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FOREWORD

This report, prepared by the Dynamics and Loads Section, Martin
Marietta Corporation, Denver Division, under Contract NAS8-30761,
presents the results of a study that developed a digital computer
program for dynamic anaiysis of a flexible spacecraft with ro-
tating components. The study was performed from April 1974 to
August 1975 and was administered by the National Aeronautics and
Space Administration, George C. Marshall Space Flight Center,
Huntsville, Alabama, under the direction of Dr. John Glaese.

The report is published in three volumes:
Volume I - Analytical Developments

Volume ITI - Program Guide and Examples
Volume III - Program Code
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ABSTRACT

This document details analytical procedures and digital computer
code for the dynamic analys’'s of a flexible spacecraft with rotating
components, Two major subject areas are considered:

(1) nonlinear response in the time domain, and
(2) 1linear response in the frequency domain.

The spacecraft is assumed to consist of an assembly of connectoad

rigid or flexible subassemblies. The total system is not restricted

to a topclogical connection arrangement and may be acting under the
influence of passive or active control systems and external environments,

The analytics and associated digital code provide the user with the
capability to establish spacecraft system nonlinear total response
for specified initial conditions, linear perturbation response about
a calculated or specified nominal motion, general frequency response
and graphical display, and spacecraft system stability anmalysis,

The document is presented in three volumes.
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PRINCIPAL NOMENCLATURE

b kinematic coefficient (matrix)
c damping
) unit vector
£ force (vector)
h modal displacement amplitude
h angular momentum of single body (vector)
I, 3, k unit vectors, body reference triad
k stiffness
kR root gain
kB Bode gain
jf linear momentum of single body (vector
Z?,'ﬁ, n unit vectors, sensor point triad
m body reference point
mass
no. of conditions of kinematic constraint
n body reference point
no. of generalized coordinates
p hinge point
ordinary momenta component
q hinge point
generalized cocrdinate
s sensor point
Laplace variable
t time
u, v, W translaticnal velocity, body reference triad
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v velocity (vector)
w auxiliary variable
X, ¥, 2 displacement, body reference triad
y state variable
A system characteristic matrix
R transfer function characteristic matrix
B kinematic transformation (matrix)
c equivalent viscous damping

cosine (Ce = cos 0)

D Rayleigh dissipation functicn
F force (vector)
G ordinary force
G(s) plant transfer function
H angular momentum (vector)
H(s) controller transfer function
I, J, K unit vectors, Lnertial reference triad
J inertia (matrix)
L linear momentum (vector)
N no. of elastic modes
NB no. of system bodies
NH no. of system hinges
NOFMO no. of system momentum wheels
NB no. of system position coordinates
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P(s), Q(s)
Q

R

R
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no. of system auxiliary differential equations
characteristic polynomials

generalized force

coordirate rotation transformation

external plant input

control system noise input

static mass moment (matrix)
sine (S9 = sin 8)

mode selection transformation (matrix)
system kinetic energy

torque (vector)

transfer function

absolute velocity

system potential energy

work

displacement, inertial reference triad
sensor signal input

prescribed displacement

position coordinate

direction cosine

additional (control) variable

system damping

elastic displacement
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of

attitude Euler angle

Lagrange multiplier

elastic displacement coordinate
position (vector)

mass density
modal rotation amplitude

system time constant

rotational velocity, body reference triad

system resonant frequency
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Accurate analysis of the dyramics and control of planned future
spacecraft is essential to the assurance oi idequate design and
performance, In addition, accurate matn modeling can reduce
the amount of preflight testing raquired by pointing out defi-
cient areas and by accurately simulating results. Essential to
accurate modeling of a spacecraft is the flexibility of the ve-
hicle. Also essential is the accurate modeling of subsystems
whose motions can introduce significant disturbances into the
vehicle (e.g., CMG's). These subsystems may be capable of large
relative motions making conventional approaches inadequate.
Thus, a different approach is required. Techniques developed
using the quasi-coordinate approach appear able to treat this
problem,

The state-of-the-art dynamic response analysis of a system of
connected bodies is currently restricted to topological systems
of connected rigid bodies with (possibly) flexible terminal bod-
ies. Because of the complex orbiting configuration and mechan-
ical systems proposed for future space programs, the limitations
of the current technology are severely restrictive. In this
document we present a more comprehensive formulation that has

the capability to consider any body of the total system as flex-
ible and that is not restricted to a specific connection arrange-
ment,

BACKGROUND

Several investigators have examined dynamic response of rigid
and elastic spacecraft. These studies can be broadly grouped
into three categories. The first concerns rigid spacecraft
with flexible appendages; the second concerns several rigid
bodies connected by rigid and flexible members and the third
involves study of the response of flexible spacecraft subjected
to external disturbances caused by a maneuver (e.g., docking).

Rigid Spacecraft with Flexible Appendages

The equations of motion for the first class of vehicles have

I-1
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been derived for the most general situations by Likins (Refer-
ence I-1). These equations are applicable to dual-spin and
inertially stable space vehicles, and allow fo:r several types

of appendages such as solar panels, articulated antennas, and
flexible booms. Likins describes three approaches to equation
development--discrete coordinates, modal coordinates, «nd hybrid
coordinates, which are a combination of the first two.

This hybrid coordinate method is general and includes the op-
tions for various possible configurations of small, compact
spacecraft. It rombines the computational advantages of modal
analysis and the generality of the discrete coordinate approach.
A general system of equations is written for the flexible appen-
dages in terms of discrete coordinates using Newton-Euler equa-
tions. This large system of z2quations is coupled to the six
rigid-body vehicle equations for the attitude and translation
degrees of freedom. Although the vehicle equations are coupled
to the flexible member displacement coordinates, the hybrid ap-
proach seeks transformations that uncouple at least the appen-
dage deformation equations. For particular assumptions and
conditions, the append«dge equations can be trancformed to a set
of uncoupled coordinates and the higher frequency modes tuncated
under the assumption that they are lightly coupled to the vehi-
cle equations and do not affect the vehicle response. Although
the appendage equations are general, they have several limita-
tions. In particular, they assume that each flexible zipendage
must be attached to a rigid body. Further, the appendage de-
formations are assumed to be small. Although these restrictions
could be removed, the method results in a very complex set of
equations. A more unified and simplifying principle is needed.

Reference I-2 presents cxamples to demonstrate the utility of
this method in the design of an attitude control system when
potentially destabilizing influences caused by vehicle flexi-

I-1 P. W. Likins: Dynamics and Control of Flexible Space Ve-
hicles. NASA Technical Report 32-1329, Rev. 1, 15 January
1970.

I-2 P. W, Likins and G. E, Fleischer: Results of Flexible
Spacecraft Attitude Control Studies Utilizipng Hybrid Co-
ordinates. AIAA Paper 7C-20, presented at AIAA Eighth
Aerospace Sciences Meeting, New York, January 1970.
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bility are present. Reference I-3 applies the method to a dual-
spin spacecraft with solar panels and a damped linear oscillator
that simulates a nutation damper.

Flexibly Connected Rigid Bodies

Studies of rigid models of spacecraft have shown that the sta-
bility of a spinning body depends in a complex way on spin rate,
orbit eccentricity, and inertial properties (References I-4 and
I-5). These studies were extended in References I-6 through I-8
to consider the effects of applied disturbances on the motion of
a rotating space station.

The nature of gravity-gradient excitation on a deformable cable-
counter-weight space station in planar motion was studied by

I-3 A. H, Gaie and P. W, Likins: '"Influence of Flexible Ap-
pendages on Dual-Spin Spacecraft Dynamics and Control".
J. Spacecraft and Rockets, Vol. 7, No. 9, September 1670,
pp. 1049-1056.

I-4 T. Kane and D. Shippy: '"Attitude Stability of a Spinning
Unsymmetrical Satellite in a Circular Orbit". Journal of
the Astronautical Sciences, Vol. 10, No. 4, Winter 1963,
pp. 114-119,

I-5 T. Kan aud P, Barba: "Attitude Stability of a Spinning
Satellite in an Elliptic Orbit". Transactions of ASME,
J. Applied Mechanics, June 1966, pp. 402-405.

I-6 P. Kurzhals and C. Keckler: Spin Dynamics of Manned
Space Stations. NASA, Washington, D.C.,, December 1963.

I-7 P, Kurzhals: An Approximate Solution of the Equations of
Motion for Arbitrary Rotating Spacecraft. NASA TR R-269.
NASA, Washingt-n, D.C., October 1967.

I-8 C. Howard and R, Philippus: Spinup Dynamics of Rigid
Bodies. M-68-16. Martin Marietta Corporation, Denver,
Colorado, April 1968.
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Chobotov (References I-9 and I-10)., Thesa studies indicated the
possibilities of instability through parametric excitation by
periodic gravity-gradient forces, and brought out the signifi-
cance of spin rate and frequency of the natural vibrations of
the cable and of damping.

Other authors have represented the connection between the end
masses with beams. Liu (Reference I-11) employed free-free
modes for a rod and formulated cable and motion equations using
"fictitious" end masses to account for end mass rotation and
connections not at the mass centers of the end masses. Mhilner
(Reference I-12) analyzed the free vibration of a rotating beam-
connected space station with a model representing the general
three~dimensional motion of the system.

The planar analyses referred to above indicated that in "prac-
ticalartificial gravity designs with inherent damping, the
periodic gravity-gradient excitation is not likely to produce
instability. However, a single cable system lacks torsional
stiffness and this introduces difficulty. Pengelley (Reference

1-9 V. Chobotov: "Gravity-Gradient Excitation of a Rotating
Cable-Counterweight Space Station in Orbit". J. Applied
Mechanics, December 1963, pp. 547-554.

I-10 V. Chobotov: 'Gravitational Excitation of An Extensible
Dumbbell Satellite". J. Spacecraft. Vol. 4, No. 10,
October 1967, pp. 1285-1300.

I-11 F. Liu: On Dynamics of Two Cable-Connected Space Sta-
tions. NASA TM X53650. NASA - George C. Marshall Space
Flight Center, Huntsville, Alabama, August 28, 1967.

I-12 J. Milner: Free Vibration of a Rotating Beam-Connected
Space Station, NASA TN D-4753. NASA, Washington, D.C.,
September 1968.
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I-13 and 1-14) discusses the dynamic stability of a cable-
connected spinning spsce station with particular attention to
(L) the question of stability with end masses that are finite
rigid bodies (points of connection not at centers of mass),

(2) the requirements for "body-cable-body" stability and (3)
obtaining torsional stiffness through multiple cables and choice
of inertia configuration.

Dogcking Impact Studies

The third study category involves docking simulation of two
flexible space vehicles (Reference I-15). The equations of
motion and the auxiliary differential equations that charac-
terize the docking maneuver were cast as a set of simultaneous
first-order differential equations and the implementation of
the numerical solution evolved around the state vector concept.
By numerically evaluating the state vector time derivative, the
input to a numerical integration aigorithm was obtained that
would yield, in a stepwise fashion, the time histories of the
state vector time derivative, the state vector, and other
auxiliary variables.

It is noteworthy that the analytical techniques developed during
this study are general in nature. Although they were usec for
the solution of a specific problem, namely simulation of the
docking of two elastic bodies, they are not restricted to this
problem. In fact, these techniques are readily adaptable to

I-13 C. Pengelley: Preliminary Survey of Dynamic Stability of
a "Tassel Concept' Space Station. RL 40554, AIAA Sympo-
sium on Structural Dynamics and seroelasticity, Boston,
Massachusetts, August 30 - September 1, 1965, pp. 269-
283.

I-14 C. Pengelley: ‘Preliminary Survey of Dynamic Stability
of a Cable-Connected Spinning Space Station. J. Space-
craft, Vol. 3, No. 10, Cctober 1966, pp. 1456~1462.

I-15 C. S. Bodley and A, Colton Park: Response of Flexible

Space Vehicles to Docking Impact. Martin Marietta Corror-
ation, Denver, Colorado, March 1970.

I-5
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any problem concerning the interaction of systems of ronrotating,
flexible bodies (Reference I-16).

Satellite Stability Studies

Meirovitch and Calico (Reference I-17) presented a comparative
study of stability methols for flexible satellites. The authors
consider three approaches to the stability of hybrid dynamical
systems. Two of the approaches, namely the method of testing
density functions and the method of integral cocrdinates, lead
to closed-form stability criteria in terms of certain system
characterizing parameters. The third method, modal analysis,

is shown to yield more involved stability criteria than the
other two.

A similar development of the mction stability of force-free
spinning satellites with flexible appendages is presented by
the same authors in Reference I-18.

The equations of motion for a spinning satellite consisting of
a central rigid body and long flexible appendages, which are
norinally in the spin plane, are developed in Reference I-19.
The authors preface their development of the stability inves-
tigation by introducing the idea that, in the presence of
flexibility, the classical "major axis theorem" is a necessary,
but not a sufficient, condition for stability. A development

I-16 C. S. Bodley and A. Colton Park: Orbital Docking Dynamics
Martin Marietta Corporation, Denver, Colorado, May 1971.

I-17 L. Meirovitch and R. A. Calico: "A Comparative Study of
Stability Methods for Flexible Satellites'. AlAA Journal,
Vol. 11, No. 1, Jenuary 1973.

I-18 L. Meirovitch and R, A, Calico: '"Stability of Motion of
Force-Free Spinning Satellites with Flexible Appendages'.
J. Spacecraft, Vol., 9, No. 4, April 1972,

I-19 P, C, Hughes and J. C. Fung: 'Liapunov Stability of
Spinning Satellites with Long Flexible Appendages".
Celestial Mechanics, Vol. 4, 1971.
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of the motion equations and an application of Liapunov's indirect
method confirm this suspicicn.

Effects of Environment

The relatively mild environment of space has been used to advan-
tage in designing compact and lightweight structures. However,
these structures are usually very flexible and an interaction
between structural flexibility and attitude control systems can
result. Inflight difficulties (Reference I-20) have been most
numevous on spacecraft with extendible booms and the majority
of the intaeractions have been attributed to the susceptibility
of the booms to the solar environment, including solar heating,
solar pressure and gravity gradient.

Probleans arising from solar heating fall into two categories:
static deflections from the nominal shape and thermally induced
vibrations. Both types of effects can le~d to attitude errors,
cause despinning or induce instabilities. Static deflection can
cause attitude errors when flexible booms are used for gravity-
gradient stabilization.

THE SPACECRAFT SYSTEM

The spacecraft undergoing analysis is generally described as a
cluster of contiguous, flexible structures (bodies) that com-
prise the total mechanical system. The entire system (space-
craft) or portions thereof may be spinning or nonspinning.
Member bodies of the spacecraft are capable of undergoing large
relative excursions such as those of appendage deployment, or
rotor/stator motions. The general system of bodies is, by its
inherent nature, a feedback system wherein inertial forces (such
as thos: due to centrifugal and Coriolis acceleration) and the
restoring arnd damping forces are motion dependent. Also, the
system may possess a control system, wh:rein certain position
and rate errors are actively controlled through use of reaction
control jets, servomotors, or momentum wheels.

I-20 H. P, Frisch: "Thermally Induced Vibrations of Long Thin-
Walled Cylinders of Open Section'. Journal of Spacecraft
and Rockets, Vol. 7, No. 8, August 1970.
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Bodies of the system may be interconnected by linear or nonlinear
springs and dampers; they may be interconnected via a mechanism
that is a combination of gimbal and slider block, or any combi-~
nation of the above. Also, any two bodies of the system may be
free (one from the other) and possess six degrees of relative
motion freedom. Also, several or all of the six degrees of rel-.
ative motion freedom, between two bodies, may be a prescribei
function of time (including zero motion).

For purposes of further introduction of the physical system, let

us consider an illustrative example, such as the systea of bodies
of Figure I-1, and let this example be the prototype for all sub-
sequenrt discussion and development.

Body Reference Point

O  Hinge
z 8 Sensor Point
G#D- Momeritum Wheel
o

Y
X Inertial Fraxe

Figure I-1 Labeling Scheme for Example System

a1, gt 3 b, Asrovin 1 52 4w o
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In Figure I-1, we have deliberately indicated a nontopological
tree configuration. There are five hinges and four bodies, thus
one closed path. Consecutive integer labels are used for body
reference points, for hinges, for sensor points, and for women-
tum wheels, The numerical order within each of the four label
sets may be randem; however, it is understood that body 1 (which
may be any body of the system) is associated with hinge 1.

For each body of the system, there is a body-fixed, right-handed
reference frame, whose origin may be at the body's mass center
or at some structural hard point on the body (a body's elastic
deformation is measured in its reference frame).

