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Section l

INTRODUCTION AND SUMMARY

This report summarizes the results of a study whose objectives are

to analyze, design, fabricate and check out a convection measurement pack-

age for sounding rocket flights. The study was motivated by NASA's current

plans to utilize these rockets for performing materials processing experi-

ments in a low-gravity environment.

The use of sounding rockets provides an opportunity for the space

processing community to gain knowledge and experience in low-g experi-

mentation in the time period between manned space missions. The low-

accelerations experienced during the coast phase of the rockets allows more

experiment time than drop towers or aircraft free-fall maneuvers. The low-

gravity environment of space should have important advantages in materials

processing due to reduced sedimentation and natural convection. However,

the suitability of the sounding rocket environment for performing these ex-

periments is not known. In particular, the effects on heated fluids of non-

constant accelerations, rocket vibrations, spin rates, etc., is not defined.

The need thus arises for a system to be flown on the rockets to determine

the influence of the convective effects on f'.si.d experiments, and the general

suitability of the rockets for performing these experiments.

L	 The initial phase of this study consisted of an analytical investigation
s

of convection in an enclosure which is heated in low gravity. The gravita-

tional. body force was taken as a time-varying function using anticipated

sounding rocket accelerations, since accelerometer flight data were not

avcdlable. A computer program was used to calculate the flow rates and

heat transfer in fluids with geometries and boundary conditions typical of

p '	 space processing configurations. Calculations were made for both a con-

"`'	 stant acceleration and for time varying accelerations (termed "g-jitter'').
P

Li 	
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Comparisons of the convection effects allows a measure of the contribution

of g-jitter to the flow circulation and heat transfer.

Results of the analytical investigation have identified the configurations,

fluids and boundary values which are most suitable for measuring the con-

vective environment of sounding rockets. Two configurations were selected

for the system: (1) a rectangular cell, with water or the fluid, which is heated

along a wall, and (2) a cylindrical cell, with mercury as the fluid, which is

heated on one end of the cylinder. These two fluid cell modules were de-

signed, fabricated and bench tested for proper operation.

The rectangular configuration, termed the water cell, consists of a

plexiglass enclosure with a do powered heater mounted on one wall. Thermo-

couples are mounted on the container walls and in the fluid to record the

thermal history as the water is heated. The cylindrical configuration, termed

the mercury cell, consists of an RTV rubber cylinder filled with mercury. A

do powered heater is provided at one end of the cylinder to supply the thermal

input. Thermocouples mounted in the fluid and on the heater plate are used

to record the thermal history. Electronic control modules are provided to

regulate the power input, supply the needed voltage to the heaters and to inter-

face with the rocket telemetry system. The fluid cells were selected on the

basis of: (1) sensitivity to low-g accelerations, and (2) their resemblance to

typical space processing configurations. These two fluid cells were delivered

to MSFC for integration.

This report summarizes the study of the Convection Measurement

Package. Section 2 presents the analytical investigation of g-jitter con-

vection, the results of the sensitivity analysis and the recommended con-

cepts. A short description of the fabricated fluid cells and the complete

measurement package is given in Section 3. The procedure of analyzing

the data from the convection package including the evaluation of the rocket

environment constitute Section 4. Appendix A summarizes the test pro-

cedures for the flight apparatus. Details of the hardware can be obtained

from the master blueprints at the MSFC Space Sciences Laboratory.

2
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Section 2

ANA!,YTICAL INVESTIGATION

2.1 BACKGROUND AND PERSPEC'T'IVE

Natural convection and its effects on heat and mass transfer processes

in fluids is a major concern in most space manufacturing processes. Density

gradients in a fluid, induced by temperature or concentration changes, in the

pr .sence of gravity gives rise to buoyancy forces. This gravity-driven con-

vection can be the dominant mechanism affecting fluids processing in a ground-

based laboratory. One of the major advantages foreseen in manufacturing

products in space concerns the reduction of this buoyancy-driven fluid flow.

Moreover, the ability to control the magnitude of convection in a law-g environ-

ment offers advantages in materials processing which cannot be achieved on

earth. When convection is suppressed, precise knowledge of diffusion rates

of mass or heat become critical as many processes become diffusion con-

trolied. Prediction of accurate diffusion rates by theory is often intractable.

Thus, a means of measuring concentration and temperature gradients during

low-g processing is very desirable.

However, it is errone-pus to conclude a priori that natural convection

will be totally absent in a low-g Iaui,Matory. Gravity levels of even 10
-g

 g

can cause significant convection if the temperature or concentration gradients

are very large. Results of the Heat Flow and Convection Demonstration (Refs.

1 and 2) which were flown aboard Apollo 14 and 17 indicate that low-g convec-

tion can be an important factor in determining fluid behavior and heat transfer.

Changes in the magnitude and/or direction of accelerations can also be an im-

portant factor. Termed "g-jitter" convection, this may be significant, es-

pecially aboard sounding rockets. Convection driving mechanisms other than

gravity must also be considered. Results of several Skylab experiments have

indicated that surface tension-driven flow may have affected the processes

4	 ':
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significantly. Accurate knowledge of the magnitude and pattern of convection

is essential because many promi3ing space manufacturing processes (i.e.,

fiber eutectics for optical communications, uniformly doped semiconductors,

vapor grown single crystals) depend upon the elimination of natural convection.

Among the processes most likely to be drastically affected by convection

are various crystal growth procedures and material separation techniques such

as electrophoresis and Soret methods. These phenomena must be understood

and explained if any significant process of this type is to be designed for space

manufacturing. The sounding rocket program offers an excellent opportunity

for this type of investigation. However, it is possible on these rocket flights

that vibration (g-jitter) levels will be of the same magnitude as the residual,

steady state gravity level on the payloads. Recent theoretical analyses of

g-jitter induced zonvection in the configurations similar to the Skylab multi-

purpose furnace (Ref. 3) indicate that small vibrations (10 -3 g in amplitude)

can stimulate significant flow and temperature oscillations in heated melts.

Thus significant banding and other deleterious effects could occur during space

processing if g-jitter is not taken into account and experiments are not designed

to suppress it.

