
ambiguity left in the direction to the emitter, because that angle is all that is known.

To reduce ambiguity, we also have another pair of antennas (not shown in figure) where
the baseline is perpendicular to the first baseline; we will have an intersection of two
cones and, therefore, will reduce the ambiguity to just two lines. A little further analysis,
perhaps over a period of time or using multiple landmark determination, might reduce the
twofold ambiguity as well.

In figure 2, we begin examining some sensor configurations from the point of view of observ-
ability. Suppose we were trying to determine the satellite inertial attitude using a star

sensor that determines the direction to one star only, and then supplement that with a
landmark determination scheme. In other words, the direction cosines in the spacecraft axis
to one landmark on the central body are determined using either the ILT or some other
means such as a scanner or a camera.

CHRCLE OF POSITIONAL
AMBIGUITY

@& TOSTAR
ta)
— ® sTan
-’,/..’
Vi GRAZING OF TWO CIRCLES
s
e

)

Figure 2. Star sensor configuration. (a) One-star, single landmark
symmetry; (b) poor resolution geometry.
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In a scheme like this, the star determines the satellite attitude ambiguous to the -oll

around the axis from the satellite to the star. Normally, the roll ambiguity is further
reduced by having a second star, but suppose that second star is replaced by a landmark.

In that case, all that is known is the angle between the star direction and the landmark
direction, and that does not give the absolute attitude of the spacecraft unless its position
is known. Spacecraft position can be ambiguous to within that circle (figure 2a), in fact,
to within the whole cone, which indirectly results in ambiguity in the attitude. That would
be considered an untenable or unobservable condition.

Suppose we tried to reduce the ambiguity by looking at the central body horizon and
obtaining indirectly the direction to the center of the central body. This could remove the
ambiguity, but occasionally there is a situation where the resolution is poor, because we
are now on two circles that graze, and as can be seen in figure 2b, the graze is quite large.
If the ILT station was not placed in the plane formed by the line to the center of the
central body and the line to the star, then the circles would intersect at two points instead
of grazing, and that would be a better resolution geometry.

Based on this discussion, we can eliminate as untenable those configurations for attitude
determination which use only one star and one landmark and such other combinations
which are conceptually equivalent, for example:

® One star—1LT/IC (single station)

® Sun—ILT/IC (single station)

® One star—central body horizon

@ Sun-—central body horizon

® Moon horizon—central body horizon

® Moon ILT—central body ILT (single station)
The following are weakly-orbit-coupled configurations for attitude determination:

® One star—central body horizon—ILT/IC (single station)

@ Sun—central body horizon—ILT/IC (single station)

® Moon horizon—central body horizon--1LT/IC (single station)
@ One star—ILT/IC (multiple stations)

® Sun—ILT/IC (multiple stations)

@ Moon horizon—-ILT/IC (multiple stations)

® Moon ILT—central body ILT (multiple stations)
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We are still speaking of attitude determination, and we would like it to be orbit decoupled,
but these configurations are weakly orbit coupled in the sense that the ILT, for example.
would need to be initialized with an approximate knowledge of orbit so that we would
know which station to tune to. This list includes a one star/central body horizon/one land-
mark configuration as well as a one-star/multiple station configuration for the same reason.
In summary, to have orbit decoupled attitude determination, perhaps two star sensors
would be needed, and they could have an associated inertial measurement unit to back
them up.

We will now examine the information that can be derived by determining the direction

to the landmark in the spacecraft frame. Figure 3 shows the spacecraft position, the

line from the spacecraft to a known landmark, and 8 and -y, which are the latitude and
longitude of the landmark. The unknown subpoint of the satellite is (8, v, ), the distance
of the satellite is r, and the satellite-to-landmark range is p. The following equations are
based on the fact that this line intersects this sphere, and they show that the direction
cosines of that line ought to be 1_, ly » 1, in the earth frame of reference:

cosf cosy = p2x+rcosao cos v, &)
cosfsiny = pfzy+rcosﬂ0 sin 7, )
sind = p¢ +rsinf 3)

-rlﬁ-h\/(ﬁ-r“)’-(l-l/r’)

©
1}

where

-

R-r=Q cost cosyoﬂly cosﬂo sin‘yoﬂlzsmao.

Equations 1 to 3 can be solved to get the range explicitly; therefore, for every landmark,
the three equations reduce to two equations. If  and v, the position of the landmark

on the earth, are known, then there are three unknowns: r,0,,and vy . If we are
interested in orbit determination, and the attitude is already determined. then we have
three unknowns and two equations per landmark, so that we need at least two landmarks
for orbit or position determination.

If we could determine the subpoint (6, 7,) on a continuous basis, then, by studying a
history of the subpoint, we could get a track of the satellite on the ground and its
characteristics would suggest a period. By using Kepler’s Third Law, for example, the
semimajor axis could be derived indirectly from the period. In that case, even one
landmark is, in principle, sufficient for orbit determination.
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Figure 3. Spacecraft/landmark geometry.

We have assumed that attitude was already known, but suppose we were trying to use
this ILT for a coupled attitude and orbit determination, perhaps in a coarse way, for
preliminary locking on. How many unknowns would then be had?

In figure 3, we have these directional cosines to the landmark, which are supposed to be
in the geographic frame. What we really would know from the satellite instruments would
be the direction cosines in the satellite frame of reference. Therefore, indirectly there

are three unknowns involved liere which represent the transformation from the satellite
frame to the geographic frame, which essentially means the satellite attitude, that is, the
three attitude angles of the satellite. We then have six unknowns—the three satellite
attitude angles plus three positional unknowns—and two equations per landmark, so we
still would need only three landmarks. If we had strategically located a sufficient number
of landmarks, accounting for possible cloud cover, even then perhaps just a few would be
enough for a coupled attitude and orbit determination. (Expressions for the sensitivity of
this kind of determination Lave been developed in our report and are available for anyone
interested in performing their error analysis.)

In summary, it seems that by using a variety of sensors it is conceptually possible to have
autonomous navigation. However, the details would have to be worked out for each type
of orbit. For example, a geosynch -onous orbit would require a different type of configura-
tion, perhaps, than the 2-hour satellite, so we do not hae a general conclusion or recom-
mendation valid for all types of satellites.

The second part of this paper presents a standardized autonomous navigation system
(figure 4) which was designed by Computer Sciences Corporation personnel for possible
future use in a standardized type of satellite. In the base are the computer, electronics, and
some gyro hardware. On the two sides of that base are two gimbal units. The right-hand
gimbal unit is a two-star sensor, located near the beam splitter, which would determine

the satellite’s inertial attitude. The main navigational unit (lower left) consists of a gimbal
unit with three arrays of infrared detectors arranged conically at the tip of the unit. One
small section of that array is high resolution, and two outside sections are low resolution.

This is supposed to determine three directions to three points on the horizon of the central body.
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Figure 4. Possible configuration for the proposed standardized autonomous navigation system.

As seen in figure 5, three lines of sight to the central body horizon determine a uni jue cone,
so that the satellite position is known. The following are the equations for x,, y;, :,, the
central body coordinates in the spacecraft axes:

hy X thy,y +hz = @ -RY)*
hyy X thy,y, +hyz = @ -RY)A

= (2 _RHY
hy % thy,y thyz, = (i -RY)

By using the information from the star sensors, the equations can be transformed into
inertial coordinates.

Figures 6 and 7 show the degree of accuracy we can get from this system. Depending on
the angular accuracy of the IR detectors, different errors are obtained at different altitudes.
At 1000 km altitude, and with a 0.1° angular precision, we have less than a 10-km error,

in fact, close to a 5-km error in altitude (figure 7). In figure 6, the horizontal component
error, the curves are flatter, but again we have the same order of magnitude accuracy.
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IDEAL ELEMENTS FOR PER URBED KEPLERIAN MOTIONS

A. Deprit
University of Cincinnati
Cincinnati, Ohio

The motion is referred to Hansen’s ideal frame, its attitude being defined by its Eulerian
parameters. The paraineters selected to determine the motion in the orbital plane cause no
singularities or indeterminacies for small eccentricities; they have been chosen with a view
of making the right-hand members of the equations as simple to program as possible.
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SOME RESULTS IN THE FUNDAMENTAL GEOMETRIC THEORY
OF ONBOARD DIRECTIONAL SENSORS

Bertrand T. Fang
Wolf Research and Development Corporation
Riverdale, Maryland

Earlier in the symposium, Dr. Velez mentioned the need for standardizing the many differ-
ent k*~s of attitude sensors. The primary attitude sensors now in use are directional sen-
sors, which means that they sense or measure certain external reference directions relative
to the spacecraft body. Interferometers. magnetometers, horizon scanners, and star track-
ers are examples of such sensors. and this paper will take a very elementary look at some
of their fundamental geometric properties. with the hope that, hy studying the basic
geometry, we can derive a set of equations which are applicable to different kinds of sen-
SOrs.

First we wiil look at the basic ingredients of directional information, the manner in which
the observation equations govern these basic ingredients and convey attitude and orbit
information, and also the manner in which errors enter into these equations. The second
topic to be discussed is attitude observability . in other words, what combinations of these
direction measurements will resolve attitude unambiguously. Lastly, we will consider some
of the concepts developed to study horizon sensors. Horizon scanners are of interest be-
cause they also present orbit information and are somewhat unique in that the measurement
is not actually a particular vector. but rather a scanning vector, which is tangent to the
spherical earth.

In analyzing these different directional sensors very carefully, it is found that, although there
are many different kinds of sensors, the directional information can be divided into two very
simple types, the first of which is given by the scalar product of two vectors as shown in
figure 1.

For this measurement. we have the direction R, which is the radiation from the transmitting
station, and also a spaceborne antenna, which is a direction fixed onto the spacecraft. The
measurement is the phase difference of the radiation arriving at the two ends of the antenna
baseline and is given by the dot product of the reference direction R, which is a unit vector
from the transmitting station to the spacecraft. and the unit vector K, which is the space-
craft-fixed direction. This measurement may be represented as the following observation
equation:
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Y, = cosO=(:) (3) =R K
= ®KY =R (Al KB

The superscripts I and B refer to the ircrtial and spacecraft axes, respectively. and A, /B is
the direction cosine matrix relating the spacecraft and inertial axes and containing all of the
attitude information. On the left-hand side of the equation, y, is the measured quantity:
K® is a spacecraft-fixed unit vector and is therefore a known quantity. Therefore. the

attitude matrix, A, /B is the only unknown quantity in this equation.

SPACECRAFT - BORNE ANTENNA
S

\K( OF LENGTH L
~

/i
par

Figure 1. Attitude determination measurement as made by a short-
baseline interfer ometer on the ATS-6 spacecraft.

Figure 2 shows the second type of direction measurement, made by the digital solar aspect
sensor used on the Atmospheric Explorer Spacecraft. The vector R represents the line-
of-sight from the spacecraft to the sun; i, j, and k are orthogonal unit vectors along
spacecraft-fixed directions; and solar aspect angle E; is specified by the cross-product of

R and K. This measurement may be represented by the following equations:

By =T 1T B
RXK  R:] R [Ag) (1°]
y,= sinEgs ———— - i

IRXKI VISR-K?P VIR [A,) KP])

and

(R') (A ] [1°]

¥; = cos Es =

(R (Al 2D
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Being scalar equations, this second class of measurement contains more information than
the first class. although it is necessary that

y;tyi=1

It should be noted that y, and y, are related in a more complicated nonlinear way to
the attitude matrix, A, B-

SPACECRAFT TO SUN VECTOR

Figure 2. Orbit determination measurement as made by the digital
solar aspect sensor on the AE spacecraft.

The various problems of interest may be classified as follows by referring to the meas-
urement equations: In the usual attitude determination problem, only the attitude
matrix, A, M is considered an unknown. In the orbit determination problem, only the
reference vector, R, is assumed unknown. In coupled attitude/orbit determination, both
of these quantities are unknown. It is known that there are three unknown parameters
for the attitude and three unknown parameters for the orbital position; therefore, in
theory, at least six equations are needed to determine orbit as well as attitude. Une
good point about this type of equation is that it is applicable in general to different
kinds of sensors: whatever errors exist must enter into appropriate quantities in these
equations.

The first type of error to be considered is timing error: that is, instead of making the
measurement at time t, the actual measurement is made at time (t + At). With the timing
error considered, the first measurement equation assumes the following form:
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y, @+a0 = [R'(t+A0] (A (t+A0] [KP]

I

[R' ] [A (t+ 0] [K®]

w

[R' ] [A,, ©) (IK®] + At [2%) X [K))

It can be seen that, generally, timing error does not have much effect on the reference
direction sensed. The main effect is that, instead of measuring the component of R along
the K direction, the measurement equation is measuring the component along a rotated

K dircction as a result of the spacecraft angular velocity, ¢8. The following equation
shows how errors in given quantities enter into the measurement equation:

y, +ay, = ((R'l + lAk'z) T AL (m" +[aK] ").

On the left-hand side of the equation. Ay, could stand for instrument reading errors,
biases, and so on. It is independent of particular instruments: that is, for different instru-
ments, we may simply have a different bias, and so on. The second quantity. AR,
represents the uncertainty about the reference direction. There may also be uncertainties
because the instrument is not sensing the true direction: for instance. ionospheric refrac-
tions will result in terms like this. The last term. AK® | represents the instrument align-
ment errors. So it can be seen that equations of this sort will be applicable to all
different sensors, with any errors entering only into the 9 quantities.

The next topic to be considered is attitude observability. The first basic principle we are
concerned with here is that attitude is a relative notion, for although we generally refer
to the attitude of spacecraft in inertial space, we could also refer to the attitude of the
inertial space relative to the spacecraft. The information contained in one description is,
of course, readily transformed to the other, but, conceptually, it often might be clearer
to look at the problem one way rather than the other.

Another basic fact is that an attitude has three degrees of freedom and requires at least
three independent measurements for determination. In addition, if all three irdependent
measurements are related to only a single reference direction, the attitude cannot be
resolved without ambiguity. This should be obvious, since, for a rigid body, the position
of any three noncolinear points (or equivalently, two noncolinear vectors) are re.uired to
determine its attitude. So if two reference directions in inertial space are known, the
attitude of inertial space relative to the spacecraft, and, therefore, the attitude of the
spacecraft itself, is known. For directional sensors, of course, attitude observability is
equivalent to the observability of two reference directions.

The following equation is an example of the analytical formulation of observability. The
unit vectors e, €, and e, represent three reference directions.
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Assume that they are unit vectors and are known in inertial space. The components of
these vectors along three spacecraft-fixed directions, r,. r,. and r,. are measured. that is,

 °fp Tmee,cr, =ne Ty =p.

Taken together, these represent nine nonlinear equations for the nine components of ¢, .
¢,,and e,. The attitude observability is equivalent to the uniqueness of the real solutions
of these equations. which are not very easy. Since we ate not concermned with error at
this time, any measurement would correspond to an attitude. Thus there is no incon-
sistency. and the only concern is whether there is no uniqueness of solution.

In general, the analytical determination of observability is difficult. Figure 3a shows a
graphical construction which can help a great deal in providing insight into these prob-
lems. In the figure, vector e is a reference direction, and vector r is a spacecraft-fixed
direction. A measurement of the component of ¢ along the direction r will limit the
reference direction to le on a small circle, which is the intersection of a plane with the
sphere. It would be very convenient to represent directions as well as attitudes on a unit
sphere.

Figure 3b shows the second type of measurement, mentioned before. which gives the

angle ¢. In terms of geometry on the unit sphere, it is a half great circle. which represents
all possibte directions with the same meridional angle ¢. Since this is a half great circle,

it does provide a little more information than the first type of measurement.

Figure 4 shows the result of multiple measurements. It is assumed that two small circle
measurements have been made, or that two components of a reference vector have been
measured, which can be represented as the intersection of two small circles. In general,
there is a twofold ambiguity, because after two components of a unit vector have been
measured. the third component is determined up to an ambiguity in its sign. This is
reflected by the two points of intersection as indicated in the figure.

Figure 5 shows what happens with half great circle measurements. In general, the inter-
section of two half great circles would completely define a direction. But these figures
show that a combination of the second type of measurement, which is a half great circle,
with the first type of measurement. which is a small circle, may still leave some ambiguity.

When two reference directions are available, the results are as seen in figure 6. There are
three small circle measurements which give two possible positions of the direction ¢, as
shown by the intersection of two circles. The reference direction e, must lie on a small
circle centered at e, as shown in the figure. In addition, A and B intersect, A and C
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(a) (b}

Figure 3. Graphical construction on a unit sphere. {a) Small circle representing all possible & which has
component d along +; (b) half great circle representing all possible directions with the same meridional
angle ¢.

-

Figure 4. Intersection of two small
circles gives two possible directions for
€; only components along linearly in-
dependent directions are independent
measurements.

do not intersect. and e, is known. Also. e, has two possible positions. which means there
is still some ambiguity in the attitude.

The first conclusion arrived at through these arguments is that, generally. five independent
small circle measurements are required to determine attitude. Three of the measurements
define one vector completely, and the other measurement, together with the known angle
between the two reference directions, determines the other reference direction. Secondly,
if we want to obtain attitudes from three measurements, then at least two of these meas-
urements must be great circle measurements. A third conclusion is that, in general. three
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(a) (b)

Figure 5. Half great circle measurements. (a) The X3-r plane is perpendicular to the great circle plane, and
€ is determined uniquely; {b) two possible directions for €.

three small circle
measurements

Figure 6. Three small circle measurements concerning two
reference directions &, and 52.

half great circle measurements plus any additional measurement would result in attitude
without ambiguity.

It can also be concluded that attitude measurement based on three small circle measurements
of three reference directions requires that the sensors not be on the same plane. This is easy
to understand if we invert the role of the attitude of the spacecraft and the attitude of the
inertial space; it can then be seen that this case is really the same as that covered by the first
conclusion.

Other conclusions are as follows: In general, the symmetrical placement of sensors in-
creases the chance of attitude ambiguity. Although attitude observability is very difficult
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to determine analytically, a mechanical model of a unit sphere can be constructed, which will
readily resolve attitude observability without difficuity. Lastly, although sometimes more
than three measurements are required to determine the three attitude parameters, four or
five measurements available may also provide some redundancy for data smoothing.

Figure 7 introduces the topic of horizon scanners. The reference direction for the horizon
scanner is the local vertical, and when a horizon scanner measurement is made, it means

that the scanning ray is tangent to the spherical earth. The information available is the angle
between the scanning ray and the local vertical. The measurement equation is given by

r 2 o

cosf =
= cos a sin ¢ (7) - sin a cos ¢ (1) cos ;w (r)+ A(r){ .
where
a = the half cone angle of the scanner,
r = time of horizon crossing,
¢ =  pitch angle of the scanning axle.
¢ = roll angle of the spacecraft,
A = scanner roll angle, and
h = spacecraft altitude.

It is evident from the above equation and from what has been said previously that the
horizon measurement does not convey any information concemning ihe yaw about local
vertical.

There i~ a meosiite ment equation like the above for each horizon transit. Since the scanning
spcod §s ot 1 may be assumed in a first approximation that neither the spacecraft altitude
nor tie s.4:tsée ~as changed from horizon entry to horizon exit. It may then be deduced
immeditely fe:r the two measurement equations at entry and exit that the spacecraft

has a rok angie.
()
= (At —
[+

and a pitch angle,

¢ = uta
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or

¢ = n-uta,

where

r 2 13
[
l-( )
r +h
14

sinp = ,
. b .2 AA
| -sin® asin® —
«

AA
tau & = tau a cos ‘a—‘

and A is the earth width angle as seen by the scanner.

Xg, scanner axle

e §(T+AT’

——= § {1}, scanning ray

Figure 7. Horizon scanner geometry.

The existence of two possible pitch angles is easy to understand if it is reatized that the two
horizon measurements are now nothing but two small circle measurements about the local
vertical. The extension of this result to higher approximations with the consideration of
small attitude changes is straightforward and, in that case, the horizon measurements will
relate to the spacecraft attitude as well as attitude rate.

Sometimes two scanners with different half cone angles a’ and a’’ are mounted on the same
axle. In that case, th~ first approximation pitch angle becomes
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The redundancy eliminates the pitch angle ambiguity and the need for altitude information
and also provides smoothing for the roll information.

Actual measurements are often transit times rather than scanning angles and earth width.

The ume information is transformed to angular information using the scanning rate, and

any bias in scanning rate will amplify with time. Therefore, without periodic reinitializations,
the spacecraft roll, which is directly related to the scanning angle, cannot be determined
accurately. On the other hand, the pitch angle is related to the earth width and is more
susceptible to triggering errors.
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DESCRIPTION OF THE ROTATIONAL MOTION OF A
NONSYMMETRIC RIGID BODY IN TERMS OF
EULER ANGLES, DIRECTION COSINES,
AND EULER PARAMETERS

H. S. Morton
University of Virginia
Charlottesville, Virginia

The rotational motion of a nonsymmetric rigid body can be described by a sct of three time-
dependei.t Euler angles. In the torque-free case, the natural angles are the 1-2-1 or the 1-3-1
Euler angles if the angular momentum axis coincides with the space 1-axis, the 2-3-2 or
2-1-2 angles if it coincides with the space 2-axis, or the 3-1-3 or 3-2-3 angles if it coincides
with the space 3-axis. In each case, the first angle satisfies a differential equation whose
solution can be simply expressed in terms of theta functions, which can be readily computed
with the aid of rapidly-converging series. One can then determine the nine direction cosines
and/or four Euler parameters, whose transformation properties are more convenient than
the Euler angles. The 2-3-2 or 2-1-2 angles offer certain advantages if the body 2-axis is the
principal axis of intermediate inertia. The analytic torque-free solutions provide a good

base for studying the motion of a nonsvmmetric rigid body in the presence of perturbing
torques.
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ATTITUDE CAPTURE PROCEDURES FOR GEOS-C

G. M. Lemer
Computer Sciences Corporation
Silver Spring, Maryland

The scientific objective of the GEOS-C mission is to perform experiments to ap;-ly geodetic
satellite techriques to solid-earth physics and oceanography. A spaceborne radar altimeter
will map the topography of the ocean surface with a relative accuracy of *1 meter.

To meet the objectives of the radar alt:meter experiment, GEOS-C will be gravity-gradient
stabilized in a nearly circular orbit at an altitude of 843 km. The orbital inclination will be
115° to maximize experimental coverage in the North Atlantic Ocean. A 21.5-ft, extendable
scissors-type boom with a 100-1b end mass will provide passive pitch and roll stabilization
and a momentum which will provide yaw stabilization. An eddy-current damper and mag-
netic coil are also provided.

Because no active attitude control hard wvare is provided and damper time constants are
large, a detailed capture strategy has been developed at Computer Sciences Corporation
(CSC) in coordination with AVCO and the Johns Hopkins Applied Physics Laboratory.
This strategy has evolved from many detailed simulations and requires real-time attitude
determination support for the initiation of critical commands,
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POTENTIAL GEOSYNCHRONOUS ORBIT/ATTITUDE RESOLUTION
USING LANDMARK DATA

C. C. Goad*
Wolf Research and Development Corporation
Riverdale, Maryland

The information content in data other than conventional radar tracking is gaining increased
pooularity. This paper presents a ¢ +ariance analysis of reducing the orbit and attitude state
from iandmarks (ground-truth) data exiracted from images taken at geosynchronous altitude.

It is shown that comparable accuracy can be achieved with landmark data alone when com-
pared with current optimistic reductions using cor.. >ntional types of data.

*Currently at National Oceanographic and Atmospheric Administration, Ruckville, Maryland.
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DETERMINATION OF ORBITAL POSITION FROM EARTH
AND SUN SENSOR DATA ON SMS-A AND IMP-J

H. L. Hooper and M. A. Shear
Computer Sciences Corporation
Silver Spring, Maryland

Attitude data irom earth and sun sensors on SM3-A and IMP-J were processed in an attempt
to refine the orbital elements as determined from tracking data. The results were checked
against additional tracking data and the discrepancies were investigated. The results have
implications for the accuracy obtainable with any orbit-dependent attitude sensor.
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ON-LINE ORBIT DETERMINATION AND ESTIMATION
FOR ATS-6 FROM REDUNDANT ATTITUDE SENSORS

T. S. Englar, Jr.
Business and Technology Systems, Inc.
Seabrook, Maryland

ATS-6 is equipped with an onboard, two-axis interferometer which can provide direction
cosines to earth-based transmitters. In addition, the spacecraft carries an earth scanner which
can be thought of as an additional two-axis interferometer with transmitter at the earth’s
center. From the six-direction cosines thus available, both position and attitude determina-
tion can be performed. This paper describes a procedure proposed for use botl in the
SAPPSAC experiment on ATS-6 and in the ATS-6 on-line attitude determination program

at GSFC which decouples position determination from spacecraft attitude. The resulting
position pseudo-measurement is used in a constant gain Kalman filter for estimation of orbit
state. Propagation of the state estimate is accomplished with circular orbit perturbation
equations.

58



N?6-10173

THE OPTICAL SLIT SENSOR AS A STANDARD SENSOR FOR
SPACECRAFT ATTITUDE DETERMINATION

James Wertz
Computer Sciences Corporation
Silver Spring, Maryland

The idea for using an optical slit sensor as a standard sensor for spacecraft attitude deter-
mination arose during a brainstorming session of the First Goddard Standardization Meeting
on June 6, 1975. This paper describes the basic concept of the slit sensor, indicates what
information is available from a single sensor and from two sensors, describes one possible
standard sensor package, and compares the standard sensor package with the attitude
package flown on the first Synchronous Meteorological Satellite (SMS).

The slit sensor concept is one which has exciting potential as a standard attitude sensor
for an enormous variety of missions, specifically, any mission using a spinning spacecraft
or where rotating sensors or mirrors could be used. At present we are still in the stage of
analytic studies—no experiments or design studies have been made. However, past exper-
ience suggests that such sensors are feasible and should be relatively easy and cheap to
build.

The basic idea of a slit sensor is simple, as shown in figure 1. It consists of one, or perhaps
two, narrow slits with a 180° field of view capable of triggering on both the earth and the
sun and distinguishing between them. There is no angle measurement per se. There is simply
a voltage change or pulse as the sensor crosses the sun or enters or leaves the d: " the
carth. The slit scans the sky by being mounted parallel to the spin axis on asp... g space-
craft, by rotating itself, or by looking into rotating mirrors on a nonspinning spacecraft.

The major advantage of such a sensor is that it sees the entire sky. If the earth and the sun
are visible, it will see them. Equally important, however, is that the slit sensor returns a
wealth of attitude data .hat is both easy to interpret and particularly amenable to sophis-
ticated analysis techniques.

It is important to keep in mind that the idea presented here is a standard sensor concept
rather than a single piece of hardware; that is, we are interested in standardization of style
and in manner of use. This implies great cost reduction, with little or no loss, and, in fact,
possibly some gain ir: the versatility for individual missions.

The greatest economy probably comes from the fact that there is only ore ground proces-
sing package, thus reducing the development costs. On the other hand, the experience
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base that is gained provides economy. reliability, and confidence. There will be some degree
of package duplication, and this will certainly reduce hardware costs for some missions. At
the same time, the mission planner is free to adjust a variety of physical parameters to meet
his needs. or to take advantages of advances in hardware or software design. In addition,
the mission attitude analyst is free to concentrate his efforts on improving quality and
accuracy of results without constantly having to start over by developing new models or
combining a variety of old models for each new mission.

/ SOF VIEW FRONT NIEW

Figure 1. Optical dit sensor.

It has been indicated that a wealth of attitude information is available from the slit sensor
or sensor package. Next 1 will briefly describe the type of information obtained, and then
compare it with that available from sensors actually flown on the recently launched SMS-A.

In examining the information available from a single sensor as shown in figure 2, the most
obvious data is a dihedral angle from the sun to the earth, measured to the earth midscan
(D). However, this could also be measured to earth-in or earth-out for purposes of redun-
dancy. A second type of data is the nadir angle, or the angle from the spin axis of the space-
craft to the center of the earth, which is available from earth-width measurements. Figure 3
is a plot of nadir angle versus earth-width angle, with nadir angle along the vertical axis

and earth width along the horizontal axis. As can be seen from the figure, as the earth
moves toward the sensor poles, it will subtend a larger dihedral angle. Therefore, the earth-
width argle can be used as a measure of the r.adir angle.

There are two regions where there is some difficulty with this measurement: In the vicinity
of the spin plane, the earth-width measurement is relatively insensitive to the nadir angle,
and, in the vicinity of the poles, the sensor never leaves the disk of the earth. Thus, there is
not particul. y good attitude information in two regions—along the Equator anc in the
region of the poles. However, there is a large region in between where high quality attitude
information is available.
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Figure 2. Information available from a single sensor,

Both of these measurements are available from just the presence of simple pulse. If the
total illumination following on the slit sensor is monitored, then additional information is
available which can provide the nadir angle in the vicinity of the poles. That is, specifically.
if the total illumination output from the slit sensor is monitored, then this will be a sinus-
oidal oscillation. The amplitude of the sine is a measure of the nadir angle. and the phase
of the sine relative to the sun is a measure of the dihedral angle from the sun to the center
of the earth.

This information alone is sufficient for attitude determination; therefore, we could stop
with a single sensor. However, the information would be of relatively poor quality at nadir
angles near 900, which are relatively common, and near the poles .he information depends
on intensity measurements. Bias determination and in-flight calibration would both be
difficult.

Thus, it is worthwhile to consider the nature of information available from a second sensor.
In particular, if the second sensor is mounted at an angle to the first, rather than parallel

to the spin axis, then there will be a great deal of additional information rather than just
redundancy. Slightly different information would be available, depending on whether the
second sensor looks into the same hemisphere as the first or is canted somewhat so it can see
slightly up or down. For the sake of concreteness. the results of a 360° sensor will be con-
sidered, but this is by no means necessary to take advantage of the second sensor.
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Figure 3. Nadir angle versus earth-width dihedral angle for
vertical slit sensor and 70° diameter earth.

There are measurements available from a second sensor that are similar to those from the
first sensor, but there are important differences as well. The dihedral angle from the sun to
the earth is measured between two planes that do not contain the spin axis, and the nadir
angle from earth widths (shown in figure 4) comes closer to the poles.

Specifically, if p is the angular radius of the earth and @ is the angle at which the second
sensor is tilted to the first, then the nadir angle measurement will come within p-@ of both
poles. Thus, full sky coverage in the nadir angle is available by tilting the second sensor

at an angle equal to the angular radius of the earth at whatever distance the spacecraft is
operating. The intensity measurements are the same at the pole as well, if we wish to use
them; and the same problem exists around the Equator where the earth width s relatively
insensitive to the nadir angle.