In this work a hinge is defined to be a pair of structural hard
points (see Figure I-2) with a point situated on each of two con-
tiguous bodies. In Figure I-2, point p and point q comprise a
hinge. Clearly, a typical body may contain one or more hinge
points, but a hinge may be associated with only two bodies.
Hinge 1 is given special consideration. It is also a pair of
points; but one of the pair is coincident with the reference
point of body 1, and the other point of the pair is coincident
with the inertial origin. Thus, motion "across the hinges" is
used to represent system motion. The reference point of body 1
is located with respect to the inertial origin by an inertially
referenced position vector. The attitude of the reference frame
of body 1, with respect to the inertial frame, is represented by
three Euler angles. Thus, there are six position/attitude co-
ordinates associated with hinge 1.

|

Figure I-2 Typical Contiguous Bodies of the System

I-9
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Each ¢ the remaining hinges is considered in a manner somewhat
simi.x- to that of hinge 1. Referring to Figure I-2, we note
that. tnere is an orthogonal reference frame attached to point p
and -nwother to point q. The triad of point p may have a "natu-
ral" (or undeformed) misalignment with respect to the triad of
body point m plus additional misalignment due to elastic de-
formation. The same celationship is true concerning the points
n aud q.

Now t ere are, associated with the hinge oZ points p and q, six
relat ve position/attitude coordinates. Point q is located from
point p with a p-frame referencud position vector. The attitude
of th: q-frame with respect to the p-frame is represented by
three Euler rotations. Thus, if NH is the number of system hinges,
then there are 6 x NH position coordinates to be usel in conjunc-
tion with modal displacement coordinates to define the system's
position state. Let it be noted that only the time variable
position coordinates of the 6 x NH set of candidates are consi-
dered as state vector elements (the position coordinates whose
rates are constrained to zero are not included; however, the po-
si:ion coordinates themselves need not be zero).

The: system of bodies generally has a number of so-called "sensor
points." We define a sensor point to be a structural hard point,
wh: ch has a right-handed orthogonal reference frame attached,
thzc is used for a variety of purposes. A sensor point may be
used to enable t': program system to monitor the position, atti-
tude, »r the rates associated with a specific structural hard
peint. For example, a rate gyro, a star tracking device, or
other motion/position sensing device is physically situated at a
sensor point. Also, a sensor point is used as a point of appli-
cation of a force or torque vector (see Figure I-2).

The systen of bodies may contain built-in momentum wheels, some
of which are cons*art speed wheels and others are variable speed.
The variable speeu momentum wheels are motor driven; the shaft
torque results ‘rom a given control law. Each momentum Wheel

of the syste  must be associated with a sensor point because,

for a general flexible body, the gyroscopic coupling is influ-
enced b+ elastic motion.

As s indicated in Figure I-1, the system may be in a non-topo-

1~ _cal ree configuration. The methods employed in this develop-
nent are such that closed loop configurations (generally refer-
red to as nontopological) may be considered. If every body of

t"e N-Body syotem is rigid, then of course there may be no closed
ioops, i-ce1se such a system has an indeterminate "load path."

I-10
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To accommodate closed loops, the system must contain sufficient
structural flexibility (compliance), and therefore modal dis-
placement coordinates, that the kinematic equations of intercon-
nection constraint are algebraically consistent.

The program development is such that none, several, or all bod-
ies of the N-Body system may be flexible. The system may be
"forced" by such environmental factors as gravity, gravity gra-
dient, solar pressure, thermal gradient, and aerodynamic drag.

The computer program system described herein falls into several
categories of capability: (1) synthesis and time domain solution
of the nonlinear differential equations of motion of the com-
plete spacecraft system idealized as a collection of intercon-
nected flexible (or rigid) bodies, (2) linearization of the
governing equations by numerical means, (3) time domain solu-
tions of the linearized equations that describe perturbation
response of the complete spacecraft system about some predeter-
mined (calculated or user-specified) nominal motion, and (4) gen-
eral frequency domain stability analysis corresponding to the
linearized spacecraft representation.

I-11
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(I1-1]

[11-2]
[I1-3)

[11-4]

THE STATE EQUATIONS FOR NONLINEAR TIME DOMAIN SIMULATION

SUMMARY OF SYSTEM CHARACTERIZING EQUATIONS

The state equations governing the dynamic response of a system
of interconnected flexible bodies, that may be actively or pas-
sively controlled and that may be "forced" by environmental fac-
tors such as solar pressure, gravity gradient, aerodynamic drag,
etc. are presented here in a concise summary form as:

{. 21 T N
0}, = [nl] ({G}J + [l }),
(&)

{8} =}:[313 wl ,
3
(81 = £ (18}, (8}, (e}, (&}, (63),

subject to the constraint equations

[1I-5] }E:[b]j {U}j = {a}.
k|

In Equations II-1 through II-5 the index ] ranges from 1 through
the number of bodies of the system. Equations II-1 through

II-4 represent n first order, nonlinear, ordinary differential
equations while Equation II-5 represents m additional conditions
of kinematic constraint. Thus, the dimension of the state space
for a given system of controlled bodies is (n-m). That is,
there are n-m state variables required to define the configura-
tion at any instant of time t.

State variables of the configuration space include absolute ve-
locities, {U},, modal displacements {{}4, position coordinates
(both angular-and cartesian position) {B}, and additional vari-
ables {8} that we will subsequently refer to as control vari-
ables; they are variables associated with the differential equa-
tions that define a given control law., However, they may reflect
any other auxiliary differential equations that are necessary

to define the overall feedback system; for example, they may in-
clude thermal equilibrium states or other state variables neces-
sary to complete definition of a state dependent environment,

11-1
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The right-hand sides of Equations II-1 through II-4 are func-
tionally dependent on all the state variables and time, although
the relationships may be only termed implicit at this point.

Let it suffice that, in a way of introductlon, a description of
the nature of the governing Equations II-1 through II-5 be given
here, and that more explicit development and discussion follow
in subseqnuent chapters.

The Equations of II-1 represent the dynamic equilibrium equations
for the typical jth boedy of the system. They are of the form
shown whether the body is treated as rigid or flexible. They
state, in effect, that a deformation dependent mass matrix [m]j,

postmultiplied by a vector of relative accelerations {ﬁ}j, pro-

duces a vector of inertial forces that is balanced by all other
state and time dependent forces {G}, and interconnection con-

§ {A}. The vector {G} j includes inertial

forces due to centrifugal and Coriolis acceleration, as well as
elastic restoring forces, damping forces, control actuator for-

straint forces, [b]

ces, and so forth. The constraint forces [b]T {\} are necessary
3

in order that the kinematic constraint .equations (II-5) are sa-
tisfied; elements of the vector {)A} are actually Lagrange multi-
pliers, evaluated and used in the solution process.

The Equations of II-2 simply represent a selection transforma-
tion, because the vector of modal velocities {;;}j is a subvector
of {U}j' The Equations of II-3, used to develop {B}, represent

a kinematical transformation, transforming nonholonomic veloc-
ities to time derivatives of position coordinates. Finally,
tne Equations of II-4 are auxiliary differential equations that
are user defined and may be used to implement control dynamics
and other feedback effects.

The constraint Equations of II-5 are kinematic conditions of a
form similar to those of Equation II-3, In either case, we have
a velocity transformation. We might term Equation II-5 an ac-
tive set of kinematic conditions and those of Equation II-3 a
passive set. The active set is used to calculate m of the de-
perdent alzuments of the {U}j vectors in terms of the remaining

independent elements and the prescribed velocities {&}, some of
which may be zero and sowe user-defined functions of time. Thus,
the constraint equations are of a general form because nonholo-
nomic, rheonomic conditions may be so represented, Given that

the {U}j vectors satisfy the required conditions of Equation

II-5, then tne position rates, {é}, may be evaluated via the
passive conditions of Equation II1-3, resulting in a kinematically
consistent system.
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[11-7]

{11-3]

[11-9]

[1I-10]

[II-11]

[1I-12]
[II-13] [

[II-14] [

[1I-15]

[1I-16]

Note that there are m equations of comstraint representaed by
I1I-5. There are also m Lagrange multipliers in the vector {}\}.
Most often, in studies of dynamic systems, the Lagrange multi-
pliers and the dependent velocities and accelerations are en-
tirely eliminated from the governing equations. Such is not
the case in our development. We have chosen to involve Lagrange
multipliers in our equations for two reasons: (1) we wish to
monitor the multipliers as a function of system motion, as they
are interconneztion forces and torques, and (2) for purposes of
numerical implementation it is convenient to calculate and use
the {A} vector in Equation II-1. The Lagrange multipliers are
calculated by differentiating Equation II-5 and combining that
result with equation II-1l giving

-1
_1 T . -1
{A} = Z [b]j [m]j [b]j {a} - JZ [5]j {U}3 + [b]j [m]j {G}j .

3

Notice the following functional dependencies:

b1, = ¢ ({s}j, {s}j) ,

w%-f(ﬁh,ﬂ%).

thus

(B} = £ ({a}. {a}. {U}) ,
{u}

{5}
{5} = £ ({8}, {B}, (&}, (), (6} ¢t ),
{G} £(1g}, (U}, {8} ¢t )
: f({
- ({e}. {83, (€}, {a})
thus
) = £ ({e}. {8}, (v}, (&}, (B}, {8} ¢t ).
and {0} = £ ({5}. {8}, {u}, (&}, {8}, (8}; ¢ )
where, in the above notation, we mean that the elements of the
matrices/vectors on the left are functions of the elements of

the vectors on the right. The chronology of evaluations indicated
is that which must be followed in the solution process.

1I-3
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The differéntial equations of motion for the system are therefore,
of the general form:

Sli = f(Yll Y2s ** yn_m; t):

and the state vector and its time derivative are arranged as fol-
lows:

{y} = [{u}; {y} = r_{1‘1}1
{u}, {I.J}z
W (g
{¢eh {th
{£}2 {E}s
{c;}NB {a}NB
81 él
B2 é2
By3 Byg
8 é1
62 éz
Sus L_Gms

with NB the total number of bodies of the system, N8 the total
number of pcsition coosrdinates necessary to orient the system
and N8 the total number of auxiliary (control) differential
equations required.
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Now, given that the {y} vector is known (numerically) from pre-

scribed initial conditions or from numerical integration of {y},
the primary task of the solution process is to numerically es-

tablish the {y} vector. The {y} vector is numerically (step by
step) integrated so as to produce an incremented {y} veccor, thus
a sequence of time point solutions.

In way of summary, a narrative description of the steps (numeri-~

cal evaluations) necessary to produce {y} given {y}, follows.

The matrices [B]j and [b]j are kinematic coefficients that de-

pend on position and modal displacement variables, and are eval-~
uated as the first step.

Now, if available numerical techniques (also computer software
and hardware) were absolutely accurate, we would be assured that
the {U}j vectors, resulting from numerical integration of the

{fl}j vectors, would satisfy the constraint equation II-5. This

is not the case, therefore the second step of “he solution pro-
cess is to calculate the dependent elements of the {U}J vectors

by using Equation II-5. 1In fact, due to anticipating numerical
inaccuracies, only the independent elements of the {U}j vectors

are obtained by numerical integration. There are only n-m "in-
tegrators" involved in the solution process even though all of

the elements of the {fl}j vectors are numerically evaluated (by
use of Equation II-l); we have good numerical resolution in the

independent {fJ}j elements due to using the Lagrange multipliers
{1},
A kinematically consistent system results from satisfying Equa-

tion II-5. The {U}j vectors may now be used with the selection

and kinematic transformations as indicated by Equations II-2 and

1I-3 to produce (numerically) all the modal velocities {F;}j and

position coordinate rates {B} completing the third step of the
process.

Sufficient calculation has been completed to this point to then
evaluate the control variable rates as per Equation II-4, pro-
ducing {6}, During the procese of calculating the {3} vector,
all of the required control actuator torques (or forces) are
calculated, because sufficient numerical information is avail-
able, All of the constituents of the torques/force vectors {G}J’
are now available and therefore {G}j’ [m]j and [1':]j are numeri-
cally evaluated, (refer to the functional expressions of Equa-
tions II~1ll through II-14), which completes the fourth step of
the process,

II-5




With reference to Equation II-6, we note that there is now suf-
ficient numerical information to evaluate {A}, which is then used

in Zquation II-1 to calculate the {ﬁ}j, completing the fifth and

final step of the process,

It is noted in the above discussions that the solution process
may be carried out through completion, providing the state vec-
tor is numerically known. At any step of a simulation, the {y}
vector is known, of course, as the result of numerical integra-
tion. The initial state vector is another matter, It is diffi-
cult, if not impossible, for a user to prescribe {U}j vectors

that are kinematically consistent with the conditions of Equa-
tion II-5; also, the nonholonomic velocities of {U}j’ when con-

sidered as a complete set, are of a somewhat abstract nature.
The user is in a much better posture to prescribe initial values

of {B} and {&} (the initial velocities that are physically mean-
ingful to him). Thus, to initiate the simulation (that is, to
create an initial state vector from information the user is in

a positicn to prescribe) some preliminary steps must be taken,
as follows.

The user must prescribe initial values of the {E}j, {E}j. {8},

{8} and {6} ,vectors; also the variable speed momentum wheel spin
velocities 8, Now, in that {a} (the prescribed position rates),
are explicitly dependent on time and are always available, the

kinematic Equations II-3 and II-5 may be used together to estab-

lish initial values of all {U}j‘ The question inevitably arises:

are the number of equations represented by II-3 and II-5 suffi-
cient to solve for the elcwents of the {U}j? Let us consider
the typical {U}, vector. We note that there are six reference

3

frame velocities in each {U}j, namely, Wyr Gy Wy Uy Y, and w,

There are also six relative velocities associated with each
hinge. Now, if the system is a topological tree configuration,
then the Equations of II-3 and II-5 comprise exactly the re-
qui  ed number of equations to establish the reference frame ve-
locities; that is, there are as many hinge points as there are
bodies and even if every body were rigid, the system would be
determinate. In this case, the initial sets of six reference
frame velocities are computed via Equations II-3 and II-5; the

prescribed initial {£} vectors and momentum wheel spin veloci-
ties are simply placed in the appropriate {U}j vectors, and the

initial state vector is thus defined.

1I-6
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In the event that the system is not a topological tree configu-
ration, then there are more equations (II-3 and 1I-5) to be
satisfied than there are reference frame velocities (or in other
words, there are more hinges than bodies). In this case, ele-
ments of the {&}J vectors must take on the responsibility of

helping *v satisfy the kinematic conditions. For each hinge

in excess of the number of system bodies there must be at least
six Jeformation modes, represented by £ coordirates, and they
must be distributed throughout the system in such a way that
the kinematic conditions of Zquation II-5 are independent.
Clearly then, when there are more hinges than bodies (nontopo-
logical tree), one or more of the bodies must be flexible for
the system to be determinate. Now, when the configuration is
nontopological, the user will specify initial values for all of
the £, but he must acknowledge that they are not all independent
and the dependent ones (automatically determined by the program)
are calculated and replace the values that he has specified.

From these considerations, we note that the initial state vector
is created by the program from information that is user supplied
and that is physically meaningful to him. His only concern, re~
garding initial conditions, is: whether he has supplied an ade-
quate description of system flexibility, in the event of a non-
topological tree configuration, for the system's kinematical
equations to be determinate.

DYNAMIC EQUILIBRIUM EQUATIONS FOR A SINGLE BODY

The differential equations of motion and auxiliary equations that
characterize a physical system may take any one of several equi-
valent forms. By equivalent form, we mean that the same physi-
cal system can be characterized by more than one set of mathe-
matical variables; in any case, the number of variables must be
the same. For example, the motion equations for a rigid body
might be derived by using Lagrange's equations (resulting in

six second-order equations), or ore might use the Newton-Euler
equations where translational motion is represented by three
second-urder equations while rotational motion s represented

by six first-order equations (three moment-momentum equatinng
and three attitude equations). In each case, there are 12 state
variables.
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There are a variety of alternative methods of analytical dynamics
that one may select from to develop his final (programmable)
equation format. A timely and valuable commentary accumpanies
the comprehensive comparative evaluation of these methods in a
recent report by Likens®. The basis for our development is ef-
fectively included in his discussion.

Our intent .s not to highlight any particular method of analyt-
ical dynamics as being superior to the others., Clearly, the
methods are all equivalent providing that they are developed
through completion . ithout any compromising simplifications.

The choice of metnod is made after considering the requiremer:s
associated with a parcticular problem or computer simulation pro-
gram. Our development begins with a Lagrangian appruach, then
through algebraic manipulation we arrive at the format of Equa-
tions II-1 through II-3.

Lagrange's equations for the general situation appear as
d_ (3T " D _ oT + v q, + a. . A
de 3& 3q aq 9q 3 ji 1

] 3 | h| =

for (j=1,2,°* n)

n

}E: ij qj + a, = 0

i=1
for (i=1,2,** m)

In tnese equations, T and V are system kinetic and potential en-
ergies, respectively, and D is the Rayleigh dissipation function
(accounting for internal damping). The generalized constraint

forces( E : aji Ai) augment the generalized forces Qj {that arise
i

due to the action of external factors) and are necessary in order
that the additional conditions of constraint (the sezond set of
Equation YI-13 be satisfied. The form of the Equations II-18

is complete and general, in that they include unconservative
forces (explicitly time dependent Qj and dissipitive forces

BQ/laqj and the auxiliary comstraint equations (the second set

of Equation 1I-13) are in an all encompassing form, because

*Likens, P. W., "Analytical Dynamics and Nonrigid Spacecraft Sim—
ulation," Technical Report 32-1593, Jet Propulsion Laboratory,
Pasadena, California, July 13, 1974.
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nolonomic conditions may be so represented. The coefficients
(aij, J=1, 2, ¢+, n; t) may depend explicitly on the time (t),

thus the constraint conditions as shown account for both rheo-
nomic and scleronomic situations.

