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'ABSTRACT

The objectives of this research program are (1) to investi-

gate the crystal growth of boron arsenide and boron phosphide in

the form of.bulk crystals and epitaxial 1.v,-ers on suitable sub-

strates,, (2) to characterize the physical, chemical, and electri-

cal properties of the crystals and epitaxi.al layers, and (3) to

tproduce p-n functions for device applications

Bulk crystals of boron arsenide have been prepared by the

chemical transport technique, and their carrier concentration

IS,
and.Hall_ mobility .were measured. 	 The growth of boron arsenide

crystals from high temperature solutions was attempted without

success.	 Boron arsenide layers were deposited on silicon sub-

strates by the pyrolysis of a diborane--arsine mixture, and opti-

cal measurements implied that boron arsenide is ,a direct gap

material with a room temperature gap of about 1,45 eV.	 No major

efforts were directed to the fabrication of boron arsenide devices M

t because of its irreversible decomposition at temperatures above
S

900 0	 C.	 - 7

Bulk crystals of boron phosphide have been prepared by

chemical transport and solution growth techniques.	 The transport
F

of polycrystalline boron phosphide at 1270-.1290° C by bromine or

iodine in the presence of a temperature gradient has produced

p-type crystals with carrier concentrations ors the 'order of

10 1$ cm -	The reerystallization of polycrystalline boron phos--

' phide from a nickel phosphide solution was more successful for

the growth of large boron phosphide crystals suitable for device



fabrication. The grown crystals were mostly in the form of

platelets. Silicon and beryllium were used as n- and p-type

u	 dopants, respectively.
r,

Epitaxial layers of boron phosphide were deposited on the

basal plane of silicon carbide and solution-grown boron phosphide

substrates at 1050-1150° C by thz thermal reduction of a boron

tribromide-phosphorus trichloride mixture. The structural and

IT,, ;	 electrical properties of these layers were investigated,

Techniques required for the fabrication of boron phosphide

devices such as junction shaping, diffusion, contact formation,

etc., were investigated. The electrolytic etching technique`

was developed for the etching and polishing of p-type boron

phosphide and for the delineation of mesa-type p-n•junctions.

Alloying techniques were developed for the formation of low^res'is-

E tance ohmic contacts to boron phosphide

Four types of boron phosphide devices were fabricated;

metal-insulator-boron phosphide structures, Schottky barriers,

boron phosphide-silicon carbide heterojunctions, and p-n homo-

junct.ons. Easily visible red electroluminescence was observed

from both epitaxial and solution . grown p-n junctions.

Significant progress has been made in the development of
k'	

boron arsenide and boron phosphide technology during this research'
e

program,

L	 Pi p. 	 (2)



4	 '

1

}

V

3

7

I. Introduction

This is the Final Technical Report of a research program

 
I

on the preparation an-d application of boron. arsenide .(BAs) and 	 a

boron phosphide (BP) for high temperature and luminescent devices

sponsored by the Langley Research Center of the National Aeronau

tics and Space Administration, Hampton, Virginia. The objectives

of this program were Apr) t„ investigate the crystal growth of

boron arsenide and boron phosphide in the form of bulk crystals

bl	 b t t	 2 t h	 tand epitaxial layers on suita	 a su s ra es,	 ( }	 o c arac erize

the physical, chemical, and electrical properties of the crystals
y

and epitaxial layers, and (3) to produce p-n junctions for device a

applications.

Boron arsenide and boron phosphide, with energy gaps of 1,46

and 2.0 eV, respectively (1,2
,	 ' 3)
 are not well-known semiconductors,

u

q
r^

Because of the relatively large energy gap's, their devices should

? be capable of operation at much higher temperatures than silicon

devices.- In addition, both materials may be useful in electro-

luminescent devices (4)	 boron phosphide, in particular, should

emit visible radiation. 	 Until recently, very little information

due	 difficulties
a

l concerning these applications was available,	 to

encountered in the preparation of single crystals and epitaxial

layers of controlled chemical and structural perfection. 	 During

this research.. 	 solutions to many of the b<->^c problems
t

relevant to the use of boron arsenide and boron phosphide Were

obtained.

i3) o-
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t The earliest information concerning the preparation and

crystal structure of boron arsenide appeared in 1950 5) Poly-

crystalline'horon arsenide was prepared by direct union of the

elements in evacuated, sealed, silica tubes at 800° C. Boron

arsenide crystallizes in the zinc blende structure with a lat
°

Lice parameter a = 4.777 A. as deduced from x,ray powder dif-

fraction data, Subsequently, the direct combination of arsenic and

boron was used by several authors for the preparation of amorphous

(1,6,7)and polycrystalline boron, arsenide. 	 The synthesis may be

carried out in a single temperature or two-temperature furnace.-

in either case, two products were obtained depending on the tem-y

Cperature and arsenic pressure.	 At 800 to 900°	 and arsenic

pressure greater than one atmosphere, cubic monarsenide was pro-

duced.	 At 1000-1100° C and arsenic pressures less than one atmos-

phere, a subarsenide, B
6 
As, with an orthorhombic structure was t

produced.	 The monarsenide is stable up to y20° C and undergoes x

irreversible decomposition to the subarsenide at higher tempera-
;:

tures.	 The optical energy gap of microcrystalline boron arsenide
z

s'

was determined to be 1.46 eV. ( ' )	Small single crystals of boron
:,
j
^

arsenide, with dimensions less than 0,25 mm, were obtained by
m

A
1I

chemical vapor transport with halogens as transporting agents.(8)
e

Evacuated quartz ampoules, 5" long and l" in diameter, containing-..,`

• polycrystalline boron arsenide and iodine were placed in tube

furnaces using the inherent gradient of the furnaces to produce
d
j the vapor transport.	 The product transported through a temperature

_	 rY

}
(4)
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gradient from 850 0 to 400 0 C was shown by x-ray analysis to

boron	 hasbe principally	 arsenide.	 IIo additional work	 been

reported on the preparation of boron arsenide crystals,

Boron phosphide has been known for many years; however, its

composition and structure were not established until 1957,(9)

Crystalline boron phosphide has a zinc-blende structure with a

s^ lattice parameter a = 4.55 A,	 Amorphous and polycrystalline

boron phosphide have been prepared by several techniques, (2 ' 5, '	 (,

!._
7,9,10,11) including the direct combination of the elements in

sealed tubes at 900-1100° C, the pyrolysis of the addition com-,
i;

pound of boron trichloride and phosphorus pentachloride a the

of boron halide and	 and the reaction ofreaction	 zinc phosphide,

boron trichloride and phosphene. 	 At elevated temperaturesY

(1100° C or higher) and reduced pressures (about 1 mm), the

monophosphide decomposes to a subphosphide, B 6
 P.	 Both the mono-

phosphide and subphosphide are chemically inert toward boiling

acids and alkalis,	 Prior to this program, small single crystals

j of boron phosphide had been grown from high temperature _solu 	 s

tions,(2,12,1 ) by chemical vapor transport	 andand by high

pressure synthesis.( 15)	Two types of solution growth processes

were investigated: 	 recrystallization of polycrystalline boron

phosph ide in metal solvents, and precipitation from metal-boron-

phosphorus melts.	 Neither solution technique consistently pro-

<<
a.

duced crystals larger than a few millimeters in any dimension.

Chemical vapor transport and high pressure synthesis did not
x:

(5)
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yield crystals larger than a few tenths of a millimeter. Dur-

ing the course of this program, a few additional reports were
i

published by other workers on the synthesis of boron phos"

phide by solution growth, (16) by chemical transport,(17)

and by high pressure synthesis. (18,19) With one exception,

crystals with dimensions less than l mm were reported. In

one case, (lb) crystals with one dimension up to 5 mm were

claimed, but only one poorly formed crystal was shown. 	 (`

With regard to.the growth of epitaxial layers of boron

^ boron	 little information has beenarsenide and	 phosphide, very

published,	 Expitaxial growth of layers of boron arsenide has

not been reported, although a subarsenide (B13As2j was deposited
{

(20)on silicon substrates.	 The growth of crystalline boron y
1

phosphide layers on silicon substrates has been reported.(17 ► 21)

Highly strained layers up to about 30 um in thickners were ob-

tained	 small pieces were isolated for measurements by the re-

moval of the silicon substrate`. 	 The layers contained silicon

from the substrate, and, in addition } phosphorus from the de-

posited layer diffused into the silicon substrate during deposi

tion.	 No mention of any attempts to make p-n junctions or other
r

devices with the boron phosphide layers was made.

During the research program discussed here, significant

progress was made in the development of boron arsenide and boron

phosphide technology.	 Major emphasis was given to.boron phosphide

a L
since it has a larger energy gap than boron arsenide., 	 Techniques

" (6)



to reproducibly grow large crystals and high quality epitaxial

i' layers were developed.	 The properties of these crystals and
a

layers were determined,	 In addition, techniques such as se-

lective etching and ohmic contact technology were developed

for device fabrication, 	 Boron phosphide devices including
r

' Schottky barriers, metal-insulator-semiconductor (MIS) junc-

tions, and p-n electroluminescent junctions were fabricated,

These results are summarized in the following section of the ^~

report, x
3

77,

r a

t

^f

f

t
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II. Technical Discussion
k

The basic technical approach selected for this program was

essentially the growth of bulk crystals and the subsequent use

of chemical vapor deposition techniques to grow epitaxial layers

crystals.	 in-of controlled properties onto the bulk 	 Extensive

irestigations were carried out in the preparation of crystals and

epitaxial layers and in the development of other device fabrica-

tion techniques.

II.A.	 Growth and Properties of Bulk Crystals

LI Since devices withthe fabrication of most semiconductor	 opti-

FT mum properties requires single crystalline material of controlled

. chemical and structural perfection, a major emphasis was given to

the development of crystal growth techniques for boron arsenide

and boron phosphide,	 Since both materials decompose at tempera-

tures considerably below their melting points, chemical vapor

transport and solution growth were chosen as the crystal growth'

methods to be evaluated.

II.A.l.	 Boron Arsenide Crystals

II.A.l.a.	 Preparation of Polycrystalline Boron Arsenide

- Polycrystalline material is required as the source material

for closed tube chemical transport and for recrystallization

from a solution,	 The preparation of polycrystalline b. 
0

arsenide was carried out in fused silica ampules by the reaction

of a boron'iodide, probably the';monoiodde BI, with arsenic.	 For

a 2.5 cm ID and 30 cm long ampule, optimum results were obtained
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i

with,l.g of boron, 8 , g of arsenic, and 0,25 , g of iodine in the

tube.	 The ampule was posi"honed in a furnace such that the boron

r
was at 870 0-C at one end of the tube, and the arsenic was at j

670 0 C at the other end.	 Although higher temperatures, in

general, increase reaction rates, the irreversible decomposition

of boron arsenide to the subarsenide near 9000 C^ 11 limited the

,r

reaction temperature which could be used.,	 In one week, about

50% of the boron reacted,and boron arsenide, identified by its
xy

t; x-ray powder pattern,	 was found near the center of the reaction

ampule.	 This material could be directly used as source material

r for the crystal growth experiments.

Boron Arsenide Crystal Growth by Chemical Transport!

.. Chemical transport is one of the techniques available to

r grow crystals of materials which decompose at temperatures below
(22)the melting point. 	 In this technique, the polycrystalline

t material and a transport agent, which reacts reversibly with

the material, are sealed into an ampule, 	 The source material is
1

positioned at one end of the sealed tube. 	 The ampule is located

in a furnace.with the appropriate temperature gradient to trans-

port the polycrystalline material, by reaction with the trans,

port _agent, to the other end, where single crystals can nucleate;.
UT

and grow.	 The basic parameters of this technique are the source
is

temperature, the direction and magnitude of the temperature grate

dient, and the transport agent concentration.

Similar to the.other III-V compounds, boron arsenide re-_
=i

acts reversibly with the halogens, and thus the halogens can be

,w

ri	
(9)
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used to transport boron arsenide.	 In general, the equilibrium

constants of these reactions decrease with decreasing tempera-

tore, so that transport occurs from a high temperature source
A, x

to regions of lower temperature.	 To carry out the crystal growth

J` of boron arsenide by chemical transport, polycrystalline boron

arsenide and a transport agent were sealed in fused silica tubes

t. 2.5 cm ID and 15 to 25 cm Long,,	 The reaction tube was heated k

in a two temperature zone furnace,	 Baron arsenide was located

at one end of the tube which was in the higher temperature zone; E

this zone was maintained at 875" C to prevent the irreversible

decomposition of boron ` arsenide,	 The nucleation and . growth of

boron arsenide tookplace an the'wall of the	 in the lower.	 .tube :z

R temperature zone.	 Many experiments were carried out to optimize -A

the transport process. 	 The transport rate was extremely slow

f waen bromine or iodine alone was used as the transport agent,

., and eh'ori:ne produced'.nuo transport of boron arsenide,	 The addi-

tion of arsenic to the growth ampule greatly increased the trans-

port rate, and an iodine-arsenic mixture was found to be the

optimum transport agent for boron arsenide. 	 The Largest crystals

were obtained with iodine and arsenic pressures in the ampules

of 1.5 atm and '3 atm, respectively, and with a temperature

gradient of 30 0 C along the ,length of the tube,	 With a two

,t. week z.iction time, single crystals with dimensions up to 2 mm

were _obtained.	 Larger crystals, although occasionally found,

could not be consistently grown even with longer reaction times.

(10)
t

r,
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The structural properties of boron arsenide crystals grown

by the transport technique were studied by optical microscopy

and X-ray diffraction techniques, 	 Other than well-formed facets,

,k the as-grown surfaces exhibited no structural features when

examined with an optical microscope. 	 Attempts were made to

reveal structural defects in boron arsenide crystals by chemical

etching.	 However, boron arsenide wus found to be inert toward

common etchants, such as bromine, nitric acid -hydrofluoric acid

mixture, nitric acid-sulfuric acO, mixtures, aqueous and molteni. 

r 'de was etched . slowly by .boiling aquaalkalis	 etc.	 Boron arsenide
°
r:

Uregia and was etched rapidly by a molten mixture of sodium hy-

droxide and sodium peroxide. 	 A small crystal with well-developed

faces was etched with aqua regia, and the three -fold symmetry

:U shown by the resulting linear etch figures suggests that this

crystal is cubic with faces of { 1111 orientation,	 The faces

LI of other small crystals have also been identified as of ' {1111

tion by X-ray Laue back reflection techniques:	 The lat-orientation

tice parameter of the boron arsenide crystals was determined by

Ux
-ray techniques to be 4,78 A, 'which is in agreement with the

_	
4value previously reported.

The boron monarsenide crystals obtained by the transport
r

_

technique were in the form of truncated pyramids,	 This geometry

is not suitable for Hall measurement, but the electrical con-

ductance of boron monarsenide crystals was measured in the tem--

perature range from 77° K to 900° K.	 Ohmic contact to two faces

yr

' t ^^
X11)

^`
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of the crystals was made by vacuum evaporation of aluminum

or gold and subsequent annealing near 450° C, The crystals

were p-type as determined by a thermoelectric probe. 	 Figure l

shows typical conductance data from a boron arsenide crystal,

At temperatures below about 500 K the electrical conductance

is essentially independent of temperature, due presumably to

the low ionization energy of the impurities. At temperatures

above 5-00° K, the slope of the plot corresponds to an activation

energy of approximately 0.5 eV. The formation of a Liquid alloy

at the contacts prevented measurements at high enough tempera-

tures to confirm the previously reported energy gap of boron

arsenide.

;- I-I.A.1,c.	 Boron Arsenide Crystal Growth from,Solution

Because of the limited success,in terms of crystal size,

s

of the chemical transport process for the growth of boron

r arsenide crystals, attempts were made to.grow boron arsenide

Ll
from high temperature solutions. 	 Experiments to recrystallize

boron arsenide near 900° C were carried out with nickel arsenide

(NiAs), copper arsenide (Cu3As), and palladium arsenide (Pd5As2) 

as solvents.	 Mixtures of polycrystalline boron arsenide with

one of the solvents were sealed in evacuated ampules and heated

at 880' C for a few days. 	 In all of the experiments, the boron

arsenide recovered from the tubes had the same appearance and

particle size as the starting material, 	 Thus, boron arsenide is
}

insoluble in the three arsenic compounds near 900 9 C,	 Another

experiment was carried out in an at:.:empt to precipitate boron

r	 r	 •

i
0
u

6
I'
i
r
f

a

1
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1 arsenide crystals. A mixture of boron and nickel was heated at

1120° C and saturated with arsenic at I atm. pressure, Ater

this mixture was slowly cooled, the resulting ingot was etched

to dissolve the nickel arsenide. The residue was found by

x-ray techniques to be a mixture of boron arsenide and boron

subarsenide. It was concluded, therefore, that the solution

growth is not a promising technique for the preparation of boron

arsenide crystals.

#	 II.A.2. Boron Phosphide Crystals

II.A.2.a. Preparation of Polycrystalline Boron Phosphide

Polycrystalline boron phosphide needed for the crystal

growth investigations was conveniently produced by chemical

f

	

	 vapor_ deposition. Initially, four possible reactions were

considered to be YP otentiall useful; the thermal decompose-_

tion.of a mixture of diborane and phosphine,_the reaction of

boron tfibromide and phosphine, the reaction of diborane with
s ^

fi phosphorus trichloride	 or the thermal reduction of a boron

, tribromide-phosphorus trichloride mixture, 	 These chemical

reactions may be written as:
_:.

B2H6 fig )	 + 2PH 3 (g) -► 2BP (s)	 + 6H 2 (g ) (1)	 ;

j BBr3(g)	 + PH3( g ) -^ BP(s)	 + 3HBr,(g) (2)
,. B2H6 (g )- + PC1 3 (g ) } 2BP (s) ; + 6HC1(g) (3)`

BBr 3 (g ) + PC13 (g)	 3H2 fi g ) -^ BP (s) + 3HC1 (g ) + 3HBr ( g ) z(4)

Deposition experiments utilizing these reactions were carried

j out in the apparatus shown schematically in Fig. 2. 	 Boron tri-

bromide and phosphorus trichloride were introduced into
rN

(14)
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0
the reaction tube by bubbling hydrogen through the respective

containers-held at a constant temperature., The other reactants

were obtained as mixtures with hydrogen; The major component

in all of the reactant systems was hydrogen which was purified

by diffusion through a palladium-silver alloy,

Initial deposition experiments to evaluate the four possi-

ble reactions were carried out with silicon and fused silica 	
7

^,	 3
substrates supported on a graphite susceptor. 	 It was determined

that reactions (2) and (3) are not suitable for the preparation]

of boron phosphide, due to a reaction. near room temperature to

E produce a white solid, presumably a complex compound of the re-

actants.	 Reaction (1) is a suitable process to prepare boron

phosphide, but a growth rate of only 15 um/hr was obtained.	 Re-

action (4) deposited boron phosphide at a rate of 60 um/hr, and 	 {

it is therefore th6 most suitable .reaction for the production

of large quantities of boron phosphide.	 Subsequent preparation

of boron phosphide was carried out with reaction (4) in a fused

ij
silica reaction tube, 22 mm ID and 29 mmOD, heated by a resis-

tance furnace to a maximum temperature of 1100° C, 	 Typically,

the flow rates of hydrogen, boron tribromide, and phosphorus

trichloride were 8 x 10 2 ,	 1.5 x 10 -3 ,-and 3 x 103-moles/min_,

respectively.	 The excess of phosphorus trichloride was used to

`i minimize.any decomposition of the deposited material, 	 In this

system, boron` phosphide deposited onthe portion of the reaction

s tube wall which was in a temperature region from about 950° C to

i (16)
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1100° C.	 About 30 . g of boron phosphide was obtained with an i

hour	 time.	 The	 techniqueeight	 reaction	 x--ray powder	 showed

the reaction product to be only boron phosphide

II.A.2.b.	 Boron Phosphide Crystal. Growth by Chemical Vapor
LFepositi.on

During the initial depositionsto evaluate the thermal re-

duction of boron tribromide-phosphorus trichloride mixtures

for the preparation of polycrystalline boron phosphide, rod-

shaped, orange-red crystals were occasionally found on the

susceptor.	 With the use of low H 2/BBr3 molar ratios, crystals

to 5	 XFrayup	 mm_n length were obtained.. 	 measurements showed.-

that the crystals were boron phosphide, and that the long growth

axis of the crystals was along a <111> direction

Some of the electrical properties of these rodlike boron

phosphide crystals were determined,	 Thermoelectric probe

measurements indicated that the crystals were ,p-type.	 To

determine the electrical resistivity, evaporated aluminum was

deposited onto the ends of the crystals, and the crystals were

annealed.	 The room temperature resistivity was, typically,

about 20 ohm-cm, as determined from the sample resistance and

geometry.	 A high temperature activation energy of about 0.88
x

eV was also measured.. 	 No further work was carried out with

crystals grown by the chemical vapor deposition process, since

the geometry is not suitable for substrates for device fabrica-

tion.

II.A.2.c.	 Boron Phosphide Crystal Growth by Chemical Transport (23),

Boron phosphide reacts reversibly with halogens and boron

(17)
c,
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trihalides as illustrated by these reactions;

4BP (s) + 6X2 (:g) { 4BX 3 (g) + P4 ,( g )	 (s'

4BP (s) + 2BX 3 (g)	 6BX3 ( g) + P4{g )	 (6)

Where _X is, for example, chlorine, bromine or iodine. Consequently,

the halogens or the boron trihalides should transport boron

phosphide in a temperature gradient, probably via the formation

of a boron monohalide:

4BP (s) + 2X2.(g) t 4BX ( g ) + 2P4 (S)	 (7)

4BP(s) + 2BX3 ( g) + 6BX( g) + P4.( g )	 (8)

To carry out the transport process, polycrystalline boron

phosphide, phosphorus, and a transport agent were introduced into

a thick-wall fused silica ampule. The reaction tube was attached

4
to a vacuum manifold, cooled with liquid nitrogen, evacuated to

f

	

	 less than 10
5
 Torr, and sealed. Furnaces with two independently

controlled temperature zones were used for the transport experi-

ments.	 The polycrystalline source material located at one end of

the tube was in the higher temperature zone, and the transported

boron phosphide deposited on the wall of the tube in the lower

temperature zone.	 The excess phosphorus in the ampules increasedP	 P	 P	 P	 y

the transport rate and suppressed the decomposition of boron

phosphide in the high temperature experiments, 	 The transport

agents investigated for the transport of boron phosphide included

bromine, iodine, and phosphorus trichloride. 	 Other parameters

whose effects were studied include the transport agent pressure,

the excess phosphorus pressure, the source temperature, the tem-

perature gradient, and the condition of the silica ampule wall,

j	 (18)
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An initial series of transport experiments was carried out

with source temperatures near and below 1150° C conventionalP	 ^	 v

resistance heated furnaces can be used up to this temperature..

Fused silica ampules 25 mm ID and 15 to 25 cm long were used.'

No transport of boron phosphide was observed with the source

temperature below 1000° C.. Subsequent experiments were there-

fore carried out with source temperatures in the range from 	 a

1100 to 1150° C. Many experiments were carried out to evaluate

the effect of the other system parameters. Temperature gradients
r

from 20° to 100° C were used. The. different transport, agents

were used at various pressures, and the effect of the phosphorus`

pressure was also evaluated. In all cases, the transport rate

was very slow, and the grown crystals had dimensions on the order

of a few tenths of a millimeter after a three week reaction time.

It was concluded that the transport rate was limited by the

` thermodynamics of the reactions, and that higher temperatures are

3 needed for effective transport of boron phosphide.

To carry out the chemical transport of boron phosphide at

` temperatures-up to about 1.300° ` C, two zone furnaces with silicon
fi

x

carbide-heating elements were constructed. 	 The transport tubes

used in these furnaces had a . 10 mm ID, 16 mm OD, and a 12 cm
r

length.	 A series of 45 detailed experiments was carried out

with source temperatures from 1190° C to 1290 0 C and with 0 4 5 g

of polycrystalline boron phosphide as the source material. 	 The

largest crystals were obtained with the highest source tempera,

tures.	 It was determined that a phosphorus pressure of 3 atm

(19)
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and a transport agent pressure of 1 atm are optimum, 	 Phosphorus

trichloride was found to be the fastest transport agent, 	 With a
j

temperature , gradient of 4° C across the ampoules, essentially

all of the boron phosphide was transported in 5 - 7 days; how- 1
i

ever, the transported material consisted of loosely bound aggre-

gates of small crystals.	 The use of iodine or bromine as a trans-

»H
a.

port agent produced better results. 	 Using iodine as a transport
a

n agent and a temperature gradient of 15 - 20° C, the source material

was transported in 7-' 10 days to yield orange - red crystals.

The transported crystals were in the form of tightly bound aggre^ a

- gates about 5 mm in diameter and 1 - 2 mm thickness and in the

1	 2form of polyhedrons measuring	 -	 mm on each side,	 Similar cry-

stals were obtained with bromine as the transport agent with a 5°C

temperature.gradien.t,

In the technique described above for the crystal growth of

y boron phosphide, nucleation rakes place on the wall of the re-

action tube.	 Two types of crystals were obtained:	 aggregates
t

consisting of from three to six single crystals, and isolated

=w^
E

single crystal polyhedrons such as shown in 'Fig, 3.	 It was con-

!' eluded that control over the nucleation process was necessary,

;. Four techniques were investigated to control nucleation.	 Firstly,

deposition	 the reaction tube	 flame worked tothe	 region of	 was

remove surface irregularities. 	 Several experiments were carried

a
out with flame-worked tubes using bromine as a transport agent'

,

a.
and a 5° C gradient along the tube. 	 In about one-half of the

(20)
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Fig. 3 Boron phosphide crystals obtained by the
Dchemical transport technique.

L^

D
D
d

0

a	 (21)

a



u
0

experiments, no nucleation occurred on the wall of the reaction

tube_r'ter ten days; a considerable number of crystallites would

have formed if the wall of the reaction tube were not flame-treated.

In the other half of the experiments, only one aggregate  consistinp	 ,	 y,g

of tightly bound single crystals up to 2 mm was ,formed at the tip

of the reaction tube. These experiments indicate that flamework-

ing of fused silica tube is a critical factor to achieve control

of nucleation in the closed tube transport process. The other

three techniques investigated for nucleation control were directedq	 g

toward elimination of the aggregate structure of the deposited_

boron phosphide.	 A programmed temperature gradient technique was

used in several experiments.	 A small gradient, 5°	 , 7° C, was

used during the first few days to limit the formation of nuclei.

The temperature of the deposition zone was then reduced about 5° C

Lill"
every two days until a final gradient of 30° C`was established.

Crystalline aggreg,tes were obtained from these experiments. 	 A

third attempt to control nucleation was made by a reduction in the

diameter of the transport ampule in the deposition zone, 	 The'

deposition end of the ampule was made from 3 mm ID x 9 mm OD fused

silica tubing attached to the 10 mm SID x 16 mm OD ampule,	 Single

crystals with eimensions up to 2 mm grew in this narrow end of

the ampule, but larger clusters tended to grow just outside the

small dia-neter region.	 A fourth attempt to influence the nuclea-

tior- of boron phosphide was made by the introduction of a seed

into the growth ampule in the deposition zone. 	 Improved results

C2 2)



were, however, not obtained,

n

	

	 The boron phosphide crystals obtained in this work,because

of the use of higher temperatures and the control of random

nucleation, are considerably l arger than the transported crys

stals reported in the literature. They have well, ,formed faces,

in contrast to the dendritic crystals of comparable size obtained

(14)by Grindberg et, al.	 the hardness of the boron phosphide

crystals was measured by the diamond pyramid hardness test. 	 A

square base diamond pyramid was forced into the specimen using a

1 kg load, and the diagonals of the impression were measured.

The hardness of boron phosphide was calculated to be approximately

-450 kg mm 2-	 as compared with 2970 for silicon carbide determined

under the same conditions.

The transported boron phosphide crystals are chemically inert

in aqueous acids and alkalis. 	 Molten potassium hydroxide or-a

molten mixture of 75% sodium hydroxide and 25% sodium peroxide

at 380° C may be used as a preferential etchant to reveal defects

the boron phosphide crystals.	 The only non preferentialfil in

etchant appears to be a mixture of hydrogen and hydrogen chloride

near 1000 0 C.

All of the transported boron phosphide crystals are p-type,

as determined by the thermoelect-ic probe technique and by the

direction of point-contact rectification. 	 The electrical con-

ductivity of transported boron phosphide crystals was measured

over a wide temperature range.	 The crystals were first mechan-

ically polished to yield two flat parallel faces by using 1 pm

(23)
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alumina abrasives and were thoroughly cleaned for the applica-

tion of ohmic contacts. Indium was found to be a suitable

material to mace ohmic contacts to the transported boron phos -

phide. After applying indium to the flat faces, the specimen

was annealed in an argon atmosphere at 5000 C for 1 hr, The
	

l

do current-voltage characteristics of a number of transported

e^ crystals were measured in the temperature range from 77° K to

350° K.	 A typical plot of the logarithm of the conductance

versus reciprocal temperature is shown in Fig. 4,	 Two linear

regions may be distinguished in the plot. 	 Neglecting the tem-
a,

pe.rature dependence 'of carrier mobility, the slopes of these x^T

two regions indicate the presence of two impurity states with

i activation energies of 0.009 and 0.052 eV, respectively.	 The

room temperature resistivity of this crystal is approximately it

0,55 ohm-cm.	 The room temperature carrier concentration in
3

transported boron phosphide crystals was estimated from Schottky

barrier measurements, described later,to be on the order of w

1018 cm-3

v.." Exten'i-ive investigation of the chemical transport technique

for the growth of boron phosphide crystals was carried out during

nx

this program.	 Although crystals large enough to use as substrates

for device work could be grown, the process was very slow,; As a

4	 ;, consequence, another crystal growth technique, solution growth,

was investigated.

C	 '^ II.A.2.d.	 Boron Phosphide Crystal Growth by Precipitation(24)

The solution growth technique has been successfully applied

(24
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to the growth of boron phosphide crystals, and it was found to

be more useful than chemical transport for,the . growth of large

crystals suitable for device fabrications. An extensive investi-

gation of the two basic solution growth techniques, recrystalli 	 u

}

	

	 zation and precipitation, was made, and the results are summarized

below,

j

	

	 The precipitation of boron phosphide from solution by the

addition of phosphorus to a boron-metal melt with subsequent

.- cooling of the melt was the first solution growth technique in-

vestigated.	 These experiments were carried out in the apparatus

shown schematically in Fig. 5. 	 A boron-metal ingot was first J

prepared by melting weighed quantities of the two materials

in an alumina boat in a hydrogen atmosphere..	 The ingot and the

boat-fit into a cylindrical graphite susceptor, which itself

fit into a fused silica spacer.	 This assembly was placed into

a 50 mm ID silica tube with phosphorus, and the tube was evac-
a
a

'
_5uated to about 10 '` mia and -sealed,	 Experiments were carried

out by radio frequency heating of the susceptor and resistance

heating of one end of the tube to control the phosphorus pressure,

The important, process parameters, including the metal sol-

vent, the concentration of boron in the solution, the temperature

IL
of the solution, the phosphorus pressure over the solution, the

reaction time, and the cooling conditions were studied in a num-

ber of experiments

4
Several metals, such as copper, iron nickel,, and platinum?

are possible solvent-formers for the solution growth of boron

r
(26)
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phosphide, and copper and nickel phosphides appeared to be

the most useful ones. To determine the conditions for the

growth of boron phosphide crystals from solutions, solubility

estimates for boron phosphide in nickel and copper phosphides

u temperature range. Polycrystalline

phosphide were first prepared.

system is extremely complicated, (25)

Is, nickel phosphide was made in

Fig., 5 and under the ;same conditions

were determined over a wide

nickel phosphide and copper

Since the nickel-phosphorus

with as many as ten compouni

the same apparatus shown in
i
J

used for the crystal growth experiments In essence, molten

nickel was heated in a phosphorus vapor atmosphere; the re-

sulting ingot was found to be mostly Ni1 zP 5 . In the case of

the copper-phosphorus system, there are only two compounds;

Cu3P and CuP 2 . Both were synthesized by the reaction of copper

and phosphorus in sealed tubes. Copper located at one end of
i

the tube was heated at 1150 0 C, and the other end of the tube

f
was heated to produce a phosphorus pressure of about 1 to 2

atm.	 Depending upon the Cu/P, molar ratio in the ampule, either

Cu 3P or CuP 2 was prepared.

To estimate the solubility of boron phosphide in nickel

phosphide, a pulverized mixture of the two materials with
r.^

excess phosphorus was heated and allowed to react in a sealed.

tube'.	 The resulting ingot was then treated with acid to dis^

solve all components except boron phosphide. 	 The recovered

material, in general, consisted of undissolved boron phos^

phide_and boron phosphide crystals,- The initial amount of

(28)
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boron phosphide was never recovered due to the complexity of

k the nickel -boron -phosphorus system, 	 The weight per cent of

, I boron phosphide dissolved in and recrystallized from nickel
r

s

phosphide at various temperatures is shown in Fig. 6. 	 Similar
,i
l

I
experiments were carried out with the two copper phosphides,

Boron phosphide was found to be insoluble in CuP 2 in the tem-

perature range of interest.	 Boron phosphide is soluble in

ty Cu3P; however, its solubility is lower than in Ni 12P 5 .	 At €

1220 ° C, for example, only 0.64% by weight of the initial boron x

phosphide recrystallized in a Cu3P solution. 	 From the data

k in Fig. 6, the boron -nickel alloy used for crystal growth atUT

LI
r

1325 ° C should contain 2.3% 	 (weight) boron so that, after

saturating with phosphorus, the resulting solution of boron

phosphide in nickel phosphide would be slightly undersaturated.

From the crystal growth experiments, it was concluded

that both copper and nickel are suitable for the growth of

more rboron phosphide crystals.	 Nickel was	 extensively invest--

gated, and crystals, such as shown in Fig. 7, with dimensions

:
up to 3 	 m were obtained.	 The crystal size was not strongly-

dependent on the initial boron concentration_ in the solution

for boron concentrations less than 100. _ A solution temperature

C	 found	 be suitable.	 Aof 1325°	 was	 to	 phosphorus pressure of

2 - 3 atm was found to be optimum; lower pressure resulted in

f^ the formation of boron subphosphide B 6 P I and higher pressures

created such strong convection currents in the reaction tube

I

(2.9)
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Fig. 7 Boron phosphide crystals grown from a
nickel phosphide solution.
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that the phosphorus pressure could not be controlled. The re-

sulting crystal size was not strongly dependent upon the re,

action time; a minimum of 4 hrs was required, however,

Various cooling conditions were also studied. Crystal size

increased as the cooling rate was decreased to about 10° C/hr;'

no further increase of crystal size was found with slower rates.

A few experiments were also done by slowly pulling the reaction

tube out of the radio frequency coil, but the results were in-

ferior to the slow cooling of the entire solution, The proper-

ties of the boron phosphide crystals grown by precipitation
^	 3

were very similar to the properties of the crystals grown by

recrystallization, and the results are given below.

II.A.2.e	 Boron Phosphide CrXstal Growth by RecrXsta:llization(24,26)

Recrystallization of polycrystalline boron phosphide from

nickel phosphide solutions was found to produce larger crystals

than the precipitation method, and the recrystallization tech-- ,t

nique was, therefore, extensively investigated,	 In the recrystal-

lization technique, a small temperature gradient was maintained

across a saturated solution.of boron phosphide in ,a metal phos-

phide with polycrystalline boron phosphide in the high tempera-

ture region.,	 Due to the higher solubility at higher tempera-

tures, a concentration gradient is set up across the solution,

and consequently, transport of boron phosphide from the poly,

crystalline source to the lower temperature region occurs. 	 In

the lower temperature zone, boron phosphide will grow as crystal-

line material. t

(32)
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Recrystallization experiments were carried out to evaluate

the effects of a number of parameters, including the metal phos-

phide solvent, the temperature conditions,.and the system arrange-

r	 experiments were done inampules sealed amment. High temperature expe i ent 	 s e	 p

with graphite crucibles heated by radio frequency induction.

Low temperature growth experiments were done directly in sealed
f

in	 heated furnaces.	 Excess	 '±silica ampules	 resistance	 phosphorus

was used in all cases to avoid the formation of boron subphos-.

P hide

The solvents evaluated for the recrystallization process

were copper phosphide (Cu3P) and -a number of nickel phosphides.
VT

- With copper phosphide as the solvent, most of the silica ampules

cracked upon cooling, and since copper phosphide did not produce

crystals larger than one of the nickel phosphides	 major emphasisY	 g	 :

was given to the use of nickel phosphide.	 The composition of the

nickel phosphide, which has not been previously investigated in

boron phosphide crystal growth experiments, was found to be im-

portant in the recrystallization-process,	 As mentioned above,

the nickel-phosphorus system is very complicated. (Z4)	Therefore,	 u

a variety of conditions, similar to those used for the crystal

growth experiments, were used to synthesize nickel phosphide.
n

Temperatures in the range from 1200 0 C to 1400° C and phosphorus

pressures from about one to five atm were used.	 The predominant

compound formed in many of these experiments was Ni 2P as deter

mined by x-ray data; the material solidified as needle-like

z crystals which are typical of this compound, (25)	In one case,.	 3

_	
(33)
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Ni7P3 was obtained, Some of the ingots obtained were phase

mixtures of Ni 2P and other more phosphorus -'rich nickel phos,

phides. A detailed analysis of the phase mixtures was not

carried out, but Nip was probably the most phosphorus-rich

compound formed, Since Ni 2P has a wide homogeneity range,,

it is also likely that there was excess phosphorus in the

ingots.

All of the crystal growth. experiments which produced large

single crystals of boron phosphide used only Ni2P as the sol-

vent. The use of Ni
7
P3 produced only small crystals, and the

phase mixtures of Ni 2P with other nickel phosphides produced

no crystals. -Ni 2P was conveniently made by the reaction of

phosphorus vapor with nickel in sealed ampules near 1250 0  C.

Also commercial nickel phosphide (Puratek, Norwood, Ohio),

reported to be 99.9% Ni 2P, as the solvent produced equally . good -
M

crystals if excess phosphorus over that amount used with the

Laboratory grown Ni 2P was added to the ampule,	 This indicates

it that the laboratory synthesized Ni2P did contain excess dis-

solved phosphorus.

The investigation of the thermal conditions for the

growth of boron phosphide showed that temperatures near

F 1200° C produce the largest crystals, 	 Best results were ob-

tained with polycrystalline source material at about 1220° C

'f on the top of the solution with about a 20° C temperature

gradient in the solution. 	 Recrystallized boron phosphide was

f

4
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found near the bottom of the growth ampule. With a three to

four week growth time, boron phosphide crystals in the form

of platelets and sometimes polyhedrons were obtained, The

main faces of the platelets were up to 20 mm  in area, and the

thickness of the platelets was up to about 1.5 mm, 	 The poly-

hedrons had maximum dimensions of 5 mm x 4 mm x 3 mm,	 Platelets

predominated in these experiments.

In an effort to improve the size of boron phosphide crys-

(26,27,28,29)tals, the accelerated container rotation technique

was adapted to the solution growth process discussed above. 	 In

the accelerated container technique, the growth container is

rotated about its axis with acceleration and deacceleration,

This type of movement leads to very effective mixing within
JT

the liquid,	 To apply the accelerated container technique, the

ampules were connected to a drive mechanism such.th.at they could

be rotated about the axis of the furnace. 	 The maximum rotation

Ui,
rate was adjustable up to 120 rpm, the acceleration was adjust,

able in the range of ±0.47 rad/sect, and the time period was

in	 range from	 fewvariable	 the	 a	 sec to one min',

The boron phosphide crystals grown with the accelerated

container rotation technique were larger, had fewer voids, and

had better developed faces than those obtained from a stationary

container,	 The experiments with the accelerated container pro-

duced boron phosphide crystals with dimensions on the faces up

f to 8 mm, and some of the crystals are shown in Fig, 8, 	 The size
a
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Fig. 8 Boron phosphide crystals grown by recrystallization
near 1200° C from a nickel phosphide solution with
accelerated container rotation.
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sensitive to the exact rotation conditions,	 kone min time

period and a maximum rotation rate in the range from 40 rpm to

70 rpm produced the best results.	 Two different cycles of

rotation were used with similar results: 	 a simple sawtooth

rpm versus time cycle with rotation in both directions and E:

truncated sawtooth rpm versus time cycle with rotation in both

directions.	 These results demonstrate the usefulness of ac-

celerated crucible rotation for the preparation of boron phos-

phide crystals.

Boron phosphide crystals obtained from the recrystalliza-

tion experiments were usually in the form of thin platelets,

but polyhedrons were also obtained. 	 The platelets had'11111-

type main faces and grew by the twin plane reentrant edge

(30)me	 planes occurs,mechanism (30) in which twinning about

Without the formation of twins, the growth of large crystals

is not favored since the growing crystal would tend to facet

Figure	 iswith the slow. growth {111} planes.	 9	 a photomicro-
j

graph which shows twin plane	 intersections with a polished

and etched boron phosphide surface.	 Typically, the platelets

had one main face flat and smooth and the other main face rough.

The two faces could also be distinguished by chemical etching

i	 ^^ in a 3:1 molten mixture of sodium hydroxide and sodium peroxide

at 400 to 500 0 C.	 Dislocation etch pits were observed on the

smooth face and not on the other.	 If the etching behavior of

boron phosphide 
is similar to that of other III,-V compound

(37)
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Fig. 9 Angle-lapped and chemically etched surface of
a boron phosphide platelet showing the presence
of twins.
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semiconductors, then the face which developed dislocation etch

pits on the boron phosphide crystals is the boron face.

The majority of the large boron phosphide crystals contained

both p-type and n-type regions. Typically, the faces were n-type,

and a central core was p-type. This inhomogeneous distribution

of impurities is probably a result of two factors a higher segre-

gation coefficient for p--type impurities than for n-type impurities

so that p-type impurities are depleted from the solution and a

continuous supply of silicon, which as discussed below is an n--

type impurity in boron phosphide, going into the solution from

the ampule.	 A convenient technique to observe the n,type and

p-type regions in these crystals is electrolytic etching, which

,r is discussed in Section II,C.l,	 Ptn junctionelectroluminescence$^

was observed in some of the crystals with built-in junctions,
9

and the emission characteristics are discussed in a later section.
S'

t
A number of experiments were carried out in an-effort to

produce crystals with a more uniform distribution of impurities.

In these experiments, the elements zinc, magnesium, beryllium,

sulfur, selenium, tellurium, and silicon were investigated as

dopants for boron phosphide. Beryllium, magnesium, and zinc

1 were expected to be p-type dopan.ts in boron phosphide, These

materials were added to the solution in the growth ampules both

M <	 as the elements and as the phosphides; Zn3P 2, Be 3P2 a and Mg3P2.{
The addition of zinc to the solution did not appear to affect the

electrical properties of the crystals. However, both beryllium

(39)
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and magnesium were found to produce mostly p,type boron phos-

phide, although n-type regions were sometimes found in the

crystals. Beryllium doping produced p-type crystals more con-

sistently. Among the expected n-type dopants investigated,

only tellurium tended to produce n-type crystals; some crys-

tals with p-type and n-type regions were also obtained with

tellurium ,doping. The addition of sulfur and selenium to the

growth ampules did not noticeably affect the electrical pro-

perties of the crystals. The best n-type dopant, however, was

silicon, and only n-type boron phosphide was obtained from

growth experiments with silicon as the intentionally added im-

purity. The limited success of the doping experiments is prob-

ably due to the use of an element which is not a constituent of

,J the grown crystals in the solution and to the presence of ims

purities in the nickel phosphide solvent.

The results discussed in this section represent significant

progress in the crystal growth technology associated with the

preparation of boron phosphide. Large crystals were obtained re-

producibly, and some success was achieved with intentional doping

4 experiments.	 The crystals are suitable for use as substrates for

epitaxial growth to produce boron phosphide devices.