However, in addition to these two measurements, there are two measurements that are
available from two slit sensors which are not available from either sensor singly. In par-
ticular, there is a sun angle from the sensor crossing times, and, as illustrated in figure 5,
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Figure 4. Nadir angle versus earth-wirth dihedral angle for
360° field of view slit sensor 35° from vertical and 70"
diameter earth.

there is a third independent measure of the nadir angle from the midscan crossing times.

Here again the nadir angle is the vertical coordinate and the midscan-to-midscan dihedral angle
is the horizontal coordinate. It can be seen in the figure that there is now particularly good
data in the vicinity of the Equator, with good distinction of the nadir angle. In addition,
since the two hemispheres are different, we no longer have the problem of ambiquity about
two possible solutions. Therefore, one needs no a priori information at all in order to use

this procedure to find the attitude.

The following is a summary of the measurements that are available from two nonparallel
slit sensois: There is one sun angle measurement, two independent measurements of the
sun-to-earth midscan dihedral angle, and two earth-in measurements and two earth-out
angles available foc redundancy purposes. There are three independent mea. urements of
the nadir angle. In addition, if we are willing to monitor the total illumination falling on
the slit sensor, then there will be two additional independent measurements of the nadir
angle available. So it is seen that two slit sensors provide essentially full sky coverage
with abundant attitude data.

63



1 1 i s i 1
o 2 &0 &0 B0 100

NADIR ANGLE (deg)
s
[
1
-]

MIDSCAN TO MIDSCAN DIHENRAL ANGLE

180 =

ol

Figure 5. Nadir angle versus dihedral angle from midscan of
vertical slit sensor to midscan of 35° off vertical slit sensor
for 70° diameter earth.

Given the general concept of attitude determination with a pair of optical slit sensors, it
should be possible to incorporate these sensors into a standard attitude package. The key
to a standard sensor package is versatility; that is, a variety of sensitivity levels, a variety of
spectral regions, and a variety of angular orientations. For example, the most likely spectral
region for normal operation would be the infrared, since this provides well-defined earth
horizons and intensity levels such that a single sensor could trigger on both the sun and the
earth. At the same time, it is desired to incorporate the possibility of other intensity levels
and other spectral regions for triggering on different celestial objects.

There are many possible configurations for a standard sensor package. One possible configu-
ration, shown in figure 6, consists of three sensors mounted on a single plate: One sensor
would be parallel to the spin axis of the spacecraft and two would be tilted at adjustable
angles. In normal operation, the vertical sensor and one of the others would be used for
attitude, and the third sensor used purely for purposes of redundancy. Any two sensors
could provide high quality attitude information over all, or nearly all, of the celestial sphere,
and any one could provide adequate information over most of the celestial sphere.
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Figure 6. Slit sensor package.

So far we have discussed the general characteristics of slit sensor behavior. Now we will
compare the analytic performance of a slit sensor package with the attitude package flown
on the first SMS, which was launched on May 19, 1975, into a transfer orbit and was
eventually placed in a circular synchronous orbit near the Equator. It should also be
pointed out that, relative to Mr. Goad’s presentation, we are interested here only in the
attitude sensors themselves, and not attitude determination from the visible and infrared
spin scan radiometer (VISSR).

There were seven attitude sensors actually flown on the SMS: two sun sensors, each with a
field of view of 120°and five earth sensors: two primary earth sensors at 4° above and below
the spin plane that were used for attitude determination in mission orbit and three other sen-
sors that were used primarily for attitude in the transfer orbit. We will compare this with a
slit sensor package consisting of three attitude sensors: one sensor that is purallel to the spin
axis and two which are tilted, one at 8.5° and the other at 30° in the opposite direction.

Accurate spacecraft attitudes require that sensor biases be accurately known. Therefore, it
is of interzst to determine how many biases would need to be measured to use the sensor
information with precision. In the package flown there are 20 total biases (two plane tilt,
six azimuth, five triggering level, and seven elevation angle), which, as a purely practical
matter, tells us that some selection will be necessary. There is essentially no chance of
determining 20 biases from the data that are available from the spacecraft. The slit sensor
package has a total of eight biases (three plane tilt, two azimuth, and three triggering level)
that would need to be determined for all of the sensors to be utilized.
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In normal circumstances, however, all the sensors in either package will not be fully utilized,
and all of the biases will not need to be determined. Specifically, in both cases, a minimum
of five biases is required for accurate attitude determinztion. However, it should also be
pointed out that these five minimum biases for the sensor packages flown provide accurate
attitudes only near the mission orbit and, in particular, do not provide accurate attitudes
during most of the transfer orbit or during any other maneuvers or mishaps that might occur.
On the other hand, since one sensor is fully redundant in the slit sensor package, the five
minimum biases there provide accurate attitudes over the entire celestial sphere, including
both the transfer orbit and the mission orbit.

Given the geometry of the sensor package, it is straightforward to calculate the portion of
the celestial sphere covered by each sensor and the variety of independent measurements
available for attitude determination. In particular, for the sensor package that is flown,
there are two sun angle measurements over 50 percent of the sky and one sun angle measure-
ment over the remaining 50 percent, such that the sun is fully covered with the package
flown. In the slit sensor package, there are three sun angle measurements available over 87
percent of the sky, one measurement over 12 percent, and there is no sun angle measure-
ment at all for 1 percent of the sky.

If the attitude is at orbit normal, and if the satellite is in an equatorial orbit, then in the
package flown there are four sun-to-earth midscan dihedral angles available, and there are
three such angles available with the slit sensor package. However, those three angles with
the slit sensor package are available if it is required that the same sensor be used for both sun
triggering and earth triggering. If you allow the sun to trigger with one sensor and the

earth to trigger with another, then there are a total of nine sun-to-earth dihedral angles with
the slit sensor package.

There are two earth-width dihedral angles over 9 percent of the sky with the sensor package
flown: There is one measure over just slightly less than half of the sky, and there is no
earth-width measurement at all over 42 percent. On the other hand, with tie slit sensor
package, there are three earth-width measurements over 93 percent of the sky, two over 6
percent, and one measurement over the remaining 1 percent, such that the sky is fully
covered.

In addition to this, there are three midscan-to-midscan nadir angle measurements over 93
percent of the sky with the slit sensor package and one measurement over 6 percent. This
measurement is not available at all from the attitude package flown.

Thus, the results here indicate that the slit sensor package has substantially more independent
attitude measurements over more of the sky than the attitude package flown, even though
the package flown has more than twice the number of sensors. From an analytic point of
view, the slit sensor package should give better attitude results from this information.

Another characteristic of importance is sensor redundancy. That is, what information is left
if the single most critical sensor for a particular measurement or a particular region of the sky
is lost. With the sensor package flown, the loss of one critical sensor would be a moderately
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serious problem, since we are guaranteed coverage of the earth over only 9 percent of the
celestial sphere. The sun presents fewer problems. since there we are guaranteed coverage
over SO percent of the sky. With the slit sensor package, the loss of one critical sensor

would be essentially no problem, since one of the sensors was intended to be redundant in any
case. The carth and sun sensing are 100 percent covered: the sun angle measurement is at

least 87 percent covered.

The loss of two critical sensors would be a very serious problem for the attitude package
flown. All of the sun or all of the earth observations could be lost. It would also be a
problem for the slit sensor package. All of the sun angle and midscan-to midscan nadir angle
measurements would be lost. However, the sun-to-earth dihedral angle and the e th-width
angles would stili be available over at least 87 percent of the sky. Thus, it shouvld still e
possible to do attitude determination. However, the accuracy or bias determinati.-.. char-
acteristics could be impaired.

If we lose three critical sensors in the slit sensor package, which has only three sensors,

the spacecraft is obviously fully blind. In the attitude package flown, the spacecraft would
be essentially blind. In some configurations, it is possible that there would be one observa-
tion still in existence, however, it is unlikely that attitude determination could be done with
that one observation.

Lastly, there is the question of attitude accuracy, which requires a good knowledge of the
sensor biases. A major factor in the accuracy with which biases can be determined is the
coverage of the celestial sphere for each individual sensor. In the normal course of a mission,
there are transfer orbits, inversion maneuvers, and so on. Each sensor will encounter a
variety of geometries. As more coverage of the sky is available, more data from these
different geometries will be provided, and the biases can be better determined, for two
reasons. The most obvious, of course, is that there is more information available. In
addition, there is a greater variety of geometries, and, in gen- ral, it is the variety of geo-
metries which allows us to distinguish between sensor biases.

Thus, it is worth examining the sky coverage of individual sensors for purposes of bias
determination. With the attitude package that was flown on SMS, the sun sensors both
covered 75 percent of the sky. When sensing the sun, the slit sensor package would cover
anywhere from 87 to 100 percent of the sky. (The parallel sensor would cover 100 percent;
the +8.5° sensor, 99 percent; and the -30° senso1 37 percent.) Thus, the two packages
would be essentially equivalent in this regard, with a very slight advantage, perhaps, going

to the slit sensor package.

However, when sensing the earth, there is a major difference. With the attitude package
flown, the earth sensors cover only 20 to 29 percent of the sky. (The +4° sensors would
cover 29 percent; the +20° sensor, 28 percent; the -25° sensor, 27 percent; and the -48° sen-
sor, 20 percent.) However, when sensing the earth, the slit sensor package would cover 93
to 100 percent. With the parallel sensor, coverage would increase from 99 to 100 percent if
an intensity measurement in the vicinity of the poles is used, rather than simply a puise
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measurement. So it is clear from this information that the slit sensor package would provide
much better bius determination, for two reasons: There are fewer biases to be found, and
those which are necessary are easier to determine.

Thus, for SMS, it is seen that the slit sensor package has less than one-half the number of
sensors that the flown package has, yet these would provide more independent attitude
measurements over more of the sky. substantially greater redundancy, and far better bias
determination characteristics than the tlown sensors. One advantage of the slit sensor pack-
age is that it is inherently simple. (It is possible to envision a prototype made out of a tuna-
fish can and a photocell). A second major advantage is that it is exceptionally versatile in
two senses: It obvicusly has full sky coverage, which allows for more independence of
mission details, but probably more important is the great mechanical versatility. That is,
e same sensor can be used with changes in mechanical or electrical parameters to fit the
particular mission at hand. Therefore, a single ground processing package could be used for
a large number of missions.

For example, we could change the tilt of the second sensor to provide the best pole-to-pole
coverage for a particular mission. On some missions, it might be possible to use a tilted
sensor that has two stops for different conditions where accurate attitudes are desired. Also,
the triggering levels could be changed to fit the particular needs at hand. In theory, the
same sensors aboard the same spacecraft could be used in transfer orbit 322 km (200 miles)
above the surface of the e. .n as halfway to Mars, by simply changing the triggering levels
and triggering on Mars and Jupiter as point sources and measuring their nadir angles with
respect to the spin axis of the spacecraft.

The slit sensor works on any spinning spacecraft. On any despun spacecraft, it can work
by either rotating the sensors or by allowing them to look into one or more rotating mirrors.

It is difficult to find any disadvantages from an analytic point of view, although, of course,
such a sensor system may be physically unbuildable. One minor disadvantage is that a slit
sensor’s response to the earth is not a square wave, as it is with point sensors. It rises to a
maximum at the center of the earth and falls off toward the edges, which implies that the
slit sensor might yield substantial triggering level biases. However, triggering level biases are
by far the easiest to resolve by ground processing, and therefore this is unlikely to be a
serious difficulty.

In summary, the optical slit sensor appears to be a versatile idea. It may be remarkably
close to what is nceded for modern space flight—a single standard attitude sensor with
enormous versatility in its application,
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ON THE DEVELOPMENT OF PRACTICAL NONLINEAR FILTERS

H. W. Sorenson
Applied Systems Corporation
San Diego, California

The general problem of estimating the state of a nonlinear, time-discrete system from noisy
measurement data is considered from the point-of-vi-w of developing feasible computational
algorithms for evaluating the Bayesian recursion relations. Algorithms which have been
proposed are reviewed, the computational implementajon of these algorithms is discussed,
general conclusions coming from numerical studies are noted, and areas requiring additional
research are defined.
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CONVERGENCE CHARACTERI>TICS OF BATCH AND
SEQUENTIAL ESTIMATION ALGORITHMS

B. Schutz
University of Texas
Austin, Texas

The convergence rate and radius of convergence of the batch, and the extended sequential
estimators are compared. The converee,. ¢ behavior of the two processors in the presence
of both observable anid unobservab.< varameters is considered.
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MANEUVER STRATEGY DESIGN FOR MARINER/JUPITER/SATURN
AUTONOMOUS GUIDANCE AND NAVIGATION

T. Hagar
Jet Propulsion Laboratories
Pisadena, California

Candidate maneuver strategy algorithms for multiple and quasi-adaptive midcourse man-
cuvering are presented. Application of these techniques to the Mariner/Jupiter/Saturn 1977
mission, and as possible candidates for autonomous navigation and guidance, is discussed.

71



CONSIDERATIONS FOR LARGE SPACE TELESCOPE
(LST) MISSION EFFECTIVENFSS

J. Tuttle
Martin Marietta Corporation
Denver, Colorado

In designing the support systems module for the LST, consideration must be given to hard-
ware limitations and mission design requirements. Special software has been developed to
analyze these sometimes conflicting requirements. This talk will discuss the software and

analysis made for the LST study.
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SOLAR ELECTRIC PROPULSION

Richard W. Barbieri
Goddard Space Flight Center
Greenbelt, Maryland

Solar electric propulsion is certainly not a new concept. Indeed, it has been with us since the
early 1900’s. But what is new is a growing awareness that solar electric propulsion offers a
rather interesting alternative approach to study the earth and its environment and the solar
system.

This paper will cover some problems that we face in low-thrust mission analysis. After some
preliminary comments about hardware and pe: ormance parameters, coricern will be devoted
to the development of a nominal low-thrust trajectory and to the guidance and navigation
problem.

To put things into perspective, we should first discuss the major components of a solar
electric propulsion system. It can be broken down into three major subsystems: One is a
primary power source, which could be made up of batteries, solar czlls, and reactors. Its
function is to convert thermal or solar energy into electrical power. The second subsystem
is a powe: conditioner and electrical control, which supplies specified levels of voltage and
power to the heaters, valves, and thruster electrodes. In effect, it is an electrical power
distribution center. The third subsystem is the engine, in which are included the thruster,
fuel tanks, and propellant and control system.

Figure I shows a comparison of some performance parameters of both chemical and ion pro-
pulsion systems. It can be seen that the chemical systems have a thrust-to-weight ratio rang-
ing from about 10 to 103 g, operating with a specific i.1- ‘ulse (Ig,) in a range of perhaps

90 to 250 seconds. The ion propulsion systems, on the other hand, operate with a thrust-
to-weight ratio of about 10°* to about 10°® g, with a specific impulse ranging from 2000

or 3000 seconds up to as high as about 11,000 seconds.

The nuclear propulsion systems fit in this range of 1 to 10 g. Arc jets also fit into this range
and overlap the chemical systems and ion propulsion systems as far as thrust-to-weight ratio
is concerned.

The low thrust system then provides a very high total velocity increment, and it does this by
providing AV at a very low acceleration over a long period of time at very high specific
impulse. The high specific impulse in effect translates to a smaller amount of propellant
that has to be carried on board.
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Figure 1. Comparison of performance paramaters
of chemical and ion propulsion systems.

Figure 2 shows what might be expected from a low-thrust propulsion system. The terminal
mass-to-initial mass ratio is plotted against flight time in days: parameters are given for
specific impulse and also for input power to the thruster-to-initial mass ratio (P/M,).

The Solar Electric Rocket Test-C (SERT-C) mission is a study to place a spacecraft into a
3100-km circular orbit and slowly spiral out to geosynchronous orbit. The spacecraft will
lift off with roughly 821 kg (1810 Ib), with a specific impulse of roughly 3000 seconds

for the transfer orbit engines, which are about 30-millipound thrusters, and with an expected
flight time of about 290 days. The SERT-C has a P/M,; ratio of roughly 4.2 and a termir.l
mass-to-initial mass ratio of about 0.85. It will get into synchronous orbit with roughly

703 kg (1550 Ib) after lifting off with about 821 kg (1810 Ib), a fairly high payload ratio.

At the beginning of prelaunch analysis is the task of generating a nominal trajectory, which
is usually optimal in som~ sense. This is where we encounter our first set of problems.

There are certain phenomena peculiar to low-thrust problems, which must be modeled if we
are to simulate a low-thrust trajectory with any semblance of accuracy: The first three
items—geopotential, N-body, and solar radiation pressure—are not really peculiar to low-
thrust systems but certainly must be included in a nominal trajectory aigorithm. We have
some experience with ballistic high-thrust-type missions with these three items.

The next item, solar array interactions with the environment, are peculiar to low-thrust
systems. since the array is the source of power to all spacecraft systems. A model of the
radiation belt is required here, and the development of such a model will be akin to the
development of the atmospheric density models we have had over the last 15 years. In
hoth cases, we try to construct models for stochastic processts. Atmospheric scientists may
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Figure 2. Parameters of low-thrust propuision system.

have ex .rtise in the development of radiation belt models, but those of us who are con-
cerned with guidance and control and spacecraft systems are relatively unfamiliar with these
models: tor instance, what kind of assumptions must be made to develop a working

model to be inserted into a trajectory generator algorithm.

Anoti .1 phenomenon to be considered is the solar array degradiation, which is closely re-
Jated to the radiation belt model. For sxample, silicon solar cells can withstand a radiation
dosage of perhaps 10'* 1-MeV electrons. However, the radiation that might be expeiienced
is perhaps two orders of magnitude larger than that. Such a dose, 10'® 1-MeV electrons,
will have dire consequences on the available power to the thrust' 5. In particular, it could
degrade the solar array power by as much as 40 to 50 percent of its beginning-of-life power,
which, for the SERT-C mission, for example, is about 9 kW. Consequently, we are forced
to protect the .olar cells with a thin coating of material about 76 to 152 um (0.003 to 0.096
inch) thick. Even so, the degradation must be modeled and will be a strong function of the
thickness of the protective coating and of the type of material used in this coating.

The last item to be considered is shadowing, which has been encountered before with regard
to solar radiaticn pressure. Nc. ' we must be concerned about it to determine the solar array
and thruster perfermance during passage through shadow regions, in particular, during the
thruster on/joff times. The question is how long it takes the syster to get up to full power
after passage through shadow, and it happens that we do no* have an answer at this time.
Upon exit from shadow, for example, we know that it is going to take at least 10 minutes

to go thro % a preheat and controlled loop sequence. It is after this time that the thruster
~,1 pperate at full power, which is expected to be a function of duration in shadow.

.C ~¢'uin here is the behavior of the a priori thruster biases after restarting the
in ~ ons are that such biases remain the same after restart, but detailed inves-
S v warranted. The implication is that if such biases do change, then, for
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the earth orbiting mission with solar occultation and thruster restarts quite frequent, the
orbit determination process must reestimate these biases. Such frequent estimations could
lead to significant orbit uncertainty. and this, in turn, has serious implications on the
guidance policy.

Having made these comments about the trajectory generation problem, we now turn our
attention to the guidance and navigation aspects. 1 think it is safe to say that, of the small
amount of work that has been done in the past in low-thrust mission analysis, little has been
devoted to guidance and navigation. The problems here are difficult, and the opportunities
for optimization studies abound.

Environment and degradation models have aiready been mentioned. The same models which
reside in the trajectory generator algorithm could certainly be used in the guidance and
navigation algorithm. It must be emphasized that, in missions of this type, guidance and
navigation are strongly coupled together because of the presence of a stochastic, continuously
acting force.

Anoiher aspect of guidance and navigation is the thrus: vector model, which can be structured
as a constant, as a constant plus noise, as a first- or second-order Markov process, or as a
fully stochastic phenomenon. The first option is quite unrealistic. The fourth option leads
us to extremely difficult mathematical problems, since it forces us to integrate random non-
linear differential equations—nonlinear differential equations are difficult enough. Thrust
magnitude depends on ion beam current, total accelerating potential, mass utilization
efficiency, effective specific impulse, and numerous other parameters, each possessing a bias
and time-varying components, which, when combined, may yield a standard deviation of
about 5 percent of nominal thrust magnitude. But this is just a preliminary e<timate. It
could possibly get worse than 5 percent. The pointing error, on the other hand, i< a function
of launch vibration, thesmal distortion of the grids, and accelerated grid wear, in addition

to improper knowledge or measurement of the thruster misalignments, gyro drift, misalign-
ment, and other parameters. Therefore, modeling the thrust vector as a constant is not
realistic.

The next item is thruster orientation with respect to the solar array. If the engines are not
gimballed, then the optimal orientation of the solar panels will not induce an optimum
orientation of the thrust vector an- .ice versa. This problem is one that really warrants
many trade-oft studies. Even if engines are gimballed and some freedom for the thrus-
ters is allowed, optimization and trad c-off studies must be carried out with respect to the
relative orientation of the thrusters with respect to the solar array at various points of the
mission.

The last point to be discussed is the type and number of observations, two factors strongly
affecting the navigation accuracy, which significantly impacts the guidance policy. One
particular data type is that obtained from accelerometers. Because a low-thrust vehicle is
thrusting over long periods of time, and because small deviations in the thrust direction and
magnitude significantly alter the trajectory over these long periods, it becomes impertant
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to evaluate the influence such data have on navigation error. Implied here is another
problem: When extremely sensitive accelerometers (sensing 10°'° to 10! g with 2-arc-
second accuracy) become flight-ready, a heavy burden is going to be placed upon attitude
control sensor accuracy and measurement process.

If only one accelerometer is placed on board along the nominal thrust axis. then information
about mass flow rate becomes available (provided thrust magnitude is known fairly well):
however, no information about thrust misalignment is available. On the other hand, it is
expected that the navigation problems can be alleviated somewhat by placement of three
highly sensitive accelerometers on board to reduce thrust vector misalignments. Sucii an
alleviation is contingent upon precision alignment with respect to attitude control sensors
Thrust direction with respect to the accelerometer axis can then be accurately determined.
depending upon accelerometer accuracy. and referenced to inertial coordinates by the
attitude control system. This is an area where very little work has been done and numerous
studies must be made using not only earth-based data but also onboard navigation sensors.

I would like to close by saying that the overall problem of low-thrust mission analysis is
quite fascinating with new and nontrivial aspects requiring the development of new tech-
nology. This is an area where it is necessaiy to reconsider a lot of the concepts that might
have been formed in studying ballistic high-thrust-type mission analysis. The problems
are not insurmountable, but they are going to be very time-consuming to overcome.

This paper has discussed some of the mathematical models which are needed. In addition.
there is the orbit determination problem where data types must be evaluated and used in
combination with an optimal filter. Deciding upon a particular filter is not as casy as it
might seem, taking into account the thrust-vector-related biases and time-varying compon-
ents that must be estimated. The strong coupling between navigation and guidance and the
problems it poses to the attitude control system are crucial.

DISCUSSION

VOICE: What kind of funding is avail2ble to study these types of problems? They sound
very interesting.

BARBIERI: The funding right now is nebulous, at best. At this time we are not quite sure
where we stand with regard to funding for low-thrust mission analysis.

VOICE: s anyone in particular interested in pushing this concept further?

HOUGHY: Yes. There is a possibility of a new start for solar electric rescarch and develop-
ment in the 1976 budget, but there is a very low probability of it actually coming into being.
If it does not happen in the 1976 new start, it will probably be continued as a low level
technology-type effort. The primary person who would be supporting it. should it stay at
lew level technology, would be Jim Lazar at the Office of Aercnautics and Space Technology.
From our point of view, there is a wide degree of uncertainty as to where we are going right
now. We have to wait until we get a reading from the Office of Management and Budget

on how they feel about it.
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LOW THRUST OPTIMAL GUIDANCE FOR GEOCENTRIC MISSIONS

T. Edelbaum and S. W. Sheppard
Massachusetts Institute of Technology Charles Stark Drapper Laboratories
Cambridge, Massachusetts

Low thrust propulsion appears to have useful application as a means of satellite maneuvering
in a strong gravity field. This thesis investigates the usefulness of one possible guidance
scheme for such applications by means of a computer simulaiion. The guidance scheme uses
some of the recent optimal trajectory theory applied to a particular class of orbit transfers.
These transfers, between inclined circular orbits, are considered because they typify many
mission objectives and have a relatively simple optimal solution. The optimal solution is
presented here along with a mathematical approach to solving it on a computer. The simula-
tion program, which investigates the effects of an oblate gravity field on the guidance, is also
presented. However, oblateness was found to cause relatively smali errors and “closed-loop”
guidance offered no significant improvement over “‘open-loop.”
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RECENT INTERPLANETARY LOW THRUST STUDIES AT AMA

F. 1. Mann
Analytical Mechanics Associates, Inc.
Seabrook, Maryland

Performance characteri. tics of optimal low thrust rendezvous missions to the comets
Giacobini-Zinner, Borrelly, and Tempel (2) with launches in the 1981-1986 time period

are discussed.

Also discussed are performance characteristics of optimal low thrust extra-ecliptic missions,
including launch declination effects and the importance of optimizing the launch date.
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GEOMETRIES DESCRIBING AN ORBITER’S RELATIVE MOTION

J. B. Eades, Jr.
Analytical Mechanics Associates, Inc.
Seabrook, Maryland

Analytical solutions to a set of modified Euler-Hill equations lead to interesting geometric
descriptions of a relative motion. Traces on the displacement and hodograph planes, de-
fining a time history of the motion state, tell much of what can be expected from the solu-
tion to any relative motion problem.

The neoclassic solution of Clohessy and Wiltshire (for intercept) has been extended to include
effects of forces and general initial values. These results are depicted on both the “local
rotating” frame of reference and the companion “inertially oriented™ one.

General results for the relative motion state will be described, some special cases will be
noted, and examples of uses of tt 2se results will be mentioned.
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STABILITY OF RELATIVE MOTION

V. Szebehely
University of Texas
Austin, Texas

The equations of the relative motion of two bodies in a given force-field are formulated. and
it is shown that the conventional methods of representation lead to instability at rendezvous
in the Earth’s gravitational field. A method for selecting new dependent and independent
variables is offered in order to stabilize the equations of relative motion.
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LONG PERIOD NODAL MOTION OF SUN SYNCHRONOUS ORBITS

Kenneth I. Duck
Goddard Spac: Flight Center
Greenbelt, Maryland

The sun synchronous orbit has been used since the early 1960s for almost every meteorologi-
cal satellite launched as well as for the two Earth Resources Technology Satellites

(Landsat-1 and Landsat-2). This well known orbit concept makes use of the earth’s oblate-
ness to induce a precession of the orbit line-of-nodes in order to maintain a fixed angular

+ .entation of the orbit plane relative to the mean sun. The sun synchronous orbit, even
though it has been used for many years, will continue to be used for most earth observation
and remote sensing applications because:

®  The sateilite passes through each latitude point at the same local time thus
ensuring similar ground lighting conditions on each pass and consequently facili-
tates data comparisons.

®  The average spacecraft solar array angle of incidence to the sun remains within a
fixed boundary thus ensuring the availability of electric power.

® The orkits (altitude and inclination) can be chosen such that the majority of the
earth’s surface can be mapped with near north-south contigucus swaths in a fixed
period with repeatability.

The long-period perturbations which disturb sun synchronous orbits have not been the
subject of detailed investigations in comparison to geosynchronous orbits where the litera-
ture abounds with material. The disturbances acting on sun synchronous orbits has not been
examined in detail for several reasons:

®  With the exception of the Landsat satellite, previous sun synchronous vehicles
have not had orbit adjustment capability to fight the perturbations.

®  The spacecraft hardware design lifetimes (1 to 2 years) have been sufficiently
short that the perturbations could be neglected without significantly degrading
mission performance.

® Prior to the use of inertial guidance on the Delta launch vehicle, injection uncer-
tainties were sufficiently large so as to mask any perturbation effects present.

The assessment of the perturbations acting on sun synchronous orbits becomes more signifi-
cant when longer lifetime spacecraft are developed as anticipated over the next 10 to 20 years.
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With improvements in hardware technology and reliability and the on-orbit refurbishment
capability associated with the advent of Space Shuttle, operational satellite lifetimes could
casily exceed 5 years. This increase in lifetime is almost a reality today as most earth
orbiting spacecraft launched in recent years have exceeded their design life.

The object of the study documented here was to determine which perturbations significantly
affected the long term nodal motion of sun synchronous orbits and then construct an approx-
imate model which described the phenomena observed. Many computer simulations were
made with several independent computer programs to assess the relative effect of various
combinations of perturbations. Typical of the perturbations included in the simulations were
zonal and tesseral gravitational harmonics, third-body gravitational disturbances induced by
the sun and moon, and atmospheric drag. it was observed that a model consisting of even-
zonal harmonics through order 4 and solar gravity dominated the nodal motion. It was further
observed that for long runs the orbit inclination and orientation of the line-of-nodes ex-
hibited an oscillating behavior each having the same period. For all the cases run, the inclin-
ation amplitude was very small (always less than 1 degree); however, the nodal motion could
be quite large. Due to these observations, it was felt that a resonance existed between the
inclination and the nodal motion. The mean daily rate of change in inclination due to solar
gravity (in radians/mean solar day) was found by analytic averaging to be

2

di n, ca
—=16200—(1 + cosi )* sinisin 2 Q
dT n S ac
where
n, = mean motion of earth about the sun
7 = mean motion of satellite about the earth
i, = solar obliquity
2 = o’clock angle, the angle between the longitude of the ascending node and th: mean
sun used computing local time
i = orbit inclination

The precession rate of the line-of-nodes due to zonal harmonics through order 4 (assuming
a circular orbit) is

Q=Acosi+Bcos?i
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where

J2 LI . = zoral gravitational coefficients

Rc

i

mean equatorial radius of the earih

orbit semimajor axis

[
i

Differentiating Q, substituting di/dt, and noting that

ro =Q'¢s

where ¢_ =~ 0.9856 °/day, then

nz

Q =-16200 — (1+cosi)? sin?i(A - 3B cos? i} sin 2 Q
[+ o n s oc

where R, B are A and B in radians/mean solar day.

Examination of 2 shows that for aititude regions where drag can be neglected, and
assuming that sin? i is approximately constant,

Q_~ksin2Q,

a form of the familiar pendulum equation. It is known that systems which are characterized
by the above equation can exhibit libration or circulatory characteristics. Both characteris-
tics can be observed on the phase plane plot (figure 1) made for ITOS-type orbits. 1t is
observed that this system has stable equilibria which correspond to orbits whose line-of-nodes
lie through the 6:00 a.m. and 6:00 p.m. points. The pendulum equation can be solved
analytically using elliptic functions with a typical solution for a quarter cycle oscillation
being

L ]+2mcn2(\/2_k_T)
1 -msn? (V2K T)
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where
m= 1/2(1 +cos2 Qm)

o <T<P /4

o <ro <90

Note that P, denotes the libration period and £2 = denotes the value of o’clock angle where
Q__ =0. The libration period, P is
4 K(m)

V2K

where K (m) denotes a complete elliptic integral of the first kind. Figure 2 shows the
o’clock angle libration period for ITOS-type orbits (h = 1489 km, i = 101.9°). It is seen that
the libration period increases from 26 years as the reference o’clock angle moves from one
of the stable equilibria toward one of the unstable ones. Investigation of the libration
period has shown that the minimum libration period lies between 22 to 30 years for sun
synchronous orbits between 200 and 2000 km.
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Figure 1. O’clock angle motion in phase space for ITOS-type orbit.
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Figure 2. Libration period for ITOS-type orbit.