In the equations, n is the number of generalized coordinates in-
volved in the representation and m is the number of auxiliary
conditions of constraint. Note that, although the qj are gener-

alized coordinates (as they must be for the Lagrangian formula-
tion) they are independent only in the isolated case when m=0,
or when there are .o auxiliary comnstraint conditions. The wri-
ter has observed that some engineers share a misconception on
thiz point, thinking that if the variables q; are not indepen-

dent then they are not generalized coordinates, In view of the
m constraint equations, we simply have a set of generalized co-
ordinates that are not independent.

In cases where all of the constraint equations are holonomic,
it is theoretically possible to eliminate m of the 4y in terms

of the remaining n-m. However, if any of the comstraint ~ondi-
tions are nonholonomic, a Lagrange multiplier (Ai) must be used

in conjunction witn that equation. Lagrange multipliers may,
of course, be used for eitner holionomic or nonholonomic con-
straints.

In that the simulation program includes mathematical representa-
tion of active or passive control for elements of the spacecraft
system, there are state equaticns involving control variables
that are additional to II-13. The manner in which the additional
control equations enter into the composite system state equations
is the same whether we are talking about the form given by Equa-
tion II-1 or that of Equation II-13, The control system state
variables retain their identity in either case although the con-
trcl forces/torques necessary to ''close the loop" are trans-
formed differently. In the case of Lagrange's equations, the
control torques contribute to the generalized forces Qj whereas

in the case of the summary Equations I1I-1, they contribute to
elements of {#} and may be interpreted to be ordinary forces or
torques, acting at a structural hard point (or at a semsor point).
Thus we will postpone further discussion of the control system
until later, concentrating on the "mainline'" motion equationms
until such a point when we can clearly indicate control system
coupling. !
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In order to "solve" Lagrange's equations of motion, one must first
define the explicit form of the kinetic and potential energy func-
tions, the dissipation function D, and he must also define the
form of the transformation relating ordinary cartesian positiou
coordinates (positioning the typical system particle or element)
to the generalized coordinates 9y the form of the transformation

is necessary to be able to express gererzlized forces Qj in terms

of external ordinary forces. Having defined the form of the en-
ergy functions and coordinate transformation, one merely per-
forms the indicated differentiations (II-13). He has not yet
solved the motion equations but has only explicitly defined a
system of ordinary second-order differential equatioms, which
in many cases are nonlinear, and which require solution using
numerical integration techniques.

With numerical implementation and digital programming in mind,
we wish to recast the form of the ordinary differential equa-
tions. First of all, we would like for them to result in canon-
ical first order form (the highest time derivatives appear un-
coupled on the left hand side). Also, we would like to group
complicated combinations of generalized velocities and displace-
ments so that we may replace such groups with new variable names.
The new variables we refer to have been called "quasi-coordi-
nates" in the literature. This will simplify tae required com-
puter programming and minimize arithematic computation. Also,
it helps considerably in organizing the numerical algorithms
necessary to evaluate the left hand side of the state equationms.
Thus, recasting the form of the governing equations is suffi-
ciently justified,

We begin the recasting process by defining the forms of kinetic
and potential energy, and the required transformation. First
let us note that bodies of the system of flexible bodies are
tantatively tra2ated as though they were completely independent,
one of the otner., The 1nfiuence oI anv one body on another is
accounted for through the additional constraint coaditions and
the Lagrange multipliers. Thus, if we express kinetic and po-
tential energies for the typical body and apply Lagrange's equa-
tions to it, the ordinary differential equations pertaining to
it arz simply a subset of Equaticn II-~13; and we will have ac-
counted for the total system through the representative form of
the typical body.
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The generalized coordinates chosen to represent the configuration
of the typical body include three Euler angles to indicate atti-
tude of the body fixed axis system relative to an inertial frame,
three projections (components) of the position vector from the
origin of the inertial frame to the origin of the body fixed ref-
erence system, onto the inertial axes, and N elastic displace-
ment coordinates. We note that the origin of the body fixed axis
system needn't nccessarily coincide with the body's mass center.
Also, the elastic displacement coordinates may be measurements

of displacement at a discrete set of points on the body or they
may be coordinates associated with normal vibration modes. In
either case, they represent displacements measured in the body

axis system, For the rth flexible body, we tabulate its gener-
alized coordinates as:

{%}=3-\

3
8 ? Attitude

Euler Angles

S

Y > Body 's Reference
Point Position
z | Coordinates

£) A

€2

Elastic Displace-
. ment Coordinates
£
iy

Now, there exists a transformation that relates a set of nonhol~
onomic velocities to the generalized velocities that is exten-
sively used in recasting the equations. The transformation
appears as follows:

I11-11
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where in Equation I[-19 the vector of nonholonomic velocities
{U} contains the three projections (mx, wos w, ) of the angular

velocity vector W onto the body fixed axes (w is the angular ve-
ocity of the body reference frame), the three projections of
the reference point translational velocity (u, v, W) onto the

body fixed axes and the displacement rates {&}. The elements
of the transformation Yij (i, j=1, 2, 3) are direction cosines;

the submatrix [y] is an orthonormal rotation transformation re-
lating the attitude of the body fixed axis system t¢ the iner-
tial frame. The submatrix {m®] is also a rotation transfo:rma-
tion; howuver, it is not orthonormal because it relates vector
components based on an orthogonal basis to those of a skew (non-
orthogonal) basis; namely the axes about which Euler rotaticas
are measured.

In short, we write

{u} = [8) {ql.

Clearly the elements of {8] are functions of the three Euler
angles. There are 12 possible sets of Euler angles. Any one
set is valid for use in subsequent development; the resulting

equation form is independent of selection from the 12 sets of
angles.
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[11-21]

[1I-22]

[11-23]

[iI-14]

} Sy

Elements of the transformation [f] may be explicitly defined in
terms of three of the generalized coordinates (the Euler angles).

The kinetic energy expression for the rth body is most easily
expressed (initially) in terms of the nonholonomic velocities
{U}. Having done this, [B] is used to replace {U} with [B8] {q}.
The kinetic energy is then expressed completely in terms of gen-
eralized displacements and velocities (the form necessary for
applying Equation 1I-13).

Kinetic energy for the typical body is

T=1% vevodVv
'

where Vv is the velocity field, ¢ is mass density, and where in-
tegration is carried out over the volume V of the body.

Tne inertial position of any point p of the body is (See Figure
11-1.)

T=X +Tg+T

with'iR being the inertial position of the body's reference point

(R, the origin of the body axis system), Tg positions the point
p” (which coincides with p in the undeformed configuration) from

point R, and where 7 (x, y, 2, t) is a measure of elastic dis-
placement.

The vectors Py and N are referenced to the body axis system,
thus

30=li 3 iJ x
y

z
and

- - _ o, (x, 9, 2)] & (t)) H
n(x, y, 2, t) = li j k ( xk k

¢yk (%, ¥y, 2)

¢zk (x, y, 2)

k=1

the elastic displacement T is represented as the superposition
of 4 finite number of single valued space functions ¢k'

I1I-13
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[1I-25]

[1I-26)

[11-27}

The velocity field v is obtained as
) N .
—_ dr —
v-'-a-E-Vki-'on('ﬁ'o*'n)*‘?:Tkﬁk
-]
Uitth‘i{&o
dt

The velocity of the reference point R may be expressed in terms
of components referenced to either the inertial frame or the
body frame, that is

VR=|-} J K_J-iq,
Y

also Li-

VR=E3’-E_| [u]
vl -
[V ]

The unit vectors {i, j, k}, {I, J, K} are related through the
rotation transformation [y] and it follows that

u X
vl= [y1 [Y].
w z

At this point, let us introduce the repeated index summation con-
vention to be concise, With this convention, when any two fac-
tors of a term have the same index, summation over the range of

that index is implied and the:E:sign is deleted. For example,
the third term on the right of Equation II-25 is

% &
and represents

;Tk ék .

Now, if we substitute II--25 into 1I-21, the kinetic energy is

II-15
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[11-28]T-%/'§VR-VR+ Gx (Pg+™m] * [Gx @p+M]
+*oH & Fy
+27, ¢ [Tx (EO+H>]+2§;‘R-$kEk
+2 [@x o+ ™)+ Ty & § odV

or, integra:ing term by term over V,

[II-29] T = % m luva {u v w}

+%lm @ mJ J -J =J W
x 'y z xx Xy. Xz X

-J J -J w
yx yy yz y
-J -J J w
zXx zy 2z z
+ 3% ™ Ej &
lu v wj r 0 S -5 w
2 y x
-S 0 S w
z x y
S -S 0 w
y X 4
+ Lu v wJ a %k é;k
ayk
3k
+
l:.u my sz dxk E’k
dyk
dzk

wnere we have used

(II-30] m = /cdv
v

3 -/ (7 + 0y £)2 + (2 + 0,y £2) o0V

xx
v

[11-31] = Jxxo + 2(1,yyj + bzzj) + (c giy t zjzk) EJ 2

1I-16



[11-32]

[II-337

[II-34]

[II-35]

{II-36]

[1I-37]

with

b - dv

yy3 /y byy O4%
v

bzzj = /z ¢zj odv,
\

and

c)'jzk -/¢yj ¢zk odV .
v

Also, we have used

a1k -/¢xk odv,
v

ik -/ (‘ij ¢xk + q’yj ¢yx + ¢zj ¢zk) odv
v
|

/ x+¢x:l Ej)odv

= Sxo + axj Ej’

d -/[(y+¢yj gj)¢zk-(z+¢zj 3 ) ¢yk] odv

v

e,
and
S =
X

- byzk - bzyk +(cyjzk - czjyk) Ej’
and also,

ny -/;(x-o-qsxj aj) (y+d;yj Ej)cdv

-3 +[b . +b Ve o+ .

xyo ( xv3 " Py | 53T Sy 5
All other quantities involved in Equation II-29 are obtained by
cyclic permutation of the indexes x, y, and : Finally, as the
kinetic energy is of quadratic form in the elements of {U}, we
may express it as a triple matriv product
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[1I-38] T = % |U] [m] {U}
with

[II-39] [m] = Jxx Xy sz 2 yl x1 dx2

(Symmetric)

-

or in short,

[11-40] [m] = [J :-s :
o
S

T|

d'] oy

s

m|w|n-
L]

Using Equations I1I-40, II-19, and II-38 gives

[II-41] T = L’L‘.‘J 817 [m] 8] {qa}.

Clearly, the elemwents of [m; depend on only the Ek; the elements

of [B] depend on the Euler angles and therefore kinetic energy is
a function of gereralized velocities and the generalized coordi-
nates themselves, thus, the functional notation

Tw=T (QIs qzy ** qn; ali &2. e qn)
is appli.able; terms such as ag/aqj will come about and play an

important role in the simulation,
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[11-42]

[I1-43]

[1I-44]

[II~-45]

{11~-46]

[11-47]

To continue it is necessary to express the potential energy V
and digsipation function D. Let us assume that the elastic
strain energy can be written as a positive-definite quadratic
form in the elastic displacement coordinates, or

Ve |_a_| (k] {g};

the symsetric matrix [k] is developed by standard finite ele-
ment techniques such as those embodied in NASTRAN. In the event
(€} is a sefr of normal modal coordinates, then [k] is diagonal

with the jth diagonal element appearing as

1 2

K, , =

33 3 )

with w, being the jt natural frequency. Of course, normaliza-

3

tion of the eigenvectors (mode shapes) is assumed such that the

generalized mass for the jth vibration mode is unity.

Now, since
(&} = [0]0j1,) {q}

= [851 {q}
it follows that

v ]a]1s,1"  Isg) {ale
Similarly, D is written as
b =% |a] 107 el tsdiad,

the matrix [C] being equivalent viscous damping for the struc-
ture; it is also developed using standard finite element tech-

niques,

Let us now refer back to Lagrange's Equations (II-13), and re-
express them in matrix format

% ([e]T [m] (8] {&}) - -[s.1" ([kl [s.] {a} + [C] (5] {c‘u)

+(Q} + % [qJ (s 17 [l 18] {&}l

+ a{[&_l (81" (] 18 4] (@3} + 5 {|] 1817 [m 1 18] (@3] + ()" )

II-19
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[1I-48)

[11-49]

[II-30]

[1I-51]

[1I-52]

[11-33]
[I1-54]

[I1-55]

[II-36]

and
(al{q) = ~ta,} .

What is meant by [B ] and [m ] is the partial derivaiive of

every element of [B] and [m] with respect to the j th generalized
coordinate.

Let us now define the ordinary momenta
{p} = [m] [B] {q}
= [m] {U} .
Also, since {U} = [B] {q}
it follows that {q} = [8]™! {u}.

Using Equations I1I-49, II-30, I1I-47, .nd I1I-48, we may write
(e} = -[817"" [SEJT([k] (5.1 {a} + [c] [s,] {&})
#8177 (1 + [e}‘lT({[&J s 41" {p}} - 18" {p})

+5 (8”17 %[uj L {u}§ + (81717 [a)t 03,
and
[a] (817" (U} = {-a).

Several observations cun be wade on studying Equaii ..s I-31 and
1I-52:

First of all, recall the form of [B] and [SE] (Equations I1I-19
and II-44). It is clear from these forms that

-1T T T
[8] E] [551

and that ISE] {q} = {&}

18]

(s

and [SE] {&} -{&}.

elements of

Alro, since the slements of [m] depend only on Ek’ the first six
gLUJ [m J] {U}lare null, thus
1

[“ﬂrgmjhd]“”}-{wjhd]{m}’
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Purther, we note that the matrix [B]_IT transforms the general-
ized forces {Q} to forces "acting in the quasi-coordinates,’ or
let us call

- -1T
[1I-537] {cex} = [8] {Ql,

[11-58)

[1I-59]

[II-60] and

thus {Gex} contains ordinary forces and moments due to external

sources and corresponds to time derivatives of the ordinary mo-
menta,

Because the transformation [8] depends only on the Euler angles,
it follows that only the first six elements of the column

[a]’”(; la] 18 41 {p}} - 8)f {p})

are non-zero, and one finds after considerable algebraic manip-
ulation that this column may be reexpressed as

(&) {p}
or - - -
[~ | q @)
[2) {p} = 0 “2 Y ; 0 Vo= } Pluy
~w, 0 ux:-w 0 u : P(ey)
Wy =y 0 : vV =u 0 : P(wz)
....... 4_______4_____ [P
P 0w, ~uy | p(uw)
:-w 0 w : p(v)
x! ,
: -0 (I p(w)
"""":""""'}""" o)
l ' '
| ( .
| | .
n ) [ N LP(EN)-

With these observations and definitions, the Equations II-51 and
11-52 may be reexpressed as

: 0 0 ;
() = {6} - E‘*] (g} - [c] {8} + [8){p}

+ s {[u)m 1M+ )7 ),
[b]{U} = {a}

11-21
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[1I-61)

[1I-62]

[I1-63)

[1I-64]

[II-65]

where we have used
(b] = [a] [8]7}

and

{a} = ~{a, 1.

Notice that the constraint equations (II-60) are now expressed in
terms of the nonholonomic velocities {U'; the coefficients [b]
are obtained directly from relatively simple, vectorial expres-
sions of kinematic constraint. The same [b] coefficients are
tranvposed and used to multiply {A}, producing constraint forces/
torques corresponding to the ordinary momenta.

I1f wr. now define the {G} vector to be

(6} = (G - BZ] {g} - {‘C’} (&) + 1) [m] {U}
+ 15} 1Y) [ J]{u} :- [m}{u]

it follows that we may write dynamic equilibrium equations for

the typical rth body as
. - -1 . T
(3, = i} ie1, + 1] )

to be used in conjuncticn with system kinematic constraint equa-
tions

bl (U} = (&)
r
which is the same form as that given by Equations II-1 and¢ II-5.

The last three terms of {G} given in Equation Ii-63 zare inertial
forces that involve velocities and displacements of the body.
The matrix [m] is an instantaneous inertia matrix, depending on
instantaneous values of the deformation coordiaates {{}. The
centrifugal and Corioslis effects are completely accounted for
within the framework of the assumed velocity field (given by
Equation II-25). These effects would not be sccounted for if

we neglected '"tangential" velocity due to elastic displacement;

that 1s, if we assumed that Iﬁ'x'ﬁ|<<rﬁ x Pgl. In this case, the
inertia would be constant, independent of {g}.

11-22



An accurate definition of the dynamic equilibrium equations
clearly hinges on a complete and accurate definition of the con-
gtituents of the {G}r vector, which includes the inertia matrix

[m]r. Also, the kinematic coefficients [b]r must be developed

in an exact fashion. Kinematics and a more explicit development
of {G} are given in subsequent sections.

I1I-23
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[11~66]

HINGE POINT AND SENSOR POINT KINEMATICS

From a Lagrangian formulation all of the generalized forces, not
derivable from a potential function, ordinarily appear as {Ql on

the right side of Lagrange's equations of motion. We have accounted
for internal damping forces with the use of Rayleigh's dissipati u
function D and for generalized constraint forces through use of
Lagrange's multipliers.