II'.B. Preparation and Properties of Thin Layers

The deposition of 'thin semiconducting layers is a major

device fabrication technology since layers with well defined and r

controlled properties can be grown. 	 Amorphorus and single crys-

talline layers can be deposited.	 The growth of crystalline layers.Y	 p	 g	 Y _r

v
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k on a substrate of,the same material as the deposited material

is referred to as homoepitaxy; crystalline growth on a foreign

i substrate is known as heteroepitaxy.	 Both processes were in-

vestigated during this program,- and the results are discussed

below.
ri

II.B.l.	 Boron Arsenide Layers t

f
The deposition of boron arsenide layers with various re-

t
actant systems and substrates was investigated.: 	 Because of the dr

instability of boron arsenide..at high temperatures, only the

pyrolysis of a mixture of diborane and arsine was found	 .o be

suitable for the deposition of boron arsenide,'	 The overall re-

action is:

B 2 H6 . ( g )	 2AsH3 fi g ) -	 2BAs (s)	 6H2 (.g )	 (9)

Other reactant systems required higher temperatures such that

boron arsenide is unstable.	 Depositions were done in the appard^
k:

tus shown schematically in Fig,_ 2; the fused silica reaction k

^a tube was water-cooled to minimize any reaction in the gas phase,

In addition to boron arsenide, sodium fluoride, silicon

carbide, and silicon were investigated as substrates for the

deposition of boron arsenide.	 Sodium fluoride, which crystal,

lizes in the face-centered cubic structure with a lattice para-,
t

meter a	 4.62 A. was chosen since its lattice parameter is close ^-

F, to that of boron arsenide, 4.777 A. 	 The basal plane of silicon

{
carbide, with its three-fold symmetry and lattice spacing of

t
o

3.08 A, could be used to deposit boron arsenide of 1111 1 orien,

tation, since the interatomic distance in boron arsenide is

(41)
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Silicon was also used as a substrate to investigate
	 x

the boron arsenide-silicon system, although epita.xial growth

was not expected.

The silicon carbide substrates were supported on a boron

arsenide coated graphite sus^eptor. Before deposition the

substrates were heated in hydrogen at about 1000° C, The de-

position of crystalline boron arsenide could be achieved with

0.01% diborane and 0.06% arsine in hidrogen. A growth rate

of about 10 um/hr was obtained. The temperature of the subs

strate was critical to the growth of crystalline boron arsenide,

Epitaxial growth, as determined by reflection electron di.ffrac^

tion patterns, was obtained near 820" C. However, at 800° C-

or at 850° C, polycrystalline deposits were obtained, It was

not established if the epitaxial growth was continuous over the

entire substrate or if islands of single crystalline material

with perhaps slightly different orientations were obtained.

fluorideThe deposition of box-on arsenide on sodium 	 was..

investigated with conditions similar to those used for silicon

carbide substrates.	 The stibstrates were of a * {111} orientation

and were etched in deionized water, 	 In all of the deposition

experiments, the deposited layer c acked off from the substrate

during cooling, due to a large difference between thermal 	 s^•_ t

panson coefficients.	 The problem could not be eliminated even

with very slow cooling rates. 	 s`

The homoepitaxial growth of boron arsenide by the thermal

decomposition of a diborane-arsine mixture was investigated,

(42)
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	 Boron arsenide crystals obtained by the transport technique

were used as substrates, and they were etched in-situ at 850° C

by using ahydrogen-hydrogen chloride mixture. The deposition

was carried out at a substrate temperature near 850° C with

hydrogen containing 0,01% diborane and 0.06% arsine at a flow

rate of 20 1/min. The as-grown surface exhibited triangular

growth pyramids indicating that the deposit was epi*_axial with

&IZZ

	

	 respect to the substrate. The number of homoepitaxial growth

experiments was limited, however, by the supply of boron arsenide

crystals of suitable size,

The deposition of boron arsenide on silicon _ substrates was

LI
i

also studied to explore the applications of boron arsenide in

silicon devices The thermal decomposition of the hydride mix

H-1111 ture was again used for the deposition process, The silicon sub,
strates were 0.01 ohm-cm p-type with main faces of {111} orien

tation and were chemically polished with a nitric acid-hydro-

fluoric acid mixture. Prior to the deposition process, the sub-

strates were heated in hydrogen at 1000° C to remove the oxide 	 x

on the surface. The deposited boron arsenide layers were up to

10 um thick and highly adherent to the silicon substrates,- The 	 R'}

boron arsenide layers deposited on silicon substrates were found

to be'aiaprphous from reflection electron diffraction examinations,

The layers were ir^ert ' to acids and alkalis,

Due to the chemical inertness of boron arsenide, the silicon

substrata. coin be :readily etched, from the boron arsenide 	 sill
con structures by a mixture of nitric acid and. hy dr .ofluoric acid.

ti

-	
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The resulting layer was found to transmit dark red light. Af	 ^	

.

f	 ^	

p 
	 ;

s ecimen which was a few microns thick was placed between two
4

quartz plates, and its absorption spectrum was measured with a

Perkin=Elmer (model E-1) monochromator. The results are shown

in Fig. 10 where the adsorption coefficient - thickness product

(ad) is plotted versus photon energy. The intercept of the

square or square root of the optical absorption coefficient

versus energy plot on the energy axis has been used for the

determination of the energy gap in semiconductors. For direct;

photon transitions, the plot of the square of absorption coef-

ficient versus photon energy gives a straight line, and for in-

direct transitions, the square root of absorption coefficient is

a linear function of photon energy.. Figure 11 shows the data

from Fig. 10 plotted both` as (ad) 2 and as (ad) 1/2 . The inter

cept of the (ad) Z versus .E plot is about 1,45 eV, and the inter,

cept of the (ad) 1 ^ 2 versus E plot is 0,65 eV. The former value

is in agreement with the reported optical band gap of boron

arsenide, 1.47 eV. Therefore,.boron arsenide is presumably a

direct - band gap material and should be useful for the fabrication

of optoelectronic devices.

Ii.B.2. Boron Phosphide Layers
(31)

r

6
The deposition of boron phosphide layers was extensively

Cinvestigated during this program. Techniques were developed

to deposit boron phosphide layers on solution-grown boron

phosphide crystals and on other substrates such as silicon

r;

z

(44)
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Fig. 10	 A plot of the 'absorption coefficient versus
photon energy for amorphous boron arsenide, µ
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carbide and silicon. During the early part of this work, sili-

con carbide substrates were used in efforts-to determine the

best reactant system for the deposition of boron phosphide.

Two reactions were considered;

B 2H6.(g )	 + 2PH3 (g) + 2BP (s )	 + 6H2.( g ) (10)

BBr 3 (g) + PCR 3 (S) + 3H2 ,( g ) -' BP (s)	 + 3HClZ (g ) + 3HBr (g )	 (11)

It was concluded that the deposition of single crystalline material

required the use of .reaction (11), becuase of the high temperature

thermal instability of the hydrides in-reaction (10),	 Boron phos-

phide layers could be deposited from the hydrides at temperatures

up to about 850° C, but due to the low temperature, the layers

only exhibited preferred orientations. At higher substrate tem-

peratures, gas phase_ reactions, even in water cooled reaction

tubes, interfered with the oriented growth on the substrate.	 The

thermal reduction-of halides is, therefore,. the preferred reactant

system for the epitaxial deposition of boron phosphide Layers.

Adherent and continuous layers of boron phosphide were de-

posited.on silicon carbide substrates in the temperature range

0 'C850 0 -1150under a variety of conditions, 	 The most important,

factors determining the crystallinity of the deposit were found

to be the 'substrate temperature and the polarity of the substrate
3

J, surface; boron phosphide layers deposited on the silicon face at

high substrate temperatures have always exhibited the best struc-
r

tural perfection.	 Figure 12 shows an early stage of the boron

phosphide growth on the silicon face of 'a silicon carbide sub=
f

strate at 1150° C.	 This growth consists of isolated, oriented,

(47)
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0	 Fig. 12 Oriented boron phosphide crystallites deposited on the

silicon face of a hexagonal silicon carbide substrate.

Fig. 13 As-grown surface of a boron phosphide layer
of approximately 40 um thickness deposited on
the silicon face of a hexagonal silicon carbide
substrate.
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triangular crystallites, and the sides of the triangular,growth

are parallel to the edges of the substrates, i.e., the <010>

direction of silicon carbide. The surface of the crystallites

is of a ' {111} orientation as indicated by their symmetry.

Furthermore, the triangular crystallites are of opposite orienta

tions, indicating the presence of two equivalent'{111} orienta-

tions related by a twofold rotation normal to the surface. The

equivalent orientations result from the different stacking possi-

bilities at the substrate deposit interface.

- The.grown surface of continuous boron phosphide layers also

exhibits structural features. An example is given in Fig. 13

where the as-grown surface of a boron phosphide layer approxi-

mately 40 um thick deposited on the silicon face is shown. 	 This

deposition was carried out at 1050	 C using hydrogen, boron tri-r

bromide, and phosphorus trichloride at flow rates of 7 x 102,

` 4 x 10 4 , and 4 x 10 '3 mol/mint respectively, and the average

deposition rate was 40 um/hr, 	 In addition to the triangular

growth, the surface shows a number of linear figures at 60° or

120° to each other which sometimes intersect to form triangles

or partial triangles.	 These figures are presumably stacking

fault traces resulting from the coalescence of the initial crys-

tallites,	 The geometry of the .figures suggests that the ..entire

grown layer is single crystalline and is epitaxial with respect

to the substrate.` The a itaxial relation is: 	 BP(111)	 (( SiC(001)P 

and BP<110>	 (( SiC<010>,	 This relation was ,confirmed by reflection

r^ electron diffraction examinations,

(49)
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The boron phosphide layers deposited on the silicon face

of silicon carbide _ubstrates at lower temperatures were also

examined in detail by reflection electron difi'raction. When

the substrate temperature was decreased to 950° C or below,

the deposit became completely polycrystalline. Upon examina-

tion by optical microscopy, the grown surface of the ?ow tem-

perature layers showed no geometrical features. The boron phos-

phide layers deposited on the carbon face of silicon carbide

substrates were also found to be polycrystalline in most cases,

although those deposited at higher temperatures exhibited some

preferred orientation.

Epitaxial boron phosphide layers deposited on the silicon

carbide substrates by the thermal reduction process without

. intentional doping are p type. 	 The resistivity and carrier con-

centration of a typical specimen deposited at 1150° C, determined

by the Hall measurements, are 0.2 ohm-cm and 10 19 cmc3 , respec-	 g

tively, at 300° K and are 1 ohm,cm and 2 x 10 17 cm -3 ; respec-
ti

tively, at 200° K.
h

The electrical conductance of an epitaxial boron phosphide 

layer was measured in the temperature range 300 0 - 1070 0 K, and

the results are shown in Fig. 14.	 Since the temperature depen-

dence of the carrier mobility is very much smaller than that of

the carrier concentration in the temperature range under con-

Lsideration, the ionization energy of deep-lying impurities may

be estimated from the slopes of the various regions of the plot

in Fig	 g. 14.	 Ionization energies estimated in this manner are

(50)
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0.22 ± 0.04 and 0,66 ± 0.06 eV. At temperatures above 1000° K

intrinsic ionization dominates, and the energy gap of boron

phosphide was determined to be 1.95 ± 0,1 eV, in agreement

with the energy gap from optical measurements.

Boron phosphide crystals from closed tube transport and

platelets obtained from solution growth were used as substrates

for the deposition of boron phosphide. _Epitaxial layers on

boron phosphide were found to have much better structural per-

fection than those deposited on silicon carbide substrates,

The epitaxial deposition of boron phosphide on boron phosphide

substrates was carried out by the thermal reduction of a boron

.^ tribromide-phosphorus trichloride mixture in hydrogen in a man-

ner similar to deposition on silicon carbide. 	 When transported

boron phosphide crystals were used as substrates, they were

first mechanically lapped and polished with alumina abrasives

to yield two flat parallel faces. 	 Solution grown platelets

were most often used without surface preparation since one face 7

of the solution grown crystals was usually very smooth..	 Major

emphasis was given to the use of the solution grown crystals,

since much larger crystals in larger quantity were available,.

To carry out the epitaxial growth process, the boron phos-
x

phide substrates were positioned on a coated graphite susceptor
4

in the reaction tube shown schematically in Fig, 2, 	 A coating

was necessary to minimize outgassing of impurities from the

graphite.	 The best coating Ti-taterial was boron phosphide itself,

I
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but this coating was always etched by the hydrogen chloride

generated during the deposition. Consequently, the susceptor
s

had to be recoated after each deposition. After evaluation of

a variety of coatings, the following triple layer system was

determined to be satisfactory; silicon carbide-silicon dioxide-

silicon nitride.

Just before deposition, the substrates were briefly etched

in-situ with phosphorus trichloride in hydrogen to remove a few

micrometers of material. The vapor each was done at 1075° C,

which was also the deposition temperature. To start the de-

position, boron tribromide was slowly introduced into the re-

actor. A key factor in the achievement of smooth featureless

epitaxial layers is the very slow addition of boron tribromide
y

f	 over a five min period. Epitaxial boron phosphide on boron 	 t

phosphide substrates can be deposited with growth rates from

about 10 to 50 um/hr. The best layers, which are smooth and
r

featureless, were obtained with slow growth rates from 10 to

20 um/hr. Typical deposition flow rates of hydrogen; boron	 G

`

	

	 tribromide;.and phosphorus trichloride were 0.125, 1.44 x 10~4,

and 1.95 x 10 -3 moles/min, respectively.

The electrical properties ofthe deposited layers were 	 x
i

I	 investigated, and intentional doping was used to control the 	 #^

'.	 properties of the layers The conductivity type of the deposited

boron phosphide was sensitive to the impurity content of the z

substrates, and this indicates that autodoping from the sub-

strate occured, due most likely to the presence of hydrogen
i ;	 1

(53)
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`	 chloride. Fort e and high resistivity n-t a substratesP- YP	 g	 Y	 YP	 r

the deposited boron phosphide was p-type, as were layers dew

posited on silicon carbide. Intentional doping with hydrogen

selenide could be used, , therefore, to control the resistivity

and to produce n-type layers. For heavily doped n-;type substrates,

which were often obtained from the solution growth process ., only

n-type layers could be grown unless ,certain preliminary steps

were done. - To produce p-type boron phosphide layers on
z

n+-substrates, the back of the substrates had to be covered

either with a`layer of deposited boron phosphide or silicon

'

	

	 nitride. As a consequence, the resistivity control of boron

phosphide layers on n + -substrates was very difficult. Spread-

ing resistance measurements on deposited boron phosphide layers

indicated that the resistivity could be varied within a three
9

A
	 f	 d	 Th	 't	 1	 th t chni uesor er o	 magnitu a range.	 a epi axia	 grow	 e	 q

described here were used to prepare boron phosphide junction

devices, and the results are discussed in Section II.D.

II.C.	 Device Fabrication Technology

To effectively.utilize boron phosphide inseveraldevices,

techniques associated with the device fabrication were investi-

gated.	 A new etching technique was developed, and the forma-

tion of ohmic contacts was achieved,	 Some new results in the

area of dielectric film technology were also obtained.

Electrolytic Etching of	 Phosphide(32)II.C.1.	 Boron	
9

Etching and polishing techniques are important processes-

for the study of semiconductors and for semiconductor device

i
(54)
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fabrication. For elemental semiconductors and some- of the

compound semiconductors, convenient chemical etchants are

available for surface preparation and for certain types of

selective etching. In the case of boron phosphide, however,

4	 N the only known etchants are fused alkalis near 400:° C and hydro-

gen chloride near 1100° C.	 The former etchant attacks boron

phosphide very nonuniformly, and for the latter etchant, the

decomposition of material at 1100° C is a problem,	 As a

consequence, electrolytic etching of boron phosphide	 was

investigated during this program, and it was found to be the

most useful etching technique for boron phosphide. 	 Techniques

L_' were developed to polish and to selectively etch boron phosphide.

A schematic of the electrolytic cell used for the etching

and polishing.of boron phosphide is shown in 'Fig.. 15. 	 The cur-
s

R rent density-potential relationships were determined, and the

crystal`-electrolyte potentidl difference was measured relative

;. to a calomel reference electrode,	 Measurements were made both. r,

in the dark and with illumination. 	 The solution was continuously

agitated by nitrogen bubbled into the electrolyte near the anode.

A uniform removal of material without undercutting of etching

masks was obtained with the boron phosphide platelets near the

axis of a cylinderical molybdenum cathode, as shown in Fig, 15.

A simple parallel plane electrode'confguration was used for t

some of the basic measurements. 	 The electrolytes investigated

were aqueous solutions of common alkalis and acids, and a few

chemical etchants previously used for other TII-V semiconductors,
4
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Prior to electrolytic etching, rough faces of the boron phos-

phide platelets were polished with 0.3 um alumina abrasive,

and as-grown smooth faces were etched without mechanical

polishing. Ohmic contact to the back side of the boron phos -

phide crystals was made by electroless'nickel plating, which

is described in the next section. To control small area geom-

etries for device fabrication, materials such as silicon dioxide

and silicon monoxide were used to mask regions of the crystals.

Typical current density--potential relationships and rest

potential values for p-type and n-type boron phosphide crystals

in a 100 'sodium hydroxide solution at room temperature in the

dark are shown in Pig. 16.	 As expected, current saturation was

f observed in all of the experiments with n-type boron phosphide

crystals.	 The p type material was readily dissolved, an d it

i; drew much larger currents than n-type material,	 At low anode

w- potentials, the ^ 7 face of both n-. type and p^type boron phos-

phide drew larger current densities at a particular electrode

potential than did the (111) face. 	 At anode potentials higher

than about 1`V, the difference between the currents drawn by

the (111) faces and the (TIE) faces is very small.

V
The rest potentials of n-type and p--type boron phosphide

were measured in a number of electrolytes in addition to sodium

hydroxide, and the rest potential for n-type crystals was always

' more negative than the rest potential for p-type crystals. 	 A

similar relationship was reported for gallium phosphide rest'

_.i____.-L	 L ___IL ^2_	 iL ._
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I rest potential was more positive for the (111).face, This

polarity effect has also been observed for a number of other

III-V-compound semiconductors, and the group III element face

was reported to have a more positive rest potential. (33,34,35):

This observatiot agrees, therefore, with the tentative assign-

ment, discussed in Section II.A.2.e., of the smooth face of

the crystals to the boron face,

The following observations were made specifically from

the etching of p-type boron phosphide. Twin lines and other

gross crystallographic defects were revealed with current

2densities of 0,01 A/cm	 or lower.	 For current densities between

0.01 A/cm 2 and about 0.2 A/cm z , etch pits formed on the faces.

At larger current densities,, above about 0,5 A/cm2, the (111)
S

and (iii) faces had different etching characteristics.	 On the	 3

(111) face, a film tended to form; this film was, however,

easily removed,	 The texture of the etched (111) face was rough

.^ as shown in Fig. 17A.	 On the (i`ii) face,, however,' there was no

evidence of film formation, and ,a smooth, mirror-like surface

shown in Fig. 17B was produced. 	 These observations are very
32

similar to the results reported for gallium phosphide;(

at high current densities, the gallium face developed a rough 	 r'
i

texture and the phosphorus face became smooth. 	 A few experiments

were also carried out with other electrolytes, and the etching

f	 ! characteristics of p-type boron phosphide in potassium hydroxide
t	 „	 y ,

solutions and common acids were found to be similar to the

x

','. (59)
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Fig. 17 Electrolytically etched surfaces of p-type
boron ph?sphide with a current density of
0.5 A/cm .

(A):	 (111) face,	 (B):	 (111) face.
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characteristics obtained with the use of sodium hydroxide

solutions.

In contrast to the etching of p-type boron phosphide,

the etching of n-type boron phosphide was complicated by the

formation of surface films at current densities higher than

about 10 .3 A/cm 2 , At this current density, a film was visibly

I.^

S,

A

observed with a 15 min. etching period; with higher current

densities, the film grew faster. 	 The film could not be com-

pletely removed from the surface of the crystal even with ultra-

sonic agitation during etching, and the film was not soluble in

hot alkali mixtures.	 X-ray measurements indicated that the films

were predominantly boron phosphate (BPO ).
4

With current densities above 1 A/cm 2 through n^type boron

phosphide, a porous, brittle, fiber-like film formed on the

surface.	 Reflection electron diffraction examination showed

that these films were monocrystalline boron phosphide of (11.1)

orientation.	 It was concluded, therefore, that anodic disinte-,

} gration of n-type boron phosphide at high current densities

r
occurred preferentially in <111> directions, and a surface

layer which is a skeleton of the original crystal remained,

Similar results were obtained from an etching study of gallium
s

arsenide.

Various approaches were investigated to improve the

etching	 haracteristics of n-t 	 a boron phosphide.	 A varietyg	 YP	 P

of electrolytes in addition to sodium hydroxide were used with

out success; an insoluable film formed in all cases,	 The effect

(61)



of illumination on the etching of n-type boron phosphide was

also investi atdd.	 A 650 watt incandescent lamp with a color. g 	.

temperature of 3400° K was used as the light source, so that

a significant portion of the lamp output had an energy greater

than the band gap of ,boron phosphide.	 A negative shift of about

0.2 V or more of the rest potentials was observed with.illumina-

tion, but very little difference in the cell currents was found.

Consequently, the anodic dissolution behavior was not signifi-

cantly affected by the illumination. 	 N-,type boron phosphide was

UH -successfully etched without film formation only under one condi-

tion:	 the n-type material exposed to the electrolyte was one

y- side of a shallow, forward biased p-n junction. 	 This observation

supports the well-known fact that a supply of holes is required

for electrolyticetching.

It cap be seen from Fig. 16 that the current density at,

for example, 3 volts is about 300 times higher for p-type boron

phosphide than for n -type material.	 This current density ratio

corresponds approximately to the etch rate ratio between p--type

and n-type boron phosphide, and suggests the possibility of

selective removal of p-type material from boron phosphide p-n

structures.	 The preferential etching of p-type material was

investigated	 boroninitially	 with a number of solution grown

phosphide crystals with built-in p,n junctions on a crystal

face.	 Selective removal of p-type boron phosphide was obtained

with current densities between 0.1 A/cm 2 and 10 A/cm 2 .	 To pre
f.

vent the formation of a surface film on the n-type regions

(62)	 4
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either very low current densities with a long etching time or

very high currents for a very short time were used. Figure 18

shows one solution grown crystal which was selectively etched;

the p type region developed a mirror-like finish, and no removal

of n-type material was observed, With low current densities

and short etching times, electrolytic etching was also used to

delineate thin epitaxially grown p-n junctions in boron phos-

phide.	 1

Since electrolytic etching is selective, it can be used to
i

produce mesa junction structures in boron phosphide, Mesa diodes

were formed with both homoepitaxially and heteroepitaxially grown 	 a

junctions. P-type layers of boron phosphide on n-type solution

grown boron phosphide crystals and both n-type and p-type boron

phosphide layers on hexagonal silicon carbide platelets were—	 s

grown by the thermal reduction of a boron tribromide,phosphorus

t

trichloride mixture.	 To isolate the mesas, either silicon dioxide

or silicon monoxide was used to define the mesa pattern, and the

U11
exposed boron phosphide was electrolytically removed. 	 In the

preparation o f the boron phosphide--silicon carbide heterojunctions,, 	 r

a sharp decrease in the current indicated the complete removal of

the boron phosphide layer exposed to the electrolyte. 	 At that

stage, the electrolyte was replaced by a 1 N solution of hydro-

fluoric acid, and a slight anodic etching of the silicon carbide

was carried out.	 This latter step improved the characteristics	 t.

of the mesa junctions. 	 'L.he removal of n-type boron phosphide on

e silicon carbide required mechanical means to occasionally remove

(63)



(A)

Fig. 18 Photomicrograph s of
boron phosphide cry
and p-type regions.
A/cm for 10 sec.

(A): top view,

(B)

an electrolytically etched
stal which has both n-type

Etching was done with 10

(B): cross sectional view.
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a surface film. near the edge of the mesa. Figure 19 shows photo-

micrographs of.two mesa junctions fabricated by anodic dissolu-

tion of boron phosphide.. Figure 19A shows a homojunction made

by selective removal of a portion of a p,type epitaxial layer

on an n-type substrate, and Fig. 19B shows an n-type boron phos-

phide mesa on p-type silicon carbide. These devices have recti-

fying characteristics, and easily visible, red, p-n junction

electroluminescence, discussed in Section II.D.4., was observed,

II.C.2. Diffusion into Boron Phosphide

During this program, a brief investigation was made to deter-

mine if impurities could be diffused into boron phosphide, Experi-

ments were done in sealed tubes with added phosphorus at tempera-

tures up to 1250° C. Prior to the diffusion experiments, the

r	 spreading resistance and type of the crystals were measured.

G
The elements used for the diffusion experiments were germanium,

silicon, and Zinc. No change in the electrical properties of

the surface of boron phosphide crystals was ever found, This

indicates that successful diffusion into boron phosphide would

require much. higher temperatures.

II.C.3, Ohmic Contacts to Boron Phosphide

The formation of low resistance ohm-c contacts is an essen-

tial technique in the development of devices from new semicon-

ductor materials.. Theoretically, it is advantageous (1) to use

contacting materials of high work function on p.type and of low
3

work function on n-type semiconductors, and (2) to create a

region of high carrier concentration under thecontact through
.	 x

H

(65)	 !i
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Fig. 19 Two mesa structures fabricated by electrolytic
etching: (A) boron phosphide p-n homojunction
and (B) boron phosphide-silicon carbide hetero-
junction.
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alloying or in-diffusion of a suitable dopapt provided by the
a
r

^	
r

contacting material.	 In practice, it is difficult to satisfy
E E these conditions. For example, at temperatures high enough to

affect alloying or impurity in--diffusion, boron phosphide decom-

poses.	 In this work, a number of materials were investigated

under various heat treatment conditions to yield low resistance

4i ohmic contacts to boron phosphide.	 The results are summarized

in Table I.	 The carrier concentraions in boron phosphide crys-

tals was approximately 101 8 cm" 3 ^	 All the metals or their alloys
r

were deposited on boron phosphide by evaporation under a pressure }

of 10_
6
 Torr or lower with the exception of nickel, 	 The elec-

troless plating was used for the deposition of nickel, and indium

was also applied by soldering in addition to evaporation.	 Anneal-

ing was carried out in a hydrogen atmosphere from 600° to 850°,C

for 5 min to 1 hr. though occasionally the annealing was carried

out at 950 0 C for a few minutes.	 The current-voltage character-

istics of these contacts were then determined on a curve tracer,

r; For n-type solution grown crystals, aluminum and indium

contacts remained non-ohmic even after annealing up to 750° C

U"
for 1 hr.	 Electroless nickel was found to form low resistance,

ohmic contacts to all but lightly doped n-type boron phosphide
r

Uli, crystals.	 The plating was carried out at 90° to 100° C'using

RE
Nicklex (Transene Company, Inc., Danvers,_ Mass.) plating solu-

tion.	 Lapping of boron phosphide crystals with 600 grit sili-

con carbide abrasive facilitated the plating process and improved

{ the adhesion of nickel deposit to the crystal.	 The electroless

#	 !
1	 ; (67)



As
IDeposited 600°C 750°C 850°C	 .950°C

N Al N-0 N-0 N-0 --	 -
N In N-O N-0
N Ag N-0 N-0 N-0 N-0	 N-0
N Ag-^Ge N_0 N-0 N-0 N-0	 --
N Ag-Sn N-0 N-0 N-0 N-0	 --
N Ag-Si N-O N-0 N-0 N-0	 -,
N Au N-0 Ohmic	 - -
N Au-Si (l-5 0) N--0 - c X10-2
N Au- Sn NZ0 x'10-2	 -.
N Au-Ge-Ni N-0 -- _, --
N Au-Ge N-0 Ohmic	 --
N Electroless Ni N-0 ~10-2	 ---10-2
p -BeAu(l o) N-0
p In N-0 Ohmic	 .
p Al NRO Ohmic	 .



plating of lightly doped boron phosphide with nickel was very

difficult and was facilitated considerably by rinsing boron
z

phosphide platlets in palladium chloride solution, deionized

water, stannous chloride solution, and deionized water suc-

cessively before plating.	 Annealing temperatures of 850 0 to

900° C produced ohmic contacts of specific contact resistance

` on the order of 10 -2 ohm-cm2.

In the fabrication of small area devices, evaporated con-

tacts are preferred, and gold, silver, and a number of their

alloys were investigated.	 Gold-germanium-nickel and gold

silicon have produced low resistance ohmic contacts to n-type

boron phosphide, and gold-beryllium has formed low resistance

ohmic contacts to p-type material. 	 On heavily doped boron

phosphide crystals, evaporated gold contacts were found to be

ohmic after annealing	 n all cases.i. 

II.C.4.	 Dielectric Film Technology
r

The production of dielectric films is a key process in

silicon technology.	 For this reason, the suitability of boron

phosphide and boron arsenide to function as dielectric films

on silicon was investigated during this program.	 Because of	 6

their energy gaps, the intrinsic resistivity of boron phosphide

and boron arsenide should be high. 	 One other material, aluminum

nitride, was also studied.

LIE As discussed in Section II,B,1., smooth adherent films of	 r-

boron arsenide could be deposited on (111) silicon substrates.

Since the films were amorphous, they were investigated as

(69)
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dielectrics in metal-boron arsenide-silicon structures,, 	 Devices

. were made by vacuum evaporation of small diameter aluminum or

gold electrodes onto the boron -arsenide.	 Individual samples were

mounted in sealed headers so that characteristics could be mea-

sured.

To study the electrical conduction mechanisms in boron arse-

nide, the current-voltage characteristics of metal-boron arsenide-

silicon structures were measured over a wide temperature range,

Typical .results are shown in Fig, 	 20, where the current-voltage

i
relations ;are plotted on logarithmic scales, 	 In general, at low

bias levels, the slope is unity, which describes an ohmic region.

As	 increased	 the	 Vthe bias is	 the slope of	 to	 I versus toa	 p	 g	 g

j	 r plot increases to two, and with higher bias, larger values of the

slope occur,. At low bias levels, the room temperature resistivity
• i

of amorphous boron arsenide is approximately 10 	 ohm^cm	 The

ohmic behavior.at low bias levels could be due to electronic

i conduction, which typically has activation energies less than

1 eV, or to ionic conduction, which has activation energies of

several electron volts.	 Figure 21 shows a blot of the logarithm

} of the conductance versus the reciprocal temperature taken from

Fig. 20 at 0.1 volt.	 The slope of this plot yields an activation

energy of 0.26 eV indicating that electronic conduction prevails.

The region with a slope of two in the log I versus log V plot` x

corresponds to space-charge-limited current.	 The higher slope
r

region represents trap filled limited conduction, which occurs F

,
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Fig, 20 Typical current-voltage characteristics of an aluminum

boron arsenide-s ilicon structure with a boron arsenide
film of 1'um thickness.
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E
when all of the traps in a dielectric are filled by injected

E:
carriers.(36) Since the traps cannot accomodate additional

'

	

	 charge, a sharp increase in current occurs. To further

characterize the metal-boron arsenide-silicon structures, at

tempts were made to measure capacitance-,voltage characteristics,

However, the relatively large conductance of the boron arsenide

resulted in large leakage currents . , and reproducible data were

not obtained.

Boronhos hide was also investigated as a dielectric inP P

aluminum-boron phosphide-silicon devices. Amorphorus boron

phosphide was deposited on (111) oriented silicon by the hy^

dride decomposition reaction (10), 	 Current-voltage character-

istics similar to those obtained from the metal-boron arsenide-

Lsilicon structures were obtained from the aluminum-boron phos-

phide-silicon structures.	 As expected from the relative values

e, of the band gaps, the conductance of the boron phosphide devices

was lower, by one to two orders of magnitude, than the boron 	 µ:
a

arsenide devices.
	 M

One other material, aluminum nitrides was characterized as
s	 ;

a dielectric material on silicon during this program, (37 )	 The

pyrolysis of an aluminum trichloride^-ammonia complex, AYCQ3a3NH3,

was used to deposit very fine grain, uniform, highly adherent

aluminum nitride layers on (11:1) oriented silicon substrates j

The crystal structure of the layers was determined basically by

the deposition temperature, and grain sizes, which were measured

by transmission electron microscopy to be 100 A to 2200 A.	 The

(73)
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layers had a density very close to the reported bulk density

for aluminum. nitride, The Becke line method was used to measure

the refractive index of the deposited layers, and a value 1.991

± 0.003 was found. The dielectric constant of the layers was

somewhat dependent upon the deposition temperature; for'deposi-

tion temperatures from 800° C to 1000° CI; the dielectric con-

stant was 11.5 ± 0,2, and for a 1100° C deposition, the value

was 8.1 + 0.3. The as-deposited dielectric constant was not af-

fected by later high temperature heating to 1100° C, which indi-

cates the stability of the aluminum nitride layers. The layers

were also found to be effective diffusion masks for boron and

phosphorus diffusions, and the layers can be etched to produce

patterns with standard photolithographic techniques. These

properties indicate that aluminumnitride has potential as a

dielectric in solid state devices.

II.D. Boron Phosphide Device Fabrication

EV The ultimate goal of this program was the fabrication and

evaluation of devices. Since it was concluded that a useful sup-

ply of boron arsenide material was not easily obtainable, major

emphasis was given to device fabrication from boron phosphide.

The larger energy gap of boron phosphide also indicates that it

would be a more useful material than boron arsenide, Four types

of boron phosphide devices were made during this program; metal-
PM

insulator-semiconductor structures, heterojun.ctions with silicon

carbide, Schottky barriers, and p-n homojunctions, The character-

istics, including electroluminescent emission, of these devices

(74)
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are discussed, below,c

II.D.l,	 Metal-Insulator-Semiconductor Structures

Because of the importance of metal-•insulator,-semicon,

f
f ductor (MIS) devices, work was done to evaluate the use of boron

phosphide as the semiconductor in MIS structures, 	 Devices were

made both on solution grown crystals and on epitaxial layers of

boron phosphide.

The nature of the insulator-semiconductor interface often
bo

determines the characteristics of MIS devices, 	 For this reason,

U, a number of techniques were evaluated to prepare the insulating

layer on boron phosphide.	 The oxidation and nitrification of

Lit, were	 foundboron phosphide	 investigated.	 Boron phosphide was

to be readily oxidized in an oxygen atmosphere at 800° C cr

higher.	 However, the resulting product, which was a mixture ofg	 ,	 g P	 a

boron phosphate (BPO 4) and boron oxide (B 2 0 3 ), was not adherent

. to the boron phosphide substrate.	 Oxidation at lower tempera-

boron	 films	 Thetures produced	 phosphate	 with pinholes,	 nitri-

fication of boron phosphide was investigated by heating the crys-

tals in ammonia for several hours.; 	 At temperature below 925° C,

no appreciable reaction was observed. 	 As the temperature was

increased to about 1000° C, a discontinuous_ film of boron nitride
d

was	 Since	 film	 by theproduced,	 neither	 produced	 oxidation or

f
nitrificationtechnique appeared to be suitable as a dielectric

on boron phosphide, deposited layers of silicon dioxide and sili-

IL
con nitride were investigated,

V.
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j Silicon nitride and silicon nitride-. silicon dioxide

ti double layers were used as dielectrics in the fabrication

of boron phosphide MIS structures,	 The oxide and nitride

were deposited by the oxidation and ammonolysis of silanet

respectively.	 A number of experiments were carried out to

determine the conditions and the rate of deposition of sili-

dioxide	 boron	 Forcon	 and silicon nitride on	 phosphide.

Silicon dioxide, a deposition temperature of 5500 C-was found
G

to be convenient, and the deposition rate was 360 A/min. For

silicon nitride, a deposition temperature of 850° C was used,
0

and the deposition rate was 190 A/min, 	 The silicon dioxide

films	 wereand silicon nitride	 were transparent and 	 adherent

to boron phosphide. 	 When observed through the high power metal,
a

lurgical microscope, the films showed no pinholes. 	 The electri-

' cal resistivity of a typical 1500 A thick silicon nitride film

' was on the order of 10 10 ohm-cm and the dielectric strength was 	 3

aabout 10 6 v/cm.

Several approaches were investigated for the fabrication

of boron phosphide MIS structures, 	 In one approach, silicon
O

nitride films from 1000 to 2000 A in thickness were deposited

on a mechanically polished face of either n-type solution grown

crystals or homoepitaxial boron phosphide. 	 After the deposition

of silicon nitride, the back of the boron phosphide substrate

was lapped to remove unwanted silicon nitride. 	 An ohmic contact

was made on the back of the boron phosphide. 	 Aluminum gate

(76)
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electrodes of 0.25 mm diameter were then deposited onto the

silicon nitride by vacuum evaporation to complete the fabri-

cation process.

The MIS devices were evaluated from Their capacitance-

voltage characteristics measured with a Boonton 75 C bridge.

These measurements were made under a do Dias upon which was

superimposed a small ac signal with a frequency of 0.4MHz. 	 P

Typical characteristics of an MIS structure with n-type boron

phosphide are shown in Fig.. 22. The positive flat-band voltage

indicates the existence of a negative charge in the silicon

nitride near the silicon nitride-boron phosphide interface,

Because of the negative charge in the nitride, an inversion

layer is formed at the entire n-type boron phosphide surface

for a positive gate voltage. Since the insulating layer ex-,

tends over an area greater than the metal electrode, the inver-

sion layer consists of two parts: 	 an intrinsic portion directly

beneath the metal region and an extrinsic portion in the area 	 j

covered only by the insulator.	 The two parts are coupled to

form a distributive R-C network, which consists of the lateral

resistance of the inversion region and the depletion capacitance.

The distribtued R-C network beyond the gate can be considered

^,.. a low pass filter, and because of the high charge density in the
w

° insulator, this extrinsic portion of the inversion layer will

dominate the device characteristic. 	 Therefore, as frequency

r
H"

increases, the ac propagates a shorter distance away from the

x;
r (	 / )	 k77
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gate before dying out. Both the external conductance and ex

-	 s ternal capacitance will then be smaller, and measured capaci-

tance will become bias independent at a value less than insula-

tor capacitance. At high enough frequency,de endin a onP	 g	 g 	 dependingg p

lateral resistance and boron phosphide resistivity, hardly

any ac propagates into the distributed network, At this cut

off frequency, the overall capacitance of the insulator is in

series with the depletion capacitance for all values of bias

at which the boron phosphide under the gate is inverted. As a

consequence of these effects due to the high charge density

near the insulator-semiconductor interface, the capacitance-

voltage characteristics of these devices appears to be a low

frequency characteristic.

To minimize the impurity concentration at the silicon

1

nitride-boron phosphide interface, another fabrica:^^on pro-

cedure, which itivolved the sequential deposition of the semi-

conductor and the insulator in the same reaction tube, was

investigated,	 Devices were made by the deposition of a high

resistivity n-type epitaxial boron phosphide layer onto a

boron phosphide substrate followed immediately by the deposition
o

of a 2000 A thick silicon nitride layer.	 Vacuum evaporation

was again used to deposit 0.25 mm diameter aluminum gate elec-

trodes.	 The capacitance-voltage relationship of a typical boron:

Fig.	 23.phosphide MIS structure made as just described is shown in

Although some charge is still present near the silicon nitride-

t	 o	 `boron phosphide interface, the quantity of 	 charg e has been

-	 (79r .
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reduced compared with the device whose characteristics are

given ing Fig.	 22.	 Theg• characteristic of Fig.	 23g is typical

s of high frequency MIS device behavior. Similar device

characteristics were obtained with the use of a silicon dioxide-

silicon doublenitride layer insulator in boron phosphide

MIS devices.
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II.D.2. Schottky Barrier Devices

The fabrication of boron phosphide Schottky barrier diodes

requires the formation of ohmic and Schottky contacts on the

opposite faces of a boron monophosphide crystal or platelet,

The use of gold and aluminum as Schottky contacts were investi-

gated. The resulting diodes were characterized by current_

voltage and capacitance-voltage measurements,

The ohmic contact was first made to the back face of a

boron phosphide platelet using the technique described in

Section II.C.3. The platelet was thoroughly cleaned and heated

in the vacuum evaporator to remove the adsorbed water vapor,

The Schottky contacts in the form of 0.01" diameter dots were

evaporated to the front ` face of the platelet at 120 -130° C

through a metal mask.
_

Capacitance -voltage measurements on Schottky diodes were

made with a Boonton Model 75 C bridge, and the capacitance was
1

measured as a function of bias voltage. The current-voltage

measurements were made using.a regulated power supply, _a digital

voltmeter, and an electrometer.

;f

(81)'
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Figure 24 shows the capacitance-voltage relation of

an aluminum Schottky contact on an n-type solution grown

boron phosphide crystal. 	 A relative straight line was ob-

tained from the 
C2 

versus V plot, and the intercept at the

voltage axis indicated that the diffusion potential is about

0.75 V.	 The dopant concentration calculated from the slope

of the plot was about 9.4 x 10 17 cm `3 .	 The current-voltage

characteristics of a gold Schottky contact on an n -type solution

grown boron phosphide crystal is shown in Fig. 25.	 The para-

meter "n" in the diode equation calculated from the slope of

' this plot is approximately 3.4. 	 At voltages higher than about

0.8 V', the series resistance of the device dominates.. 	 The

relative large "n" value is due presumably to the presence of

an interfacial layer. 	 The reverse breakdown voltage of most

diodes	 about ten	 In	 the currentvoltagewas	 volts.	 general:	 -

dcharacteristics appear to be dominated by surface leakage, and

efficientassivation is necessary for meaningful results,.P	 y	 g

II.D.3.	 Silicon Carbide-Boron 'phosphide Heterojunctions

The fabrication and characterization of silicon carbide-

boron phosphide heterojunctions are discussed in this section,

'. Junctions between semiconductors with different energy gaps

have a number of potential applications, such as majority

' carrier rectifier, high speed band-pass photodetector, and
it

other photovoltaic devices.	 Many of these applications utilize
the fact that the larger energy gap semiconductor in a hetero-

junction is transparent to radiation which is generated or

(82)
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absorbed in the other material. In practice, heterojunction

devices suffer from one major limitation; a high density of

states within the band gap at the junction interface. These

interface states can act as trapping centers, and they severely

limit the realization of the promise of heterojunction devices.

These interface states are due, in large part, to the lattice

parameter and thermal expansion coefficient mismatch between

the two materials of the device. Both types of mismatch will

produce a strained lattice and dislocations. In addition, inter.

face states can result from impurity incorporation during the

fabrication process.

The fabrication of the silicon carbide-boron phosphide 	 ji
heterojunctions was based upon the epitaxial deposition process

discussed in Section II.B.2. P-type boron phosphide, ` layers

were 'grown on the n-type silicon carbide to form the hetero

R junction. After removal of the deposit on the back of the sub-

strate, ohmic contacts were made to both sides of the junction

by sequential plating of palladium and nickel. Contact resis-

tance was reduced by an anneal near 850 C for l hour in a

hydrogen or argon atmosphere. Mesa-type junctions were then

made by the electrolytic etching technique discussed in Section

II.C.1.

Current-voltage characteristics of the heterojunctions

were measured. Preli- inary data were taken from the character-

istic on a diode curve tracer. Diodes with poor reverse char-

acteristics were often imp-roved by additional electrolytic
Y

(85)
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etching. When additional etching did not improve the diode

reverse characteristics, the diode was transferred to a probe

station for point by point measurements. Figures 26 and 27

show, respectively, the forward and reverse current-voltage

'	 characteristics of a (n) silicon carbide-(p) boron phosphide

a
junction. The forward current is proportional to exp(gV/nkT)

with n	 1.9. At voltages higher than 0.7 V, the series re-

E
sistance of the device limited the forward current. The re-

verse current increases exponentially with voltage up to -4 V.

Below -4 V, the current increases slowly with voltage. These

characteristics are to be expected according to the model of

a heterojunction proposed by Dolega. (3 8)	In this model, the

presence of a thin layer with an extremely small carrier life

f time at the interface between the two semiconductors is con- 	 i

a	
^

„M
i

sidered to be typical of p-n heterojunctions.	 In practice,

. therefore, the p-n heterojunction may behave more like two
P	 6

metal-semiconductor contacts in series. 	 If the impurity con-

centrations in the two sides of the junction are widely differ-

ent, practically all of the voltage drop occurs on the side

} with the lower impurity concentration.	 This corresponds to a 	 f

single Schottky barrier, and the value of n should be one, 	 If
d

k

the impurity concentrations on the two sides are comparable,

a voltage drop occurs on both sides of the junction, and in

theory n should be two.	 Another feature of the Dolega model

x' is the prediction of an exponential increase followed by a

(86)	 ,
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linear increase in the reverse current as the reverse bias is

increased. The characteristic of Fig. 27 suggests this type of

behavior.

Capacitance-voltage measurements were also taken on (n)

silicon carbide-(p) boron phosphide heterojunction diodes..