The pendulum analogy has been compared with both simulation and flight spacecraft data.
Figure 3 compares the approximate sojution with several simulations having various combin-
ations of perturbations. The reference orbit in this comparison is the ITOS-type (h = 1489 km,
i = 101.9°) having an ascending nodal crossing at 3:00 p.m. local time. It is seen that there

is excellent agreement between the pendulum analogy and those simulations which include
zonal harmonics and solar gravity.

The remaining figures (4 through 9) compare the o’clock angle time history gerrated using
the pendulum model with that obtained from Brouwer mean elements for several flight
spacecraft. In examining these comparisons one observes that there are two curves repre-
senting approximate nodal drift propagation. The dashed curve is the propagation caiculated
using a set of orbit elements at the initial epoch for the particular satellite. The solid

curve uses an iterated value of inclination to improve the agreement. This approach was
taken because of the large relative uncertainty in measuring the inclination. It is seen in all
cases that excellent agreement is obtained. In examining these data, note that the ESSA-2
solution (figure 4) is a case where the motion lies in the circulatory region in phase space
while the other solutions lie in the libration region. The ESSA-8 solution (figure 7) exhibits
the turmaround expected for the libration motion. The final observation to be noted is for
Nimbus-5 (figure 9) where the node is located near one of the unstable equilibria. There is
still good agreement for this case where the disturbing acceleration is near zero.

In conclusion, the nodal motion of sun synchronous orbits has been investigated and found
to exhibit the characteristics of a pendulum. This pendulum motion results from solar
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gravity inducing an inclination oscillation which couples into the nodal precession induced
by the earth’s oblateness. The pendulum model has been compared with simulations and
flight data with excellent correlation observed.
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COMPARISON THEOREMS, NUMERICAL INTEGRATION, AND SATELLITE ORBITS

Arnold Stokes
Georgetown University
Washington, D.C.

Consider the equation

x = X(x). (1

Assume that the behavior of the family of solutions is known, expressed by the estimate

Ix (t, xy) - x(t, %) I < K, f() [x, -Xg |, t=0,

Here KO is constant, and f is normalized by f(0) = 1,1 (t) 2 1. The function f (t) then
expresses the stability or instability of (1}, so that stability is equivalent to f =1, and a
typical instability would be f (t) =t + 1.

Suppose we wish to numerically compute a particular solution of (1), say x (t, x,), for some
fixed Xy A remarkable theorem of Babuska asserts (under reasonable assumptions on X)
that if a strongly stable difference scheme is used, numerical integration of (1) with x (0) = x,
is equivalent to obtaining an exact (theoretical) solution of

y=X+G(1,y), (2)

where y (0) = x,, (here Ix, -x, lis the starting error), and |G (t, y) | < n, (here n (small)
reflects the discretization and truncation error).

Babuska used this result to obtain global error bounds for (2), assuming x (t, x,) isa
uniformly asymptotically stable soluvion of (1). Here we wish to compare solutions of (1)
with solutions of (2), with particular attention given to the effect of different types of

f (t).

To develop the comparison, a converse theorem using Lyapunov functions due to Yoshizawa
and Hale is applied. Letz = x - x (t, x,), then (1) becomes

z=17(t,72), 3)

and the new estimate becomes

Tzt ty,zg) -2 (t, ty,2) | < K, f(t) lz, -2,1
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f(t)
Kf(t)— lz, -2_|
0 (0) f(t()) zl z0

4)

K (ty) Iz, -zl exp (a (t) - @ (ty))

where K (t,) =K, f(ty), a(t) =log f (1)

Then one can show there exists a function V (t, z) satisfying

lz2l K V(t,2) <K (@) lzl. (a)
IV(t,2)-V(t,y)l < K@) lz-vl,and (b)
. i f
V,|[<av==V ()
f

where \'/3 denotes the derivative of V along solutions of (3). Note that (a) and (c) allow
one to recover (4), using standard theorems. Further, it is easy to show, using (b) that

. ) fv
V,<aV+K(thh= —t— +K, f (tn.
Then an immediate consequence is that
ly (t, x,) - x (4, X)) < K, f () [l X, ~Xo! + nt]

So we see that the term K f (t) lxl - X, | reflects the propagation of the starting error,
and the term n K f (t) gives an estimate of the effects of the discrctization and truncation
error.

Evidently, it is better to integrate a stable system, f = |, than an unstable system,

f(t)=t+ 1. Asimpie example is the unperturbed two-body problem, which is unstable,

as the ditference between two periodic solutions of different periods grows (at least locally)
like t + 1. Anexample of a stable problem is the stabilized Kepler problem, as giver by
Baumgarte and Stiefel, where now all solutions have the same period.

To extend the above to perturbed problems, consider
x =X (x)+eX, (1, %) (5)

Assume that in some region R, IX, (t, x)I-“M. Here one supposes this region R contains
the solution of interest and is large enough so that continued integration would not be of
interest long before the integrated solution leaves R.
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This assumption will allow the effect of f (t) on the error to be observed, for now we
consider

y=X()+eX, (t,y) +G (1), (6)

and y (0) = x,, IG (t, y)I<n as before.

The same V-function leads to the estimate
by (t, %)) - x (t, xo)| < K, f(t)[lx| -xl +t(n +eM)] .

which is valid as long as both solutions remain in R. Asain one can see the different error
estimates obtained forf=1 or f=t+ 1. Remark: The foregoing gives upner bounds on
the error. The strength of the conclusion then rests on the sharpness of the upper bounds,
for one cannot cenclude Error, < Error, on the basis that a crude upper bound of the first
is less than a crude upper bound of the second.

However, by considering simple examples, one can see that at least in these cases, numerical
integration of a stable system gives an error growth 0 (nt), while for an unstat ie problem,
the error grows like 0 (nt?). So to that extent the foregoing estimates seem reasonable.

Further, numerical experiments are being conducted at Goddard Space Fiight Center using
the stabilization techniques «f Baumgarte and Stiefel, and the results should give further
insight into the significance of the above results.

In this regard, perhaps it should be observed that a similar approach to obtain lower bounds
does not seem possible, as the difference ¢t two almost periodic functions will, in general,
have an arbitrarily small lower bound.

Note that the above - .imates can also be obtained in more complicated problems, with
such means as time-dependent potentials. Details will appear in a forthcoming paper,
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OPTIMAL EXPLICIT RUNGE-KUTTA METHODS

D. Bettis and D. Hall
University of Texas
Austin, Texas

Optimal explicit Runge-Kutta methods are developed for soiving the initial value problem
for systems of ordinary differential equations. These methods have an optimal estimate cf
the local truncation error term, thereby allowing the option of implementing a variable-
step strategy. The coefficients of the Runge-Kutta method are selected so that the local
truncation error is minimized and that the absolute stability region is maximized.
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STABILIZATION BY MODIFICATION OF THE LAGRANGIAN*

Joachim W. Baumgarte
Mechanik-Zentrum, Technische Universitat Braunschweig
Braunschweig, Federal Republic of Germany and Swiss Federal Institute of Technology
Zurich, Switzerland

ABSTRACT

In order to reduce the error growth during a numerical integration, a method of stabilization
of the differential equations of the Keplerian motion is offered. It is characterized by the
use of the eccentric anomaly as an independent variable in such a way that the time trans-
formation is given by a generalized Lagrange formalism. The control terms in the equations
of motion obtained by this modified Lagrangian give immediately a completely Lyapunov-
stable set of differential equations. In contrast to other publications, here the equation of
time integration is modified by a control term which leads to an integral which defined the
time element for the perturbed Keplerian motion.

INTRODUCTION

It is well known that the classical differential equations of the Keplerian motion are
unstable in the sense of Lyapunov. In general, Lyapunov-unstable differential equations
develop more unavoidable numerical errors during a numerical integration than Lyapunov-
stable equations do. We consider here the stabilization of the differential equations of
Keplerian motion with the aim of improving the accuracy and efficiency during the
numerical integration. We propose a stabilization method which is purely conservative in
contrast to other methods (Baumgarte, 1972a). It is characteristic for all conservative
methods, that they make the revolution time independent of the initial conditions
(Baumgarte, 1974).

GENERALIZED LAGRANGIAN

In this method the stabilization goes hand in hand with the introduction of a new independent
variable s instead of the time t. This procedure is called time transformation and s is

called fictitious time. Furthermore, we will require that our stabilized equations of motion

be developed from the Lagrangian formalism. But, here we have to use an appropriately

® This paper was supported by the National Research Ccuncil and the National Aeronautics and Space Administration.

95



modified generalized Lagrangian formalism. In order to introduce, instead of t, the
fictitious time s as a new independent variable, we have to use, instead of the original
Lagrangian L

L=L(q; ", i=1,2,...,n, (H
where q, are the coordinates and dot means di“ferentiation with respect to t, the following
generalized Lagrangian L*:

H
S Y |
L* = ht +”lL q,—,t}-h )
M

|

In equation (2) the prime means differentiation with respect to the independent variable s.
The time t is now a dependent variable (time coordinate). Together with t appears its
conjugated momentum h, which represents physically the negative total energy.

Furthermore, we consider only the case, where
p=u(g,h)>0 3)

is a freely chosen positive function only dependent on q, and h. Later we will see that p
may be interpreted as the local scale of the time transformation. More general dependences
of the scale u are also of interest but shall not be considered further here. Our special
choice of u retains the equivalence between Lagrangian and Hamiltonian formalism. Th!
choice has two consequences:

1. The transformed kinetic energy in an inertial system is also a quadratic form in
the velocity components qi' with respect to the fictitious time s.

2. A conservative system remains conservative after the tme transformation.

With these restrictions we obtain the differential equations of motion in the following form:

d /aL*\ oL*
—=\-= = (42)
ds aq; aq,
afor) ar
ds \ at' t (4b)
d (aLr) ar o
—_—] — - — = ——— —_— =
ds \ an’ 3h ah (4¢)

Relative to the system (4a, b, c¢) the following remarks are in order:

&  Equation (4a) states the equations of motion, which are also given by the
original Lagrangian L (q;, q| t) after changing from t to s, but which are
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distinguished only by control terms (Baumgarte, 1972b). This fact will be observed
Irter in the special case of the Kepler problem.

@  'Juation (4b) gives:

3
W=k, h) - L@,q.h0, (5)

which asserts the energy relation. In the conservative
.ase, where the original Lagrangian L does not depend explicitty
n the time t, we get h = constant.

e From equation (4¢) there follows:

u 9 |
t'=p+ ’h — -— ). |
I l Fralieey (u )‘ 6)
It will be obvious that the expression in the bracket is a control term, which
represents the energy relation. This control term vanishes in the exact solution
of the equations of motion, in such a way that t’ = u. Therefore, it follows as
previously promised that u is the local scale of the time transformation.

EXAMPLE: KEPLERIAN MOTION

We consider inow the keplerian problem and use Cartesian coordinates. We will choose the
scale u in such a way that the fictitious time s will be for a pure Keplerian motion the
eccentric anomaly. Only by doing this can we obtain both Lyapunov-stable differential
equations and equivalence between Lagrange and Hamilton. We, therefore, choose:

p= —— r=lxl, (7

N -
where 1 is the ¢istanca.

Before we establiz.. the generalized Lagrangian L*, we first write the original Lagrangian L.
With the mass .n = 1, K as the gravitational parameter, L has the form:

1.,
L=-2-lgl +—, (8)

With the help of equation (2) we now obtain as the generalized Lagrangian L*:

V2h K? h
L*=ht'+ —2——I>_c'l2 + — - . ¢))

2r \/2_}: 2
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With (9) the stabilized equations of motion are:

X = P X-3 —rz— +1}1x (10a)
h' =0 (10b)

’

—_—tr-

5t=2\_ﬁ';'1lh r‘

(10¢)

(10a) requires that h’ = 0. It is essential that in contrast to an earlier publication (Baumgarte,
1972b) the vector-equation for x” does not depend on h. This means the revolution time
is the fixed number 27 and this implies Lyapunov-stability for the x"' - equation.

From (10b) there follows h = constant. The constant h is computed from the initial con-
ditions and is placed in the computer as a fixed value. This is the presupposition that now
in contrast to earlier publications (Baumgarte, 1972b) the time integration (10c) is
Lyapunov-stable. The expression:

1 ‘ ' !' I2 ]

—_— T = —
r

2\/2TJ

a part of the right hand side of (10c), is proportional to the difference between potential
and kinetic energy. Therefore, the mean value with respect to the fictitious time s of this
difference vanishes because we have an oscillator problem in principle. Consequently, the
expression X2 /(2h)*?2 in (10c) represents the exact mean value of the right hand side of
(10c). This fact implies Lyapunov-stability also for the time integration.

CONTROL TERMS AND LYAPUNOV-STABILITY

In order to show the effect of the stabilization by the control terms, in the classical
Keplerian equations

_ _ d
X=- X, -:t-’ (1

K2
l,3

we substitute in place of the independent variable t the fictitious time s by using
dt/ds = t' =rA/2h. Because h = constant we obtain:

' = ’ K= (]28)
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=0 (12b)
- — =0. (12¢)

We now transpose system (10) in such a way that we can see clearly that system (12) differs
from system (10) only by control terms which are the right hand sides of equations (13a)
and (13¢).

o xx) LKRE Ix'? g2 L
S T A A1 & (13a)
W =0 (13b)

¢ ' _ Ix'1? K2 R 1 I
oh a2 2w 2| pp (13c)

In the control terms in (13a) and (13c¢) the same bracket appears as a factor, which is
analytically zero with respect to the encrgy relation.

Equation (13c) or (10c) can be integrated. We find as an integral of motion:

1 { K2 (x, ’.")1
J +C. (]4)

= e—

V2h

The control terms in (13a, ¢} produce the Lyapunov-stability under the supposition that

the constant h is computed once and for all from the initial conditions. The proof for the
stability of the complete system (13) or (10), respectively, (with respect to h = constant,
whereby this constant is to be computed, finally, by the initial conditions) can easily be
carried out by making the transformation into action and angle variables, because the
equivalence between Lagrange and Hamilton exists. By doing this, the generalized
Hamiltonian, obtained from the generalized Lagrangian by making a Legendre transforma-
tion, will be linear in the action variables, which implies Lyapunov-stability (Baumgarte,
1972b). Another proof follows from the equivalence of the system (10a, b) together with
(14), to the corresponding equations of the KS-transformation (Stiefel and Scheifele, 1971).

—_— -

2h r

We will call attention to the fact that the dependence of the time transformation
' = 1A/2h on the momentum h makes possible the elimination of the instability under the
presupposition that h’ = 0 is integrated exactly.

In the case of perturbed Keplerian motion, the stabilized system (13) or (10} is modified
by additional perturbation terms. In equation (14), C is no longer constant but becomes
the slowlv varying time element (Baumgarte, 1972b; Stiefel and Scheifele, 1971).
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Numerical experiments have always shown a reduction in error in the numerical integration.
It appears that the positive effects of the stabilization of the pure Keplerian motion carry
over to the perturbed problem.

We will finally remark that the KS-transformation can be performed directly in the general-
ized Lagrangiar L* by inserting

2 =in2 =(Zuj2)2 ,ijz =4Zu}2 ,;:::;:;4’ (15)

thereby giving immediately the analogous complete, stabilized, set of differential equations
which leads directly to the KS-elements (Stiefel and Scheifele, 1971).
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AVERAGED INITIAL CARTESIAN COORDINATES
FOR
LONG LIFETIME SATELLITE STUDIES

S. Pines
Analytical Mechanics Associates, Inc.
Seabrook, Maryland

SUMMARY

A set of initial Cartesian coordinates, which are free of ambiguities and resonance singularities,
is developed to study satellite mission requirements and dispersions over long lifetimes.

The method outlined herein possesses two distinct advantages over most other averaging pro-
cedures. First, the averaging is carried out numerically using Gaussian quadratures, thus
avoiding tedious expansions and the resulting resonances for critical inclinations. etc.
Secondly, by using the initial rectangular Cartesian coordinates, conventional, existing
acceleration perturbation routines can be absorbed into the program without further mod-
ifications, thus making the method easily adaptable to the addition of new perturbation
effects.

The averaged nonlinear differential equations are integrated by means of a Runge Kutta
method. A typical step size of several orbits permits rapid integraticn of long lifetime
orbits in a short computing time.

INTRODUCTION

Several sets of averaged elements (Lorell, 1970; Broucke and Cefola, 1972; Uphoff, 1973)
are in use for satellite lifetime studies. These usually suffer from ambiguities and resonance
singularities for low inclinations, riear circular orbit, near polar orbits, critical inclination
resonances, and such. Moreover, it is necessary to develop the perturbation representations
in these element coordinate systems, which often requires ingenuity and is difficult in ap-
plication. The Cartesian coordinates have been extensively utilized and routines are avail-
able to numerically generate most of the significant perturbations. The initial conditions
of the Cartesian solution of the classical two-body problem have been developed for variation
of parameters (Pines, 1961 Christensen, 1970; Godal and Johansen, 1968), but has not
found wide application. With the advent of averaging as a tool for eliminating long tedious
numerical integrations in computing solutions, this study was undertaken to reestablish the
initial Cartesian coordinates as a useful set of parameters for orbital analysis.
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THE INITIAL CONDITION CARTESIAN ELEMENTS

The equations of motion of the satellite in the planetary reference frame are given by

. R
R=-y—+F (1)

r3

where F represents the perturbation forces other than the central attraction of the principal
body.

The initial Cartesian coordinate parameters which describe the motion are given in terms nf
the position and velocity vectors in Cartesian coordinates by

R, =-fR +fR )

where f, g, g, f are given as functions of the difference in eccentric anomaly, 8, as

a(1 - cos 6)

To

f =1-

1
g =—(rv/pa sin 8 -d a(l - cos 6))
u

F Vua sin @
Iof
(3)
. a(l - cos 9)
g =l-———
r
d =R:-R

. e
d0=R° 'Ro=-\/uasin0<l -—)+dcos0
a

d
o =a(1 -cos§)+rcosf - —+/a sin b
M

7

The relationship of the time increment to 6, in the absence of perturbations, is given by a
form of Kepler’s equation
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a3 r d
t-ty= —— 10 -sinf +—sinf - — (1 -cos)

Vi * Va @

The differential equations for the variation of R and Ro under the action of F are generated
in Pines (1961) from the conditions that

and (5)

Thus. we have

d . :
TRy =gR-gR-gF

4. . . (6)
; Ro =-er+ffR+fF
Following Godel and Johansen (1968), we choose for the perturbation equation of the
difference in eccentric anomaly, 0
6.=0 @)

This serves to eliminate mixed secular terms (see Christensen, 1970) from the perturbation
derivatives of f, g, f, g, that arise in Pines (1961) where the time from the initial time was
assumed unperturbed,

d
E(t-to)=0 (8)

We can replace the vectors R, R from (6) using the inverse of (2)

R=fRo+gl'lo
oL 9
R=fRO+gR°

d . . .

;;Ro-(s,f -fg, )R, + (88, - 8,8) Ry -gF 9a)

d . .o L.
; R, =(ff-ff )R, +({ g-f @) R, +fF
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An important stability condition on (9a) is derived. We have

fg-gf =1 (10)
It follows from the perturbation derivative of (10) that
fg-fg=-gf+fg (1)

Thus the coefficient of R in the d/d7 R, expression is the negative of the coefficient of
R in the d/dr R expressnon in Equatlons (9a). This will reduce the computing work in
the averaging process.

Since the perturbation of the transit time is not zero, we require a differential equation for
the time. Using (3), (4), and (5), we obtain the perturbation differential equations for the

time,
-E-(t-to)=—1—[(Ea%(e-sina)+—r—sin0-d(l-coso))af—a(l-cosa) dr]+l (12)
dr Ve |\2

Na Vi Vi
where
a_=2a*R-F
(12a)
d_=R-F
The perturbation derivatives of f, g, f, and g are given below
T
a 07 a'r
f,=— (1-cos@)| — - ——
l’0 Io a
rsin@ d(1 -cosf) a(l - cos8)
gf = - a‘l’ = d‘l‘
2Vau i} M (13)
a. To
- 5T T
f =2f] — o —
T 2 1,
(1 -cosb)
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where

(t,), = (1 - cos) a_- Vasing @, +.ia,)
u 2a (13a)

We now proceed to the averaged differential equat.ons.

THE AVERAGED EQUATIONS OF MOTION

The principle here is to replace the nonlinear differential equations for R (7) and Ro (7) by
their average value over a single period of the reference orbit as defined by R (7, ) and
R (1)

01

Let the period of 1 “erence orbit be T(7, ), then for
T T
--2- (r,) QTQ; (r)
Ry() =R (7))

(14)
R (1) =R,(7,)

doa(l - cos 8)}
N/

1
t-t =7-7 = — {33/2 (6 -sinf)+rja'?sin6 +

Thus,

n

42 -k 2 L (i -fg)dO+R — "'(' ) do - — "ero
dr ¢ Ro 2n a B~ '8, 0 2n a 88, -g,8)d0 - 2 a &
- ~n ~n

”

- =1
R,=R, —
7°R°21r/

-1

| e
T

(€F-fi)6+R ~ wr(f' f)do+ "'deo (15)
4 T 0 2 a 818, 27 a
o

-

[= X

105



[RONEE

where
r o d,
—=]l-cos@0+— cosO+ — sin@
a a N/ (15

Equation (15) could be integrated analyticaliy, using Fourier series in 8. However, this
would require a representation of F in @ and greatly burden the introduction of additional
perturbations. Moreover, mathematical rescnances would appear and require special
techniques for each resonant term. In this, we follow the lead of Uphoff (1973) and adapt
Gaussian quadratures s the technique for evaluating the integrals.

We note that F is a vector in three space, and recalling /11), we need to evaluate only 10
integrals. The average equations become:

d - - - -
;Ro =a3,R, +3,R, +G

d =~ S 16
ar o =a,R; -2, R, +F (16)

where

L4
1 r ..
a|=;/ — (%, -fg,)d?
-%

2= — / f(sé,-s,é)do

2n
-
] ro.. (16a)
5= S (@ f-f)a0
-
" &

(2]
"

i
8-
w |

o

"

a

Y

n

KoL

‘rl
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N"'ﬂl ad |

®
- 1 r
F=——-/—de0=
2n a
—n
. 4
_ 1 r
%—; :(t-to)fdo
-x

To obtain the averaged 1-3, G vectors, it is necessary to specify the perturbations. For the
purpose of this study, we consider accelerations due to tesseral and zonal harmonics for a
rotating planet, third body forces, such as the sun and moon, and drag. The detailed
equations are given in Appendix A. It should be noted that where F is a function of R,

R and t, for the purposes of averaging, these functions are given by the iwo body equations
and Kepler’s equation given in (17a) through (17d) referenced to the r time at the midpoint.

(16a)
(cont.)

i

We now consider the numerical integration of the averaged equations. We propose to use

a Runge Kutta method with a 7 step equal to several periods. It must be borne in mind that
the time variable is 7 and not time. For each evaluation of the seven derivatives q{ (16),

at a specific 7 time, 7,, we must carry out the averaging procedure. Using R (r,) Ro("i) as
the reference orbit, we compute the 10 integrals given by (16a).

The Runge Kutta solution will produce -lio('r), -Ro(r) and (t - t,) (7). To compute an
ephemeris of the state, R (t) and R (t), we proceed as follows:

Let the period of the R, (7), R (r) orbit be T (),

T(7) = ke (a(n)"?
"
where (17a)

, Ry RyM\ -
an={ — -
o™ g

Let N be the integer part of 7/T (7), and 8 is given by,
§=2nN+o (17b)

Using Newtcn'’s method, solve Kepler’s equation for o

dya(1 - cos 0) (17¢)

1
Ar=7-NT = —{a¥? (o-sino)ﬂoa"2 sin g +

Vit Vi
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For any position in the N + | revolution. where the incremental eccentric anomaly, 6, lies
between 0 and 2.

Let
32 d 1-
t=ur)+ i a-sina+t —“—T—) sina + M) (1 +a,(r)
Vi a ViE
R() = fl@) Ry(7) + g(a) R ()
) ) . (17d)
R(1) = fla) R (1) + ) R (1)
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APPENDIX A

We consider several typicual perturbations.

Tesseral and Zonal Harmonics.

Let the central body rotate about its polar axis, k () with a unitorm angular rate w. 1t the
inertial Cartesian coordinates of the vehicle is R, then the unit vector to the vehicle in planet
tfixed coordinates is given by,

- R
u =k(t) —
| 4
- R
s ='“)"; (A.1)
w=}(l)”—
r

where i (t) and j (t) are orthogonal reference axes fixed in the rotating body equation,
perpendicular to the polar axis k (t). expressed in the inertial Cartesian system of the
vehicle.
Following Pines. (1973), the acceleration in the inertial system is given by
) - - R(1) N
F, =a,i(t) +a,j(t) +ak(t) ta, — (A.2)

For the purpose of completeness, we list the a; coefficients for 3,.J,.J,.C,,.and S,,.

al(.lz)=a2(12)=a‘(13)=a2(]3)=a|”4)=a2(34)=0

pal 33, (1-5 u’)

a,(J.)=-
472 2r4
ual 55, (3u-7u’)
a (] ):-
473 25 (A.3)
uay 15(-1+14u% - 21 %)
a4(14)=-
8 b
uai 3Jzu
a,(J,)=-
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uai 33, GGu? -1)

o (j ):-
33 2[5
, ua::514(7u3-3u)
a =-
o) 206
2
Hap 6
: - (A3)
a((,,.S,, )= —— (wS,, +sC,,)
e ¢ # = (cont.)
2
a6
0, (C,,.S,) = —5 Sn ~¥Cx)
r
a,(C,,.5,)=0
paj 15
0(Cp-8p)=- (Cp(s? -w) +25wS,))

r

Third Body Acceleration.

Let the gravitational mass coefficient of third body be u,. Let the ephemeris of the third
body, R (1), be given with respect to the central planet. about which the vehicle is orbiting.
then the indirect acceleration is given by

K K ’rci
F,=- —R- —-1]R. (A.4)
2 2 3 3\ .3 ci :
i=1 Tvi i=1 T \"vi
where
.= i\.|
(%] (M
(A.5)
rvi=|R-Rci|

Atmospheric Drag.
Let p be the air density, given as a function of the vehicle position. R, and the time. t. The
drag acceleration is given by

vC,S (A.6)
R

Fy=-7p(R,)
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where

Craly
. lf" P

R

v =IRI

C,, =drag coetficient

m = vehicle mass

s = effective vehicle drag area.

QUALM
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NONLINEAR COUNTER EXAMPLE FOR BATCH
AND EXTENDED SEQUENTIAL ESTIMATION ALGORITHMS

B.T. Fang
Wolf Research and Development Corporation
Riverdale, Maryland

A simple nonlinear example is presented which shows the wellknown iterated batch least-
squares and extended sequential estimation algorithms may converge to different estimates.
For this example one may even say the extended sequential algorithm converges to the
“‘wrong” value.
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ORBIT DETERMINATION IN THE PRESENCE OF
UNCERTAIN ATMOSPHERIC DRAG

B. Tapley, D. Dowd, and B. Schutz
University of Texas
Austin, Texas

Uncertainties in the knowledge of the atmospheric density in the associated drag parameter
constitute one of the primary limitations on the accuracy on which the orbits of near earth
satellites can be determined and predicted. In most orbit determination programs, the effect
of uncertainties in atmospheric drag are determined by adopting a standard atmosphere and
estimating the drag parameters, 3 C; A ¥ m.

However, for most missions, CD and A vaiy and the standard atmosphere will contain errors.
Each of these factors will lead to errors in the orbit determination and prediction operation.
In this presentation, an apprcach for estimating the drag parameter, the effective satellite
cross sectional area in the atmospheric density simultaneously with the satellite state, is
described.

113



L4

-

N76-1017g

- e =
-

APPLICATIONS OF SATELLITE-TO-SATELLITE TRACKING
TO ORBIT DETERMINATION AND GEOPOTENTIAL RECOVERY

P. Argentiero, R. Garza-Robles, and M. O’Dell
Goddard Space Flight Center
Greenbelt, Maryland

Recent simulations have demonstrated the applicability of satellite-to-satellite tracking data
to the related problems of orbit determination and geopotential recovery. Specifically,
satellite-to-satellite tracking between an earth orbiting satellite and a satellite at geosyn-
chronous altitude (36000 km) produces long continuous data arcs which are not available
by means of ground-based fracking. This facility, in conjunction with correct estimation
techniques, can yield exceptional urbit determination accuracy. The data type also has
considerable applicability to geopotential determination when the low satellite has a high
inclination.

ORBIT DETERMINATION APPLICATIONS OF SATELLITE-TO-SATELLITE TRACKING

Attention is focused on the difficult problem of determining GEOS-C altitude with an
average accuracy of 1 m. Error sources considered were ground-station survey error, data
bias, epoch state errors for the high and low satellite, errors in spherical harmonic coefficients
of the geopotential field to degree, and order 8. Standard covariance analysis software was
utilized to determine that survey error and data bias were insignificant error sources, but

that uncertainty in relay satellite state caused radial errors of the order of 100 m. Geopo-
tential uncertainty caused an average radial error of 6 m. When the high and the low satellites
are estimated and other error sources ignored, the average radial error is 6.2 meters. To
identify the geopotential terms to be estimated in order to satisfy the constraint of 1 meter
altitude resolution, a recursive procedure is implemented. If N-dominant geopotential terms
along with GEOS-C and ATS-6 satellite states are estimated, and if the 1 meter radial

error constraint is not satisfied, the geopotential term from among the unadjusted set which
causes maximum radial aliasing is added to the estimated set of parameters. If the constraint
is still unsatisfied, the recursive procedure continues. This recursive procedure has been
automated within the covariance analysis software. The result of the procedure when applied
to the GEOS-C orbit determination problem is that after 31 dominant geopotential terms

are recursively identified and added to the cstimated state along with GEOS-C and ATS-6
state, an average radial error of 1 meter is achieved.
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GEOPOTENTIAL RECOVERY APPLICATIONS

During the GEOS-C mission it is planned to track GEOS-C from ATS-6 from widely separated
geosynchronous positions of 94°W and 34°E. The resultant data set should be almost globally
distributed. Simulations demonstrate that it is possible to estimate from this data set coeffi-
cients of the spherical harmonic representation of the geopotential field to degree and order

8 with an accuracy on an order of magnitude supericr to that presently obtainable.
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LARGE ANGLE SATELLITE ATTITUDE MANEUVERS

John E. Cochran* and John L. Junkinst
The University of Virginia
Charlottesville, Virginia

ABSTRAC'

Two methods are proposed for performing large angle reorientation maneuvers. The first
method is based upon Euler’s Rotation Theorem; an arbitrary reorientation is ideally accom-
plished by rotating the spacecraft about a line (the “Euler Axis” or “Principal Line”’) which
is fixed in both the body ard in c»ace. This scheme has been found to be best suited for

the case in which the initial and desired atiitude states have small angular velocities. A de-
tailed evajuation of the associated feedback control laws and sensitivity to disturbances has
been carried out, assuming the control system to consist of four single-gimbal control moment
gyros (CMGs). These results indicate that the proposed scheme is feasible with realistic
physical constraints on the CMG torque source. The se.ond scheme is more general in that
a general class of transition trajectories is introduced which, in principle, allows iransfer
between arbitrary orientation and angular velocity states. The method generates transition
maneuvers in which the uncontrolled (free) initial and final states are matched in orientation
and angular velocity. The forced transition trajectory is obtained by using a weighted
average of the unforced forward integration of the initial state and the unforced backward
integration of the desired state.