Thus, the generalized forces *hat remain to deal with include those
due to external factors such as aerodynamic drag, solar pressure,
and other -~ommonly encountered environmental loadings.

We also intend to treat control forces (servodrive torques, reac-
tion jets, etc.) as though they were external. They are not ex-
plicitly external, of course, because they depend on time through
position and rate errors that are functions of elements of the

state vector and on control system state variables that arise from a
given control law.

Let us assume that there is a finite number of points on the typ-
ical body where a force veector (or torque) is known to act. Each
of these force/torque vectors contributes to the generalized
forces {Q}. The generalized forces are calculated by expressing
the virtual work of the externai ordinary forces in terms of vir-
tual displacements of the points of force application. The trans-
formation relats g ordinary coordinates tc generalized coordinates
is then used to define the explicit form of the generalized forces.

For example, suppose that a force f? and torque T; act at point p

of the typical body. Their virtual work is

W=TF g +T_ =~ 60 .
p 8, T h P

Notice that we ireated the virtual rotation 63; as a vector quantity.

This is valid, even though a general rotation is not a vector quan-
tity, for the v. ‘tual rotation is infinitesimal and therefore is
a vector. Further, because virtual displacements are infinitesimal,

we may express 6;5 and 655 in terms of virtual displacements of

the quasi-coordinates; that is

I1I-24
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(11-671 &, = |T J EJ ( sey

and

[11-68) &8, = Li

3 i_|( R

érao

é
%73

88
y

66
z

g

—

- +
0, lp + ntp . (yp nyp)

+ -(zp + nzp)’ 0,

(xp + nxp)

+n ) -(x +n
(yp "yp)s (xp -xp)’ 0

oy e ¥0 2) csej)
¢yj (xp: yp: zp)

L¢zj (xp. yp, zp)

-
+ o . (x s 2
xj ( o* Yp p)

g . (x z
vi “p’ Jp’ p)

g . (x,y, z)
B A

8E,
‘)

where (8r;, 6r;, 6r3) are components of virtual displacement of
the body's reference poiuc R, (sex, Gey, GGZ) are components of

virtual rotation of the body axis system, and (¢

are components of thne jtn

-

space function oj

rotation at point p (modal slopes, for example).

x3* %y3* 23!

representing elastic

Now, let us assume that the force and torque vectors (fp and "fp)

are referenced to the body axis system, thus they may be written

as

[11-69] ?; = L? 3 'FJ

and

[1I-70] T? = L? 3

k
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[1I-71]) oW = qu_l OR

[1I-72]

We note that virtual displacements of the quasi-coordinates are
related to virtual generalized displacements by the same trans-
formation that relates nonholonomic velocities to generalized ve-

locities (See I1-19).

f; and T; may be written as

It follows that the virtual work due to

b

The virtual work is also expressed

W = tsq_l {Ql,

1 =Gzt ) | vty i
1 z 4, -(xp+nxp)
1| Oy | Xp*
1
1
1
axl)p oyl)p ozl)p ¢xl)p ¢yl)p ¢21)P
oxN)p oyN)p czN)p ¢xN)p ¢yN)p ¢zN)p

and because qu is arbitrary and independent (it is treated as

thougin independent in the face of Lagrange multipliers and con-
straint equations) it follows that

T T
{Q} = [8]" [b)] {

T
P

£
p.

The Equations II-71 or II-72 have a noteworthy geometrical in-

terpretation. Notice that the first three lines of [bp]T {

T
P
f }
P

are components of the resultant torque vector T§+(;o¥ﬁ) x fé,

acting at the body's reference point R.

11-26
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(1I-73]

(1I-74] {G_} = - b 3T) P1
! ex’ :E: P £

components of the resultant force vector-?ﬁ, while the jth line

(3>6) corresponds to the standard proceducre (of structural dynam
icists) to calculate er, or as it is usually expressed, general-

ized forces acting in deformation modes are
T
{Q} = [¢]” {f}.

Also, recalling the form of [B8], (Equation II-19), we note that

T
[r]” resolves tne resultant torque vector (about orthogonal body
axes) to components about skew axes about which Euler rotations

are measured wnile [Y]T resolves the resultant force vector (about
orthogonal body axes) to components along the inertial axes. Further,
we notice that [bp] is a matrix of coefficients that relates the

velocity of any point p to the vector {U}. This gives us some ad-
ditional insight as to why the same coefficients that are used in
the kinematic constraint equations (1I-60) are used (in transposed
form) to multiply {A} producing resultant comstraint forces.

Thus, we have pointed out the remarkable duality of purpose asso-
ciated with [b] type coefficients., They are initially expressed
by writing simple kinematic velocity relationships. The coeffi-

cients [b]T are then used to transform discrete ordinary forces

and torques to equivalent forces and torques acting through the
body's reference point R. The matrix (B8], which is also a velocity
transformation, is transposed to produce the transformation to
generalized forces (should they be desired).

For our ordinary momenta equations we simply wish to express {Gex}

which (following Equation II-57) is given by

-1T
Gy}, = (817 (@)

T
- 181717 181" p1" 1P
T Tp °
- b ] :
P,

This {Gex}p given by II-73 reflects only the contribution of the
force/torque acting at a single point p. The total {Gex} must be

obtained by summing over all the points of tne body where forces

and torques act, or T

= 1 ll’i ;
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[11-75]

[1I-76]

[1I-77]

Kinematic coefficients [bp] such as those of the previous example,

will be required througuout in our formulation of the state equa-
tions. They are used to synthesize the constraint equatiomns, to
preduce {G}, and they are even involved in the velocity transfor-
mation of II-3, It is therefore advantageous for us to think of
a "bank" or collection of all the required kinematic roefficients
to be put together in a semiautomatic fashion by using input
specifications to the digital program.

Sensor Point Kinematics - Force/Torque Transformations

Consider the typical structural hard point s (See Figure II-2).
Let us assume a right-handed triad is fixed to point s and that

the elements of the triad are unit vectors labeled ¥, m, and n.
Now body n (which has point s on it) also has a right-handed
triad fixed to point n. Suppose that, even when body n is in an
undeformed state, the s-triad is misaligned with respect to the
n-triad. When the body deforms there may be further angular mis-
alignment between the two triads. Thus, the relationship linking
the two sets of unit vectors is

ﬂi‘l== E‘RS{J ER‘J ;

n

|

with [sRs'] and [s’Rn] being orthonormal rotation transformations,

the first relating the "naturally" misaligned triads via constant
Euler rotations and the second accounting for additional rotation
due to the body's deformation at point s.

The structural deformation at point s is assumed to be sufficiently
small that the Euler rotations associated with [s’Rn] may be eval-

uated through use of
8,

62| = [o.] (&},

83

where [os] is a (3xN) matrix of modal rotation amplitudes (each

of the N columns corresponds to a deformation mode) at point s.
Let us consisely denote the triads associated with points n and s

by {EA} and {EB} respectively. Then we may express the relation-

ship linking the two sets of unit vectors as

(&) = E’R“] T ).

II-28
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Figure II-2 Two Typical Contiguous Bodies of the System
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" [11-73]

[11-79]

There is a requirement for expressing the absolute velocity of a
typical s-point and the angular velocity of the typical s-triad,
in subsequent kinematic development, in terms of velocity states
of a given body. Let us think of a six long vector (column) of

velocity components (three rotational and three translational)

that are projections of Eg and Vs onto the s~triad axes., It is

related to the {U}n vector for the body by the transformation

P‘*’xJ (s)r | ] P“,j (n)
ol [ 1 0 ] ] [
w = | ! . w
z8 1 z
N :"F"'"‘ e
|| BT R
st - _V.'__
€1
:
éN
T "

with [hs] and [08] representing matrices of displacement and ro-
]
tation amplitudes, respectively, and with [SE:’] being an anti-

symmetric matrix accounting for a vector cross product, or

) . -
[Sns] 0 izs+nzs ! (ys+nys)
|
-(zs+nzs)| 0 | xs+nxs
| |
y5+nyﬂ | (xs+nxs)l 0

The superscripts used in Equations II-73 and II-79 are used to

indicate the frame to which the velocity components are referenced.
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Kinematic coefficients such as those of Equation II-78 are gen-
erated for each so-called semsor point of the system of bodies.
They are used by the simulation program to produce contributions
to {Gex) from given force/torque components in the manner indi-

cated by Equation II-74.

2, Hinge Point Kinematics

Kinematics associated with hinges follows a line of development
somewhat similar to that of sensor points. Consider the points

p and q (refer to Figure II-2) to be two structural hard points
associated with a given hinge. All necessary kinematics infor-
mation pertinent to the hinge is obtained through expressing the
velocity of point q relative to point p and in expressing the
relative angular velocity between the q and p frames. It is conven-
ient that the angular velocity components are projections onto
skew axes (Euler angle rates) and that translational velocity com-
ponents arz projections onto the axes of the p triad. Let us as—
semble the six relative velocity components into a column matrix
as

{8}
(o,

[11-80) {8},

with {é}k being the three relative Euler angle rates and {A}k being
the three relative translational velocity components all pertain-

ing to the kth ninge. Wow tne column of relative velocities may
be expressed as

[11-31] {B}k = [bp]k {u}m + [bq]k {u}

with

—_— ! |
e o ] L o (] G

and

-1 ' b
(11-33] [b ] = | [7] [an] L (9] :[n [ER" [cvq] .
|
|
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In Equaticns 1I-82 and II-83 the rotation transformations [pRm]
and [an] are developed to include the effects of structural de-
formation in the sense indicated in Equation II-75; the rotation

transformations [1\']_1 and [qu] are developed in standard fashion
using tie three Euler rotationms {e}k.

NOTE:

Hinge labels are circled;
body labels are not circled.

Figure II-3 Topology of a Typical System

For purposes of further discussion, consider the system of bodies
of Figure II-3. Topology of the system is simply indicated by an
integer array we call ITOPOL, which is as follows:

1 2 3 4 5 6 7 8 -<-—Hinge number

[ITOPOL] =1 2 4 3 5 6 7 7 je—Body (n) relative to

0 3 2 6 3 1 5 2je—Body (m)

The [ITOPOL] array, which is actual input to the simmlaticn pro-
gram, is used to define system topology as indicated. Now, with
reference to the example shown in Figure II-3 and the correspond-
ing (ITOPOL) array, let us indicate the form of the velocity
transformation. We may write
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[u3,]
W},
{U}3
{wh,
(s
(U

{U}s

[1I-84]
‘\\\\f:dy (1) (2) (3 (4) (5) (6) (7
Hinge
- N
(1 bq | | I | | |
11 :
- l | |
______ IR RS JEY R
(2) | b | | |
| qz,z | pz’al [ l
——— = sm e - _l___l.__
(3) b | v
| P52 ! | 9 l l
- —— 4+ S
(4) | b, | I | v, |
I q P
|+’3| | M’Gl
A [N A S DU A
(5) e b |
| | ps’al | q5’5: I
-_ ] —_— - — ) —la - -
(6) b | | T ' | b,
. q
o1 | 65'
AN D R S B S .’._l_. -
@) | | | | b, | b
P q
SN DU I N I DU NN
(3) o, | | | | v,
| | “8,2 | | | I a7 |
where [b ] and [b ] are matrices as defined in Equations
P1,3 4,3

II-81 and II-33 (with i=Hinge number and j=Body number).

The ve-

locity transformations ofi Equation II-84 represent the 'bank" of
all hinge kinematics coefficients previously mentioned, and pro-

duces every possible velocity component pertinent to hinges.

Re=-

ferring to the basic system equations II-3 and II-5, we note that
selected lines, or equations, from the bank (II-84) are taken to
represent constraint equations or position coordinate rate equa-
tions. The [B]j and [b]j coefficients of Equations II-3 and II-5

are simply subpartitions extracted from Equation II-84.

11-33
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To implement calculation of Lagrange's multipliers (refer to
Equation II-6) it is necessary to develop time derivatives of [b]j

coefficients. In a manrer similar to above, where all [b]j co-

efficients are extracted from the complete collactions, the [l':]j

matrices come from a collection of matrices whose members are

[b ] and [b ] which are dr reloped in Appendix C.
4,3 1,3
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[II-85]

DEFINITION OF THE ORDINARY FORCES

The equations of dynamic equilibrium for the jth body of the eye-
tems are given in an earlier section as Equations II-1. As was
noted there, the right-hand side includes a so-called {G}j vector,

which accounts for all state dependent forces except for those
of interconnection constraint, Earlier in Chapter II (Equation
11-63), the {G}j vector is presented in a somewhat more developed
form.

The purpose of this section is to provide more explicit develop-
ment of the elements contributing to {G}j. Let us account for

all coutributions in the following expression (we omit the J sub-_
script, understanding that we are dealing with the typical, or jtn
body):
0 ol . .
{G} = {G__} - {¢} - {e} + [Q) [w] {U}
ex K c

+ g[_u_l [m ] {u}} - [m] {U} + G 1+ {Ggg}.

The first term {Gex} has already been discussed in the previous

section (See Equation II-74), but we note here that the ordinary
force/torque components that produce {Gex} may be though of as a

miscellaneous force vector. Its presence provides the program
user latitude to include a variety of additional effects. Clearly,
it is the implement through which control forces/torques are

"fed back" to the dynamic system.

The second and third terms of Equation II-85 have been previously
introduced. There is no implicit restriction on the stiffness and
damping matrices [k] and [C], nor is there a restriction on defi-
nition of the {£{} coordinates; they will likely be coordinates
associated with orthonormal vibration modes in the majority of
cases. However, they may be physical (ordinary-discrete) displace-
ment coordinates as well. In the latter case, the [k] and [C]
matrices are generally coupled.

1I1-35
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[11-86)

[11-87]

The last two terms of Equation II-85 are included to account for
mozientum wheel coupling and gravity effects respectively. The
treatment given to built-in momertum wheels is such *hat, in ad-
dition to producing a contributior. to {G}, there is also a re-
quired extension to the form of the [m]j matrices. This is be-

cause momentum wheels are inertially coupled. Thus, there is
sufficient requirement for a dedicated development concerning mo-
mentum wheels, The following two sections deal exclusively with
momentum wheel and gravity effects, respectively.

The remaining terms contributiag to {G} are basic inertial effects
and involve the matrices [m], [m k], and [m]. With reference to
14

Equation 1I-39, the form cf [m) is given correspog@ing to the
case where one has single valued space functions i available to

him. Ordinarily, one does not have access to such a description
of the structure's deformation modes, due to the structural com-
plexity of typical spacecraft. The analyst should always be able
to obtain, as data, matrices of modal amplitude ratios (''mode
shapes') and the ccrresponding structural mass matrix (generated
by use of finite element techniques). To accommodate data based
on the more practical definition of structural characteristics,
it is necessary to recast the inertia matrices [m] in a similar
but more general format. The generality of the development of
Section II.B is not compromised by extending the form of the in-
ertia matrix. The extended, or more general, inertia matrix is
developed in Appendix A, but here, for purposes of developing
inertial contributions to the {G} vector, let us accept the re-~
sulting form; and present the kinetic energy expression as

T =% LHJ ([mo] + [mllj Ej + [mz]jk Ej Ek) {v},

with the repeated index summation convention implied, and with
[mo] of the form

-7 'l
[mO] J_-:- f- I_d_

S Im a

T, T
]
d (2 le
that is it is just like the [m] given oy Equation 1I-39 except
it is constant, independent of deformation. The constant iner-

tia matrix [mO], as glven by Equation 11-87, is always of the

form shown regardless of the choice of "modal' columns. The form
of the matrices [m)] and [m;] is such as to accommodate the gen-
eral situation; that is, their definition includes inertial inte-
grals as defined for a continuous system, (Equations 1I~-30 through
11-37), or as defined by structural mass matrices that are called

"lumped" or 'consistent.”

1I1-36



Lz g MERSPIAE SR RS SRS

.

et e i

i_; y—
i
—_—
-
-
—
m—
Al

The inertia matrix associated with &, is

h|
[11-88] [mllj = |2b, -bu -bs o) ap O3 _(Cyz)jlgj
2by; -bg|ay ag aglj(c )
€2 31

2b3z | a7 ag agqlj(C, )

0 0 0
(Symmetric) 0O 0
°
— h]
and the one associzted with Ej Ek is
» -
[11-89] [“‘Z]jk =1Cy1 ~C12 -Ci3
Co, =C23 0 0
C33
0 0
0
(Symmetric)
oy -
jk

Now, for N deformation modes associated with a given body, it is

understood that the range of the indices j and k is N, thus the

coefficients (011)j1,. (Cm)jk. .o (ny)*k are stored is 9 (NxMN)
> J

arrays of inertial integrals while (b1)j, (bz)j, e (bs)j and
(@1) . (Gz)j, 0. (ag)1 are stored as a (6xM) array and a (9xN)
J

d4rray respectively. Thus, from a programming standpoint, we

I1I-37
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{11-90]

[11-91]

[11-92]

—
———
—

note that there are 9N2 + 15N storage locations required to ac-
commodate the inertial integrals necessary to account for the
deformation dependent mass matrix. Of course, if a particular
body is rigid (N=0) then only the first (6x6) diagonal partition
of [mo] is used.