Figure 28 shows the relationship between the inverse capacitance

squared and voltage for the diode described above. The linear

relation between C ^2 versus V indicates the abrupt nature of the

junction. The voltage intercept in the case of heterodiodes may

be a function of the impurity profile in either or both of the

} semiconducting materials. For a p-n heterojunction with the

a
more heavily doped semiconductor on the n-•side, for example,

most of the depletion region would be in the p-side semiconductor
1

and the voltage intercept would indicate the energy gap of the

p-side semiconductor. The voltage intercept of about 2.6 V in

Fig.	 28, which is intermediate between the band gaps of silicon

x carbide and boron phosphide, suggests that both sides of the

Li
silicon carbide-boron phosphide heterojunctions have comparable

impurity concentrations. 	 The voltage intercept can also be

interpreted as the potential barrier resulting from two Schottky

diodes in series

II.D.4. Boron Phosphide P-N Electroluminescent Homo junct ions

Boron phosphide ,p-n junction structures were prepared by

the epitaxial growth of boron phosphide using thermal reduction

of a boron tribromide-phosphorus trichloride mixture with hydro-

gen on solution grown boron phosphide p atelets, Mesa diodes

rAZ (89)
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	 were isolated by electrolytic etching or by laser scribing..
I

Figures 29A and 29B show, respectively, an array of laser scribed

boron phosphide diodes and the typical current-voltage character-

istics. Built-in p- n junctions in solution grown boron phos-

phide crystals were also isolated by electrolytic etching. Gold

or gold-silicon contacts were evaporated onto the n-type region

and gold-beryllium contacts were evaporated on the p-type region.

After evaporation, the contacts were annealed in hydrogen at

850° C to reduce the contact resistance. The fabricated boron

phosphide diodes were mounted on a TO-18 header with a single

component silver epoxy. 	 The mounted diodes were generally en-

capsulated in Hysol LED epoxy before making measurements,

Figure 30 shows the current-voltage characteristics of

an unpassivated epitaxial boron phosphide diode fabricated on

an n-type solution grown substrate.	 The slow rise of current

` with voltage in the forward direction is due to the high series

resistance of the device. 	 The reverse breakdown voltage was

higher than 20 volts.	 The excessive leakage current was reduced

by passivation.

The-current-voltage and capacitance-voltage characteristics

of a built-in p-n junction in a solution grown boron phosphide
7

crystal are shown in Fig. 31 and 32, respectively. Over a small

range of voltage, the n value is approximately 2 at 300° K and

3.4 at 77' K. This is due to the carrier recombination in the

 space charge region. A linear relationship between C _2 and V

(91)	 z
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Fig. 29 (A) An array of laser scrihed boronhosphide
p-n junction diodes. (B) Current-voltage
characteristics of a laser scribed diode
(Horizontal: 2 V/div., Vertical: 1 mA/div.).
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	 indicates the abrupt nature of the junction. The voltage

intercept is about 2.1 V sli htl seater than the energ y aP	 r	 g	 y . g	 gy. g P

of boron phosphide. This is attributed to the presence of

p-i-n structure in place of a simple p-n junction., The carrier

w:^	 .concentration calculated from the slope of C -2 versus V relation
f
f	 i1	 is approximately '10 18 cm-3.

The electroluminescence from boron phosphide p--n junctions

'`	 and point-contact diodes was studied under do and pulsed con-
^	 .a

ditions.	 For spectral measurements, the diode emission was

focused on the entrance slit of a Perkin-Elmer model E--1 mono-

chromator.	 The detector was a RCA 7102 photomultiplier tube
v

(with S-1 characteristics). 	 The emission from solution grown
<'

diodes was visible in room light and appeared to originate from

n-type region.	 Also, electroluminescence was observed when the
1

diode	 was under forward or reverse bias, although the bright- r-
'?	 e

U1

Hess level was much higher under reverse t'ias.	 Figure 33^shows

the spectral emission of a solution grown phosphide p--n junction

U
under reverse bias.	 The spectrum consists of bands associated r

r with transitions between impurity states. 	 The spectrum extends

into near infra red (about 1.5 cV). 	 The electroluminescence
.

from`epitaxial p-n junctions had similar spectral distribution
g

as	 but of less intensity than 	 the solution ' grown diodes,^	 y	 ,	 , g F

f
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III. Summary and

.z

Conclusions

Boron arsenide and boron phosphide with energy gaps of 1.46

and 20 eV, respectively, are not well-known semiconductors.

In this work, extensive investigations have been carried out

concerning the-crystal growth, characterization, and device-fab-

rication of these compounds.

j Boron arsenide decomposes irreversibly at temperatures above

the temperature of the crystal growth pro-900° C	 thus limiting 	 p
cess.	 Single crystals of boron arsenide have been prepared by the

chemical transport of polycrystalline boron arsenide in the pre-

sence of a temperature gradient,	 The transported crystals are

p-type and have a resistivity of approximately 0.01 ohm-cm in

the temperature range 77-500' K.	 The hole concentration and

Nall mobility, essentially independent of temperature in the

' range 77-300 0 K, have been estimated to be in the range of 1018

101 9cm 
3
,and 100-400 cm2 V l sec - 1,.respectively,	 The crystal

DOW

-growth of boron. arsenide from h igh 'temperature .solutions. has also

been attempted without success because of the low solubility of

Pa
boron arsenide in.-nickel arsenide, copper arsenide,. and palladium

s

arsenide at 900° C o. below.	 No major efforts were directed to"

the fabrication of boron arsenide devices because of the small

size of available boron arsenide crystals and its thermal insta,'

Ll bility.

Thin layers of boson arsenide have been deposited on several

substrates a',	 800-850° C by the thermal decomposition of a di-

borane-arsine r,.ixture in a hydrogen atmosphere.	 Boron arsenide
}

{
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deposited on silicon substrates of * {111} orientation were

amorphous.	 Optical absorption measurements implied that boron

arsenide is a direct gap material with a room temperature energy

gap of about 1 .45 eV.	 The current-voltage characteristics of

metal-boron arsenide-silicon structures have indicated that the
k

current-controlling mechanism is similar to that of an insulator

containing traps of uniform energy,

Single crystals of boron phosphide have been grown by the
'y

chemical transport and solution growth techniques using polycrystal-

line starting material.	 The transport of polycrystalline boron phos-

phide by iodine and bromine in a closed tube was studied in de-

tail, including source temperature, temperature , gradient t and

>>' surface condition of the reaction tube. 	 At a source temperature 4

of 1270-1290,° C, single crystals of boron phosphide were obtained

in the form of polyhedra ofseveral millimeters size with well-

defined faces.	 The transported crystals were p- type with a

room temperature resistivity of approximately 0,5 ohm-cm.

Resistivity measurements in the temperature range 77-350° K

indicated the presence of two impurity states with activation

'j energies of approximately 0.009 and 0,052 eV, respectively,

The solution growth technique was more successful than

the transport technique for the growth of large boron phosphide

crystals suitable for devise fabrication.	 Two approaches were

investigated:'	 (1) the addition of phosphorus to a boron-nickel

r
or boron-copper melt, and (2) the recrystallization of boron

phosphide from a nickel phosphide or . cyopper phosphide solution

T
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in a temperature gradient, The solubility of boron phosphide

in nickel phosphide was found to be higher than that in copper

phosphide, and the temperature gradient reerystallization of boron

II 	,i phosphide from nickel phosphide solution, at 1200-1220° C was found

k!	to produce large crystals than the addition of phosphorus to a
^i

boron-nickel melt. The solution grown crystals were mostly in

the form of platelets up to 20 mm 2 in area; they had main faces

of ' {1111 orientation and were formed by the twin-plane reentrant

edge mechanism.	 They were usually n-type with a room-temperature

^F resistivity of about 0.5 ohm-cm and a carrier concentration of
`

1 about 10 18 cm
_
 3 T he size and perfection of solution-grown

^- boron phosphide crystals were improved by the accelerated con-
M

'tamer rotation techni que which provides very effective mixin gQ	 P	 Y	 g t,
e	 y

within the solution.	 The crystals contained 'both p-type and

k n-type regions; the faces were usually n-type, and a central
1

core was p-type.	 The addition of silicon to the boron phosphide-

nickel phosphide solution produced only n-type boron phosphide,

and the addition of beryllium produced p-type crystals,

The  deposition of boron phosphide layers on silicon carbide

platelets, ' {1'11} oriented silicon substrates, and boron phosphide

crystals was investigated extensively by using the thermal reduc-

tion of a boron tribromide-phosphorus trichloride mixture, 	 Boron

phosphide layers deposit'=.4 on the silicon face of silicon carbide

substrates at 1050-1150° C were single crystalline and epitaxial .

with respect to the substrate. 	 Without intentional doping, the

,' (100)
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epitaxial layers were p-type with a room temperature carrier con-

centration of about 10 19 cm-3 . Resistivity measurements in the

j	 temperature range 300-1000° K indicated the presence of two
impurity levels with activation energies of approximately 0,22

and'0.66 eV, respectively.	 Boron phosphide layers deposited on

vapor-and solution-grown crystals had much better structural

H"! perfection than those deposited on silicon carbide substrates..

The electrical resistivity of n-type epitaxi;al boron phso^hide

` layers was controlled by using hydrogen selenide as a dopant,

I	
.- y

Several techniques associated with the fabrication of boron

phosphide devices such as junction shaping, diffusion, and con-

tact formation have been investigated, 	 Because of the chemical

inertness of boron phosphide at room temperature, electrolytic

etching is the most useful etching technique for boron phosphide

{ and has been studied in detail using various electrolytes.	 A

technique was developed to etch and polish p-type boron phosphide;

E, however, an insoluble film tended to form on the surface of n-•type

material, and material removal was very slow, 	 The large difference

in the etch rates of p-type and n-type boron phosphide has allowed

selected removal of material and delineation of mesa-type p-n
i

junctions,	 The diffusion of several n- . and p-type dopants into

' boron " os hide was investigated at temperatures u 	 to 1250° C- r•-- P	 g	 P	 P	 i

and no change in the electrical properties of the surface of

boron phosphide crystals was ever observed.	 Among the large

number of metals and alloys investigated, electroless nickel

was found to form low resistance ohmic contacts to all but lightly-

9 (101)	 i
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doped n-t a boron phosphide crystals.. Evaporated gold-ger--, i 	P	 YP	 P	 P	 Y

manium arid . gold-,silicon have produced low resistance ohmic con-

tarts to n,type boron phosphide, and gold--beryllinum has formed

low resistance ohmic contacts to p-type material,

Four types of boron phosphide devices were fabricated:

metal-insulator-boron phosphide structures, Schottky barriers,

boron phosphide-silicon carbide heterojunctions, and pin homo-
,y

f

	

	 junctions. The metal-silicon nitride-boron phosphide structures

are characterized by the presence of negative charges in the semi-

conductor-dielectric interface.	 The current-voltage character

istics of (n) silicon carbide-(p) boron phosphide heterojunction

structures have been found to deviate considerably from p-n

f
homojunction structures and indicate a high recombination rate at

the interface,	 Epitaxial boron phosphide p--n junctions and built-

in p-n junctions in solution grown boron phosphide crystals were

isolated by electrolytic etching,	 The current-voltage and capaci-

tance-volta e characteristics of these diodes have been investi-g

gated.	 Easily visible electroluminescence has been observed from

these junctions.
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I

The thermal decomposition of diborane-phosphine mixtures in a hydrogen atmosphere and the thermal
reduction of boron trihromide-phosphorus trichloride mixtures with hydrogen have been used for the
deposition of boron phosphide on the basal plane of hexagonal silicon carbide substrates. In the thermal
decomposition process, the substrate must be maintained at temperatures below 900°C to minimize. the
contribution of gas-phase reactions, and the boron phosphide layers showed only preferred orientations.
The thermal reduction process was carried out over a wide temperature range, and the boron phosphide
layers deposited on the silicon face of silicon carbide substrates at 1050°-1150°C were found, by optical
microscopy and reflection electron diffracti(in examinations to be single crystalline and epitaxial with
respect to the substrate. Epitaxial boron phosphide :layers prepared by the halide reduction reaction with-
out intentional doping are p type with a room-temperature carrier concentration of approximately 10 19 cm-3.

°°KResistivity measurements in the temperature range 300-1000indicated the presence of two impurity
states with activation energies of approximately 0.22 and 0.66 eV, respectivel y. Needle-shaped boron
phosphide crystals have also been obtain9d by the halide reduction reaction. They are single crystals with
the elongated axis along 	 (111) direction and are p type with a room-temperature resistivity of approxi-
mately. 20 U cm.

I.NTRODUCTION chemical	 inertness,	 crystal	 symmetry,	 and	 lattice

Boron forms two phosphides: a cubic monophosphide parameters. The basal plane of silicon carbide has
three-foldsymmetry and a lattice parameter of 3608 tT(BP) with an energy gap of 2.0 eV 1s and a rhombi-

- which is very similar to the interatomic distance in thehedral'subphosphide (BsP) with an energy gap of {111} plane of boron phosphide, 3.21 A (the lattice3.3 eW The monophosphide, referred to as boron parameter of boron phosphide is 4.55 tYi)

h gh it emphideh
t S	 perate	 es (1100°C) and reduced

pressures (about 1 mm) ? Several	 bor
	 and

al 
reactions

 lthe
 between gaseous

c compounds  	 feasibleP	 P	 P	 are j

Because of its high melting point and thermal insta- Pon lt	
of 	 phosphide. The thermal

bility, boron phosphide crystals have been grown only 'mixturedecompositions	 of a
	

Pdiborar e— hohine 	 in aP
by solution growth and chemical transport techniques. hydrogen atmosphere and the thermal reduction of a ' s
Recrystallization	 from nickel or iron	 solutions	 at boron tribromide—phosphorus trichloride mixture with a
1300°-1500°C under a phosphorus pressure has pro- hydrogen were used in this work. The thermal decompo- i'
duced orange—red crystals of boron phosphide up to sition reaction takes place readily at relatively low

several millimeters in size 2 These crystals, containing ` temperatures, and boron phosphide layers deposited on

about 0.01% solvent as the major impurity, were p type silicon carbide substrates at 850 C were found to show

with 'a room-temperature 	 carrier	 concentration of only -preferred orientations. The thermal reduction

1018 cm 3 : and a room-temperature mobility of 500 Process requires higher substrate temperatures, and {

cm2/V sec. Boron phosphide crystals produced by the boron phosphide layers deposited on the silicon face of

chemical transport technique were considerably smaller, °Chexagonal silicon carbide at 1050 9-1150were found

and their properties have not been characterized. s s to be single crystalline and epitaxtal with respect to the

In recent years, chemical vapor growth techniques substrate. 
Needle-shaped single crystals of boron phosphidehave been used successfully for the crystal .growth of have also been prepared by the thermal reduction

'
several. refractory III—V :compounds such as gallium technique. The preparation processes and the propertiesarsenide, aluminum arsenide, gallium—aluminum arse- of the grown material are discuss 	 in this paper.e:rl	 r..nide, etc. These techniques have the advantages that

e crystal growth can be achieved at relatively low II. EXPERIMENTAL

'
temperatures and that the composition of the reactant
mixture can be varied over a wide range. In this work, , `	 The deposition of boron phosphide was carried out
chemical reactions between gaseous boron and phos- in -a gas-flow system by the thermal decomposition of
phorus compounds have been used for the growth of diborane—phosphine mixtures in a hydrogen atmosphere
boron phosphide single crystals. To control the nuclea- and; the	 thermal reduction of	 boron	 tribromide-
tion and growth processes, the basal plane of hexagonal phosphorus trichloride mixtures with hydrogen. One
silicon carbide platelets was also used as the substrate. - major difference between these two reactions is the
Hexagonal silicon carbide appears to be the most magnitude of 'their free energy changes. The hydrides'
suitable substrate available from considerations of are thermodynamically unstable at room temperature
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and decompose rapidly at 500°C and above. This various gases was directed by using appropriate valves
thermal instability tends 	 to promote	 homogenous and measured with flowmeters. The boron'tribromide 1

nucleation by pyrolysis in the gas phase, and the solid and phosphorus trichloride containers were maintained i
boron compound thus formed will interfere with the in a constant temperature bath, and the halides were }
oriented growth. Although the gas-phase nucleation vaporized by using hydrogen as a carrier gas. The L
can be suppressed by using a low partial pressure of reactant mixture of the desired composition was passed }
hydrides in the reactant, a high gas-flow velocity over through a filter into a fused silica reaction tube. The
the substrate surface, and a water-cooled reaction tube, reaction tube for the halides reaction was of 25-nmi ia
these conditions are not effective at relatively high W., and that for the hydride reaction was of 55-mm i.d., l	 i	 9
substrate temperatures, 900°C for example. The halides and was water cooled to minimize the gas-phase reac-

are thermally more stable than the hydrides, and higher tions.In the reaction tube, the silicon carbide substrates
substrate temperatures may be used in the thermal were supported on a boron phosphide-coated graphite
reduction process with essentially no gas-phase ,reac- susceptor, and the susceptor was heated externally by
tions. At high substrate	 temperatures, however, a an rf generator.

` phosphorus pressure equal to or greater than the vapc.r The deposition of boron phosphide by the hydride r
z

pressure of boron phosphide must be present over the reaction was carried out at substrate temperatures 1
substrate surface to maintain the stoichiometry of the below 900°C so that gas-pha•e reactions were negligible.
deposit.	 - The flow rate of hydrogca was 20 liter/min, and the m

Hydrogen used in the deposition process was purified reactant contained tip to 0.05% of diborane and
by diffusion through a palladium—silver alloy. Diborane..	 through 	 Y• hos hine.' The deposition of boron	 hos hide b	 theP	 P	 P	 P	 P	 Y
and phosphine were purchased in the form of hydrogen— halide reaction was carried out in the temperature range r
hydride nurtures, each containing about 5% of the 85W-1150°C. A relatively low flow rate of hydrogen, ?-
hydride. Boron tribromide and phosphorus trichloride 1.7 liter/min, was used so that a phosphorus pressure of

4 were of the reagent grade. The hexagonal silicon carbide a few millimeters could be readily maintained over the
substrates, obtained through the courtesy of Dr. R. B. substrate surface when desired.; The flow rates of

' Campbell of Westinghouse Astronuclear Laboratories, boron and phosphorus halides were varied over a wide
Large, Penn., were in the form of thin platelets with range.
main faces parallel to the basal plane. At one main face, The thickness of boron phosphide layers on a silicon
the silicon	 carbide	 structure	 terminates	 in	 silicon carbide substrate was determined by direct measure-

$ atoms triply bonded to the matrix, and at the other, the merit of the fractured cross section of the specimen with
structure terminates in triply bonded carbon atoms. The an optical microscope. The structural properties of the
polarity of the substrate surface was distinguished deposited material were determined by optical micros-
by etching- with ti molten 3:1 sodium hydroxide— copy, reflection electron diffraction, and x-ray diffrac-

E sodium peroxide mixture; the face remaining smooth tion techniques.
being the silicon face and the rough face being the The Ohmic contacts on boron phosphide were made
carbon facet by the evaporation of altun num or gold, followed by

The apparatus used for the deposition of boron , annealing in argon at 600T (for aluminum contacts) #
phosphide is. shown schematically in Fig, 1. The flow of or 800 °C (for gold contacts) for about 15 min. To ,,

4`^ V :s
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I u;. 2. Oriented boron pin,sphide crystallites delmsited on the
silicon face of a hexagonal silicon carbide substrate.

measure the electrical resistivity, the specimen was
mounted on a ceramic disk by using Saureisen cement,
and the metal contacts were connected to the lead wires
by using an ultrasonic bonder or by using a tungsten
pressure contact.

III. RESULTS AND DISCUSSION

A. The Epitaxial Growth of Boron Phosphide

The deposition of boron phosphide by the thermal
reduction of a boron tribromide-phosphorus tri-
chloride mixture will be discussed first. This deposition
reaction is chemicall y reversible. Since an excess of
phosphorus trichloride was used in the deposition proc-
ess to minimize the decomposition of boron phosphide,
the deposition rate of boron phosphide at a given
temperature depended strongly on the concentration of
boron tribromide in the reactant mixture. For example,
when the flow rates of hydrogen, boron tribromide, and
phosphorus trichloride were 7X 10- z , 8X 10-4, and
5X 10-3 mol/min, respectively, the deposition rate of
boron phosphide at 1150°C was negligible. By in-
creasing the flow rate of boron tribromide to 10-3
mol/rain, boron phosphide was deposited at an average
rate of 80 p/h. The reversibility of the halide reduction
reaction is believed to be advantageous in that the
surface atoms at desirable sites can be removed prefer-
entially by the reverse reaction, thereby reducing the
concentration of defects in the deposit.

Adherent and continuous layers of boron phosphide
were deposited on silicon carbide substrates in the
temperature range 85W-1150°C under a variety of
conditions. The most important factors determining
the crystallinity of the deposit were found to be the
substrate temperature and the polarity of the substrate
surface; boron phosphide layers deposited on the silicon
face at high substrate temperatures have always

exhibited the best structural perfection. Figure 2 shows
an early stage of the boron phosphide growth on the

silicon face of a silicon carbide substrate at 1150°(.
This growth consists of isolated, oriented, triangular

crystallites, and the sides of the triangular growth are
parallel to the edges of the substrates, i.e., the (010)
direction of silicon carbide. The surface of the crystal-
lites is of a 11111 orientation as indicated by their
symmetry. Furthermore, the triangular crystallites
are of opposite orientations, indicating the presence of
two equivalent s 111 I orientations related by a twofold
rotation normal to the surface. The equivalent orienta-
tions result from the different stacking possibilities at
the substrate-deposit interface.

The grown surface of continuous boron phosphide
layers also exhibits structural features. An example is
given in Fig. 3 where the as-grown surface of a boron
phosphide layer of approximately 40 -µ thickness
deposited on the silicon face is shown. This deposition
was carried out at 1050°(: using hydrogen, boron
tribromide, and phosphorus trichloride at flow rates of
7 X 10- 2 , 4X 10-4, and 4X 10- 3 cool/min, respectively,
and the average deposition rate was 40 p/h. In addition
to the triangular growth, the surface shows a number of
linear figures at 60° or 120° to each other which some-
times intersect to form triangles or partial triangles.
These figures are presumably stacking fault traces
resulting from the coalescence of the initial crystallites.
The geometry of the figures suggests that the entire
grown layer is single crystalline and is epitaxial with
respect to the substrate. The epitaxial relation is:

BP(111) 11 SiC(001) and BP(110) 11 SiC(016). This
relation was confirmed by reflection electron diffraction
examinations. A typical diffraction pattern is shown in
Fig. 4. The electron beam was incident in the [112]
direction of the specimen, and the observed pattern
indicated that the [111] direction of the boron phos-
phide layer is perpendicular to the substrate plane.

The boron phosphide layers deposited on the _;Iicon
face of the substrate at lower temperatures were also
examined in detail by reflection electron diffraction.
When the substrate temperature was decreased to

950°C or below, the deposit became essentially poly-
crystalline. The grown surface also exhibited no

FIG. 3. As-grown surface of a boron phosphide layer of ap-
`iroximately 40-µ thickness deposited on the silicon face of a
hexagonal silicon carbide substrate.
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geometrical features when examined with an optical
microscope. The boron phosphide layers deposited on
the carbon face of silicon carbide substrates were found
to be polycrystalline in most cases, although those
deposited at higher temperatures exhibited some
preferred orientations.

When the halide reduction reaction was used for the
epitaxial growth process, boron phosphide was also
found to deposit on the iackside of the silicon carbide
substrate. This was due to the transport of boron
phosphide from the susceptor to the backside of the

substrate by hydrogen halide, the by-product of the
thermal reduction reaction. Boron phosphide layers up
to 50 µ in thickness have been transported in this
manner, and those transferred to the silicon face of the
substrate at temperature above 950°C have been found
to be single crystalline and epitaxial with respect to the
substrate by optical microscopy and reflection electron
diffraction examinations. The pyrolysis of a diborane-

0101

11z 1

FIG. 4. Reflection electron diffraction pattern of an epitaxial
boron phosphide layer deposited on the silicon face of a hexagonal
silicon carbide substrate by the thermal reduction of halide
mixtures.

phosphine mixture has also produced adherent and

continuous layers of boron phosphide on silicon carbide
substrates at temperatures up to 900°C. When hydrogen
containing 0.01% diborane and 0.04 17c phosphine was
used at a flow rate of 0.89 mol/min, the deposition rate
of boron phosphide on the silicon carbide substrate at
850°C was 8-10,u/h. In most cases, the deposit exhibited
shiny and smooth surfaces, and no structural features
were observed when examined with an optical micro-
scope. However, electron diffraction examinations
indicated that the deposit was generally polycrystalline
and in a few cases, exhibited some preferred orientations
(Fig. 5). The lack of single crystallinity is presumably
related to the relatively low temperature used in the
growth process.

B. Electrical Properties of Epitaxial Boron Phosphide

Epitaxial boron phosphide layers deposited on the
silicon carbide substrates by the thermal reduction
process without intentional doping are p type. The

423

FIG. S. Reflection electron diffraction pattern oI a boron
phosphide layer deposited on the silicon face of a hexagonal silicon
carbide substrate by the pyrolysis of hydride mixtures.

resistivity and carrier concentration of a typical
specimen deposited at 1150°C, determined by the Hall
measurements, are 0.2 it cm and 1019 cm-3, respectively,
at 3011°K and are 1 it cm and 2X 10 17 cm—a, respectively,
at 200°K.

The electrical conductance of an epitaxial boron
phosphide layer was measured in the temperature
range 30W-1070°K, and the results are shown in Fig. 6.
Since the temperature dependence of the carrier mobil-
ity is very much smaller than that of the carrier
concentration in the temperature range under con-
sideration, the ionization energy of deep-lying im-
purities may be estimated from the slopes of the various
regions of the plot in Fig. 6. Ionization energies esti-
mated in this manner are 0.22=0.04 and 0.66=0.06 eV.
At temperatures above 1000°K intrinsic ionization
dominates, and the energy gap of boron phosphide was
determined to be 1.9510.1 eV, in agreement with the
energy gap from optical measurements)

DECREE, K
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FIG. 6. Electrical conductance of an epitaxial boron phosphide

layer as a function of temperature.
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DEGREE. K	 The vapor grown boron phosphide crystals without
t t'	 1 d	 1	 t	 'th	 t	 a-in en. Iona oping are a so or ype wi a room emper

ture resistivity of approximately 20 S1 cm. The electrical
conductance of a typical crystal grown at 1050°C is
shown in Pig. 7. Two impurity states are apparent.
The shallow state has an activation energy of several
hundredths of an electron volt and is responsible for the
room-temperature conductivity. The other state has an
activation energy of 0.60f0.06 eV, which has also
been observed in epitaxial boron phosphide. Further
work concerning the impurities in vapor grown boron
phosphide is underway and will be discussed in a
subsequent publication.

IV. SUMMARY

Adherent boron phosphide layers have been deposited
on the basal plane of hexagonal silicon carbide sub-
strates by the thermal reduction of the halide mixtures
and the thermal decomposition of the hydride mixtures.

TEMPERATURE, IMOtIOK 	 The substrate temperature and the polarity of the
Tic. 7. Electrical conductance of a needle-shaped boron	 substrate surface are the most important factors

	

phosphide crystal as a function of temperature	 determining the crystallinity of the deposit. Boron
phosphide layers deposited on the silicon face of the
substrate at 1050°-1150°C by the thermal reduction

C. Boron Phosphide Crystals	 process have been found to be single crystalline and
During the epitaxial growth of boron phosphide by epitaxial with respect o the substrate. These layers

the thermal reduction of boron tribromide-phosphorus are p type and shave San impurity concentration of

trichloride mixtures, orange-red needle-shaped boron approximately 10 cm" at room temperature.
phosphide crystals were occasionally deposited on the Needle-shaped single crystals of boron phosphide

have also been grown by the thermal reduction reaction.susceptor surface. These crystals were of triangular These crystals are also p type and contain at least twocross section, with each side approximately 0.2-mm
,.	 wide, and were up to 5-min long. The structural acceptor impurities.

 of these crystals were examined b • sin le-properties	 y	 }	 g	 *This research was supported by the National Aeronautics
crystal x-ray methods using CuKa radiation. The and Space Administration under Grant NG;. 44-007-042.
oscillation photograph obtained by oscillating the	 i R. J. Archer, R. Y. Koyama, E. E. Loebner, and R. C. Lucas,
crystal about the elongated axis indicated that the Ph C. 

ev.
 Wang, M Cardovaand A. G. Tischer, RCA Rev. 25,

interlayer spacing is 7.88 A, three times the dill spacing 159 (196e,)
in boron phosphide, and that the elongated axis is a	 3 R. A. Burmeister and P. E. Greene, Bull. Amer. Phys. Soc.

10 1184 (1965).f	 (111) direction. The Weissenberg photograph taken 	 " T. V. Williams and R. A. Ruehrwein, J. Amer. Chem. Soc.
'	 with the crystal rotating about the same axis further 82, 1330 (1960).

confirmed that the needle -shaped crystals are single- 	 6AT . Armington, J. Cryst. Growth 1,47 (1967).
A A. Eliseev and E. G. Zhukov, Sov. l hys. Dokl . 10, 6 (1965) .

crystalline boron phosphide. 	 7 K. Brack, J. Appl. Phys.36, 3560 (1965).
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APPENDIX C

"The Growth of Boron Monophosphide Crystals by

Chemical Transport,"' T.	 L.	 Chu, J. M. Jackson,

and R. K. Smeltzer, J. Crystal Growth, is,	 254 ,-^

258	 (1972).
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THE GROWTH OF BORON MONOPHOSPHIDE
CRYSTALS BY CHEMICAL TRANSPORT*

T. L. CHU, J. M. JACKSON and R. K. SMELTZER

Electronic Sciences Center, Southern Methodist University, Dallas, Texas 75222, U.S.A.

Received 21 April 1972; revised manuscript received 8 May 1972

The crystal growth of boron phosphide, BP, has been investigated by using the closed-tube chemical
transport of polycrystalline material, prepared by the hydrogen reduction of a boron tribromide-phosphorus
trichloride mixture. Experimental parameters including the nature of the transport agent, source temperature,
temperature gradient, and surface condition of the reaction tube, were studied. Using iodine or bromine as a
transport agent and a source temperature of 1270-1290 °C, single crystals of boron phosphide, identified by the
X-ray diffraction method, were obtained in the form of polyhedra with well-defined faces. Molten potassium
hydroxide or a molten mixture of sodium hydroxide-sodium peroxide were used as an etchant to reveal
structure defects in boron phosphide crystals. The transported boron phosphide crystals were p-type with a
room temperature resistivity of approximately 0.5 ohm-cm. Resistivity measurements in the temperature
range 77-350 °K indicated the presence of two impurity states with activation energies of approximately
0.009 and 0.052 eV, respectively. In spite of the high impurity concentrations, the transported crystals are
suitable as substrates for the epitaxial growth of boron phosphide.

I
1. Introduction By controlling the nucleation and growth of the trans-

t n ported boron phosphide on the wall of the reaction
Boron monophosphide (BP, boron phosphide here- tube, single crystals can be obtained. The important

(	 ., after), a semiconductor with an energy gap of 2 eV has parameters affecting the quality of the transported
i been under study during the past decade because of its crystals include the source temperature, the tempera-

potential for high temperature and luminescent de- lure gradient along the reaction tube, the nature and
,, * vicesl—i o)	 However, its high melting point (about pressure of the transport agent, and the surface con-

` 3000 -C) and appreciable dissociation pressure at high dition in the deposition region of the reaction tube.
temperatures (about 24 Torr at 1300 °C) have pro- These parameters have not been studied in detail, and
hibited the use of melt-grown techniques for the pre- the available information is mainly in the form of
paration of boron phosphide crystals. On the other preliminary results. The transport process reported

i	 @-d hand, lower temperature techniques such as the flux thus far was carried out in the temperature range 800—
} growth from a nickel phosphide solution' , 6) and the 1200 °C"), and the crystals grown were very small,

chemical vapor transport in a halide or sulfide atmo- 0.25-0.3 mm in size.
sphere") have been used. The flux growth technique In the present work, the crystal growth of boron
has had moderate success; however, the transport phosphide by the closed-tube chemical transport tech-
process has produced only very small crystals. nique has been studied with emphasis on increasing the

The crystal growth of boron phosphide by the che- transport rate and controlling the formation of initial
mical transport technique is based on the reversible nuclei. Phosphorus trichloride, bromine, and iodine
reaction between boron phosphide with group VI or
group VII elements. The equilibrium of these reactions

were used as transport agents. The experimental proce-	 r,
dures and results are summarized in this paper.

varies with temperature in such a manner that boron
phosphide is transported from a high temperature
source to lower temperature regions in a closed-tube.

2. Experimental results and discussion	 n

2. 1. POLYCRYSTALLINE BORON PHOSPHIDE
* This research was supported by the Langley Research Center
of the National Aeronautics and Space Administration under The polycrystalline boron phosphide source material

rl
Grant NGL 44-007-042. for the transport process was prepared by the thermal

- 254
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reduction of a boron tribromide-phosphorus tri-
chloride mixture with hydrogen in a gas flow system.
Hydrogen used in the reaction was purified by diffusion
through a palladium-silver alloy. Boron tribromideg	 p	 Y

and phosphorus trichloride were purified by fractional
distillation using a Pyrex column, and they were in-
troduced into the reaction tube by using hydrogen as a

F carrier gas. To maintain a constant composition of the
1I reactant mixture, boron tribromide and phosphorus

„ trichloride containers were immersed in a constant
temperature bath. A fused silica tube of 25 mm ID,

i 11 heated in a tube furnace at about 1100 'C; was used

as the reaction tube for the deposition of boron phos-
phide. The typical flow rates of hydrogen, boron tri-
bromide, and phosphorus trichloride were g x 10- 2,

1.5 x 10 -3 , and 3 x 10 -3 moles/min, respectively. An
- excess of phosphorus trichloride was used to maintain

r the stoichiometry of the deposit; the excess phosphorus
will not condense on the wall of the reaction tube be-
cause of its high temperature. The deposition rate was

1 approximately. 2 g/hr. The deposit was analyzed by the
X-ray powder technique, and the diffraction data were

" in good agreement with those reported for boron
phosphide'). The thermoelectric probe measurement Although no accurate thermochemical data on boron
indicated that the as-deposited boron phosphide was phosphide are available, qualitative information on re-
usually of n-type conductivity. 	 action (1) can be obtained by considering the transport

of boron by boron halides according to the following
^ + 2.2. CHEMICAL TRANSPORT OF BORON PHOSPHIDE 	 reaction:I[

The growth of boron phosphide crystals by the che-
mical transport technique was carried out with bro- 2 B

	 Cl Br,	 3 BX(g),	 (2)
X

mine, iodine, and phosphorus trichloride as transport 	

=
= Cl, Br, or L

.A agents. To carry out the transport process, polycrystal- The equilibrium constants of reaction (2) in the tem-
line boron phosphide, phosphorus, and a transport perature range 1200-1600 °K, calculated from the
agent were introduced into a thick-wall fused silica standard free energy of formation of boron halides"),
tube; phosphorus was used to suppress the decom- are summarized in table 1. The equilibrium constant of

'position of boron phosphide at high temperatures. this reaction, though very small, increases rapidly
r The reaction. tube was attached to a vacuum manifold, with increasing temperature, and the transport of

cooled with liquid nitrogen, evacuated to less than 10- s boron by boron trihalides becomes more favorable at
r Torr, and sealed. A furnace with two independently-'
fcontrolled temperature zones was used for the trans-

TABLE I

port reaction. The polycrystalline	 source material Equilibrium constants of the reaction between B and BX

located at one end of the tube was in the higher tem- Temperature x = C4 x = Br . X=1 

perature zone, and the transported. boron phosphide oK)

deposited on the wall of the tube in the lower tem- 1200
1300

2.95 x 10- 1 9 1.05x 10- 22 4.42 x 10- 20

p erature zone. 1400
1.59x10-is
3.41 x 10 -

1.04x10-17
3.79 >',10-

2.71x10-17
6.53 x 10-

The temperature gradient used in the chemical trans- 1500 3.54-x 10- 12 6.21 x 10 -15 7.51 x 10- ' 3
port crystal growth process should be as small as pos- 1600 2.0 x10- 10 5.3	 x 10- 1 3 4.7 X1 0-11

i

sible so that the entire system approaches equilibrium.
At small temperature gradients, 25 °C for example, no
transport was observed when the temperature of the
boron phosphide source was below 1000 °C. Initial ex-
periments were therefore carried out with the source
temperature in the range 1.000-1150 °C, and the trans-
port rate was found to be determined mainly by the
temperature gradient and the pressure of the transport
agent. When bromine, iodine, or phosphorus tri-
chloride at 1-2 atm was used as the transport agent, no
appreciable transport was observed after several days
at .a gradient of25 °C or smaller. When the gradient
was increased to 50-75 °C, the transport rate was;found
to be very slow in all cases. Also, many small crysta:,
a fraction of a millimeter in size, were deposited on the
wall of the reaction tube after 2-3 weeks of reaction
time. The low transport rate could be related to the
thermodynamics of the transport reaction. The trans-
port takes place via the formation of boron monoha-
lide according to the reaction.

4 BP(s)+2 BX 3 (9) = 6 BX(g)+P4(g),
X = Cl, Br, or I.	 (1)
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higher temperatures. Since boron phosphide has a

negative free energy of formation, the equilibrium con-

stants of reaction (I) are smaller than those of reac-

tion (2). Therefore, the transport of boron phosphide

must be carried out at as high temperatures as prac-
tical, within the capabilities of fused silica, to achieve
a reasonable transport rate. The use of higher tem-
perature also limits the formation of initial nuclei,

th :s favoring the growth of larger crystals.
A series of detailed transport experiments with the

source temperature in the range 1270-1290 °C was

carried out in fused silica tubes of 10 mm ID, 16 mm

OD, and 12 cm long heated in globar furnaces. About
0.5 g of polycrystalline boron phosphide was used in

each experiment. A phosphorus pressure of 3 atm and

a transport agent pressure of I atm were found to be
optimum for the transport process. These experimen-

tal conditions were used to compare the effects of

transport agents. Phosphorus trichlorid-z was found to
be the fastest transport agent. With a temperature
gradient of 4 °C across the ampoules, essentially all of
the boron phosphide was transported in 5-7 days;
however, the transported material consisted of loosely

bound aggregates of small crystals. The use of iodine
or bromine as a transport agent has produced better
resu!ts. Using iodine as a transport agent and a tem-
perature gradient of 15-20 °C, the source material was
transported in 7-10 days to yield orange-red crystals.
The transported crystals were in the form of discs of

about 5 mm diameter and 1-2 mm thickness and in the

form of polyhedrons measuring 1-2 mm on each side.

Optical microscope examinations indicated that the
discs consist of several single crystal grains and that
the polyhedrons appear to be single crystalline. Fig. I
shows a photograph of several polyhedrons. Their
faces are predominately triangular and rectangular.
Single-crystal X-ray oscillation and Weissenberg
methods indicated that the polyhedrons are single

crystalline and that the rectangular face is of a {110)
orientation. Similar crystals were obtained by using
bromine as a transport agent with a 5 °C gradient.

In the technique described above for the crystal

growth of boron phosphide, the nucleation takes place
on the wall of the reaction tube, and the surface condi-
tion of the wall plays an importa , t role in the nuclea-
tion process. The commercial fused silica tube fre-

quently has surface irregularities on the inside wall,

Fig. 1. Boron pho,pnw, ,i .t.u. " t 1 l " ."I m
transport technique.

thus promoting the formation of random nuclei. The

resulting crystals are therefore small, and the growth
process is not reproducible. To control the nucleation

process, the deposition region of the reaction tube was

Name-worked to remove any surface irregularities.
Several experiments were carried out with flame-worked
tubes using bromine as a transport agent and a 5 °C
gradient along the tube. In about one-half of the ex-
periments, no nucleation occurred on the wall of the

reaction tube after ten days; a considerable number of
crystallite! would have formed if the wall of the reac-
tion tube were not flame-treated. In the other half of

the experiments, only one aggregate consisting of
tightly bound single crystals up to 2 mm was formed at

the tip of the reaction tube. These experiments indicate

that flameworking of fused silica tube is a critical factor
to achieve the control of nucleation in the closed tube

transport process.

2.3. PROPERTIES OF TRANSPORTED BORON PHOSPIIIDE

CRYSTALS

The boron phosphide crystL;s obtained in this work,
because of the use of higher temperatures and the con-

trol of random nucleation, are considerably larger than
the transported crystals reported in the literature. They

have well-formed faces, in contrast to the dendritic
crystals of comparable size obtained by Grindberg
et al.")

The transported boron phosphide crystals are p-type,
as determined by the th,-rmoelectric probe technique

and by the direction of point-contact rectification.
The hardness of the boron phosphide crystals was

measured by the diamond pyramid hardness test. A

A 
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square base diamond pyramid was forced into the
specimen using a I kg load, and the diagonals of the
impression were measured. The hardness of boron
phosphide was calculated to be approximately 2450
kg mm - ' as compared with 2970 for silicon carbide
determined under the same conditions.

3a The transported boron phosphide crystals are chemi-
cally inert, insoluble in aqueous acids and alkalis. At
high temperature, 1000 °C for example, boron phos-
phide crystals may be etched non-preferentially by a
mixture of hydrogen and hydrogen chloride. Molten

'T potassium hydroxide or a molten mixture of 75°-„ so-
diwr, hydroxide and 25°„ sodium peroxide at 380°C
m;:y be used as a preferential etchant to reveal defects
in boron phosphide crystals. Fig.2 shows the etch

K

S

s

Fig. 2. Ftcl„ _  1, - , i ,... , ., , Iuons in a transported boron
phosphide crystal (molten KOH etch, 8 min).

figures on a rectangular face of a boron phosphide
crystal after the as-grown surface was etched in molten

Ipotassium hydroxide for 8 min. The isosceles trian-
gular figures are dislocation pits, and the geometry of
these pits also confirms the { 110; orientation of the
rectangular face of the crystal. The (I 1 OA and (I I I )„
faces also exhibit different etching behavior in a molten
mixture of sodium hydroxide and sodium peroxide.

U
The electrical conductivity of transported boron

phosphide crystals was measured over i wide tempera-
ture range. The crystals were mechanically polished to
yield two flat parallel faces by using I pm alumina
abrasives and were thoroughly cleaned for the applica-
tion of ohmic contacts. Indium was selected as the
contact material on the basis of its ability to wet boron
phosphide. The cleanliness of the metal and the crystal
surface was found to be very important for obtaining
good wetting. After applying indium to the flat faces,
the specimen was annealed in an argon atmosphere at
various temperatures. The annealing of the specimen
at 500 °C for I h was found to be satisfactory for pro-
ducing low resistance ohmic contacts to transported
boron phosphide crystals. The do current-voltage
characteristics of a number of transported crystals were
measured in the temperature range 77-350 `K A
typical plot of logarithm conductance versus reciprocal
temperature is shown in fig. 3. The room temperature
resistivity of this crystal is approximately 0.55 ohm-cm.
Two linear regions may be distinguished in the plot of
fig. 3. Neglecting the temperature dependence of carrier
mobility, the slopes of these two regions indicate the
presence of two impurity states with activation energies
of 0.009 and 0.052 eV. respectively.

The room temperature carrier concentration in
transported boron phosphide crystals was estimated

Degree, K
Stu	 euu	 Du
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0. 1
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0.06

° 0 04
U

0.01

4. U	 6.0	 B 0	 10.0	 12.0
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Fig. 3. Electrical conductance of a transported boron phos-
phide crystal as a function of temperature.
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y from Schottky barrier measurements to be of the order room temperature resistivity of about 0.5 ohm-cm. Re-
of 1018 cm -3 . Thus, the transported crystals are not sistivity measurements in the temperature range 77-
useful directly for device purposes. However, they are 350 °K indicated the presence of two impurity states
suitable as substrates for the epitaxial growth of boron with activiation energies of approximately 0.009 and
phosphide„ and the dopant concentration in the epi- 0.052 eV, respectively. The transported crystals have
taxial layer can be better controlled. Both n- and p-type been successfully used as substrates for the epitaxial

s	 epitaxial boron phosphide layers as well as p-n junc- growth of boron phosphide.
tions have been prepared by the thermal reduction of a
boron tribromide-phosphorus trichloride mixture with Acknowledgment	 i

e

hydrogen using the transported crystals as substrates. The authors wish to thank Dr. Shirley S. Chu for her
k	 These results will be discussed in a subsequent commu-
s

assistance in the X-ray diffraction work reported here.
nication.
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The Crystal Growth of Boron Monophosphide
--from Metal Phosphide Solutions

T. L. Chu; J. M. Jackson, and R. K. Smeltzer*
Electronic Sciences Center, Southern Methodist University, Dahns, Texas 75222

` ABSTRACT

The crystal growth of boron phosphide, BP, has been investigated using q	 ,
two approaches: (t) the addition of phosphorus to a boron-nickel or boron-
eoppermelt and (ii) the recrystallization of boron phosphide from a nickel
phosphide or copper phosphide solution in a temperature gradient. To deter-
mine the optimum conditions for the growth processes, the solubility of boron
phosphide in nickel phosphide (Nil2P5) and copper subphosphide (Cu3P) was
determined over a wide temperature range. The solubility of boron phosphide
in nickel phosphide was found to be higher than that in copper phosphide.
Boron phosphide crystals of about 3-mm size were obtained by the addition of
phosphorus to a boron-nickel or boron-copper melt at 1300°C or above, fol-
lowed by slow cooling. The temperature gradient recrystallization of boron

}	 phosphide from nickel phosphide at 1200°C has produced larger crystals. The
solution-grown crystals were in the form of hoppers and platelets with plate- glets dominating. The platelets had main faces of {111 .1 orientation and were
formed by the twin-plane re-entrant-edge mechanism. The solution-grown
crystals are usually n-type with a room temperature resistivity of about 0.5
ohm-cm and a dopant concentration of about 10 18 cm- 3. They have been used
successfully as substrates for the epitaxial growth of boron phosphide.