Our current effort is centered around practical validation of this second class of maneuvers.
Of particular concern is enforcement of given control system constraints and methods for
suboptimization by proper selection of maneuver initiation and termination times. Analo-
gous reorientation strategies which force smooth transition in angular momentum and/or
rotational energy are also under consideration.

DISCUSSION

Many spacecraft must perform one or more reorientations or attitude changes during their
lifetimes. The ways in which these maneuvers are performed are obviously important from
the standpoint of conservation of 2nergy. However, often the optimality of a maneuver in

*Visiting Associate Professor, Associate Professor, Aerospace Engineering Department, Auburn University, Auburn, Alabama.
tAssociate Professor.
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terms of the energy required to perform it may be of lesser importance than the time and
computational power needed to define it. That is, often, finding the optimal maneuver
strategy may not be desirable or even possible within the constraints imposed.

In this paper, two methods for defining ‘‘good,” nominal, large-angle attitude .naneuvers
for spacecraft are presented. Nei’" er o1 the methods is generally optimal (although in
special cases they would be), but both offer the advantages of being (1) relatively easy to
use and (2) explicit, rather than iterative. The first method, which is well-suited for the
case of quiescent initial and final rotational states, is based on Euler’s Rotation Theorem,
that is, it is a single axis maneuver. The second method, which may be used wken the
initial and/or final rotational states are not quiescent, is based on the us. of transition
trajectories in a phase space of dimension eight, whei the redundant dimensions are due
to the choice of four parameter descriptions of orientation.

SINGLE AXIS MANEUVERS

The idea of utilizing single axis rotations for arbitrary reorientaidons is not a new idea (Meyer,
1966). For example, the Apollc Command and Service Module were reoriented with a

single rotation about the required Euler axis (Crisp et al., 1967). Such m: neuvers are not
necessarily optimal, in fact, Dixon et ai1. (1970) have shown that single axis maneuvers of
axisymmetric spacecraft through the usc of thrusters are generally more costly in terms of
fuel used than two-impulse maneuvers designed to minimize fuel expended. They are,

on the other hand, more easy to define than optimal maneuvers, and if the spacecraft is
asymmetric, no closed-form optimal maneuver strategy comparable to that of Dixc _ et al.
(1970) is available.

One important concept, used to some extent in both methods, is that of Euler, or eigenaxis,
rotations. Figure 1 is included to illustrate this concept. On the left hand side of fngure 1
are shown a centroidal body-fixed system Cxyz and the associated unit vector triad (u,

u ) as well as the Euler axis for a particular reorientation. The Cxyz system p.ctured on the
nght -hand side is a rotationally inertial coordinate system which is used along with the
displaced Cxyz system to indicate how the Euler axis rotation proceeds.

Flgure 2 provndes some information concernmg how the attitude of a moving trihedral

Ce, e, e, with respect to a fixed trihedral C e e e can be defined. The rotation matrix
A, whose elements are direction cosines relatmg the two trihedrals, can be constructed using
Euler angles, say ¥, 0, and ¢ or alternatively using Euler parameters, here indicated by

o, 0, a,, and a,. Furthermore, the Euler parameters are intimately related to the
principal rotation angle ¢ and the direction cosines £, , £, , and €, of the principal line, i.e.,
the Euler axis (or equivalently, the eigenaxis corresponding to the unit eigenvalue of A}.
Assuming that A is specified, the four parameters o, «, , a,, and «, can be determined in
a noniterative fashion. Then, for single axis rotations, the direction of the Euler axis can be
determined as well as the required principal angle. For control of single axis rotations in
the presence of disturbing torques, it is advantageous to define an eigenaxis system as
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Figure 2. Attitude change logic.
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described in Cochran et al., 1975. The way in which such 4 system is defined is briefly
summarized in figure 3.

o &

EI. ;j £=1,2,0r3
Gt xnf| o e i
A

Figure 3. The eigenaxis system.

Figure 4 indicates how attitude errors in the form of small Euler angles ¢ and ¢ may be
specified by using the body-fixed eigenaxis system Ce e e which ideally has its é,2 -axis
directed along the principal line.

sinom = 2(amu° - Gn“i)
2

tane, = 2(anu° + amal)/(u: ta - a:‘ - u':)

tan@l ] Z(ula, + °m°n)/(°: + o.: - 1; - u;)

0y x 0

O O - "small" error angles

Figure 4. Attitude errors.

The dynamical equations for a spacecraft which contains n control moment gyros (CMGs)
are given in figure 5. This equation, the control torque equation, and CMG steering law
also given in figure 5 were used in a recent study (Cochran et al., 1975) of the feasibility
of controlling single axis rotations using CMGs and several linear controllers.
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Figure 5. Attitude dynamics and CMG steering law.

The following equations are the nonlinear matrix forms of the equations of rotational motion
and approximate linear equations derived assuming small angular velocity magnitude, small
errors and a linear controller of angular acceleration (for more details see Cochran et al., 1975).

= 0
e - e e e
[0 + Qel @ =T, +T¢

Lincar Feedback

e
+ -1
I Tex
s’

External Disturbance

One of the controllers used in the study reported in Cochran et al. (1975) is depicted

schematically in figure 6. The controller is a proportional-plus-integral-plus-derivative, or

PID, controller modified by using a “model follower” commanded rotation angle generator

which serves two purposes. First, it allows maintaining the difference in the actual angle of

rotation ¢ about the principal line close to the commanded rotation angle ¢, (hence higher
L4
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gains and tighter control) and second, it provides a means of specifying the nominal rotation
rate w* a priori so that allowable CMG gimbal rates will hopefully not be exceeded. Atten-
tion should be drawn to the form of the function ¢, . This function is such that the com-
manded rotation angle connects the initial value for 3, i.e., zero, and the desired final value
of ¢, ¢,, with a smooth curve.

°f - Pran
/'S o, = 0¢/2 (1 - cosu*t) wtt <1
’ ‘ 4
,/ Ocl '%l =0 wht > 7
b
time Model - ¢
g ————o1 Follower ¢ - Plant
c + .
‘ gl 4
V————— " !
U e
L f(._K_l 052 '53‘ J
f !

Fixed PID Coafiguration

*igure 6. PID model-follower.

Some typical response curves *Or the rotation angle are shown in figure 7. Four different
controllers were used to generate the curves by numerically simulating the attitude motions
of a Large Space Telescope type spacecraft using four single gimbal CMGs as torque sources.
The full nonlinear equations were used in the simulations (the reader is again referred to
Cochran et al. (1975) for more details). The PID model-following controller has been dis-
cussed and the PID and PD are simpler controllers. In figure 7, MRAS refers io a model
reference adaptive system controller which utilizes Lyapunov’s second method to generate
variable control gains.

In the study reported by Cochran et al. (1975), the control of single axis rotation in the
presence of disturbances was found to be feasible using rate limited CMGs.

TRANSITION TRAJECTORIES

The basic idea for the second method of performing attitude maneuvers was motivated by
the use of the function ¢, in the PID model-following controller and previous use of the
concept of weighting functions in the areas of geodesy and gravity modeling (Jancaitis and
Junkins, 1974). In figure 8, this idea, the use of an averaging concept for definition of
transition maneuvers, is summarized. The functions a, (t) and o, (t), shown in the upper
left-hand portion of figure 8, represent an attitude variable, a (t), say one of the o, j=0,
1, 2, 3, as it would appear as a function of time if the spacecraft were rotating freely in its
initial state (subscript f) and similarly its final, or desired, state (subscript b). The dashed
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curve represents a transition curve for the variable a. Note that a (t) is constructed by
using the unforced forward integration of a from time t,, using the actual value of a at t,
as an initial condition and the unforced backward integration of « from time t, with the
desired final value of « as a final condition.

-~ PID
-— PD
- MRAS

—— PtD Model-Following
.
®
[ J
[
-
[ ]
h -]
s
-
3
<
5
3
(-]
«

[ 100 200 300 400
Time, seconds

Figure 7. Rotational response.
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af(t) = Unforced forward integration of actual initial state at time ¢, .

ap(t)  'Inforced backward inteqration of desired final state at time t,.
+(t) = "Transition Trajectory” from ag{t) to nb(t) = w,.(r)af(t) + wb(r)nb(t)

Figure 8. Averaging concept for definition of transition maneuvers,
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The weighting functions, W, and W, , shown as functions of normalized time 7, are used in
defining a (t), so that the second-order osculation constraints (see right-hand side of figure
8) of agreement in value and the furst two time derivatives at times t, and t; are satisfied.
Note that W, and W, are relatively simple functions and that they provide a method for
defining a smooth function which generates a transition curve betwecn two arbitrary, but
smooth, functions of time.

Recalling that a is an attitude variable (it may also be a vector of variables), it is obvious that
the proposed method provides a means for explicitly determining the torque required to
make the spacecraft attitude follow a prescribed trajectory in phase space. Thus, the trajec-
tory departs smoothly from the initial state and ends in the desired final state. The explicit
determination of the torque depends only on the availability of the first two time derivatives
of three, or more, attitude varables.

We assume that, during the time required for the maneuvers, the external torques acting on
the spacecraft are neglible. Furthermore, in obtaining the results presented here, we have
assumed that the spacecraft is a single asymmetric rigid body with known ine-tia character-
istics. These assumptions allov. the use of an analytical solution for the free rotational
motion of an asymmetric rigid body (see Morton et al., 1973, and Kraige and Junkins, 1974)
in computing the forward and backward states and the necessary time derivatives used in
constructing the torque required to perform the maneuver.

The analytical solution for the torque-free rotational motion of asymmetric rigid body which
was used is summarized in the following list.

Analytical Solution for Torque-Free Motion of Asymmetric Body.

Anqular Veloctity Euler Orientation Parameters
u = Ot + ¢, ag(t) Yo =Y1 -Y2 =Yy Bo(t)
@1 (t) = wypdn(u,k) {alt)} = a(t){ . Inx Yo =Y Y2 8, (t)
) (0.k) aa(t) Y2 Y3 Yo =M1 82(t)
= n ’
wa wagsniu ay{t) Yy -Ya Y Yo 8y(t)
W!(t) = m)mc"(uvk) where
h 13
where 8g(t) ’\l%-[l + asn{u,k)] cose.(t)
(kl(IQQO-“lmoUzmvwlm} ]
B, (t) = ’% {1 - asn(u,k)] cose,(t)
are constants defined in terms of
.
inertias and initial conditions. Ba{t) -_’i [V + asn(u,k)] sind,(t)

3
1 Ll
Ba(t) =\I§ 1 - asn(u,k)] sind,(2)
{a,Yo,Y1,Y2,Ys} are constants defined by
initial conditions and inertias.
and

$o(t) and 4,(t) are functions fnvolving in-
complete elliptic integrals of the third kind,
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The body-fixed components of angular velocity are denoted by w, , w, , and w, and these
are functions of the time t and constants defined in terms of principal moments of inertia and
initial conditions. The Jacobian elliptic functions dn (u, k), sn (u, k), and cn (u, k) are the
basic time functions involved in the solutions for w,, w,, and w,.

For the attitude description, Euler orientation parameters were chosen. The body’s inertial
attitude is defined by the o, j=0,1, 2, 3, which are expressible as functions of a set of four
constant Euler parameters 7,.,j =0, 1, 2, 3, (which define the orientation of a nonrotating
angular momentum coordinate frame), and four time varying Euler parameters Bj,j =0, 1,

2, 3, (which define the orientation of the principal axes of the body relative to the angular
momentum frame). The 3,- may be expressed as functions of time by using Jacobian elliptic
functions, incomplete elliptic integrals of the third kind and, of course, initial conditions and
inertias.

Transition trajectories may, in principle, be defined in terms of any set of attitude variables.
Two particular four parameter sets were chosen. The Euler parameters o, i=0,1,2,3,

are a rather obvious choice; however, preliminary studies have indicated that the set composed
of the principal angle of rotation ¢ and the directions cosines Qj, j=1,1,2,3, of the Euler
axis may be a more desirable set. These will be referred to as the principal rotation patam-
eters. The construction of transition trajectories using these two sets of variables is sum-
marized in the following list.

Definition of Transition Trajectories

Principal Rotation Coordinates

{coy™ry22,09) = (8,8;,0,,75) Transformation

cf(t) = 2cos“(afo)
]

. f

1. (t) = a, Jsin 5
fi fi 2

fb

Forward Trajectory
5F(t) = Function (inertias, actual initial state at t,, t)

L (t) = Function (inertias, actual inivial state at t,, t) i =1,2, 3
i
Backward Trajectory
fb(t) = Function (inertias, desired final state at tg, t)

%y (t) = Function (inertias, desired final state at tg, t) i=1,2,3
i
Transition Traiectory
a(t) = welr)eg(t) + wo(2)e (1)

o
—
or
~—

[

= wf(r)of'(t) + wb(r)ibf(t)

—

1
0, (t) = +ft - [02(t) + £3(1)]
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Euler Parameters

Forward Trajectory
{af(t)} = Fynction (inertias, actual initial state at t,, t)

Backward Trajectory
{ab(t)} = Function (inertias, desired firal state at tes t)

Transition Trajectory
ai(t) = wf(ﬂafi(t) + wb(“r)abi(t) i=13,2,3

"

ao(t) = £l - [aZ(t) + al(t) + (1))

Note that when four parameters are used appropriate constraints must be introduced.

The transition trajectory concept has been used to generate transition trajectories and the
associated torque time histories for several pairs of initial and final states. Figures 9 and 10
show results for a case in which the principal rotation parameters were used to generate

the transition trajectory. The principal moments of inertia picked for the example are I, =3,
I, =2,and I, = 1. The maneuver required was to change the rotational state of the space-
craft from one in which o =\/§/2, a =\/_l?/8, o = 1/8,014 =0,w, =1, w, =0.10 and
w, =0.0att=t =0tooneinwhicha, = 1/4,0:l =\/T§/4, a, =a; =0, w, =0.101,

w, =0.0and w; =0.0at t=t, =5.0. In this maneuver the inertial components of angular
momentum were changed from (2.93, 0.47,-0.48) at t =0 t0 (0.303,0.0,0.0) at t = §.
Basically, a state in which the spacecraft is rotating rapidly with an initial nutation angle of
about 12° is changed by the maneuver into a state of much slower (an order of magnitude
less) spin about the principal axis of maximum moment of inertia, with the orientation of
the body’s angular momentum vector also changed.

The time histories of the angular momentum components and the Euler parameters are
presented in figure 9. The principal rotation parameters were averaged to produce the
transition maneuver, but the angular velocity and Euler parameters are, of course, also
averaged in the sense that the desired final state is reached in a smooth manner. On each
plot in figure 9, the solid curve represents the time history of the indicated variable which
results from unforced forward integration, the dashed line has a similar interpretation, but
is derived from the backward integration of the desired final state, and the bold curve is the
transition curve. Very smooth transitions of all seven variables are evident.
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Figure 9. A - Angular velocity; B - Euler parameters.

Time histories for the variables which were averaged (i.e., the principal rotation parameters)
are shown in figure 10. Also in figure 10 are included the time histories of the body-fixed
components of the torque needed to generate the transition maneuver. The three curves

in each of the plots indicated as LHAT1, LHAT2, LHAT3, and PHI are analogous t. those
previously described. In the torque plot, the 1component is indicated by the solid line, the
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2-component by the dashed line, and the 3-component by the bold line. The difference in
the magnitudes of the initial and final angular velocities is apparent from the radically
different slopes of the curves for the forwaid and backward solutions for the principal angle.

a

(8)

ERu .

ing«% Prcha (C)

(A)

Figure 10. A - Euler axis direction cosines; B - principal angle; C - torque history.

Considering the torque history in more detail, we note that the second-order osculation con-
straints embodied in the functions W, and W result in zero torque at t=0and t = 5. All
three components of the torque are smooth and bounded: the largest magnitude of any one
component is about 2.15.
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Referring to the list of transition trajectorie, the transformation from the Euler parameters

to principal rotation parameters embodies a singularity whenever ¢ is an integer multiple

of 2 m; resulting in ambiguous definition of the Euler axis. Thus, in the absence of somne
remedial action, the transformation equations and their derivatives do not provide an accept-
able basis for defining multirevolution transition maveuvers. We are currently studying means
of circumventing this difficulty and thereby allowing apvolication of this method to the
multirevolution case.

From the work which we have done to date on the attitude maneuver problem, we have
drawn the following conclusions:

®  Single-axis maneuvers are not necessarily optimal, but provide a reasonable basis
for quiescent-state-to-quiescent-state attitude mansuvers using onboard computations
and continuous torques, especially if the spacecraft is asymmetric.

&  Control of such single-axis inaneuvers in the presence of disturbances is feasible.

®  Transition maneuvers provide an explicit solution 1o a more general class of man-
euver problemss.

® Control of transition maneuvers looks feasible.

®  Animportant feature of hoth methods is that iterative solution of a two-point
boundary value problem (TPBVP) is avoided.

®  Transition maneuvers provide starting solutions (which satisfy the boundary
conditions) for iterative solution of TPBVPs.
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MISSION OPERATIONS FOR THE LOW COST
MODULAR SPACECRAFT

R. L. des Jardins
Goddard Space Flight Center
Greenbelt, Maryland

The low cost modular spacecraft (LCMS) was developed by Goddard Space Flight Center to
provide a standard spacecraft bus which could easily be configured to support virtually any
near-space unmanned mission to be flown in the 1980s. The LCMS features subsystem
modularity allowing great flexibility and on-orbit scrvicing, yet achieving benefits of wide-
spread standardization. Also, the LCMS design incorporates a high-performance onboard
computer as a remote controller for most spacecraft subsystems. The LCMS is described
briefly and its implications for mission operations is explored.
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ONBOARD ORBIT DETERMINATION USING SERIES SOLUTIONS

T. Feagin
University of Tennessee Space IL.-titute
Tullahome, Tennessee

An iterative, linear sequential estimation algorithm is presented which is suitable for use in
a small onboard digital computer. The solution is obtained in the form of a finite series of
Chebyshev polynomials. Tl.e series-solution provides a close approximation to the actual
orbit which is vaiid for a given interval of time. A Kalman filter is used to combine new
observational data with the old estimate of the state and its associated error covariance
matrix in order to update the series-solution and thus to provide a new optimal estimate
and covariance matrix.
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HIGH ALTITUDE AUTONOMOUS NAVIGATION

Howard A. Garcia
Martin Marietta Corporation
Denver, Colorado

PURPOSE "F STUDV

The applied research described in this paper pertains to a high altitude autonomous na ‘ea-
tion system which was the subject of a Phase 0 Preliminary Design and Feasibility Study
under contract with SAMSO. United States Air Foroe Systems Command. This contract

had the expressed objectives of selecting a particular design configuration by means of a trade
study involving several candidate sextant concepts and carrying out a preliminary design based
on the final selected sextant subsystem. In addition, the contract also called for an analytic
evaluation of the general navigation concept by a numerical analysis which included a
parametric sensitivity study and a performance demonstration by a Monte Carlo analysis.

SYSTEM REQUIREMENTS

Air Force requirements specified that the system be autonomous to the extent that no
dedicated earth emission would be necessarily invoked and that the system would operate
effectively *o at least 120,000 n.m. The space sextant systemn that was adopted relies upon
no earth refor2nced missions, either passive or dedicated. The navigation accuracy has been
shown to be constant for any of the tested orbits, irrespective of orbit shape, orientatioa,
or altitude. The Air Forc: requirements further specified that the system should have a
demonstrated accuracy (by numerical analysis) of at least 1 n.m. (10 rss) at a confidence
level of 95 percent and, where large trajectory errors are presumed to exist, should converge
in at least 10 hours from the onset of navigation. The numerical analysis has shown that
the system converges to less than |1 n.m. in about 6 minutes and has demo.strated steady-
state navigation accuracies of about 800 feet (1 o rss) after 15 to 18 hours of measurement
processing. Other design goals established for the system include mission vers:tility,
satellite versatility, insensitivity to reasonable parameter variations, insensitivity to

satellite maneuvers, a 5-year lifetime, and the utilization of existing technologies.

NAVIGATION CONCEPY

The navigation ccncept is simple and direct. Navigation is accomplished by means of
me. ‘ured angles between the brighier stars (visual magnitude < 2) and the bright limb of
the moon. Reduction to the moon’s center, including compenszation for asphericity effects
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and lunar terrain, is accomplished by onboard software. The essential data required to
determine the navigation position are the measured angle, the moon’s ephemens, and
precise time. In principle, it may be shown that angular measurements from each of two
stars to its nearest limb on the moon establishes a line of position for the spacecraft.
Similar measurements made on the earth’s limb provide a second line of position. The
intersection of the two obtains a complete navigation fix in as short a period of time as is
necessary to complete these measurements.

High navigation accuracy is achieved by further improving this position (and velocity)
knowledge by recursively filtering subsequent star-moon measurements over the next
several hours.

ANGLE MEASUREMENT SUBSYSTEM

The basi. -xtant instrument consists of two Cassegrainian telescopes, an angle measurement
head, and two gimbals providing for two additional degrees of angular freedom.

The electronics package consists of an oscillator, registers, A to D converters, a digital
microprocessor, and the wheel speed control servo. The total c2vice, sextant and electron-
ics, would weigh less than 25 pounds.

The principie of operation is quite simple. A spinning element inside of the measurement
head, running at constant angular velocity, intercepts the optical path of a ray originating
at a star observed by one telescope, and subsequently interccpts the path of a ray originat-
ing on the moon’s limb observed by the second telescope. The time elapsed between the
reception of these twe signals, which may be recorded with great precision, is directly
translatable into arc measure. Jhis associated servo system incorporates two independently
operated subsystems: an in-plane servo which positions the star (S) and the limb (L)
trackers precisely on these respective targets and a cross-plane servo which orients the
measurement head (wheel and both optical tracking telescopes) into the plan. of meas-
urement defined by the § X L vector.

MEASURING HEAD OPTICAL SCHEMATIC

Two optical trains are utilized in the operation of each tracker. the tracker ray and the
timing pulse ray. The tracking ray enters the telescope aperture, reflects off the primary
wirror, then the secondary mirror, and firally impinges on the detector. The timing pulse
ray, originating at an internal light source, passes through the collimator {ens and is reflected
off two mirrored surfaces 1n a prism that is common to both trackers and that rotates with
the whee!. This timing pulse ray is then reflecied off this primary and secondary and
impinges on the same detector as the tracking ray. The detectors are two-stage, four
quadrant, differential detection tvpcs, with the first stage for acquisition and the second
stage for precise tracking the timing puise generation. The timing pulse is generated by
zero crossing detection of the timing pulse ray as it crosses two detectors whose output

is differenced. One advantage of this type of detection is the accuracy that can be



achieved with zero crossing detectors and another is its insensitivity to a mismatch in
detector output responsivity.

The sextant trackers are designed for total symmetry and reciprocity so that either tracker
can be used for star or limb tracking. This feature also allows for attitude measurement
and onboard self-calibration using two stars.

SYSTEMATIC ERROR COMPENSATION

High measurement precision and stability is achieved by means of a phase-locked loop and
self-compensation for radial runout and encoder disk systematic errors. The phase locked

loop drives the wheel assembly at an angular velocity of approximately 50 rad/s. The
commanded rate originates with the oscillator and the position feedback is derived from an
optical transducer disk by means of a read head. When the wheel is in motion, the output from
the read head is frequency. The actual disk contains inscribed sin 2" and cos 2! functions.
These functions permit the extraction of phase information and make a wideband, high

gain phase loop possible.

Systematic errors in the encoder disk are on the order of 10 arc-seconds until self-compen-
sation procedures are activated. Other error sources which include bearing noise, sensor
noise, and data sampling become dominant after self-compensation; however, the combined
effect is to yield a total measurement error of about 0.5 arc second over a one second
measurement time interval. The automatic tracking provision allows for continuous meas-
urements during low thrust maneuvers. During high acceleration maneuvers, however, the
sextant will be caged, but may resume operation within one minute following the maneuver.

NAVIGATION PERFORMANCE

The principal outcome of the analytic investigation of the system performance was to
demonstrate that the system is capable of exceeding Air Force requirements by a sub-
stantial margin, both with regard to navigation accuracy as weli as convergence time. A
Monte Carlo simulation consisting of 59 samples (with no outliers) was necessary to ensure
a 95 percent confidence level in the order statistics, constituting the primary investigative
tool used in the performance analysis.

Two orbits were used as the models for the Monte Carlo analysis. Orbit A is a highly
eccentric, 12-hour Molnyia type orbit, and Orbit B is an equatorial, circular, geosynchronous
0.u... The Monte Carlo analysis considered only star/lunar limb measurements: consequently,
these results show the high dependence of convergence time upon orbit geometry, for instance,
7 hours for Orbit A and 12 hours for Orbit B. By definition, convergence time is the time
from the onset of navigation to the last major inflection of the navigation error curve;
however, system accuracy continues to improve with additional data processing so that
ultimate steady-state accuracy is finally achieved after several days of sextant navigation
where the moon has completed a significant segment of its orbit. The accuracy is on the
order of 800 feet and is a reflection primarily of the uncertainty in the lunar ephemeris

itself.

134



A later analysis which employed star/earth limb measurements to augment the star/lunar
limb measurements showed that the convergence time could be reduced to a few minutes.
The final system accuracy would be achieved in less than 20 hours, owing to the vastly
improved geometry resulting from the intersection of the second line of position. Ir
either case, the ultimate navigation accuracy depends upon the more precise lunar limb
data which is the primary mode of navigation, the earth limb data being used only to speed
up convergence and to supplement the lunar limb data when the moon is occulted by
either the earth or the sun.

STATISTICAL AGREEMENT

The performance analysis used several statistical methodologies to represent the expected
system accuracy, all of which demonstrated good relative agreement, indicative of a
fundamental internal consistency and providing a firm basis for the main conclusioi's drawn
from the study. Four curves, all representative of the 1 ¢ case, were computed and plotted
for the two demonstration orbits:

e 67% - 67% population coverage derived from histogram data across
59 samples;

® o - ensemble statistics standard deviation across 59 samples;

® o, - square root of the summed position eigenvalues from a covariance
analysis; and

® o, - square root of the second central moment derived by a time averaged

(moving window) technique along a single sample simulation.

An apparent disagreement between the covariance analysis and the Monte Carlo results at
the initial time was due to the methods used to initialize the respective trajectory errors.
The initial state covariance for these orbits was set at the estimated 1 o values; whereas, the
initial trajectory offset for simulation purposes was set at 3 o values for all six state elements
(a probability of occurrence o: only 7 - 10°2°). Furthermore, the g, curve, being one
sample from the Monte Carlo set, is also shown to deviate initially from the other curves.
The important result, however, is the fact that all of the statistical methods converge to
essentially the same values at steady state for each of the two performance test cases,

Orbits A and B.

SENSITIVITY ANALYSIS

A sensitivity analysis was carried out on three high aititude orbits (Orbit C, 14,350 n.m.;
Orbit D, 68,000 n.m.; Orbit E, 115,000 n.m.) in addition to Orbits A and B. First and
foremost, these sensitivity analyses have demonstrated that the system is totally indifferent
to altitucle in the earth-moon domain. Of course, this result is not unexpected because

the prime observable is the moon and not landmarks on the earth. In the absence of aug-
mented obrervations using the earth’s limb, the rate of convergence appears to obey a
logarithmic tunction based on orbit period. However by exploiting earth limb measurements,
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all orbits converge in the period of a few minutes and obtain steady-state navigation
accuracies of less than 0.2 n.m. in a2 matter of hours.

The sensitivity analysis also considered a range of model parameter errors of up to twice
nominal values. These parameters included the lunar ephemeris (1 o = 600 ieet), lunar
terrain height, (1 o = 1700 feet), sensor noise (1 o0 =0.566 arc sec), and initi1l trajectory
errors, the latter being dependent upon the particular orbit type. The principal results
were as follhws:

®  The= system is virtually insensitive to expected lunar ephemeris errors, ¢ven for
the twice nominal case;

® 2 X ~ ,unar terrain errors are acceptable, but this also means that onboard
compensation for terrain height will be required:

® Nominal sensor errors are near optimal in view of the contribution of other
modeled system errors; and

®  Large dispersions in initialization errors were completely suppressed by the
recursive fiitering process.

OCCULTATION OF THE MOON BY THE EARTH OR SUN

A phenomenon that must be acknowledged by the system concemns the possibility of an
occultation of the moon by either the earth or the sun. The effect upon the navigation
system was investigated by simulation, and it was found that the navigation accuracy was
largely unaffected so long as the augmented measurement mode (earth limb) was employed
during these critical periods.

In the specific example tested, worst case geometry was assumed for Orbit B (24-hour,
circular orbit), where the earth itself is twice occulted by the sun in 24 hours, and the moon
is concurrently obscured by the sun for 30 hours. Prior to either of the occultations in

this example, the large initial trajectory errors were reduced by combined earth limb and
lunar limb measurements. The earth and moon were then presumed to enter simultaneously
the 9° look angle constraint zone centered about the sun. No navigation data could be
acquired until the earth was again visible after 1.5 hours, and a slight increase in navigation
error may be noted. Earth measurements were then commenced for the next 22.5 hours
when it was again occulted ; however, the growth of navigation errors this time were
sufficiently suppressed so that no noticeable increase in navigation error occurs during the
second occultation. Lunar limb measurements were resumed after 30 hours.