When the body is flexible (N>0) then the inertia matrix is cal-
culated from deformation states (Ej)and inertia integrals in the

manner indicated by Equation II-86; the redundant operations due
to symmetry and null operations are avoided in the digital code.

Having an instantaneous numerical evaluation of the inertia ma-
trix, the term [®] [m] {U} is calculated and added to {G}, con-
sistent with the expression of Equation II-58.

It is now possible to express explicitly, the combination of the
remaining two inertial force vectors in terms of the inertial
integrals given in Equations II-88 and II-89. For purposes of
further development, let us define the cowbination as

{Gc} = {LUJ [m’k] {U}} - [m] {ul.
Thus, the first element of {Gc}, corresponding to w, is

(Gc)l = {-wa (b1) by (by) w, (bs)

' ' 3

-u (31). -v (012)j -w (03)j

"(Cyz)_]k mx (Cll)lj £

+wy [(CIZ) + (ClZ)jQ] gz + wz [(013)gj + (013)j2] Ek

23

the second element, corresponding to wy is
= - +

(6.)2 Wy (bu)j 2w] (bz)j w, (be)’

~u (ay) v (as)j -w (“G)j

4 -

-(C +ou [(Clz),,_j + Ci2)yl &y

zx)jk Ek
=20 (Caz)yy &g +w, [(C23)gy + (C22) gyl €y Ess

the third element, corresponding to W, is

i1-38
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[11-93) (63 =u_ (bs) - 20_(b3)

+ uy (bs) 3

3 3

-u (07)j -v (03)j -w (Gg)j

(ny)jk Ek + o [(Cl3)lj *‘(c13)j£] &
+ my [(023)1j + (C23)j21 El -sz (C33)zj El zgj >

the fourth element, corresponding to u is

3

the fifth element, corresponding to v is

[11-94]) (Gc)g = ~{wx (ul)j + my (ay), + wz (07)j} éj ’

[11-95] (6)s = -{wx (uz)j + wy (us)j +u, (ae)j€ Ej
and the sixth element, corresponding to w is
[11-96) (G )6 = -1 w, (03)j + wy (Gs)j +w, (Gg)j; éj .

Finally, for the element k+6, corresponding to an inertial force
acting in the £kcootdinate we have

(11-971 (6146 = w? [(C11)yy &5+ (1))

2
wy [(c22) + (bz)k]

g 5
wi [(033)kj Ej + (b3)k]

+

i A
vy [(Clz)kj + (C12)jk] & + (bu)k

mymz [(C23)kj + (023)jk] Ej + (be)k

+ w [(o.l)k u + (az)k v + (a3)k w]

+ my [(u“)k u + (a5)k v+ (aG)k w)

+ wz [(37) u + (08) v + (Gg) W]
oy 1€ - (@ )jk]+w [y = o]
0y LG = C )yl |

I11-39
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From examining the composition of the inertial force (Gc)k+6 we

note that the first six bracketed terms represent centrifugal
forces (distance x omega-squared) acting in the deformation co-
ordinates, while the last bracketed terms of Equation II-97 rep-
resents Coriolis forces (velocity x omega).

MISCELLANECUS CONSIDEKATIONS
Imbedded Momentum Wheels

The spacecraft system undergoing analysis may have several "built-
in" momentum wheels. A momentum wheel is generally taken to
mean a cylindricai or disk-shaped mass that spins about an axis
that is fixed to a structural hard point of a given body. The
wheel can be spun up or despun by an electric motor whose rotor
is part of the rotating mass. The shaft torque that acts to ac-
celrate the wheel also acts on the body in a negative sense pro-
viding active attitude control. The shaft torque is generally
governed by a control law that "senses" attitude and rate errors
of the body. In this development a momentum wheel is assumed to
be inertially symmetric about its spin axis.

Figure II-4 Tyrical Body-Momentwn Wheei Relationship

11-40



LR ke it s i oy e

To develop the inertial coupling effects of the typical momentum
wheel let us consider three unit vector bases:

[11-98] le ] = (1, 7, K,
[11-99) le_J = IZ, m, nl,

[11-100)and (e ] = (%, @, n°] .

9

~ 4

| o S

The first triad is the body reference triad for body n, the second
is a sensor point triad (fixed to point s), and the third triad
is fixed in the momentum wheel. Now, one of the three unit vec-

tors of L;;] is coincident with one of the unit vectors of l;;];

that is, E} E, or n may be the spin axis depending on the prefer-
ence of the analyst. In Figure I1I-4 we have elected to show

n = n” as the common, or spin axis.

The absolute angular velocity of the lE;J frame can be expressed
as

(11-101]5 = 15 ) [R ] ({ws} + ) e)

where {Pw} is an elementary 3-long position vector (it is null

except for unity in the first, second, or third locations cor-

responding to I;‘E, or n being the spin axis) and o is the rela-

;:ve angular speed of the [E;] frame with respect to the l;;]
ame.

with the inertial characteristics ass.med (axisymmetry) for the
wheel, and with the velocity expression of Equation II-101 the
total angular momentum vector for the wheel may be written as

[II~102]h = [ewj [Jw] {ww}

= le ) (3] ({ws} + AP} e)
with [Jw] diagonal with all diagonal values equal to JT except

the pcsition corresponding to the spin axis, which is Js: J,r is

the mass moment of inertia about any axis perpendicular to the
spin axis and JC is the spin inertia for the wheel.

11-41
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The torque acting on the wheel (resolved to tue [Eél frame) is
T S
[II-103] T = |e_| {T} dc b
= le, ([le b} + ) 3§
=91 9] {wd - [a)] {B )} J e)
where we define an SK* operator such that

[Qs] = SK¥* {ws}, or

- —_
[II—lOé] v] usa o wslw
- QO = %
W g C wsl SK w52 .
“g2 "Y1 0 ws3

The torque acting on body n at point s, due to the wheel is -T
and it drives the body's quasi-coordinate as

[11-105) {6”_} = -[5_1" ([Jw] (6] {03+ (4,1 (b1 (U} + (B} 3 8
~to] 131 e } - [2.) {2} 3, e)
with

" . by
[11-106) [b_] [F‘R“] [I:O;cs]

and also, as can be easily shown,
[11-107] (] {v}_ = (skr([R ) fo,) (83 [B,) (),

Now, the shaft torque is simply the projection of T onto the
spin axis, or

{II-103] I, = LPWJ {T} )
"3 B (b1 (U} + 3, % | (b, (Ul _+J_8 .

Equations II-105 and II-103 allow us to now express the coupled
equations for body n and several momentum wheels as
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—_ - R -
{II-109] + |- };:[bsl (SK*{PW}) [bs] {U}n Jg

:1+13J by +5T a6t 8T 3 '.STP J-P{I'J}-
n 1% ™1 2 %w2 721 Pl Fyy Y1 P2 fy2 g2 -
T i . | 0 - T——
s1 Fin 21 1 Vsl | %
T - | I .
82 sz 2 ! 0 | Js2 62
b - b -
B T - T 5 T -
+ -
{G} [b]n [bs] [Qs] [Jw] {ws} }g:[bs] [Jw] [bs] {U}n
0 0
Q 0

— . — t— e " — — —— q— a——

Tsl - Jsl I?wl [?1] {U}n

— — —— — —" a— — e — d— — —

Teo = g [szJ [bp) {U}
The inertially coupled body-momentum wheel equations (for two
wheels) are shown as Equation II-109 simply for the purpose of
indicating the form. One may no:iice that within the equations,
there effectively resides the original form of the dynamic equi-
1ibrium equations for body n, namely

(11-110](m]_ (0} = (&} + [b]i (1}

which govern in the event that there are no momentum wheels asso-
ciated with body n. In Equation II-110 we have placed the caret

(-) over G to represent the right-hand side force vector exclud-

ing momentum wheel effects.

Now, on further study of the form of the Equations I1I-109, we
aote that if the "locked" momentum wheel effects are already in-
cluded in the definition of [m]n (which is the standard practice

when inertially coupling systems together), then the (1, 1) par-
tition of the coefficients on the left of Equation II-109 becomes
simply [m]u. Also, the second column on the right of Equation

- I1I-109 is absorbed in {é}n, having already been accounted for in

development of dynamic equilibrium equations.
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Thue, it follows that in order to implement momentum wheel cou-
pling with one of the flexible bodies, it is only necessary to
extend the {U}n vector to contain momentum wheel spin values

(8), to extend the inertia (except for the [1, 1] partition) as
indicated in Equation II-109 and to add to the right-hand side
force vector

-

The values for shaft torque T, that appear in {Gmw} are estab-

lished by a given control law, if the wheels are to be considered
variable speed. If a given momentum wheel is of constant speed
(used only for "gyroscopic damping') then the torque equation for
it is deleted from the form of Equation II-109; however, its
effects are still included in the upper partition of the vector
{Gmw} (the gyroscopic torque due to constant 6).

Clearly, the equations of dynamic equilibrium fcr a body, after
having been augmented to include momentum wheel coupling, are
still of the general form

(11-112] (6}, = [mrl({c} + 5T m).

3 3 J
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2. Coupling of the Gravity Gradient

Attitude dynamics of orbiting spacecraft can be significantly
influenced by the gravitational force that is distributed accord-
ing to the system's position and deformation state. The gravi-
tational force per unit mass varies (in a central force field)
simply because different mass particles are at different distances
from the earth's mass center. Figure II-5 describes the geometry
assoclated with a typical elastic body.

~ Typical Deformable Body

Earth's Mass
Center

[o

Figure II-5 Geometry for Gravity Effects on a Typtieal Body

For a central force field, the gravitational force per unit mass
is given as

m 2

[11-113] (i) - - oM
1 x
1

ol

which, to a first order approximation, is

7\ - 5. *T, -3e [e T, +T
[11-114) (-"1) -8 [Tgt oy 1 RI R o4
/g R R
(o4 c

where GM is the Earth's gravitational comstant,
o, is the typical mass particle,
8, is local gravitational acceleration
Ek is a unit vector directed along §£
and ¢ is the origin of the body reference system.
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[11-115])

[II-116]

[11-117)

(I11-118]

[11-119]

The virtual work due to gravitational force can be written as

W -E ‘E) bty my
~\"/
= s(i‘__) * §T odV
\m

v

with L replaced by differential mass odV.

The virtual displacement field is expressed in terms of virtual
displacements of the quasi-coordinates as

6“-6?‘:+66'cx('60+m+6ﬁ.

In combining Equation II-115 with Equation I{-116, the torque
about point c, due to gravity gradient effects, is

3g

(T) -gC;Rx'§+§—EZRx(?°ER)
g c

where S is the first mass moment about point ¢,

and 3‘ is the instantaneous inertia tensor (deformation dependent)
for the body.

The resultant force due to gravity effects is

— - - _B. = 3g (— .—) -
(Fc) g mep - _¢ S+ "¢ ex S' er
8 Rc Rc

and the force acting in the kth deformation coordinate, Ek’ is

— - 1 .- - —
(sz) -- 8, K ¢k . eRch+-k- j¢k . (po*n) adV
g c
\) v
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[11-120]

[II-121]

[1I-122)

[11-123]

[1I-124]

[II-125]

[11-126]

| T A R B B

Now, the unit vector ;k has projections onto the body axis system

that continually vary as the body changes attitude. Let us express
the unit vector Ek in terms of direction cosines and the three unit

vectors associated with the body reference frewme as
e ™ l_eBJ } Y8=

and also define

[;s] - S :Ys{ ’
s - FB] 1S= '

With these definitions and the force and torque expressions of
Equations II-117, I1I-118, and II-119, it follows that the first
three elements of the contribution to the right-hand force vector,
due to gravity effects are:

) s [ ) - [l bl

the second three elements are

g
{ - < - fgl
IGSS; 4,5,6 Be™ }YB: * R, (3 ng; lY3J [I]) 1%

and the force, due to gravity, acting in the kth deformation mode is

g by, + (b2), + (b3)
- {.) _ e [ k k k +e .t
e " 7 o T ; e

+ ;;f ‘(1 - 2y:1 >[(b1)k + (c“)kj Ej]

2
+ (l - 2y82)[(b2)k + (sz)kjﬁj]
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+ (l - 2‘Y§3) [(ba)k + (ng)kjij]

+ 2Y81 Ve, [(bu)k + ((312)M Ej + (Clz)jk Ej ]

+ 2Y81 Yg3 [Fbs)k + (Cla)kj Ej + (C13)jk 53]

[11-127] * g, Yo, [(bs)k + (C23)yy &y + (C23)yy EJ]

where the inertia integrals (bn)k, (n =1,2,-6), and (Clm)kj’
(2,m=1,2,3), are consistent with the development of Chapter II,

Section D and Appendix A.

3. Thermal Environments

All problems associated with thermally-induced deflections have
in common the requirement of knowing the spacecraft's attitude
relative to the sun to determine the effect of solar heating.
This required information can be extracted, at any point in time,
from the state vector. It is the: necessary to have a model of
the flexible structure's response, either static or dynamic, to
solar heating.

Considerable work has been done on modeling flexible appendages
in thermal environments® and the results indicate that the response

®For example, refer to:

1) Fixler, S. Z., "Effects of Sola: Environment and Aerodynamic
Drag on Structural Booms in Space." J. Spacecraft, Vol &4, No.
3, March 1967,

2) Frisch, H. P,, "Coupled Thermally-Induced Transverse Plus
Torsional Vibrations of a Thin-Walled Cylinder of Open Sections,"
NASA TR R-333, March 1970.

3) Goldman, R. L., "Influence of Thermal Distortion on the Anomelous
Behavior of a Gravity Gradient Satellite,'" AIAA Paper 74-922,
ATAA Mechanics and Control of Flight Conference, Anaheim, Calif-
ornia, August 1974.

1I-48



PR SRS K

sy

-

[—

depends on the radiation properties of the booms and the attitude
relative to the sun.

The simulation program accounts for time-dependent thermal de-
formations in the following manner. It is assumed that a model
exists whereby the structural deformation of a flexible boom (or
appendage) resulting from solar heating can be determined from
elements of the state vector and time. This deformation is sub-
tracted from the actual deformation; the difference is premulti-
plied by the appendage stiffness matrix. The result is a vector
of modified, generalized restoring forces for the appendage, which

is summed into the {G}J vector for the appendage body.

In terms of the development in Sections I1.B and II.D where
~-[k]{&} 1s seen to be the generalized restoring forces (in the
deformation ccordinates), we note that this is replaced with
-[k)({g} - {Ee}). The thermal deformation state {Se} is that

which must be established from a thermal deformation model.

In this way, a closed loop response analysis can be achieved

using external subroutines to develop the thermal deformations.
Some problems may require only open loop operation if the vari-
ations of {Ee} in time is slow with respect to general dynamic

response.
Rather than building in a rigid (or irrevocable) model of thermal

deformation, the dynamic simulation program provides the user
with an interface whereby he can formulate and code a particular

model, thus latitude with respect to user requirements is retained.

11-49

[P

1 RS B

E
&
1
y




pere

I1I1.

[111-1]

t111-2]

[111-3)

LINEAR SYSTEM SYNTHESIS AND FREQUENCY DOMAIN SIMULATION

The mainline nonlinear time domain analysis is structured to ns-
semble a collection of interconnected bodies, including a control
law. The general form of the governing equations may be concisely
indicated as

- F(Yi,t) 1=1,2, ...

and tle form of the function F is the essence of the nonlinear
time dcmain solution. 1In fact, it can be stated that Equation
I1I-1 is the fundamental basis for tue entire DYNAMO program. Al-
gorithms for evaluating the nonlinear state vector time deriva-
tives (and auxiliary equations) are centered in a subprogram and
its supporting routines. These same functional algorithms are
used for linearizing the governing equations about a specified
state. In addition, it has been found desirable to introduce

some new variables including sensor signals, ng, and conurol

torques, 8. These new variables extend the number of equations
and these additional exrressions are linearized along with the
basic state =quations. Aduitional remarks concerning the use and
manipulation of the additional variables is deferred for a later
section. The remainder of this subsection will address specifics
relating to the linearization process.