The effects of vibrations on convective heat and mass transfer are re-

ported in the literature (see for example Refs.4 through 11). However, little

work has been reported on these effects in a low-gravity environment. The

study performed at Lockheed-Huntsville (Ref. 3) was directed toward deter-

mining the effects of vibrations on convection in enclosures -.t low gravity

conditions. The term "g-jitter" convection is coined to describe fluid flow

and associated transport phenomena caused by any time varying accelerations

imparted on a container of fluid. G--jitter may result from a non--constant

gravitational acceleration, spacecraft control maneuvers, vibrations, equip-

ment disturbances and even astronaut movements. The study has revealed

that g--jitter convection can cause significant changes in flow structure and

temperature distributions in confined fluids which are heated in a law-g

environment.
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The possibility of g-jitter or other types of convection occurring in

fluids processing experiments aboard sounding rockets provides justifica-

tion for investigating these effects. The study described in this summary

report was directed toward:

	

f	 • ?determining the potential influence of g-jitter convection on

fluids in low-g

	

i	 e Defining the configurations and boundary conditions which are

most sensitive to g-jitter, and

	

f	 e Designing, fabricating and checking out appropriate fluid cells

for use in a Convection Measurement Package for sounding

rocket flights.

The subsections which follow describe the analytical investigation

	

!	 which was performed, summarizes the sensitivity analysis and presents a

flight concept for the Convection Measurement Package.

2.2 DIMENSIONAL ANALYSTS

The first part of the analytical investigation was directed toward
t	 identifying candidate fluids for studying low-g convection. The technique

	

s"
	 of dimensional analysis was used to provide the pertinent information.

The fluids initially considered included:

i	 a Air

t.
	 a Helium gas

a Krytox oil

e Water
is	 o Mercury

o Carbon dioxide, and

e Sucrose solutions

cxa
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The fluids for use in a sounding rocket convection measurement system
should (1) be somewhat typical of space processing materials; (2) be read-
ily available for use in a variety of geometric configurations; and (3) have
thermal property values which render the fluids sensitive to low-g con-
vection.

An important property of fluids for convective analysis is the Prandtl
numbe r

Pr = v/ a	 (1)

which is the ratio of momentum diffusivity, v, to thermal diffusivity, tit.
This dimensionless parameter was used to aid in selecting three fluids for
further study. Mercury has a low Prandtl number ( 0.01) which is typical
of liquid metals used in space processing experiments. The Prandtl number
for most gases is an order of 1.0 (helium 0.68) and provides a mid-range
Prandtl number fluid. Water, with a Prandtl number greater than 1.0, was
selected for its simplicity of use and to provide: a larger Prandtl number
fluid. These three fluids were selected for further study based on similarity
to fluids used in space processing and because they span the range of Prandtl
numbers from ^-0.01 to 10.0. Table 1 is a summary of the material proper-
ties of water, helium gas and mercury. The remainder of the dimensional
analysis is carried out for these three fluids.

Another governing dimensionless group in gravity driven natural con-
vection is the Grashof number,

Gr = g PAT L 3	(2)
v2

where g is the acceleration of gravity, R is the thermal expansion coetn.-
cient, AT is the temperature gradient imposed on fluid, L is the character-
istic dimension of fluid container, and v is the kinematic viscosity. This
quantity represents the ratio of buoyancy forces to viscous forces. Experi-
mental and theoretical analyses of convection have determined that the heat
transfer by buoyancy driven natural convection correlates with the product
of Prandtl number and Grashof number. This dimensionless group, termed

6
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Table 1

MATERIAL PROPERTIES OF WATER, HELIUM UAS, MERCURY

.^

Temp.

Thermal
Conductivity

Dynamic
Viscosity Density

Specific
Heat

Thermal
Expansion
Coeff.

Thermal
Diffusivity

Kinematic
Viscosity

Prandtl
Number

k u F C  .8 a v Pr

( 0 C) (	 cal	 ) (Poise) ^	 m _	 cal	 ) (1/°C) ( cm 
2 ) ( cm2 ) -

sec-cm- C cm gm °C sec sec

(Water)

10 1.37E-3 1.31E-2 0.998 1.00 8.82E-5 4.97 1.31E-2 9.55
38 1.50E--3 6.82E-3 0.992 0.998 3.60E-4 5.48 6.90E-3 4.5Z
94 1.62E-3 3.05E-3 0.961 1.00 7.20E-4 6.11 3.17E-3 1.88

204 1.57E-3 1.35E-3 0.857 1.08 1.44E-3 6.lZ 1.58E-3 0.927

(Helium gas)

-18 3.22E -4 1.69E -4 1.92E-4 1.24 5.01E -3 4.90E-3 8.86E -1 0.67
94 4.00E-4 2.21E -4 1. 33E-4 1.24 2. 74E -3 8.73E+3 1.65E+0 0.686

204 4.75E -4 2.65E -4 1.02E -4 1.24 2.10E-3 1. 35E+4 2. 59E+0 0.70
427 5.69E-4 3.39E-4 6.97E-5 1.24 1.43E-3 2.38E+4 4.88E+0 0.73

(Mercury)

10 1.94E -2 1. 59E -2 13.55 3.3E-2 1.8E -4 1.58E+2 1. 12E -3 0.027
94 2.47E -2 1.25E -2 13.34 3.3E -2 1.8E -4 2.0 SE+Z 9.3 3E -4 0.016

204 2.97E -2 9.98E-3 13.07 3.2E -2 1.8E -4 Z. 52E+2 7.46E --4 0.011
315 3. 34E -2 8.64E -3 12.83 3.2E -2 1.8E -4 2.89E+2 6. 53E -4 0.008
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the Rayleigh number, is

Ra G r Pr	 (5)

In general, the larger the Rayleigh number, the more vigorous the con-

vective flow and heat transfer. Ln addition, for  'heating -from -below ,I situ-

ations, a critical value of Rayleigh number must be reached for the buoy-

ancy forces to overcome the viscous forces and produce convective flow.

Thus an initial estimate of the sensitivity of a configuration to gravity

driven convection can be obtained by examining the Rayleigh number.