PRECISION ATTITUDE REFERENCE SYSTEM

The principal feature of the Space Sextant Navigation System is the high precision of the
angular measurement. This same feature conduces to make the device an attitude
reference sensor as well. The latter capability shows promise of becoming one of the most
accurate onboard attitude sensing systems in existence. As an attitude sensor, it will be
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necessary to add a platform reference mirror and a precision three axes gyro package. An
autocollimation light source would also be added to the basic instrument in order to permit
one telescope at a time to align itself with the reference mirror. Two axis angular reference
may be achieved cither with a second orthogonal reference mirror or a precision base encoder
to measure the yaw angle. The relative advantages of these two alternative modes of
obtaining two angular measurements of a single star have not been assessed at this time:
however, it is anticipated that the system will ultimately be capable of 0.1 arc sec, three

axes orientation under steady-state conditions.

SS-HANS DESIGN SUMMARY AND CONCLUSIONS

A fundamental included angle accuracy of 0.5 arc sec (1 o) by the Space Sextant makes
navigation practical in cislunar space to a high degree at accuracy (< 0.2 n.m.) and at the
same time provide the highest level of autonomy possible. An attitude reference system
of 0.1 arc sec precision is also feasible, employing the basic sextant instrument modified
to perform autocollimation in conjunction with a fixed mirror system. The sextant and its
associated electronics will weigh less than 25 pounds and will require 7.5 watts average
power, 50 watts peak power, and 30 watts during actual measurement. Design lifetime is
5 years with redundancy and parts derating, bearings included.

The Space Sextant is designed to be functionaily subservient to the spacecraft computer
system and to impose no cycle time restrictions on the computer. Software functions
including navigation, on-orbit calibration and health monitoring will require 15K of 16 bit
words of memory. Read-only mass storage for a 5-year lunar ephemeris and lunar terrain
height data will require up to 140K of 30 bit words. The latter needs may be fulfilled
either by a solid-state ROM of less than 4 pounds or by magnetic tape units. The read-only
provision greatly enhances the long life and reliability of either type of mass storage device.
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UTILIZATION OF LANDMARK DATA IN
ATTITUDE/ORBIT DETERMINATION

H. Siddalingaiah
P. S. Desai
Computer Sciences Corporation
Silver Spring, Maryland

Picture data are taken both by geostationary and medium altitude satellites primarily for
meteorological purposes. Abundant availability of picture data suggests that, both for nav-
igation and picture registration for earth resources and meteorological purposes, the
possibility of using landmarks is attractive. (Techniques of pattern recognition for identify-
ing known landmarks are being developed currently at Goddard and by other contracting
companies and universities, therefore, my talk will not address itself to this aspect.) One
may find usage of landmarks in:

®  Reduction of tracking requirements,
®  Autonomous navigation,
®  Potential improvemem (n attitude accuracy, and
® Improvement in geographic analysis of picture data.
One has the following options in using picture data from satellite fixed camera to determine:
1. Position given attitude,
2. Attitude given position,
3. Both attitude and position given:
(a) enough landmarks
(B) realistic attitude and orbit dynamic models

The problem is to express landmark coordinates in terms of satellite position, attitude, and
camera scan angle.

This presentation will describe a mathematical model for determination of satellite position,
velocity, and attitude using landmark coordinates as observables. This model, although
developed with respect to earth-stabilized missions, Tiros-N and Nimbus-G in particular,

is applicable to any earth-stabilized satellite in general.
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As is usual in any mathematical discussion of flight mechanics, one has to use several coordin- *
ate systems simultaneously. The coordinate systems used here are:

1. (x',y',2") - Inertial, earth-centered

2. (x®,yR,z®) - Rotating, earth-centered

3. (xB,yB,zB) - Satellite body fixed

4. (x*,yA,z*) - Instantaneous auxiliary orbital, earth-centered
5. (x°,¥°,z°) - Instantaneous orbital, earth-centered,

where

- - -

R = O gA =0 A =0

-1 0 0
o 0 0 -1
0 -1 0

= Fr.;F

If n is a unit vector along the line of sight of the landmark, then,
n® =G (o, 8,7)1° (1)
where G (a, §8, v) is the attitude matrix associated with 2-1-3 rotation.

If £, , and ¢ are the angles made by the line of sight with the positive direction of the axes,
then

1B = (cos £, cos m, cos §) (2)

Let i =(nd, nf.n? (3)
Then

n®= GTp® 4)

= FGTnP 5

If(x}, y}, 2}) ve ihc coordinates of a landmark sighted, then

x® y* - (R +h) A
L _ L s _ 6)
nA n nd
where (0, R, + h, 0) are the coordinates of the spacecraft.
Since
() + () + () =RY (7
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we have

where

Finally

where

€« © X
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is the 3-1-3 rotation matrix
is the transformation matrix from the inertial to the earth-fixed system
is the longitude of the ascending node, and

s
=w+v_—

(®)

9

(10)

an
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where
w is the angle of perigee
v is the true anomaly

In the light of relations (3) and (6), one can also consider the camera angles as observables.
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THE APPLICATION OF IMAGE PROCESSING TO
SATELLITE NAVIGATION

R. M. Hord
Earth Satellite Corporation
Washington, D. C.

ABSTRACT

Given the locations of several landmarks on a <atellite acquired image and their true geo-
graphic coordinates, the position and orientation of the satellite can be determined. Two
methods for automatically locating the image coordinates of specified landmarks are des-
cribed. The first, a particularly fast sequential similarity detection algorithm for template
matching was originally described by Nagel and Rosenfeld. The second method involves
iteratively resampling the picture function in the vicinity of the anticipated landmark. A
variety of other speedup methods is also described. An application to SMS imagery is
envisioned.

INTRODUCTION

An important role in satellite navigation is played by the recogrition and location of land-
marks on images of the earth’s surface as viewed by the satellite. Given the locations of
several landmarks on the image, and their true geographical locations, the position and
oricntation of the satellite can be determined. The mathematics of this process, and its
error analysis, will not be recapitulated here. (See, for example, Phillips and Smith, 1972.)

We shall assume here that the approximate position and orientation of the satellite are
already known, and that we want to use the landmark data to obtain more accurate estimates.
This implies that we know approximately where, on the image, landmarks should appear—
perhaps to within a few dozen picture elements (pixels). We shall ignore here any errors

in our estimation of the orientations and sizes of the features; it is reasonable to assume

that if the error in estimated position is small, then the errors in estimated orientation and
size are negligible.

If we regard the orientations and sizes of the landmarks on the image as shown, and their
positions as approximately known, then the problem of landmark identification and loca-
tion can be solved by a template matching process. This basically involves comparing a
template or small image of the landmark with the picture, in the range of positions where
the landmark could be located. If a guod match is obtained, the landmark has been detected,
and the position of this good match gives the location of the landmark.
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There are many different template matching processes that could be used for this purpose,
and the matching can be implemented in various ways (digitally, optically, or by a human
operator). We shall consider here only automated digital techniques.

The objective of this proposed effort is to make the template matching as computationally
efficient as possible, while keeping machine storage requirements at the minicompuer ievel.

The standard digital template matching technique, which is based on cross-correlation, is
relatively slow. Substantially faster results can be obtained by using an absolute difference
measure of mismatch (sometimes known as the sequential similarity detection algorithm
(SSDA). This approach is not only cheaper computationally, but also lends itself to the

us - of efficient search techniques for speeding up the detectior: of mismatches, as shown
by Nagel and Rosenfeld, 1972. It can be combined with various pre- and post-processing
techniques that should increase the sharpness of the matches obtained, thus increasing the
accuracy, as well as the speed, with which landmarks can be located.

TEMPLATE MATCHING

Use of the Absolute Difference Mismatch Measure

The most commonly used measure of the match between a template, t (X, y), and a oicture
p (x, y), is the correlation coefficient (or normalized cross-correction)

[[(x,y)p(x+u,y+V)dxdy

T
— —
t2 (x, y) dxdy /pz (x +u,y +v) dxdy
T T

where (u, v) is the displacement of the template relative to the picture. Here the area of
integration, T, is the area occupied by the template. This coefficient takes on values be-
tween O and 1, and has value 1 only whe» t (x,y) and p (x + u, y + v) are identical (over
the area T) except for a multiplicative constant. In the digital case, the expression for the
correlation coefficient is identical, except that the integrals are replaced by suras over pic
ture element arrays.

Computation of the corr-lation coefficient is relatively slow, because it involves a large
number of multiplicatious of template values by picture values for each position of the
template relative to the picture. The process can be speeded up by using Fourier transform
techniques to compute the cross-correlztion; however, this approach is more costly in com-
puter memory requirements, and will not be discussed further here.

A more quickly computable mcasure of the mismatch between a template and a picture is
the integrated (or summed) absolute difference.
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t{x, y)-p(x+u y+v)l dxdy

I

This measure is zero wt. *n t :nd p are identical (over the arez T). Computation of this
measure involves no multiplications: many fewer arithmetic operations are required than
i the case of the corre'ation measure (for a quantitative comparison see Barnea and Silver-
man, 1972). In addition, use of the absolute difference measure makes it possible to take
advant.ge of significant shortcuts in the matching process.

Stopping Criteria

A major advantage of the sum of the absolute dif fcrences as a mismatch measure is that
this measure grows monotontcally with the number of points whose absolute differences
nave been added into the sum. This means that it we are looking for a point of best match
in J4 given region. we can stop adding up absclute differences in a given position (u, v) as
soon as the sum has grown larger than the smallest sum so far obtained in any position
(u,. v ). since we now know that (u. v) conndt possibly be the position of best match.

We can do even better if we set up an absolute threshold, such that if the mismaich measure
exceeds @ at a given point we will not accept that point as a poiut of match. It is now
sufficient to add up terms of the sum until 8 is exceeded: when this happens, we can reject
the given point and move on to the next point.

By .sing both mismatch comparison and absolute thiresholding, the process of finding a

best inatch (below ‘he mismatch threshold) can be speeded up considerably. For points
where the match is poor, the threshold should be exceeded rapidly so that oniv a fraction

of ule terms in the sum need be computed for such points. Even for points where the match
is good, we need not always compute ail the rerms of the sum, since we can stop as soon as
we exceed the smallest previously obtained sum.

Optimum Matching Sequences

it has been pointed out by Nagel and Rosenfeld (1972) that the expected amount of time
required to exceed a mismatch threshold can ve reduced by matching template pixels against
the corresponding image pixels in a preselected order. To illustrate this idea, let us consider
asimple example. Suppose that the template and iinage contain only three gray fevels, e.g.,
0. 1. and 2. and that. in the given region of the image, these levels occur with relative fre-
quencies of 1/2, 1/3, and 1/6, respectively. If tl.e . .nplate is not at cr near «.. * correct
match position. we can assume that the ‘mage o1, ‘el that coincides with a given point

of the tempiate is uncorrelated with the templaic cay level at that point. Thus, we can
compute the expected absolute gray level difference between template and image at a point
as follows:
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Template Probalility of Probability of Absolute Expected Absolute

Gray Level Difierence Difterence Difference
0 -2 -l 0 1 2 0 1 2
/6 13 12 O 0 1/2 1/3 1/6 2’3
1 0o /e 1/3 1/2 0 1/3 2/3 0O 2/
2 0 0 /6 1/3 1,2 /6 1/3 1)2 4/3

In other words, the expected absolute difference between template and image at a template
point having gray level 0 or 1 is 2/3: but. at a template point of gray level 2, the expected
absolute difference is 4/3. Thus we can expect, on the average, a faster rate of growth of
the sum of absolute differences if we compute the difference first for template poir.ts that
have gray level 2. Thus, the mismatch threshold (or the lowest level of mismatch previously
foun) is likely to be exceeded sooner if we compare template noints with image points in
a special order—namely, first using template points of gray level 2 —rather than using the
template points ip an arbitrary order.*

( *nemlizing the example just given, it is easily seen that the mismatch threshold (absolute
or relative) will be exceeded faster on the average if the template points are compared with
the corresponding image points in decreasing order of expected absolute gray level differ-
ence. The degree of speed-up achievable in this way depends. of course. on the probability
distribution of gray levels in ihe given region of the image: if all gray levels are equally
likely, no speedup is possible by this method.

The method just described should be even more effective when we are matching muiti-
spectral, rather than gray scale, images. This is because a probability distribution of multi-
spectral vecter values should be even more nonuniform than a distribution of gray levels
would be. Thus it should be possible to select template points whose expected absolute
Jifferences from the corresponding image points should be a*rite large. Here the differ-
ences must. of course, be defined in vector «crms. ¢.g.. as sums ¢{ absolute differences of
the individual vector components.

The speedup obtainable by this method will not be the same for all landmarks. But the
best resu’ts should be obtained for landmarks in whose vicinity the distribution of gray
levels, or multispectral values, is highly nonuniform. Given a set of available landmarks,
one can determine, for each of them, how much speedup can be expected. and one can
select preferted landmarks for which the expected speedup is greatest.

* It may take more time to locate thy lesired template points than it would if we tested them. perhaps in a simple
raster sequence; but Nagel and Rosenfeld (1972} have shown that their inethod is faster than raster matching in
spite of this.
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The position of best match, determined by any method, may not be sharply defined. since
there may be a set of nearby positions for which the match is nearly as good. It has been
known for at least 20 years that match sharpness can be improved by differentiating or

by high-pass filtering the image and the template before matching them. In other words,
outlines of regions give sharper matches than do solid regions.* It would be of interest to
investigate whether the matching speedup process described above is improved by using
differentiated or outlined images and templates. This will certainly be the case if the
differentiated image has a less uniform distribution of gray levels (or spectral values) than
the original image, as we would normaily expect.

ITERATIVE RESAMPLING

Match positions can be determined to within closer than a pixel by resampling the image
(at a grid of points that have fractional coordinates, in terms of the original sampling grid)
and assigning gray levels to the new pixels by interpolation. The match at such an inter-
polated position may be better than the match at any of the original (intercoordinate)
position. The investigation of interpolated match positions is probably best done as a fine
tuning of a coarse match position found without use of interpolation. The interpolated
images will tend to have more uniform gray level or spectral distributions than the original
image, so that the matching speedup process will probably not be as effzctive during this
fine tuning stage as at the coarse s~arch stage.

A refinement allowing more accurate (part pixel) registration, when such accuracy is
warranted, may be described as follows:

Let F (X, y) be the cross-correlation function in terms of picture displacements (X, y) from
the assumed best match point, x =0, y = 0. Fit a quadratic to F (x, y) of the form

F(x,y)=ax?+ 2h + by? + 2gx + 2y

We may determine the coefficients from the values of F at a few points. At x=n,y =0,
for example:

F(n. 0)=an?+ 2gn
Similarly,
F(-n,0)= an? - 2gn

hence

[ F(n.0)+F(-n, 0)}/2n?
[ F(n, 0)- F (-n, 0)]/4n

-
1]

o
1]

* It may be of further advantage to use a thresholded outline 1mage so as to reduce the effects of overall gray level
differences due to seasonal changes, and so forth.
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We can also find

b = [F(0.n)+F(0, -n)] 2n2
f = |F(0,n)-F(0,-n)]/4n
h = [F(n.n)-F(n.0)-F(0,n)]/2n?

Differentiating. F (x. y) is a inaximum when*
ax, thy,+g = 0
and
by, + hx, + f=20
30 that,
xo= (bt -bg)/(ab - h?)
¥o= (gh-ah/(ab -h?)
Then shift origin to (x,. v, ) and repeat with n/2 area size. Since only 5 values of F need to
be obtained per iteration, the speed of such a procedure may prove to be adequate.
As an exampie in one dimension, consider the following template:
31913
and the image line gray values:
6 6 485¢6°F6
Take (F (x)) = ax? + 2gx.

F (1) BX6)+(1X6)+(IX4)+(1X8)+(3X5)

\/(32+ 12+92412432)(62 +6% +42 + 82 + 52)
= 0.6208=a-2g
BX4H+(IXB+(I9IXSH+(1X6)+(3X6)

F(1)

J(32+12 +92+12+32)(42+82+52 +62 +62)
= 0.6656=a+ 2
1/2(F(1)+F(-1)) = 6.6432
1/4(F (1)~ F(-1)) = 0.0112

-]
il

[+ =]
1]

* After determining coefficients, we require that F be positive definite, i.e., ab > h2. to guarantee a true maximum of F.
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Differentiating. F (x) is a maximum when ax, +g=0, i.e., for x, = -g/a = -0.0174 we see:

Gray Scale Old Coordinate New Coordinate
6 -3 -2.9826
6 =2 -1.9826
4 -1 -0.9826
8 0 0.0174
5 1 1.0174
6 2 2.0174
6 3 3.0174

In this new coordinate system we will need F(-0.5), hence by interpolation we will need
the gray level valuesat X =-2.5.-1.5,-0.5,0.5, 1.5, 2.5.

If linear interpolation is used. then

(G (x,) -G (x,))

G(x)= G( + -
)= G(x,) — (x-x,)

thus,

G (-2.5)= 6.0000

G(-1.5)= 50348

G (-0.5)= 5.9304

G( 0.5 = 6.5522
and so forth.

Then a new iteration is undertaken and the process continues until the origin shift indicated
is satisfactonly small.

OTHER SPEEDUPS

A possibility for still further improvement in matching efficiency, not discussed here up to
now. is to identify locations in the image where the match can be expecied to be good. This
is typically done by making some simple local measurements on the image, and finding
positions where the values of these measurements are close to their values for the template.
In the present application, the positional uncertainty of the landmarks is not expected to

be very large, so that it seems hkely that much will be gained by the use of this approach.

There is. however, an important possibility for reducing the number of match positions that
need be tried, once a match has been found for the first landmark. If this match is correct,
the positional  certainty of the remaining landmarks has now been reduced, since there

are now fewer aegrees of freedom. This is true even if the match is regarded as only approxi-
mate. Thus, after the first match is found, the next match can be searched for over a
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refatively smaller region. After enough matches have been found. additional matches have
very hittle positional uncertainty. so that we can search for them over very small regions.
Of course. if the subsequent matches are not found in the expected places. they must be
sought tor over wider regions. and the original matches must be reevaluated. Thus a feed-
back process can be used to zero in on a best combination of match positions.

TECHNICAL DISCUSSION

The specific application to which tnis rescarch is directed is the navigation of the Synchronous
Meteorological Satellite (SMS). In ume it is hoped that the processing of recognized land-
marks for navigation (both tor location crror correction and relocation) can take place in
quasi-real-time. which in this centext s approximately 5 minutes. Before this can come
about. there is a need to determine landmark processing algorithms that are rapid. accurate,
reliable, and economical in storage.

It is recognized that several operational questions influence the utility of the algorithm
development results. In particular. eventual implementation may be effected on a mini-
computer with a hardware dot product. The availability of such a feature would have
some significance to the efficiency of algorithms in the multispectral demain.

Also. error budgeting will play a central role. It may not be useful. for example. to process
the image data with extreme accuracy since the errors in the landmark surveys may well
predominate (current landmark accuracies are believed to be about 1/100th of a degree in
latitude and longitude, and may have a systematic bias). Hence it may be useful to con-
centrate on using the same landmarks repetitively for relative image-to-image geometric
transformations rather than absolute geodetic location determiration.

Thirdly. cloudcover distribution probability functions will affect the ability to use the land-
marks. The geometric relationships require a well distributed set of control points if orien-
tation and orbit parameters are to be determined accurately. Inadequate or illdistributed
control point data give rise to ill-conditioned matrices and the calculations become unreliable.
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CLOSED FORM SATELLITE THEORY WITH
EQUINOCTIAL ELEMENTS

R. Brouck~
University of Texas
Austin, Texas

A computer software system has been developed to generate the closed-form literat first-
order perturbations due to any harmonic in the potential. In a first approach, classical
elements and the true a~omaly are used. In another approach, equinoctial elements and the
true longitude are the basic variables. The solution in equinoctial elements does not have
any zero eccentricity or zero ir “'ination singularities.

In the case of tesseral and zonal harmonics, the rotation of the central body is neglected.
The expansion of the potential is done with simple recurrence formulas.

151



FORMULATION OF AN ARBITRARY GEOPOTENTIAL TERM
(TESSERAL) IN EQUINOCTIAL VARIABLES

P. Cefola
Computer Sciences Corporatior:
Silver Spring, Maryland

Previously, general formulas for the averaged disturbing potential were obtained (AIAA pre-
print 75-9) in equinoctial elements for the zonal and third-body harmonics. In addition,
methods were given for recursive computation of these potentials. The current paper extends
the applicability of this model by giving an explicit expression in equinoctial clements for

the arbitrary geopotential term:

R n
u [
U =—r- (—r-) P (ing) [C cosmA+S sinm}]

Expressions for the spherical harmonics P . m‘(sin ¢) cosmA and P am (sin ¢) sin mA are
obtained in terms of Jacobi polynomials with the argument (1 - p? -q?)/(1 + p? + q?)
(p and q are equinoctial elements), polynomial functions which are straightforward gen-
eralizations of the C, and S_ polynomials appearing in the zonal pctential. the true longi-
tude, and the Greenwich sidereal time. 8 is fixed during the averaging period. However,
an expansion of the true longitude in terms of the mean longitude and the equinoctial
elements k and h would allow the consideration of resonant cases. Finally, consideration
is given to recursive computation of the averaged potential for tesserals.



AN ANALYTIC METHOD TO ACCOUNT FOR ATMOSPHERIC
DRAG WITH AN ANALYTIC SATELLITE THEORY

N. Bonavito and R. Gordon
Goddard Space Flight Center
Greenbelt, Maryiand

The motion of an artificial earth satellite in the presence of air drag and the earth’s gravita-
tional potential is considered. In contrast to the classical methods of numerical integration,
this approach presents a quadrature algorithm employing analvtical expressions for the
variation of orbital elements produced by the air drag. These expressions are well-detined
over expanded subintervals of the solution, and produce accurate agreement with profiles
of tabular density. This procedure then allows a flexibiliiy in the selection of end points

of the subintervals, which in turn ensures a minimum error bound on the required analytical
function.

In this method the effect of oblateness is accounted for by either the Vinti spheroidal theory.
the Brouwer orbit theory, or the Brouwer-Lydanne theory. The changes due to atmospheric
resistance for a nonrotating sphere are accounted for by the solutions of the variational
equations. evaluated with the appropriate theory.
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NUMERICAL IMPLICATIONS OF STABILIZATION
BY THE USE OF INTEGRALS

Paul R. Beaudet
Computer Sciences Corporation
Silver Spring, Maryland

The subject matter of this paper is some numerical experiences that we have had invol g
some of the celebrated notions of dynamic stabitization. Figure 1 demonstrates Ljapunov
stabilization, which is an analytic notion, and the example given is one of circular motion
under an arbitrary attractive central force field. There is some particle moving around in

a circle at some distance from an attractive center. The attractive force is designated by -(r).

the velocity of the spacecraft is v, and the centripetal acceleration is v2/r. By equating the
centripetal acceleration to the attractive force, we can get an expression for the angular
frequency that is the square root of the attractive force over r(y/-f/r).

Notions of stabilization involve questions associated with what happens to this motion under

slight perturbation of initial conditions. Let us start out with some satellite or particie
moving in a circular orbit at a radius of «; there will be a certain angular rate associated with
that motion. If we cause a slight change to occur in the initial conditions so that the radius

of the orbit is no longer & but is o + Aa, then it may happen that the angular rate may differ

from that of the original orbit. These initial conditions should be selected in such a way that

the motion will still be circular in this example.

As a result of the possible different rates in the angular frequency, the mean anomalies (9°%)
between both satellites will be different and their difference will increase linearly in time.
Such motion is dynamically unstable because the motion of the initial problem and that of
the perturbed problem (that is, the problem with slightly perturbed initial conditions) will
deviate arbitrarily; the deviation in the mean anomaly will be as great as desired if a
sufficient length of time is allowed tn elapse:

2n v - f(r)
Wws — = =~ =& B e ——
T r r
for any

Aa>ef, ()-8, (1)>5

for sufficiently large t.
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v=VELOCITY
v2fr =
CENTRIPETAL
ACCELERATION

—f{r) =
ATTRACTIVE
ACCELERATION

Figure 1. Ljapunov stability, circular motion under arbitrary attractive central force.

The single exception to this rule is the case where the angular frequencies are in fact the
same for all possible radii. This .mplies that the force law should be given by —w?r, which
is the simple harmonic oscillator:

w, =w, =w->f () =-wr
Since the orbit (Keplerian) problem involves the force law, which is inversely proportional
to the square of the field, this i...plies that the Keplerian problem is Ljapunov unstable:
KZ
f(r)=s —
T2

A dynamic problem is going to be either Ljapunov stable or unstable This is a physical
concept and depends on the particular problem. The notion of stabilizing an unstable prob-
lem must then involve a change in the problem itself. We must look for another problem
that happens to have the same solution as the original problem, and how this can be done
will be explained later in the presentation.

The reason for looking at analytic concepts of stability is to try to improve the accuracies
associated with numerical integration. Two basic approaches have been examined: With
the two-body motion, one possibility (A) is to find a different formulation of the equations
of motion, which are dynamically stable (that is, Ljapunov stable). Such examples are
given by Baumgarte or the simple harmonic oscillator Kustaanheimo Stiefel (KS) theory.
For such formulations, the frequency of the motion—the energy~is an a priori constant. A
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second procedure (B) is to add a constraint (for example, an energy constraint) in addition
to the equations of motion.

H(X,X) = - P0 = constant

If there were such a constraint, then, when initial conditions were perturbed, those initial
conditions would have to satisfy the constraints. Variations in the initial conditions that
change the energy (in the case of frequency constraint) would not be permissible alterations
in the initial conditions.

So it happens that, for the two-body problem, concepts A and B are analytically, but not
numerically, equivalent, as will be shown later.

With perturbed motion, the Baumgarte and KS theories are not Ljapunov stable. In fact,
they are unstable, but the degree to which this instability occurs is of the order of the
perturbations and numerically this does not present any difficulty (concept A). On the
other hand, employing an energy constraint (B), the nega.ive energy P0 may or may not be
a constant. If we had a J, problem, the Keplerian energy would be a constant, yet the
Baumgarte or the KS theories would still be unstable. So, for perturbed motions, concepts
A and B are not equivalent, and the question arises as to whether it is better for numerical
integration to look for Ljapunov stable or nearly Ljapunov stable equations of motion or to
apply some kind of energy constraint. All of the evidence indicates that slightly better
answers are obtained, at least for nearly circul .r motions, by using energy constraints.

We now take a look at some of the methods of dvnamic stabilization, by which is meant
either formulations that are Ljapunov swable or nearly Ljapunov stable and/or applying an
energy constrzint. The crux of all the stabilization procedures that exist are presently being
investigated: The Baumgarte approach: a recent approach that was proposed by Stiefel,
with which we have not yet had any numerical experiences; the Baumgarte-Stiefel stabiliza-
tion procedure, which is an energy-constraint-type formulation; .nd a formulation of
applying an energy constraint directly, which is due to Nacozy and will be discussed later.

The Baumgarte procedure involves a Ljapunov-stable system of equations for the two-body
problem and is based on a method of Poincaré. [f we start with a Hamiltoniar, which is a
function of the position and conjugate momentum (velocities), then the Keplerian ~quations
of motion are given by the following canonical equations:

oH

. oH
H(XP)-X = — and P=-
oP oX

In numerical integration, it is very often desirable, especially for eccentric motion, to make

a transformation from time as an independent variable to some other independent variable,
an S variable. This S variable could be the eccentric anomaly for certain rases or a mean
anomaly in another case, but it docs not matter. The type of equation which will relate time
with the new independent variable is given by dt/ds as some functior and., in general, that
function may be a function of both position and momentum:
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dt
— = u(x.P)
ds

Poincaré defined a new Hamiltonian, which is related o the old Hamiltonian by the func-
ticn (dt/ds) times the old Hamiitonian plus a constant, and it turns out that, with this new
Hamiltonian, the equations of motion for both the space vanables and the ti.. e variable
are canonical, as shown below:

X' = oH ¢H . ou H+P)
) a» Yo opP o
g OH P
ax M ax T ax o
, oH , ow Hep)
t = —— = -
2 ™ o
P, =- —-=
° T oat
P, = .onstantsuch that |[H+P ] =0

There are three equations here that are the correct equations for dynamics. except for cer-
tain terms which are called control terms. The equatior. for Po. which is the momentum
conjugate to the time, defines Po. The S-derivative of P, should vanish. and this implies that
P, is a constant. If that constant is chosen to be equal to the negative of the energy or the
valuc of the Hamiltonian, then the control terms would be numerically equal to zero, but
dynamically they are not. Dynamically, they are some function of r and the constant
energy. So this new canonical system of equations is really an entirely diffeic:i nroblem
that happens to have the same solution as the old problem.

Baumgarte aoticed that for the function g = r the equations of motion with respect to the
new, independent variable S (that 1s, the spatial ecuation of motior: w th respect to the new.
independent variable S) are dynamically stable in the Lijapunov sense and, in fact, can be
transformed to tive KS simple harmonic oscillator equatiens. The iime equation. 7' =T,

is not dynamically stable. but tnere are wuys of getting around that problem as will be
shown later in the priper.

™\ :n though the control term. H + Po. , analytically equal to zero from the analytic solution.
wien these cquations of motion wrc numerically integrated, the control term may aevelop
some error. We will then want 1o know how this error is going to beh: ve dynamicatlv.
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To examine this formulation in the time domain, we use the following equation:

.. K? v
X=-— ;Z + — P
g LAY
| —
CONTROL TERM

We can derive an equation of motion for the control term by multiplying (dot product)
this equation by the velocity and doing some maripulation. The general solution of this
equation has the control term as a constant multiplied by r. For circular motions this
would basically be a constant. This solution tells us that if we develop some nuinerical
(nonzero) errors in the control terms, then those errors are going to persist. Hence, from
a numerical point of view, the orbital state will not be on the correct energy surface.

This is different froin our analytical approach. in which we saw that, for the two-body
problem. Baumgarte stabilization (or Ljapunov stabilizaticr) and applving an energy con-
straint are. in a way, equivalent. From the numerical point of view we see that this is not
true, because in numerical integration we create errors and those errors persist in the
Baumg:.:te approachi, so the state is not forced back onto tue correct energy surface. Thus,
applying the Ljapunov stable system of equaticns does not ensure that the state is zoing o
be an the corrzct energy surface.

T here are otier metinods of stabilization. The Stiefel approach involves multiptying the
forcing terms of the differentiai equations by the a priori energy constant divided by the
Hamiltcgnian:

Given

use

2 0 -
X=1— f(x.1).

Now this parentheses is idcally equal to 1 for the analytic solution. If we raise the exponent
to the 3/2 power, numerically it does nothing, but from a stability point of view, it does.
This Stiefel system of equations is dynamically siable in the Ljapunov sense.