We first focus our atterntion on a single variable, 9k’ and its

dependence on the system state, Yi, through a known (though pos-
sibly nonlinear) functional relationship. Arguments begin by

considering an initial system state, Yi(o), and a functional al-
d

; Et—Yk' We
first express the unknown, Yo In terms of a Taylor's series ex-

gorithm with which to evaluace the expression, ;k =

; i
pansion abcut the given state, Y (o) as

-

. . 3y . 3y s
y, =y, (o) +-——¥ a4+ -—r—k— dylay” + - -
k k 3 ] N 2
Y Y- 3Y

As our interest lies in the linear pgart only, the series is trun-
cated for all partial derivatives greater than one and we have

* a; L4
-y, (o) = “koagyd -y and

Yk 2y Xy d

ITi-1
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[111-4)

[I11-5]

[I11-6]

The task at hand then is to establish the partial derivatives
indicated as Yi i’ thus yielding an expression of the Zorm (for
]

a1l avt = vt ovlo), 1-1, 2, - - -)

Because it would be 2 nearly impossible (certainly impractical)
task to generalize determination of the partial derivatives as
explic¢it analytical expressions involving the independent state
variables, we have adopted a numerical approach. This task is
accomplished by employing numerical perturbation techniques in
conjunction with quadratic functions to establish the desired
partial derivatives. Symbolically, we seek to determine the

elements of H, ., such that
i,j

¥ = ¥'(0) + H, . av’
i,j

where it is assumed that

1) The functions, Ql, are indeed linear sufficiently near the
state, Y (0)

2) The functions, ?i, .although possibly nonlinear) can be rep-
resented as a quadratic (or lower order) in the neighborhood

of Y1 (o).
The basic approach is concisely summarized in two steps:

1) E _ablish quadratic coefficients for ¥' in the vicinity of

the state, Yl(o)

2) Evaluate the partial derivatives H at the state, Yl(o),

i,3
using the quadratic coefficients and pertu-bation values on
the independent variables.

THE LINEARIZATION PROCES

With reference to the sketch, the quadratic formula can be stated
in matrix form as

£(n) = lpz n {J 2
f

11I-2
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[111-7]

[I1I-8]

[111-9]
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(1) Ui41) U(i+2)

where n is a local spacial coordinate with origin corresponding

9
to 9U) and it is desired to establish the derivative, 55, eval-

uated at q(i).

In general, the required paftial derivative is

£f 9Jf 9

of _
3

n
3

l
l

[fal
@
jon
QL

q

The three values, f(i)’ f(i+1)’ f(i+2

)? are evaluated via the

previously discussed functional algorithm, thus these values do

in fact satisfy Equation III-6.

f n,* ", 1 d
1 1 1
2
i = [V aer | Mim €
2
n<, .
i+2 i+2 n1+2 1

”21 Ny l £
£(n) = |32 n 1J n?, n, 1 .
i+] i+l i+1
2
ez | M2 | L i+2

where the local coordinate, n, is defined to be

More specifically, consider

III-3
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[11I-10}

(111-11]

[111-12]

[111-13]

(11I-14]

(11I-15]

(I1I-16]

[I11-17]

q-qi
n

Yo ~ Y%
and it can be noted that

an 1
n, = 0; n, =1 —=——,
i > 42 q Uy, ~ 9y

It then follows that

0 09 1 fi
- 2 2
£(n = h‘ " ;J Cie M1 L i+1
1 11 i+2
and if we specify N 1/2 and note that f(i) = f(n=i)
we have
o o 1|
HO)
£y = |2 naf [ra vz af Je 00
[1 LR I L
2 -4
, 2 f(o)
£ = |n? n 1J -3 6 )e o0t
1 0
0 f(l)
- 2
2 -4 f(o)
£'(n) = l?n 1 QJ -3 4 -1 f(1/2) R
1 0 0 f(l) j
and, in particular,
a—f— = ! = =
= |(0) £ (n=0) = e,
and
of e
— = f' q=q. = .
3q |(0) q ( 1) q(1+2) - q(i)
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Selection of an initial perturbation value, q(i+2), from an ini-
tial specified state, q(o) = Yk(o), is somewhat arbitrary. A

value of 1% of the initial value has been successfully used for
all example prcblems during the course of the study. In the case
where the initial value is null, an infinitesimal value must be
chosen. A value of 1x10~° has been accommodated in the digital
code. The intermediate choice of n(i+l) = 1/2 was selected for
other reasons. Consider first that a single evaluation of a
3
partial derivative —gi is not sufficient to qualify its validity.
Eh'¢
We have employed an approach whereby two successive evaluations

of Bf/BYi obtained by successively cutting the perturbation in
half must agree to a predetermined number of significant digits
(e.g., 5). The choice of n(i+l) = 1/2 requires but a single new

evaluation for each element in il at each successive reduction
in the perturbation value. In summary, the linearization em-

ploys an iterative technique to establish the desired partial

derivatives.

SYSTEM RESONANCE PROPERTIES

The lineacization process has provided a system of first order
differential equations that describe the dynamical simulation
in terms of perturbation variables about an equilibrium state.
The lineacized canonical form appears as

[111-18] a¥* = H, avd (1, 5=1,2, -9

fI1I-1

i,3

The coefficiernts Hi Jcontain all of the resonance frequency

»
properties of the dynamical system. The standard eigensolu-
tion form is indicated by taking the transform of this expres-

sion

. h| J -
1 (61 s -Hi,ﬁAY (s) = 0.

Extraction of the roots (eigenvalues) from H then gives the

1,3
roots of the dynamical system. There will be N of these roots
and any complex roots will appear as conjugate pairs because the

elements of H1 jare al, real. The imaginary part of the complex
»
pairs represents the resonance (or characteristic) frequencies

of the system.

[
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{111-21]

(111-22)

[111-23]

[111-24]

EXCHANGE OF VARIABLES AND SIMILARITY TRANSFORMATION EVALUATION

It is often necessary for the analyst to require additional
variables with which to assess the stability characteristics
of the dynamical system. These additional variables ordinar-
ily take the form of plant sensor signals and control system
output forces and torques.* Although the desired variables
may not be explicitly contained in the system state vector,

Yl, they are known in terms of the state variables through an
expression of the form

W= g(vt).

Recall also from previous discussions that either directly or
through linearization we have established

AY =H ,AYj

Now rewriting Equation III-20 in matrix form and identifying
variables to retain, Y,, and variables to eliminate, Y;, gives

|
fu} = [clncz] {YI}

! Y-
and it can readily be established that

(r] {zt

P,
<
~———
[}

Fﬁ
=
Ad
i
~—T
)
o
'H
I--
O
et B

and

o=t

Thus, the state equations for the dynamical system can be
written (in terms of variables that include the desired plant
sensor signals and control system forces and torques) as

b= 0= [my ) )

* In these developments we refer to the plant (spacecraft)
subject to a controller (active or passive control system)

III-6
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and the transformation Aij = R-! Hi j R, is commonly referred
’

to as a similarity transformation. The matrix Aij is said to

be the transform of H by the matrix R.*

1,3

The similarity transformation Aij possesses a unique property

in that the eigenvalues of A,  are equal to the eigenvalues

1}

of Hi j! A simple proof establishes this point.
]

Proof:

The characteristic matrix of Aij is given by

(Aij - sI) = (R‘l Hi,j R - sI) = R-! (Hi’j - 51) R.

It follows that Q(s), the characteristic polynomial of Aij’ is

Q(s) = det (Aij - SI) = det R”l(det (Hi,j - sI)) det R

and as (det R'l) = EE%?ﬁT it is apparent that

Q(s) = det (Hi’j - sI) = P(s)

where P(s) is the characteristic polynomial of Hi,j' Thus it
is evident that the matrices Hi,j and Aij have the same char-

acteristic equations
Q(s) = P(s) = 0

and theref.re, the eigenvalues of Aij are equal to the eigen-
values of Hi i

Application of this property now permits isolation of the plant
and controller, even for a state space representation of an in-
herently nonlinear =ystem that can be linearized about a spec-

ified state. Separation of plant and control system variables

is an important facet of linear system stability synthesis.

- - —— — -——— -

*S, Hovanessian and L. A. Pipes: Digital Computer Methods in
Ergineering, McGraw-Hill Book Company, New York, 1969.
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This discussion relates to a procedural approach for determi-
naction of the similarity transformation matrix, [R], that will
relieve the user from the burden of having to select those
variables to eliminate from the original state vector such that

the auxiliary variables, B1 and xssi, can become an independent

constituent of the modified state vector for use in the lin-
earized studies. With reference to Equation III-22, all of
the Cij coefficients are known as they have been obtained
through linearization of the auxiliary equations. The Cij co-
efficients simply define the dependence of the auxiliary vari-

ables, wJ, on the original state variables, Yi. In general,
it is not possible to directly partition the Cij in the C; and

C> partitions as indicated in Equation III-22, for we have yet
not made the decision as to which state variables to retain
and which ones to discard in preference to introduction of the

auxiliary variables, wj. In this light we would like to make
a best possible choice with regard to which of the variables

to eliminate from the state vector, Yi, such that the auxili-
ary variables, wj, may be included. Many times there will be
a one to one variaule exchange between an element of wj and an

element of Y*. Tn any case a variable exchange is necessary

to structure the -otal system into the desired plant/controller
framework whereby the plant and controller can be isolated
along with the plant sensor signals and the control system in-
puts.

The following approach is employed in this simulation to ac-
complish the desired result; namely, an optimum selection

from Y- as to which variables to eliminate such that wj can be
introduced as a part of the state vector. With reference to
Equation III-22 we can write

il

Our primary focus of attention is now directed to a systematic
examination of the C coefficients such that the variable ex-

1]
chanre is accomplished in an optimum manner. We will first
make note of some size identifications to help clarify the
discussion.

I11-8
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Cij hae size NR by NS

Y has size NS by 1
wj has size NR by 1

and
NJQ = NS + NR.

Clearly, there exists at least one nonzero element in each row

of the Ci array. Otherwise Yi does not represent an indepen-

3

dent set.

Now a search through the first NS elements of row 1 in the
matrix array

gn

will identify the largest element (absolute value) in row 1.
Assuming that this element occurs in column JBIG (1 < JBIG < NS)
allows us to divide each element of row 1 by this largest
element and subsequent elementary row operations on rows 1
through NR will elim‘nate those elements below the pivotal
element in column JBIG.

This procedure is repeated for each of the NR rows contained
in the matrix and the following observations are noted;

1) the appearance of a one (1.0) in a row identifies a vari-
able that will be eliminated in preference to inclusion
of an element of wj.

2) The absence of a zero or one in columns of a given row
indicates which variables will survive the exchange process,

3) All variables in wj (NR of them) will become part of a new
and independent state vector (the modified state vector).

4) The transformation, Rij (1,=1. . . NS) can be con-

structed from the matrix that remains after the procedural
approach has exhausted all of the NR rows of the expression
I11-27.
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TRANSFER FUNCTION EVALUATION

The entire system transfer function synthesis can be concisely
summarized in a chronological sequence of steps that began with
linearization of the coupled mechanical/control law equations
that govera the dynamical motion. This process included linear-
ization of additional equations that contained specific variables
required for further consideration in-the stability analysis;
namely, plant sensor signals and control -system outputs. A
similarity transformation has been introduced which in effect,
exchanges original state variables for these desired sensor sig-~
nals and controller outputs ruch that the resulting mcdified
state vector still is zepresentative of an independent set of
state variables. Tha resulting system of state space equations
is later identified as Equation II1I-28.

The system characteristic matrix, Aij’ provides the basis for

evaluating the coupled mechanical/control system resonant char-
acteristice (natural frequencies) as well as providing the fun-
damental basi. for specification and determination of the various
types of transfer functions. 'The next subsection addresses some
of the more specific details regarding specific transfer function
relationships. A particular transfer function is identified by

a type along with the desired output/input variable designa-
tion. An eigenvalue problem is then stated, which leads to
determination of the numerator roots (zeros) and denominator
roots (poles) for the particular transfer function. Oncz the
poles and zeros are known for a transfer function, this infor-
mation can be further processed and displayed by any of the
conventional display modes: Bode, Nichols, Nyquist, and/or

root locus.

I1II-10
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The conventional block diagram representation for the coupled
plant/controller system (Figure III-1) provides additional in-
sight for determination of system transfer functions.

R.r
(x} — X

- Plant

Controller ~ [H] )._.é__— {Rs}

Figure ITI-1 Plant,Controller Block Diagram

The first-order differential equations for the system are written
as

(111-281 2 = A o+ B, RTj + B, st
J 1j i3

and it is helpful at this point to express the equation in ma-
trix form and indicate the separate partitioned subsets of 2 ’

3 3 3
A,., Z, B ,RT,B and R
ij Tij sij 8

y Fa11 |12 [a13 {a14] (v brl bl
[I11-29]) ?ss - |321 | 322 | @23 |a2y Xl b2 {RT} + b2 {Rs} .
8 ay; | 832 |a33 |asu] )¢ b3 b3
B La“1 ayy |ays layy B ng b 4
- S

The following observations are noted;

az; =\ le = =3, bsl = 9

ay] =0 bpp = -ap, by =0
a;3 * 0 b3 =0 b 3 =az
azy =V by =0 b ™ au2

III-11
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and Equation III-29 can be restated as

y fa11 |a12 aww| (v -ajy 0

X\ =[a : + |- .
Xss 21 |a22 azy las azy {Kr} +10 {Rs}
§ a3z |az3 [a3y § 0 az2

B ! ay2 lay3 [ayu] B Y ay2

Equations III-30 are the operating basis for stating particular
transfer function relationships for the plant/controller system.

The general procedure is to establish a system transfer function
between inputs RT and Rs and outputs XSS and B. Loops may be

opened to provide open loop information by manipulation of the
Aij coefficients to prohibit certain feedbacks.

To symbolically describe specification of a transfer function
we begin by consolidating the b coefficients and taking the La-
place transform of Equation III-30 to give

[I1I-31] [18] {Z(s)} = [A] {Z(s)} + [b) {U(s)}

or

[11I-32] [[IS] - [A]] {z(s)} N [b] {U(S>}

[III-33] Z

P
(s)

and then employ Cramer's Rule to evaluate a given clement Z
due to a particular iaput U where

(S)q
Prucgy? = aug| 1s - A |

= N

and where aug IIs - A' is accomplished by placing column q of b
into column p OflIs - AI‘

*
The Q-R algorithm is a useful tool with which to extract the
indicated determinants in Equation III-33,

%

J. G. F, Francis, "The QR-Transformation - A Unitary Analogue

to the LR-Transformation." The Computer Jowrnal, Volume 4, Octo-
ber 1961 (Part 1) and Volume 5, January 1962 (Part 2).

11I-12
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The Root Extraction Process

With reference to Equation II1I-33 it 18 desired to evaluate both
the numerator and denominator roots. The denominator root extrac-
tion is straightforward in that we wish to find p;, Py, P3, *** P

from an expression of the form n

D(s) = det([1]s - [A])

such that

n
[II11-34] D(s) = (8 = p1) (8= p2) *** (s ~p) = [T (s-pp).

i=1
This evaluation is completed by extracting the characteristic

roots of the matrix Aij' In general these roots will be complex
because Aij is not symmetric.
The process employed for evaluating the numerator is best illus-

trated with an example. Consider that we have the (4x4) charac-
teristic system matrix,

[Aj5) = |a | a2 ] a13 |a1s]

azy | a2} 323 |82y

a3] | 332 | a33 a3y

Ayl Jay2 ) ays |ayy

and the column of coefficients bi which premultiply the desired

input variable Uq. Further, let it be desired to obtain the
transfer function relating output of the third variable in the

state equations y3 to tha input Uq.

The state equations for this system would appear as

yil [ai 812|213 | 314 (V1 b1

(111-35]) Jy2\ = |a2; |22z {223 [a2u | Jyvo + )b U8

¥3 a3z} |a32 |az3 |asu|fJvs b3
[ )
Yu [ ay1 |3u2 {ay3 Jauu]) Yy by

and, with reference to Equation I11~33, the numerator is

N(g) = aug[Is - a| or

' . III-13




8 -a); | -ay2 b

=a1y

-a2] 8 -azz | b2

-azy

(111-36] N(8) = det -a3) =237 bj

-83“ .

~ay) | =ay2 |by

8 =auy

After performing elementary row operations, Equation III-36 can

be restated in the form

8 -aj) + a3] by/bj

(III-37]) N(s) = bidet | ~az) +a3; ba/b3
~ay) +a3] by/bj

or, in symbolic terms as
[111-33] N(s) = b3 det|[Is] - [a]]
vhere the matrix & is given as

-

a]] -a3; b1/b3|ajz -a3z b1/b;

s-aga+aga by/b3
-ayy +a3n by/bs

-
a1y —a3y by/bj

-ajq + a3y by/b;

az] -a3) ba/b3 |82z -a3z ba/bj

azy -a3y ba/bj3

|41 -831 bu/bs | auz -a3z bu/bs

Note that the previous expression for N{s

ayy -a3y by/bs

-ajy + a3y by/by
-azy +a3y ba/b3
g-asn+asnby/bj

is finite only if b3 & O

and the question is~-can bj realistically be null? The answer is
yee as the following example indicates.