Boron mono hos hide (BP	 referred to as boronp	 p	 growth of boron phosphide because of its high melting
L phosphide hereafter) 	 crystallizes in the zincblende	 point (3000°C)	 and its dissociation into boron sub-

structure and has an indirect energy gap of about 2 	 phosphide (BeP) at temperatures considerably below
eV (1). Because of its relatively large energy gap, this	 the melting point (2). Boron phosphide crystals have
material has potential applications for high-tempera- 	 been grown from metal phosphide solutions and by

j tore devices and for visible light-emitting devices. 	 the ` chemical transport technique under 	 conditions
However, these devices have not been developed be- 	 where its thermal dissociation is negligible.
cause of the difficulties involved in the growth of 	 The growth of boron phosphide crystals from metal
single	 crystals	 of	 boron	 phosphide	 of	 controlled	 phosphide solutions has been briefly reported in several
chemical and structural perfection. Conventional melt-	 investigations (1, 3-5) ; however, no information con-

k growth techniques are not feasible for the crystal 	 cerning the effects of various process parameters is
available. In the present work, the process parameters

1

^
• Electrochemical Society Active Member. 	 in the solution growth of boron phosphide have beenKey words: boron phosphide crystal growth nickel phosphide	 extensive)	 studied with the objective of producingsemiconductors, twin planes.	 Y	 ^	 p	 g
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largeri crystals suitable as substrates for the epitaxial
growth of boron phosphide (6); the epitaxial growth
technique is believed to be the most promising ap-
proach for the preparation of boron phosphide device
structures, since the concentration and distribution of
dopants in the epitaxial layer can be reproducibly
controlled. Copper and nickel phosphides were used
as solvents, and the growth process was carried out
by the addition of phosphorus to a boron-metal melt
and by the recrystallization of boron phosphide from
a metal phosphide solution in the presence of a tem
perature gradient. The experimental procedures and
results are summarized below.
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Fig. 1. Schematic diagram of the apparatus used for the synthesis
of nickel phosphide and the solution growth of boron has hide
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Solubility of Boron Phosphide in Metal Phosphides
The most important parameter in the	 solution-

growth process is the choice of a suitable solvent. The

p	 u

the tube at about 2 atm. The nickel appeared to be
saturated with phosphorus after several hours; how-

solvent must either be essentially insoluble in boron ever, the reaction time was usually 24 hr or longer to i
phosphide, or it must be electrically inactive if it has
significant solubility.

Several metals, such as copper, iron, nickel, and
platinum, are possible solvent-formers for the solution

assure saturation. The x-ray Debye-Scherrer pattern
of the resulting product was identical with that of
Ni12P5 (11) . Nickel phosphides with higher phosphorus
content were not obtained.

growth of boron phosphide, and copper and nickel
phosphides appear to be the most useful ones on the
basis of the available information. An examination of

Copper phosphide was synthesized by the reaction
of phosphorus vapor with copper in a closed tube.
Weighed amounts of copper and red phosphorus were

binary phase diagrams	 (7-9)	 reveals the following placed in a fused silica tube, evacuated to less than
relations:	 (i) boron is soluble in copper and nickel 10- 5 Torr, and sealed. The reaction tube was then
over a wide temperature range: nickel forms four
borides	 (Ni2B, Ni3B2, NiB, and Ni2B3 )	 and copper
forms no borides, 	 (ii)	 nickel forms at least eight
phosphides: MR, Ni5P2, Ni12P5, Ni2P, Ni5P4, NiP, NiP2,

placed in a two-temperature zone furnace. Copper
located at one end of the tube was heated at 1150°C,
and the temperature of the other zone was maintained
to yield a phosphorus pressure of about 1 a'tm. De-

a

and NiP3i and the first four phosphides have melting
points below 1200°C, and (iii) copper forms two phos-

pending on the Cu/P molar ratio in the reactants, Cu3P
or CuP2i identified by their x-ray Debye-Scherrer pat-

phides: Cu3P and CuP2 (10). Thus, the B-Cu-P system terns (10, 12), were obtained.
is relatively simple, and the use of nickel phosphide for To determine the solubility of boron phosphide, a
the solution growth of boron phosphide may involve pulverized mixture of 1.0g boron phosphide, 0.04g red
rather complicated mixtures.

To determine tht; conditions for the growth of boron
phosphorus, and 10.Og nickel phosphide (Ni12Ps) was
sealed in an evacuated fused silica tube of 10 mm ID

phosphide crystals from solutions, the solubilities of and 16 mm OD; phosphorus was used to suppress the
boron phosphide in nickel and copper phosphides were
determined over a wide temperature range. Polycrys-
talline boron phosphide, nickel phosphide, and copper

decomposition of boron phosphide at high tempera-
tures. The boron phosphide was sieved through a 74,u
screen so that the amount of recrystallized material,

i

phosphide were first prepared as follows, which would have considerably larger particle size,
Boron phosphide was prepared by the thermal

reduction of a boron tribromide-phosphorus trichloride
mixture with hydrogen in a gas flow system. A mixture
of hydrogen, boron tribromide, and phosphorus tri-
chloride, at flow rates of 8 X 10- 2, 1.5 X 10- 3, and
3 X 10-3 moles/min, respectively, was introduced into

could be easily determined. The silica tube was fitted
into a cylindrical graphite susceptor. The susceptor
was sealed into a second silica tube containing about
0.2 atm of argon (the argon pressure was used to sup-
press the expansion of the inner tube at high tem-
peratures), and the susceptor was at least 1 cm from

a fused silica tube heated at about 1100°C in a re-
sistance-heated furnace. The reaction took place on the

the tube wall so that the susceptor could be heated to
high temperatures. The graphite susceptor was then

-

wall of the silica tube, depositing boron phosphide.
The excess of phosphorus trichloride in the reactant

heated with an rf generator at the desired temperature,
1200°-1400°C for 5-24 hr. The content of the reaction

prevented any phosphorus deficiency in the deposit. tube was treated with a nitric acid-hydrofluoric acid

3

'
J I
lll,,,...$$$

The deposit was confirmed to be boron phosphide by
the x-ray Debye-Scherrer technique. Approximately
30g of boron phosphide was formed during an 8-hr
period.

Nickel phosphide was synthesized by the reaction of
P h osphorus vapor with nickel under conditions similar
to 'those used for the solution growth of boron phos-
phide, and a schematic diagram of the apparatus is

mixture to dissolve all species except boron phosphide.
Whenever recrystallization had occurred, the residual
boron phosphide was found to contain small orange-
red crystals in addition to the original powder mate-
rial, and the crystals were separated by sieving the
mixture through a 74,u screen. The recovered powder
material was undissolved boron phosphide, and the
collected crystalline material was recrystallized boron

t
;i lI

^.

[µ
C

i 1I

shown in Fig. 1. An alumina boat containing a nickel
ingot was fitted into a cylindrical graphite sleeve of
1 in. ID and 11/4 in. OD, which was used as a susceptor
for rf heating. The susceptor was positioned in a fused
silica spacer so that the graphite contacted the spacer
only at four points. This assembly and an excess of
red phosphorus were placed in a fused silica tube of 50
mm ID and 55 mm OD which was evacuated to less
than 10- 5 Torr and sealed. The reaction tube was about
45 cm long after sealing. The end of the tube contain-
ing the susceptor and phosphorus was heated to sub-
lime all phosphorus to the other end of the tube. The
susceptor was	 heated at	 the	 desired	 Temperat

F
ure,

1200°-1400°C, with an rf generator, and a resistance
heater surrounding a major portion of the reaction
tube was used to maintain the phosphorus pressure in

phosphide. In all cases, boron phosphide was not com-
pletely recovered due presumably to the complexity
of the Ni-B-P system. At 1300°C, for example, 0.75g of
boron phosphide dissolved in lOg of nickel phosphide,
whereas only 0.23g recrystallized from the solution.
The weights per cent of boron phosphide dissolved in,
and recrystallized from, nickel phosphide at various
temperatures is shown in Fig. 2. It is seen that it has a
significant solubility in nickel phosphide at 1200°C,
even though this temperature is just above the melting
point of nickel phosphide.

The melting point of copper subphosphide, CUR, is
1022°C. The solubility of boron phosphide in copper
subphosphide was determined at 1150° and 1220° in a
manner similar to that described above. Boron phos-
phide was found to be essentially insoluble in copper
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not noticeably change the size distribution or yield of
the crystals; however, crystals were smaller on the
average at temperatures below 1300°C. The use of
higher concentrations of boron in nickel, up to 10%,
also did not change significantly the size of boron
phosphide crystals. By maintaining the solution at high
temperatures under the phosphorus pressure over ex-
tended periods, the yield of boron phosphide crystals
was slightly increased, but the results were no better
in other aspects. Also, no improvements in crystal size
were obtained with cooling rates of less than 10°C/hr.
Experiments were also carried out by slowly pulling
the reaction tube out of the rf coil, and the results
were inferior to the slow cooling of the entire solution.
To eliminate the possibility that particulate matter
from the graphite susceptor had induced excessive nu-
cleation in solution, one experiment was carried out
using a molybdenum susceptor and produced very
similar results.

A series of experiments was carried out using the
addition of phosphorus to a boron-copper melt. Al-
though the solubility of boron in copper is less than
that in nickel, the effects of the alloy composition, tem-
perature, reaction time, and cooling rate on the size

TEMPERATURE, 10001T°K

}	 Fig. 2. Dissolution and recrystallization of boron phosphide as a

function of temperature using nickel phosphide as a solvent.
F

subphosphide at 1150°C. When the experiment was
carried out at 1220°C for 48 hr, about 85% of the boron
phosphide was recovered, and 0.64% (weight) of the
initial boron phosphide recrystallized. Thus, boron
phosphide is less soluble in copper subphosphide than
in nickel phosphide. Also, boron phosphide was found
to be insoluble in copper diphosphide, CuP 2i at tem-
peratures up to 1200°C..

s	 Growth of Boron Phosphide Crystals by the Addition
of Phosphorus to a Boron-Metal Melt In this technique, a small temperature gradient is

The slow cooling of a phosphorus-saturated solution maintained across a saturated solution of boron phos-
of boron in nickel was used for the growth of boron phide in a metal phosphide with a polycrystalline
phosphide crystals. The apparatus is the same as that boron phosphide source in the higher temperature re-
uscad for the preparation of nickel phosphide shown in _ gion. A concentration gradient is thus set up across
Fig, 1. A boron-nickel ingot was prepared by melting the solution, and this gradient results in the trans- I	

,A
weighed quantities of boron and nickel in an alumina port	 of boron phosphide from the polycrystalline
boat in a hydrogen atmosphere. Typically, 40g of nickel source to the lower temperature region in the solution.
was used, and the melt was maintained at 1400°C for The nucleation p: •ocess in this region can be controlled
at least 1 hr to form a homogeneous mixture. The re- to yield relatively large crystals.
sulting ingot was then sealed in the reaction tube in a The recrystallization experiments were carried out in
manner as shown in Fig. 1. After maintaining a_ phos- vertical fused silica tubes using a resistance-heated
phorus pressure over the melt at a predetermined,tem- furnace	 for	 recrystallization	 temperatures	 up	 to
perature, boron and nickel were converted into the 1200°C and rf heating for higher temperatures. Since
corresponding phosphides. The solution was slowly the density of boron phosphide is considerably lower
cooled, and the resulting material was treated with than that of metal phosphide solutions, the top of the w,

j	 nitric acid to isolate the boron phosphide crystals, reaction tube was in the highest temperature region in
The important process parameters including the the majority of the experiments. In a typical high-tem- -

phosphorus pressure over the solution, the initial con- perature experiment,	 1.5g of polycrystalline boron
centration of boron in solution, the temperature of the phosphide and 35g of copper subphosphide were placed
solution, the reaction time, and the cooling rate, were in a graphite cylinder of 1 in. ID and 3 in, in, height.
studied in a number of experiments. A phosphorus The crucible was supported by a fused-silica holder
pressure of 2-3 atm was found to be optimum; lower and sealed in a fused-silica tube with sufficient phos-
pressure resulted in the formation of boron subphos- phorus to yield 2 or 3 atm pressure during ,recrystal-

_phide BBP, and higher pressures created such strong lization. The graphite crucible was heated with an rf
convection currents in the reaction tube that the phos- generator. The top of the solution was maintained at
phorus pressure could not be controlled. The concentra- about 1300°C and the bottom was a few degrees cooler,
tion of boron in nickel was first selected on the basis of The crucible was slowly cooled after one day, and the

k	 the data shown in Fig. 2. The boron-nickel alloy used for resulting boron phosphide was completely recrystal-
crystal growth at 1325°C should contain 2.3% (weight) lized with crystals up to 2 mm in size. These results{	
boron so that, after saturating with phosphorus, the were not significantly improved by using nickel phos-
resulting solution of boron phosphide in nickel phos- phide as the solvent or by using a silica liner in the s'
phide would be slightly undersaturated. The solution graphite crucible. The relatively small size of boron
was maintained at 1325°C for 4 hr and then cooled at phosphide crystals obtained in these experiments are
a rate of 10°C/hr to about 1150°C. The boron phosphide presumably due to the high recrystallization rate re-
crystals obtained in this manner were up to 3 mm in sulting from the difficulty of controlling a small tem- r
size, and the yield was about 50% on the basis of the perature gradient with rf heating.
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DEGREE, K	 amount of boron used. Several changes in the process
I ^nn	 i2nn	 arameters were then made Hi he to	 t	 d i'd
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distribution of crystals were essentially the same as the
use of a boron-nickel melt.

Growth of Boron Phosphide Crystals by
Recrystallization from Metal Phosphide

Solutions

The addition of phosphorus to a baron-nickel or
boron-copper melt requires a reaction temperature of
at least 1300°C for obtaining boron phosphide crystals
of reasonable size. Lower temperature techniques are
preferable, and the temperature dependence of the
solubility of boron phosphide in metal phosphides was
utilized for the crystal growth: of boron phosphide by
the temperature gradient recrystallization technique.
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The recrystallization experiments at lower tempera-

tures have produced crystals superior to the high-tem-
perature experiments. Tile best results were obtained
with nickel phosphide solutions. In a typical experi-
ment, 0.5g of boron phosphide, 15g of nickel phosphide,
and 0.088 of phosphorus were placed in a fused silica
tube of 10 mm ID X 16 mm OD, which was evacuated
and sealed. The tube was held in a vertical furnace
so that the top of the solution was at the highest tem-
perature, 1200°C, and a 5`C gradient existed across the
solution. After three weeks, boron phosphide crystals,
mostly in the form of platelets up to 4 mm in size, were
obtained. At 1150°C or below, no measurable recrys-
tallization was observed after two weeks. Thus, among
the techniques investigated in this work, the tempera-
ture gradient recrystallization of boron phosphide from
nickel phosphide at 1200°C appears to be best suited for
the growth of boron phosphide crystals.

Properties of Solution -Grown Boron Phosphide Crystals
Boron phosphide crystals obtained in this work were

in the form of hoppers and platelets, with platelets
dominating among crystals grown by the recrystalliza-
tion technique. They are chemically inert, insoluble in
aqueous acids and alkalis. Molten potassium hydroxide
or a molten mixture of 3: 1 sodium hydroxide-sodium
peroxide was used as a preferential etchant to reveal
structural defects in boron phosphide crystals.

The platelets are usually in the six-sided form, in-
termediate between a regular hexagon and an equi-
lateral triangle. Figure 3 shows several boron phos-
phide platelets obtained by the recrystallization tech-
nique. The platelets usually have one smooth main
face, and the x-ray Laue back-reflection technique in-
dicated that the main face is of (111) orientation. The
platelets are also characterized by a twinned structure
with twinning taking place about (111) planes. Figure
4 shows the angle-lapped and chemically etched sur-
face of a boron phosphide platelet; the parallel lines
are grooves and are the intersections of the twin
planes with the angle-lapped surface. In this case, the
twin planes are 2-4µ apart. Twinning has been shown
to be essential for the growth of the platelets (13).
Since the (111) faces are the slowest growing, a stable
octahedral structure bounded by these planes would
be formed without twinning, and additional growth
onto this structure would be difficult because of the
high energy of nucleation on the (111) faces. In the
twinned structure, however, intersection of the twins
forms re-entrant grooves on alternating edges in three
of the six equivalent <211> directions that lie in the
plane of the twins. The twins intersect at ridges on the
other three edges. The grooves provide locations for

multiple attachment of new atoms so the energy of

F	 ^
st	 tt:y a

t

Fig. 4. Angle-lapped rind chemically etched surface of a boron
phosphide platelet showing the presence of twins.

nucleation is lowered and growth can ensue preferen-
tially in those directions.

The hopper-faced boron phosphide crystals were fre-
quently obtained from solutions with a high boron
concentration. The crystals consist of separate but
often interleaved (111) platelets grown out at different
levels from intersecting faces. Edges are favored growth
sites in this structure. Although the presence of hop-
per crystals indicates that many of the solutions were
too concentrated, the size and shape of the well-
formed twinned crystals did not vary with the presence
or absence of the hopper type.

The solution-grown boron phosphide crystals ex-
hibit both n- and p-type conductivity with the n-type
predominant. Their electrical conductivities have been
measured in the temperature range 77°-500°K. Ohmic
contacts were obtained by evaporating indium onto the
surface of the crystal followed by annealing at 500°C.
A typical conductance-temperature relation of an
n-type crystal is shown in Fig. 5. An activation energy
of about 0.13 eV dominates in the temperature
range 200°-500°K; however, the conductivity is con-
trolled by shallow levels which could not be deter-
mined from the data here. Typical resistivities are 0.5
ohm-cm at room temperature and 50 ohm-cm at 77°K.

The room-temperature carrier concentration in solu-
tion-grown boron phosphide crystals was estimated
from Schottky barrier measurements. Gold dots of
0.01-in. diameter evaporated onto the surface of the
crystal were used as the barrier. Capacitance-voltage
data from a number of samples has yielded net donor
concentrations on the order of 10 18 cm-3.

The solution-grown boron phosphide crystals are not
directly useful for device purposes because the dopant
concentration and distribution in these crystals cannot
be readily controlled. However, they are ideal as sub-
strates for the epitaxial growth of boron phosphide.
Both n- and p-type epitaxial layers with controlled
dopant concentration have been deposited on the solu-
tion grown crystals by the thermal reduction of a
boron tribromide-phosphorus trichloride mixture with
hydrogen. The properties of these epitaxial layers will
be discussed in another publication.

1mm
Fig. 3. Typical boron phosphide platelets grown by recrystallize

tion from a nickel phosphide solution at 1200`C.

Summary and Conclusions
Single crystals of boron phosphide have been pre-

pared from metal phosphide solutions by two tech-
niques: (i) the addition of phosphorus to a boron-
nickel or boron-copper melt at 1300°C followed by
slow cooling of the resulting solution, and (ii) the re-
crystallizat.'nri of boron phosphide from a nickel phos-
phide or copper phosphide solution at 1200°C in a tem-
perature gradient. The solution-grown crystals are in

the form of hoppers and platelets with platelets domi-
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nating. The twin-plane re-entrant-edge mechanism is	 13. J. W. Faust, Jr. and H. F. John, J. Phys. Chem.
responsible for the formation of platelets The solution- 	 Solids, 95, 1407 (1964).
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order of 10 18 cm-- and are not useful directly for de-
vice purposes. They have been used successfully as
substrates for the epitaxial growth of boron phos-
phide.
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a	 Epitaxial Growth of IIIN Compounds
for Electroluminescent Light Sources

TING L. CHU and R. K. SMELTZER

Abstract—During the past decade, semiconductor jum;tion electro-
luminescence has evolved from a laboratory phenomenon to a manufac-
turing technology. This success can be attributed to the extensive
research in the preparation and "characterization of III-V compounds.
Materials emitting radiation in various regions of the visible spectrum
are now available.

The epitaxial gn-owth techniques used in the fabrication of III-V
compound electroluminescent devices are reviewed. Both vapor and
liquid phase epitaxial techniques are discussed, including the applica-
tions of these techniques to well wiablished materials as well as newer
materials. The state of the art of light-emitting devices fabricated from
members of the 111-V compounds and their solid solutions is also
reviewed.

Introduction

Several 11-VI compounds have band gaps suitable for visible 	 i
light emission; however, they can only be prepared in the form
of n- or p-type crystals, and' p-n junctions cannot be formed.
On the other hand, several III-V compounds have been
manufactured in the form of single crystals with controlled
concentration and distribution of dopants, and only these
compounds are useful for economical electroluminescent junc-
tion devices at present.

The band gaps of the II I-V semiconductors are in the range
from 0.18 to 3.3 eV, corresponding to aradiation with wave-
lengths in the range of 69 000-3700 A. (Boron and alum-
inum nitrides, with band gaps of approximately 10 and 6 eV,

f During the past decade, junction electroluminescence, the
emission of radiation from a semiconductor p-n junction under
forward bias, has evolved from a laboratory phenomenon to a
manufacturing technology. Electroluminescent junction

z °' devices, commonly known as light-emitting diodes, fabricated
from several I II-V compounds are now produced at reasonable
costs and are used extensively as incoherent light sources.
They have replaced gas discharge or filamentary indicators and

respectively, are considered as insulators.) These data are
summarized in Fig. 1. The wavelength of the emitted radiation
may also be tailored by using a ternary compound, i.e., a solid
solution of two III-V compounds with one element in com-
mon. For example, gallium arsenide, a direct gap material, and
gallium phosphide, an indirect gap material, form a continuous
series of solid solutions, and the wavelength of the lumi-
nescence may be varied continuously from 8680 to 5540 A

displays in many applications and have potential applications according to	 the composition	 of the solid solution. The
for optical coupling, communication links, data transmission, efficiency of the conversion of electrical energy to optical
etc. Light-emitting diodes have a number of advantages over energy can be measured in terms of external quantum effi-

1 other light sources: very fast response time, low voltage and ciency (ratio of external photon current to electron current)
power	 requirements, 	 long	 life and	 high	 reliability,	 nearly and internal quantum efficiency 	 (ratio of internal photon
monochromatic .radiation output, small size and light weight, current to electron current). The external quantum efficiency
and compatibility with integrated circuitry. The efficiencies of (the most often measured quantity) could be considerably
light-emitting diodes have been continually improved and costs lower .than the internal quantum efficiency because of optical

17
drastically reduced during the few years since they became losses in extracting the emitted radiation from the semicon-
commercially available. Continued efforts in these areas are ductor. At the present state of the art, the external efficiency
expected	 to lead to increased	 utilization of light-emitting of visible light-emitting diodes is up to about 7% at room
diodes in new applications and new products, temperature, although the internal efficiency could exceed

`l	 - The success of junction electroluminescent technology can 50%. The quantum efficiency is not the only important
be attributed to the extensive research and development in the criterion for visible light-emitting diodes. The brightness is
preparation and characterization of I I I-V compounds and their

A
SOIId solutions. The present technology of III-V compounds is EQUIVALENT WAVELENGTH, um

`
en 

siderably	 more	 advanced	 than	 that of other electro- 1 e s	 I	 0.5
luminescent materials, such as silicon carbide and II-VI com-
pounds. Silicon carbide, though it emits radiation in the visible
region, cannot be readily prepared	 in the form of single InAs	 BAS	 AIAs

crystals: with a controlled concentration of dopants because of GaSb	 InP	 BP	 A1P	 GaN
Insb

i the high processing temperature, about 2500 0C,' required. GaAs_	 Gap

July, 16, 1973;	 August 4, 1973. ThisManuscript received	 revised G	 I	 2work was supported by the NASA Langley Research Center under_ 3
Grant NG L 44-007-042,

T. L. Chu is with the Institute of Technology, Southern Methodist BAND GAP, eV
U n iversity, Da I las, Tex. 75275.

R. K .Smeltzer iswith the Semiconductor Research and Development Fig. 1.	 Room temperature band gsp and equivalent wavelength of
Laboratory, Texas instruments, Inc., Dallas, Tex.75222. II I-V compound semiconductors. '
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used as a measure of the visual response to the radiation equilibrium, where a built-in voltage prevents the diffusion of
emitted from the diode surface and is proportional to the electrons and holes across the junction. The magnitude of the
external quantum efficiency of the diode and to the sensitivity built-in voltage is determined mainly by the carrier concentra-
of the eye. Brightness in excess of 1000 footlamberts is readily tions in both sides of the junction and the energy gap of the
available in commercial devices at normal current densities of semiconductor. When both the n- and p-regions are heavily
10 A/cm2 . doped, the built-in voltage approaches the band gap. Under

The III-V electroluminescent junction devices have been forward bias, fig. 2(b), the built in voltage is lowered, and the
fabricated by diffusion and epitaxial growth techniques, with flow of holes and electrons across the junction 1s enhanced. f
the latter dominating. The main objective of this paper is to This injection results in an increase in the minority carrier
review the epitaxia) growth of I I IN compounds and their solid concentrations above their equilibrium values. These excess
solutions and the current status of their devices. The theory of carriers must recombine with the majority carriers near the
junction electroluminescence is also briefly discussed. For a junction to restore the equilibrium condition.. This recombina-
comprehensive discussion of light-emitting diodes, the reader is tion can occur via radiative and nonradiative processes. In
referred to a recent publication by Bergh and Dean (11 . general, more injected carriers recombine nonradiatively than

y radiatively	 due	 mainly	 to the presence of recombination
11, Basic Theory of Junction Electroluminescence centers associated with chemical and structural defects, such as
At present, the p-n junction formed by selected members of impurity precipitates and dislocations.

lll•V compounds	 is the most efficient electroluminescent The concept of radiative recombination is therefore essen-
devi e.. The emission characteristics are determined by the tial for the understanding of junction electroluminescence. In
band gap and band structure of the semiconductor and the a semiconductor with impurity states, the recombination can
nature and concentration of dopants in the junction region. take place directly across the band gap or as impurity-induced
The light emission from a p-n junction consists of two steps: recombination	 due	 to	 the	 localization	 of	 charge	 carriers
the injection of minority carriers across the junction, and the (Fig. 3). In the latter case, at least one type of carrier must be
radiative recombination of excess carriers, captured at a luminescent center before recombination can

Minority	 carrier	 injection	 is a relatively simple process. occur, and only shallow centers are useful since recombination
Fig. 2(a) shows the energy band diagram of a p-n junction at at deep levels will be either at infrared energies or will be

nonradiative. It is evident that band-to-band recombination is
much more important for direct gap semiconductors than for

_]evB indirect gap materials. In indirect gap semiconductors, band-
to-band recombination requires the absorption or emission of
a phonon to conserve momentum. Electron hole recombina-
tion	 has	 a	 much	 lower probability	 in this three particle

N process.	 Recombinations in direct and indirect gap semi- !
I conductors are discussed in the following paragraphs in more

detail using gallium arsenide and gallium phosphide as ex-
amples. i

DISTANCE ACROSS JUNCTION

CONDUCTION BAND

e(VB-VA)

wP N
Z

(A) (B) (C)

-

W
ELECTRON INJECTION

ROLE, INJECTION

DISTANCE ACROSS JUNCTION

(b) VALENCE BAND

Fig. 2.	 (a) Energy band structure of a semiconductor p-n junction in
i

thermal equilibrium (upper). (b) Energy band structure of a semi- Fig. 3.	 Some radiative recombination processes in semiconductors:
conductor _p-n junction under forward bias (lower), i!g	 is the (A) interband transition; (B) transitions involving . shallow impurity
built-in potential, and VA is the applied bias. states, and (C) transitions involving a deep impurity state.
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A. Recombination in Direct Band Gap Semiconductors
The fundamental luminescent mechanism in direct gap

conduction band which is not associated with zinc or oxygen
alone. Bound exciton recombination at-the Zn•O trap or the

semiconductors, such as gallium arsenide, is the interband electron	 transition	 from	 the Zn-O	 pair level to the zinc
recombination.	 However, due to the high doping density acceptor level can take place. These two mechanisms have
required	 for efficient electroluminescent junctions, the im- slightly different energies at the emission peak [11l
purity levels are broadened into band tails. At carrier concen- An important asset o ,,f the indirect band gap semiconductors
trations higher than about 10 18 cm_3, the band tailing has over the direct gap materials is the reduced absorption near the
been shown to shift the emission peak to higher energy for band edge. For example, the absorption coefficient in gallium
n-type gallium arsenide and to lower energy for p-type mate- phosphide	 containing	 Zn'-O pairs has been shown	 to be
rials [2]. This phenomenon is a result of the much higher relatively small over the entire red emission range [3) .
density of states in the valence band tail than in the conduc
tion band tail due to the larger hole effective mass. Conse III. Epitaxial Growth of III-V Compounds for Electrolumi•
quently, donor levels of higher energy partially fill the con- nescent Junctions
duction band, and most of the electrons are at energy levels in

I	 "" excess of the band gap from the valence band. Conversely, as The III-V compounds most suited for the fabrication of
the acceptor concentration is increased, more states are avail light emitting diodes include gallium arsenide, gallium phos

t able within the tail because of the large hole mass, and the phide,	 gallium	 arsenide phosphide, and gallium aluminum
recombination shifts to lower energies. arsenide. These materials are refractory, possess appreciable

Self-absorption is a severe limitation to the external effi- vapor pressures at high temperatures, and their 	 melts are
ciency of direct gap electroluminescent junctions because of chemically reactive (for example, gallium arsenide melts at
the high	 absorption coefficient of the semiconductor for 1237°C and has a decomposition pressure of approximately
radiation with energy near the band gap. Analogous to the 1 atm at its melting point). Thus, melt-growth techniques
emission	 spectrum, the	 absorption peak	 shifts to higher cannot readily produce single crystals of III-V compounds of
energies in n-type gallium arsenide and to lower energies in sufficient perfection and purity for device purposes.' Although
p-type gallium arsenide 	 (3). A reduction In self-absorption electroluminescent junctions have been prepared from melt-
effects	 in	 gallium	 arsenide	 has	 been achieved by closely grown crystals by diffusion, epitaxial growth from vapor and
compensating the n- and p-regions with an amphoteric dopant liquid phases is now widely used for the production of high
such as silicon [4), 151. In these compensated junctions, the efficiency light-emitting diodes. Epitaxial growth techniques
emission shifts to lower energies where the absorption coeffi- have the following distinct advantages: 1) III-V compounds
cient Is smaller. can be prepared at temperatures below their decomposition

The	 same	 basic	 recombination	 phenomena occur 	 in grown layer and thetemperatures, and 2) the thickness of the g
° direct	 gap	 ternary	 compounds,	 such	 as gallium	 arsenide - impurity concentration and distribution to the layer can be

j,. phosphide containing less than 44 Mole percent of gallium accurately controlled. The epitaxial layers deposited on melt-p	 y	 p f
y phosphide, except that for compounds with compositions near grown crystals have better chemical and structural perfection

the direct-indirect gap transition, the energy of the indirect than melt-grown crystals and are more suitable for the active
d band minima is not far separated from that of the direct band regions of a device.

minima. The relative population in the two conduction bands Epitaxial growth by chemical reaction of gaseous reactants
will thenbe determined by the effective masses and the energy on	 substrate	 surfaces (usually referred to as vapor phase
separation. A significant electron population in the indirect epitaxy) is the most versatile technique for the preparation of
band minima will limit the internal efficiency. thin layers of- semiconductors [121. The chemical reaction

must be predominately heterogeneous and take place on the
B. Recombination in Indirect Band Gap Semiconductors substrate surface. In contrast, volume reaction results in the

Radiative	 recombination in indirect gap semiconductors formation of atomic or molecular clusters of random orienta-
takes place predominantly via impurity states. The mechanism tion in the space surrounding the substrate, and the dep	 9	 Position
responsible for the green and red emitting gallium phosphide of these clusters on the substrate will produce nonoriented
diodes is associated with isoelectronic traps. The isoelectronic growth. Furthermore, the by-products of the reaction must be

1	
3

Substitution of nitrogen for phosphorus in the crystal lattice is insure highvolatile at the processing temperature to 	 purity of
responsible for the green electroluminescence 	 [6),	 [7]. A the deposit. Vapor phase epitaxial growth is usually carried
shallow electron trap about 8 meV below the conduction band out in a gas-flow system so that the dopant concentration and

I is created by the nitrogen substitution because of the differ distribution can be readily controlled by programming the
ences between the electronic configuration and nuclear charge composition-of the reactant mixture. Several types of chemical
of nitrogen' and phosphorus atoms. After trapping an electron, reactions have been used for the epitaxial_ growth of I I1-V
the negative nitrogen center binds a hole by columbic'attrac- compounds. For example, epitaxial layers of gallium arsenide

r tion, and the electron and hole radiatively decay as an exciton have been prepared by the following three reactions.
[8]. The substitution of an isolectronic complex such as a 1) Hydrogen chloride, gallium, and arsenic according to the

ti
a Zn O or Cd-O pair in adjacent lattice sites in gallium phos-  following sequence [131g

41, phide is responsible for the red electro luminescence [91, [101. 2 Ga M +2HC1 (g) - 2 GaCI (g) + I12 (9)
The Zn-O pair creates a deep trap about 0.4 eV below the 6 GaCI (g) + As4 (g) - 4 GaAs (s) + 2 GaCt3(g).
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2) Arsenic trichloride, hydrogen, and gallium according to two-step excitation of rare earth ions in a fluoride frost crystal;
the following sequence [141: 	 - an ion is excited to the desired emitting state by consecutive

4 AsC1 31g1 + 6H2 (9)	 12 HCI(g) +Asq(g ► absorption of two photons of lower energy. At present,

2 Ga(Q ► + 2 HCI(g)	 -> 2 GaCI(g) + H2(g) efficiencies	 of	 red	 and	 green	 gallium	 arsenide-phosphor

6 GaCllg) + Asq (g)	 -> 4 GaAs(s) + 2 GaCl3(g). diodes	 are	 not . competitive with `visible light-emitting	 p•n
-	 _ junction devices; however, the blue gallium arsenide-phosphor

3) Hydrogen chloride, gallium, and arsine according to the diodes have the highest efficiency for blue emission.
following sequence [151: High-efficiency gallium arsenide light-emitting diodes are

2 Ga(Q) + 2 HCI(g)	 -> 2 GaCI(g) + H 2(g)'
fabricated from silicon-doped gallium arsenide produced by

GaCI(g) + AsH 3 (g)	 -> GaAs(s) + HCI(g) + H2(g), liquid phase epitaxial growth. Vapor grown gallium arsenide,
in spite of the much more extensive investigations,; is Jess

Similar reactions have been used for the epitaxial growth of efficient for light-emitting devices, due presumably to the
other compounds, including gallium phosphide and indium presence of high concentrations of chemical and =structural
arsenide. The most important parameters affecting the Chem- defects. These defects (which reduce radiation recombination

`	 ical and structural	 perfection of the grown layer are the efficiency) are minimized by carrying out the epitaxial growth
surface preparation of the substrate, the substrate temper- of gallium arsenide from gallium solutions [221, [231. Liquid
ature, and the composition and flow rate of the reactant phase epitaxial growth is particularly significant in that n- and
mixture. The in-situ etching of the substrate just prior to the p-type gallium arsenide can beP roduced by controlling the
growth process is commonly used to provide _a clean and growth temperature using silicon as the amphoteric dopant
damage-free surface. [241,` [251; a highly compensated n-type region followed by a

Epitaxial layers of III-V compounds have also been grown highly compensated p-type region is produced during recrystal-
from ! solution, usually referred to as liquid-phase epitaxy. For lization. The amphoteric behavior of silicon in gallium arsenide
example, gallium arsenide is soluble in gallium, and its solubil- has not been satisfactorily explained, since local mode infrared
ity increases' with increasing temperature. Thus, during the absorption measurements indicate that, although silicon on
slcew cooling of a saturated solution of gallium arsenide in gallium sites is the primary donor in n-type gallium arsenide,
gallium in the presence of a substrate crystal, the solution silicon on arsenic sites is not the major acceptor in p-type z.
becomes supersaturated, and nucleation and growth will take material	 [261.	 Self-absorption 	 inp	 gallium	 arseni,.'e	 is	 also
place on the substrate producing an epitaxial layer. This process reduced by doping with silicon. The highest external "efficiency
involves three steps: 1) the diffusion of solute to the crystal- reported for a silicon-doped gallium arsenide diode at room
solution interface, 2) the deposition of solute on the growing temperature	 is 32%, obtained	 by	 using a high index of
interface, and 3) the dissipation of the heat of crystallization. refraction glass dome [27] . The wavelength of the emission i
Since step 1) or 2) is usually rate-determining, the growth rates peak (which is important for the operation of phosphors for
are low, on the order of 1 µm/min. Several techniques have conversion to visible light) was varied from about 9200 to {
been developed to bring the substrate into contact with the 10000 A by varying the silicon concentration. However, the i
solution. In the tilting technique 1161, the substrate is initially internal	 absorption	 was	 still the	 major limitation to the l
held against the bottom at the upper end of a tilted boat, and efficiency. '.
the saturated solution is prepared at the lower end. Growth is The amphoteric effects of germanium and tin in gallium
accomplished	 by tilting the	 boat back to the horizontal arsenide have also been studied using liquid-phase epitaxial
position followed by the cooling of the solution. Growth can growth	 [281. Although epitaxial layers of good perfection a
be stopped by tilting the boat again. Multilayer structures have were grown, only p-type material was obtained by doping with
been produced by the sliding boat technigl,a [171. In this germanium and n-type material was obtained b y using, tin as.a 1

technique, the	 substrate is fixed and 	 solutions of various dopant.
compositions are slid successively over the substrate at a
predetermined	 temperature for various time intervals. The B. Zinc-Oxygen Pair Doped Gallium Phosphide
liquid phase epitaxial growth technique is less efficient as a
manufacturing technique than the vapor phase technique. In

Gallium phosphide doped with Zn-.O pairs, though not the
most popular red emitter at present, has the highest external

the case of ternary compounds, different segregation coeffi- quantum effi.:iency compared with that of other electro-
cientsof the constituents will lead to variations in the'composi- luminescent junctions, such as gallium arsenide phosphide.
tionj of the layer along the growth direction. One major limitation to the more widespread use of gallium -

The current state of the art of several important materials is phosphide light-emitting diodes is the high cost of materials.
JJX

discussed in the following sections. Bulk crystals of gallium phosphide required as substrates for t
the epitaxial growth process are expensive. In addition, only

A. Gallium Arsenide liquid	 phase	 epitaxial growth,	 which is less amenable to
Gallium arsenide with a direct gap of 1.47 eV at room manufacturing than vapor growth, is currently capable of

temperature is a very efficient infrared emitter. Considerable yielding usable diodes. f
efforts have been made to convert the infrared radiation to The first work which demonstrated the potential of gallium Y
visible light by coating gallium arsenide diodes with phosphors phosphide junction electroluminescence was carried out by
[1814211. The phosphor conversion mechanism involves a liquid phase epitaxial growth using the tilting technique [291.

i'r
i ..^



N-type epitaxial gallium phosphide layers were deposited from
a tellurium-doped solution onto gallium phosphide substrates
grown from a zinc- and oxygen-doped solution; the solution
saturated with gallium phosphide at 1140°C was cooled to
7000 C in 40 min. The diodes had an external efficiency of
0.075% over a broad band centered at about 7000 A at room
temperature. The efficiency of the diodes was shown to be a
strong function of the tellurium concentration in the solution
[301. The annealing of epitaxial diodes at 4000 -7250 C for 16
hours has been shown to improve the efficiency to almost 2%
[311. Since the light emission occurs predominately in the
p-region, higher efficiencies have been obtained in diodes
fabricated by the epitaxial growth of p-type layers on n-type
solution-grown gallium phosphide substrates. However, the
p-type dopants, zinc and gallium oxide, are volatile from
solution (gallium oxide reacts with gallium to form a volatile
suboxide), and more complex closed systems were sometimes
used for the epitaxial growth process. The earlier devices had
efficiencies of up to 1% [321-[341. An increase in efficiency
to 1.4% was achieved by using double epitaxial layers, i.e., the
liquid phase epitaxial growth of an n-layer on n-type substrates
followed by the growth of a p-layer in an open system, and
efficiencies as high as 3.4% were obtained by compensating the
p•type layer with tellurium [351. By carrying out the growth
of double epitaxial layers in a closed tube and using optimized
dopant concentrations and annealing during growth, higher
efficiencies, 7%, were achieved [361. The net donor and
acceptor concentration profiles were found to be graded
throughout the double epitaxial layer structures. Most re-
cently, efficiencies up to 8% have been reported for double
epitaxial layers grown on Czochralski substrates in a semi-
sealed system [371.

One current limitation of the zinc-oxygen pair doped
gallium phosphide electroluminescent junction is that -the
wide-band emission peaks near the edge of the visible spectrum
so that much of the radiated power is in the infrared. For
equal radiated power, gallium arsenide phosphide diodes ap-
pear much brighter. However, gallium phosphide diodes emit
much more power than gallium arsenide phosphide diodes for
the': same input power, so that the two materials have about
equal -brightness when operated at their suggested input
currents.
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At present, gallium arsenide phosphide deposited on gal-
lium arsenide substrates is the most suitable material for the
mass production of red and amber light-emitting diodes [451,
[461. At room temperature, the change from a direct to an
indirect transition occurs at the composition GaAso.56Po.44,
corresponding to an energy gap of 1.9 eV. The extensive use of
gallium arsenide phosphide diodes is due mainly to the
relatively low cost of the vapor phase epitaxial growth process
which is used exclusively for their fabrication. The vapor phase
epitaxial growth technique permits the grading of composition
in the gallium arsenide phosphide layer to reduce the effects of
lattice mismatch between the gallium arsenide substrate and
the epitaxial layer. The liquid-phase technique, though used.
widely in the fabrication of gallium arsenide and gallium

C. Nitrogen-Doped Gallium Phosphide	 phosphide light-emitting diodes, has not been successful for
Because of the spectral response of the eye, green-emitting the epitaxial growth of gallium arsenide phosphide on gallium

diodes are of particular interest, and high luminous efficiencies arsenide substrates [471.
can be obtained with low power and low quantum efficiencies. 	 Several reactions can be used for the deposition of gallium
Several techniques have been used to produce green emission
from gallium phosphide diodes. The first efficient green-

^x emitting gallium phosphide diodes were found in the internal
built-in p-n junctions resulting from nonuniform distribution
of donor and acceptor atoms during the growth of gallium
phosphide platelets from a gallium solution doped with a
shallow donor (sulfur, selenium, or tellurium) and a shallow
acceptor, zinc [381_. Later devices were made by liquid-phase
epitaxial growth using zinc and sulfur as dopants [391, [401

A U	 Vapor phase epitaxial growth has also been used in conjunc-
tion with zinc diffusion to produce green-emitting gallium

phosphide junction devices [411. The external quantum effi-
ciencies of these early devices were typically 0.02%. It should
be noted, however, that as1 external efficiency of 0.01% in the
green is visually equivalent to one of about 1% in the red.

The highest efficiencies in green-emitting gallium phosphide
diodes were achieved with nitrogen-doped layers prepared by
liquid phase epitaxial growth. Both single and double epitaxial
layers deposited on solution grown and Czochralski substrates
in an open system have been evaluated [421, [431. A pulsed
external quantum efficiency of 0.6 0N was measured from
nitrogen- and zinc-doped p-type layers epitaxially deposited on
solution grown n-type gallium phosphide followed by anneal-
ing. Double epitaxial layers grown on Czochralski substrates
yielded lower efficiencies, about 0.1% under do operation.'The
internal efficiency of these devices, was found to increase with
increasing concentration of nitrogen in -both sides of the p-n
junction; however, the high nitrogen concentrations lead to
enhanced self-absorbtion, Thus, much improved devices could
be made by using high nitrogen concentration only in the
junction region.

Since the luminous efficiency of zinc-oxygen pair doped
gallium phosphide diodes is similar to that of nitrogen-doped
diodes, the possibility of producing hues between red and
green exists. By introducing nitrogen into n-layers grown onto
zinc and oxygen-doped substrates, the hue could be con-
trolled at a given current by adjusting the doping levels or by
varying the diode current for a given dopant profile [441.

D. Gallium Arsenide Phosphide

arsenide phosphide. Most of the current work utilizes the
reaction of gallium, hydrogen chloride, arsine, and phosphine
in a hydrogen atmosphere in a gas flow system [151. The
composition of the epitaxial ; layer can be adjusted by con-
trolling the AsH 3/PH 3 molar ratio in the reactant mixture.
Also, the concentration of dopants in the layer can be readily
changed.