The baumgarte-Stiefel control term is similar to the Baumgarte control term, except that
the multiplie is proporticnal to the velocity vector over the square of the velocity. The
multipher is sometimes called a dissipative term, becaus.. by looking at the eaquation of
motion that governs the control terin, it ca e seen that it has a solution which decays in
time:
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X= —— - — [H+P]
r X?
leads to
d
 HEB] = 7[R
= -yt
[H+P ] = constant *e™7".

Hence, the Baumgarte-Stiefel control term forces the state back onto the correct energy
surface, because the control term is forced to decay to zero.

In the Nacozy approach. at each step of the integration, the control term is forced to zero
by a virtual displacement made in the state, such that the new energy after such a displace-
ment should be the correct energy.

>
[‘{+P0] F
§X = - ———— F = acceleration.

l':’z

It happens that the Nacozy procedure is not compatible with multistep integration processes
because of the diccontinuity that occurs in the state variables. The numerical results ucin_.
single-step numerical integration methods apparently work; with the multistep metho i..
there are problems, as will be shown later.

We now turn to the perturbed problem. where we have nonconservative perturbation, such
as drag or solar radiation pressures, conservative forces, which are derived from the grading
of some potential, and control terms:

K2 - -

2 _
X = < —— X+P -VV + [control term]

r3

There are two types of integral onstraints to discuss: The Keplerian ener2y is ¢ near integral
of *he motion and has the equation:

N

d X2 K2 5 0
— — V - — =X - P
dt T T
There is also a term not inu ... here, which is the partial of the poterniial with respect to

time. Ir the absence of perturbation. this ;< 7ero, so it is a near constant of the motion.
Instead of having a P, that is 2 constant, we have to numerically integrate it. The following
is a comnarison of that integration of Po with the computation of the Hamiltonian in a

159



conservative system. The sum of Hand P is ideally zero and will be used as a control term:

.
s | —P =-X:P

The other type of integral constraint is a Jacobi integral, which is what the energy looks
like in the rotated coordinate system of the earth. It is an exact constant of the motion
tor the Tull J, potential including tesseral harmonics: it is given by the Hamiltonian for the
inertial energy plus the angular velocity of the earth dotted into the angular momentum.
When V is time-dependent due to the earth’s rotation (tesseral harmonics):

d - - 3 5, - > >
. [H+& - (RXR)] =+(X-w XR)-P=0IFP =0.

A control term based on this integral of motion can be applied. designated in later equations
by R. indicating the energy in the rotating coordinate system:

H+w - @xR)+P,)

where
dPo 1Y - -
— =-(X-wXR)+P
dt
None of these equations are integrated in the time domain. They are integrated usi g the
eccentric anomaly as an independent variable and. in addition, the time equation must be
integrated.

Baumgarte dynamic stabilization also requires a time equation that is dynamically stable.
There are five options for the time equation. The normal one would be t' = 1, the defining
relationship between t and s.

If we differentiate this equation with respect to s, we get t"” = r'/K. The reason we consider
this is that second-order systems of equations are often eusicr to integrate using class 2
methods.

The next option is the ordinary time element option:

Kr'
t=1- —

7
2P,
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The equations of motion are essentially a constant term plus perturbation:

, K r - 5> r'P;)
T = — 1+ — [R+(P-VV)-2V]- ——
ZPO K2 PO

This is a constant when the energy P, is a constant. If the energy P, has to be integrated.
then some errors in P might be expected to crop up: if those errors are significant, then
there can be secular error type terms that will grow. There will then be timing errors
associated with the integration of t’.

This analysis leads to a third system of equations, in which a new eccentric anomaly is
related to the old eccentric anomaly by the following combination of variables:

dn K d K d

ds 2Po ds 2P, dn

Here the energy P, is in the denominator. We can transform ali of the equations of motion
by using this relationship.

The time is then related to a new time element, t*, by adding to it a modified eccentric
anomaly; as the equations of motion for t* involve only perturbations, in the absence of
such perturbations, the anomaly is zero:

. Kr'

t=r*+n- ——

2P,
dr* S .. T':,
—_— = — +(P-VV)-2V}] - —
dn K (R ( P0

The fifth possibility for deriving the time as a function of s is to use a third-order differential
equation as shown here:

t" +2Pt' =K

We have not had any numerical experiences doing this, but this equation is dynamically
stable, as are the time element equations.

Tables 1 through 7 give the numerical errors of the GEOS-B test orbit from computer sim-
ulations. The errors cre given in units of 10°® kilometers (millimeters) after integrating the
GEOS-B orbit over 50 revolutions. The perturbations are a 15-by-15 geopotential {ield.
and the results are given over a range of 60 to 100 integration steps per orbit. In the first
column, an [ indicates the integration of the inertial energy, and an R indicates ine integra-
tion of the rotational or body-fixed energy. The second column provides the particular
time equation used to get the time from the eccentric anomaly. A zero indicates the t”
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time equation, 1 corresponds to the t’ equation, 2 is the ordinary time element equation,
and 3 is the modified time element equation. The last four columns give the errors for the
Baumgarte dynamic stabilization procedure (B); the Baumgarte-Stiefel control term, which
forces the state cack onto the correct energy surface (BS): the experiences using the
Nacozy approach (N); and the ordinary time-regularized formulation, which does not have
any control term and is dynamically unstable (TR), respectively.

Related to these tables are the experiences associated with integrating Cowell’s equations
of motion using time as an independent variable. Since the motion is nearly circular,
equal step sizes in time will correspond very closely to equal step sizes in eccentric anomaly.

{ the last four columns of the tables, the three numbers in each entry correspond to intrack
- .atial errors, crosstrack spatial errors, and a timing error (which is also an intrack error),
respectively. There are three errors here because we are integrating spatial equations and a
time equation with respect to eccentric anomalies. The final time at the end of the run is
one in which the eccentric anomaly has reached a final fixed value at the end of 50 revolu-
tions. The results of these runs are as follows: The time element with the Baumgarte con-
trol terms works with the timing error and the intrack error is still somewhat large compared
to the crosstrack error. This result might be expected, because the state is no longer on the
exact energy surface but persists off the energy surface. When a modified time element is
applied, the timing error almost completely disappears, but only at the expense of intrack
errors in the spatial equation. So all the modified time element has done for us is to shift
the timing errors to spatial errors. The Nacozy process has really done nothing for us

either, and the reason for that is the discontinuities in the state. Taking finite differences
just adds errors in a2 multistep integration process. If we had a single-step integration process,
these problems would disappear, as other experiences have indicated. The time-regularized
processes are unstable and about two-thirds of the intrack error is in the timing and about
one-third is in the spatial equations. This is in agreement with analytic work that has been
done by Baumgarte.

It is the Baumgarte-Stiefel control term that gives the best answers. If, for example, the
Jacobi integral is used, we get very little timing error. The spatial errors are still a little bit
larger, but this control term gives us the best overall results. An important note is that the
Baumgarte-Stiefel control term does not require a time element. In fact, the best results
were achieved when the time element was not used and when the T" equations or the T’
equation were integrated. This is very important. Basically, the timing error results from
consistent errors in r; T' = r. If there are consistent errors in r, timing errors will develop
in integrating that system, the double integral problem.

By applying the energy constraint, the radius r is adjusted so that consistent errors in the
time do not occur, and this has led to the results presznted here. It is recommended that
an energy constraint can be applied without worrying about the timing problem at all.
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Table 1

Numerical Errors of the GEOS-B Test Orbit
for the BDSP. 60 Steps Per Orbit

ENERGY ITELEM B 8s N TR
! 0 UNSTABLE ~127.07899 -5802.32261 -5326.43758
28.97938 84.70741 1381227
561.96729 12330.44769 12123.72627
1 1 UNSTABLE -127.07197 —5802.18569 ~5326.43611
28.97945 84.70873 13.81225
28255283 6753.60074 11831.85920
| 2 UNSTABLE —127.11421 —5803.50289 —5327.36544
28.98998 84.74010 13.81054
244.29093 1405.50968 665.25084
i 3 UNSTABLE —341.064 5693.628 —~5244.249
28.77319 87.159853 6.950228
42.056 1136.962 438872
R 0 UNSTABLE - 22.85710 UNSTABLE SAME AS 10
29.93991
331.36557
f 1 UNSTABLE — 22.84957 UNSTABLE SAME AS it
29.93958
50.23874
R 2 UNSTABLE — 22.84268 UNSTABLE —5327.29464
29.95027 1381072
1251864 1799.09322
R 3 UNSTABLE — 2284268 UNSTABLE —5327.20498
29.95027 13.81074
1241565 1798.98859
NOTLS:

In the last four columns, the three - imbers in each entry (given in units of 10°® km)
correspond to intrack spatial errors, crosstrack spatial errors, and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an ind  :ndent variable, the irtrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.
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Table 2

Numerical Errors ot the GEOS-B Test Orbit
for the BDSP. 65 Steps Per Orbit

ENERGY ITELEM 8 8s N TR
1 0 —114.19500 ~115.66616 —2006.31579 —1814.58633
2.53846 14.78646 45.74424 1.25166
1828.84252 339.48€53 4266.29205 4120.602M
i 1 —114.19606 —115.66429 —2006.27240 -1814.58677
2.53844 14.78647 45.74470 1.25165
1867.57285 261.06752 2416.86411 4031.98843
1 2 -114.18013 —115.69274 —2007.21942 ~1815.31460
2.53900 14.79099 45.76519 1.25176
204.35943 259.28441 648.56484 399.31962
I 3 -337.19 -338.474 2117.405 1936.262
3.09228 14558205 46.343831 3.169659
11.296 43.667 409.824 175.349
R 0 -101.88979 - 29.81388 UNSTABLE SAME AS 10
2.52544 15.44724
1825.45528 148.96701
R 1 —101.89076 — 2981174 UNSTABLE SAME AS (1
252543 15.44727
1858.42729 7.00168
R 2 —101.87554 - 29.80779 UNSTABLE —1815.25454
2.52593 15.45175 1.2517%
307.78874 65 45256 667.86354
R 3 -101.87549 29.80778 UNSTABLE —1815.25555
252593 15.45176 1.25173
307.55044 65.31316 667.72535%
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°® km)
correspond to intrack spatial errors, ¢ «rack spatial errors. and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable, the intrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.
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Table 3

Numerical Errors ot the GEOS-B Test Orbit
for the BDSP, 70 Steps Per Orbit

ENERGY ITELEM 8 BS N TR
1 0 -~ 56.39602 — 656.74016 89.17622 59.21339
3.11021 3.72737 9.39301 3.54422
~ 83.00906 110.25181 ~ 190.00997 — 144.20532
[ 1 ~ 56.39740 — 55.74068 89.17136 59.21226
3.11020 3.72737 9.39302 3.564421
- 32.41277 126.90710 ~ 39.18658 -~ 130.56524
1 2 — 56.41604 — 55.75580 88.64037 58.77161
3.10982 3.72860 9.40287 3.54320
108.19045 136.67825 109.40972 129.18683
| 3 -172.11% -171.421 1.232 31.457
2.960583 3.569666 8.767146 3.383486
2.72 2541 7.63 15.855
R 0 — 18.50051 — 22.49304 UNSTABLE SAME AS 10
3.14627 3.90129
—127.93949 36.38436
R 1 - 18.50192 — 22.49356 UNSTABLE SAME AS 11
3.14625 3.90129
— 77.63998 52.98888
R 2 - 18.518117 — 22.49164 UNSTABLE 58.81103
3.14591 3.90259 3.6433
15.28445 60.43499 35.63308
R 3 — 18.518156 — 2249178 UNSTABLE 58.80972
3.14591 3.90258 3.64331
15.35058 60.50244 35.70119
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°° km)
correspond to intrack spatial errors. crosstrack spatial zrrors. and a timing error (which is

also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable. the intrack
spatial error was 3401.4027. and the crosstrack spatial error was 26.77772.
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Table 4

Numerical Errors of the GEOS-B Test Orbit

for the BDSP, 75 Steps Per Orbit

ENERGY ITELEM B 8s N TR
! 0 - 19.62149 — 19.12725 631.43636 534.84907
1.84206 99247 5.76062 2.43962
—545.21889 10.04084 —1342.56385 —1222.06456
i 1 - 19.62227 - 19.12819 631.41960 534.84874
1.84295 99247 5.75071 2.43962
-515.99802 44.14811 — 698.77660 ~-1187.46233
f 2 — 19.64372 - 19.13503 631.16381 534 62285
1.84251 .99227 5.74633 243881
41.23325 53.63911 —~  77.89860 9.64151
| 3 64.153 63.651 588.847 492.282
1.592328 52240 5.790954 1.808203
078 12.097 —~ 119.748 31.944
R 0 9.20689 — 13.39047 UNSTABLE SAME AS 10
1.8G947 1.023638
—581.840 ~ 2.75868
R 1 9.20615 — 13.39146 UNSTABLE SAME AS |1
1.86948 1.02364
—-551.67891 31.42207
R 2 9.18710 — 13.39082 UNSTABLE 534.64250
1.86908 1.02341 2.43889
— 64.66871 39.45957 — 142.20691
n 3 9.18710 — 13.39086 UNSTABLE 534.64266
1.86908 1.02342 2.43889
—~ 64.61750 39.51002 -~ 142.15558
NOTES:

In the last four columns. the three numbers in each entry (given in units of 10°® km)

correspond to intrack spatial errors, crosstrack spatial errors, and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable, the intrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.
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Table 5

Numerical Errors of the GEOS-B Test Orbit

for the BDSP, 80 Steps Per Orbit

ENERGY ITELEM 8 8s N TR
| 0 ~ 3.88340 - 3.74365 547.01168 462.17194
.85629 1.48006 7.57810 1.23206
—459.15306 —~ 15.88953 ~1161.99962 —1052.62631
¢ 1 ~ 3.88368 —~ 3.74432 546.99724 462.17242
85629 1.48006 7.57919 1.23206
—448.19016 9.26784 — 619.64184 —1026.10445
I 2 - 3.89834 - 3.74692 546.89183 462.07088
.85601 1.48023 7.57760 1.23162
10.98153 15.50786 - 96.19190 — 21.79383
1 3 - 16.867 ~ 16.724 530.505 446.289
699993 1.182493 7.653788 .7152743
.639 4.999 - 105.966 32.042
R 0 12.32661 - 6.75389 UNSTABLE SAME AS 10
.86888 1.54807
~480.49666 - 9.24393
R 1 12.32631 ~ 6.75457 UNSTABLE SAME AS 11
.86888 1.54807
—-468.66261 15.97804
-
R 2 12.31317 ~ 6.75434 UNSTABLE 462.0798%5
.86863 1.54821 1.23164
~ 59.98543 2153818 — 134.05535
R 3 1231314 ~ 6.75426 UNSTABLE 462.079696
.86863 1.54821 1.23164
- 6..08864 21.43552 — 134.15899
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°® km)
correspond to intrack spatial errors, crosstrack spatial errors, and a timing error (which is
also an intrack error), respectively.

By integrating Cowell’s equations of motion with time as an independent variable, the intrack
spatial error was 3401.4027, and the crusstrack spatial error was 26.77772.
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Tuble ¢

Numerical brrors of the GEOS-B Test Orhit
tor the BDSP, 90 Steps Per Orbit

ENERGY ITELEM B BS N TR
[ 0 1.94060 1.88804 172.74506 144.39606
17462 .65661 3.25877 21146
—136.07206 — 9.08666 -~ 365.23276 — 326.48960
| 1 1.94069 1.88791 172.74175 144.39652
.17463 .65661 3.25882 21147
—137.79058 - 3.40434 - 198.563333 - 319.98778
I 2 1.93719 1.88796 172.73643 144.38806
.77468 .65678 3.25888 21146
— 1.66455 - 1.60664 - 36.33632 - 13.10179
) 3 1.632 1.581 170.214 142.24
212515 .342734 3.062124 192607
.340 362 - 33.904 - 10976
R 0 4.84812 - 91961 UNSTABLE SAME AS i0
.17485 68519
—139.27516 ~ 2.84861
R 1 4.8481 - 91983 UNSTABLE SAME AS i1
.17485 .68519
—141.66259 2.84094
R 2 4.84502 - 91976 UNSTABLE 144.38850
.17489 .68534 21146
- 18.61224 451218 - 43.66740
R 3 4.845096 - 919N UNSTABLE 144 .38868
.17489 .68534 21146
- 18.82819 ~ 4.29666 — 4388346
NOTES:

In the last four columns, the three numbers in each entry (given in units of 10°® km)

correspond to intrack spatial errors, crosstrack spatial errors. and a timing error (which is
also an intrack error). respectively.

By integrating Cowell's equations of motion with time as an independcint variable. the intrack
spatial error was 3401.4027, and the crosstrack spatial error was 26.77772.
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Table 7

Numerical Frrors of the GEOS-B Test Orbit
for the BDSP, 100 Steps Per Orbit

ENERGY ITELEM B 8s N TR
1 0 1.00589 99013 19.86950 16.67995
078112 15110 .65629 072534
- 10.73311 - 96997 - 40.52781 - 3609153
1 1 1.00598 99015 19.86833 16.68023
.078109 -15108 .65628 07253
- 13.79768 — 1.27553 — 2283707 ~ 36.10359
| 2 1.0. .97 .99046 ~ 19.87749 16.68774
.078140 15116 65649 072546
- .59675 ~  .92698 - 478582 - 222072
| 3 775 790 17.38 14.315
.241308 .171367 .348605 .236638
.165 .180 - 3891 - 1423
R 0 .83340 .24629 UNSTABLE SAME AS {0
.078159 .156563
-~ 10.70273 68240
R 1 82356 .24624 UNSTABLE SAME AS I1
078162 165853
~ 13.68274 .38025
A 2 83348 .24621 UNSTABLE 16.68663
.07819 15669 .072566
- 1.26500 71750 - 47724
R 3 83348 .24632 UINS™ ABLE 16.68570
.07819 .15559 072560
- 1.31470 66760 4.82004
NOTES:

In the last four columns. the three numbers in cach entry (given in units of 10°° km)

correspond to itrack spatial errors, crosstrack spatial errors. and a timing error (which is
also an intrack error), respectively.

By integrating Cowell's equations of motion with time as an independent variable, the intrack

spatial error was 2401.4027, and the crosstrack spatial error was 26.77772.
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DISCUSSION

VOICE: 1n the .aulation of the Baumgarte-Stiefel stabilization procedure. corrections are
applied in only one direction of a six<dimensional manifold. Wouldn’t you expect more than
errors in time? Is all the instability controlled by just the energy constraints?

BEAUDL "0 Yes.

VOICE: 1t scems that you ought to do more than just force your solution back into the
correct energy surface.

BEAUDET: That is in fact correct, but when you look at it, vou have te ask yourselt the
question: “What direction in this six-dimensional state manifold corresponds to the unstable
direction, the direction in which errors arc going to consistently grow?™

It’s like that first dingram [ gave you (figure 1). It is the tact that the frequency is in error
that gave rise to an ever-incredasing mean anotnaly. It is an intrack error. In other words.
when we integrate. we don’t worry at all about crosstrack radial errors, It's intrack errors
that are going to grow in time.

It turns out that the uncertainties in the frequency of the motion cause these errors and.
since the frequency is somewhat related to the energy. at least in the two-body problem.
applying an energy constraint solves the stability problem.

VOICE: But there is no constraint that will give a stable manifold, except for very special
problems, which indicates that most problems should be instable.

BEAUDET: In ihe perturbed problem that is the case and. if we apply J, perturbation,
we're going to have an instability associated with the rotating plane of the orbit. In that
direction, the manifold space is going to be unstable, even though we might apply ar cneray
constrai::*. We're simply fixing up the worst part of the things associated with two-body-type
motion.
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VOICE: What have yon done to take care of the high drag case?

BEAUDET: 1 haven’t added anything into the energy to take care of drag. We have integrated
orbits where drag was a perturbation and in which I knew that drag was not too severe a
perturhation. We still get stabilization as a result. Of course, we have to integrate the energy
equation, and drag apears on the right-hand side. The question is always associated with how
accur iely we can grate this energy equation.

VOICFE You mean you can stabilize the problem in the case of drag?

BEAUDET: If the drag is not too severe. If the drag becomes very severe, we’ve come
across another problem, that the ¢ centric anomaly is not the right independent variable to
u<e. If we start hitting a big wall associated with drag, we would like to use a different
independent variable than eccentric anomaly while integrating through that region. It is
the difficuity associated with finding such an independent variable or using it that has given
rise to our inconclusive results in high drag cases.
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SPECIAL PERTURBATIONS USING BACK-CORRECTION
METHODS OF NUMERICAL INTEGRATION

Terry Feagin
University of Tennessee Space Institute
Tullahoma, Tennessee

Previous speakers have discussed how to change the analytical formulation of various prob-
lems in order to introduce stabilizing effects or to improve the accuracy and thereby in-
crease the efficiency of numericz! integration. The present topic is concerned with how to
improve the process of numerical integration itself, in order to increase efficiency in the
development of accurate ephemerides for earth satellites. In particular, the subject of this
discussion is a new class of linear multistep methods for the rumerical integration of ordin-
ary differential equations. These methods are distinguished from the classical methods in
that they permit the solution to be corrected at certain “back™ points. That is, in the case
of satellite computations, the solution is corrected at certain points in the past as the
integration advances in time. Algorithms have been developed for the solution of both
first- and second-order differential equations, although only the second-order case is con-
sidered here.

There are two reasons for correcting the solution at back points: First, when a polynomial
obtained from interpolating evenly spaced data is used for approximating a function at a
point, the coefficient of the error term is smaller when the point is nearer the middle of the
range of data. Therefore, by performing the last correction at an internal point of the grid,
a more accurate solution (that is, smaller truncation error for a given order) is obtained.

The second (and not so intuitive) reason is that the introduction of back corrections induces
numerical stability. It is well known that the general stability boundaries for the predictor-
corrector methods of the Stormer-Cowell type decrease geometrically with increasing order.
That is, when the higher order Stormer-Cowell methods are used on a practical problem,

the step size is severely constrained by stability considerations. This is not the case with the
methods using back corrections. In fact, in some cases, these methods possess general stab-
ility boundaries which are 30 to 40 times larger than those of the Stormer-Cowell methods of
the same order. Moreover, the stability regions of these methods do not exhibit geometrical
decay but remain relatively unchanged up to the eighteenth or nineteenth order.
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The back-correction methods are given by:

k

Xaer M2 x, o -(m+Dx, B2 D At (1
=0
and
k
Xa+1-0 =(m+2-9) Xn-m -(m+1-9 Xoma ¥ h? E ﬁiQ fn+l-i ()
=0

for2=0,1,...,m. The position vector of the satellite at time t_ is denoted by x_, and
the acceleration vector, by f . The number of back corrections is m. The coefficients {aj}
and {ﬁjg} are determined in such a way that the highest possible order is obtained for a
given k. It should be roted that for m = 0, the equations reduce to those of the Stormer-
Cowell method. Therefore, the back-correction methods are simply a generalization of the
classical Stormer-Cowell method.

These methods can be used with pseudo-evaluations in the following algorithm, provided
the acceleration can be separated according to dominant and perturbing terms:

a. Predict a value, x°

b. Evaluate the dominant and perturbing accelerations using this value for x_, , , saving
the perturbing acceleration for subsequent calculations.

c. Setg=0,

for x_, , using equation 1.

n+l? 1

d. Using equation 2, obtain a corrected value, x31 ,, forx_,, ..

e. Reevaluate only the dominant acceleration using x4} | and obtainf_, o by

adding the previously calculated perturbing accelerationatt , ..

f. If = m, proceed to the next step of the integration. Otherwise, set £=2+ 1 and
go to (d) above.

In problems involving earth satellites, the forces can readily be separated according to dom-
inant and perturbing terms. In such problems, these algorithms are especially efficient,
because all evaluations of the forces after the first are simply pseudo-evaluations requiring
only the reevaluation of the dominant forces (in this case, the two-body force).

The methods using back corrections have been tested on several problems. A numerical
integration of the orbit of the Applications Technology Satellite-F (ATS-F) has been per-
formed in which case the errors were smaller by two or three orders of magnitude when
compared to the classical Stormer-Cowell method using pseudo-evaluations.

The results shown in table 1 are obtained when the seventeenth-order back-correction
algorithm is applied to the to the Geodetic Earth Orbiting Sate!lite-C (GEOS-C) orbit.
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Also shown are the results obtained using the twelfth-order Stormer-Cowell algorithm
presently available in the Goddard Trajectory Determination System (GTDS). The errors
are obtained by comparing with the results obtained usiny; a step size of 40 seconds. It
should be noted that for reasonable step sizes, the seventeenth-order back-correction method
provides greater accuracy than the twelfth-order Stormer-Cowell method. Since pseudo-
evaluations are used in both methods, the computer time required per step is the same
(within a few percent) for both methods.

Table 1
Numerical Results for GEOS-C Satellite
Errors in Position after 24 Hours (km)
Step Si 12th Order 17th Order
tep Size (s) Stormer-Cowell Back-Correction Method

60 5.7 X 108 1.9 X 107

80 32X 104 8.8 X107

109 1.1 X 102 1.5 X104
200 69 X 10! 22X 101

The stability region of the twelfth-order Stormer-Cowell method is, in fact, slightly smaller
than that of the seventeenth-order back-correction method. A higher order Stormer-Cowell
method would no doubt have exhibited greater accuracy than the twelfth-order Stormer-
Cowell method, but the stability region would have been considerably reduced. Consequent-
ly, the largest meaningful step size attainable with such a higher order method would have
been much smaller.

The methods using back corrections appear to be more efficient than the classical methods
for problems in which the dominant and perturbing forces can be readily separated and in
which the evaluation of the perturoing terms requires much more computer time than the
evaluation of the dominant terms.
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SOLUTIONS OF THE MOTION OF SYNCHRONOUS SATELLITES
WITH ARBITRARY ECCENTRICITY AND INCLINATION

Paul E. Nacozy and Roger E. Diehl
University of Texas
Austin, Texas

ABSTRACT

A first-order, semianalytical theory for the long-term motion of resonant satellites is presented.
The theory is valid for all eccentricities and inclinations and for all commensurability ratios.
The method allows the inclusion of all the zonal and tesseral harmonics as well as luni-solar
perturbations and radiation pressure.

The method is applied to a synchronous satellite including only the J,and J,, harmonics.
Global, long-term solutions for this problem, eccentricity, argument of perigee, and inclina-
tion are obtained.

INTRODUCTION

The method of solution presented here is based on a modified Von Zeipel method applied
to resonant satellite systems with three degrees of freedom. The method allows any in-
clination and eccentricity and is a first-order semianalytical theory, yielding only the long-
term perturbations,

The procedure first eliminates the short periodic terms numerically by a classical Von Zeipel
averaging process. Since the averaging is performed numerically, developments in the
eccentricity and inclination are not necessary. For the same reason, it is straightforward

to add luni-solar perturbations and radiation pressure.

After the first Von Zeipel transformation, we have an averaged Hamiltonian that is a tabulated
function of the variables: argument of perigee, longitude of the node, eccentricity, and in-
clination. The averaged Hamiltonian is obtained as a numerical table, not n »nalytical
function,

The next procedure is then to eliminate the angular variable corresponding to the resonance
argument, or the critical argument, t = a modified Von Zeipel transformation. The principle
here is that the averaged Hamiltonian at resonance is a minimum with respect to the critical
argument. This principle was introduced by Hori in 1960 for his satellite critical inclination
theory. It was used in a slightly different form by Musen and Bailie in their satellite tesseral
resonance theory in 1962. During the transformation, the new Hamiltonian is set equal to
the value of the old Hamiltonian at its minimum.
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After these two canonical transformations, a one-degree-of-freedom system remains, and

in that system the Hamiltonian is a constant. We are now able to analyze the new one-
degree-of-freedom Hamiltonian and obtain all long-period and secular perturbations, without
having to develop a series in eccentricity or inclination.

The procedure and algorithm of the modified Von Zeipel method that we are using was
developed by G. Giacaglia in 1965 (and described in detail in 1969). He applied the method
to resonant asteroids in a circular restricted three-body problem in 1968. It was then applied
to the elliptic restricted problems in 1970 by Giacaglia and Nacozy. The results of the
elliptic restricted problem are in agreement with the solutions of asteroidal motion performed
by Schubart (1968) using methods of numerical averaging.

The method was applied to the Pluto-Neptune system by Nacozy and Diehl (1974) and the
results agree very closely with the numerical integration performed by Williams and Benson
(1971), who used methods of numerical averaging over a four and one-half million year
period.

Recently, we have adapted the method to satellite systems in resonance with the tesseral
harmonics and have applied it to the J,-J,, problem. The adaptation and application are
presented below.

DESCRIPTION OF THE METHOD

The method uses the Delaunay equations of motion. The angular variables are modified
slightly so that one variable is the mean anomaly, Y,. A second variable is the critical
argument tor the synchronous satellite, Y, , and a thitd ;. the argument of perigee, Y, .
Letting the X variables refer to the conjugate momentums, and where F is the Hamiltonian,
we have

X, =L-H Y, =%

X, =H Y, = 0+w+Q+0
X, =G-H Y, =ow

F = 1/2+ L? + H + geopotential (+luni-solar forces)

The first canonical transformation is the classical Von Zeipel transformation where the new
Hamiltonian, F*, is defined as the average of the old Hamiltonian over the mean anomaly
from 0 to 2=

2

1
—2—1r f F(Xo, Xl,xz;Yo,Yl,YQ) dyo.
[}

]

F* (xot’ xl ‘, xi.; - Y] ‘, th)
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After the averaging, we replace the X and Y variables by X* and Y* and then a new Hamil-
tonian is obtained, free from short periodic terms. This quadrature is performed numerically,
not analytically. The quadrature is performed for various values of X, *, X, *, Y, *,and Y, *,
and the Hamiltonian is obtained as a tabulated function of these variables.

The new Hamiltonian, F*, has a minimum at Y, * near 90°. This minimum corresponds to
the libration center for Y, (also 270°). The exact value of Y, * depends on the value of Y, *
(the perigee). The partial derivative of the Hamiltonian with respect to Y, *, at Y, * near 90°,
is zero.

The next canonical transformation defines a new Hamiltonian, F**, to be the value of F* at
its minimum value:
F** (xot-’ Xl = xzxn; --, tht)
=F*
Y, * =90° (or 270°).

This canonical transformation is that used in 1960 by Hori for his critical inclination solution,
and we are using the same principle here. Since F** does not depend on Y, **, we have:

This gives a quasi-integral for X, **:

X,** =H** = constant =+/ 1 -€**2 cosi**.