Example

Consider the simple mechanical system consisting of two massas
connected by a single spring/dashpot ccmbinaiion as ahown in the

sketch.,
—=Xx; 5 > X o
F, AW~
e ——————— C aenmusnl
ATTnTITIY I 7777 777

The state space representation is

11I-14
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4 kl ~c/my | c¢/my ~k/my | k/m; L ).{1 1/m1 Gl {F,;
dt 2 .
Xo{ = le/mp |=c/my |k/m, I—k/mz Xo{ +]0 !/m, F,
X 1 ' X 0 o0
X7 1 X, 0 0

and the frequency domain (or transformed) equations in s are

[me- m] @Y =[l/a o rlt

5{2(’) 0 l/mz FZ
X;(s) 0 0
Xo(8) lO 0

where

[A] =} -c/m) c¢/m; -k/m; k/m
c/mp =c/mp; k/my =k/my
i 0 J 0
] 1 0 0

Consider now the transfer function ¥, gs)/Fl wvhere the augmented
numerator is

N(s) = det l/m; ~c/m k/m;  -k/m
0 s+c/my =~k/my k/m,

0 8 0

-1 0 8

and the pivot element is the (1, 1) element or !/m; 7#0. On the
other hand, the transfer function Xl(a)/Fl has the augmentad

numerator

N(s) = det |8 + c/m =c/m Y/my ~k/m
~-c/mp s +c/my O k/mp

-1 J 0 J

| 0 -1 0 s

ard tne pivot element is the (3, 3) element, which is null.

III-15
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The problem we now address involves eraluation of the numerator
determinant N(s) when the pivotal element is null. The particu-
lar mathematical problem may be restated as

[t)s - 4

[i]is the identity matrix [I] of size N with a null diagonal
element.

[II11-39] N(s) = det

where

Addition and subtraction of the quantity [i]x (where X is an ar-

bitrary constant not equal to one of tne roots of [&] yields

(1] - - [[{] - [1] 4]

and if we define (s - ¥) }/D, there results

(%:-é P - (& - ix)_l i

(III-40] N(s) = det

e

[I11-41] N(s) = -1)N det | A - ix
N

The roots, (pi, i=l,N) are found as the eigenvalues of the ex-
pression !

s (][] [

and tue :igensolution permits N(s) to bz written as

[I1I-43] N(s) = (-1)" det | & - Ix
N
P

l

We now make the following observ.tion: a Py equal to zero im

‘(p - p1) (p=p2) ** (P - PN)} .

plies a root at infinity (or a chara-teristic polynominal having
order less than N). Thus, the null pi's are eliminat:d from the

exprecsion giving the characteristic polyminal an order n, which
is less than N. It is a rather common occurence for the number

of zeros (orc:ar of N(s) ) to be significantly less than the num—
ber of poles (crder of D{s) ). With reference to Equation III-

43, tne numerator expression, N(s) can be written as

I11-16
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[111-44] W(s) = (-1)¥ det | X - ixl a-Plya-P2)..q-P

P P P

and, recalling that p = —s-}—_-i-, yields

[I1I-45] N(s) - —l)N detl A- ixl (s‘— s1) (s - s3) ¢ (8 - sn) .
n

n (x - si)
i=1

Next, we note that

(I11-46] [J y = (=
I11- (x - s;) = (-—_'>
1131 ¥\

znd it follows that

. n L. n
[11I-47] N(s) = (DY 7 p, det |A-Ix| JT (s-s).
i=1 i=1

The numerator rgot gain, kR’ can now be identified as

A—ixl

[111-48] k, = (-1)"™® 1’31 py det

and the Bode gain, kB, for the numerator is

m
= —-\m .
kB-kR(.L) n s:l where m £ n.
i=1
2. Transfer Function Classification

With reference to Figure III-2 ii is possible to directly iden-
tify six transfer function types. Each type is characterized by
the specific variables involved and by the presence of feedback.
Additionally, a seventh type will also be described whereby cer-
tain of the control variables iced back and others do not. This
tyj< is similar to an open loop transfer function but treats se-
lected channels of the controller as part of the mechanical sys-
tem (plant). During the course of this discussion it will be-
come apparent that additional transfer function types are eacily
accommodated by rather simple manipultaions with the system char-

acteristic matrix, Aij'

. III-17
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In general it shnuld be noted that the process of obtaining the
desired transfer function involves but a few basic steps. The
transfer function characteristic matrix, 13 and the desired

force coefficient vector, bi aie obtained directly from the sys-
tem characteristic ratrix &ij' These tw» matrices are then pit

in a form such that the Q-R algorithm can be emplryed to extract
system roots.

Type 1 (Plant Only)

Type 1 is the forward path transfer function for *the plant with
no feedback and is of the form

P pd
(111-49] X_ /R = G(s).

The control variables & and control outputs, Bl, do not reed
back into the plant. The matrix expression depicting the system
of interest is

(111-50]1 d_(y = |laj; a1z} \y + le 2&1:% .
dt xss ap] az; XSS sz

The matrix, Ai" to use in the general expression given as Equa-
J

13 matrix,

tion III-33 is referred to as ﬂ(ij or the reduced A

(I11-51] nQij = [511 81%].

a1 az2

-The augmented“lij matrix is obtained by removing the column cor-
responding to the input vaiiable, R%, from the expression bT and
inserting this column into the column in Rij' which corresponds
to the desired output, st. The resulting transfer function is
then given as
[111-52] X D/R] = aug l1s - RI .
|z - R

III-18
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Type II (Controller Only)

[111-56]

Type II represents the feedback path, d{s), for the controller
only. The desired transfer function relates control system out-

i X
puts B" to sensor signal inputs, Xis'

531 BP/x 9
(I11-33] B/X__ = H(s).

The reduced characteristic matrix “Qi’ and the corresponding in-
J

put coefficients, bik’ are given as

R . = jaz3 aszul- b,, = aza2 | »
(I11-54] 1k
ay3 ayy ay2

Type III (Open Loop, GH)

Type III falls within the framework or the classical open-loop
transfer function designation and relates control system out-

puts B to external plant inputs R%. The algebraic expression for

a given output variable, Bp, due to an external input, R%, is in-
dicated as

=21 2P/ o (ci
(I11~55] B /R (Gd)(s).

The open-loop system characteristic matrix '{ij and corresponding

input coefficiencts, bik’ are

R.. =[- 7 N P |
i3 | 21212 s ba =21y g
az) [ a22 -azy
aszz |a33 | au3 0
B au2 | 343 | duy | R 0

Previously it was noted that a3; = a,} = aj3 = a3 = 0 and, in ad-
dition, the partitions aj, and ajy are set to zero to prohibit

the Bi feedback. Thus, the loop is opened to establish GH, the
open—ioop trarsfer function in s. Note that the negative sign

in the bi coefficients simply indicates that the Bi feedback is

k
negative with respect to the external plant inputs, R%.,

I1I-19
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Type IV (Qpén Lcop, HG)

An additional open-loop transfer function is often desired to
assess the plant sensor signal outputs due to controller noise in-
puts. The transfer function then relates sensor signal outputs,

X:s’ to control system noise inputs, Ri . The plant sensor sig-

nal vector does not feed back into the system so that we have

P,ed -
(111-57) X__/R_ (uc)(s)

and the system characteristic matrix, “Qij’ and the external in-

put coefficients, bik’ are identified as

-~ - _
Rij = lay] |aiz ay| bik =10 .
[I1I-53] ay) |az2 azy 0
a33 a3y a32
aAu3 | -uk ay2
. ~d

ote tnat the a3~ and a,, partitions have been nulled to elimi-
nate sensor signal feedback,

Type V (Closed Loop - Control Ratio)

The system control ratio is given as the transfer function that
relates plant variable outputs to externally applied plant inputs
with the control system entirely active. We express this transfer
function as

[I1I--59) xsleg = ( G ) )
1+GH /(s)

and the system cnaracteristic matrix ﬁ?i and the external input

J
coefficients bik are identified as
lRij =[a11] a1z aiy] s LY =l"'31u .
a a- a -as
azp [a33f a3y 0
| au2 | 3u3 | 3y ] 0

The negative sign in the matrix bik indicates that the feedback is
negative.

I11-20



Type VI (Closed Loop)

An additional closed-loop transfer function has been accommodated
witbin the digital simulation. Specifically, Type VI relates
plant sensor signal outputs to sensor signal noise inpiuts with
all control system loops active. Tnhe transfer function is sym-
bolically indicated as:

[111-61] X! = (transfer function) R

where the system characteristic matrix, ﬂ?ij, and corresponding

inpat coefficients are ldentified as

R - [~ - _ ~ 1
13 T |31l 212 ajy 1s by =10 .
az] az azy 0
[I111-62] !
azy aszz azy asz
a a a a
| 42 8u3 Ay | | 242

Type VII (Quasi-Open Loop)

An additional transfer function type is identified here and re-
ferred to as quasi-open loop. It is of the open loop type in

. . i
that we are interested in control system outputs, B", due to plant

variable inputs, Rj For example, suppose that for a multi-channel

T.
control system (such as azimuth and elev .tion), we desire outputs

i .
B” on the controller channel that do not feed back and that the
other channel is active in that it feeds back into the plant.

{®]

Plant -

=)

| Cnannel 1 ;Xss§

BZ ’«-“\ Channel 2

TFor the configuration indicated, a typical Type VII transfer func-
tion (TF) would be given by

Bg = (transfer function) Rg

I11-21
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and the form of the system characteristic matrix, n%ij, and plant

input coefficient matrix bik would be

r - — r -
“?1j = a1 | 312 f1u > bop = |31 |-
asz] jazz azy =azy
[I11-63]
azz |azz | asy 0
a a a 0
| 42 |au3 | duy | | i

The subpartitions aj, and 3,4 indicate modification of the origi-
nal partitions ajy and aj,. Specifically, 5mn is a subset of aij

obtained by keeping only tnose n columns of a that correspond

Lo the Bi variables that feed back to the plant.

3. Transfer Functions - Polynominal Description

This subs:ction is addressed to implementation of control system
transfer functions described as the ratio of two polynominals in
the frequency domain, s. Specifically, we consider

[II1-64] TF = P(.)/Q(s)
where
Q(s) = ap + ajs + ap82 + azsd + ooe + ansn
and
P(s) = bg + bys + bps? + +es + b s
/
Because the previously described governing equations have been

stated in canonical first—order form, we propose to restate the
polynomiral description for the transfer function in the form

ui_ j
[1r1-65] §° = A, ¢ + B,U

The block diagram for the system is

U g(s ¢
a(s)

[I11-66] frcem which we write

§ = Pfs! U

Qfs)

I11-22
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and expansion of the implied opevator in s results in a differ-
ential equation of the form

n n-1 . m m~-1 f
[I11-67] an § + an-l § + see + 3 6 +agd = bm U + bm—l U 4 00 + b + boU
ln n
wnere > = d § ,
de”
In general, the order of P(s) will be no greater than the order of
Q(s) or mgn.

a. m=n

We divide Equation III-67 by a  to obtain

_..n n~-1 . n m-1 .
(III-03] § + Cn—l § 4 ves +Cy 8§+ Cpb = dm U+ dm_1 U + ere + 4,0 + dgU
a b
where C, = —i and 4, = A
i a i a
n n

An example will be used for illustration,
Example: Consider the equation with m=n=4,

'R LN 2 L Y

§ +C38 +Cyp 6 +Ci6+Co=dy U +dj

U+ d,0° + d,U + dgu

—

or, in operator form

s"8 + 83 €38 + 82 Cp8 + €186 + Cob = s"d,U + s3d3U + s2d,U + s d U + dgU.

This can be rewritten as
s“(6 = 4yu) + s3(cs8 - ayu) + s2(cz8 ~ dU) + s(ca6 - dyU) + (cos - dgu)= 0
and the substitution
8§ = § - d,U
permits a reduction in order to
s3(8y + C36 - asu) + s2(c8 ~ doU) + slcys - ayu) + (Cot = 2qU) = 0.
we can again introduce a new variable

§p = (&1 + C38 - ng:

I11-23
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and rewrite the previous as

s2(8; + €y - dzU) + 8(C1S = d1U) 4+ (Cos - dgu) = 0.
It follows that i’ we define

53 = 32 + Cp8 = doU

there results

s(83 + €16 - d)U) + o8 - doU = O,

and the substitution

Sy = &3+ €16 - 41U

gives
§y = -Cqo8 + dgU.

The variable § can now be eliminated from cach of the above ex-

. th
pressions and tne results generalized to n  order systems.

The result is concisely stated as a matrix equation that is recog-
nized to be of the desired form initially given as Equation III-63,

re ) B | N ) r 3N U
?1 -Cn_l 1101+ 10}18, dn_1 - Cn-ldn
8o --Cn_2 O1L ] 1VY]]82 dn_2 - Cn_zdn
. = . . . . . + .
[III—69]< . > . .. K. ; . )
n-1 -C J10 1 Sn_l d; - Cldn
Lan -Cp Dl VN R R RY 1 dg - Cod
J - -L J J

where §; and §, the original variable of the equation, are rela-
ted as shown previously and U is the input variable to the trans-
fer function expression as indicated in Equation III-65,

b. m<n

The general expression for the case where m<a is easily accomo-
dated by restricting the di coefficients to reflect the limit m.

Commonly, only the dg coefficient will be finite.
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[111-70] TF = Kk

3.

Frequer.cy Response

Transfer function poles, zeros, and root gain can be converted to
the standard Bode form for frequency response by combining time
constants, damping, and resonant frequencies as

s N2 . 2
srfi(l+'cs)I](lli,z"a s)

i=1 i7/ 1i=1 = + Tz
i i

Ml M2

n (1 + T,S) 14 2;,8 82

j=1 371 e+ —
W, w.2
J J

where the Bode gain is

n
nmz
i=1

k. =k where k = root gain and

m

nvy

j=1
T = system constants
g

w

system damping at frequency w

system resonant frequency.

The frequency response is then calculated by substituting jw for.
s and evaluating the transfer function expression at various w's.
The digital simulation uses a vernier frequency incrementing ap~
proach that automatically introduces smaller frequency increments
near the poles and zeros., This variable frequency incrementing
technique permits better transfer function resolution near the
resonances where amplitude and phase can vary rapidly.

Roct Locus

The root locus method of analysis and design is based on the re-
lationshlp between the poles and zeros of the closed loop transfer
function and those of the open Joop transfer function, The method
is used to determine the location of the roots of the character-
istic equation as a function cf = single open loop gain param-
eter, The locations of these roots are indicative of the relative
system stability. The analyst may use the methcd as a design tool
by adjusting the poles and zeros and the open-loop gain parameters
in such a way as to yield a closed loop system with satisfactory
critical frequencies (poles and zeros).

I1I-25
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To further describe the theoretical basis for the method we re-
fer to the conventional control raiio for a feedback system as
shown in Figure III-2,

R(s) c(s)
G(s) —

H(s)

Figure III-2 Conventional Feedback Control System

The control ratio C(s)/R(s) is

[111-71] c(s) . Gls)

R(s) 1+ G(s) H(s)

and tne open loop transfer function G(s) H(s) is identified as
a ratio of two functions in s,

[11I-72) G(s) H(s) = kf.f_s_; .
Q(s

The characteristic system equation is

[III-73] 1 + G(s) H(s) = 0

or
1Rl g,
Q(s)

The conventional root locus plet portrays the loci of the values
of s that satisfy the characteristi: equation as k varies from

zero to infinity and we note

1) at k=0, the roots of the characteristic equation are equal to
the roots of Q(s), which are the same as the poles of the open
loop transfer function, k _P_Ls_);

Q(s)

II1-26
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2) as k approaches infinity, the roots approach the roois of P(s),
the open loop zeros.

Thus, ag k varies from 0 to infinity, the loci of the closed loop
poles migrate from the open loop polas to the open loop zeros
and the direction of migration depends on the sign of the open

loop gain parameter, k.

Rewritting Equation III-73 yields a more conventional expressicn
for tne characteristic equation as

(111-74]) k B(s) _ _,

Q(s)
and two conditions are required;
k P!sl

Q(s)

2) {P(s) /Q(s) = 130°, k>0

The first of these conditions can be expressed as
IO
,P(s)

1
) .1

for those values of s that satisfy the angle criterion. The con-
ditione that govern the migration of the roots in the complex
plane can be solved by an iterative procedure. The iterative
procedure for evaluation of a single root locus* is described in

Appendix E.

LINEAR RESPONSE IN THE TIME DOMAIN

The linearized canonical first-order system of equations can also
provide a basis for studying system time history in terms of per-
turbations about a specified state when the sy..em indeed behaves
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in a linear manner in the vicinity of the state. The nonhomogen-
eous form of the equations was the basis for determination of

system transfer functions and appeared previously as

(111-75) 24 = A, 23+ b U¥(e).

1]

k
The external system inputs are the elements of U . It is con-
venient tc establish the solution for the above sysiem through
use of a recursive formula numerical integration procedure rather

than through the Runge-Kutta approach.

Consider the Adams' corrector formula* at time t+l,

[111-76] niyy = np * 121-2 [9 Mgy Y19 =3 My ¥ ”t-z]

where h is the incremented time step.

Application of this formula to our system of equations gives

i _ i.,h 3 K 4ot
LT Y [? Ay 2 TP Uy 192, -5 2,

+ z

i
t-2

and manipulation yields thu. solution for all the z1 at time step,

v+l
-1

f2] .[],;h[] | 4h ol o+ 10 12l - shal
lz‘ e+l I 3 A it + 57 91b U$t+l 10 Z(¢ 5 z

{1

=2 ) °
M te the requirement for éi at time step t-~2; hence, the require-
ment for a starter (e.g., Runge-Kutta) to initiate the solution
process.
*F. Schied. "Theory and Problems of Numerical Analysis." & haun's

Outiline Series, McGraw~Hill Book Company, New York 1963.
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(a-2]

(A-3]

[A-4]

[A-5]
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APPENDIX A--INERTIAL INTEGRALS

.In the development of the equations of motion (Refer to Chapter

11, Sections B and D.) there are certain inertial integra’s
idertified that are required to account for the deformation-depen-
dent inertia matrix and that are involved in calculating the ef-
fects of centrifugal and Coriolis forces.