Compositional grading is necessary to produce efficient
gallium arsenide phosphide diodes since there is a 1.44 %
difference in lattice parameters between gallium arsenide and
GaAso.00.4, which s the composition for high Luminous7 -.,



CHU and SMELTZER: EPITAXIAL GROWTH OF II I-V COMPOUNDS	 213	 .;

efficiency. There have been extensive studies of dislocations
due to this lattice mismatch [461, [481- [511. It is well
established that the gradual grading of the composition of the
epitaxial layer improves the structural perfection.

The use of zinc diffusion into vapor grown n-type epitaxial
gallium arsenide phosphide has produced the highest efficiency
red-emitting gallium arsenide phosphide diode [521. The
external quantum efficiency of diodes over the entire composi-
tional range of gallium arsenide phosphide has been measured
for different donor concentrations. As the phosphorus content
increases, the diode efficiency decreases, and the luminous
efficiency increases. The maximum brightness occurs at the
composition GaAso.6Po.4 which has an external quantum
efficiency of 0.2%. The maximum external quantum efficiency
obtained in gallium arsenide phosphide diodes was 0.6%.

Recently, zinc diffused gallium arsenide phosphide diodes
have been fabricated with nitrogen doping on the n-side of the
junction [531, [541. For GaAso.00.4. the emission peak
shifts further towards the red. However, for gallium arsenide
phosphide in the indirect gap composition range, higher
quantum efficiencies were found, and higher brightness was
achieved for orange, yellow, and green emissions.

emission peaks at 1.70 eV. An important feature of the
gallium-rich region of the Ga-AI-As system is the large .dis-
tribution coefficient of aluminum between the solid and liquid
phases [601 which, though it may appear to be a problem,
has been used to advantage. During the epitaxial growth
process, the rapid depletion of aluminum from the liquid
phase produces a decreasing aluminum content in the grown
layer [611. The larger band gap in the first part of the grown
layer shifts the absorption edge to higher energies, so that by
removing the substrate, the self-absorption effect can be
greatly reduced. The brightest diodes emitted at 1.83 eV with
an external quantum efficiency of 0.8%. More recently, an
external quantum efficiency of 4% at 6950 A has been
achieved by the diffusion of zinc into epitaxial gallium
aluminum arsenide grown from the liquid phase [621. Also, a
liquid phase epitaxial technique with a decreasing growth rate
has been reported to create an increasing aluminum concentra-
tion in the grown layer; however, visible emission did not
occur in the diodes fabricated in this manner [631.
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F. Other Materials
In addition to the compounds previously discussed, several	 1

E.Galiium Aluminum Arsenide
other III-V compounds are attractive for electrolummescent
diodes in the visible region. However, difficulties encountered

Aluminum arsenide with amindirect band gap of 2.2 eV has in the crystal growth of these compounds have limited their
been investigated as an electro luminescent material; however, applications at present.
light-emitting junctions formed by the diffusion of zinc into Gallium nitride with a direct band gap of 3.5 eV has the
vapor grown epitaxial layers were found to have very low potential	 for	 emission	 in the	 ultraviolet. The preparative
efficiencies [551. The chemical reactivity of aluminum arse- techniques to date include the ammonolysis of gallium mono-
nide	 may also limit its applications. On the other hand, chloride [641-[661, the thermal decomposition of a gallium
aluminum arsenide and gallium arsenide have very similar tribromide-ammonia complex [671, and liquid-phase epitaxial
lattice parameters and	 form	 solid	 solutions over the en- growth	 [681. However, foreign substrates were used in all
tire composition range. The transition from direct to in- cases; neither the structure nor the electrical properties of the
direct energy	 band	 structure occurs at the composition heteroepitaxial layers are adequate for devices. In particular,
GaAlo .63Aso , 37 corresponding to a band gap of 1.92 eV [561. p-type gallium nitride has not been prepared, and high resis-
Thus, gallium arsenide is an ideal substrate for the epitaxial tivity material resulting from the compensation of the nor-
growth of gallium aluminum arsenide, mally low-resistivity n-type gallium nitride has been used for

The	 first	 attempt	 to	 epitaxially	 grow	 gallium alum- light-emitting junctions. Low-efficiency green, blue, yellow,
inum arsenide on gallium arsenide substrates was carried out and violet luminescence has been reported at the i-n interface I
by the closed-tube chemical transport technique [571. The [691-[721.
source material was a mixture of aluminum arsenide and Solid solutions of indium and gallium phosphides, with a
gallium arsenide powder. Because of the difference in chemical direct band gap up to 2.2 eV gat the composition In0.2Gao,8P
reactivity of aluminum arsenide and gallium arsenide, the [731, are potential materials f;. ,.- krraission in the red, orange,
epitaxial layer was of different composition from the source and yellow regions of the spectrum. P-n junctions in indium
material, and its aluminum content increased along the growth gallium arsenide have been produced by zinc diffusion and
axis. P-n junction diodes were prepared from the vapor grown liquid and vapor phase epitaxial growth techniques [74, [751.,
material by diffusion, and electroluminescence from these However, no useful room-temperature efficiencies have been
diodes was	 strongly	 influenced by deep-lying _competitive obtained. One major problem has been the lack of a suitable
recombination centers [581. The perfection of gallium alum- substrate on	 the	 basis of lattice parameters and thermal ' W.

inum' arsenide can be improved . considerably by using liquid- expansion coefficients. Gallium arsenide, which has been used
phase epitaxial growth. as the substrate in all studies, is suitable only for the growth of

The first efficient gallium aluminum arsenide visible electro- indium phosphide-rich solid "solutions with emissions in the
luminescent junction was produced by a modification of infrared region, x
Nelson's technique [161, and the,p-n junction was formed at a Solid solutions of aluminum gallium phosphides and solid
controllable distance from the substrate-epitaxial 	 layer in- solutions of indium aluminum phosphide are also potential

kL
terface in a single step cooling cycle by means of counter- electroluminescent	 materials.	 The only aluminum gallium
doping the solution [591. Room temperature external quan- phosphide diodes reported had very low efficiencies [761.' ^_	 3
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•	 The Preparation and Properties of
Aluminum !Nitride Films

! J,,	 T. L. Chu* and R. W. Kelm, Jr.*

Institute of Technology, Southern Methodist University, Dallas, Texas 75275

ABSTRACTeri+
Aluminum nitride films have been deposited on silicon substrates at 800°-

1200°C by the pyrolysis of an aluminum trichloride-ammonia complex,
A1C13 . 3NH3r in a gas flow system. The deposit was transparent, tightly ad-
herent to the substrate, and was confirmed to be aluminum nitride by x-ray
and electron diffraction techniques. The deposited aluminum nitride films were
found to be polycrystalline with the crystallite size increasing with increasing
temperature of deposition. Other properties of aluminum nitride films relevant
to device applications, including density, refractive index, dissolution rate, di-

.. electric constant, and masking ability, Have been determined. These prop-
erties indicate that aluminum nitride films have potential as a dielectric in
electronic devices.

:., Aluminum nitride is a refractory, large energy gap was prepared by saturating reagent grade anhydrous
material [sublimation temperature 2400°C (1), energy aluminum trichloride in a fused silica reaction tube —
gap 5.9-6.2 eV (2, 3) ] and has chemical, physical, and with anhydrous ammonia at room temperature. The

?i electrical properties suitable for several applications resulting mass was heated at 350°C in an ammonia
in : electronic devices. For example, its large energy flow, and the complex sublimed yielding a white crys-
gap, good thermal stability [equilibrium vapor pres- talline powder. The composition of the complex, de-
sure of nitrogen at 1500°C: 0.05 Torr (4)], and Chem- termined by dissolving a weighed amount of the speci-
ical inertness [stable in air at temperatures up to men in a known volume of O.lN hydrochloric acid and

z	 ', 700°C (5) ] suggest that aluminum nitride is a good titrating the excess acid with 0.1N sodium hydroxide,
^^• dielectric for active and passive components in semi- was A1C13 . 3NH3. This complex is considerably more

conductor devices. Aluminum nitride, being a piezo- stable in the laboratory ambient than aluminum tri-
electric material with a high acoustic velocity, is also chloride. Its vapor pressure was determined from the
well suited for the fabrication of surface wave acoustic extent of vaporization in a sealed silica tube after
devices. heating at a predetermined temperature for 24 hr. The

Aluminum nitride has been prepared by several vapor pressure data in the temperature range 500°-
techniques, such as the direct combination of the ele- 800°K are shown in Fig. 1; the complex has sufficient
ments and chemical reactions of gaseous aluminum and vapor pressure at temperatures below 300°C	 for
nitrogen-containing compounds on substrate surfaces. utilization in the deposition of aluminum nitride. The
The direct combination technique requires tempera- heat of vaporization of the complex calculated from
tures in excess of 1500°C (2, 5, 6) and is not suitable the slope of this plot was 11.8 tt 0.2 kcal/mole.
for device applications. On the other hand, aluminum - a
nitride films have been deposited on the surfaces of
refractory metals, insulators, and semiconductors at TEMPERATURE,	 °K	 -
considerably lower temperatures by the reaction of
aluminum trichloride with ammonia (1, 3, 7-12) and -	 oo	 goo	 boa	 soo

the reaction of trimethylaluminum with amzn nia (13).
k Aluminum nitride films up to 5µm in thickness have

also been deposited on metallic substrates by diode
reactive sputtering, and the dielectric pro erties ofp to

All = 11.8	 !	 0.2. kcal/mole
sputtered :aluminum nitride films ,were found to be

' superior to those of bulk polycrystallinee material (14).
The chemical deposition technique appears to be
more compatible with the current device technology;
however, the utilization of aluminum nitride in semi-

i` conductor. devices has not been explored. a	 1

In this work, aluminum nitride films have been de- o
posited on single crystal silicon substrates by the

` pyrolysis of an aluminum trichloride-ammonia com-
F! Alex in a gas flow system. The properties of the de-

~posited films, such as structure, composition, density, 0.1
'

^' r	
tfractive index, dissolution rate, dielectric constant, a '

asking ability, etc., have been determined. The ex- o
` -rlmental methods and results are discussed in this

'iper.

Preparation of Aluminum Nitride Films
o. of

a ammonolysis of aluminum trichloride is com-
4,used for the depob-.tion of aluminum nitride

J	
.cause of the hygroscopic nature of aluminum
e an aluminum trichloride-ammonia com-

,t * ed as the starting material The complex 1000/T,	 -K-1
v Society Active Member.
4num

Fig. 1. Vapor pressure of aluminum trichloride -ammonia complexnitride, chemical deposition, electronic de- AICI3	3NH3.
' I ,

h
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The deposition of aluminum nitride by the pyroly-
sis of the aluminum trichloride-ammonia complex in a
gas flow system was carried out using an apparatus
shown schematically in Fig. 2. The diluent gases used
in the deposition process were commercial hydrogen
purified by diffusion through a palladium-silver alloy
and Matheson anhydrous ammonia of better than
99.99% purity. The reaction tube was made of clear
fused silica, 55 mm ID and 3 ft long. A fused silica boat
containing the aluminum trichloride-ammonia com-
plex was maintained at 250°C by using an external
resistance heater, and hydrogen or a 6:1 hydrogen-
ammonia mixture at a flow rate of 30 liters/min was
used to carry the complex to the substrate surface.
The silicon substrates with main faces of (111) orien-
tation were n-type, 5-20 ohm-cm resistivity, and were
mechanically polished and chemically etched in the
usual manner. They were supported on a silicon car-
bide-coated graphite susceptor, and the susceptor was
heated externally by an rf generator. Prior to the depo-
sition of aluminum nitride, the substrates were heated
at 1150°C in hydrogen for % hr to remove the oxide

on the surface. In some experiments, the substrate sur-
faces were etched in situ at 1170°C with a hydrogen-
hydrogen chloride mixture containing 2% hydrogen
chloride. The de position of aluminum nitride was car-
ried out at substrate temperatures in the range of 800°-
1200°C, and the deposition time was usually 15-45
min. The thickness of aluminum nitride films on sili-
con substrates was determined by removing part of
the film and measuring the height of the step generated
,w ith a Sloan Dektak and Graphic Chart Recorder.

Under the conditions described above, the deposited
films are transparent and tightly adherent to the sub-
strate. The average deposition rates in the temperature
range 800°-1200`C are shown in Fig. 3. The deposi-

TO
E%IIAUSI

S111CA RFA('T10N

GAS	
TUBE /It t' COIL

INI,I T ® 
O O O O d

SI - !iS'I'RAI I N

W==\ 00000

LES I S TANCE	 SILICA BOAT	 SUSCEPTOR
HI'ATER	 CONTAINING

AIC13.3NH3

A1CI,I . 3NH 3 0"	 -> AIN(R) . 3HC 1(tt) + 2NH3(R)

Fig. 2. Schematic of tf a apparatus used for the deposition of
aluminum nitride filrnis.

TPIPCRATURF. °K

tion rate decreased with increasing temperature from
160 A/min at 800°C to 120 A/min at 900°C and 90
A/min at 1000°C. This decrease of deposition rate is
due presumably to the increased contribution of gas
phase nucleation at high temperatures. The gas phase
nucleation becomes more pronounced at higher con-
centrations of the aluminum trichloride-ammonia com-
plex in the reactant mixture. For example, films de-
posited at a rate of 750 A/min at 900°C had a cloudy
appearance as a result of the enhanced gas phase nu-
cleation.

The films deposited in the temperature range 800°-
1100°C were analyzed by the x-ray diffraction tech-
nique. Silicon substrates were removed from the
specimens by etching with a nitric acid-hydrofluoric
acid mixture, and the resulting material was pul-
verized and examined by the Debye-Scherrer tech-
nique using nickel-filtered CuKa radiation. The dif-
fraction patterns were identical with those reported
for aluminum nitride (15), thus confirming that the
deposited films were aluminum nitride.

Properties of Aluminum Nitride Films
Structure.—Aluminum nitride films deposited on

silicon substrates under proper conditions were uni-
form, transparent, and highly adherent to the sub-
strate. They showed no structural features when ex-
amined with an optical microscope. Several films were
investigated by transmission electron microscopy us-
ing a Hitachi Model 11BU electron microscope after
removing the substrates with a nitric acid-hydro-
fluoric acid mixture. Figure 4 shows the micrographs
of aluminum nitride films deposited in the temperature
range 800 1 -1100°C. All films were polycrystalline,
and the average linear dimensions of the crystallites
increased with increasing deposition temperature.
Typical dimensions of crystallites were 100, 200, 600,
1100, and 2200A in films deposited at 800°, 900% 1000°,
1100°, and 1200°C, respectively. This increase in crys-
tallite size with temperature is to be expected. The
diffraction patterns of aluminum nitride films de-
posited at various temperatures are shown in Fig. 5.
The d-spacings measured from these patterns further
confirm that all films are aluminum nitride. Figure 5

c
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Fig. 3. Average deposition rate of aluminum nitride films as a
function of temperature.
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Fig 4 Transmission electron micrographs of a' i
films deposited at (A) 800 C, (8) 900 C, (C)
1100"C.
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B)

lC)	 (D)

Fig. 5. Electron diffraction patterns of aluminum nitride films
deposited at (A) 800°C, (B) 900 °C, (C) 1100°C. and (D) 1200°C.

indicates that aluminum nitride films deposited at
temperatures above 1000°K are polycrystalline and
that preferred orientations are increasingly apparent
with decreasing temperature of deposition. The single
crystallinity of the substrates appears to have little or
no effect on the structural properties of aluminum ni-
tride since aluminum nitride films deposited on the
surface of silicon dioxide were essentially the same as
those on silicon substrates.

Density, refractive index, and optical absorption.—
The density of aluminum nitride films deposited at
various temperatures was determined by the floating
equilibrium technique using a mixture of 1-bromo
2-iodo benzene and methylene iodide. The tempera-
ture of deposition was found to affect only slightly the

esnu.^	 .

density of aluminum nitride. AluminLm nitride films
deposited at 800% 900% 1000°, and 1100°C have den-
sities of 3.15, 3.18, 3.18, and 3.20 -t 0.01 g/cm 3, respec-
tively, as compared with a reported value of 3.13 g/cm3
(12) and the theoretical density of 3.26 g/cm3.

The refractive index of aluminum nitride films de-
posited in the temperature range 800°-1200`C was
determined by the Becke line method to be 1.991 ±
0.003, irrespective of the deposition temperature. A few
samples were also measured by the ellipsometric
technique; the results, though not as reproducible, were
usually in good agreement with those by the Becke
line method. However, refractive indices as high as
2.17 -!- 0.05 have been reported for single crystalline
aluminum nitride prepared by the direct reaction of
aluminum with nitrogen (16).

The optical absorption spectra of aluminum nitride
films deposited under various conditions were taken
on a Beckman Model DK-2 spectrophotometer at room
temperature. Typical resultF are shown in Fig. 6,
v. here the thickness of the aluminum nitride film was
18 µm for curve A and 13 um for curve B. The funda-
mental absorption edge for all specimens measured
was found to be 5.9 ± 0.2 eV, in agreement with that
observed by others (2). However, the films deposited
at very high rates, 700 A/min or higher irrespective of
deFrisition temperature, exhibited an additional ab-
sozp.ion band in the 3.0 to 3.2 µm region (curve A)
while those deposited at low rates, 300 A/min or lower,
showed no absorption in this region (curve B). The
absorption in the 3.0-3.2 µm region ,s presumably due
to the N-H or Al-Cl bonds in aluminum nitride films
deposited at high rates. As stated previously, the gas
phase nucleation becomes pronounced at high deposi-
tion rates. The decomposition of the aluminum tri-
chloride-ammonia complex in the gas phase may not
proceed to completion, and the deposited material
contained N-H or Al-Cl bonds. Thus, the use of low
deposition rates is essential for obtaining good quality
aluminum nitride films.

Dissolution behavior.—The deposited aluminum ni-
tride films are soluble in phosphoric acid and sodium
hydroxide solutions. To determine the dissolute rate of
aluminum nitride films, a portion of the specimen was
covered with Apiezon Q wax or photoresist, and the
specimen was immersed in the etchant with constant
agitation for various lengths of time. The dissolution
rate was then determined by removing the protective
coating a_.d measuring the difference in the step
heights using the Dektak system.

The dissolution rate of aluminum nitride films, de-
posited in the temperature range 800°-1200`C, in a
10% sodium hydroxide solution was determined in the
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S	 Fig. 7. Dissolution rate of aluminum nitride films, deposited in Fig. 8. Dissolution rate of aluminum nitride films deposited at
thr temperature range 800'- 1200°C, in 10%	 sodium hydroxide 900°C in 85% phosphoric acid. 	 i
solution. i

1
I'	 temperature range 30 0 -80°C. The results are shown ohm-cm for the diffusion of phosphorus. The alumi-

(-	 in Fig. 7. At a given. temperature, the dissolution rate num nits	film was removed completely from cien
lar areas (usually	 diameter) of 4~e specimen

of aluminum nitride films decreased with increasing by photolithographic
is

 teecc hniques using sodium hy-	 i1+	 deposition tem.perature, due presumably to the larger phosphoric acid as an etchant. Sharp, well-
i	crystallites of aluminum nitride deposited at higher defined

defined edges were obtained with virtually no under-edgest m eratures. also, the dissolution rate of aluminum cutting.nitride films deposited at .low temperatures was found The boron diffusion was carried out by depositing
1	 to remain the same after annealing at higher tempera- boron oxide glass on the specimen surface at 970°C
I	 tures, indicating negligible grain growth. The activa- for 40 min from a boron nitride source followed by re-

tion energy of dissolution for aluminum nitride films distribution at 1300°C for 1 hr. In the phosphorus dif-
deposited at 800°C'' was found to be 12.6 ± 0.5 kcal/ fusion process, phosphorus oxide glass was deposited
mole. The activation energy also increased with in- on the specimen surface at 1000°C for 30 min using

j	 creasing deposition temperature. The relatively large phosphorus oxytrichloride as the source, and the re-
activation energy indicates that the dissolution of distribution was carried out at 1150°C for 1.5 hr. After
aluminum nitride films is a surface-reaction controlled the diffusion process, an unmasked region of the speci-
process.

The dissolution rate of aluminum nitride films de-
men was angle-lapped, and the aluminum nitride mask
was removed by etching. The resistivity profile on the

posited at 900°C was also determined using an 85% masked and unmasked regions of the main face and on
phosphoric acid solution. At temperatures up to 50°C, the beveled surface was measured by the spreadinG
the dissolution rate of aluminum nitride was negligible. resisllwta	 technique (17). The results for the boron
Figure 8 shows the dissolution rate in the tempera- diffusion into n-type sitick on and the phosphorus diffu-
ture range 75	 150°C, and the activation energy of sion into p.-type silicon are shown in Fig. 9. The silicon
this dissolution was found to be 13.5 ± 0.5 kcal/mole, under the aluminum nitride film was found to have -
similar to the use of sodium hydroxide solution as an the same conductivity type with essentially no change
etchant.

Both sodium hydroxide and phosphoric acid solutions
in resistivity, while p-n junctions were formed in un-
masked regions Thus, aluminum nitride filLns are sUr

A

used in this work were found to produce clean and •ul for masking the diffusion of boron and phc j
structureless surfaces, similar in appearance to the, as- horus under the conditions used here.p horgrown aluminum nitride films when examined with Subsequent to the boron and phosphorus diffr
an optical microscope. process, the dissolution: rate of the aluminum n,

Masking ability.—To explore the usefulness of alumi- masks in a 10 010 sodium hydroxide solution was.
num nitride in silicon devices, its capabilities and sured. Aluminum nitride films with boron ox
limitations as masks against the diffusion of boron, phosphorous oxide coatings showed no mer

' phosphorus, aluminum, and gallium into silicon were change in dissolution rate or appearance afte,
investigated. Aluminum nitride films of 1000-1700A at 1150°C for 1.5 hr, indicating the inertnes•

i thickness, deposited on silicon substrates at 900°C were num nitride toward the dopant oxide. Hol,
used in the diffusion experiments. The substrates were the heat-treatment was carried out at

` n-type, 5-10 ohm-cm resistivity for the diffusion of after the deposition of boron oxide,.
boron, aluminum, and gallium, and were p type, 10-20 rate of the nitride films decreased
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Fig. 9. Resistivity profiles in n-type (A) and p-type (8) silicon
specimens after diffusion using aluminum nitride as a diffusion
mask.

eating a reaction between aluminum nitride and boron
oxide.

The aluminum and gallium diffusions were carried
out at 1150°C for 1.5 hr in sealed fused silica tubes
using the element as the source material. Aluminum
nitride films failed to mask the diffusion of dopant in
both cases. This is due presumably to the penetration
of aluminum and gallium vapor through the grain
boundaries in finely polycrystalline aluminum nitride
films at high temperatures.

Dielectric properties.—The dielectric properties of
aluminum nitride films were measured at room tem-
perature using aluminum-aluminum nitride-silicon

i structures. Aluminum contacts of 2.5 X 10-2 cm diam-
eter were deposited on aluminum nitride, and ohmic
contacts were applied to the back surface of silicon
substrates by electroless plating (18).

The dielectric strength of aluminum nitride films
deposited in temperature range 800°-1000 1 C on low
resistivity silicon substrates was measured at room
temperature using d.c. and 400 kHz. The average di-
electric strength of aluminum nitride was found to be
1.5 X 10 7 V/cm for films of 300-400A thickness, inde-
pendent of deposition temperature; it decreased to the
apparent bulk value of approximately 10 7 V/cm for
film thicknesses greater than about 1000.x.. Aluminum
nitride films deposited at 1100°C or above were found
to 'have lower dielectric strength than those deposited
at 800'-1000'C, due presumably to the inclusions in
tr:e films of the products of volume reaction where the
decomposition of the aluminum trichloride-ammonia
complex was not complete. The d-c dielectric strength
of aluminum nitride films of 2000A thickness prepared
at 800'-1000°C was also measured at higher tem
peratures and was found to be approximately 10 7 V/cm
at 30°C, 5 X 106 V/cm at .100°C, 2.5 X 106 V/cm at
200°C, 1.5 X 106 V/cm at 250°C, and 10 6 V/cm at
300°C.

}	 Capacitance measurements were made on aluminum-
aluminum nitride-silicon structures using a Boonton

JLF

u
I€

I
c;
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75C Direct Capacitance Bridge operated at frequencies
up to 0.5 MHz. The insulator capacitance was used to
obtain the dielectric constant value. The dielectric con-
stant of aluminum nitride films prepared at 800%
900% and 1000°C was found to be 11.5 :L 0.2, and that
prepared at 1100°C was considerably lower, usually
8.1 ±0.3, as compared with 9.14 reported for the low-
frequency dielectric constant of single crystalline
aluminum nitride (19) . Also, the dielectric constant of
an aluminum nitride film prepared at 800°C was
found to remain unchanged after heating at 1100°C in
hydrogen for 1 hr, again indicating the structural sta-
bility of aluminum nitride. The dielectric constant of
all aluminum nitride films prepared in the tempera-
ture range 800°-1.100°C was found to be independent
of frequency and temperature in the ranges 5-500 kHz
and 100°-500°K, respectively..

it should be mentioned that the properties of alumi-
num nitride films discussed above are independent of
the nature of the carrier gas, hydrogen or 6:1 hydro-
gen-ammonia mixture, used in the deposition process.

Summary and Conclusions
Aluminum nitride films have been deposited on sili-

con substrates at 800°-1200'C in a gas flow system by
the thermal decomposition of an aluminum trichloride-
ammonia complex, A1C1 3 . 3NH3. This complex was pre-
pared by saturating aluminum trichloride with am-
monia and purified by sublimation. The deposit was
transparent, tightly adherent to the substrate and was
verified by x-ray and electron diffraction techniques
to be aluminum nitride. Transmission electron micros-
copy indicated that all aluminum nitride films were
polycrystalline; the crystallite size increased with in-
creasing temperature of deposition, and the preferred
orientations became more apparent at lower deposition
temperatures.

At deposition temperatures in the range of 800°-
1000°C, the average density, refractive index, dielec-
tric strength, and dielectric constant of aluminum ni-
tride were found to be 3.18 g/cm3, 1.99, 107 V/cm, and
11.5, respectively. Aluminum nitride films are soluble
in sodium hydroxide and phosphoric acid solutions,
and the standard photolithographic technique can be
readily applied. Aluminum nitride films were found to
be capable of masking against the diffusion of boron
and phosphorus into silicon from the oxide sources,
These properties indicate that aluminum nitride films
have great potential as a dielectric in solid-state de-
vices.
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ELECTROLYTIC ETCHING OF BORON PHOSPHIDEt
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Institute of Technology

Southern Methodist University, Dallas, Texas 75275

C.^	
ABSTRACT

The electrolytic etching ofboron phosphide in various

electrolytes was investigated. Conditions to polish p-type boron

phosphide were determined, but an insoluble film tended to form 	 F

on the surface of n-type material. For electrode potentials
E

near and above 1 Vr the removal ofp-type material proceeded

at a rate more than 100 times faster than the removal rate of

n-type material. This difference in the etch rates allows

selective removal of material, and mesa-type p-n homojunction
j

and boron phosphide-silicon carbide heterojunction structures

were fabricated.
i

3

j
!'	 3

a
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Etching and polishing techniques are important processes

for the study of semiconductors and for semiconductor device

fabrication. For elemental semiconductors and some of the com-

pound semiconductors, convenient chemical etchants are available

for surface preparation and for certain types of selective etching.

However, there are materials which are either inert to ordinary

chemical etchants or are attacked very irregularly. In the case

of boron phosphide, _:he only known etchants are fused alkalis at

400°-500°C and hydrogen chloride near 1100°C. The former etchant

attacks boron phosphide very nonuniformly, and for the latter eteh-

ant, the decomposition of material at 1100°C'is a problem. As

a consequence, electrolytic etching may be the most useful etching

technique for boron phosphide

The purpose of this paper is to describe the experimental

(	 results obtained from an investigation of electrolytic etching

of boron phosphide. Both p-type and n-type materials were stu

died, although more extensive data were obtained from p-type

boron phosphide. The difference hi the etching behavior of
a	 (111) and (UT) faces was investigated. Also, electrolytic

etching was used as a selective etching process in the `fabri-

cation of junction devices

EXPERIMENTAL

Electrolytic etching studie, were carried out with 'both

n-type and p-type boron phosphide platelets, which were grown

by recrystallization from a nickel phosphide solution (1).

LlI

1

JI

_.:,.



Boron phosphide crystals up to 7 mm x 4 mm x 3 mm have been

obtained recently (2) by the accelerated container rotation

technique (3,4).	 The main faces of the plateletshave a

° (111) orientation; usually one face is smooth and the other
face	 is rough.	 The two faces could also be distinguished by

chemical etching in a 3:1 molten mixture of sodium hydroxide

and sodium peroxide at 400 to 500°C.	 Dislocation etch pits
r

were observed on the smooth face and not on the other.	 It is

well established that the chemical etching of other III-V com-
pound semiconductors produces etch pits on the group III face

Uf
} and not on the group V face (5). 	 If the etching behavior of

boron phosphide is similar to that of other III-V compound t

semiconductors, then the face which developed dislocation
w;k

j

, etch pits on the boron phosphide ,crystals is the boron, or the `;!

7
- (111), face.	 The room temperature carrier concentration of the

j'
f

i

solution grown boron phosphide crystal.s,determined by measure-

ments on Schottky barrier diodes, was on the order of 10 1 8 cm-3

or above (6)
h

Prior to electrolytic etching, rough faces of the boron

i : Vi phosphide platelets were polished with 0.3 um alumina abrasive,

4nd as-grown smooth faces were etched without mechanical

lY
polishing.	 Ohmic contact to the back side of the boron phos-

phide crystals was made by electroless nickel plating followed

k ' by an annealing in hydrogen or argon at 800 to 850 0 C for one hour.

For the etching process, Apiezon W wax was used as a mask so that
l
+ only the-desired region of the crystal surface was exposed to the
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3

electrolyte_. Silicon monoxide and silicon dioxide were also

used for masking purposes' and were found to be more reliable	 i

3

than Apiezon W wax for controlling small area geometries in
	 i

the fabrication of mesa structures. 	 i

A schematic of the electrolytic cell used for the etching

and polishing of boron phosphide is shown in Fig. 1. The current

density-potential relationships were determined and the crystal-

'z
	

electrolyte potential difference was measured relative to a

calomel reference electrode.	 Measurements were made both in the
^:	 3

dark and with illumination.	 The solution was continuously agi-

tated by nitrogen bubbled into the electrolyte near the anode.
4

`5

A uniform removal of material without undercutting of etching

masks was obtained, with the boron phosphide platelets near the

axis of a cylinderical molybdenum cathode, as shown in Fig. 1.
r

A simple parallel plane electrode configuration was used for
k

some of the basic measurements. 	 The electrolytes investigated

-^ were aqueous solutions of common alkalis and acids, and a few
Y

chemical etchants previously used for other III-V semiconductors.

With these techniques, mesa-type heteroepitaxial boron phosphide-

! silicon carbide junction and boron phosphide p-n junction struc-

tures were isolated.

RESULTS

z
Typical current density-potential relationships and re.st

potential values for p-type and n-type boron phosphide crystals

in a 100 sodium hydroxide solution at room temperature in the

Ŷ

_

dark are	 hown in Fig, 2,	 As expected, current saturation was

LI

observed in all of the experiments with n-type boron phosphide

r
crystals.	 The	 -t	 a material was readily dissolved	 and itP	 yp	 y

-s



drew much larger currents than n,-type material, At low anode

potentials, the (111) face of both n-type and p-type boron phosphide

drew larger current densities at a particular electrode potential

than did the (111) face. At anode potentials higher than about 1 V,

the difference between the currents drawn by the (lil) faces and

the (Iii) faces is very small.

k The rest potentials of n-, type and p-type boron phosphide

were measured in a number of electrolytes in addition to sodium

r ^r
:^ hydroxide, and the rest potential for nit	 e crystalsy	 ,	 p	 yp	 ystal	 was always

a

} r^ t	 emore negative than the rest potential for p, type crystals.	 A

similar relationship was reported for gallium phosphide rest

' potentials [7].	 For both n-type and p^type boron phosphide, the

rest potential was more positive for the 	 (111) face,	 This

' polarity effect has also been observed for a number of -other

III-V compound semiconductors, and the group III element,face

k was reported to have a more positive rest potential (5,7,8).,`

This observation agrees, therefore, with the tentative assign= 3

ment of the smooth (111) face of the crystals to the boron

face.

• The following observations were made specifically from
E` L the etching of p-type boron phosphide.	 Twin lines and other

gross crystallographic defects were revealed with current

2densities of 0.01 A/cm 	 or lower.,	 For current densities between

' ^_ 0.01 A/cm2 and about 0,2 A/cm2, etch pits formed on the faces. ^

At larger current densities, above about 05 A/cm 2 , the (111)
S .`

and (Iii) faces had different etching characteristics. 	 On the

a
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(111) face, a film tended to form; this film was, however,
f	 ..r r

easily removed.	 The texture of the etched (111) face was rough

as shown in Fig. 3A.	 On the (M) face, however, there was no

evidence of film formation, and a smooth, mirror like surface

finish shown in Fig. 3B was produced,	 These observations are

very similar to the results reported for gallium phosphide (7);

at high current densities, the gallium face developed a rough

texture and the phosphorus face became smooth.	 A few experiments

e
were also carried out with other electrolytes, and the etching'

characteristics of p-"type boron phosphide in potassium hydroxide 	 - s

solutions and common acids were found to be similar to the

characteristics obtained with the use of sodium hydroxide

solutions.
3

In contrast to the etching of p-type boron phosphide,
1

x

the etching of n-type boron phosphide was complicated by the

formation of surface films at current densities higher than

about 10 -3 A/cm 2 ,	 At this current--density,-a film was
tk

observed with a 15 min, etching period; with higher current

t' densities, the film grew faster.	 The film could not be completely

removed from the surface of the crystal even with ultrasonic

agitation during etching, and the film was not soluble in hot
alkali mixtures.	 X-ray measurements indicated that the films
were predominantly boron phosphate (BPO4).

' With current densities above 1 A/cm 2 through _n-type boron

phosphide, a porous, brittle, fiber-like _film formed on the

surface._	 Reflection electron diffraction examination showed

{ that these films were monocrystalline boron phosphide of ,(111)

_	 5
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k

f	 orientation. It was concluded, therefore, that anodic disinte-

gyp	 phosphideration of n-t a boron hos hide at high current densities

occurred preferentially in <111> directions, and a surface

layer which is a skeleton of the original crystal remained.

Similar results were obtained from an etching study of gallium

arsenide (9).

t°

	

	 Various approaches were investigated to determine the

conditions for the electrolytic polishing of n-type boron phos-

phide. A variety of electrolytes in addiiton to sodium hydroxide-

"',	 were used without success; an insoluable film formed in all cases.

The effect of illumination on the etching of n-type boron phosphide

was also investigated. A 650 watt incandescent Tamp with a color,
r

temperature of 3400°K was used as the light source, so that
i

.	 a significant portion of the lamp output had an energy greater

than the band gap of boron phosphide.. A negative shift of about 	 z

0.2 V or more of the rest potentials was observed with illumina-

tion, but very little difference inthe cell currents was found.

Consequently, the anodic dissolution behavior was not significantly

affected by the illumination. N-type boron phosphide was success-

fully etched without film formation only under one condition;

then-type material exposed to the electrolyte was one side of a
k

shallow, forward biased p-n junction, This observation supports
x

the well -known fact that a supply of 'holes is required for

r	 electrolytic etching (10,11).

SELECTIVE ETCHING

It can be seen from Fig. 2 that the current density at,

for example, 3 volts is about ,00 times higher for p-type boron

b	
K	 ,

x

f	 _

c
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a

F

phosphide than for n-type material.__ This current_ density ratio

corresponds ,approximately to the etch rate ratio between p-type

and n-type boron phosphide, suggesting the possibility of selective

removal of p-type material from boron phosphide p-n structures.

The preferential etching of p-type material was initially

investigated with a number of solution grown boron phosphide

yk

	 crystals with built-in p-n junctions on a crystal face. Selective

removal of p-type boron phosphide was obtained with current

densities between 0.1 A/cm 2 and 10 A/cm 2 . To prevent the forma-

tion<of a surface film on the n-type regions, either very low

current densities with a long etching time or very high currents

for a very short time were used,	 Figure 4 shows one solution

grown crystal which was selectively etched; the p-type region 	 4T

developed a mirror-like finish, and no removal of n,type material- 	 r

was observed.	 With low current densities and short etching 	
t

times, electrolytic etching was also used to delineate thin

epitaxially grown p-n junctions in boron phosphidey

Since electrolytic etching is selective, it can be used

_ to produce mesa	 unction structures in boron phosphide.	 Mesa	 #p	 j	 P	 P

ra diodes were formed with both homoepitaxially and hetero-

epitaxially grown junctions.	 Both n-type and p-type layers of

p boron phosphide were deposited on solution grown boron phosphide

cyrstals and on hexagonal silicon carbide platelets by the ther-

mal reduction of a boron tribromide-phosphorus trichloride mixture

t

.(12). 	 To isolate the mesas, either silicon dioxide or silicon

' 7	 -

1rf
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monoxide was used to define the mesa pattern, and the exposed boron

r phosphide was electrolytically removed. 	 In the preparation of the

boron phosphide-silicon carbide heterojunctions, a sharp decrease in

the current indicated the complete removal of the boron phosphide

t-R layer exposed to the electrolyte,	 At that stage, the 'electro-

lyte was replaced by a 1N solution of hydrofluoric acid, and a
P

^ light anodic etching of the silicon carbide was carried out,s	 _j

This latter step improved the characteristics of the mesa

unctions.	 The removal of n-t	 e boron phosphide on siliconj	 YP	 P	 P	 carbide

- _required mechanical means to occasionally remove a surface film

.^ near the edge of the mesa.	 Figure 5 shows photomicrographs of

two mesa junctions fabricated by anodic dissolution of boron

phosphide.	 Figure 5A shows a homojunction made by selective

Mx removal of a portion of an n-,type epitaxial-layer on a p-type
^e

substrate,and Fig.	 5B shows a p-type boron phosphide mesa on

n-type silicon carbide,	 These devices have rectifying character-

istics, and easily visible, red, p-n junction electroluminescence77^

was observed in some of the homojunction and heterojunction
z	

;i

structures	 (13).

,. SUMMARY

Electrolytic etching of boron phosphide was investigated 	 -

. -- for device applications, since there is no suitable chemical

-etchant for this material.	 A technique was developed to etch

and polish p-type boron phosphide,	 In contrast, an insolvable

film tended to form on n-type boron phosphide, and material removal

^	 ^ d was very slow.	 Due to a large differential etch rate ratio
F	 ,

between p-type and n-type material, boron phosphide p-•n junction

interfaces were delineated by electrolytic etching. 	 Electrolytic

8
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	 etching was also applied to the fabrication of mesa-type boron

phosphide p-n junctions and boron phosphide-silicon carbide

heterojunction structures. Because of the inert nature of

b o
a>

'ron phosphide, electrolytic etching is the most suitable means

g	 available to remove p-type material and to isolate mesa-type

'.^	 junctions.
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FIGURE CAPTIONS

Figure 1

	

	 Schematic of the electrolytic cell used for measure-

ments and etching,

^^	 Figure 2	 Current density vs, electrode potential for (111) and

(I'fr) faces of n--type and p-type boron phosphide in a

10% NaOH solution in the dark.

Figure 3	 Electrolytically etched surfaces of p,-type boron

phosphide with a current density of 0,5 A/cm 2

(A):	 (111)	 face,	 (B):	 (111)	 face.

Figure 4	 Photomicrographs of an electrolytically etched boron

phosphide crystal which has both n-type and p-type

2regions,	 Etching was done with 10 A/cm	 for 10 sec,

(A):	 top view,	 (B):	 cross sectional view,

fill"

Figure 5	 Two mesa structures fabricated by electrolytic etching:

(A) boron phosphide p-n homojunction and (B) boron

phosphide-silicon carbide heterojunction.
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(A)

(B)

Fig. 3	 Electrolytically etched surfaces of p-type
boron phosphide with a current density of
0.5 A/cm2.

(A):	 (111) face,	 (B):	 (iii) face.
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(B)

Fig. 4	 Photomicrographs of an electrolytically etched
boron phosphide crystal which has both n-type
and m3 - type regions. Etching was done with 10
A/cm for 10 sec.

(A):	 top view,	 (B): cross sectional view.
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(B)

Fig. 5 Two mesa structures fabricated by electrolytic
etching: (A) boron phosphide p-n homojunction
and (B) boron phosphide-silicon carbide hetero-
junction.
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Ek GROWTH OF-BORON MONOPHOSPHIDE CRYSTALS WITH THE ACCELERATED
;- CONTAINER ROTA TION TECHNIQUE *

T. L.	 Chu, M.	 Gill,	 and R.	 K.	 Smeltzer
Institute of Technology	 a

Southern Methodist University
f Dallas,.Texas	 75275,	 U.S.A.

The recrystallization technique for the growth of boron
F°

phosphide from a nickel phosphide solution was extended to in-

clude accelerated container rotation.	 In comparison with cry-

stals grown in a stationary container, larger crystals, with

' dimensions on the faces up to 8 mm, were obtained with the

accelerated container technique.	 It was also established that

the particular nickel phosphide used as the solvent for boron

phosphide is important; optimum results were obtained with Ni2P.

The majority of the large boron phosphide crystals grown from

solution contained both n-type and p-type regions, and easily

visible, red p-n junction electroluminescence was observed.

The addition of silicon to the nickel phosphide-boron phosphide

solutions produced only n-type boron phosphide and the addition

r	 of beryllium produced p-type crystals. The crystals are suitr_
k

able as substrates for epitaxial growth of boron phosphide and

for electrolytic etching studies,

G	
F, 

Y
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1. Introduction

Boron monopho5phide (BP, referred to as boron phosphide

hereafter) is one of the III-V compound semiconductors with

a large energy gap, approximately 2,0 eV 
1 1 2 ),, The preparation

of large single crystals of boron phosphide is, however, diffi-

cult. Its unknown high melting point, high dissociation pres-

sure (about 1 mm at 1100 0 C), and decomposition into a sub-

phosphide (B 6 
P) at elevated temperatures 

3) pose difficulties

in the crystal growth of boron phosphide, especially by con-

ventional melt growth techniques, Neither chemical transport4,5

nor high pressure synthesis 6p7 ' 8 ) have produced single crystals

larger than about 2 mm in any one dimension, Boron phosphide

crystals have been grown by recrystallization from solution

2,9,10	 and by precipitation from boron-nickel-phosphorus melts

10,11 Crystals with one dimension up to about 4 mm have been

obtained from these solutions.

S In the work discussed here, the recrystallization tech-

nique for the preparation of boron phosphide was extended to

include accelerated container rotation, which was reported to

improve the crystal size and quality of aluminate and garnet

12-14crystals	 dVarious nickel phosphides were investigate

"
''I as solvents for boron phosphide.	 In addition, the results of

intentional doping experiments, which produced both n•type and 5
PS'

p-type boron phosphide, are discussed, 	 The experimental pro-

cedures and results are summarized below,

2.	 Crystal Growth of Boron Phosphide

2
j4



2.1 Recrystallization in a Stationary Container

From previous work 10 ) it was concluded that recrystalli-

zation from nickel phosphide near 1200°C is the most promising

technique investigated to.date to grow large crystals of boron

phosphide, For this reason, a more detailed study of the para-

metersof this process was carried out.. In the recrystalliza-

tion technique, a small temperature gradient is maintained

across a saturated solution of boron phosphide in nickel phos-

phide with a source of polycrystalline boron phosphide at the

high temperature end of the solution, Due to the higher solu-

bility at higher temperatures, a concentration gradient is set

up across the solution, and consequently, transport of boron

phosphide from the polycrystalline source to the lower tempera-

ture region occurs,

The recrystallization experiments were carried out in_evac-
Y

^. uated fused silica ampules located in' a vertical resistance

heated furnace,	 The ampules were 13 cm long, with a 15 mm ID

and a 20 mm OD,	 A fused silica rod, which extended to a cooler k

part of the furnace, was attached to the bottom of the ampule as

? a heat sink,	 The ampules contained 30 to 35 grams of nickel

phosphide, 1,0 to 2.0 grams of polycrystalline boron phosphide, K

`r and various amounts of phosphorus. 	 The boron phosphide source

material was at the top of the solution.	 The ampules were posi-

tioned in the furnace such that the furnace temperature near the

uA. top of the solution was typically 1220°C, and at the bottom of

the solution, the furnace temperature was 1200°C.	 In the experi-

1;1
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ments which produced boron phosphide crystals, the crystais

were found in the lower half of the ampule near the ampule

wall.