This relation between e** and i** is the component of the angular momentum in the Z
direction. Siznice F** is a constant of the motion (conservative system), we now have two
relations between three variables—eccentricity, inclination, and perigee—and we can rewrite
the two relations as:

F** (e,i,w) = constant

H** (e, i) constant

These two functions define curves in an e versus w plane with H** as a parameter or curves
in an i versus w plane, also with H** as a parameter. This then gives us the long-term solution
fore, i, and w.

DETAILS OF AN APPLICATION

The first part of th2 numerical results for the J, -J,, problem are shown in figure 1 for F*
versus the critical argument, Y, *. Only one plot is shown here for Y, * (or w*) 90°, but many
other plots were obtained for diiferent values of Y, * (w*). We have values of eccentricity
ranging from 0.0 to 0.9, but only six values are shown in figure 1. Also, only one value for
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the parameter H** is given, corresponding to H** to 0.3. It should be noted that there is
aminimum of F*at Y, * = 90°. This corresponds to the libration center for the synchronous
satellite at Y, * = 90°,

We define the new Hamiltonian to have the minimum value of the old Hamiltonian, and then
we plot the new Hamiltonian. This is shown in figure 2, for F** versus Y, **, where Y, ** goes
from 0° to 180°. The problem is periodic in 7, so this will repeat from 180° to 360°.

The plot of figure 2 may be considered as a three-dimensional plot by visualizing an eccentric-
ity axis as perpendicular to and coming out of the plane of the paper. This will then produce
a two-dimensional surface and it can be seen that there will be a valley in the surface centered
at Y, ** =90° and e** = 0.44.

Since F** is a constant for a given trajectory, we can construct planes parallel to the e versus
w plane (in the three-dimensional plot), one plane for each value of the constant Hamiltonian,
In other words, we take several contour levels and each of the levels corresponds to a constant
Hamiltonian and herce to a certain trajectory. The contour curves give the long-term global
solutions for eccentricity versus perigee and are shown in figure 3. Contour levels near the
bottom of the valley produce libration. At the bottom of the valley is the libration center,
and at the top of the valley there 1s circulation.

Consider an ec. ntricity of 0.1. We see in figure 3 that, for this eccentricity, there is cir-
culation of the perigee by following the curve, beginning at e = 0.1 and Y, ** = 0. In other
words, the e** versus w** on that curve corresponds to an actual trajectory, the lcng-term
solution to the problem.

If we have an eccentricity of about 0.4, we have libration of the nerigee about the value of
perigee equal to 90°. At nearly e = 0.44, there is a stationary soiution, and this corresponds
to a periodic solution. Apparently, these periodic solutions have not been found prior to
this work for the J, - J,, problem.

Using the quasi-integral relation, we can obtain corresponding plots for the inclination versus
the perigee, and this is shown in figure 4. The libration center that was shown in figure 3
corresponding to e = 0.44 shows up at about i** = /0° and w** = 90°.

The stationary solution (libration center) that we have found and presented here has an
eccentricity of 0.44, an inclination of 70°, and a perigee of 90°. We have found that as H**
is varied, these stationary solutions form a family of periodic solutions.

CONCLUSION

Our future studies will be to trace the family of periodic (stationary) solutions. We will also
add more zonals and tesseral harmonics, the effects of the sun and the moon, and radiation
pressure to determine what effect they will have on the family of stationary, librating, and
circulating solutions.
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Figure 1. F* versus w" for various values of e for the synchronous satellite with J, and J,,, F* =average F
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DISCUSSION
VOICE: What do you mean by stable stationary solutions?

NACOZY: 1 mesn stability in the sense that if you place a particle on any one of the contour
curves (corresponding to a trajectory), any slight deviation from the curve will cause the
particle merely to move to another adjacent curve.

VOICE: What do you mean by a «-1asi-integral?

NACOZY: The integrals that Ih . presented nre accurate only to first order and hence
are often re”-rred to as quasi-integrals.
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SYSTEM DESIGN IMPACT OF GUIDANCE AND
NAVIGATION ANALYSIS FOR A SEPS 1979
ENCKE FLYBY

Philip Hong
Martin Marietta Corporation
Denver, Colorado

This is a report on a study that Martin Marietta did for Rockwell, who in turn was doing a
feasibility study for the solar electric propulsion stage (SEPS). The emphasis was on system
feasibility, and we tried to merge the guidance and navigation requirements into the total
system. The primary emphasis «was the 1979 Comet Encke flyby, which at that time was
the first proposed SEPS mission. We also looked at some system requirements for other
missions.

Many of the system paiameters are affected by guidance and navigation requirements. The
most important ones are thrust control authority (that is, how much additional control is
needed in the thrust subsystem to implement trajectory corrections), thrust performance
tolerances, thrust vector control, propulsion time, the additional time required for adjust-
ing the trajectories, fuel requirements, guidance updates, and the types of earth-bastd
navigation and communications needed. Other parameters affected are the onboard naviga-
tion subsystem (how good must it be, if it is indeed needed) and the type of trajectory and
terminal errors that occur (that is, control and knowledge). Control is the dispersion of the
actual about the reference, and knowledge is the dispersion of the estimated about the
actual.

The baseline mission for this particular stage was a launch in March 1979 and encounter in
November 1980. Figure 1 shows an ecliptic projection of the flyby.

L »~ LAUNCH FOSITION

E = ENCOUNTER {L + 592DAYS)

Figure 1. Ecliptic projection of the 1979 earth-to-Encke flyby.
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One of the first things we did was to take the mission analysis results that Rockwell gen-
erated and produce a more realistic, optimized and targeted trajectory in which we imposed
reasonable control policies. Listed below are the mission data:

®  Launch date-March 25, 1979
®  Arrival date—November 7, 1980
® Launch VHE-7.18 km/s

®  [nitial mass—1988 kg

®  [Initial power-21 kW

®  Housekeeping power—0.650 kW

®  Thruster efficiency—64 percent

®  Propulsion time—523 days

®  Coast time—Initial, 64 days; final, 5 days
®  Arrival VHP-3.16 km/s

®  Arrival RCA-1100 km
®  Arrival mass—1456 kg

We employed constant cone, clock, and thrust over fixed time segments, and we imposed
whatever constraints were necessary; for example, the final coast time of 5 days was the
minimum acceptable for science. There was also an initial coast and a total thrust time of
523 days. We arrived at 3 km/s at 1100 km closest approach. The encounter was 30 days
prior to perihelian for this particular study.

The baseline guidance and navigation strategy—and we are talking mostly about the approach
phase now—assumed simultaneous or continuous coverage from three Deep Space Network
(DSN) stations over the last 40 days. We assumed an onboard optical system similar to
Mariner-10. Optical or onboard observations were taken twice per day starting at 30 days
prior to.encounter, and each optical measurement contained Encke and three identifiable
stars. We estimated the vehicle state, thrust biases, and the Encke ephemeris, and we con-
sidered the process noise that is generated by the thrusters. Guidance v} 'ates were per-
formed every 4 days, and we assumed that we could control the trajectory just by biasing
the nominal thrust controls. The baseline strategy was not intended to meet all the system
requirements, but it was our first try at it.

The dynamic and measurement error sources that we assumed are listed below:
® Dynamic emror sources
a. Launch error - Position, 3 km; velocity, 5 m/s; mass, 1 kg

b. Thrust bias — Magnitude, 2.2 percent; direction, 0.035 rad
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c¢. Thrust noise — Magnitude, 3.5 percent; correlation time, 5 days: direction:
0.010 rad; correlation time, 3 hours

d. Encke — Position, 10,000 km; velocity, 1000 km/day

®  Measurement erTer sources
a. DSN station location — Spin radius, 1.5 m; longitude, 3.0 m; height, 10.0 m
b. Doppler noise —~ Two-way, 1 mm/s; three-way, 0.1 mm/s
¢. Range noise — Two-way, 3 m; three-way, 10 m
d. Optical — Resolution, 30 arc-seconds; center finding, 10 km

SEPS is launched with the Titan-Centaur, so we had typical insertion uncertainties. The
thrust uncertainties consisted of both bias and noise. We estimated the bias and the noise,
which has a time-varying component, hence the correlation times associated with them were
considered. The values listed are for a single thruster; there are eight operating thrusters for
this vehicle. The a priori error for Encke was assumed to be very pessimistic, although at
that time it was a reasonable uncertainty of 10,000 km and 1000 km per day, or about 10
m/s.

Typical station location uncertainties were assumed. Since we used simultaneous range and
range rate data from earth to the spacecraft, we also included three-way uncertainties. Our
onboard optical uncertainties consisted of an error or 30 arc-seconds noise and an uncer-
tainty of 10 km to approximate the uncertainty between the comet’s center of brightr

and the center of gravity.

One of the first things we studied was the approach geometry, to see if we could get an idea
of what was happening. Figure 2 is a view of the last 30 days prior to encounter. It can be
seen that the thrust vector is almost retrograde, which means that it is on a flat trajectory
relative to Encke, and there is very little curvature. There is also the possibility of the
thrust plume interfering with any instruments that are sensing as Encke is approached.
However, cutoff occurs at 5 days prior to encounter. The position of the earth is changing
very rapidly both in direction and in declination, which would indicate that earth-based
tracking of the spacecraft would be very good. On the other hand, because of the flatness
of the trajectory, the onboard optics probably will not be as good.

Figure 3 is a plot of the inertial position uncertainties due to the estimation of both Encke
and SEPS. Because simultaneous data are employed, we get near-ballistic results for the
spacecraft. However, our onboard optics just barely get below the a p-iori level.

Most of this is along-track error. However, a 6000-km along-track error ix: about 10 minutes
uncertainty, and that would seriously affect pointing and slewing ratec Because the stage
and Encke are dynamically uncoupled, the Encke relative uncertainty is basically the RSS
of these two, which is then dominated by the Encke uncertainties.
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Figure 2. Encke fiyby relative approach geometry for last 30 days prior to encounter.

As shown in figure 4, the velocity shows only fair improvement. It is still not very good,
either that of Encke or of the stage.

Since we found that the Encke relative uncertainties are dominated by the a priori ephemeris
error, we looked at a number of different a prioris and found that Encke relative uncertain-
ties are a priori sensitive, prisnarily in the velocity component (figure 5). For example, we
found that, if we have n-» velocity uncertainty, we will get very good estimation errors.
However, if we have any reasonable amount of a priori velocity uncertainty, the optics
cannot compei ““te, which means that the comet’s relative uncertainty remains unchanged.

We did take some covariances from Bob Farquhar and used them as our a priori. They looked
more lik¢ Hur zero velocity case, although not quite as good, or about 400 km terminal
uncer: ..nty.

F' .e 6 iliustrates the magnitude of the thrust guidance corrections, that is, biases to the
nominal thrust contrc. policy. The biases never exceed more than 3 percent in thrust mag-
nitude and are irregularly shaped because of our strategy. The curve could have been smoothed
out by pl- ~ir - the guidance updates at different intervals and by employing a different

control poiicy. But in magnitude, the bias is not more than 3 percent, and in pointing, it
isles \nan 2°, lo.
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Figure 5. Encke ephemeris uncertainty.

Figure 7 illustrates the terminal control error; that is, the error obtained after all the orbit
determination and guidance have been employed. The shaded area is the inertial spacecraft
uncertainty, and the total bar is the Encke relative uncertainty. We chose 1000 km as a
guidance success zone, which is our maximum acceptable error for a successful mission.
Obviously our baseline missed that by quite a bit. If we look at the effect of a priori
ephemeris uncertainties, we could get within the success zone if we have zero velocity un-
certainty in Encke. However, that is not a realistic case. If we assume some currently reason-
able error, we will probably just barely make the guidance success zone. Because of the
dominance of the ephemeris uncertainty, even if we eliminated earth-based ranging of the
stage, the Encke relative uncertainty woenld not be affected, but the stage uncertainty would
be. If we ever do reduce the ephemeris error down to some low level, we will still need
earth-based ranging, and the same thing goes for simultaneous range and range rate data
from the earth.

The conclusions for this particular study are as follows: Cruise guidance and navigation
requirements (not discussed) were minimal compared to the approach phase. The Encke
relative approach error was dominated by the ephemeris uncertainties, particularly the
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velocity components. The earth-bas.d tracking was very good; however, quality three-way
data are still needed from the DSN s::tions. Optical navigation was only fair, due primarily
to the flat trajectorv. Finally, the thrust control authority, that is, the thrust updates, were
within acceptable tolerances.

Table 1 lists some other missions which might drive the design of this stage, which is supposed
to be a multimission spacecraft. and we identified a few missions which might drive the
gitidance and navigation subsystem design. One was the Encke flyby, because that was the first
proposed SEPS mission. The next was an earth-orbital mission, because of its unique char-
acteristics. The Encke rendezvous was chosen primarily because it might place great demands
on an onboard sensor and also because it was the second interplanetary mission. The

Mercury orbiter was chosen because it had a high thrust acceleration at approach, which
meant that the process noise in the thrust would dcminate this particular mission. Finally,
we chose an outer planet mission, or an outbound mission, in this case a Phobos/Deimos
rendezvous. The data in the table are just guesses as to what the impact might be on these
subsysteins.

Table 1
Mission/Subsystem Impact*

Flight Thrust | Eahe | Operati ’
g - erations
Vector and P
Mission Launch | Time ApProach Thrust ec- o_r an based and Scienze
(days Guidance Attitude Tracki L
ays Control racking | Communications
Encke Flyby t979 630 M L L M L H
Earth Otbital 1930 | 50-100% H H H H H -
Enchke Rendezvous 1981 1100 H H M M H
Mercury Orbiter 1984 400 - H H H M M
Phobos/Deimos 1984 260 H M M M H H
Rendezvous |

*(L = low, M = moderate, H = high).

tPer one-way trip.

If we dismiss ephemeris uncertainties for the time being, the limiting factor is the thrust
uncertainty; that is, the noise or uncertainty in the performance of the engines. Figure 8
shows the closest approach uncertainty. The Encke flyby is relatively insensitive to thrust
magnitude uncertainties, primarily because of the good tracking from the earth, which can
minimize the effect of the thrust uncertainties. The Encke rendezvous in 1981, which isa
1984 encounter, does not do as well, because the earth geometry relative to the spacecraft
and Encke is not as good. The Mercury orbiter, because of the bigh acceleration at approach,
is very sensitive to thrust error. Of course, this means that if we have a 1000-km guidance
success zone, we had better reduce the thrust errors considerably for the Mercury orbiter.
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The following recommendations were made and will probably be conducted in a follow-on
study:

®  Improve the small body, both comet and astroid, ephemeris determination. Part
of this involves integrating the earth-based telescope observations of Encke with
the DSN and onboard optics measurements.

®  Reduce thrust noise level, either through hardware changes or through better
orbit determination and measurement,

¢  Continue development of the simultaneous and/or differenced data types, that is,
the quality earth-based three-way data.

®  Investigate the impact of other missions and combine their requirements into a
common spacecraft,

®  Study alternate mission strategies. For example, since we do have thrust at the end,
we might shape the trajectory and possibly get some curvature to minimize the
along-track error.
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GROUND TRUTH APPLICATIONS TO ORBIT REFINEMENTS

Robert L. White
The Charles Stark Draper Laboratory
Cambridge, Massachusetts

During the past few years, the C. S. Draper Laboratory has been performing various studics
for Goddard Space Flight Center pertaining to the determination and use of spacecraft
attitude and orbital ephemeris data to improve the mapping accuracy of an earth-observing
multispectral scanner. These studies were conducted for an Earth Observation Satellite
(EOS) that is assumed to be in a circular, sun-synchronous orbit with an altitude of 1000
km.

At present, an investigation is being made into the use of known ground targets (that is,
landmarks) in the earth sensor imagery, and also stars in combination with known ground
targets, to estimaie the spacecraft attitude, orbital ephemeris, and the bias drifts of three
strapdown gyros. The present study is a covariance analysis where both the Kalman filter
and Fraser two-filter smoother are used to process star and landmark measurements to obtain
a statistical indication of performance. Star measurements are used to update attitude and
gyro bias drift (that is, 6 parameters), and landmark measurements are used to update all
12 state parameters. This study is, for the time, restricted to the use of landmarks in the
continental United States, Alaska, and Hawaii, since the primary interest in spacecraft
attitude and orbital ephemeris is assumed to be during the observation passes over these
regions.

The geometry of a typical pass over the United States is shown in figure 1. The spacecraft
maintains a local vertical orientation as shown in the figure, where the body axis, Z . is
always directed toward the subsatellite point. The star tracker is assumed to be a body-fixed
instrument whose optical axis is directed toward zenith. As the spacecraft circles the earth,
the stars pass through the 8° square field-of-view (FOV) and are electronically tracked. For
the purposes of this study, these stars are artificially generated with random positions in the
FOV at the times of measurement. These measurements are uniformly distributed through-
out the nrbit and only one measurement is made on each star as it passes through the FOV.

On board the spacecraft, there is assumed to be a __.ultispectral scanner whose beam is
directed downward and sweeps back and forth across the ground track to generate a swath
of imagery 145 km (90 miles) wide (see figure 1). In the present study, a landmark meas-
urement represents the line-of-sight (LOS) of the scan beam at the time of landmark
observation. This LOS is completely defined in body coordinates by the scan beam angle
for which a random value (within $4.8°) is selected for each landmark measurement.
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Table 1 defines the five different landmark observation cases used in this study. The case
numbers denote the number of orbital passes made over the regions of interest. A pictorial
representation of case 4 is shown in figure 2, where the plus signs (+) indicate the nominal
locations of the landmarks used for update puiposes.

The nominal conditions used to generate mo.: of the performance results are listed below:

Orbit - Sun-synchronous circular orbit with an altitude ot 1000 km

Gravity model — Central force field

Spacecraft attitude history — Local vertical with rotation only in pitch

Star measuscments — Error: 5 s (10)/axis; number: 20 per orbit (evenly distributed)

Lanumark measurements — Position.error: 15 m (10) in downrange and crosstrack;
number: two/pass

Gyro error — Random drift rate (10) = 0.01°/hr (white noise: quantization (10) =
0.1s

It can be seen that relatively simple models were adopted for the spacecraft attitude history
and the gravitational model, since it was felt that these would be sufficient for the purposes
of this investigation. Previous studies of attitude determination have shown that the perform-
ance results for a nominal attitude history are in fairly close agreement with those for an
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Figure 2. Landmark observa.ion cas: 3
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Table |

Landmark Obszervation Cases
Case Pass North Latitude (deg) Region®*
Number Number At Start At End &

1 1 50 30 USA
2 1 50 30 USA
2 S0 30 USA
3 1 50 45 USA
2 50 30 USA
3 50 45 USA
4 1 50 30 USA
2 50 30 USA

3 65 60 Alaska

4 65 60 Alaska
S 1 50 45 USA
2 50 30 USA
3 50 45 USA

4 65 60 Alaska

and at 20 Hawaii

5 65 60 Alaska

*USA denotes continental USA.

attitude history that deviates from nominal by the amount anticipated in EOS. Deviations
in attitude due tc the various disturbing torques can be accurately indicated by the space-
craft gyros. A cential force field was used for the gravity model. It was felt that the inclu-
sion of J, and the higher gravitational harmo~#: - ‘vould add undue complexity to the prob-
lem without shedding any additionai light on th< inerits of using star and landmark measure-
ments. With the possible exception of J, , the inclusion cf ine ©' Yarm- nics does not
produce a significant chang. in the geometry of the basi- - =~ . 3 she period of
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interest (a few orbits). Consequently, if the higher harmonics were included in the simula-
tion and were accurately accounted for in the propagation of ephemeris data (that is, no
harmonic uncertainties), it is felt that the performance would be somewhat the same. With
regard to the existence of uncertainties in these harmonics, it is felt that this is a problem
which all techniques must face.

The nominal landrmark measurement error adopted for this study was 15 meters (10) in
downrange and crosstrack. This value does not represent the most recent estimate of what is
anticipated for the proposed EOS; it merely represents the anticipated uncertainty in
establishing the location of a ground control point (landmark) on the earth by other means
(for example, surveying). In a more realistic situation, we would also include the error in
determining the scan beam angle at the time of observation and also the errors associated
with image resolution and the method used to identify landmarks in the imagery. Since
most of these other sources of error had not been firmly established for EOS at the begin-
ning of this study, they were not considered when adopting the present nominal value.

This was felt to be an acceptable approach, since the plan was to generate sufficient sensitiv-
ity data to show the effect of using different values of the important error sources and
parameters.

The nominal values used for the initial state uncertainties are as follows:
®  Attitude (pitch, roll, yaw) — 60 arc-s (each)
®  Gyro bias drift — 0.03°/hr (each)
®  Ephemeris position

a. Altitude ~20m
b. Downrange —~50 m
¢. Crosstrack - 20 m
¢  Ephemeris velocity
a. Altitude ~ 0.05 m/s
b. Downrange —0.02 m/s
c.  Crosstrack — 0.02 m/s

In figures 3 and 4. the performance in estimating spacecraft position is shown for both the
Kalman filter and the Fraser two-filter smoother. The results are for landmark observation
case 4. This case, like all others, was initiated at the ascending node of the orbit and
completed one pass over the north polar region before making the first pass over the United
States. It is seen that the Kalman filter does an effective job in reducing the position un-
certainties after two passes over the continental United States, and with only two landmark
updates per pass. The significant improvement in filter performance after two passes is
primarily due to the large reduction in the velocity uncertainties on the second pass. Both
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figures 3 and 4 show that the smoother does a much better job than the filter for those por-
tions of the orbit away from the United States. It should be noted that each smoother curve
exhibits somewhat the same minimum during each pass over a landmark update region,
while those for the filter are reduced from pass to pass. It is also noted that the filter per-
formance eventually approaches that of the smoother, and it is for this reason that the filier
was used in place of the more complicated smoother to generate most of the performance
results of this study.

In table 2, the performance in estimating a'i 12 state parameters is shown for both the filter
and the smoother. The filter data represents the uncertainties at the =nd of the last pass,
while that for the smoother is for a time at the end of the first or second pass. Note that
the attitude performance is very good. This is primarily due to star updates. The reason
that the yaw performance is not as good as that for pitch and roll is due to the fact that very
little yaw information is obtained directly from the star tracker because the stars are close
to zenith.

Table 3 illustrates the performance when either iandmark or star updates are not used. The
first set of data is a repeat of the nominal performance of table 2 (using star and land mark
updates) and is shown here for purposes of comparison with the other two data sets. The
second set of data represents the performance when only landmark updates are used. It is
seen that the uncertainties in pitch and downrange position (designated “range” in the table)
continue to grow as one goes from landmark observation case 1 to case 5. This clearly
indicates a lack of observability in this approach. It is also interesting to note that the down-
range uncertainty in meters is numerically about five times larger than the pitch uncertainty
in arc-seconds. Since 1 arc-s subtends about 5 m at a distance of 1000 km, the results indicate
that the filter, after overcoming the initial state uncertainties, ends up applying the same
equivalent update to both pitch and downrange position. The landmark measurements
provide very little information to distinguish between the two state parameters. Consequent-
ly, the existing uncertainties in gyro bias drift and spacecratt velocity cause the pitch and
downrange position uncertainties to grow with time. It should be noted that the same
numerical relationship (5 to 1) occurs between roll and crosstrack; however, the uncertain-
ties in these parameters do not grow with time since they are bounded by nature. On the
basis of the pitch and downrange perfor:aance, it would theref.re seem that there is no
useful purpose to be gained in using only landmarks. However, it has been found that very
strong ncgative correlations do occur between the errors in pitch and downrange position
and also between the error: in roll and crosstrack position. These correlations are such as to
greatly nullify the effects of these errors on a mapping process that makes use of attitude
and ephemeris data updated with only landmark measurements.

The third set of data in table 3 shows the performance when only star updates are used.

These data were generated as a matter of interest, since star measurements can only be used to
update attitude and gyro bias drift. It is seen that the attitude performance is almost as

good as that of the first set. The uncertainties shown for the spacecraft position components
represent the natural growth of these quantities, and it is seen that the downrange position
uncertainty grows more rapidly than that in the second data set.
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Table 2

Kalman Filter and Fraser Smoother Estimation Uncertainties
for Different Landmark Observation Cases

State Estimation Uncertainties (10}

Landma'rk Filter (F) Attitude Gyro Bias Drift Position Velocity
Observation or (arc-s) (10~ °/hr) (m) (m/s)

Case Smoother

(8) Pitch | Roll | Yaw X Y Z Alt. | Range | Track Alt. | Range | Track
Initial State Uncertainties

(All Runs): 60 60 60 30 30 30 20 50 20 0.05 0.02 0,02

i F 31 3.1 20 20 2.1 4.0 4] 21 14 0.05 0.03 0.02

S 2.5 2.3 20 20 2.1 4.0 3n 18 14 0.04 0.02 0.02

pA F 1.9 1.6 14 14 04 1.0 14 15 10 0.02 0.01 0.02

S 1.2 1.5 14 14 04 1.0 14 13 10 0.01 0.01 0.02

3 F 1.5 1.4 12 12 02 07 14 12 8 0.u2 0.01 0.02

S 0.8 1.3 12 12 0.2 0.7 14 8 8 0.01 0.01 0.02

4 F 1.3 1.3 9.8 98 0.1 0.6 12 11 7 0.02 0.01 0.02

S 0.8 1.1 9.7 98 0.1 0.6 12 7 7 0.01 0.01 0.02

5 F 1.2 1.3 87 8.7 0.1 0.5 9 10 7 0.01 0.01 0.01

| S 0.8 1.1 8.7 87 0.1 05 9 7 6 0.01 0.01 0.01

Note: Smoothed data are for the time at the end of the second pass over the United States except for cases | and 2 where
data are for the time at the end of the first pass. Filter data are for the time at the end cf tlie last pass.
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Table 3
Kalman Filter Performance for Cases With and Without Landinark or Star Updates

STATE ESTIMATION UNCERTAINTIES (10)*

landmafk Attitude Position
Observation (arc-s) (m)
Case
Pitch Roll Yaw Alt. Range Track
Initial Uncertainties Are: 60 60 60 20 S0 20

Nominal Performance with 2 Landmark Updates per Pass and 20 Star Updates per Orbit

1 3 3 20 4] 21 14
2 2 2 14 14 15 10
3 2 1 12 14 12 8
4 1 1 10 12 11 7
5 1 1 9 9 10 7
Performance with 2 Landmark Updates per Pass and No Star Updates
] 44 5 32 66 213 20
2 90 5 27 54 44! 20
3 161 4 22 50 782 20
4 229 4 19 38 11 20
5 277 4 17 29 1342 20
Performance with No Landmark Updates and 20 Star Updates per Orbit
1 3 4 24 101 291 20
2 2 2 15 {01 747 20
3 2 2 12 101 1226 20
4 1 i 11 99 1712 20
5 i 1 10 99 2243 20

661

*Gyro bias drift and spacecraft velocity uncertainties are not shown.




Table 4 shows the sensitivity of performance to variation in the number of landmark updates
per pass and the number of star updates per orbit for landmark obszrvation case 2. It isseen
that fairly good performance is obtained even with one landmark update per pass and that
there is no significant improvement when geing freia two (nominal) to five landmark vpdates
per pass. li is also seen in the second set of data of table 4 that some variation can be allowed
in the number of star updates per orbit without seriously affecting the results.

Table 5 gives the sensitivity of performance to variation in the star and landmark measuiement
errors for landmark observation case 2. These data give some indication of the measurement
accuracies needed in order t) obtain a desirea level of performance. More recent results

(not shown) have been generated to show the effect of larger variations in these measure-
ment errors.
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Table

4

Sensitivity to Number of Landmark Updates Per Pass and Number of Star Updates

Per Orbit for Landmark Observation Case 2

State Estimation Uncertainties (10)*

Updates Per
Pass or Attitude (arc-s) Position (m)
Orbit Pitch Rell Yaw Alt. Range Track
Initial Uncertainties Are: 60 60 60 20 50 20
Landmarks**
1 1.9 1.6 15 16 18 11
2 (Nom.) 1.9 1.6 14 14 15 10
3 1.9 1.6 14 13 13 9
5 1.9 1.6 12 13 12 9
Stars**
5 3.3 2.5 19 13.4 21 13
10 2.5 2.1 18 13.4 17 11
15 2.1 1.8 16 13.4 16 10
20 (Nom.) 1.9 1.6 14 13.4 15 10
25 1.7 1.5 12 13.4 14 10

*Gyro bias drift and spacecraft velocity uncertainties are not shown,

**QOther type measurement (star or landmark) was nominal,
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Table 5

Sensitivity to Star and Landmark Measurement Error for Landmark Observation Case 2

State Estimation Uncertainties (10)*

Measurement
Error (10) Attitude (arc-s) Position (m) v,
(Per Axis) Pitch | Roll | Yaw Alt. | Range | Track
Initial Uncertainties Are: 60 60 60 20 50 20
Star Measurement Error
2s 0.8 0.8 7 13.3 12 8
Ss 1.9 1.6 14 13.5 15 10
10 ¢ 3.6 2.7 18 13.8 21 13
15s 5.4 3.3 20 14.1 29 16
Landmark Position Error (Downrange and Crosstrack)
7.5m 1.9 1.6 12 10 11 8
ISm 1.9 1.6 14 14 15 10
30m 1.9 17 15 16 24 13
45 m 1.9 1.7 15 16 34 16

*Gyro bias drift and spacecraft velocity uncertainties are not shown.
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ATTITUDE DETERMINATION USING
DIGITAL EARTH PICTURES

Lawrence P. Gunshol
Computer Sciences Corporation
Silver Spring, Maryland

We at Computer Sciences Corporation have developed a computer program called PICATT,
which stands for picture attitude determination. This paper describes the particular satellite
to which this technique of attitude determination has been applied, describes the method
of solution, and discusses the results that have been attained using the PICATT program.

The satellite to which we have applied the PICATT technique is the Applications Technology
Satellite-3 (ATS-3), which has been operational since 1967. The mission characteristics of
ATS-3 are as follows: It is in a geosynchronous, circular orbit, with very low eccentricity;
currently the inclination is on the order of 5°. It is spin stabilized at approximately 100
rpm. The dominant torque on the spin axis is the solar radiation torque, which varies from
10 to 60 arc-seconds per day, depending upon the time of year.

Observable misalignments have developed between the ATS-3 principal axis of spin and the
geometric axis of spin. This phenomenon was originally detected by Westinghouse Corpor-
ation, ucing a giaphical technique for processing pictures. When Computer Sciences developed
the PICATT program for ATS-3, we also detected the misalignments between the principal
axes and the geometric axes. Due to the fact that there are misalignments between the
principal and the geometric axes, there is a cross-coupling effect on the spin axis whenever

an east-west stationkeeping maneuver is performed. ATS-3 is positioned at 70° west longi-
tude, and east-west stationkeeping maneuvers are performed at approximately 3-month
intervals; whenever one is performed, the attitude is perturbed.