Figure 1 is a plot of Rayleigh number versus temperature gradient

for the three selected fluids. A characteristic container dimension L = 1.27 cm

was used for a 1-g environment. t ."or low-g situations, the ordinate can be

multiplied by the gravity level in g's to obtain the corresponding Rayleigh

number. The fluid properties contained in the Rayleigh number equation

were evaluated at an average temperature of the fluid. This figure shows

that, for a fixed AT, water has the largest Rayleigh number, mercury the

mid-range value, and helium the lowest value. The "critical" value of

Rayleigh number depends on the geometric configuration, the heating direction

and other factors. Because of this, and since the g-levels that will be ex-
perienced on the rockets is not quantified as yet, no attempt was made to
identify critical Rayleigh numbers for the rocket flights. This simple di-
mensional analysis was carried out to identify candidate fluids for the
computer analysis of g-jitter convection which is discussed subsequently.

A measure of the effects of natural convection on heat transfer is
provided by the dimensionless group termed the Nusselt number:

Nu = hL

where h is the local heat transfer coefficient, L is the characteristic
dimension of the container, and k is the thermal conductivity. The group
represents the ratio of the total heat transfer to the pure conduction heat
transfer. A magnitude of Nu near 1.0 indicates little convection effects,
while Nusselt number values above 1.0 provide a measure of percent

8
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Fig. i - Rayleigh Number vs Temperature Gradient for Water, Mercury,

Helium Gas (T o = Z0° C, 1 g)
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increase in heat transfer due to convective flow. Accurate calculation of

Nusselt numbers must be made from the thermal profiles in the fluid.

This requires a computer analysis such as the one discussed in the follow-

ing section.

2.3 COMPUTER MODELS

A factor which potentially can cause deleterious effects aboard the

rockets is g-jitter convection. This phrase is coined to describe the Fluid

flow induced by any time-varying accelerations imparted on a container of

fluid. An analytical investigation was made to determine the potential in-

fluence of g--jitter on confined fluids which are heated in low-g.

The basis of this investigation is the Lockheed Convection Analysis

(LCA) Computer Program. The LCA program utilizes a finite-difference

numerical solution of the Navier-Stokes equations to calculate the convective

flow and r sat transfer in confined fluids. The following are among the capa-

bilities of this program:

• Rectangular or cylindrical geometries

• Gases or liquids

• Two--dimensional or axisymmetric flow

• Temperature-dependent material properties

• Constant gravity level or time varying magnitude and direction

• Combinations of heat flux and temperature boundary conditions

• Transient and steady state analyses

• Free surface flows

• Compressibility effects in gases, and

• Heating from the aide or heating from below (two dimensional)

The LCA program has baen checked out and verified by comparison with exper-

imental. data. The reader is referred to Refs. 12, 13 and 14 for details of the

program, numerical method and data verification.

10
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{	 The approach used in this analysis is to select geometric configure-
_.

Lions, with the three test fluids, and perform a series of calculations with

the LCA program, Figure 2 shows the four selected configurations for the

analysis. They consist of (a) a rectangular cell heated from the side; (b) a

rectangular cell heated from below; (c) a cylindrical cell heated from below;
i

and (d) a point heat source in a "large" (rectangular) container. The flow in

the heating-from-below cases was initiated by a temperature perturbation.

The mode of flow was forced to be a single two-dimensional roll cell in order

to avoid three-dimensional effects. The g-jitter cases were started using

the established flow patterns from the constant-g solutions. The effects of

g-jitter can then be determined by the degree of perturbation from the

constant-g mode.

The actual g versus time that is experienced on the rocket flights

was not available at the time of this analysis.	 A parametric F lady was done

using three models of the g-jitter shown in Fig. 3. 	 The mean g, the ampli-

tude, and the period were parameters in the solutions. 	 .parametric values

were selec raa d to span the range of anticipated acceleration levels on the

ro ckett;

L1

The computer models thus consist of combinations of the four con-

figurations, the three test fluids, the three g-jitter models and a range of

amplitudes and periods.	 The computer runs were generally made from

heat-up (t = 0) to approximately t 	 360 seconds,

Figures 4 and 5 are typical of the results obtai%ed with the computer

models.	 These are shown for illustration of the Gsfects of g-jitter on temp-

erature profiles and flow patterns. 	 A summary of the entire analysis is

given in Section 2.4.

E

Figure 4 shows isotherm maps (lines of constant temperature) for

3
four cases: (a) rectangular box of water heated from the side; (b) rectangular

f box of water heated from below; (c) cylindrical container of mercury heated

from below; and (d) point heat source in a peal of mercury, 	 The constant-g

cases are for 10 -3g, and the g-jitter cases are for Model 3 with g = 10-3,

hi  ^
11
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Fig. 3 - G-Jitter Models Used for Parametric Study
I
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^
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A = 10 -3 , A = I sec. Cases (a) and (b) use a constant hot wall temperature
T 1,= 95"C:, vold wall T,., -L5"C:, with the other walls aciabatic. Figure 4a
shows that the 80"C isotherm is located farther into the water for the
g-jitter case than for constant-g. The basic shape remains the same.
Figure 4b shows the 80 C isotherm has also penetrated somewhat farther

'	 for the g-jitter case;. These plots show that g-jitter can effect the temper-
.

	

	 ature profiles and potentially influence space processing experiments which
rely on flat isotherms.

Case 4c is for mercury in a cylinder heated from below. The hot wall
temperature is T  = 2000 C, cold wall T  = 250C with the adiabatic side wall
condition. This figure shows a more drastic effect. The 200 0C isotherm
for the g-jitter case has changed shape, i. e. , somewhat the inverse of the
constant g isotherm. This behavior results from a change in mode of the
convection from a single cell to a double cell (as seen later in Fig. 5).
The point heat source case, 4d, shows the relative shape of the isotherms is
the same with and without jitter, but with the g-ji tter isotherm penetrating
slightly farther into the fluid.