The basis for calculating these integrals is a triple matrix pro-
duct involviag a so-called discrete mass matrix [M], which is as-
sembled by use of finite element techniques, and which may be used
in calculation of vibration modes. The other constituent of the
triple matrix product is a modal transformation that transforms
ordinary velocities, associated with the finite element model, to
the velocities of the {U}, vector.

3

Let us refer to the transformation as [¢], thus the triple matr:x
product is

T
[2] = [o]17[M][s],
which is the basis of the kinetic energy expression of Equation
II-21. Now, the mass matrix [M] is invariable with respect to
the body's deformation. The modal transformation [¢] does, hcw-
ever, depend on the {£} in a linear fashion, or we may expard
[¢] as
[6] = [s]_ + la0],

with [¢]° a matrix of constant element- and [A¢] variable with

respect to deformation.

On substituting Equation A-2 into Equation A~1 and referriung to
Equation II-86 it follows that

T
(m) = {o,17MILe,),
[y & = 01 Mo, + [0 1 M) 100],
and

(221, €46 = (2017041 [00].
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(A-6]

[A-7]
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Assume that the finite element model of the body has a ''global”
cartesian frame in which the ordinary velocities are mea-ured,

and further assume that the generalized coordinates of the finite
element model are grouped (or ordered) such that all the x-trans-
lations are togecher, followed by all the y- then z- translations,
and that _.ne tresnslations are followed by sets of x, y, and z ro-
.ations. ".ith this implied ordering, it follows that the discrete
m~38 matrix is partitioned in the form:

o —

Ml =1m m m m m m
x| xy | xz 'xp | xq | xr
m m m m m
yy ye yp ¥yq yr
m m m. |m
zz | 2p | 2q | zr
m m m
PP Pq pr
(SYMMETRIC) m m
qq qr
m
rr

with p, q, and r corresponding to rotation coordinates about x,

y, and z axes, respectively. Similarly, the modal transformation
is partitioned as

(6] = zen,} |-ty 3 | (13 (b 1]
-{z+n_} {xtn_} {1} [hy]
yer ) | _ '
oy | -t ) {1} | [n,]
{11 [o,]
{1} [oy]
{1} [o,]
. -

Each square subpartition of Equation A-6 has rows equal to the
number of structural joints (collocation points) of the finite
element model, as does each subpartition of Equation A-7. The
submatrices in the last column partition of Equation A-7,
(lh.], [n.], *=, [0_]), have columns equal to the number of
defSrmati¥n modes used to represent the body and are matrices

of modal translation and rotation amplitudes.
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[A-8]

[a-9]

[A-10]

[A-11]

The form of [¢°] @ 1 of [0¢]) is seen immediately from Equation

A-7 in that the only nonzero parts of [A¢] are due to the {n}
vectors. The [¢] matrix is effectively a kinematic velocity trans-
formation consistent with the form of Equation II-25, and it
follows that

{nx} = [hx]{i},
{ny} = [hy]{E},
and {nz} = [hz]{E}'

In the Equation A-4, there is seen the product of two constant
matrices, namely [M][¢o]. The two triple products on the right

or Equation A-4 require evaluation of only the first three row
partitions of [M][¢o]. Thus let us define

(The first 3 row partitions of [M][¢0]) =

ral Tl ol Pul Pl el [P]
Pl Pl ol el o]
szzlg ;Pzzf ;Pz3: :leo% ;st ’sz 'sz]_
with, for example,
{lez = :mxp: {1} + :mxz] {y} - [mxy] {2}

] = [ * Poll] [l ]
"] ] e 5] [P

It s unnecessary to expand each partition of Equation A-9; the
partial product is numerically obtained and the examples of Equa-
tions A-10 and A-11 are just for purposes of illustration.
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(A-12]
[A-13]
[A-14]
[A-15]
[A-16]
[A-17]
[A-18]

[A-19]

[A-20]

[A-21)
[A-22]
[A-23]
[A-24]
[A-25]

[A-26]

[A-27]

[A-28]

—
»
]
w
o
[
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—
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Now with reference to the intermediate constant zatrices given
by Equation A-9 and the definitions of Equations A-4 and A-5, the
following inertial integrals are developed (the reader is urged
to refer back to Chapter 11, Section D, particularly Equations
1I-88 and II-89):

[ .
fla ) LPZI‘.. lfly LPyl' [hz.
o 9
a,] = [P h} - P ﬁ
B AL ;
agt = |Pa6 F‘y - Py6 E‘z
SN, - - _ - - 1
s Pxd| [Pz P4 Fx
Gs = PxS hz - PzS Fx
G8l = Px6 h% - Pz6 Fx
L J L L J W
a = |P - |P
Lj -yf Fg Lx% M
B = [Pss] [ [Py )
4 - b - Pl
= 1 - 1
Py = [P E‘Y y1] "]
b - ]} -]
N i x%. i i 22_
3 % _Py3 F‘x - Px3J F‘y
b = P B 7 [ B [ - ol
- 1 - e . -
o = [P ] 7 o) B * el o] [Pl By
g =l b - P b * [l P - P

3
3
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<
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(B-1]

(B-2]

[B-3]

APPENDIX B--ROTATION TRANSFORMATIONS

There are 12 possible orthonormal rotation transformations, in
terms of Euler angles, that the analyst may choose from in order
to orient one orthogonal triad with respect to another. For each
one of the 12 orthonormal rotation transformations there is an
associated rotation transformation that is not orthonormal and
that is used to transform angular velocity projections (onto a
nonorthogonal vector basis), which are time derivatives of Euler
angles, to projections (onto an orthogonal vector basis) that
are common'!y referred to as time derivatives of angular quasi-
coordinates (w , w_ and w_ ).

x> Ty z

It is possible, for purposes of digital computation, to automate
the generation of these transformations, given a selected order
of rotation. It is the purpose of this appendix to indicate the
steps and numerical manipulations that are required. To this end,
let us consider one of the 12 types (say a 2-3-2 permutation) as
an illustrative example.

Consider the two orthogonal vector bases, whose relative orienta-
tion we want to describe, to be

{a} = [-1
J
K
L
and
{e} = Fi .
)
hk

Now i€ 8;, Gp, and 83 are the three successive Euler rotations
about axes (2-3-2) respectively, then it follows that

{a} = [T;){e"}

= |cosf; s8inb,

-sind, cos@

P ——)

s 2 St S



A .,

{e’} = [Ty){e™
[B-4] = lcos8; |-sing, 1"
sinf, | cosh, 3l .,
1 Eﬂ
and
{e"} = [T3){e}
_ = |cosfj sinf3|[ 1
[B-5] 1 I
-sinb, cosfz ik
On combining Equations B-3, B-4, and B-5 there results
[B-6] {a} = [T11[T21[T3]{e]).
Now, a 2-3-2 permutation means that the first rotation (6;) is
about the 2nd axis of the {a} basis, the second rotatiom (8,) is
about the 3rd axis of the {e’1 basis and the third rotation (63)
is about the 2nd axis of the {e")} basis.
Consider the following reference table, which shows the correla-
tion between Euler rotations and the corresponding axis:
Table B-1 Correlation of Euler Rotations and Axes
Type 1 2 3 4 5 6 7 8 9 10 11 12
8y about 1,1 }1,I |1,I }1,T 2,3 2,3 |2, |2, |3,k |3,k |3,K |3,K
6, about | 2,37 12,3 {3,k | 3,k" |3,k |3k |1,i°)1,1" 1,1 |1,17]2,5°]2,3"
-— —_— — — — -— -— p— — —— —— -1t
93 about 3,k" l,i" l,i" Z,j" 1,1" z,jn 2’j" 3,k" 2,"’" 3,k" 3,k" 1’1

(B~7]

Now it is clear that the elementary rotation transformations ([T;],
[Ty], and [T3]) always involve 6;, 08, 63 respectively, but any one
of them may have three different forms depending on the axis asso-
ciated with its rotation. That is, when 61 (1 =1, 2, 3) is about

axis (1) then
(t,1= [1
cosei -sinei .

sinei cosei

when ei is about axis (2),

B-2
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[B-8]

[B-9]

{B-10]

[B-11])

{B-12]

[B-13)

sinb
i 1 i ,

-s:l.nei cosei

[Ti] = | cosH

and finally, when 91 is about axis (3),

[Ti] = cosei —sinei .

sinei cosei

Thus, it is evident that one need only specify a rotation type
(referring to Table B-1) and the three Euler rotations to create
his required orthonormal rotation transformation Equation B-6.

The associated rotational velocity transformations are developed
as follows. Consider, again, the 2-3-2 permutation. For this
case, it is possible to express the angular velocity vector w
in two ways:

w= 1w+ 3@ + ko

X y z
and as

W = ?'é] + E"éz + 3“63.

Combining Equations B-10 with B-1ll there results

{w} [v]{8},

w .l = cost -sinf3|}sinfy 61
or wy = 1 cosby 1 52
w, sinf, cosfj 1 53

T.,,T

or [r) = [T3]) [A)".

Jow, the inverse tranformation of Equation B-12 is required for
hinge kinematics applications, or it is necessary to express

B-3
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[B-14)

[B-15]

[B-16]

[B-17]

-1
(171 = (A]T [T4]
=1 -1
- (g1 (B11A1T) [1s)

- (t=20a17) " 22 07s)

with [E] an elementary row interchange transformation, which for
the (2-3-2) example is

“LLI]

and causes ([E][A]T) to be of the form:

(E](a]T = [a ]
1

B8
1

1

1

such that

(t181%) " = [1/a
-B/a

1]

The form of Equation B-17 is the same for all 12 types of Euler
rotations, which was the purpose of introducing [E], and this is
convenient with respect ot programming considerations. It follows
that

with o = gin6,,

and B8 = cosf.

for types 1, 5, 9 o = cosfy, B = ginf,,
for types 2, 6, 10 o = 8inf6,, B = cosfjy;
for types 3, 7, 11 a =-sinf,» B = cosfjy,
and for types 4, 8, 12 a = cosf;, B = -ginf,.

Also, for each of the 12 types, there is an elementary row inter-
change transformation [E] that can be constructed from simple
inspection of the permutation integers of Table B-1 (2-3-2 for
example). In fact, it is unnecessary to actually construct [E]
because information to construct it is merely applied to [T3]
(iaterchanging its rows), which produces [E][T3]. Thus, the
velocity transformation of Equation B-14 can be created for any
one of the 12 possible types with comparative ease.

B-4
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[Cc-1]

[c-2]

(C~3]

[C-4]

(c-5]

APPENDIX C--TIME DERIVATiVES OF KINEMATTC COEFFICIENTS

The formulation and numerical implementation of motion equations
for the system of interconnected bodies involves a vector of La-
grange multipliers, {A} (Refer to Equations II-1 and II-6), In
order to numerically evaluate {A} there is seen to be the require-
ment of calculating time derivatives of kinematic coefficilents
(velocity transformations) associated with hinges.

With reference to Chapter II, Section C, it is noted that for
each hinge there is a [bp] and a [bq] matrix of kinematic coef-

ficients. The basic form of these matrices is repeated here,
then the sequence of steps uecessary to develop their time deriv-
atives is indicated.

The [bp] array is

Now to develop [Bp] and [ﬁq] it is necessary to expand the fol-

lowing as:

e[ ) e
4] [ () 64
) - [#k] b ] * [PRm] [ép
) -

n-ln-
t
——
.UW
B
.
~
g
—J
-

n.ln.
(a4
—
-_—
=
-
!
—
-O,J
=]
—_—)
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,“,%_‘,.___.

[c-6]

[c-7]

[c-8]

[c-9]

[C-10]

[C-11]

[c-12]

[C-13]

{C-14]

[C-15]

o (LT D) - [ B+ o) B

The 3x3 matrix time derivatives defined by Equations C-3 through
C-6 have factors (also 3x3 matrix time derivatives) that are ex~
panded in terms of p.eviously defined quantities as follows:

- 0 )
&a] = [sx* ([an] [o,] {En})] [an].

RREAIE!

.~

_“§73] - SK# ([?anJ (togh + [0,] (E})
- [#Rd] [Re] (G2 * 1] &),
[pin] - {pf{q [an] ¥ [qu] [qin].
[é;;"] - [sx* () (&1,
[587] = [ome (1) 29)]-

Finally, the time derivative of [7] * requires additionai consid-
eration. Refer to Appendix B,

-1
The rotation transfermation [7] is developed as

™ = (03] YY) (8] 3,

and it is shown that the form
-1 -
(te3 1aT") " - (2] = [

-B/a 1
holds for each of the 12 possible Euler rotations. In tnat [E]

is constant, [A)] depends only on 8, and [T3] depends onl. on 83,
it follows that

C=2
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(c-16]

(n1™! =8, - (4] [E] (T3]

d

(08 1) 5y,

where the Euler angle rates (éz and 63) are numerically evaluated
before their use in Equation C-16 through application of Equatien
1I~3; that is, they reside in that part of the state vector time

derivative {9} that has been evaluated.
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APPENDIX D--SYSTEM MOMENTA AND ENERGIES -

Development of state equations for predicting dynamic response of
a system of interconnected flexible bodies involves a consider-
able amount of complicated formulation and programming codea. This
is certainly a true statement, independent of the particular
method of analytical mechanics on which one might select to base
development,

The inherent complexity of such a digital simulation program gives
rise to the question: is there any way of checking the program
validity? 1In an attempt to answer this question, one might sug-
gest comparing results with those of other dynamic simulations
or hardware tests. If such a comparison is positive, then cred-
ibility (to a degree) is established. However, there is another
absolutely necessary (if not sufficient) conditicn that must be
passed to establish validity. For a dynamic system free of ex-
ternal forces and torques, angular and linear momenta must be
conserved; also, total energy (kinetic plus potential) mi. t not
increase in time.

it is a desirable feature for such a digital simulation program
to have a built-in monitor of momenta and energy. The purpose of
this appendix is tc develop (in terms of previously identified
state variables and system parameters) the expressions for total
system angular and linear momentum vectors and the total system
energy.

The total angular momentum about the inertial reference can be
expressed (from definition) as
NB

ﬁ-z S(ixv)dm

=1 VJ

with the summation over the number of bodies (NB) of the system,
with X being the vector positioning the elsmental mass (dm) from

~ the inertial origin, with v being the absolute velocity of dm,

h

and with integration takan over the volume of the jt body (Vj).

Also, from definition, the total linear momentum with respect to
the inertial frame is

D-1




(D-2]

(D-3]

[D-4]

(p-5]

(D-6]

{(D-71]

E-% r;dm.
)
i=1

Y4

Now, consistent with the notion of a body fixed axis system and
with a consistent veiocity field assumed (Refer to Chapter II,

Section 4.), it follrws that, over the .olume of the jth body,

X "inj +p0+n,

and

ve= ij + wj X(oo +n )+ LN Ek.
On substituting Equations D=3 and D=4 into D-1 and D-2 and integra-
ting, it becomes clear that the first six elements of the product

{pl, = [ml, {U}j
= |{p}
{pv}
{pé} J

are projections of the jth body's angular and linear momentum
vectors onto the moving body axis system. In fact, {pw} includes

the effect of momentum wheels (See Zquation I1I-109), which sureliy
must e accounted for.

Thus, the angular momentum of the jth body (about its body-~origin)
is

hj - -ej- {pw}j'

while the linear momentum of the jth body is

13 = ej‘ {pv}j

=

where l:&J is the unit vector basis associated with the body fixed

reference triad.

D-2
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(p-3]

[D-91]

[D-10]

(D-11])

Now rotation transformations that relate vector components in
each body system to the inertial system exist; also, position
vector from the inertial origin to the reference point of each
body exists. It follows that

L -E zj
i=1
NB
"3 [ s
j=1

and that
NB

H= n, + X, X2
Z(“j *&j j)

j=1

NB '

- R, | {p )}, + [skx [[or ) g -

3o (] s oo (o] )] feels)

j=1 .
The total angular and linear momentum vectors are calculated by
the program in the manner indicated in Equations D~8 and D-9. For
a variety of torque/force-free configurations that have been ex-

amined, momentum has been conserved within acceptable numerical
tolerances.

The total energy is calculated (Refer to Equations 1I-38 and II-
42.) as

NB .
T+V-%Z(LUJJ, (], :U:j+
i=1

leJy vy {a}j).

The kinetic energy contribution of embedded momentum wheels is
included (as it must be), because [m]j includes wmomentum wheel

inertial coupling terms and {U}j includes momentum wheel spin
rates (és).
Potential energy, additional to that shown in Equation D-10, comes

about in the event that there is a "sprung' hinge; say for example,
associated with the Bk coordinate, If the spring force/torque is

linear with Bk’ then additional potential energy is

D) 6 8 .

(additional) k D-3
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