The composition of the nickel phosphide, which has not been

previously investigated in boron phosphide crystal growth experi-

ments, was found to be important in the . recrystallization pro-

cess. The nickel-,phosphorus system itself is known to be ex-

trem6ly complicated, and as many as ten different nickel phos-

phides, some with very similar stoichiometries, have been re-

ported	 Therefore, a variety of conditions were used to

synthesize nickel phosphide during this investigation', The syn-

thesis was done with temperatures and phosphorus pressures sim-

ilar to those conditions required for the recrystallization of

boron phosphide, That is, temperatures in the range from 1200°C

to 1400°C and phosphorus pressures from about one to five atm

were used The predominant compound formed in many of these ex-

periments was Ni
2 P as determined by x-ray data; the material so-

117	 lidified as needle-like crystals which are typical of this com-
4

pound	 In one case, Ni
73P was obtained. Some of the ingots

L
obtained were phase mixtures of Ni

2 P and other more phosphorus-ill 

rich nickel phosphides. A detailed analysis of the phase mixtures

was not carried out, but NiP was probably the most phosphorus—

rich compound formed. Since Ni
2 P has a wide homogeneity range,

it is also likely that there was excess phosphorus in the ingots.

E[
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fill	 Al1.of the crystal growtli experiments which produced large

single crystals of boron phosphide used only Ni 2 P as the solvent.
E

The use of Ni
7
P3 produced only small crystals, and the phase mix-

	

'	 tures of Ni 2P with other nickel phosphides produced no crystals,

	

,.,	 Ni2P was conveniently made by the reaction of phosphorus vapor

with nickel in sealed ampules near 1250°C. Also commercial nickel

t phosphide (Puratek, Norwood, Ohio), reported to be 99,9% Ni 2 P, as

the solvent produced equally good crystals if excess phosphorus

Tover that amount used with the laboratory grown Ni
2P was added

to the ampule. , This indicates that the laboratory synthesized

Ni 2 P did contain excess dissolved phosphorus,

The amount of excess phosphorus needed in the crystal growth

ampules was also investigated. With the commercial nickel phos-

phide, typically about 2 g of phosphorus was used, and with the

laboratory grown Ni 2 P, about 0.5 g of phosphorus was used. Small

variations of these amounts did not affect the results. With ,-a

three to four week growth time, boron phosphide crystals in the

form of platelets and sometimes polyhedrons were obtained. The

	

tUP	 main faces of the platelets were up to 20 mm 2 in area, and the

	

(L	 thickness of the platelets was up to about 1.5 mm. The poly -

hedrons had maximum dime°risions of 5 mm x 4 mm x 3 mm. Platelets

U predominated in these experiments, and their morphology is dis

cussed in the next section.



2.2 Recrystallization with the Accelerated Container Rotation
Technique

The accelerated container technique is an effective tech-

nique tos;tir liquids, and this technique was adapted to the solu-

tion growth procedures discussed above. The ampules were con-

nected to a drive mechanism such that they could be rotated about

the axis of the furnace.. The maximum rotation rate was adjustable

up to 12G rpm, the acceleration was adjustable in the range of

±0.47 rad/sec t , and the time period was variable in the range

from a few sec to one min.

The boron phosphide crystals grown with the accelerated con-

tainer rotation technique were larger, had fewer voids, and had

better developed faces than those obtained from a stationary con-

tainer. The experiments with the accelerated container produced

boron phosphide crystals with dimensions on the faces up to 8 mm,

and some of the crystals are shown in Fig. 1. 'The size of the

crystals obtained from the accelerated container was not sensi-

tive to the exact rotation conditions. A one iRin time period and

a maximum rotation rate in the range from 40 rpm to 70 rpm pro-

duced the best _results. Two different cycles of rotation were

used with similar results: a simple sawtooth rpm versus time
U.

cycle with rotation in both directions and a truncated sawtooth	 w°

rpm versus time cycle with rotation in both directions. These

results demonstrate the usefulness of accelerated crucible rota-

tion for the preparation of boron phosphide crystals.

Boron phosphide crystals obtained from the recrystallize

tion experiments were usually in the form of thin platelets, but

6
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platelets which grew-with both main faces smooth, etching in a

3:1 sodium hydroxide:sodium peroxide mixture was found to pro-

duce etch pits on the face which normally grew with a smooth sur-

face; no structure was produced by this etchant on the normally

rough face.

The majority of the large boron phosphide crystals contained

both p-type and n-type regions. Typically the faces were n-type

and a central core was p-type. This inhomogeneous distribution

of impurities is probably a result of two factors: a higher segre-

gation coefficient for p-type impurities than for n-type impurities

so that p-type impurities are depleted from the solution and a

continuous supply of silicon, which as discussed below is an n-

type impurity in boron phosphide,going into the solution from the

ampule. A convenient technique to observe the n-type and p-type re-
17

gions in these crystals is electrolytic etching*	 Since p-type

i j^	 material etches much faster than n-type material, exposed p-type

boron phosphide will be removed rapidly from a crystal. Figure 2

shows a cross section from a boron phosphide crystal which had the

p-type core exposed on one main face. P-type boron phosphide could

also be electrolytically polished to a smooth finish.

P-n junction electroluminescence was also observed in some

of the crystals with built-in junctions. Easily visible red

7
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polyhedroAs were also obtained. The platelets usually had one

main face flat and smooth and the other main face rough. The

platelets had (111)-type main faces, and as previously described
LAM	

10 ) grew by the twin plane reentrant edge mechaniE-,qi 16	 For
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emission was seen from the n-type side of crystals whose p-type

core has been partly etched away. 	 The electroluminescent emis-

sion required a current density of about 10 A/cm 2 through the

junctions. 	 r;

3.	 Intentional Doping of Recrystallized Boron Phosphide

Since the boron phosphide crystals obtained from these

growth experiments usually contained L,,>th p-type and n-type

regions, a number of doping exper,mentt5 were carried out in
>

an effort to produce crystals with a more uniform distribution

of impurities.	 In these experiments, the elements zinc, mag-

nesium, beryllium, sulfur, selenium, tellurium, and silicon

were investigated as dopants.

i. Beryllium, magnesium, and zinc were expected to be p-type

dopants in boron phosphide.	 These materials were added to the

solution in the growth ampules both as the elements and as the

phosphides:: Zn3P 2 , Be 3P 2 , and M93P 2 . The addition of zinc to

the solution did not appear to affect the electrical properties

of the crystals. However, both beryllium and magnesium were

found to produce mostly p-type boron phosphide, although n-type

regions were sometimes found in the crystals. Beryllium doping

produced p-type crystals more consistently. 	 _,

.,	 Among the expected n-type dopants investigated, only tellur-

ium tended to produce n-type crystals; some crystals with p-type 	
tl

tl

and n-type regions were also obtained; with tellurium doping. The

}
- 8 -
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addition of sullfur and selenium to the growth ampules did not no-

iiceably affect the electrical properties of the crystals. The

best n-type dopant, however, was silicon, and only n-type boron

phosphide was obtained from growth experiments with silicon as

the intentionally added impurity. The limited success of the

doping experiments is probably due to the use of an element which

is not a constituent of the grown crystals in the solution and to

the presence of impurities in the nickel phosphide solvent,

4. Summary and Conclusions

The accelerated container rotation technique has been shown

to be useful for the growth of boron phosphidecrystals from a

nickel phosphide solution. Larger crystals, with dimensions up

to 8 mm, were obtained from experiments which used an accelerated

container than from experiments with a stationary container.

These results were obtained even with tall, small diameter growth

ampules, in which the effect of accelerated container rotation

is probably not as pronounced as in large diameter containers

The results of the experiments described in this paper also in-

dicate that Ni 2P may be the best nickel phosphide solvent for
Y

t
the recrysvallization of boron phosphide. 	 Neither Ni 7 P 3 nor

3? phase mixtures of NiZP with more phosphorus -rich nickel phosphides

produced large crystals.	 More nickel -rich nickel phosphides may

- also not be suitable, since a certain minimum amount of excess

t'phosphorus had to be added to the growth ampules. 	 Without the

intentional addition of impurities to the growth ampules, the

solution grown boron phosphide crystals usually contained built-in

LI
9
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p-n junctions. Easily visible, red electroluminescence was ob-

served in some of these crystals. Intentional doping was suc-

cessfully accomplished: silicon added to the solution produced

only n-type baron phosphide and berylliumproduced mostly p-type

material. The boron phosphide crystals described in this paper

have been used as substrates for epitaxial growth and for elec-

.' trolytic etching investigations.
j
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FIGURE CAPTIONS

Fig. 1.	 Boron phosphide crystals grown by recrystallization

°C411 near 1200 from.Ni. 2P with accelerated container

rotation.

Fig. 2.	 Cross section from an electrolytically etched boron

phosphide crystal,	 The p-type core has been removed

due to the preferential nature of electrolytic etching.
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Fig. 1	 Boron phosphide crystals grown by recrystallization
near 1200°C from Ni 2 P with accelerated container
rotation.
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Fig. 2	 Cross section from an electrol y tically etched
boron phosphide crystal. The p-type core has
been removed due to the preferential nature of
electrolytic etching.
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ABSTRACT

This dissertation is concerned with the preparation

of bulk single crystals and epitaxial layers of boron
UE

phosphide, the development of fabrication technology for

boron phosphide devices, and the characterization of boron

phosphide devices.

Bulk crystals of boron phosphide of both n-type and

p-type conductivity were grown by ecrystallization from

nickel phosphide solutions near 1200 0C using stationary and

a,-celerated crucible rotation techniques. Both n-type and

p-type epitaxial single crystalline layers of boron phos-

phide were grown on hexagonal silicon carbide and solution

grown boron phosphide platelets by the thermal reduction of'

a boron tribromide-phosphorus trichloride mixture with

hydrogen near 1075 0C - The epitaxial layers were used for

the fabrication of heterojunction and homojunction devices.

Because of the chemical inertness of boron phosphide,

an electrolytic etching technique was developed for the con-

U7 trolled removal of boron phosphide at room temperature.	 This

technique has been extremely useful for delineating p-n

junctionz in boron.. phosphide devices.

o
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Metal-insulator-boron phosphide structures with silicon
-4P

^i
nitride (or silicon dioxide.-silicon nitride) as the insulator

have been fabricated; they are characterized by negative

charges in the semiconductor-insulator interface.	 Silicon

71 carbide-boron phosphide heterojunctions have been fabricated;

they are characterized by high density of interface states.

Mesa type boron phosphide p-n junctions were isolated from

j epitaxial layers and solution grown crystals.	 Easily visible

red electr.oluminescence was observed from both epitaxial and

sR solution grown p-n junctions as well as from point contac t
diodes.
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CHAPTER I
^

t INTRODUCTIONr
1

' f Boron monophosphide (BP, referred to as boron

phosphide hereafter) is a III-V compound semiconductor

which crystallizes in the zincblende structure with a

Ll lattice parameterparameter a _ 4.38 A.1	 Boron phosphide has an
i

indirect energy gap of approximately 2.0 eV. 203
	Due to

Ll
1

this relatively large band gap, boron phosphide has po-

tential applications for high temperature devices and for

optoelectronic devices for visible light emission.	 Gallium
tf

.^ phosphide, another III-V compound with a similar band gap

a' n (2.2 _eV) , has been used extensively in the fabrication of

- light -emitting diodes	 and for high temperature rectifiers,5

Gallium arsenide, also a III-V semiconductor of lower band

gap (1.4 eV) has been used to fabricate infrared electro- i
high temperature diodes. 6 ' 7	Inluminescent devices and

contrast to gallium phosphide and gallium arsenide, boron

phosphide is chemically inert and has a hardness almost

Ll
equal to that of silicon carbide. 	 Boron phosphide has

f recently been used as ' ` a component -in the preparation ofr
F

heat-resistant electrically insulating materials. $	How-

s ever; its high melting point (> 30000C) 3, high dissociation
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2

pressure ( about 1 mm at 1100 0C), and decomposition into a

G

j
subphosphide ( B6 P)at elevated temperatures 9 have posed

difficulties in the c ystal growth of boron phosphide of

controlled purity suitable for device fabrication.

p

I.A	 Amorphcus and Folycrystalline Boron Phosphide

Besson10 and Moissanll first reported the preparation

of borers phosphide powder by reacting boron halides with

phosphorus or phosphine, but 'interest in boron phosphide
„

12increased only after Welker 	 showedy	 owed that the compound has
tF

interesting semiconducting properties .	 Since then	 several

investigators have used different methods to prepare boron

phosphide.	 Amorphous and polycrystalline boron phosphide 3

have beenre aced b sp	 p	 y	 (1) the direct combination of the	 -
I+' elements in sealed tubes at 900 0 to 11000C,l' 13-15 (2) the

,

a
C;

-thermal decomposition of an addition compound of boron ti

LI
16

andtrichloride	 phosphorus pentachloride

(BC13 . PC15 ----4---3o, BP + 4 .012),	 (3) the reaction of boron
1100_-

and zinc phosphide
14
 (Zn P2 + 2B --^ 2BP + 3Zn),3

(4)	 the reaction of boron trichloride and ;phosphine9 1
1100°C(BC13 + PH ' --------* BP + 3HC1), (5) the reaction of

9aluminum phosphide with boron trichloride
°C(BC1	 + AlP _1100_ + A1C1 ) , and (6) the reaction of

3	
3

w
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phosphine with boron powder l? {2B + 2P$ _1100 oC^ 28P + 3H

	

3 ------	 ^
Boron phosphide and boron subphosphide were 'found to be

chemically inert to boiling mineral acids and aqueous alkali

solutions, and only at elevated temperatures did molten

sodium hydroxide attack boron Flhosphide slightly. Boron

phosphide was also found to be resistant to oxidation in air
o	 o

	up to about 800 to 1000-C, and at higher temperatures, the	 ?

product of oxidation is boron phosphate (BPO4).9

a
a

I.B Bulk Single Crystals of Boron Phosphide

Th;' first single crystals of boron phosphide were

groN-m, in ;1960 by Stone and Hilll$ by two different methods.

	

I	 ^
In the first method, the vapor phase reaction of boron com-

pounds with phosphorus compounds or phosphorus vapor was

	^.	 used to produce reddish broom boron phosphide crystals, 1 or
iW

	

A^	 2 mm in length, and polycrystalline films on quartz. In the	 3

second method, the slow cooling of a melt containing boron

and phosphorus resulted in boron phosphide crystals;on the 	 y
is	

3

order of 1 mm in all dimensions. Hall: measurements indica-

ted that these boron phosphide crystals had a dopant'concen-

tration on the order of 10 18 m

	

c 3 . They estimated the index	 a

of refraction of boron phosphide from measurements of the

displacement of an image to be between 3.0 and 3. 5 An

t 	 ,

6

A	 a
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if

abrupt decrease in the transmittance of polycrystalline

films at 6 eV was interpreted to be the band gap of boron

phosphide, and an absorption edge at 2 eV was assumed to

account for the red color of boron phosphide.

_.

LI Archer et al.	 produced 1 mm x 2 p	 1 mm x 0,1 mm boron

phosphide single crystals by crystallization from a'nickel

^- phosphide solution. 	 From their investigation of injection x

electroluminescence, optical absorption, and photoelectric

response of gold-boron phosphide surface barrier diodes,;

they concluded that boron phosphide has an indirect energy k

gap of about 2 eV consistent with the red color of boron

phosphide crystals. 	 This was confirmed by Wang and co-

{ workers3 from optical transmission measurements on boron

phosphide crystals.	 These crystals were grown by

recrystallization from metal (nickel, iron, platinum, and

germanium) solutions.	 Boron phosphide powder was dissolved

in metal solvents which were heated by an rf generator to

a 13000 to 1500°C in closed quartz ampules under a phosphorus

pressure- , of about 1 atm.	 Slow cooling of the saturated

solution resulted in p-type, orange red, baron phosphide f,

crystals which were several millimeter in size and,'

polyhedral in shape.	 These crystals had a room temperature

resistivity of 10- 2 ohm cm, a carrier concentration of

j4

i

,f

4y	
.
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1018 cm-3, an	 a hole mobility of 500 cm 	 at

roomroom temperature.	 Red injection eleotroluminescence was

observed at the anode when the crystals were contacted with

metal probes. Yellow needle shaped roron phosphide

' crystallites, produced by the vapor phase reaction of boron
k

f oxide or boron oxysulfide with phosphorus, were also

reported by Nang and co-workers.r^

19020Grinberg and co-workers	 '	 used closed tube chemical
77

UA- &	 1

transport to produce boron phosphide single crystals. 	 The

Process was carried out at 9000 to 12000C with various`

^. .temperature gradients between the source and the crystal-

`. lization zone, and group VI elements were used as transport

agents.	 It was found that the transport is diffusion

S limited and therefore proportional to the temperature
r
z

gradient.	 The number of nuclei increased rapidly with the u

rise in temperature gradient.	 The temperature in the

r
growth zone mainly affected the shape of the crystals; b

plate-like and dendritic crystals grew at high temperatures

and isometric single crystals grew at low temperatures.

The boron phosphide crystals grown in these experiments

_	 t did not exceed 2 mm x. 2 mm x l mm.	 The 'closed tube
,t

chemical vapor transport technique was also employed by

Armington21 to grow boron phosphide single crystals with

r



sulfur, selenium, and iodine as transport agents. 	 Boron

f,i phosphide was transported from the high temperature zone

(9500 to 10000C) to the low temperature zone (800 0-C) in

The	 times	 fromevacuated ;quartz -ampules.	 reaction	 -varied

30 to 90 days, but most of the transport appeared to occur

z ` during the first week, 	 The yields in all the exP eriments

were small and the largest crystals were 0.25 mm in diame-

ter,

22, 23
s; Baranov et al::	 grew n-type boron phosphide

single crystals by recrystallization from copper

subphosphide (Cu P) with a vertically positioned ampule in
3

b
a temperature gradient. 	 A sintered pallet of boron

r

phosphide, pressed mechanically into the lower portion ofj}

the ampule, was used as the source material. 	 Since_ boron,
phosphide has a lower density than the solvent, the growth

of boron phosphide crystals occurred in the upper, colder

portion of the ampule.	 The experiment time of 1.month and

the slow cooling at the end of the'_ experiment resulted in

transparent red boron phosphide single crystals with

dimensions up to 4 mm x 3 mm x 2 mm.

Stearns and Greene2	prepared boron phosphide and

boron subphosphide (B1zP2) from B-Ni-P systems in attempts_

to construct ahase di	 -P system.	 Thep	 diagram of the B-^i.	 y	 y

y
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' reported that Ni2P dissolves boron and Ni 3P does not, in

agreement with the findings of Rundquist.2 5	Boron

 sin le crystals were alsophosphide	 g	 y	 prepared by Iwami and

rkers26 from a B-Ni-P solution in a vacuum sealed--

silica tube, which was in a horizontal two zone furnace.

In this work, a P-Ni alloy was heated to 1250°C in one and ^y

of the tube, and the temperature of the other end of the

ampule was held at 430 0C which corresponds to a phosphorus

{ vapor pressure of 1 atm.	 Slow' pulling of the ampule out of

the furnace produced boron phosphide crystals up to 5 mm x
2 mm' x 2 _ mm

Chu et al. 27 '
-
	have	 the crystal growth

_..'.7
investigated

of boron phosphide by both closed tube transport and re- F	 j

crystallization from metal phosphide solutions.	 In closed

tube chemical transport experiments, polycrystalline boron

phosphide was used as the source material. 	 Phosphorus was
{

introduced into the quartz ampule to suppress the decom-

position of boron phosphide at high temperatures.

Phosphorus trichloride, iodine and bromine were used as the
A

i'

. ^ ransport agents.	 A source temperature of 1000° to 1290°C- ^'
i

and temperature gradients in the range from 15°- to ?5°C were

employed.	 The use of iodine as the transport agent with a

z
s source temperature of 12900C, ,a temperature gradient of 150

All Ll
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to 200C and a flame worked fused silica tube yielded p-type

boronhos hide single crystals in the form ofp p	 o	 y	 polyhedrons

measuring l to 2 mm on each side. In the recrystallization

experiments two approaches were investigated: in the first,

the addition of phosphorus to a boron-nickel or boron-

copper melt at 1300°C followed by slow cooling resulted in

boron phosphide single crystals up to 3 mm in size;

secondly, the recrystallization of boron phosphide from a

Ali 	nickel phosphide or a copper phosphide solution in a
3>('

a temperature gradient at 12000C produced low resistivity

n-type crystals up to 4 mm in size,.-
3

I.0 _ Epitaxial. Layers of Boron Phosphide

In addition to the preparation of bulk crystals, the

growth of epitaxial layers of boron phosphide has also been

investigated.	 Takigawa and co-workers 29 grew 1 um thick

layers of single crystalline boron phosphide , on silicon

substrates of (100) , (110) and (111,) orientation by the

thermal decomposition of a diborane-phosphine mixture in

hydrogen in the temperature range of 950 0 to 1050°C.	 By

t
adjusting the temperature and flow rates of the reactant

gasses, both n-typ€ and p-type, epitaxial boron phosphide

layers of low resistivity were deposited.	 Nishinaga>f

et al. 30 employed the thermal reduction of boron

- t

I r
t
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a

air
tribromide-phosphorus trichloride mixtures to grow

epitaxial single crystalline layers of boron phosphide, up

to 30 pm in thickness, on the (111) face of silicon in the

temperature range of 1000 0 to 1100°C.	 However, because of

the lattice mismatch and the difference in the thermal

expansion coefficients, grown samples were severely
E

distorted into a concave shape with the boron phosphide

layer inside.	 Chu et al. 31 have deposited boron phosphide

layers on the basal plane of hexagonal silicon carbide by

thermal reduction of boron tribromide-phosphorus trchloride

mixtures with hydrogen.	 The grown boron phosphide layers

were single crystalline and epitaxal with respect to the

substrate and were of low resistivity p-type.

In addition to the work reviewed above, other

researchers have determined several properties of boron_ 4

K`

M phosphide.	 Ryan and Miller32'studied the photoluminescence

r	 phosphide at l.8°	 .0°of boron	 and	 °K andon p _	 p	 , 5	 77 reported ap

r

4

d

donor-acceptor pair spectrum at 1.8 0K similar to that4

observed by Hopfield and co-workers 33 in gallium phosphide. a

The index of refraction from the measurement of the Brewster-
G	 -^

angle was reported to be 2.6 in contrast to a value of 3.1

from reflectivity measurements by Wang and co-workers.3

3,35-37Hemstreet and Fong--'_T and others 	 have shown
3

2 i

t

g
E,



to

theoretically and experimentally that boron phosphide has

the IIIInrl the most covalent character among	 -V compounds.
i

addition, boron phosphide is characterized by direct inter-

band transitions of 5, 6 .9 and 7 .9 eV.	 The heat of forma-

tion of boron phosphide has been determined to be

-22.7 ± .84 Kcal/mole at 250C. 38p ^

I.D	 Research Objectives >

One may conclude from the above review that the

fabric?ation of boron phosphide devices presents a number of

extremely difficult problems, 	 First, the crystal growth of

boron phosphide is an extremely difficult task. 	 Second,

the impurity concentration in the vapor and solution grown

crystals cannot be controlled to meet the requirements of e

r
device quality material. 	 Third, its near inertness at

h ordinary temperatures and high dissociation pressures at
z!

elevated temperatures pose some formidable device fabri-
r

cation difficulties.	 Thus, the object'L.•e	 ^f this work x
x

:were:	 (1) to grow reproducibly boron phosphide single

crystals of reasonable size and perfection, (2) to grow

µ epitaxially n-type and p-type boron phosphide layers of

controlled impurity concentration, (3) to develop device

fabrication techniques, and (4), to fabricate and to

f

SJ
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characterize boron phosphide devices such as homojunction

and heterojunction structures, and MIS devices._
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CHAPTER 11

Ci',YSTAL GROWTH OF BORON PHOSPHIDE FROM SOLUTIONS

This chapter is concerned with the growth of single

crystalline boron phosphide by various solution growth

techniques and the characterization of their properties.

Single crystals of boron phosphide have been grown by

recrystallization from metal phosphide solutions in a

vertical temperature gradient with both stationary and

accelerated crucible rotation techniques.	 The feasibility

of using , grOUD III metals for the recrystallization of

boron phosphide was also investigated. 	 Doping of boron

phosphide crystals was carried out and the characteristics

of the solution grown crystals were determined.

II.A	 Introduction to Solution Growth

The growth of crystals from solutions is a useful

technique for materials that have high melting point or

decompose at high temperatures.	 Although the rate of

,; ^ crystal growth from solutions is only a small fraction of

tj.jut from the melt, the melt growth technique is not suit-

able to grow materials that decompose at t-he melting point

or undergo phase transformations between the melting point

12
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and room temperature.	 Solution growth, which can often be

achieved at temperatures considerably below the melting

point, is appropriate for materials with these properties.

The solution growth method is based on the tempera-

39tune dependence of solubility according to the relations

d (1nS YdT	 _ A H/RT 2

where 5 is solubility, _OH is tree heat of the solution, T

d R is the	 as constant.	 Inis the absolute temperature, an 	 gp	 _ x

this method, the constituents of the desired crystal are

dissolved in the solvent (the flux) to form a saturated

L1 solution at a high temperature and growth occurs by re-

ducing the temperature of the solution to cause super-

saturation.	 The growth process occurs in three steps=

(1) transport of the solute to the crystal-solution in ter-

face,	 (2) the surface diffusion and deposition of the

solute on the growing interface, and (3) the dissipation

of the heat of crystallization.	 The transport of the

solute involves diffusion and convection. 	 For crystal

growth to occur, a. supersaturated solution must exist in

the neighbourhood of the crystal. 	 As the crystal grows,

the solute concentration at the interface is_redu%:ed and

HE

,...m........a.mJ..,. ,....:....Y...,.Y,..a a..a...,.,..._.._..... _ .^.as_. f..+^s&assr..]'.v..-..,.v+	 ..._.mE.._ _.. ^.. _	 _. ^"+'-1 :°	 ,	 ...f^`,3.... ,.
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a concentration gradient normal to the interface is

created.	 This leads to the diffusion of solute towards

{
the crystal.	 From values of the appropriate diffusion

,
4

coefficients, the process of solute diffusion can be
t

4
analysed.	 Surface diffusion influences the growth be-

' i haviour of crystal faces. and of steps on faces.	 The

deposition of solute on the growing crystal is very

{. structure sensitive.	 For example, in some materials, good

l' quality crystals can be grown only in a particular di-

;`{ rection, and the growth rate will be slow if a seed of

another orientation is used.	 The solute diffusion and the

surface reaction are invariably much slower than the dis-

sipation of the heat of crystallization and they , are

usually the rate controlling steps in contrast to the melt ^j©

technique, in which the rate determining step isgrowth
i

3"^r
I! a

IN lie dissipation of the heat of fusion from the solid-liquid 1
t inn erf ace . 40

i' The. choice of a suitable solvent is the most im-

portant parameter in the solution growth process-. 	 Some of

`.'
41

the desired characteristics of the solvent are: 	 (1) A. high'

solubility of the solute at temperatures much lower than

the melting point of the solute, (2) inertness towards the

crucible material, (3) low viscosity to facilitate transport ^
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r^

t
{

k

of solute by diffusion and convection, (4') low vapor

pressure- 'at the growth temperature, (5) low melting point

and high boiling point of the solvent, (6) possession of a

Ll common ion with the solute, or if not, then be composed of

:ions that are not readily incorporated in the crystallizing,-H

solute, and (7) low solubility in the solid solute so that

the solvent does not influence the physical properties of
r _

the crystallized material. 	 A complete phase diagram for
a

the solvent-solute system, if available, is very useful.
r ,

all
Ll Growth of large single crystals from high tempera-

} ture solutions requires control of nucleation, maintenance

of sufficiently fast solution flow at the crystal interface,

}' 4 and prevention of constitutional supercooling and dendritic

Ll growth after nucleation.	 These conditions are realized by

U

the use of seed crystals and stirring in crystal growth
F..

" from aqueous solutions. 	 However, the use of seed crystals

and stirring are extremely difficult to employ under the

conditions of high temperature solution growth,.	 In the

absence of forced stirring, growth rates are very slow

especially with very viscous solvents. 	 In addition, small
rf

__

convection cells within the solution are easily set up due

y' to localized small temperature gradients.--
42

- 	 The uniform

rotation of the container can only reduce temperature
f

Y	 Y
zE

jj .
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differences due to a thermally asymmetric furnace, but does

not lead to adequate mixing of the solution because the

y

crucible and solution rotate at the same angular velocity.

i In high temperature solution growth, a mechanism is
Y

^

4	 3 required which agitates the solution in much the same way

as conventional mechanical stirring in crystal growth from

aqueous solutions.	 An accelerated rot ation (e.g. bringing

a container from rest to rotation) leads to effective
42-46

;tirrirt of the solution.	 The solution close to the

., crucible wall follows any changes in the motion without

delay.	 Solution further inside tends to continue in its

previous motion due to inertia.	 The resulting pattern is

one of slippage and shear around the rotation axis. 	 Any
4i

local variations in solute concentration and temperature,

although still located at the same radial distance -from the

axis, are distributed in the shape of a tightly coiled

ro spiral.	 Therefore, - arts of the solution with differingP	 ___ 	 g'P	 ,	 t

concentrations are in close contact, and local differences

in the solute concentration or in temperature rapidly" dis-

appear.	 Besides radial mixing by accelerated rotation of

the-crucible', mixing in radial and verticals directions

occurs by convection and byb	 the motion of the solution_

caused by centrifugal forces.	 Additional mixing is caused

r
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_
^; I b =the	 '	 Ty	 growing crystal . .itself.. :	these considerations and

7*
results from the growth of gadolinium aluminate crystals

point to the usefulness of the accelerated crucible rota-

tion technique (ACRT) in the control of nucleation and the

? adverse effects of constitutional supercooling and con-

vection. 3	Crystals grown by accelerated crucible rotation
j
' technique had fewer flux inclusions and cracks than

Scrystals grown in a stationary crucible.

As discussed above, the solution growth technique is

' most useful for the preparation of materials with high

melting points and low dissociation temperatures. 	 Materi-

als grown from solution also tend to have a smaller con-

centration of electrically active or optically active point
i

defects,	 Materials grown from solution often have few dis-

'. locations, since they grow in a strain-free and nearly

isothermal environment.	 Some of 'the other ̀possible 'ad-

vantages of the solution growth technique arethat highly,

substances may be 	 reatl	 moderated breactive su	 ^	 g	 y	 Y dilution

with the solvent and by the lower temperatures employed,

and the ,problem of finding a suitable crucible material

may be greatly alleviated.	 Boron phosphide, which is the

subject of this dissertation, has a high melting point and
f-

high dissociation pressure. 	 The solution growth technique

k
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is therefore well suited and was used for crystal growth

i of boron phosphide.

I
II.B	 Boron Phosphide Solvents

Single crystals of a number of III-V semiconductors

have been prepared by recrystallization from an excess -1

of the metallic component or from metals, foreign to the

growing substance.	 For example, single crystal gallium,

phosphide has been prepared from gallium and tin
47,48

6 solutions.	 In the case of boron phosphide, boron is

not a suitable solvent because of its high melting point

i (23000C).' As discussed in chapter I, a number of other

metals such as nickel, copper, iron, and platinum or theirr,
phosphides have been used by researchers as solvents for a

;. the crystal growth of boron phosphide.	 The use of nickel w

and copper appears to offer advantages over other metals
49,50

for the following reasons: 	 (1) boron is soluble in

nickel and copper over a wide temperature range, (2) nickel

forms at least eight phosphides (Ni P
0
 Ni5P2 	Ni12P5,

e
, Ni

p
, Ni

p
, andNi2P, NiSP	 NiP3), and the first four

phosphides have melting points below 1200 0 C, and (3) copper

forms two phosphides (Cu P and CuP ) and both have melting
a 3	 2

points below 1200 0 C.	 In addition, experiments carried out

in this laboratory on the recrystallization of boron

_ s	 ,
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phosphide from copper phosphides 
(Cu 3P and CUP2) and3	 2

nickel phosphides showed that boron phosphide was more

soluble in nickel phosphides than in copper phosphides. 51

These considerations suggest that nickel phosphides are
i

3

probably the most suitable solvent for boron phosphide and
•

were therefore used zn the prep 	 phosphidestation of boron 

crystals:.
a

7

Polycrystalline nickel phosphides were synthesized

?; from the elements under conditions similar to those used
k

for the recrystallization of boron phosphide from nickel

phosphide. solutions.	 A schematic diagram of the apparatus k

is shown in Figure 2.1. 	 An alumina boat with a 46 g nickel
i; ingot was fitted into 'a cylinderical graphite sleeve of

{

25 mm ID and 31 mm OD which was used as a susceptor for

rf heating.	 The susceptor was positioned in a fused! silica

spacer so that the graphite contacted the spacer only at g
G

eight points.	 This assembly and 23 g of red phosphorus

were placed in a fused silica tube of 50 mm` ID and 5.5 Mm OD,

which was evacuated to less than 10_
5

 Tom and sealed.	 The
a

reaction tube was about 45 cm long after sealing. 	 The and
i

of the tube containing the susceptor and phosphorus was

heated slowly to sublime all , phosphorus to the other end

of the tube.	 The susceptor was then heated at the desiredN
r	 ,

c

.:	 _ _:	 _.._	 .0	 =:_ .0 '.:._ ='S^_,.n`-t:.:^Yrm'^..vac:;v,a__._.ev..... ^. •̂ .v.^_. sY..n^.c¢.....:.eatlss[^' -	 .•,•
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temperature, 1250
0
 to 1300°C, with an rf generator, and a

?
I

resistance heater surrounding a major portion of the

reaction tube was used to maintain the phosphorus pressure

z
in the tube at about 2 to 3 atm.	 The reaction time was

usually 24 hr or longer to assure saturation.	 The X-ray

Debye-Scherrer pattern of the resulting product was
r-

identical with that of Ni 2P52 (Figure 2.2).	 Several other

varieties of nickel phosphide were also prepared by

adjusting the temperature of nickel, the phosphorus

pressure, and the reaction time. 	 For example, nickel

phosphide prepared from nickel held at 1350 0 to 1400oC

with a phosphorus pressure of 3 to 4 atm for 32 hr pro-

duced an ingot with an average compos ition of`Ni3P2 as

deduced from the weight increase of the nickel- ingot.

t

This material was analysed by the X-ray bebye-Scherrer
3

technique; however, the diffraction patterns were too

complicated to identify its composition.	 It was probable

that NP was the most phosphorus rich compound formed.

Since phosphorus is soluble in Ni2 P O ' _it is also likely

that there was an excess of phosphorus in the ingots.

F.
Nickel phosphide was also synthesized by saturating

ff,

nickel at about 12000 with phosphorus at a pressure of

1 to 2 atm.	 About 12 g of red phosphorus was put into a

e
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fused silica tube of 25 mm ID and 29 mm OD after a fused

silica boat containing a 50 g nickel ingot was fitted in

one side of the ampule.	 The tube was then sealed at a

l 10
-5
	lower.	 tube waspressure of	 Torr or	 The	 placed in

a horizontal Kanthal resistance heater, and the phos-

phorus was sublimed to the other end of the tube. 	 The

temperature of the nickel ingot was about 1200°C and the

temperature at the other end of the tube corresponded to
i

1 to 2 atm of phosphorus pressure.	 After 3 days the

nickel was found to be saturated with phosphorus, and the

X-ray Debye-Scherrer pattern of this variety of nickel

I! phosphide was found to correspond to Ni7P35 2 (Figure 2.2). q

Other materials investigated as solvents in the

crystal growth of boron phosphide were copper phosphide

i (Cu3P), indium, and aluminum.	 The use of aluminum and 9

T,

indium as solvents for the crystal growth of boron phosphide

has not been investigated previously.	 Copper phosphide_

r (Cu3P) was prepared in the manner described for the,prep-

phosphidearation of nickel 	 in a Kanthal furnace.	 The

£; I.` copper ingot was held in an alumina boat, since molten

copper wets fused silica.	 The copper ingot was kept at a

temperature of 11500 to 12000, and the phosphorus pressure

was maintained at 1 atm.	 The .reaction between copper and

y
tt
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phosphorus was complete in about 1 day.

II.0	 Growth of Boron Phosphide Crystals by

Recrystallization in a Stationary Crucible

i; The temperature dependence of the solubility of boron
IJ

phosphide in nickel phosphide was utilized for the crystal

growth of boron phosphide by the temperature gradient re-s,

crystallization technique.	 In this technique, a small

temperature gradient was maintained across a saturated

j(F} solution of boron phosphide in nickel phosphide with poly-

r crystalline boron_ phosphide in the higher temperature

region.	 Due to the higher solubility of boron phosphide at

high temperatures, a concentration gradient is set up across
e

{

F
the solution, and consequently,- transport of boron phosphide-

^	 7

from the polycrystalline source to the lower temperature
E

1
region occurs.

The recrystallization experiments were carried out in
f,

vertical :fused silica tubes with a Kanthal resistance heated

furnace.	 Since the density of boron phosphide is lower than

that of the nickel phosphide solution, the temperature of the

reaction tube decreased in the downward direction in the
I

majority of the experiments.	 These experiments were =carried

.,,w ` yout b	 sealing 15 g of 	 phosphide, 0. 5gof

r

-:_
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polycrystalline boron phosphide, and varied amounts of
.` phosphorus in a 13 cm long, 10 mm ID, and 16 mm OD fused

5silica ampule after evacuation to a pressure of 10 	 Torr

` or lower.	 The added phosphorus was used to suppress the

iR
r decomposition of boron phosphide.	 Fused silica ampules

of 15 mm ID and 20 mm OD were also used-in these experi-

ments to improve the size of the boron phosphide crystals.

In these	 larger, tubes, 25 to 35 g of nickel phosphide, 1.0

to	 2.0 g	 'of polycrystalline boron phosphide and varied

amounts of phosphorus were sealed.	 The ampules were then

-held in a vertical furnace at temperatures between 11900

and 12400 with temperature gradients from 100 to 30°C

A quartz rod, 3 to	 cm lonacross the solution.,	 g, was 3

connected to the bottom of the ampule as a heat sink. 	 After

` 3 to_4 weeks	 boron	 hos hide cr stals in the form of hex-,	 phosphide	 y

agonal platelets and polyhedrons were obtained.	 The main

facets the	 to 20	 in,	 theof .	 platelets were up	 mm2	area and

thickness of the platelets was up to 2 mm, and the-poly-

hedrons were up to 5 mm x 4 mm x 3.5 mm in dimensions._

s; The composition of the nickel phosphide was found to

be very important in the recrystallization pyocess. 	 All of

the crystal growth experiments which produced large single

crystals of boron phosphide used only Ni 	 as the solvent.2P

v,

F.



suitable nickel phosphide as a solvent for the crystal

growth of boron phosphide.	 In addition to nickel phosphide,

synthesized in this laboratory, commercial nickel phosphide,

predominantly Ni2P (purchased from Puratek, Norwood, Ohio),

was also used in these experiments and was found to be

satisfactory as a solvent in the solution growth of boron

phosphide single crystals. 	 However, the use of commercial

nickel phosphide always required a larger amount of phos-

phorus than the laboratory grown nickel phosphide. 	 For

example, in a typical experiment with a_10 mm ID Wand	 M

16 mm OD fused silica ampule described earlier, about 1 g

of phosphorus was required with commercial., nickel phosphide

compared to about 0.2 g of _phosphorus needed with the

laboratory synthesized nickel phosphide. 	 This indicates

that the laboratory synthesized nickel phosphide (Ni2P)

contained an excess of dissolved phosphorus.

The effect of phosphorus concentration on the re-

crystallization of boron phosphide was also studied. 	 It

was found that a certain minimum amount of phosphorus was.

necessary to grow boron phosphide crystals. 	 The upper limit

r

^I

I	 t
26
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I^ The use of NIL 7P3 produced only small crystals, and the phase

mixtures of Ni2P with other nickel phosphides produced no

crystals. It was therefore concluded that NIJ is the most



4 to the phosphorus concentration was imposed by the vaporL

pressure of undissolved phosphorus at the solution tempera-

ture.	 For example, when a 10 mm ID and 16 mm OD fused

tubesilica	 containing'. 0.7 g of phosphorus and 15 g of

commercial nickel phosphide was kept at 1240 00 for 18 days;

the tube was found to be completely collapsed, and no boron
E	 T`

( hos hide crystals were recovered.	 On the other hand	 aP	 P	 y	 ^
^.

same size tubs: containing 1.2 g of phosphorus and 15 g of

, commercial nickel phosphide was found to have expanded g

r
i

k slightly after 2U : days under similar conditions. 	 Boron

phosphide crystals were also recovered in the latter experi- p

:Went.	 About 1 g of phosphorus was found to be adequate for

the growth of boron phosphide under the conditions de-

scribed.	 The phosphorus concentration used in the larger z
( s

ampules was extrapolated from these considerations and was

found to be satisfactory.
t

A few recrystallization experiments were also carried
t,

out with copper phosphide (Cu 3P) as a solvent for boron
^

phosphide. " In a typical experiment, 15 g of copper ,phos-

phide and 1 g of polycrystalline boron phosphide were sealed

in a 13 cm long, 10 mm ID, and 16 mm OD fused silica tube
Y

at 10 
5 
Torr or lower.	 The temperature gradient varied

^i

{

r-

o `	 o
from 15	 to 30 C across the solution. 	 After 2 to 3 weeks,

k

i
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recrystallized boron phosphide was found in the form of
s

platelets 2 to 3 mm in size.	 Boron phosphide crystals ab-

t tained from nickel phosphide (Ni2P) solution were ;larger

' than those from copper phosphide (Cu3P) solution. 	 The use

of larger diameter fused silica ampules also produced

larger boron phosphide crystals.

f II.D	 Growth of Boron Phosphide Crystals by Recrystalliza-

a

tion with the Accelerated Crucible Rotation Technique

The accelerated crucible rotation technique was

--- applied to the crystal growth of boron phosphide with the

> same ampule size, ampule contents and solution temperature

^
as described- above. 	 Figure- 2.3 shows a schematic diagram A

E

of the apparatus.	 It consists of an electrical system
3

driving a motor with a linear voltage-speed characteristic,

r and the motor rotates the container about its vertical 	 .xis.

_' The circuit diagram of the wave generator and motor driver

{ are shown in Figure 2. 4. 	The maximum rotation rate is

'	
s _

ad justable from zero to 120 rpm, the acceleration is j 

adjustable to a maximum of 0.4n rad/sec t , and the time

;. U period of the system can be varied from about 10 sec to

1 min.	 This system is therefore sufficiently flexible to

F, permit a variety of accelerated rotation cycles.

t Figure 25 shows two such cycles of accelerated crucible

•_}	 ._....,.,.e,W..,.'. f .	 .	 ,...	 _ 	 . _,	 ., r.	 ,	 ...	 _	 ,. 	 t':,	 .	 _....	 ..	 .a,	 , rs,	 :.^m... ,.,_ ^r 	 ..m...^	 .._^	 x.^..n^n ..^..,,,._.^,.,..^..,.,. oH.^ t ,
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f	 rotation used.

li	 Boron. phosphide crystals grown with the accelerated

1 crucible rotation technique were larger, had fewer voids,

and had better developed faces than those obtained in a.	 i
i

	

	 stationary crucible. The experiments with the accelerated

crucible rotation technique produced boron phosphide

crystals of up to 8 mm x 4 mm x 2.5 mm in dimensions as

shown in Figure 2.6. The optimum conditions for the growth

of boron phosphide crystals in the,recrystallization experi-

ments with 15 mm ID and 20 mm OJT fused silica ampules with 	 e
f

_.	 commercial nickel phosphide were:
x
z	

;

Nickel phosphide	 = 30 to 35 g

Boron phosphide	 15 to 2.0 g
E.	 y

'^..	 Phosphorus	 = 2 g
p	 0	 5

Vertical temperature gradient _ 10 to 30 C

Run time	 = 3 to 4 weeks	 w
s

Rotation period of ampule 	 = 60 sec

'	 ACRT maximum rotation rate 	 = 40 to 70 rpm {

II.E Grovth of 'Boron Phosphide Crystals by Recrystalliza-

`	 tion in a Vertical Two Zone Furnace

i	 The general exponential dependence of solubility on
i;

temperature suggests that larger boron phosphide crystals

kkf r G

Awl
ME

1	 h

 S
 m

Y
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Figure 2.6 boron Phosphide Crystals Grown by Recrystal-

lization from a Nickel Phosphide (Ni 2P) Solution

Using the Accelerated Crucible Rotation Technique
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may be obtained by growth at temperatures higher than those

obtainable in a resistance heated Kanthal furnace. 	 To in-

vestigate this possibility, the apparatus, shown schemati-

cally in Figure 2.7 was used. 	 It is essentially a two zone

arrangement with a 45 to 55 ,cm long, 30 mm ID, and 34 mm OD

fused silica ampule.	 Within the tube is an excess of

phosphorus and a "Boralloy" (Union Carbide Corporation) v

boron nitride crucible containing the solvent, and poly- ,f
t

crystalline boron phosphide. 	 The ampule was sealed at a g}
k

'J
pressure of 10-5 Torr or lower.	 The polycrystalline boron

phosphide was on top of the solvent and the temperature

decreased in a downward direction.	 The crucible (15 to
F

18 mm OD and about 7 cm long) was positioned on a
;,	 y

quartz support such that a clearance of several milli- w

meters between the crucible and the ampule wall existed.. g

3Since boron nitride has a low emissivity, the crucible

could be ° heated to above 1500°C without softening the

silica ampule.	 was positioned	 a verticalThe ampule	 within

tubular furnace on a platform which could be Lowered. 	 The

} charge was heated induct-A- •rely to 1000°C while the tempera-

ture of the phosphorus was slowly increased. 	 The ingot

temperature was then gradually raised to 1350 0 to 1450 0Ci
(uncorrected readings with a Leeds and Northrup model 6831C:i

optical pyrometer) while the pressure of the phosphorus was

Lda
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.maintained at 1 atm. After 48 hr, the ampule was slowly

lowered. The lowering rate was adjustable from 0.1 mm/hr

to about 10 mm/hr.

y

s The solvents investigated in this apparatus were:

,. indium, aluminum, and nickel phosphide (Ni P). 	 Boron2
phosphide was found to be insoluble in indium up to 14000C.