I

Figure 4 illustrates the type of results obtained. The numerous cases
which were run show similar behavior, and are not shown in this report. A
measure of the sensitivity to g-jitter, given in terms of temperature-difference,
is discussed in 5--ction 2.4.

i
Figure 5 provides another measure of the effects of g-jitter. These

are streamlines plotted in the x-y (r-z) plane for two configurations. Figure
5a is the rectangular box of water heated from the side (same conditions on
Fig. 4a). The constant-g streamlines are the usual single roll seen in most
investigations. The Corresponding streamlines for the g-jitter case shows
a skewne s s toward the hot wall and also a change in shape. The general

^j	 circular patterns for constant-g are more elliptic for the case of g-jitter.
Figure 5b shows an even more pronounced effect. This case is the cylin-

1 I	 der of mercury heated from below (same conditions as Fig. 4c). The
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single two-dimensional roil cell has broken off into a two-cell pattern. The

flow pattern in this cell was found to oscillate between the single cell and

the multiple cell. The period of oscillation could not easily bt-- determined

from the calculations. These flow patterns do show a significant influence

of an oscillator* g profile. The streamlines for other cases analyzed showed

similar behavior, but with each case having its own pecularities.

The above results, in conjunction with the other cases studied, showed

the following interesting facts and trends;

o The effect of g»jitter on fluid flow and heat transfer is more pro-
nounced at low gravity levels (C 10- 3 g) than at 1-g conditions
for comparable amplitude of oscillation.

e The flow streamlines can be altered from the circularized patterns
produced by constant accelerations.

o The calculated temperature-time profiles tend to match the corre-
sponding g-jitter model profile but has a lower frequency and is
out of phase due to thermal lag.

o The calculated Nusselt number ratios are strong functions of the
amplitude of the jitter and much weaker functions of frequency.

o The sirte-wave model produces the least effect on the flow pro-
files and heat transfer and the linear periodic model produces
the largest effects.

• Fluids with Prandtl numbers near 0.01 and 10.0 show significant
g - jitter effects while Prandtl numbers near 1.0 exhibit very little
changes in heat transfer.

e Temperature gradients of 200C/sec are calculated at periodic
steady state for the cases which exhibit maximum g-jitter in-
fluence.

o The maximum Nusselt number ratio calculated for any of the
cases is 1.2 for g-jitter convection as compared to 1.0 for con-
stant g conditions. This maximum is attained for the rectangular
box heated from the side at a mean g-level of 10 -3 g using model
3 with Pr = 6.0.

The results of the present study have shown that, for the models con-

sidered, g- jitter convection can have significant effects on fluid flow and heat

transfer in confined fluids in low gravity. More precise calculations can be

made on the nature and magnitude of actual g-jitter when quantitative flight

data become available,
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	 2.4 SENSITIVITY CALCULATIONS

A sensitivity parameter was selected to provide a means of comparing

the numerous computer models which were run. This parameter consists of

the maximum temperature difference between the g-jitter case and the cor-

responding constant-g case. This temperature difference was obtained re-

gardless of the position in the container, or the time point in the oscillation

cycle where it occurred. This approach was necessary because of the com-

plex nature of the isotherms, the differing geometries and boundary conditions,
and the different g-jitter models. This AT E should provide an adequate

^.. measure of the sensitivity of the configurations to g-jitter convection.

a!
Table 2 summarizes the results of the analysis, The left-most entries

in the matrix show the configuration, fluid and heated wall maximum temp-
erature. Note that different values were used for water (90°C) than for the
other fluids. The gravity parameter entry in the matrix consists of the mean
g, the amplitude A, and period A for g-jitter Model 3, the linear periodic pro -

	

_	 file, This model is used to summarize the results since it produced the
maximum convective effect and is probably most typical of actual g-jitter.

	

Y t i	 The calculated AT.max is shown for each case in the matrix. A sensitivity

rating is assigned based on the magnitude of ATmax . The last entry in Table
w

	

	
2 shows the smallest mean g . level at which any appreciable convection oc-

curred.

The rectangular cell. "heated from the side" has the largest AT xnax
i. e. , most sensitive. The cylinder "heated from below" rates number 2,

the box "heated below" is third and the point source case is poorest. The

analysis also shows that, for a fixed configuration, water is the fluid most

U! 
sensitive of those tested, with mercury next and helium gas the least sen-

sitive. Note the agreement of this finding with the dimensional analysis of

Fig. 1. As a result of this analysis, the following fluids were chosen:
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The container geometries selected are:

1 . Rectangular box (7.62 x 10.16 x 1.27 cm)

r Cylinder (1.91 cm diameter, 1$.1 cm length)

I4 The dimensions of the containers, aspect ratios, and heating requirements

for the fluid cells were determined from the analysis and from practical

limitations.	 The combinations of fluids, containers and heating directions

are numerous.	 Various concepts are now discussed and a recommended

flight concept is presented.

2.5	 FLIGHT CONCEPTS

The sensitivity analysis has identified the fluids and configurations

which are most sensitive to low-g convection.	 A convection measuring

package for sounding rocket flights could utilize these results in a number

of combinations.	 The orientation of the fluid cells with respect to the

heating direction is critical to analyzing the convection itself. 	 The actual

I
' direction of the acceleration vector on the rockets will most likely be

changing with time. However, it appears likely that there will be a maximum

g in one primary direction during the coast phase of the flight. 	 The con-

vection measuring package recommended here provides for altering the

< orientation of the fluid cells in the rocket payload area.

Figure 6 summarizes the flight concepts which are recommended

and also provides an alternate.	 Three flights are recommended to obtain
I
' maximum information and to define the rocket convective environment.

i Flight 1 contains the two fluid cells mounted "vertically" with respect to

the long axis of the rocket. 	 This provides for two different heating direc-

tions regardless of the direction of the primary acceleration component.

Flight 2 rotates the cell 90 degrees to produce a "horizontal" orientation

with respect to the long axis of the rocket. 	 Flight 3 is a repeat of flight 1

with the exception that the cylindrical cell is to be heated before launch.

This will provide a measure of the effects of large accelerations on the

20
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settling time, spindown, etc., of fluids aboard the rockets. Flight 3 will

also provide redundant data on the rectangular cell for verification, of the

	

i	 measured environment.

There are obviously many other combinations which could be flown,
f

for example, concept 11 an Fig. 6, It is believed however, from the results

of this study, that the recommended flight concept will provide the maximum

	

r €	 amount of information for the fewest number of flights and the lowest cost.
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Section 3

FLIGHT APPARATUS

This section presents a summary of the apparatus which was fabri-

cated for measuring convection effects on sounding rockets. The hardware

for the water cell, the mercury cell and the electronic modules are sum-

marized including the interface with the rocket payload area. A discussion:

is also given of the bench tests which were performed to verify the opera-

tion of the hardware.