The Soumi camera has a variable elevation that covers an approximately 18° field of view.
At synchronous altitude, the earth subtends an angle of approximately 17.4°, and ATS-3

is able to view the entire earth when it is oriented properly. The elevation angle range covers
9° above the plane normal to the spin axis to 9° below the plane normal to the spin axis.
The resolution of the camera, when it is pointing directly at the c}ocal verticgl, or nadir, is
approximately 3.7 km (2 n.m.). The spectral bandpass is 4720 A to 6300 A; hence, it is

a visible system. The analog video signals are processed to form an image on a film, and the
National Oceanic and Atmospheric Administration (NOAA ) produces prints of the earth
image. ATS-3 originally had the capability of taking a color photograph and was the first
satellite to take a color photograph of the earth fromn synchronous altitude. Currently, the
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capability exists only for taking black-and-white, spin-scan, cloud-cover pictures. It is also
possible to record the video signals onto a digital tape; these processed digital tapes are used
for our attitude determination efforts.

The attitude control requirement for ATS-3 is to maintain the spin axis attitude to within
1° of orbit normal. More precisely, NOAA desires to take pictures of the earth 2.5 hours
prior to high noon and 3.5 hours after high noon, for a total elapsed time of 6 hours, or
one-quarter of an orbit. NOAA als; wants to see 55° north latitudc and above during this
time interval.

As shown in figure 1, we use the standard celestial inertial coordinate frame, where the X
axis points toward the vernal equinox and Z_ points toward the north celestial pole. Right
ascension is measured in the conventional sense, counterclockwise from XL. Declination

is measured positive above the equatorial plane.
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Figure 1. Coordinate systems. (a) Spin axis attitude angles; (b) princinal and geometric axes.

As mentioned before, there are misalignments between the ATS-3 princip.l and gzeometric
axes. These misalignments are described by fwo rotation angles: A geom tric system is
defined whereby the X geometric axis points along the symmetric axis of the spacecraft;
the Z geometric axis points toward the plane of the camera on board ATS-3. We define the
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offset between the principal and geometric axes by first rotating around the Z principal axis
through the angle ¥ (which we call a skew misalignment angle) and then rotat®: _ about the
Y geometric axis through the angle & (which we describe as an offset misalignment angle).

As seen in figure 2, the reference pulse for ATS-3 is provided by the sun. Given the orbital
and the spin axis characteristics, there is an angle, 8, between the sun reference and the local
vertical vector. This angle § and the time rate of change, $, are precomputed and stored on
the ground in the processing equipment. It should be remembered that the Soumi camera
on ATS-3 is constantly on and scans the earth disk and the darkncss of space as well. The
digital processing occurs on the ground.

g
|
|2
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|2
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| a3
8
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A SUN-EARTH ANGLE 6 A
SUN

v

SPIN AXIS

Figure 2. Camera scan geometry.

Again referring to figure 2, the camera steps from 9° above the plane normal of the spin
axis to 9° below the plane normal to the spin axis. For a typical elevation angle, &, the
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Figure 3. Misalignment effects on pictures. {a) Spin axis at orbit normal and no misalignments; (b) spin

axis off orbit normal and no misalignments; (c) spin axis at orbit normal and bias misalignment; (d) spin
axis at orbit normal and skew misalignment.
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ground equipment initiates recording at a point which is a function of the precomputed
angle, B, and the angular rate of change, §. During the sc.n, the leading edge of the earth is
observed as well as the entire earth disk. At the point where the trailing edge of the earth

is observed, the scan is terminated. The spacecraft then rotates, the camera is stepped to the
next discrete elevation angle, and the process is repeated.

The result is a matrix consisting of 2400 scan lines (corresponding to the 18° field of view)
and 8192 samples per scan line (the analog signal is sampled 8192 times over the duration

of the recording). The recording is synchronized with the spin rate such that a 20° scan is
obtained. The matrix is searched by a preprocessor program called EDGE, and EDGE
extracts either the leading edge of the earth or the trailing edge of the earth, depending upon
which is the most sharply defined. Prior to high noon, we process the right earth edge.

After high noon, we process the left earth edge. (Since this is a visible system, only one edge
per picture is processed.)

The effects of spin axis orientation and misalignments are illustrated in figure 3 with four
limiting cases. Case a depicts a purely circular synchronous orbit with the spin axis at

orbii normal and no misalignments present between the principal and the geometric axes.

In this particular case, we would see a perfectly centered earth throughout four points in
the orbit, each separated by 90°. The effects of terminators are not illustrated in the figure.
With a vissble system, terminators would be present within these four pictures.

If no misalignments are present but the spin axis is perturbed off orbit normal (case b),

the top of the earth would be cropped at one point in the orbit. The bottom of the earth
would be cropped cne half orbit later. One quarter and three quarters of an orbit later, the
earth would ° : centered perfectly in the picture.

In case c, an orbit-normal attitude is represented, and a bias misalignment, 8, is present. It
should be noted that if the total misalignment angle between the geometric axis of spin and
the principal axis of spin is a biased misalignment, then the camera plare, the X-principal
axis, and the X-geometric axis are all coplanar. With this particular geometry throughout
the orbit, a constant cropping of eith.s the north or the south of the earth within the frame
would occur.

Firally. with case (d), an orbit normal attitude is represented, and the total misalignment angle
is the skew misalignment angle . In this case, there is a stretching of the earth, a distortion,
because the angle § is ccmputed by assuming that there are no skew misalignments. If there

is a skew misalignment, recording will be sooner than desired at the tcp of the picture and
later than desired at the bottom of the picture.

In general, the spin axis i not at orbit normal, and misalignments are present. The objective
is to use the orbital information and ther - timate the spin axis attitude angles as well as the
misalignment angles ¢ and 9.
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The basic problem of estimation in PICATT can be outlined as follows-

PICATT Estimation Problem

Constants C

£ = Right ascension of ascending node

w Argument of perigee

M Mean anomaly

i Inclination

a Camera elevation angle

€ =  Earth optical radius

T = Spin period

State varniables X

a’ 8’ w’o

Measurement Y
w = Sweep angle from initiation of recording to earth edge

The standard orbital parameters are known constants. The semimajor axis and eccentricity
are not included. PICATT actually does account for the complete orbital state in the
mathematical model. At synchronous attitude, with a very low eccentricity, there is only
second-order effect from those two parameters. We use the argument of perigee and the
mean anomaly to describe the intrack position. In addition to intrack position, the inclina-
tion is also required to define the orientation of the local vertical relative to the spin axis.
The camera ejevation angle is also assumed to be exactly known, as is the earth optical

r Jdius (the angular width of the earth as viewed from synchronous altitude, approximately
17.4°) and the spin period (needed to convert the 8192 discrete digital counts to a sweep
angle). These known parameters—the orbital information, camera elevation angle, earth
optical radius, and spin pe:iod—are all assumed to be known with zero uncertainty.

A four-parameter state variable array includes the right ascension (a), declination (5), the
skew misalignment angle (), and the bias misalignment angle (8). The precession of the
spacecraft due to solar radiation torque is ignored because picture information is obtained
over only a quarter o an orbit. In other words, 6 hours of information, rather than 24
hours, is obtained. Over the computational period in which the pictures are taken, it is
assumed that o and 8 are inertially fixed.

Finally, the measurement Y is the sweep angle from the initiatior. of the recording to the
detection of either the leading edge or the trailing edge of the earth. This measurement is
obtained by converting the edge counts to an angle of sweep, using the spin period, 7.

PICATT uses the weighted least-squares batch filter with memory and requires knowledge
of the Bayes matrix, A},‘ (the inversc¢ covariance matrix of error and the initial state estimate):
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where
x = X- )2.
X = X, -X
v, = Y-f(X,0
A = QX
Wl =  Weighting matrix
A} = Bayes matrix

The x, is the residual between the unknown true state and a current best estimate of the
state; 'ii is the residual between the initial state estimate and the current best estimate of
the state; y, is the residual between the measured sweep zngle Y and the predicted sweep
angle, which is a function of our current best estimate of state as well as the known con-
stants. The A matrix is the matrix of partial derivatives of the observation equation, and

W is the weighting matrix. In PICATT, the data are weighted as a function of the computed
standard deviation of the residuals between the measured and observed sweep angles.

How well does PICATT work? Prior to the development of the PICATT program, the
operational attitude determination program for ATS-3 was the ATBAY program, which

used sun sensor information and polarization angle measurements (POLANG). The prob-

lem with ATBAY was the POLANG. Real-time Faraday rotation measurements normally were
not available. In addition, the stations tended to have biases that could not be estimated.

It was felt that this was no better than a 1° accuracy system.

Prior to the development of the PICATT program, we would perform an attitude maneuver
on ATS-3 at approximately 2-month intervals. That was a very inefficient procedure as far
as performing attitude maneuvers—trying to erect the spin axis to orbit normal and then
finding out that the spin axi- actually precessed in some other direction. As a result, we
were maneuvering approximately every 2 months. With the advent of the PICATT program,
the requirements for maneuvering ATS-3 have been reduced to a frequency on the order of
one maneuver every 8 months. Because of the increased accuracy of PICATT, the efficiency
has been significantly improved as far as the attitude control.

The following is a comparison between the ATBAY program and PICATT, for the time per-
iod covering August 1970 to December 1971. During this time, we were not receiving pic-
tures on a weekly basis as we are now, so we did not have a large volume of PICATT solutions.
Normally, the ATBAY solutions were computed out of phase. For this statistical study,

we selected spin axis attitude estimates at points that are separated by no more than 1 or 2
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days between ATBAY and PICATT. With this ground rule, there were 11 sainples. The
residuals are the differences between ATBAY and PICATT. It is assumed that PICATT is
correct. Listed below are the mean (u) and the standard (8) deviations for these 11 samples:

B L]
Right ascension 0512 13.486
Declination -0.195 0.225

Pointing error 0.496 0.302

The most important characteristic is the pointing error. With this statistic, the mean is
almost 0.5° with a standard deviation of 0.3;8“. The sum of the mean and standard
deviation approach the 1° total error in the sun sensor/polarization angle method of
attitude solution.

This is a relative companison: To find out the actual operational resuits on ATS-3, an inter-
mediate computational program calied the latitude scan program is used. This program takes
the orbital information, the attitude and bias state estimate (a and 8 as well as the misalign-
ment angles ¥ and 8), and redints the latitude that will be =  -ned in the center of the
picture as a function of ° lay.

The first scale on figure 4 <sents right ascension, which ranges from 0° to 369°. Time

of day can be related to rign. : cension in inertial space, since the earth is meving 320° in
one day. Likewise, lo il hich n. _n as a function of time of year can be correlated as a
function of right ascension. The solid line ‘ndicates a prediction for observing the maximum
north latitude scanned on the pictures as a function of time, using the PICATT state estima:2
and the orbit parameters. Tuae portion that is fairly flat indicates that the camera is scanning
over the top of the earth. The sharply curved portions indicate that the camera is scanning
into the earth disk. The triangles represent latitudes which have been read off gridded
weather pictures. It should be remembered that not only do we get the digital pictures, but
we can also obtain a corresponding print by processing the video signals from the camera.

It is seen that, the farther the spin axis is located from orbit normal, the more the scan cuts
into the earth. At the point that the scan starts cutting into the earth, seeing lower and

lower, and approaching the 55° north latitude limit, the better observability we have as far

as the correctness of the PICATT solution is concerned. From the figure, it is seen that we
are predicting very accurately where the cutoff occurs between the point where we scan over
the top of the earth and the point where we start cutting into the center of the earth. Nor-
mally, we find that right ascension is the most difficult parameter to define; we usually de-
tect a bad solution by finding a horizontal shift in the prediction. We generally get fairly good
agreement on the vertical scale or latitude.

It has been indicated previously that cross-coupling of attitude perturbations with the east-
west stationkecping maneuvers occurs. The last stationkeeping maneuver was performed
December 5, 1973. Figure S presents the ATS-3 state since then. There is a general trend
in right ascension and declination with some scatter. There is even more scatter in the total
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Figure 4. Typical latitude scan plot.

misalignment angle, as seen in figure 6 (total misalignment angle being the included angle
between the geometric axis of spin and the principal axis of spin). The problem illustrated
is traceable to the fact that we get only a quarter orbit of information, and the spin axis is
fairly close to orbit normal. Being close to osbit normal, the PICATT program has difficulty
relating the bias misalignment angle, 8, to the declination state, 5. There is a trade-off be-
tween @, which is the primary contributor toward the total misalignment angle, and the
declination, §.

We currently are obtaining erratic results, this would improve if we were to have informaticn
over a full orbit. Of course, being a visible camera system, we cannct get that information
over a full orbit. Included in figure 6 is a statistical study on the misalignment information.
We are predi:ting a mean misalignment of 0.348° with a standard deviation of 0.112° and

a total misalignment angle on the order of 0.5°, although earlier in the development of the
PICATT program, it appeared that the misalignment angle was on the order of 1°. Every
time an east-west stationkeeping maneuver is performed, more fuel is used and the misalign-
ments change.

The PICATT program has been extremely successful, as far as maintaining the attitude on
ATS-3 within the given requirements. [ think that the program has more capability if it can
be used on a satellite that has digital earth pictures over a complete orbit. This is possible
with the Synchronous Meteorological Satellite-A (SMS-A), launched May 16, 1974, which
has an infrared capability and takes pictures over the complete orbit. We expect SMS to

get much more consistent estimates of the misalignment angles as well as the attitude angles,
aand &.
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DETERMINATION OF INTRACK ORBITAL
POSITION FROM EARTH AND SUN
SENSOR DATA

Myrou Shear
Computer Sciences Corporation
Silver Spring, Maryland

By intrack orbital error is meant a constant time adjustment, AT, that is applied to a set of
ephemeris data which is otherwise correct. The ephemeris Jata may be in the form of an
orbit tape or in the form of orbital elements with an associated orbit generator. The AT is
simply added to the time before the ephemeris routine is accessed. It is implicit here that
AT is a constant throughou the pass of data that we are considering, where the pass of data
is typically a fraction of one orbit.

In terms of Keplerian orbital elements, we are applying an adjustment to one of the six orbi-
tal elements, and the other five are assumed to be correct. Why would we want to assume
that five of the six orbital elements are correct? Those who are familiar with orbit determin-
ation problems understand that there are cases, particularly with a predicted orbit, where the
predominant source of error will be an intrack error. We have seen numerical examples from
real, predicted orbit tapes compared with later definitive and more accurate orbit tapes, which
show that as much as 99.9 percent of the orbit error in a predicted tape can be removed,
simply by applying a constant time adjustment throughout an orbit. Table I shows an ex-
ample of intrack orbit error for the Small Scientific Satellite-A (SSS-A), which has an apogee
height of 26,500 km, a perigee height of 220 km, and a period of 7 hours and 20 minutes.
The error in the predicted orbit tape is determined by comparison with the definitive tape.
The predicted tape is accessed at a time about 2 weeks beyond the avaijlable data used in

the predicted tape.

Table 1
Example of Intrack Orbit Error
Error in Predicted Optimum Time Error After Time
Tape (km) Adjustment (s) Adjustment (km)
Near Apogee 123. 59.13 1.83
Near Perigee 586. 59.24 0.50

The primary motivation for determining this intrack adjustment is to improve the accuracy
of our attitude determinations, particularly in cases where we are forced to determine an
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attitude in near real time within an hour of the time the data are received. In these cases,
we have to use a predicted orbit tape; we do not have time to wait for a definitive orbit tape
to be generated. Potentially, this technique has the capability of improving orbit determina-
tion for other users as well or of attaining the same orbit accuracy that we have now, but
using less orbit data. That has not yet been done, but we are working on combining the
orbit and attitude problems, that is, processing orbit tracking data with earth and sun sensor
data in one system and thereby improving both ti:e orbit accuracy and the attitude accuracy
with the available data.

Figure 1 explains these attitude sensors, which have been used on at least four different
missions—the Radio Astronomy Explorer-2 (RAE-2), the Interplanetary Monitoring Platform
(IMP), the Small Scientific Satellite (S*), and the Atmospheric Explorer (AE)—and which

are planned to be used on the Synchronous Meteorological Satellite (SMS) and the Communi-
cations Technology Satellite (CTS). What all these missions have in common is an earth sensor
telescope of some type, mounted at an angle to the spin axis so that the earth sensor scans a
cone; if this cone intersects the earth, then the earth sensor will be triggered. The telescope
may be sensitive to either infrared or visible light. In addition, there is a sun sensor on the
spacecraft with a slit parallel to the spin axis; when the plane of that slit crosses the sun, the
sensor triggers and also measures the angle between the spin axis and the sun direction.

The raw telemetry includes the angle between the spin axis and the sun, (8); the time that the
sun sensor slit plane crossed the sun; the times that the earth sensor triggered on and off; and
the inertial spin period, as defined by the time between two successive sun sightings.

As shown by figure 2, it is easier to visualize the information if it is considered in terms of
the geometric parameters which it defines. It happens that all the information in a single
frame of data defines only three angles in space. One of them, of course, is the sun angle,
the angle between the spin axis and the sun, because it is measured directly. The other two
geometric parameters are the dihedral angles labeled A, and A __, in figure 2: A, isthe
dihedral angle from the plane of the spin axis and the sun to the plane defined by the spin
axis and the horizon vector, that is, the vector from the spacecraft to the horizon at the earth-
in triggering; A _, is the same thing for the earth-out triggering. It is worth noting that these
two horizon vectors are unknown quantitics. Even if the vector from the spacecraft to the
earth is known, the vector from the spacecraft to the horizon crossing points would not be
known. The data define two dihedral angles measured with respect to unknown vectors.

We will now examine the resolution of these devices for the missions considered. The data

are of course digitized before we receive them, so the value of the least significant bit 1s a lower
limit on the resolution of the sensor. This is not to be confused with the accuracy of the
sensor, because there may be systematic errors much larger than the resolution.

For the sun angle, the least significant bit typically has a value ranging from 0.25° 10 1°,
making the sun sensor a relatively coarse sensor. The earth-in and earth-out measurements
are somewhat more sensitive. For these, the resolution depends on the clock rate of the
spacecraft in relation to the spin period, and the resolution ranges from 0.01° to 0.7°, We
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are mainly interested in missions where the resolution is closer to 0.01° because, in that
case, the earth sensor is potentially a rather sensitive device, assuming that we can remove
systematic errors, which may be as large as 1° or more, and which will be discussed later.

This is what the data lock like in a single frame, and now 1 want to define the unknowns in
this problem. The first is the attitude of the spacecraft, because that is what the sensor

was put on board to determine. The attitude can be described by a two-element state vector,
right ascension (a) and declination (&), if we assume that the attitude is constant and there
is no nutation. I am assuming throughout this presentation that any nutation in the space-
craft is negligible. Therefore, attitude is a two-element state vector. The second unkrown

is the intrack time adjustment, At, which is the primary topic of this paper. We are assuming
that we have a source of orbital ephemeris, which is correct, with the possible exception of
this intrack time adjustment.

So these are three primary state parameters: two for attitude and one for time adjustment.
In the ideal case, those would be the only three unknowns'in the problem, and the problem
would be relatively simple. In practice, it has been found that, on all of the missions we have
supported, there are significant systematic biases in the sensors that have to be removed
when the data are processed in order to meet the attitude requirements of the mission, which
may be, for example. £1° for attitude.

Therefore, some additional parameters must be determined from the data. In general, the
unknowns include the elevation of the earth sensor with respect to the spin axis, the aximuth
of the earth sensor with respect to the sun sensor, and the elevation of the sun sensor with
respect to the spin axis, that is, a bias in the measured sun angle. In addition, there is a
possible earth sensor triggering threshold or sensitivity error. These earth sensors do not have
a very narrow field of view; the ficld of view may be as wide as 3° in diameter. If the sensor
threshold is not accurateiy known, there may be an uncertainty of several degrees as to where
the sensor is pointing at the tirne it triggers. Finally, there is the possibility of a constant time
delay on either the earth-in or the earth-out triggering due to electronic delay between the
time the event occurs and the time it is recorded.

In principle, all of these quantities can be measured on the ground before the spacecraft is
launched. In practice, they are subject to change. The alignments, of course, could change
due to thermal distortion of the spacecraft. It is even more likely that the apparent align-
ments with respect to the spin axis would change because the spin axis shifts with respect

to the geometric body axis, for example, due to uneven fuel usage between fuel tanks. Also,
the electronic parameters can change, for example, if the temperature of the electronic com-
ponents changes.

To model all these sources of error, it is necessary to introduce five additional angular
parameters. These are biases with nominal values of zero. There is a bias on the earth sensor
elevation and a bias on the earth-in or the earth-out rotation angle. This includes both the
effect of an azimuth offset between the earth and sun sensors and a possible difference be-
tween the time delays for the earth-in and the earth-out triggerings. There is also a bias on
sun angle and a bias on the apparent angular radius of the earth as seen from the spacecraft.
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The bias on the angular radius of the earth is intended to correct for the earth sensor trigger-
ing threshold. Without discussing the details, it can be shown that, for an earth sensor with
a circular field of view, any constant triggering threshold can be exactly compensated for by
adding or subtracting a constant bias on the apparent radius of the earth.

Thus, the total number of unknowns includes five angular biases and three primary state
parameters, for a total of eight parameters that have to be determined. However, a frame of
data includes only three observables: sun angle and earth-in and earth-out angles. Clearly,
on the basis of a single frame of data, we could determine, at most, three of these unknowns.
To have any hope of determining al! ¢ight unknowns, we neced more than one frame of data,
and the frames have to be independent in some sense. This is where the real problem occurs.

Typically, we do have a large number of frames of data, but the sun angle may be constant
throughout the entire block because, as mentioned previously, .ie sun sensor is a relatively
coarse sensor, and the sun angle is changing very slowly. So it is not uncommon for the
measured sun angle to be constant throughout the pass, in which case, regardless of the num-
ber of frames of data, there is only one actual observable for the sun angle.

The earth-in and earth-out angles are more useful, because they do vary with the spacecraft
position. Still, two frames of data taken at nearby positions in the orbit will be redundant.
Speaking qualitatively, in order to determine all eight of these parameters, it is clear that
we need a significant fraction of an orbit of data in order to have independent observables
and not just the tirree observables that occur in one frame.

We have developed a program called OABIAS, which processes data of the type described and
determines a state vector, including the unknowns listed below:

®  Attitude (¢, 6)

®  Earth sensor elevation bias

®  Bias on earth-in angle, Al

®  bias on earth-out angle, A

®  Bias on angular radius of earth

®  Bias on sun angle, 8

®  In-track orbit time adjustment, At

The program is a standard, weighted least-squares recursive estimator. Any number of the
above listed parameters can be fixed at constant values and not determined.

The program works as a standard recursive estimator: the state vector is used to predict the
observables, the residual is computed for each observable, and the partial derivatives of each
observable with respect to each element in the state are computed. Then the residuals and
partial derivatives are used to update the state vector. The partial derivatives can be computed
analytically for every case except the case of interest here, the intrack orbital time adjustment.
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If the partial derivative of any arbitrary observable is considered with respect to the time
adjustment, At, it is equal to the partial derivative of the observation with respect to the
spacecraft position vector, R, multiplied by the partial derivative of the spacecraft position
with respect to At: N

9 (observation) _ 9 (observation) ) aR

N
aAt oR oAt
d (ob ti
(observation) . v
-

dR
The derivative of the spacecraft position with respect to At is one that cannot be computed
analytically, because we do not have an analytical expression for spacecraft posmon asa

function of time. However, it is not necessary, because we can get the velocity (V) cf the
spacecraft from the orbit tape.

In practice then, we analytically compute the derivation of each observation with respect to

, then multiply that by the velocity vector obtained from an orbit tape. The important
point here is that this method is not restricted to any particular type of orbit. We are not
assuming, for example, a Keplerian orbit. Any orbit that can be described by an orbit tape
can be handled correctly using this tcchnique.

Figure 3 shows some results obtained using simulated data for the Communications Tech-
nology Satellite, which is scheduled to be launched next year. The data were simulated for
transfer orbit, with a perigee of 190 km and an apogee of 36,000 km. The attitude in this
case is pointing 49° below the plane of the orbit; the earth sensor is an IR sensor mounted
at 85° from the spin axis. These facts together imply that the earth sensor will scan the
earth only during the indicated portions of the orbit. For the rest of the orbit, the carth
sensors will miss the earth; there will be no useful data from the earth sensor for those
periods.

Both of these sections of the orbit were simulated and the data were combined. The data
includes 100 frames evenly spaced over 240 minutes over both of those segments of the
orbit—40 minutes near perigee and 200 minutes near apogee. Gaussian noise of 0.012° is
applied to the earth rotation angles, the earth-in and earth-out angles. That corresponds to
the clock rate expected for the spacecraft.

We were attempting to determine the complete eight-element state vector, so biases of 1°
were applied to each of the angular parameters that describe the bias on the sun angle, the
earth-in and earth-out azimuth angles, the earth sensor elevation, and the apparent angular
radius of the earth. For the time adjustment, an error of 60 seconds was applied to the
ephemeris data, which corresponds to a very large, 6° error in spacecraft position at perigee,
which would make the perigee data virtually useless for attitude determination without
correcting for it. But the time adjustment corresponds to an error of only 0.15° true anomaly
at apogee.
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Figure 3. Example of position determination
with simulated data for the Communica-
tions Technology Satellite.

The results for these simulated data are shown in table 2. The biases are initially -~timated

at zero, because they are unknown quantities; the initial attitude was obtained fr.m a deter-
ministic processing of the datz, before correcting for biases. It can be seen that this initial
attitude is more than 2° off, which would violate mission constraints for this mission, since
we have a 1° attitude accuracy requirement. The final result from the program shows that
all of the vnknowns are determined to an accuracy of 0.05°, and the intrack time adjust-
ment is determined to an accuracy of one-half second. This indicates that, first of all, the
program works. Secondly, it means that the problem is feasible. That is, we really should be
able to determine all eight of these state parameters, assuming that we have a sufficient
amount of data and that there are no substantial systematic errors that have not been con-

sidered in the state vector.

This brings us to the case of the real data. We have processed real data from four spacecraft—
IMP, S*, RAE-2, and AE-but the results cannot be presented in this form because the true
state is not known for any of these spacecraft. In fact, since the attitude changes, or is
changed, from one day to the next, we do not generally have more than one pass of data to

examine to define a given state vector.
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Table 2
OABIAS Results*

p True Initial Final
Parameter )
State Estimate Result
) } ~ 330.00 329.50 330.02
Attitude {4 -21.75 -23.88 -21.80
Earth Sensor Elevation
Bias -1.00 0.0 -1.01
Earth-in Azimuth Bias -1.00 0.0 -0.99
Earth-out Azimuth Bias -1.00 0.0 -0.96
Bias on Angular Radius
of Earth 1.00 o0.C 1.01
Sun Angle Bias -1.00 Cc.0 -0.99
Intrack Time Adjustment -60.00 0.0 -59.59

* All values are in degrees, except tntrack time adjustiment, which is in seconds.

Thus, oniy three ithings can be said about the real data: either it can or cannot be fitted. or
we can fincd an infinite number of state vectors which would fit the data equally well to
within 121> noise level. It happens that this third cause is not uncommon for the missions
that we examined. The reason is that, when trying to determine an eight-element state vec-
tor on a small section of an orbit, it is to be expected that the entire state vector will not be
determinable.

However, we have generally found that the results are consistent with what we would expect,
based on simulation. That is. where there are enough data to find the state vector. it can be
determined uniquely. Where there is not enough information, we can Jetermine any number
of state vectors that would fit the data. We have not, as a rule, encountered the cther prob-
lemy, that of not being able to find any statc vector that fits the data; this would . .icate the
presence of seme svstematic error that we have not modeled.

It should be pointed out that, if the misalignment parameters and biases could be eliminated
and the state vector thereby reduced from eight elements to three elements, it would ob-
viously be a simpler problem. It would take much less data to determine the state. In fact,
since there are three observables in a single frame of data, and as there would be only thiee
mknowns in that case, the time adjustment and the attitude could be determined, based on
just a single frame of data. But, based on our experience, it is not feasible to ignore all of
these systematic bias parameters,
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DISCUSSION
VOICE: Is this technique being used operationally?

SIHEAR- It has been applied operitionally to all four spacecraft mentioned: currently. the
cperational work is concentrated on AE-C. It has improved the attitude determination
accuracy for those missions. It is not used to process every pass of data. It is used on the
initial passes of data in the mission to try to determine the biases that will be used through-
out the mission.

VOICE: Are the simufation results that you've shown for the same static attitude cstimator?
When you generated data, did you use the model yoit have in your estimator?

SHEAR: That's rieht, It’s the same model. There are no systematic errors that aren't
accounted for.

VOICLE. There are no attitude dynamics?
SHEAR: Correct, there are no attitude dynamics.

VOICE: In the case of the real data. the accuracy of your intrack time adjustment could
be checked against orbit tracking data. couldn’t it?

SHEAR: 1t is possible to get an independent confirmation of the intrack orbit error. 1
think our probicm has been mote often that we cun’t determine alf eight state parameters
including the time adjustment: consequently, if the time adjustment does not agree with the
orbit data, we don’t know whether we've got the right answer for one of those biases or not.

I think that it is feasible to determine the intrack time adjustment on the S* spacecraft. The
S$3 has an orbit that is fairly similar to the orbit I just showed you for the simulated example.
In that case, | think it’s feasible, but we haven't processed S® data extensively yet.

VOICE: 1 have worked on some of the problems of bias determination and the biases are
usually so highly correlated with what you’re trying to measure that they can't be separated.
Is your simulation realistic?

SHEAR: Well, there are different gecometry cases to be considered. 1 could point out. for
example. a circular orbit. For any circular orbit, we cannot determine this complete eight-
element state vector, regardless of the attitude of the spacecraft, the sensor mounting angles.
or the amount of data. It can be proven that there is a perfect correlation between the in-
track error and the sensor misalignments: we can find an infinite number of state vectors
that will fit the data.

Referring back to figure 3, if we were to delete either one of these passes of data, | don't
think it would be feasible to do the problem: the complete eight-clement state vector could
not be determined with either pass alone. Of course. if we could reduce the state vector

to fewer elements. it could be done. But we were not able to solve for all eight elements,
even on simulated data, with just one of those sections.
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VOICE: As a practical problem. can you get track-in data when you're at perigee?

SHEAR: Probably not directly at perigee. for such a low perigee. But it should be possible
to get most of these data. The S? spacecraft. which has the same orbit except for a slightly

lower sltitude, frequently obtains a pass of data which covers most of what is indicated here
as the perigee pass.

VOICE: For vour simulated data. where did the sun lie with respect to the orbit flight?

SHEAR: The sun is shown in figure 3. but i didn’t mention it. The sun is 32° above the
orbit plane, and it’s roughly in the direction shown in the figure.