` it

	
^. 4

Aluminum has an appreciable vapor pressure (about 1 Torr at

T 140000) and attacked the quartz ampule in the vicinity of

the crucible profusely. 	 Aluminum also reacted slightly
7

with the boron nitride crucible.	 As a consequence, no boron

Phosphide crystals were obtained and it was concluded that

this set up is not suitable for the use of aluminum as a

^ solvent in the crystal growth... of boron phosphide.	 Ina
a

typical experiment with nickel phosphide as the solvent,,

2.0 g of polycrystalline boron phosphide, 50 to 60 g of

1 nickel phosphide, and 5 to 7 g of phosphorus were sealed in
-5

the ampule at a pressure of 10 	 Torr -or lower.	 These

experiments produced small crystallites, many of which it

' stuck together, presumably due to the lack of control of

the temperaturegradent.

II.r	 Doping of Boron Phosphide Solution Grown Crystals

Boron phosphide crystals obtained by

E

[
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- r"	 recrystallization near -1200°0 from both the stationar Y	 <

and accelerated crucible rotation techniques usually had

built-in n 'unctions. Boron phosphide crystals 71	 p-	 stals of eitherJ	 p p	 Y
n-type or p-type conductivity were grown by doping the

charge in the recrystallization experiments About 40

doping experiments were carried out, and the impurities

investigated were: zinc, magnesium, beryllium, sulfiAr

selenium, tellurium, and silicon. Table 21 is a summary

of the doping experiments carried out in the solution growth^_

of boron phosphide crystals

In efforts to grow p-type boron phosphide crystals,

g	 y zinc was investigated extensively. In all of the recrY stal-

lization experiments in which zinc was used, however, the
F
a	 boron phosphide crystals produced were either n-type'or had
r 	 a

3 '

	

	 built-in'p-n junctions, results s-imilar to those obtained

when no dopant was used. It was therefore concluded that

zing does not dope boron phosphide under the conditions

described,
,

The use of beryllium and magnesium in the recrystal-

	

"	 lizat_on experiments at 1200°C produced 'a few crystals that

	

a	 had p-type conductivity but majority of these crystals had

built-in p-n junctions on their faces. Also both beryllium

{{'	 and magnesium reacted with the fused silica at 1200°G,

I F
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'fable 2.1

Solution Growth of Doped Boron Phosphide Crystals

Size of fused silica ampule = 13 cm long, 10 mm ID, and 16 mm OD
Weight of nickel phosphide (Ni2P) = 15 g
Weight of boron phosphide = 0.5 ^o 1 g r
Solution temperature = 1390 to 1240 0C }

;. Run:	 Dopant and Result;^Teight of Experi-
i Number Weight Phosphorus ment

(o) (g) Time
(Days)

BP43 ai (0.16) 0.6 25 n-type & guilt-innp-	 junctions
BP47 Si (0.8) 0.8 23 n-type
BP33 Te (0.14) 0.6 21 n-type & Built-in p-n junctions
BP38 Te (0.3) 1.0 18 COn-type
BP44 Se (0.3) 0.67 16 Built-in p-n junctions
BP45 Se (0.39) 0.8 19 no crystals

r BP55 Nia (0.4) 1.0 14 Built-in p-n junctions
BP36 Zn (0.14) 1.0 14

,-
type

BP39 Zn ( 0 .4) 1.0 25 n-type
BP63 Zn (1 .5) 2.5 -- the tube exploded
BP65 _ZnP (3.0) --- 19 no crystals
BP52 Be (0.3) 1.2 19 p-type & Built-in p-n junctions'
BP53 Be ( 0 .5) 0.7 16 p-type
BP57 Be (1.0) 1.0 14 p-type
BP69 Be;! (1.2) --- 20 p-type
BP49 g ( 0 .6) 0.7 18 no crystals
BP58 TvIg (0.1) 0.5 17 p-type

I_r_

t
4.

^	 t
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and this reaction may have had adverse effects on the re

crystallization process since crystals were only 1 to 2..mm

f	 "' in size.	 The use of an alumina crucible as the containeri

for the solution material was investigated.	 An alumina

crucible, 12 mm ID and 16 mm OD, containing polycrystalline

boron phosphide, nickel:., phosphide, phosphorus, and the

dopant was sealed in a fused silica ampule at a pressure of

10- 5 Torr or lower.	 After 20 days, the crucible was found

to have reacted with quartz. 	 The crucible material may alsoU."
have reacted with beryllium.	 The boron phosphide crystals

obtained in this experiment were up to 3.5 mm in size and
i

had smooth	 well developed faces suitable for device work.

Some of these crystals were p-type and their resistivity

varied from one face to the other, characteristic of solu-

tion grown crystals.	 To further reduce contamination from

the container material and the reaction between the con-

tj and beryllium phosphide, one experiment was carried

out with the alumina crucible replaced by a boron nitride

(" Boaralloy") crucible.	 The crystals produced with the boron

nitride crucible were not significantly different in conduc-

tivity type and resistivity profile compared with the

crystals obtained from an alumina crucible.	 However, no

visible signs of reaction between ampule wall and the ingot

were observed.	 It was found in cases of beryllium,

r
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magnesium, and zinc, that when phosphides of these metals

were used as dopants, the ampules remained intact. On the

other hand, when these metals and enough phosphorus to make

the metal phosphide were used, tubes frequently exploded.

No significant difference was observed between the crystals

obtained from ampules with metal phosphide dopants and the

crystals obtained from intact ampules which contained metal

and excess phosphorus.

{ Among the expected n-type dopants, the use of sulfur,'

and selenium did not compensate the p-type impurities and j

boron phosphide crystals produced in these experiments had

built-in p-n junctions.	 Tellurium, however, produced only

n-type boron phosphide crystals in majority of the experi-
t

r

LJ menus.	 Also, silicon was found to be the most effective
^

LI
n-type dopant and has produced the!best results. 	 Thus, ;.

boron phosphide  has been doped successfully for the first

time to produce both n-type and p-type crystals.	 Silicon

and beryllium were found to be the most suitable n-type_and

p-type dopants, respectively. q

II.0	 Properties of Solution Grown Boron Phosphide Crystals 4

a

Boron phosphide crystals obtained from recrystal-
a

PLJ
lization experiments were usually in the form of platelets,

i

, The	 werebut sometimes polyhedrons. 	 platelets	 usually
q .
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hexagonal, and three alternate sides were always lon'gar than
k

the others.	 Figure 2.6 shows the typical forms of boron

Phosphide crystals obtained from the recrystallization exper-

iments.	 The platelets usually had one face flat and smooth,

and the other face relatively rough. 	 The crystallographic

orientation of the main faces of the platelets was deter-

mined by X-ray Laue back reflection studies. 	 Figure 2.8

shows a three-fold symmetry, which indicates that the main

faces are of (111) orientation. 	 Chemical etching by a 31;

molten mixture of sodium hydroxide and sodium peroxide was

employed to distinguish the two (111) faces. 	 The study of

the etched faces showed that the face which was initially

flat and smooth developed dislocation etch pits, but
F

r

the other face remained relatively unaffected.

This difference in etching behavior is the result of some

is ionic character in the chemical bond in compound semiconduc-

tors.	 For example,	 (111)-type planes of III-V compound X

semiconductors (zincblende structure) exhibit polarity along'

the <111) directions.
53	 A (111) plane of III-V compound

semiconductors terminates with group III atoms (face A) and

- the inverse (111) plane terminates with group V atoms

t (face B).	 Face B atoms are very reactiv^a chemically since.,

they are only triply bonded tothe lattice, whereas their

normal valence is five. 	 Face A atoms, also triply bonded

x
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to the lattice, must be appreciably less reactive since

they are normally trivalent. 	 Thus, the (111) and (111)

! planes show different etching characteristics under certain

conditions,	 Based upon the etching characteristics of (111)

53-59faces of other III-V compound semiconductors,	 it is
r;
M

suggestive that the flat and smooth face of the boron phos-
j

r phide platelets is the boron face.	 Thermodynamic analysis

of the solution growth process also indicates that the j,

smooth face of a III-V compound semiconductor should be
48

A (III) face.	 The platelets are characterized by a

' twinned structure, with twinning taking place in the (111)
_ 9

planes.	 The twinned structure provides the means for the
47

extension of the crystal,	 and the growth of semiconductor

crystals from solutions has been explained by the Twin-Plane
48

Reentrant-Edge mechanism.

hi I

The conductivity type and the relative local electri-

cal resistivity of the solution grown boron phosphide

r_ crystals were determined by the thermoelectric probe and the

spreading resistance technique, respectively. 	 The spread-

ing resistance technique is based on the resistance measure-

ment of a small area pressure contact between a metal. probe;.

and a semiconductor surface. 6o	This resistance is con-

_. tained in a small volume of the semiconductor immediately

;j below the probe and is directly related to the resistivity

1 ^j1j

t
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of the semiconductor.	 The spreading resistance measure-

s	 ' ments are carried out at low voltages to maintain contribu-

tions From minority carrier injection, the electric field in

t the spreading resistance region, and joule heating in the

contact region negligible.	 The spreading resistance K s

.. ( contact resistance between a metal probe and the semi-

conductor) is given by

s Rs	 K a t

where p is the resistivity of the semiconductor, a is the
d

` radius of the 'circular contact spot, and K is the propor-

tionality constant that accounts for the zero-bias barrier
yj

d

resistance idue to the difference in the work function

between the metal and the semiconductor. 	 In practice, the &	 ^

parameter K is evaluated by caliberation. 	 The apparatus

r used for the spreading resistance measurements consisted of
,

two osmium tipped probes with a 25 pm radius of curvature.

The probes were mounted on separate booms loaded with 25 g

^t
of weight.	 These were spaced 1 mm apart and could be

lowered onto a preselected area of the specimen. 	 The re-

' 'stance between the two probes was measured with asi 

w Keithley 610B in its ohmmeter function. 	 Since the parameter

;r4
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K is not known for boron phosphide under the measurement

conditions here, absolute resistivity values cannot be ob-

tained. However, nearly all crystals showedrelatively low

t	 spreading resistance, a few hundred ohms, indicating that

I

	

	 these crystals are of low resistivity. Van der Pauw

measurements on the solution grown crystals indicated

resistivity values on the order of 0.1 ohm-cm and carrier

concentration on the order of 10 17 cm 3 or above. These
results are in reasonable agreement with the carrier concen-

tration values obtained from the measurements made on

Schottky barrier diodes fabricated on solution grown crystals.

r
Among the boron phosphide crystals obtained without

i

	

	 intentional doping, all polyhedrons and the majority of the 	 -'

platelets had built-in-p-n junctions. Usually both the

t
(111) faces were n-type and the core was p-type. 'these

!	 features were observed by delineating p-n junction interface

in solution grown crystals using electrolytic etching tech-

pique (chapter III). The inhomogeneous distribution of.im-f	 ,

purities is probably a, result of two factorsi a higher

F	 segregation coefficient for p-type impurities than for n-type

impurities so that t e impurities are depleted from theP	 p- YP	 P	 P

E	 h'	 solution and a continuous supply of 'silicon, an n-type
i

impunity in boron phosphide, going into the solution from:
s	 1
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the ampule.

Easily visible red elbotroluminescence was observed

in crystals with built-in p-n junctions, and in some crystals

j with no built-in junctions when probed with a metal contact.
tj The electroluminescence will be discussed in detail in

k	
;'

chapter VII.

II . H	 Summary

is the growth of boron phosphide crystals by recrystal-

lization was investigated in a stationary crucible, in a

crucible with an accelerated rotation, and in 'a vertical two
zone furnace.	 Indium, aluminum, copper phosphide (Cu3P)

and nickel phosphide (Ni 2P) were investigated as solvents

in the recrystallization process.	 Boron phosphide crystals

. in the form of platelets and polyhedrons were obtained in

recrystallization-experiments in a stationary crucible from
s

a nickel phosphide solution.	 The accelerated crucible rota-

tion technique yielded larger boron phosphide crystals and

platelets with fewer voids and better developed faces suit-

able as substrates for the growth of epitaxial boron phos-

phide layers.	 The dimensions _of these crystals are consider-

ably larger than those reported heretofore. 	 For the first

time, boron phosphide crystals have been doped.	 IN-type and
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p-type boron phosphide crystals were obtained using silicon

and beryllium as dopants, respectively.	 These crystals,

although of low resistivity, have been used succesbfully

as substrates for the epitaxial growth of baron phosphide

and for the fabrication of boron phosphide devices.
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CHAPTER IIZ

ELECTROLYTIC ETCHING OF BORON PHOSPHIDE

This chapter is concerned with the electrolytic: etch-

ing;and polishing of baron phosphide.	 P-type boron

€ F t	 hephosphide was readily etched and polished	 however, t

etching	 f n-t	 a boron phosphide is considerably moreg	 YP	 P	 P	 Y
complicated.	 Electrolytic etching was used to isolate mesa

structures in boron phosphide p-n junctions and in silicon

carbide-boron phosphide heterojunctions, and to polish

p-type boron phosphide.

III.A	 Introduction to Electrolytic Etching	 ^j

Electrolytic etching is an electrochemical process

^ for the removal of material by passing current through a

j
substance at the anode of an electrolytic cell.	 Irregular

regions and damaged material can be uniformly removed to

produce a smooth surface in electrolytic polishing, which

occurs within a certain range of current densities.	 In
r- addition, electrolytic treatment can be used to locate the

- crystallographic directions, crystalline imperfections,

doping inhomogeneities and p-n junctions. 61	 Electrolytic

treatment offers some advantages over mechanical and

48



chemical processes. In contrast to mechanical material

removal process such as lapping and abrasive cutting,

electrolytic etching, does not leave a damaged layer on the

surface that can adversely affect the electrical properties
of devices.	 Electrolytic etching is often the only wayy 3

to remove material without damage if no chemical etchant

is available.	 Electrolytic treatment offers flexibility

r
r;

of control.	 Masking and localized carrier injection by

optical or electrical means can be used to control the

geometry of etching.	 The etch rate can be adjusted by

changing the carrier. concexitration at the surface optically

or by adjustment of the current density.	 The choice of
i

chemical composit lLon of the electrolyte is critical to

successful electrolytic etching. 	 The choice of ,electrolyte

is based on the chemical behavior of the semiconductor;

the products of oxidation should: be soluble in the

electrolyte or be continuously removed from the surface of
i

-the semiconductor, and the electrolyte should not react

chemically with the semiconductor and the other materials

f
in the electrolytic cell.	 In many cases, an empirical

selection process is the only way to determine a suitable

electrolyte.

An electrochemical cell with a semiconductor

j
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electrode is represented schematically as shown below:

Reference)Metal	 Semiconductor	 Electrolyte ^Electrodei	 Metal 

' Both oxidationon and reduction processes occur simultaneously

in azl e.lect^ ochemical cell, oxidation -taking place at the

i anode and reduction at the cathode. 	 An electrical

potential differen^e is formed as a result of the transfer
i' Yg

"BRAY

of chargec^ across the electrode-electrolyte interface and
^

:.s referr , Dd to as the electrode potential. 	 The electrical r	 r

-)otential difference between the two terminal phases ina ^

the electrochemical cell is called the cell potential dif-

G
ff	 is Terence.
f

It is not possible to ineasure the potential dif-
4

ference betwee.n an electrode and the solution in contact

with it, without another metallic electrode. 	 But by

arbitrarily assigning a potential to an electrode, which

a is not drawing current, it is possible to determine the

potentials of other electrodes with respect to this stand-

ard.	 The calomel electrode is one of the standard

electrodes used as a reference electrode.	 The calomel

electrode conoists of mercury in the bottom of a vessel

with a paste of mercury and mercurous chloride- (calomel)

over it in contact with a solution of potassium chloride

1
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zl
saturated with mercurous chloride.	 A reference electrode

R such as the calomel Electrode permits -the measurement of

changes in electrode potential under nonequilibrium

1
conditions.

X ' A small region on both sides of the semiconductor- w

electrolyte interface is called the electrical double
Y 62

layer	 At the semiconductor-electrolyte interface, the ^
..

conductance mechan:Lsm changes from electronic to ionic.
When the two phase;, are brought into contact, diffusion

j

flow of charge takes place until the electrostatic field

eotablished across the interface balances the inherent

.tendency of charge transfer. 	 Charge flows until the}
t

^ electrochemical potential of electrons (Fermi level) is

the same on the two sides	 of the interface.	 The inter-

face represents a barrier for the flow of electric current

in -the absence of an electrochemical reaction at the inter-

face.	 The potential difference	 developed across the
r

electrolyte-semiconductor interface under an open circuit
A

condition is termed the rest potential.
a

When the electronic equilibrium at the surface of

the semiconductor electrode is disturbed by an external

source of electr. omotive force, two types of reactions can
63 

f be :initiated at the semiconductor electrode: 	 electron
i
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transfer processes and electrolytic processes with

chemical changes of the semiconductor. Electroa transfer

processes take place between the semiconductor electrode

L1 and electron donors or acceptors in the electrolyte with:. :.

out structural changes in the surface of the semiconductor,

Electrolytic processes, in which the chemical
x

t - structure of the  semiconductor surface is changed, take

place when a semiconductor surface undergoes, for example,

oxidation at an anode in the electrochemical cell. 	 The

oxidation process in semiconductors occurs normally in two 3

steps.	 In the first step, interruption of -the chemical

bond between two neighbouring 	 atoms under the influence

of electrical Forces and the interaction with a reactant k
from the electrolyte solution tapes place.	 This results,

i. in the formation of a new bond between one of .the semi-
G conductor atoms and a reactant.	 Simultaneously, an inter- 3

mediate state of the other surface atom with a radical

r.' character is generated. 	 In the second step, this radical

intermediate on the semiconductor surface reacts with

another reactant from the solution and forms a second

covalent bond.

In the electrolytic oxidation process, the first step;

^I
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is rate determining, because the reactivity of the radical

intermedia te is much higher -than that of the fully bonded

surfaen atoras. 	 The rate of these processes is proportional

to -the concentration of tho charge carriers a:L- -the su)^Pace.

In a.(](,I,i ion, 	 it is always observed that anodic curren ts

through n-type materials tond -to saturate whereas, current

saturation is, not fou, d wita -p-type materials.	 Therefore,

in anodic processes in ;,emiconductors,	 Holes, which are

necessary for anodic dAsso.li.d;ton of	 caq be

supplied in n-type semiconductors by illumination.	 In the

a odic process, the reactions involving holes have a

elact-rons since, the bonding between -the neighbouring,

atoms in the crystal is due to theinteraction between

electrons in bondin cr orbit-als and the atomic nuclei. 	 The

presence of a hole near the surface of the semiconductor

i ..ieans 'that one of -the bonding states in the crystal is

unoccupied and the missing electron has been exoited from

bonding state in

Lri tJae conduction band.	 This band is therefore

weakened, a-rid it can be , attacked much -more easily.	 The

noiximportance of holes becomes more pro, 	 riced for large ban d

gap intrinsic and n-type aaterials because the
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concentration of holes is extremely small.

The mechanism for the anodic oxidation of compound

semiconductors (type AB) is essentially the same as the o::1u

-For the elemental semiconductors with <a slight modification.

In tho compound semiconductors, the first step of oxidation

results in forming a new bond. w-Lth the more electropositive

x ' component of the compound, 'ahi le the more electronc:,;ative

cmmponeat remains In the radical state.	 If the latter

component has an electronegative character and cann ot be

oxidized easily (or not at all), an association type of

reaction bets ee;^ adjacent radicals can comipl ete the bond

^
breaking process.

r ! IIT;B	 Experimental Procedure

Boron phosphide, which is a refracrto:cy material,

^- chemically inert and cannot be etched in aqueous solutions
xw at room temperature. 	 High temperature etchants, such as

fused alkalis; near 400 °C or hydrogen chloride near 11000C,

are not suitable' for the shaping of boron phosphide
^k

crystals for device fabrication.	 Therefore, electrolytic

etching is probably the only room temypexature etching

process suitable for boron phosphide.

E
{
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A series of exi?erirnents were performed on both n-typo

and p-type solution grown boron phosphide platelets to

determine the conditions for etching and polishing.	 The
fr.	 a platelets had main face. 	 of (111) orientation, and both

E

E (111) and (111), faces were eva-luated.	 The platelets

generally had. one smooth face and one rough face. 	 These ;u_

`r faces were designated (111) and	 ,faces, respectively,

on the bards of chemical etcriIng described in chapter 1T,

The room tei-npera.l;ure. c; ^^,^^r.•.i.^^.r..:concer-Ar. ation. determined by

measurements on Schottky barrier diodes fabrica:1;ed from
i

theoe solution grown crystals was on the order of
a

t : Y
10^ ^' cm 3 or above. 65

c

;f Prior to electrolytic etching, rough faces were

polished with 0.3 pm alumina powder, and smooth fares worn

" izsod without mechanical polishing.	 An ohmic contact was

r
made to the be.c1^- surface- of the boron phosphide crystals •;

_

by an electrcless nickel plating process followed by

r annealing in hydrogen a't ^00`'' to ^ 0 0C for l hr to obtain^5

reproducible values of electrode  potential.	 The small size:

' (a few mm2 in area) of the crystals necessitated careful

} mounting and masking procedure ,,, .	 After the formation of

back contact, the back side was bonded to a small metal

sheet with silver epoxy and mounted on a teflon disc with

Ll

f
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polyethylene screws.	 Apiezon ^ wax was used 'to mask -the

' wire Leads, metal sheet, and the 'boron phosphide platelet,

so that only the region of 'the crystal surface under

investigation was exposed'-to 'the electrolyte.	 Silicon

monoxide and silicon dioxide were also used for masking;

boron phosphide platelets and were found 'to be more :relia-

ble -than ap j_e ,,7,on `rJ wax for controlling small area geo-

metries in the fabrication of mesa structures., Silicon
s

monoxide w,- 	 _<vapot-a .d In a Veeco 775 vacuum sys t; In and

7iM.00n dioxide was deposit" c? by the oxidation of silane 

in an hydrogen atmosphere In mi open _Clow :system.	 The

ox..de wasrnaslred with either	 pezon ll Wax or. with photo-	 f
3

:resist, and windows were opened in the oxide with buffered

hydrofluoric acid (14.4• cc of t+9 " HF, 45 0 g of Nv 14F, _ and

660 cc	 of 1120) .

The electrolytic cell for the etching and polishing

of boron phosphide is shown schematically in Figure 3.1.

cloron phosphide was the anode, and a .graphite rod was the

cathode.	 The crystal- electrolyte potential difference was

measured by a cal.oirnel r. efex , ence electrode.	 The solution

was continuously ,agitated by bubbling nitrogen into the

<<, electrolyte.	 The electrolytes investigated: werei

Fl
(1) aqueous solutions of potassium hydroxide, sodium

4	 t

I
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x hydroxide, hydrochloric acid, nitric acid, sulfuric acid,

and hydrofluoric acid of various concentrations,

( 2) 5;111 H2s04; 30% H20 2 : H20, (3) is 1 20% ILOH, 30% H20 2 i{
and (4) 1:1 1N K3Fe(CN) 6 : 0.5M KOH.	 The current-voltage

characteristics were measured by slowly increasing the

applied voltage and noting the anode voltage and the

corresponding current. a

In the fabrication of boron phosphide mesa type p-n

junctions, the electrode geometry shown in Figure 3.1

produced an uneven etched surface and resulted in the

undercutting of the mask.	 It was found that with the boron

a. phosphide platelet- near `t-he axis of a cylinderical molybde-
y	

^num cathode, whose diameter was 7 cm (Figure 3.2),	 het

material was removed evenly. 	 .Another modification to the

system is 'shown in Figure 3.3.	 This circuit produces a

constant anode potential regardless of the contact re-
d

- sistance.66	 In this set up, low resistance ohmic contact

to boron phosphide, crystals was not necessary, and a{

single component silver epoxy was used between the boron $.

a phosphide and the metallic sheet. 	 This improved apparatusr;

^ was used to isolate mesa type silicon carbide-boron
i

s	 ^

phosphide heterojunctions and boron phosphide p-n junction

structures described in chapters VI and VIII, respectively..

s

t
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The effect; of illui-diaa,tion on the etching of n-type
a

boron phosphide was investigated with a 50 W and a 300 W

Sylvania reflector lamp.	 The light intensity was

measured in an arbitrary unit equal to the light intensit y
x	 a

r	 ,
-3

of a 50 d. lamp at a distance of 25 cm from the sample under
IJ investigation.	 The rest potential of a number of n-tvpe

boron phosphide crystals was determined as a function of

light intensity.	 Different current densities were x

passed through n-type boron phosphide under strong

illumination to investigate the conditions required for

Li electrolytic polishing.

tM

III .0 	 Electrolytic Etching; of boron phosphide 8^	 a
g	 .

Figure 3.4 shows the typical current density-voltage

relations for a'p-type and an n-type boron phosphide
j

crystal in >a 10% sodium hydroxide solution at room tempera-

ture in the dark.	 Current saturation was observed in all

n- type ;boron phosphide crystals investi ,,.,	 d.	 The p- type

material was readily dissolved and large currents were

drawn.	 The rest potentials of both n-type and p-type ,boron

5 phosphide were also measured in a number of electrolytes.

The rest potential for n-type crystals was always more

negative than for p-type crystals as, for example, shown

5
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'' in Figure 3.4.

r; In the case of p-type boron phosphide, grain bounda-

ries and twin planes were revealed at current densities of

0.01 A dm	 or Lower.	 At current densities between 0.01 A

cm 2 and about 0.2 A- cm-2 , etch pits were made visible.

Figure 3.5 shows the etch pits formed when the p- type

boron phosphide crystal was exposed to a current density

of 0.05 A cm	 for 1 hr.	 Polishing occurred at a current

density of about 0.5 A cm 2 , and current densities of up

to 10 A cm 27 	 have been used with good results.	 In

general, mirror-like surface was readily obtained on (ICI)
.. faces; however, a spongy film developed on (111) faces

a
-2,at current densities on the order of 0.5 A cmand the

L resulting surface had a matte appearance (Figures 3.6A
., and 3.5B).	 P-type boron phosphide can also be etched in

a potassium hydroxide solution and in the diluted acids

listed above.	 If a filra formed, it was readily rinsed

off in water or removed by a soft' brush.

Etching of n-type boron phosphide in all electrolytes

s.
under study was accompanied by the formation of an adherent

orange red film on the surface at a current density of

Ll
- i

3 #
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Phosphide dith a Current Density of 0.05 A cm 2

for 1 hr
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Boron Phosphide With a Current Density of

0.5 A cm 2 for a Few min (A) (111) race,
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about 0.001 A cm or above. This film was found to be

insoluble in boiling alkalis, boiling mineral acids, and

a molten mixture of 3:1 sodium hydroxide and sodium

peroxide at 500 00. The anodic film turned grey when heated

to 950 00 in hydrogen for a few minutes and, presumably, it
N was at least partly reduced. 	

5z

The exact composition of the films formed on n-type

'E material a-	 ow current 	 was difficult to es-^t l	 rr	 t d	 iti	 d

r

r' tablish.	 Examinations by -the X-ray diffraction technique

using a General. Electric t odel XRD-6 diffractometer with

Cu K	 radiation and by -the reflection electron diffraction

technique did not reveal any crystalline structure to these
y

I. films.	 The X-ray Debye-Scherrer technique with Cu Ya

radiation, however, indicated these films may be a mixture

of boron oxide (B 0r) and boron phosphate.

At elevated current densities, a brittle fibre-like

film was formed on n-type boron phosphide accompanied by

j
i

the evolution of gas. 	 The film could partly be removed

from the substrate by a brush or by ultrasonic agitation,

but it was insoluble in common acids and alkalis. 	 Re-

i
flection electron diffraction examination of the fibrous

a  d it to be monocrystallinefilm on n-type material showe 

?
3
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boron phosphide of (111) orientation. It was therefore

concluded that the fibrous film has the same crystal-

lographic orientation as the substrate from which it

originated. A similar fibre-like film was also obtained

when gallium_.arsenide was exposed to large current

densities. o " At high current densities, as the process of

film formation progresses, the current density decreases

,t
at a constant applied voltage. This decrease of current

} may be due to formation of an oxide film such as was found

on gallium arsenide.
67 When the film separated from 'the

_	 substrate, the current density again increased.

The effect of illumination on the electrolytic etch-

ing of n-type boron phosphide crystals was also investi-

gated. 	 The rest potential of a number of n-type crystals

was measured as a function of intensity of light. Figure 3.7
C	 s

Y

is a typical rest potential-light intensity relation for

y an n-type boron phosphide crystal.	 The rest potential

became more negative upon illumination, and the linear
^

between the }p otential and the logaritlun o,E
h

relationship
68

light intensity was observed.	 illumination of 'n-type
t

boron phosphide creates electron hole pairs and should

enhance the etching process.	 But experimental results on
k

' a number of n-type crystals did not show any noticeable

i
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etching without film formation.	 For a rather heavily doped

n-type material, the short supply of holes and a short life-,

time of holes could be responsible for the observed results.

When a voltage was applied to a crystal with a very

shallow built-in p-n junction, such that the junction was

forward biased and the n-side of the junction was exposed

to the electrolyte, dissolution of n-type material did

occur without film formation.	 In the case of deep

junctions, film formation on n-type material was observed.

In general, however, illumination of the substrate surface,

bubbling of nitrogen gas through the electrolyte, or the use of

various electrolytes did not reduce film formation notice-

ably in n--"Uype boron phosphide.L
For both n-type and p-type boron phosphide, the rest

potential was more positive for the (111) face as shown in

Figure 3.4.	 This shows that the potential drop across the

H interface, including both the semiconductor and electrolyte

space charge potentials is different for the two surfaces.

!q This polarity effect has been observed in a number of other

III-V compound semiconductors and is in agreement with the

53	 -type and P-type material0	 For both nobservation of Gat s.

the (111) face draws a larger current density at a given
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electrode potential than does the (111) face,

III.D	 Selective Etching, Junction Delineation, and
_	 Mesa Formation

It can be seen from Figure 3  4 that the current deilsi-

t	 at	 for example, 3 V is about 300 times higher for	 t	 eY	 ^	 p	 g	 p-' Yp 
boron phosphide than for n-type material.	 This corresponds 	 w

to the ratio of etch rates between p-type and n-type boron

phosphide and presents the possibility of selectively
r

removing 	 e material. from boron phosphide 	 n	 unctiong p- Yp	 p	 p	 p-	 j

structures. , A solution groom boron phosphide crystal with

a built-in p-n junction on one fe.ce was lapped with 5 A nt	 g8	 S

silicon carbide abrasive and subjected to a current density
ff	 j

Lill of 10 A cZ	 for about 10 sec, although current densities
_2	

u

below 0.5 A cm	 may be preferred .to minimize the formation

of anodic films in the n-region and to better control the

dissolution of the p-region.	 The results are shown in

y
Figures 3. 8A and 3. 8B where the p-type material was

selectively removed and the p-n junction is delineated.	 The
i

p-region developed a rairror-like surface in contrast to the

01, n-region which, was not etched.	 Thus, the preferential etch-

ing of p-type boron phosphide is extremely suited for the

-'	 delineation of p-n junctions in boron phosphide, and is the

only. method available at present to remove p-type material

selectively.

f
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Figure 3.3 Boron Phosphide Jrystal With a built-in P-N Junc-

tion Electrolytically Etched at 10-A cm-2 for

About 10 sec (A) lop View, (B) Gross Sectional

View
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Because of the inertness of boron phosphide towards

ordinary chemical etchants, electrolytic etching is an

attractive means of isolating the p-region in the fabrica-

tion of mesa type boron phosphide homoepitaxial and hetero-

epitax,ial p-n junctions.	 Both n-type and p-type layers of

boron phosphide were deposited on solution grown boron phos-

phidecrystals and on hexagonal silicon carbide platelets

by the thermal reduction of a boron tribromide-phosphorus

trichloride mixture as described in chapter IV. 	 Figure 3.9A

Url shows a typical 'boron phosphide mesa type p-n junction fabri-

catU!
ed by masking and electrolytic etching.	 In the case of

silicon carbide'-boron phosphide heterostructures, boron

Lill

phosphide was exposed to the electrolyte. 	 A sharp decrease
J

in current density indicated the removal of all the boron 3

phosphide layer exposed to the electrolyte.	 At that stage,
i

the electrolyte was replaced by a, dilute aqueous solution of

-^ hydrofluoric acid, generally 11N HF to remove a thin

layer of silicon carbide, thus ensuring complete isolation

of the boron phosphide from silicon carbide.	 Figure 3- 9B

` shows a (n) silicon carbide-(p) boron phosphide mesa structure

fabricated by the anodic dissolution of boron phosphide andi
silicon carbide.	 The fabricated mesa type homojunction and

heterojunction structures have rectifying properties and

easily visible, red, p-n junction electroluminescence has
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IF,
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(B)
Figure 3.9 Two Mesa Structures r'abricated by Electrolytic

Etching (A) Boron Phosphide P-N Horojunction,

(B) Silicon Olarbide-Boron Phosphide Hetero-

Junction
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been observed in homojunction structures. 	 Measurements

from 'these devices are described in chapters VI and VII

respectively.

d III.E	 Summary

Due to the chemical inertness of boron phosphide,

room temperature chemical etching of boron phosphide is

not possible, and electrolytic etching of boron phosphide

was investigated for device applications. 	 P-type boron

LI phosphide could be etched or polished in several electro-

lytes; in contrast, n-type boron phosphide developed a

film that was not soluble in common acids and alkalis.

Due to a large difference in the etch rates of p-type and

n-type boron phosphide, electrolytic etching was success-

fully applied to delineate boron phosphide p-n junction

interfaces and to fabricate mesa type boron phosphide-

homostructures.	 Electrolytic etching was also used to

prepare silicon carbide-boron phosphide mesa type

structures.	 Electrolytic etching, therefore, is an

attractive room temperature material shaping technique

-. for the fabrication of boron phosphide devices.

r ,



EPITAXTAL GROWTH OF BO OW YHOSYKIDEw
z
k This chapter is concerned with the epitaxial 'growth of

boron phosphide layers on silicon carbide and bo=on phosphide
w substrates.	 Boron phosphide was deposited by chemical. vapor

' deposition using the hydrogen reduction of a mixture of boron
and phosphorus halides in an open flow system.	 In nearly

all cases,_ the deposited layers were epitaxial and single
,. acrystalline.	 In-situ doping of boron phosphide layers was

"' ^ carried out with hydrogen selenide.

IV.A	 Introduction, to Epitaxal Growth

The word epitaxy is derived from two Greek wordss
meaa-ling upon, and `ra x , " meaning arrangement. 	 The term now _z

means oriented overgrowth of a single crystalline material.

upon a single crystal substrate.	 The grown material and the

substrate may be the same-homoepitaxial or different-
3

heteroepitaxial.	 Epitaxial growth has distinct advantages

over other methods for the fabrication of semiconductor

junctions, and it is in this area that epitaxial growth has

' been extensively applied.	 The dopant concentration and dis-

tribution are more readily controlled in the epitaxial layer

than those in the diffusion technique'. 	 Also, in the
i

R
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epitaxial growth process, impurity atoms are incorporated

in the crystal lattice during the growth process= therefore,

epitaxial junctions have better perfection than diffused

junctions.	 Epitaxial growth is particularly suited for the

formation of junctions in 1:! 1- ti compounds.	 Most III-V
I

` materials have appreciable dissociation pressures at tempera-

tures required for the diffusion process but epitaxial

growth can be achieved at considerably lower temperatures.

Epitaxial layers can be produced either by physical g

vapor deposition or by chemical vapor deposition. 	 Physical.

vapor deposition process such as vacuum evaporation or sput-

tering have a very limited usefulness for the growth of com-

pound semiconductors, because of the problems associated

with the control of stoichimetry and doping levels.	 Chemi-

cal vapor growth, however, has been extensively used for the

r formation oflayers of conductors, semiconductors, and_
rn

69,704 insulators.	 Chemical vapor deposition can be carried
e

out in either a closed system or an open flow system. 	 In
y:

general, only an open flow system provides the flexibility fir.

required for the ,growth of compound semiconductors with a

well controlled dopant concentration and distribution.

Chemical vapor growth in a flow system, involves a

substrate held at a suitable temperature in a reaction



chamber provided with a gas inlet and an exhaust. A

ia gaseous mixture containing the constituents of the desired

material is introduced into the reaction chamber, and a

chemical reaction takes place on the substrate surface, 4

depositing the desired material.	 Thermodynamics, kinetics,

and nucleation effects involved in chemical vapor deposition
 71-74have been discussed by several authors,	 and the growth

process is usually described with the following steps:

(1)	 Mass transfer of the reactants to the substrate surface.

(2)	 Adsorption of the reactants onto the substrate surface,

x
(3)	 The reaction or series of reactions on the surface,

(4)	 Desorption of the by-product molecules,

( )	 Mass transfer of the by-product molecules from the	 3

.^ surface.

Step (1) or (3) is often the rate determining step. 	 At

elevated temperatures, however, most 'chemical reactions
74

proceed repidly, and step (1) is rate determining.

w,
"'^ The chemical reactions used for the vapor growth

process are important factors which influence the chemical

and structural perfection of the grown material. 	 The re-
pF

actants should be amenable to purification, and they should

be chemically inert towards the wall of the reaction system.

Furthermore, the experimental conditions should be adjusted

t
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so that chemical reactions used for the vapor growth take

place predominantly on the surface of the substrate. 	 Gas

phase reactions result in the formation of atomic or molec-

ular clusters in the space surrounding the substrate, and

the deposition of these clusters on the substrate produces

polycrystalline material. 	 The reaction products, except

the desired material, should be gaseous to be effectively

two transported away frorn the substrate.

The morphology of deposits formed by chemical vapor

deposition depends upon the deposition conditions, the con-

t
" dition of substrate surface, and the nature of the substrate.

Substrate temperature is one of the most important factors

that govern the crystallinity of the deposit. 	 At very low

-temperatures, kinetics are not favourable for epitaxial
}

i
growth.	 'Therefore, very finely crystalline or amorphous J

deposits are formed.	 As the deposition temperature is in-

`^ creased, kinetic factors will tend to favor epitaxial

grovrth.	 At still higher temperatures, 'growth rates may be-

come too high and other reactions, such as decomposition of

`- the deposit and volume reactions, may adversely affect the

-crystallinity- and the composition of the deposit. 	 Foreign

impurities and structural defects on the substrate surface

are the major causes for defects in epitaxial layers.
i

i
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Therefore, an in-situ etching of the substrate in the

reaction chamber just prior to deposition is desirable.

Smooth layers are formed if the substrate surface is smooth

' and if there are no particles on the surface. 	 If, however,
f

there are asperities on the surface, growth irregularities
4	 N o9are formed and transmitted to the surface of the deposit.

The smoothness of epitaxial films may also be influenced

by the substrate orientation. 	 Deposition onto different

major crystallographic planes may produce very dissimilar

results.	 Also, slight misorientations can be critical to

the quality of the deposit. 	 In contrast to homoepitaxial

layers, heteroepitaxial layers usually exhibit defects due

to the mismatch of lattice constants and the difference in
i

a..
thermal expansion coefficients of the two materials.	 Dis-

locations produced as a result of a strained lattice can
p

extend not only into the deposit but also into the
i

substrate. 7 5 	 The selection of a substrate for hetero-

epitaxial growth is determined primarily by the chemical

F
J stability, lattice parameters, and thermal expansion co-

efficient of the substrate.

4

The most important chemical reactions used for chemi-

cal vapor epitaxial 'growth are:

(1)	 Decomposition reactions,

a __



I
S0

(2)	 Hydrogen reduction of halides, and

(3)	 Transport reactions.
it

In decomposition reactions (or pyrolysis), the sub-

strate is heated to a sufficiently high temperature to

4
cause decomposition of the starting material. 	 For example,

the decomposition of silane can 'be used for the deposition

of silicon;

L

0	 0800	 t o 1300 CSiH	 Z3 i 4, 2H24	 2

The hydrog.,en reduction process is the most common

chemical vapor deposition technique in use for semiconduct-

ing materials.	 Halides of most of the common group III,

IV, and V elements can be reduced at convenient tempera-

;IT tures.	 Hydrogen reduction will, of course, occur at a

lower temperature than the pyrolysis of the same compound,

An example of a reduction reaction is the deposition of

silicon by the hydrogen reduction of trichlorosilane:
1000 0 to 130000

SiHC1	 + H	 Si + 3HC13	 2

Chemical transport process is based on the reversible

reaction of the solid, A, -with a gaseous transport agent,

T, to form products C and D:

A(s) + T(g)	 C(g) + D(g)

The equilibrium constant of the reaction is temperature

&I

-----------
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dependent and the temperatures of the source and the sub-

strate are so arranged that the forward reaction takes place

in the source region and the reverse reaction takes place in

the substrate region. For example, silicon can be trans -

ported by silicon tetrachloride according to the reactions

Si(s) + SiI(g) C.1QQ°C___^ 2SiI2(g)
goo0c

In this work, the hydrogen reduction of a mixture of

boron and phosphorus halides in a gas flow system was used

for the epitaxial growth of boron phosphide:

BBr3 ( g) + PC13(g) + 3H2(g) ----	 >BF(s) +3HC1 (9) +3HBr(g)

A basic constraint is that a phosphorus pressure equal to or

greater than the vapor pressure of boron phosphide must be
LJ

present over the substrate surface to maintain the stoichio-

^=	 metry of the deposit. the above mentioned considerations

11 _ and the previous work 
51 

were used as guidelines to determine

the optimum conditions for homoepitaxial and heteroepitaxial

growth of boron phosphide.

IV.B Susceptor Preparation

j In the chemical vapor deposition of boron phosphide,

the substrates are supported on a suitable susceptor in a

reaction tube, and the susceptor is heated externally by an

rf generator. 'thus, the surface preparation of the susceptor

Ll _	 _
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i r
is an important factor in epitaxial rP	 A	 growth.	 A boron	 ! .3

i4

phosphide coated graphite block was used initially as 'the

.^ yusceptor.	 The reproducible resistivity and structural

features of boron phosphide layers obtained with this sus-

ceptor indicated that the coating was impervious and

retarded the reaction of hydrogen with graphite and the

out-diffusion of impurities from graphite to the substrate.
u	 ,;

' However, the boron phosphide coating was always etched by

s' the hydrogen chloride generated during the epitaxial growth

process, and the susceptor had to be recoated after each

IET deposition.	 To avoid this time consuming process new sus-

ceptor coatings were evaluated. 	 The use of a silicon

dioxide coating on the graphite suseeptor was investigated;

however, the chemically deposited silicon dioxide was

apparently not as impervious as boron phosphide, and the

electrical properties of epitaxial boron phosphide layers

could not be accurately controlled. 	 'she use of a fused

^y silica envelope .around the 	 ra hite also did not yield re-silica 	 graphite

producible results.	 The deposition of thin layers of
u

r^

silicon nitride or combinations of silicon dioxide and

and silicoli nitride on the graphite susceptor was found to

be inadequate.	 Silicon nitride and silicon dioxide were
,.z

sus-also deposited on the boron phosphide coated graphite

ceptor to prevent the etching of boron phosphide by hycU^ogen'
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chloride, but reactions with boron phosphide were observed

"	 in both cases at high temperatures. Finally, the surface

cf the graphite susceptor was converted into silicon carbide

by the deposition of silicon onto the susceptor at about

K_.	 850°C, and subsequent heating to about 1450 0C. After the

excess silicon was etched off with_a hydrogen-hydrogen

chloride mixture, thin. layers of siiccri dioxide and sili-

con nitride were deposited successively. 	 The use of sus-

.yl
ceptors prepared in this manner yielded reproducible doping

levels in the epitaxial layers, and the same susceptor could

y be used time and again to deposit boron phosphide layers.