The reader interested in details of the mechanical and electrical

design of the apparatus is referred to NASA-MSFC drawings available

at the Space Sciences Laboratory, ES34.

A summary of the test procedure for the convection measurement

package is given in the appendix.

3.1 THE WATER CELL

The water cell hardware consists of a plexiglass rectangular box

7.62 x 10.16 x 1.27 cm which contains the t.Luid. An aluminum plate con-

stitutes one of the walls of the container. A schematic of the water cell

is given in Fig. 7 to illustrate the various components. A tftermofoil heater,

7.62 x 10.16 cm (Minco HK-6060-04, R = 7.64 ohms) is mounted behind the

plate to supply the required thermal input to heat the water. Thermal in-

sulation is placed behind the heater to reduce the heat losses out the back

of the container.

A mechanism for relieving thermal expansion is provided. These

chambers are shown in the sketch in Fig. 7. Two cylinders, 1.27 cm diam-

eter, 7.62 cm in length, with a plunger rr fichanism are mounted at the top

and bottom of the cell. As the water expands upon heating the plungers

23

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERI14G CENTER



U
i^ W.11

LMSC-HREC TR D390740

Pressure
Relief
Valve

Aluminum
Plate

RTV
Rubber

Phenolic
Stand-Off

Mounting
Bracket

Heater Control
Thermocouple
Lead

Thermofoil
Heater



^.s

r

f

_J

LMSC -HREC TR D390740

are forced in the cylinders, compressing the air and providing a larger

volume for the water. As the water cools and the pressure is equalized,

the plungers return to their original position for repeated use. This

mechanism was verified by bench tests of the unit.

A copper-constan'ian thermocouple (Omega SCPSS-0206-6) is attached

to the heater back face for use by the heater controller circuits to regulate

the heater temperature. Ten other sheathed thermocouples of the same

type are mounted on the front face of the heater plate and also in the water

to record the temperature history. The response time of the thermocouples

is of the order of 0.1 second. Calculations were trade to determine the

effect of conduction in the thermocouple sheaths on the measurement of

temperature at the junction. These calculations indicate that the conduction

in the water is approximately 1000 times the conduction in the thin wires.

The temperature at the thermocouple junction will thus be very close to

the temperature of the medium to which it is connected.

The remainder of the hardware consists of a pressure relief salve

(35 psid), thermocouple connector brackets, fill valves and a mounting
bracket. The completed apparatus comprising the water cell module is
shown in the photograph of Fig. 8.

r

^-	 3.2 THE MERCURY CELL

The mercury cell hardware consists of a cylindrical container, 1,91

cm inside diameter and 18.1 cm length which contains the fluid. The cyl-

inder material is RTV rubber (Dow Corning 3116) which is chemically

compatible with the mercury. One end of the rubber cylinder contains a

i stainless steel plate with a heater button (Minco H6A20W28) behind it to
supply the thermal input. Figure 9 is a schematic of the cell to illustrate
the component:,_ The heater assembly is sealed in place with RTV rubber
which also rai.nimizes the heat leaks out the back of the container. The
rubber cylinder is contained inside a 3.175 cm diameter stainless steel
sheath for rigidity. The entire package is then contained inside a 5.59 cm

tf	 inside diameter fiberglass cylinder and the annulus filled with Microquartz i
I	 felt thermal insulation.	 #
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Fig. 8 - Photograph of Water Cell Module
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The end of the cylinder opposite the heater contains a thermal expan-

sion mechanism consisting of a spring-loaded plunger which contracts as the

heated mercury expands. This system can be used repeatedly without re-

filling since the spring mechanism retracts as the mercury cools down.

This expansion system was verified by repeated bench tests of the unit.

A copper -cons tantan thermocouple (Omega SCPSS-0206-6) is attached

to the back of the heater face for use by the heater controller to regulate

the heater temperature. Ten other sheathed thermocouples are mounted in

the mercury and in the heater plate to record the temperature histories.

The optimum locations of these thermocouples were determined from the

theoretical analysis discussed in Section 2.

The remainder of the mercury cell hardware consists of thermocouple

connectors, an end plate and mounting bracket. The completed apparatus

comprising the mercury cell module is shown in the photograph of Fig. 10.

3.3 ELECTRONIC MODULES

The fluid test cells just described are operated via two electronic

modules. Figures 1 l and Ilb are photographs showing two views of the

measurement apparatus. Figure I la is a view showing the position of the

two fluid cells in the total package. Figure l lb shows the two enclosed

electronic modules (front and back) with the water cell, interface plugs

and thermocouple connectors. The mounting plate allows direct interface

with the payload area of the rocket.

The electronic modules are divided into three basic elements: (i)

power regulation and conversion; (2) amplifiers, and: (3) heater controller.

jTen thermocouples with battery powered reference junctions provide input

signals to the high gain (1000) amplifiers. These amplifiers output a 0 to 5 V
3	 ^	 '

i

	

	 signal to interface with the telemetry system. The amplifiers are initially

adjusted by using an ice bath for zero output voltage representing 0°C and

boiling water for 4.27 V output correlated to 100°C. A two-step electrical

L
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calibration system is provided to keep the amplifiers within tolerance after

reference points have been established. Low calibration level is 500 mV

while the upper level is set at 4.8 V. This range was provided for better

calibration resolution. Utilizing the electrical calibrations, the measuring

system accuracy can be maintained to + 50 mV or +l.Z0C.

The electronics accept a supply voltage from x-28 to +40 V from an

external source. Total power required from the vehicle (external source)

is 140 W at 28 Vdc. The varying input voltage is internally regulated to

+28 V for heater control and electronics power. A do -to -dc converter is

inclucit,] to provide a regulated +15 V to the necessary electronics.

Triggered at liftoff by an external G switch, a 108 second timer delays

the regulated +Z8 V that is applied to the ceA heater. At tho end of the 108

seconds, a second timer is initiated to provide a cell heating time of 360

seconds. At the end of this 360 seconds the 28 V power is removed from

the heater and stays disconnected until the tuners are reset. The heaters

are electronically temperature-controlled by a thermocouple feedback

mounted on the heater base. This feedback is applied to a transistor con-

troller which regulates the current for a heater temperature of 90 0 C +30

to the water cell and 2000 C + 50 for the mercury cell. Electrical checkout

is provided through the umbilical cable and the telemetry system. The

approach of using a constant wall temperature rather than a constant heat

flux was chosen because (1) a large AT between the heated wall and the

fluid can be achieved in a shorter time, and (2) the analytical modeling of

this boundary condition provides a direct correlation with dimensionless

parameters such as Rayleigh number.

The photograph of Fig. l la shows the fluid cells mounted to the full

package in a"vertical position." The capability has also been provided to

mount these cells in a "horizontal" position. This provides the option of

repeating the experiment with the heating direction changed with respect

to gravity direction, i.e., heating from the side or heating from below, etc.
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3.4 PAYLOAD INTERFACE

The experimental procedure aboard the rocket will follow an auto-

mated sequence of events. At launch time, power is supplied to a series

of timers. At a specified later time (i.e., 108 seconds) when the vehicle is

beginning the low-g portion of the flight, the timers turn on power to the

heater. The measurements are taken during the low-g portion of the flight

and the power is turned off by another sequence of timers after the 360

seconds (or other) of available low-g time. The entire experiment package

remains intact during the flight and no special procedure is necessary to

secure the fluid cells after the test period. All data are obtained via the

telemetry system.

The convection measurement system requires a minimum of inter-

face with the rocket payload area itself. The equipment can ne mounted to

a plate which can be bolted and attached directly to the rocket payload area.

The system has a 28 V, 140 W power requirement from the rocket batter-

ies. An appropriate plug is provided for direct connection with this

supply. The data will be transmitted via the telemetry system. Ten chan-

nels are required for the thermocouple measurements. The amplifier in

the system will output a 0 to 5 V signal for interface with the telemetry.

Again suitable plugs compatible with the Black Brant vehicle are provided.

Tk,s convection measurement system provides its own supporting

equipment. The dimensions of the full hardware package are 35 cm in

diameter and approximately 33 cm in height. The total package weight is

estimated to be 16.1 kg. A breakdown of the package weight is given in

Table 3. The experiment will requLre approximately this amount of weight

and payload area to carry out the measurements aboard the sounding

rockets. No facilities, other than the above, are required.
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Table 3
CONVECTION- MEASURING SYSTEM

WEIGHT SUMMARY

Equipment
Weight

(kg)

Amplifier Housing Unit 4.85

Power and Control Unit 3.90

Water Cell Module 1.91

Mercury Cell Module 4.08

Mounting Plate and Brackets 1.36

Total 16.10

is
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3.5 CHECK OUT OF FLUID CELLS

The fluid cell modules were bench tested before delivery to NASA-MSFC

for integration with the electronic modules. These bench tests consisted of:

• Operation of the heaters

r Response of the thermocouples

e Operation of expansion mechanisms

• Checking for fluid leaks

• Response of cells to partial vacuum

• Determining repeatibility of all operations, and

o Observation of fluid convection (water cell).

The cell heater leads were connected to 28 Vdc power supplies. The thermo-

couples in the fluid were connected through appropriate reference junctions

to a strip chart recorder. The heater plate thermocouples were connected

to a digital voltmeter to allow a quick readout of the heater temperature to

avoid overheating.

Figure 12 is a plot of the measured heater temperature versus time

for the mercury cell. The figure is for a "heating-from-above" case which

minimizes the convection and somewhat simulates the heat-up that would be

expected in low-g. The power was turned off at 180 seconds to prevent

overheating the cell. The bench test shows that the maximum heater temp-

errture of ZOO oC is approached in about three minutes. This is within the

allowances which were predicted analytically.

Figure 13 is a similar plot for the water cell- These data were taken

in a "heating-from-below" orientation, and the plot is made up of data read

from the heater plate thermocouple. The plate never reached the maximum

temperature of ^-930C due to large convection cells which developed. How-

ever, the "heating-from-above" orientation causes the plate to reach the

maximum temperature in less than two minutes. The power was turned off

at approximately Z70 seconds. The heater rise time is well within the

limits required for proper operation of the cell.
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The thermocouple data for the remaining probes in the two cells was

reduced and proper operation was verified. The thermal expansion mechan-

isms operated properly through six heat-up/cool-down cycles. The wafer

cell expansion chambers could be viewed through the plexiglass walls which

provided visual observation of their operation. The final checkout of the

i	 cells consisted of repeating the operations with the cells in a vacuum cham-

ber. The low pressure external environment produced no adverse effects

on the heater cycles, expansion process or thermocouple responses.

The water cell plexiglass container allowed visual observation of the

fluid convection which results when the water is heated. This was observed

in several bench tests of the water cell by using a simple shadowgraph. A

light source, collimating lens and viewing screen were used to view the

changes in density gradient as the water was heated. This provided an ad-

ditional bench check out of the water cell and also served to verify the

analytical predictions.
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Section 4

DATA ANALYSIS PROCEDURE

The procedure for analyzing the data from the convection measurement

package will consist of: (1) comparing the reduced flight data with ground

laboratory data taken with the exact experimental configuration, and (2) utiliz-

ing a digital computer program which computes the entire flowfield and ther-

mal history in the fluid cells. The temperature data will provide a quantitative

measure of the convective or diffusion effects in a low-g sounding rocket en-

vironment.

4.1 COMPUTER MODELING

The computer program discussed in Section 2 (Ref. 12) is the primary

tool to be used in the data analysis. This program utilizes a finite difference

solution of the full Navier-Stokes equations for convection in an enclosure.

The magnitude and direction of the gravitational vector can be arbitary and

time-dependent. The solution assumes that the flow is laminar and either

two-dimensional or axisymmetric. The g data from the rocket accelerometer

will be input to provide a g versus time curve for the body force term in the

equations. The solution procedure used by the program does not require the

usual Boussinesq assumption of a linear density dependence on temperature.

This will be especially useful for comparing the calculated temperature gra-

dients with the flight data. This program represents the current state of the

art in convection computation.

The numerical technique is designed to handle a variety of thermal

boundary conditions. The b-cater temperature will be known as a function of

time from the thermocouple measurements. The thermal boundary conditions

for the container walls can be calculated as heat IoSSE!s by the program using

the material properties of plexiglass, RTV rubber and tht fluid temperature
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histories. The boundary conditions are determined by using a three-

dimensional thermal analyzer program which solves the heat conduction equa-

tion. The finite heat capacity and the conduction properties of the heater plates,

the plexiglass walls, etc., are taken into account. These boundary conditions

are then used for the convection calculations and an iteration process converges

the solution. The computer program calculates the transient portion of the

solution as well as any steady state which may be reached. The program has

been used for a number of projects involving convection in enclosures and has

been verified by comparing calculated data with experimental data from the

literature. Documentation of portions of this work are available in Refs. 2, 3,

12, 13 and 14.

Figure 14 is an example solution map from the program to illustrate the

type of data analysis to be performed. The illustrative problem shown consists

of a rectangular container of water with an aspect ratio of 1 in a 10 -3g environ-

ment. The left wall is held at a constant hot temperature, the right wall is

cooled and the lower wall is adiabatic. The upper surface is unconfined with a

linear temperature profile. The Grashof number is 20,000 and the Marangoni

number is 1400. Figure 14b shows the velocity vector maps in the x-y plane

at 400 seconds after heating begins. This computer generated map indicates the

cellular flow pattern in the container. The length of the vector indicates relative

magnitude and the arrow rerresents direction. Figure 14a shows the isotherms

(lines of constant temperature) at the same solution time. The program pro-

duces a complete flowfield and thermal definition; any or all of the variables

can be printed, plotted or mapped.

Figures 15 and 16 are predicted temperature profiles for the water cell

and mercury cell,respectively. These curves represent the thermal histories
which are expected if no convection occurs, i.e., g = 0. Figure 15 is a plot of

temperature versus distance, x, from the heater plate at the centerline plane

of the plexiglass water cell. The position x = 0 is the heater plate and x/w = 1,0

is the inside of the plexiglass wall. The heater plate was allowed to reach 2000F

and then maintained at this value (this simulates the electronic control system).
C
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The location of the thermocouples in the water cell are shown by the X marks

on the plot. Figure 16 is a similar plot for the mercury cell. The temperature

versus axial distance Z is plotted at the centerline of the cylinder. The position

z = 0 represents the heater plate which is maintained at 450 0F. The thermo-

couple location in the axial plane of the cylinder are shown.

These fluid thermal histories can be used for comparing the flight data

with predictions. If no convection occurs during the flight measurement time,

the thermocouple responses should agree, within tolerances, to these predic-

tions. Deviation from these predicted profiles provides the first qualitative

measure of the convective environment aboard the rockets. The analytical

predictions which will be obtained from the convection computer program

using the flight accele. • orneter g data can then be used to quantify the convec-

tive environment.

4.2 EVALUATION

The data evaluation procedure is summarized by the following steps:

• Obtain data using the fluid cells in the 1-g laboratory
environment.

• Reduce the flight thermocouple data to obtain tempera-
ture versus time at discrete locations in the fluid.

• Obtain the accelerometer g data and reduce these data	 I

for use in the convection computer program.

• Run the convection computer program for the enviro-
mental conditions of the experiment.

• Compare flight data, ground-based data and analytical
predictions for temperature distributions in the fluids.

• Assess the magnitude and effects of convection on the
experimental test cells.

• Extrapolate the results of the analysis to typical
promising space processes and state its implications
for space processing aboard sounding rockets.

• Document the findings of the investigation for appli-
cation to assessing the suitability of sounding rockets
for space manufacturing.
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In summary, the results from this investigation will provide: (1) valu-

able information to the space processing community on convection and diffusion

effects in a law--g environment; (2) data on the environment of sounding rockets

for application to various space processing experiments; (3) a flight proven

apparatus and technique for further experimentation aboard rockets. The

measurements obtained will provide data needed immediately to plan and

design for further flights. The temperature measurements in a heated fluidj

I
	 -hill yield data never before obtained in a low-g situation and which are im-

possible to obtain on earth. Extrapolation of these findings may prove useful

in understanding the unexplained phenomena which have been observed pre-

viously in space-produced material. The baseline definition of the convective

environment aboard the rockets is expected to be a major result from the con-

vection measurement package. This information will be extremely valuable to

the entire space processing community for future ventures.

^	 I
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Appetidix

P'

(	 1.0	 Introduction
z

Four operating procedures shall be used to test, check out or cali-

brate the convection measurement package. These procedures are Accept-

ance Test, Functional Test, Horizontal Preflight Calibration and Vertical

Preflight Calibration, as given in the following paragraphs. For the opera-

tion of any of these tests, certain precautions must be taken:

CAUTIONS

	1.1	 Before each test insert the thermocouple reference

junction shorting plugs (p53, p54) and the heater plugs

(p55, p56). Remove them after each test except the

preflight calibration tests. Record active time in

Table A-1.

1.2 Allow 24-hour cooldown time after each heater oper-

ation before recycling the operation.

	

1.3	 The heater in the cylindrical cell is "limited life,

and its operation should be kept to a minimum.

1.4 Notify NASA-MSFC ES34 (telephone 453-0944) at .'_east

24 hours before the planned operation of the Convection

Measurement Package.

1.5 Allow one hour warm-up time before performing any

operation.

s

r.
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Acceptance Test Procedure

Before setting up or operating with this test procedure observe all

cautions listed in paragraphs 1.1 through 1.5. The Acceptance Test Pro-

cedure is to be used as a final test after all development has been completed

or when the unit has been modified.

2.1	 Equipment Required

® Convection Measurement Package (CMP)

a Ground Support Equipment (GSE) Test Panel

® Digital Voltmeter

* Variable (28 to 40 Vdc) Power Supply Rated at 6 A.

Sweep Second Hand Watch

* Ammeter (0 to 6 A).

2.2	 Test Set-Up

This is a bench type set-up where none of the other payload units

are available for interfacing. Connect the GSE Test Panel to the CMP.

Connect the do Power Supply to the GSE Test Panel. Use the digital volt-

meter to measure the output of each channel. Monitor the supply current

with the ammeter.

2.3	 Operation

2.3.1 Set the power supply to 28 +0.5 Vdc. Allow one hour for warm-up.

2.3.2 Record the voltage on position 23. It should be 3.5 to 3.9 V.

I	 2.3.3 Select the "Low Calibrate" mode of operation.

2.3.4 Measure each active channel output and record the digital voltmeter

readin g s 1 through 20 on the attached data sheets (Table A-2). These shall

I	 be within 200 mV of the previously recordet- 1 calibration values. Also, ob-

serve that the panel meters are reading approximate values. Vc and Vr

	

-	 will be read 0 until heater regulation occurs, then Vc and Vr will indicate
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.25 to 2 V as a function of regulation. Meters labeled T2 and T13 will in-

dicate 0 to 5 V as a function of temperature. Figure A-1 is a plot of temp-

erature versus voltage.

2.3.5 Select the "High Calibrate" niode of operation.

2.3. b Repeat 2.3.4 above.

i .
	 2.3.7 Select the "Operate' mode of operation.

Z. 3.8 Actuate the launch simulate switch and note the time on a sweep

second hand.

2. 3.9 Record the time interval that it takes for the heaters to come on

as noted by an increase in supply current. This time shall be 108 + 10 sec-

onds. Record the supply current.

2. 3.10 Monitor the heater temperatures from both cells ( T1 and T13),

during this period. The rate of rise will vary de pending upon orientation

but shall not exceed 4500 F(5 V) for the cylindrical cell and 2050 F (4.1)

for the rectang ;Ylar cell.

2.3.11 Record tl^e time that the heaters turn off. This time shall be 400

+30 seconds after the heaters come on.

2.3.12 Adjust power supply to 40 + 5 Vdc and record the voltage on position

23. it should be 3.5 to 3.9 V.

2. 3.13 Disconnect all shorting plugs.

3. 0 	 Functional Test Procedure

Before setting up or operating with this test procedure observe all

cautions listed in paragraphs 1. 1 through 1. 5. The Functional Test Pro -

cedure is to be used on all payload integration tests and after environmental

tests have been performed to check that the unit is operating. This test

does not include heater operation. The heater test should be added after

the last environmental test.

3.1	 Equipment Required

Same as Paragraph 2.1.

A-3
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3.2	 Test Set-Up

This can be a bench type set-up where none of the other payload

units are available for interfacing or it may be used integrated with the

payload and receiving power from the service module. Connect the GSE

Test Panel to the CMP. if required connect the do power supply to the

GSE Test Panel. Use the digital voltmeter to measure the output of each

channel.

	

3.3	 Operation

3. 3.1 Assure that power is within operating range. Position 23 on the

rotary switch should indicate 3.5 to 3.9 V. Allow one hour warm-up.

3.3.2 Select the "Low Calibrate' mode of operation.

3.3.3 Select each active channel output and record the digital voltmeter

readings. These shall be within 200 mV of the previously recorded cali-

bration values. Also, observe that the panel meters are reading approxi-

mate values.

3.3.4 Select the "High Calibration" mode of operation.

3.3.5 Repeat 3.3.3 above.

3.3.6 Disconnect all shorting plugs.

	

4.0	 Horizontal Preflight Calibration Procedure

Before setting up or operating with this test procedure observe all

cautions listed in paragraphs 1.1 through 1.5. The Horizontal Preflight

Caiibration procedure is used when the payload is horizontal and accessible

at the launch site. This procedure shall also be used at any time the ampli-

fier settings are required to bring the calibrate values to the original set-

tings.

	

4.1	 Equipment Required

Same as Paragraph 2.1.

A-4
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4.2	 Test Set-

This procedure will normally be performed when the CMP is mech-

anically attached to the payload but accessible for electrically disconnecting.

Connect the GSE Test Panel. to the CMP. Connect the Power Supply to the

GSE Test Panel and use the digital voltmeter to measure the output of each

channel.

	

4.3	 Operation

4.3.1 Set the power supply to 28 x-0.5 Vdc. Allow one hour for warm-up.

4.3.?. Select the "Low Calibrate" mode of operation.

4.3.3 Adjust the amplifier zero control of amplifier number one until the

digital voltmeter reads the original calibration setting -F10 mV.

4. 3.4 Select the "High Calibrate" mode of operation.

4.3.5 Adjust the amplifier range control.-of amplifier number one until

the digital voltmeter reads the original calibration setting -F10 mV.

4.3.6 Repeat paragraph 4.3.2 through 4.3.5 until amplifier number one

is within tolerance without further adjustment.

4. 3.7 Repeat paragraphs 4.3.2 through 4.3.6 until all active channels are

adjusted.

4.3.8 Disconnect all shorting plugs.

5.0	 Vertical Preflight Calibration Procedure

Before setting up or operating with this test procedure observe all

cautions listed in paragraphs 1.1 through 1.5. The Vertical Preflight Cali-

bration Procedure is to be used when the payload is mounted vertically

I

	

	 atop the launch vehicle and ready for launch. Its purpose is primarily to

record the calibration signals through the telemetry system and therefore

shall be performed shortly before launch. This procedure can also be

followed at times when payload integration tests require the check out

through the telemetry system.

- ;^.	 A-5



5.1	 Equipment Required

Integrated Payload
^.	 a GSE Test Panel

r Telemetry Ground Station
f

F
5.2	 Test Set-Up

E

This procedure will normally be performed when the CMP is in-
f 1 	 stalled on the payload and electrically accessible through the umbilical

_	 connection only. Connect the GSE Test Panel to the umbilical connector.
F Activate the on-board and ground telemetry system.
1

II^
	 .

L^

5.3.	 Operation

=	 5. 3. 1 Select the "Low Calibration" mode.

5.3.2 Record these data on the telemetry ground station.

5.3.3 Select the "High Calibration' mode.

5.3.4 Record these data on the telemetry ground station.

E	 5.3.5 Select the operate mode.
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Table A-I

ACCUMULATIVE TEST TIME THERMOCOUPLE REFERENCE JUNCTIONS

l	 Active Total
Test Personnel	 Time On Date Time O££ I Date	 Time	 Time

I

E
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Table A-2

CONVECTION MEASUREMENT PACKAGE

Date

by:

Date

by:______-_-

Date

by:

Date

by :

Cal. Cal. Cal. Cal. Cal. Cal. Cal. Cal.
Ch. No. Low High Low High Low High ,Law High

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Monitor

21

22

23