IV.0	 Heteroepitaxial Growth of Boron Phosphide

sE Hexagonal silicon carbide was selected as a substrate

for the deposition of boron, phosphide. 	 This selection was p
based on considerations of chemical inertness, crystal 

symmetry, and lattice parameters. 	 The basal: plane of hex-

agonal silicon carbide has a three-fold symmetry and a
:- 0 76lattice parameter of 3.08 A t	which is very similar to the

F

interatomic distance: in the (111) plane of boron phosphide,

3.12 A.	 The coefficient of thermal expansion of silicon

carbide is 4.68 x 10 6 per oC in the c-direction and
-6	

0	
77

4.'2 x 10	 per	 0 in the a-direction,	 but no data is
r

b

available for boron phosphide .

a
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The hexagonal silicon carbide platelets had their

main faces parallel to the basal plane. The silicon and

carbon atoms are arranged in alternate layers parallel to
.e the basal plane.	 At one face, the silicon carbide structure

terminates in silicon atoms triply bonded to the matrix,
}

and at the opposite face this structure terminates in carbon,

atoms triply bonded to the matrix.	 The polarity of the
a

substrate surface was	 etching with adistinguished by	 1:1
F

-- molten mixture of sodium hydroxide and sodium peroxide at
F

800°C for 1 to 3 min; the silicon face remains smooth and{

f the carbon face 'becomes rough in appearance due to hexago-

nal etch pits.	 Generally the as-grown silicon carbide

platelets had one face mirror smooth and the opposite face
A

rough.,	 In preliminary experiments it was found that boron

phosphide layers on the silicon face of silicon carbide

platelets had better structural perfection than layers on

the carbon face.	 Therefore, silicon carbide platelets with

a smooth silicon face were generally selected as substrates.

In the case of a rough silicon face, the silicon carbide

crystals were lapped- with 5 }zm boron carbide powder and

polished with	 pm diamond paste on a polishing pad.	 The

substrate was degreased with organic_ solvents and left

overnight in'a hydrofluoric acid-nitric acid mixture. 	 The

substrate was then heated for 30 min in a 1s1 mixture of



A

tis
w

A
nitric acid and sulfuric acid, rinsed several times in hot

 deionized water, and blown dry with filtered dry nitrogen.

After this thorough cleaning, the substrate was set on the

susceptor and introduced into the reaction tube for boron

phosphide deposition.
r:• a^

ju The epitaxial deposition of boron: phosphide was

carried out by the thermal reduction of a boron tribromide-

;phosphorus trichloride mixture in on apparatus shown sche-

matically in Figure 4.1. 	 The halides were kept at a temper-

j ature of 30 0C in a constant temperature bath. 	 The hydrogen

gas, was bubbled through the halides to carry their vapors 	 _
f

into the 25 mm ID and 29 mm OD fused silica reaction tube.

The silicon carbide substrates were located on a graphite

s susceptor that had been coated with silicon carbide, silicon

dioxide and silicon nitride. 	 The susceptor was inclined

a'
o

towards the incoming gases at an angle of 10	 and was heated	 4

from outside by rf induction (Westinghouse 10 KW rf j enera-

for type 20K65) .	 Before deposition of boron phosphide, -the

silicon carbide substrate was heated in hydrogen for 30; min
t

at '1075 C.	 Phosphorus trichloride was introduced into the

F reaction tube first and the flow rate of boron,tribromide

was then slowly increased. 	 A slow increase of boron tri-

bromide was required to avoid random nucleation. 	 The

deposition time was usually 1 hz~ • At the conclusion of





g

.r

the phosphorus trichloride flow. 	 The growth rate and

u quality of the boron phosphide depended upon the substrate

temperature, the polarity of the substrate, and the ratio

of the concentrations of boron tribromide and phosphorus

trichloride.	 The optimum conditions for the epitaxial

growth of boron phosphide on silicon carbide were determined

to be:	 flow rates of hydrogen, boron tribromide, and phos-
-3

phorus trichloride of 0.125, 1.8 x 10 	 and 2.4 x 10

moles/min, respectively; a substrate temperature of 1075°

to 11000 C and the use of the silicon face of the substrate:

ro
The deposition rate of boron phosphide on a polished face

.-. could be varied from about 20 pm/hr to 60 pm/hr by adjust-

ment of the boron tribromide flow rate without affecting

the quality of the boron phosphide layers.	 The deposition

rate of boron phosphide on an as-grown mirror smooth sili-

con face was about 10 pra/hr. 	 No warping of substrates as
1

thin as 300 }zm with boron phosphide layers up to 60 Fm

thick was observed.

The intentional doping of boron phosphide layers was

L" carried out by the addition of hydrogen selenide to the re-

ai0l
ctor.	 A measured flow of a hydrogen-hydrogen selenide

mixture containing 0. 5% hydrogen selenide was introduced
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into the reactant mixture while the remainder was discarded.

Thus, the intentional doping of deposited boron phosphide

could be reproducibly controlled.

The structural features of boron phosphide grown on

hexagonal silicon carbide substrates were studied by optical

microscopy and reflection electron diffraction. 	 Figure 4.2 .r

W is a photomicrograph of a 30 pm thick boron phosphide layer

-- deposited on the polished silicon face of a hexagonal sill-

con carbide platelet at 1075
0
C.	 The flow rates of hydrogen,

boron tribromide, and phosphorus trichloride were 0.125,
-4	 -

1.6 x 10	 and 2.5 x 10	 moles/min, respectively.	 The,

deposition time was 30 min.	 The thickness of this layer was

determined by direct measurement of the fractured cross sec-

tion of the specimen with an optical microscope. 	 The sur-

race shows a number of line defects at 60 0 or 120 0 to each

ether; some of these defects intersect to form triangles or

partial triangles. 	 These 'lines are presumably stacking

Faults resulting from the coalescence of initial crystal-

lites.	 The geometry of the defects indicates that the grown

layer is single crystalline and is of (111) orientation.

Boron phosphide layers deposited on an as-grown mirror

smooth silicon face did not show any structure under the

optical microscope 	 The epitaxial relation as revealed by
11 ,,
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figure 4.2 As-Grown Surface of a 30 pm Thick Boron Phosphide

Layer on the Polished Silicon Face of a Hexagonal

Silicon Jarbide Plateiet by the 'Thermal Reduction

Technique at 107500

Figure 4.3 Reflection Electron Diffraction Pattern of an

Epitaxial Boron Phosphide Layer Deposited on the

Silicon i'ace of a.Hexagonal Silicon Carbide Sub-

strate by the 'Thermal Reduction Technique at 10750C

[110]

112J
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the reflection electron diffraction pattern shown in

Figure 4.3 is: BP(111)// SiC(001) and BP <110)/,/ S c<010).

The thermal reduction of the boron tribromide-

phosphorus trichloride mixture without intentional doping

yielded p-type boron phosphide layers. A number of doping

experiments were carried out by using different flow rates

of hydrogen selenide under otherwise similar conditions.

Fable 4, 1 is a summary of the doping experiments. 	 An aver-

age value from typically five readings of spreading resist-

ance was used as a, relative measure of the doping level in 3
4.

` the grown layers.

'r IV .D	 Homoepitaxial Growth of Boron Phosphide
+

The epitaxial growth of boron phosphide on solution
"

grovin boron phosphide crystals was carried out by the
x

thermal reduction of a boron tribromide-phosphorus trichloride

4

mixture with hydrogen in the same manner as the deposition

of boron phosphide on silicon carbide. 	 Homoepitaxial boron

phosphide layers had better structural perfection than the ..

heteroepitaxial layers.
+

-. The flat and smooth face of boron phosphide platelets

was preferred for the epitaxial growth of boron phosphide.

A In the case of a rough face, the boron` phosphide crystals

r	 ^'
r
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TAME 4.1

Doping of Epitaxial Boron Phosphide on Hexagonal ,Silicon Carbide

G
Flow rate of hydrogen gas	 = 0.12' doles/rain

Flow rate of boron tribromide	 1.6 x 10 moles/rain

Flow rate of phosphorus trichloride = ( 1.8 + 0.2) x 10-3 moles/min

Substrate temperature	 10750 

Run lumber	 Flow Hate Of	 Conductivity Type	 Average Spreading
Hydrogen Selenide	 Resistance(ohms)

( c,c/min)
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y were mechanically lapped and then polished with 0.3 }gym

alumina abrasive to yield two flat parallel faces.	 A few

previously untried chemical etchants_were also investigated

' as possible polishing etchants, but boron phosphide was

found to be inert.	 Before deposition, the boron phosphide

crystals were cleaned in the same manner as the silicon car-

bide platelets.	 The boron phosphide crystals were placed on

the graphite susceptor, introduced into the reaction tube,

and heated in hydrogen at 900 0C for 30 min.	 The substrate

temperature was then raise d to 1075 0C and the substrate was

etched for 2 min with phosphorus trichloride. 	 Phosphorus

trichloride, instead of hydrogen chloride, was used as an

etch-ant to suppress the dissociation of boron phosphide.
o a

Boron tribromide was -then introduced arid. its flow rate

slowly increased to its optimum value. 	 At the end of the

^A deposition, the flow of boron tribromide was first turned

off, the temperature lowered, and the flow of phosphorus

trichloride stopped. 	 A number of experiments were carried

out to determine the optimum conditions for the deposition

of device quality boron phosphide on solution groom boron
A

phosphide platele ts .	 At flow rates of hydrogen, boron`tri-

bromide, and phosphorus trichloride of 0.125, 1.44 x 10

and 1. 95 x 10 3 moles/rain, respectively, the growth rate of
>,

boron phosphide was approximately' 30 dam/hr at a substrate
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temperature of 1075 00. There was no noticeable difference

in the quality of boron phosphide layers de posited on the

opposite faces of solution grown boron phosphide platelets.

The thickness of epitaxial layers was measured by lapping the

specimen at an angle of 3	 followed by etching with a 3si

[JI
molten mixture of sodium hydroxide and sodium peroxide. 	 The

, substrate-deposit interface was visible due to the presence

of some defer°ts.

-Lp i taxial layers deposited on as -grown mirror smooth

faces of boron phosphide platelets showed no structural fea-

tures when examined through an optical microscope.

C!
Figure 4.4 is a photomicrograph of a boron phosphide layer

on the smooth face of a solution grown boron phosphide rn,

platelet by the thermal reduction of boron tribromide
5

f -_(1.44 x 10	 moles/min) and phosphorus trichloride
i

k -3
(1 . 95 x 10	 moles/min) with hydrogen (0.125 moles/min) at

107500.	 The deposition time was 1 hr.	 The grown layers

were single crystalline and epitaxial with respect to the

r substrate.
t

Boron phosphide layers deposited on _low resistivity

n-type solution grown boron phosphide platelets were n-type

layersin contrast to the undoped p-type boron phosphide

groom on hexagonal silicon carbide.	 This suggests that the
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Figure 4 .4 As-gown Loren 1hosphide Layer of 30 pm Thickness

Deposited on the idrror Smooth Face of a Solution

brown zoron Phosphide F' ^+ ,, ^+ ^,.. +^,o T^hor•rnal

Reduction 'A'-l echniaue at



J

uF

I;

1

^I

i

i^

b

x

autodoping of boron phosphide homoepitaxial layers from the

low resistivity n-type solution grown boron phosphide crystals

was responsible for the conductivity type of the grown lacers.

'r
	 Homoepitaxial layers of boron phosphide groinA on n-type or

high resistivity n-type solution grown boron phosphide sub-

strates had p-type conductivity. Jith hydrogen selsenide as

a dopant, p-type impurities were compensated and either

n-type or p-type layers were produced. The relative local

resistivity of epitaxial boron phosphide was compared with

the spreading resistance technique. The spreading; resistance
C>of 'lightly doped layers was on the order of 10 ohms and that

of highly doped layers was on the order of 10 ohms.	 In

s contrast, the resistivity of the_heteroepitaxial boron phos-

phide films on silicon carbide could only be varied by about

two orders of magnitude.	 This suggests that there may be

fewer lattice defects or a lower concentration of unwanted

impurities in the boron phosphide homoepitaxial layers.
j

IV.E	 Summary

}
It has been shown that heteroepitaxiallayers of -

Li boron phosphide of reasonably good structu:,--al perfections

can be deposited on silicon carbide. 	 Optimum results were
F	 ^ j

.f obtained when boron phosphide was deposited onto as-grown

silicon faces- of hexajonal silicon carbide platelets. 	 Both
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n-type and p-type boron phosphide "layers with reproducible

doping levels were grown. The, boron phosphide layers

deposited on solution tgro<,m boron phosphide platelets had

better structurawl perfection than those grown on silibon
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CHAPTER V

U

i METAL-INSUL9 OR-BORON PHOSPHI17.E STRUCTURES

This chapter is concerned with metal-insulator-

semiconductor (NIIS) devices. 	 Devices were made with

r. solution-grown crystals or with epitaxial layers of boron

phosphide on solution grown crystals.	 The insulating

layer was a deposited silicon nitride or a si' =2

dioxide-silicon nitride double layer. 	 The devices were

characterized by capacitance-voltage measurements.

V.A	 Introduction to Drietal^-Insulator-Semiconductor

Structures

The metal-insulator-semiconductor structure ham

become increasingly important since the development of the

charge-coupled device concept in 1970. 79	 An ii!TS structure
f{

f
o.

1 consists of an n-type or p-type semiconductor covered by

a thin film (typically between 100 	 and 2000	 thick) of

an insulating material upon which a metal electrode is
IT deposited.	 The investigation of T+TLS structures is useful

for the study; of insulator-semiconductor interfaces.

` The characteristics of MIS structures can be inter-

preted on the basis of physical models discussed by

4
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Grove,	 Sze,	 and others.	 In an ideal MIS structure

there is no metal-semiconductor work function difference

` and no surface states.	 At zero bias, the Fermi levels in

metal and semiconductor are equal and no band bending is
;s

observed (flat-band condition).	 The capacitance-voltage

behavior of an ideal MIS structure with an n--type semi-

conductor is shown in Figure 5.1.-	 When the gate voltage

is positive, the electrons from the semiconductor bulk are

attracted towards the semiconductor-insulator interface,

and the surface of the semiconductor is accumulated.	 The

measured capacitance for a positive gate voltage is then

simply the insulator capacitance. 	 With a small negative

bias, some of the majority carriers are repelled from the

surface, forming a depletion layer and the total capaci-

tance decreases.	 As the negative voltage is reduced suffi-

ciently, the total capacitance goes through a minimum and

all then increases again as the inversion layer of holes forms

at the surface.	 The increase in the total capacitance
z;

depends upon the ability of the minority carriers to follow

the applied :ac: signal.	 This is only possible at low fre- 	 n`

uencies where the minority carriers are sup plied9.	 Y	 _ 	 by the

generation-recombination process in the surface depletion

layer in sufficient quantity to the inversion layer so that

they can adequately follow the small-signal ac voltage. As

t

i

T
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a result, the ^.apacitance measured will approach that of the

i nsulator alone.	 If the frequency used for the small-signal

capacitance-voltage measurement is, too high, the generation

mechanism. cannot supply holes to 
the 

inversion layer instan-

taneously, and the total capacitance remains at a constant

minimum.

In a practical WfT.S diode, the presence of interface

states and charges affects the capacitance-voltage charac-

teristics.	 the interface states and charges can be due to

(1) energy lerels within the forbidden band gap at the

Uinsulator-semiconductor interface which can exchange charges

with the semiconductor in a short time, (2) fixed surface

charges located near or at the semiconductor surface, and

L(3) mobile ions such as sodium ions which are mobile within'

the insulator under temperature-bias stress.

ii V.B	 Dielectrics by Oxidation and Nitridation of Boron

Phosphide

One of the important aspects of the technology of any

new semiconductor material is the development . of a process

dielectric	 thewhich can be used to form a	 on	 semiconductor

surface, both for surface	 vation and as the insulator.pass.1

for metal-insulator-semiconductor structures. 	 In silicon

technology, thermally grown silicon dioxide is superior to

,7 ^^. =-IM
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N deposited oxide in interface properties. 	 Attempts were

made to produce a similar dielectric on boron phosphide.

The oxidation and nitridation of boron phosphide were
f

studied.	 Boron phosphide was found to be readily oxidized

in an oxygen atmosphere 'at 800°C or higher.	 However, the

resulting product was not adherent to the boron phosphide_

substrate.	 The X-ray Debye-Scherrer analysis showed that

the oxidation product was a mixture of tetragonal boron

phosphate (BPO ) and boron oxide (B203).	 Oxidation at

lower temperatures, which in general tends to produce more

g adherent films, produced boron phosphate films with pin-

d holes.	 It was concluded, therefore, that thermal oxidation
a

f of boron phosphide does not produce a suitable dielectric

ry' for device purposes.	 The nitridation of boron phosphide

was investigated by heating the crystals in ammonia for

several hours.	 At temperature be loN 925 ,C, no appreciable

reaction was observed. 	 As the temperature was increased to

r about 1000 0C, a discontinuous film of boron nitride was-
-

<<
.

produced.	 Since neither film produced by the oxidation or -

nitridation technique appeared to be ` suitable 'as dielectric

on boron phosphide, deposited layers described in the next;

i section were used.

Towards the end of this research, the electrolytic '

IS
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z! oxidation of boron phosphide in various electrolytes was

F' investigated to determine the feasibility of growing oxide

{ film on boron phosphide.	 P-type boron phosphide was readily

dissolved in all the electrolytes investigated.	 Anodic

oxidation of n-type boron phosphide in 5% to 30% hydrogen

peroxide produced adherent and insulating film at low current

densities.	 More work is recommended to characterize this 

oxide.

V-C 	 Silicon Dioxide	 Silicon Nitride Filmsand

"d Silicon nitride and silicon nitride-silicon dioxide

double layers were used as dielectrics in the fabrication 4.

of boron phosphide MIS structures. 	 The oxide and nitride

were deposited by the oxidation and ammonolysis of silane,

respectively.	 A number of experiments were carried out to

determine the conditions and the rate of deposition of ;

silicon dioxide and silicon nitride on boron phosphide sub-

= strates.	 The boron phosphide crystals to be used as sub-

strates were lapped and polished mechanically to yield two

smooth parallel and flat 'faces. 	 The substrates were sup-
,x

ported on a graphite>suseeptor (prepared as described in

Chapter IV) in the 25 mm ID and 29 mm OD water-cooled fused

silica tube.	 The susceptor was heated externally by rf in-
heated in hydrogen forduction.	 The substrate was	 30 min

:
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before deposition. The deposition of silicon dioxide was

carried out at temperatures near S50 0C, since silicon

dioxide was found to react with boron phosphide when the

oxidation of silane was carried out at temperatures above

is
900°C.	 Oxygen was introduced into the reaction tube first I:

and the flow rate of silane was then slowly increased.	 At

the conclusion of deposition, the supply of silane was

turned off followed by that of oxygen.	 The deposition time
,r

varied from 15 to 30 min.	 Silicon nitride was deposited at
ip

a substrate temperature of 850°C, since there were indica-

tions of reactions between silicon nitride and boron phos-

phide at temperatures above 1000°C.	 A deposition rate of

1g0 ^/min was determined for silicon nitride at a substrate

temperature of 850°C_ with the flow rates of hydrogen, silane,

and ammonia of 5, 0-003, and 0.13 1/min, respectively.
o

Silicon di cxide was deposited at a rate of 233 A/min at a

substrate temperature of ,850°C with the flow rates of hydro-

gen, silane, and oxygen of 5P 0.003, and 0.1 1/min, respec-

tively.	 When the substrate temperature was lowered to

5500C! the deposition rate of silicon dioxide increased, to

about 36,1) A/min.	 The thickness of these irilms on boron

s " phosphide substrates was determined as follows': 	 a, part of

the film was masked by Apiezon W wax and the exposed film

was etched with buffered hydrofluoric acid (for silicon
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dioxide) or with hydrofluoric acid (for silicon nitride) .

The height of the step generated by etching was measurad

with a Sloan Dektek.

i
The silicon dioxide and silicon nitride films were

transparent and were adherent to boron phosphide. 	 When

observed through the high power metallurgical microscope,

the films showed no pinholes. 	 The electrical resistivity of

ri a typical 1500,thick silicon nitride film was on the order

of 1010 ohm-cm compared to 10 i5 ohm-cm 8 2 for silicon nitride

films deposited on silicon. 	 The break down strength was on
-

the order of 106 V-cm_
l
 compared to 10 7 V-cm 1 . 82	 Thus the

'boronsilicon nitride films deposited on	 phosphide are

inferior to those reported elsewhere due presumably

to ̀the `relativel	 low temperatures used in the depositiony	P	 P

process.

s µ V.D	 Fabrication and Characterization of Boron Phosphide

r MIS Structures

- Several approaches were investigated for the fabrica x	 ,

tion of boron phosphide MIS structures.	 In one approach

'
0

silicon nitride films from 1000 to 2000 A-in thickness were
x

deposited on a mechanically polished face of either n-type

solution grown crystals or homoeptaxal boron' phosphide at

a;
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o
85.0 C	 After the deposition of silicon nitride, the back

r

s ide of the boron phosphide substrate was lapped to remove

G unwanted silicon nitride.	 Flectroless nickel was then

plated onto the back of the boron phosphide crystal at 800

to 90
0
 C.	 During electroless nickel plating, the sil icon	 -

LI nitride face was covered with Apiezon iN wax to protect it

from	 plating.	 The crystal with the plated nickel was h

annealed in either an argon or a hydrogen atmosphere at j
f

.^ 8500C for 1 hr to form .ohmic contact.	 Aluminum gate elec- i.

trodes of 0. 25 mm diameter were then deposited onto the

silicon nitride by 'vacuum evaporation. 	 The evaporator was

a diffusion-oil pumped Varian PS-10E system with a liquid

nitrogen trap.	 The capacitance-voltage measurements on the

fabricated metal-insulator-boron phosphide structures were i

,^

U made with a Tektronix type 130 Z-C meter, operated at 0.2

K MHz, in conjunction with a Hewlett-Packard 7034A X=-Y

recorder, or with a Boonton	 750 -Direct Capacitance bridge,

operated at a frequency of 0.4 IV[Hz.	 These measurements

were made under a do bias upon which was superimposed a -

small ac signal.	 The caracitance=voltage characteristics

' of a typical (n) boron phosphide 'IVITS structure are shown

',J
in Figure 5.2	 The positive flat-band voltage indicates

' the existence of a negative charge in silicon nitride near

4.` the silicon nitride-boron phosphide interface. 	 Because of





the negative charge in the nitride, an inversion layer is

formed at the entire n-type boron phosphide surface for

positive gate voltage.	 Since the insulator layer extends
3

over an area greater than the metal electrode the device has
4

two parts of inversion layer : 5 an intrinsic portion directly

beneath the metal region and an extrinsic portion ire the

area covered only by the insulator.	 The two parts. are 

coupled to form a distributive k-C network, made up of the

r lateral resistance of the inversion region and the depletion

capacitance,	 The distributed R-C network beyond the gate

can be considered a low pass filter. 	 Therefore, as fre-

quency increases, the ac propagates a shorter distance down

the line away from the gate :before dying out.	 Both the ex-

ternal  conductance and external capacitance will then be
ikj FT

smaller, and measured capacitance will become bias independ-

ent at _a value Tess than insulator capacitance. 	 At high

enough frequency, depending upon lateral resistance and

boron phosphide resistivity, hardly any ar propagates into

the distributed network.	 At this cut off frequency, the

overall capacitance of the insulator is in series with the
L

r depletion capacitance for all values of bias at which the

x boron phosphide under the 	 ate is inverted.	 Similar obser-P	 P	 -	 g

4 vat,ons have been made by a number of workers on silicon
r 83-85

IaZOS structures,	 and' low frequency regime extends up to
.'

R

n	 r ..

Uj
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, a few Wdiz.

Another procedure used for the fabrication of boron

phosphide MIS structure was to deposit epitaxial boron

hos hide and silicon nitrideconsecutivel y to minimize thep	 p	 S

possibility of introducing impurities at the boron

phosphide-silicon nitride .L ate^face.	 A low resistivity

n-type epitaxial boron phosphide layer was deposited on the

back side of the substrate at 10750  to facilitate the	 s

formation of the ohmic contact.	 After thoroughly flushing

the gas flow lines, a silicon nitride layer of 1000 to

2000	 in thickness was deposited on the n+ layer to mini- 	
t

- mize the auto , doping effect in the subsequent epitaxial

! growth process.	 The front side of the substrate was lapped

and polished mechanically to remove any silicon nitride and

n+ boron phosphide.	 A high resistivity n-type- epitaxial
e

boron phosphide layer was then deposited on the polished

face of the substrate, followed by the deposition of a
o

2000 A thick silicon nitride layer. 	 The back face of the

iJ I boron phosphide substrate was then lapped with 600 grit
+

silicon carbide abrasive powder to expose the n 	 boron

' phosphide epitaxial layer.	 The electroless nickel plating

and annealing on the lapped back face of the substrate was
}k

' j performed as described before. ` 	 Aluminum gate electrodes of

}
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.0.25 mm diameter were then deposited onto the silicon

nitride by vacuum evaporation. 	 It is important that the
IA

silicon nitride-boron phosphide structure is not subjected

to temperatures above 850 0C because of dissociation of

boron phosphide at temperatures above 900°C and the reaction

between boron phosphide and silicon nitride at high tempera-

tures.	 The capacitance-voltage relations of a typical boron

phosphide MIS structure described above are shown in

Figure 5. 3.	 The positive flat-band voltage, indicates the

existence of negative charge in the silicon nitride near

a the	 -boron	 interface.	 Thissilicon nitride.phosphide -result

supports the analysis of the previous device and indicates

that the one-step process would influence the density of

interface charges.

Double layers of silicon dioxide deposited at 600°C
o

and silicon nitride deposited at 850 C were also used as

^ the insulator in boron phosphide l'd1I5 structures. 	 The

capacitance.-voltage measurements of these boron phosphide

MIS structures are similar to those shown in Figure 5.3 and
t

again indicate the presence of negative charges in the

insulator.
k^
q V.E	 Summary

t

tt i
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Nitrido-(N) Boron Phosphide Structure at 400 KHZ
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j' The silicon nitride-boron phosphide structures have
M,

been prepared for the first time and the interface is

characterized by high density of interface-states.	 Oxida-

tion and nitridation products of boron phosphide have been

found to be unsuitable as dielectrics for boron phosphide

devices,	 The use of other dielectrics such as aluminum
86

s nitride-	 and anodic oxide of boron phosphide should there-

fore be investigated in the passivation of boron phosphide

'. devices and in the fabrication of boron phosphide MIS

structures.
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CHAPTER VI

I	 s

SILD'11W -CkRBIDE-BORON PHOSPHIDE 'JUNCTIONS

This chaptfr is concerned with the fabrication and

characterization of silicon carbide-boron phosphide hetero-

k junctions .	 Both n-type and p-type _epitaxial layers ofr

boron phosphide were deposited on hexagonal silicon carbide

.„ platelets using the chemical vapor deposition technique.

Ohmic contacts were applied to both boron phosphide and

sildcon carbide faces.	 Mesa junctions were isolated by

electrolytic etching and current-voltage and capacitance-

voltage characteristics of these mesa junctions were

determined.

VI . A	 Introduction to Hetero junctions

A semiconductor heterojunction is a junction between

two different semiconductor materials.	 A p-p or n- n 	 a

heterojunction is called an isotype heterojunction and a

-p-n heterojunetion, an anisotype heterojunction.	 The two

sides of a heterojunction will, in general have different

gaps, dielectric constants, work functions, and electron

Dl
faffinities. As a consequence,' the energy'aand diagram of a

heterojunction is not as simple as the diagram for a homo-

junction, and there are energy steps at the junc cion in

a

,ir
b ltz
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both the valence and conduction bands.	 The device charac-

teristics, are therefore, more complicated than those of a

homojunction.

In 1951, Shockley87 suggested that an abrupt hetero-

' 'unction would be an efficient emitter-base 'unction in aJ	 J
l} transistor.	 Kroemer$$ analysed a graded hetero junction as a

wide-gap emitter.	 Since then, many other application. of

heterojunctions have been proposed, such as the majority

carrier rectifier, the high-speed band-pass photodetector,and

the indirect-gap injection laser. 89	A heterojunction transis-^F
E for with a large band^	 .gap semiconductor emitter (n-type) and

a smaller band gap base and collector can have higher gains
h

and better frequency response than is possible in homojunction

transistors . 90	 Th is is possible because the difference in

band gaps appears as an energy barrier in the valence band,

which prevents reverse ,hole injection from a p-type base into

an n-type emitter and thereby increases the electron injection

efficiency of the emitter.	 In p-n heterojunctions, the large-

ii gap. material is usually transparent to radiation generated in

the small-gap material, and	 therefore, is sometimes used as

a "window" for transmitting the radiation. 91	 This "window

effect" can be used to fabricate photovoltaic p-n'heterojunc-

tions with a higher conversion efficiency than photovoltaic

p-n homojunctions, 92	 because incident ph otons with
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energies between the two forbidden gap energies are trans-

' mitted with little or no attenuation across the interface

from the large bandg	 gap side and are absorbed ire the narrow

C

{ band gap material.

in practice, heterojunction devices suffer from one

major limitation: 	 a high density of states within the band

gap at the junction interface. 	 These interface states can
3

act as trapping centers and they severely limit the device
93potential.	 'These interface states , are due, in large part, 	 3

to the lattice parameter and thermal expansion coefficient

mismatch between the two materials of the device. 	 Both types
a

" of mismatch will produce a strained lattice and dislocations.

In 'addition, interface states can result from autodoping of 	 3

°t the grown layer from the substrates and from other unwanted

impurities in the growth system.

VI.B	 Preparation of Silicon Carbide-Boron Phosphide
s^

Heterojunctions

P-type boron phosphide layers were deposited on low

resistivity `n-type hexagonal silicon carbide substrates at

1075 00, as described in chapter Iv. 	 After .removal of the
f

i deposit on the back side of the substrate, mesa structures

f were fabrics e' d by electrolytic etching.	 Selective etching

of boron., phosphide was done as described in chapter III.
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IJ Ohmic contacts were applied to silicon carbide and boron

phosphide by using successive layers of palladium and nickel

applied from plating solutions. 	 The contact resistance was

reduced by annealing at 800 0
 to 850 C for l hr in a hydrogen

or argon atmosphere.

a

r VI.0	 Characteristics of (n) Silicon Carbide-(p) Boron-

t. Phosphide Heterojunctions

The spreading resistance technique was used to compare

the relative local resistivity and to determine the junction

depth in heteroepitaxial p-n junctions. 	 Measurements of

spreading; resistance were made on angle-polished specimens

^ and an average of those .taken at each step was used for the  {
r

spreading resistance profile of the heterojunctiono

Figure 6.1 shows a profile of a typical (n) silicon carbide-

(p) boron phosphide epitaxial junction. 	 The junction depth

.determined from this profile was about 37 pm from the grown

^ surface

A preliminary evaluation of the current-voltage

characteristics of (n) silicon carbide-(p) boron phosphide

t junctions was made with a diode curve tracer.	 Figure 6.2

shows a typical trace.	 Diodes with poor reverse charac-

teristics were often improved by additional electrolytic

etching4	 When additional etching did not improve the diode

tj
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^ reverse characteristics, the diode was cleaned thoroughly,

dried and transported to a probe station for point by point

measurements at room temperature.	 Figures 6.3 and 6.4 show,
4.

respectively, the forward and reverse current-voltage

characteristics of the (n) silicon carbide-(p) boron phos-

phide junction whose spreading resistance profile is shown

in Figure 6.1.' The forward current is proportional to
V 3

14 exp(--T?) , where	 is 1.9.	 At voltages higher than 0.7 V,

the series- resistance of the device limited the forward

characteristics. 	 The reverse current increases exponentially.

i
with voltage up to -4 V.	 Below -4 V, the current increases

ii slowly with voltage.	 These characteristics are to be

j expected in accordance with the Dolega model.9
4
	In this

model, the presence of a thin layer with an extremely small

carrier life time at the interface between the two semi-

f3
conductors is considered to be typical of p-n heterojunctions.

The p-n heterojunction corresponds to two metal-semiconductor

contacts in series.	 When the impurity concentrations in the

i two sides of the junction are widely different, practically

all the voltage drop occurs oil the side with lower impurity

{ concentration.	 This corresponds to a single Schottky barrier

diode and v reaches 1. 	 On the other hand, when impurity

' concentrations on the two sides are comparable, voltage drop

i.4
occurs on both sides of the junction, and n reaches 2.

} j 	 r
ii
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C

r

Y^a.c.^,...•.^a...wu. ^. _,s ^.	 .	 .	 '..	 :.	 .:.	 Y.. .a	 w....._^..n,..se,.,memx.«e.:innaa:^.,f.,,i,nde^s^C..eaua^.^a-yvu„as.uamdu. .. s...<._r.	 c.l.._.s^_u.eaNi.T.m....u..z.	 .>_..._r....._ s ._v 	 _	 _ 	 r	 ..	 _	 ,_ws_	 .. a	 y_-_	 ...,..,.	 .1...w	 _,7,...,.	 u...•ua..



F

„
119.

1

yfl IF ..

10

"l 10 i

t. ri

,
..10-4

a

t
N

t f

10

{

} t	 r

t^
...

6

1 7
10

0 0.2	 0.	 0.0. 0	 1.0	 .2

VOLTAGE p VOL'1'&
Figure 6.3 Forward Characteristics of the (11) Silicon carbide-

ll
(P) Boron Phosphide Heterojunction

w,



12(`^

f„

10 '

10-3

w lQ^

.^ r

'
10

.._-..

>
PIP

t.
v

f -610

VOLTAGE , VOLTS.
Figure 6.4 Reverse Characteristics of the (N) Silicon Carbide-(P)

Boron Phosphide Heterojunction

1

.-^+	 .. .e........u..t,..;. 	 x. t 	 Aa	 .-L	 .. „,;.	 u.-....F.....L -.v.m..`...ary.....»-.,:.^...:v;:....:.:';^..¢><a. «.u,..,.m..^^.... :_...	 .^,_	 ;:.	 •	 ...	 -	 -	 .3



121

According to this model, an initial exponential rise

followed by a linear increase in the reverse current occurs

as the	 --verse bias is increased.

Capacitance-voltage measurements were also carried

out on (an) silicon carbide-(p) boron phosphide hetero-

junction diodes.	 Figure 6.5 shows the relationship between

r; the inverse capacitance squared and voltage for the diode

described above.	 The linear relation between C 	 versus V

indicates the . abrupt .nature of the .junction.	 The voltage

intercept of about 2.6 V is the diffusion p otential result-;

ink; from two Schottky diodes in series according to Doleba

model.	 The slope of C- 2 versus V gives1
	 1	 +	 1

whereE„,and Nd are the permitivity and the net impurity

t concentration in n-type material.	 Na and e, correspond to
l

p-type semiconductor. 	 The slope, of F igure 6 . 5 indicates

that	
N	 + `l	 is on the order of ,10	 cm
d	 a)

^r

r VI.0	 Summary

Silicon carbide-boron phosphide heterojunction diodes
i

have been fabricated and characterized for the first time.

Boron phosphide layers were deposited on hexagonal silicon

carbide; platelets by hydrogen reduction of a mixture of

oboron tribromide-phosphorus trichloride at 1075C. 	 iuesa

E
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k CHAPTER VII

R
BORON PHOSPHIDE P-N JUNCTIONS AND LIGHT EMITTING DIODES

This chapter is concerned with the fabrication and

M characterization of boron phosphide p-n junctions and, electro^-
r

luminescent diodes. 	 Boron phosphide p-n junctions were 	 j
p

` fabricated by the epitaxial growth, electrolytic etching

and contacting techniques discussed in the prerceeding

chapters,	 Current-voltage and capacitance-voltage, and

electroluminescent characteristics of the epitaxial and

' solution grown boron phosphide p-n junctions were determined.

r Electroluminescence from point-contact diodes was also 	 ?.
{ investigated.	 r

VILA	 Introduction to P-N Junction Theory

Ap-n junction may be formed by joining an n-type to
it
i"

Y
semiconductor in any manner that allows the crystala-p-type

junction.	 the interfacelattice to be continuous across the`'

" between the two regions is called a p-n junction. 	 A p-n

junction can perform various functions depending upon its

" biasing conditions as well as its doping profile and device

geometry.	 The more important of these functions are

ister, varactor	 fastrectifier, voltage regulator, v ar	 ,

recovery diode, ` charge	 storage diode, p-i-n diode, impatt

124
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{

k
i diode, tunnel diode, and light-emitting diodes. 	 Light

emitting diodes have been fabricated from a number of III-V

l
and other compound semiconductors.

f

The electrical characteristics 	 junctionof a p-n	 are
i

well known.	 If -there is no external voltage applied between

the two sides, the Fermi level exists at a single energy

value throughout the crystal. 	 At the p-n junction, conduc-

tion,  and valance bands are warped in such a way that the two

majority carrier distributions are confined to their own

areas, the warping being just sufficient to establish that
no net current flows across the junction. 	 In equilibrium,

the current flow across the junction is composed of two

equal components of opposite sign; one component is due to

carrier diffusion and the other, is due to carrier drift as

a result of the built-in electric field.

If an external voltage is applied to-a p-n junction,
f

this equilibrium is disturbed. 	 If a forward bias is applied,,
s

the Fermi levels on both sides of the junction are different

by an amount 9.V.	 The barrier to the flow of majority

h
carriers is thus lowered, and a current can flow which in-

creases exponentially with voltage.	 Holes flow through they

f1 p-type region and either recombine with-electrons which have

` crossed the junction or move over into then-typo region and

Sw



9.2 6

f '	 '

recombine there.	 The behavior of electrons is analogous.

t 
If a reverse voltage is applied, the barrier is

i

raised so treat, , fewer majority carriers can cross the barrier,

and current - i;s onty carried by minority carriers which are

f	 easily swept across the -region of the accelerating; field.	 j
` The magnitude of this current- is ideally independE-nt of the

applied voltage and is only determined by the abundance of

minority carriers in the two regions.	 It results from'the

^- thermal generation of carriers and is, therefore, a function

of temperature. 	 At a high reverse voltage, avalanche break-

down sets in.	 a

she current-voltage characteristics of a p-n junction

are given by

_i	
1

r^

t	 I	 I s	 C	 nkT

where Is is the saturation current, V is the voltage across

the junctions k is yoltzman's constant, T is absolute temper-

w
ature,' and n is a parameter whose value is 1 or larger.	 The

value of n is unity when the diffusion current dominates,

and is higher when the recombination current dominates. 	 The

r	 saturation current of an ideal junction is given by

i s	 ,
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a

A

i

x

Pn	 D	 nn
I s	 -	 q.	 -----p + pLn	 (7.2

where Pn is the concentration of holes in the region, Dp^,.n
. y

6	 ;:
,. is the diffusion constant for holes, and Z p is the diffusion

length of holes.	 Other symbols have similar meanings
j

In the transition region a change dipole region or

depletion layer is created by the carriers diffusing out of

the regions leaving on either side the immobile ionized

impurity atoms.	 The voltage across the junction repels more

majority carriers away from the junction and exposes more

impurity ions on both sides. 	 Thus the depletion layer

° widens with voltage and behaves like a voltage dependent

capacitance.

The total capacitance C of a p-n junction is composed

5
of the depletion layer capacitance C dep and the diffusion

capacitance Cds

E	 r-.< C = Cdep + C d	 (7.3)

` Froth of these contribution s are voltage dependent.	 The

total electrostatic 'potential variation across the junction

' is ; given by

^	
x

<
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qtr

^^	 Ea_ V' =  Vbi + Vas
	 (7.4)

where Vbi and Va are the applied voltage and the built -in
voltage, respectively. The positive sign is for reverse

bias and negative sign for forward bias.

	F{ ';	 Since the depletion layer is essentially free of

carriers, it acts as a dielectric and is associated with a

corresponding capacitance Cdep . The depletion layer capaci-

tance accounts for most of the junction capacitance if the

junction is reversed biased. For a planar one sided step

junction

	

r 	 ,

r

	

4	 _	 q Es N b	 2	 g
dep _+

2V

e'

where q is electronic charge, s^ is the dielectric constant
u

of the semiconductor, and 0 is impurity concentration at the

edsges of the depletion layer and is equal to N D or NA depend-

ing upon whether NA » N"D or vice versa. It follows from

equation (7.5) that

d	 (C-.2 
de2
	

(7.0)
dV	 P	 q to lib

Ll



-129

i

It is clear from equations ( 7. 5) and (7. 6) that a Plot of
-2

C	 versus V will be a straight line for a one sided abrupt

junction.	 The slope would give the impurity concentration 
{

IN 	 and the intercept (at C-2=0) gives the built-in potential

2kTUbi (more accurate consideration gives Vbi-	 q	 •

^w VII.B	 Ohmic Contacts to Boron Phosphide

One of the important parameters in developinY,, device

technology for new semiconductor materials is the formation
`t

of low resistance ohmic.contacts, which are 'essential for

efficient and reliable operation of junction devices 	 The

general guidelines forobtaining ohmic contacts to semi-
3

conductors are (1) to use contacting materials of high work
e

function on p-type and of low work function on n-type semi-,lR

conductors, and (2) to create a region of high carrier con-

centration under the contact through alloying or in-diffusion

of a suitable dopant provided by the contacting material.

In practice, it is difficult to satisfy these guidelines.

For example, at temperatures high enough to affect alloying

or impurity in-diffusion, boron phosphide decomposes. 	 In

this work, a number of materials were investigated under

various heat treatment conditions to yield low resistance

ohmic contacts to boron phosphide. 	 The results are summar-

' ized`in Table 7.1.	 The carrier concentration of boron

;r

_^

a:
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1

Contact Desistance of Different f.,aterials to Boron Phosphide
i

---r

E

Conductivity Contact Contact iiesistance	 oFYm-cm
Type of Iviaterial After Different Heating, hern^,eratures

s
Deposited 600°C 7500C 850

0li	 9So°c
R	 -

N Al N-0 N_ 0 N_0
N In id- 0 Ib- 0 -- --	 --

'	 1V ilg N-0 1`- O iV --0 td- U	 ld- 0
N Ag-Ge kl1 o N-O iii-0 N-0 w
N Ag-Sn Iv-O N-O vi-0 N-0	 -- o
,I Ag-S i IN - 0 N-0 N- O rd- 0	 --
N Au Iv-0 - - Ohmic
N[	
N

Au-Si(1-5%)	 13-0
Au-Sn	 NT-0

--	 -
--

__
--

-10-2	 --
-x10-2	 --

Au-Ge-Ni -
N Au-Ge N-0 -- -- Ohmic	 -
N Electroless Ni N-0 - -- X10-2	 -
P Au-Be( 1) N-0 -- - -10-2	 --
P In N-0 -- -- Ohmic	 -

`	 P
f

Al N-0. -- Ohmic	 --

Non-Ohmic

1

t
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phosphide crystals was approximately 1018 cm 3 .	 All the

i
metals or their alloys were deposited on boron phosphide

by evaporation under a pressure of 1`0 -6 Torr or lower with

the exception of nickel. 	 The electroleas plating was used

W
BE&—

for the deposition of nickel, and indium was also applied

by soldering in addition to evaporation.	 Annealing was

carried out in a hydrogen atmosphere from 600 0 to 8500C

for 5 min to 1 hr, though occasionally annealing; temperature
was raised to 950 00 for -a few minutes.	 The current-voltage

characteristics of these contacts were determined on a

curve tracer.

For n-type solution grown crystals, aluminum and indium
o^contacts remained non-Ohmic even after annealing up to 750

for 1 hr. _ -_Electroless nickel was found to form low resis-

} tance, ohmic contacts to all but lightly doped n-type boron

phosphide crystals.	 The plating was carried out at 90
0 to

100 00 using Nicklex (Transene Company, Inc., Danvers, Wass.)
1

"

plating solution.	 Zapping of boron phosphide crystals with

600 grit silicon carbide abrasive facilitated the plating

process and improved the adhesion of nickel deposit to the

crystal.	 The electroless plating of lightly doped boron

phosphide with nickel was very difficult and was facilitated

considerably by ,rinsing boron phosphide platlets in palladium

chloride solution, deionized water,stannous chloride solution,



ice',

132

and de oftized water successively before plating. 	 Annealing
l =

temperatures of 850
0 to 900°C produced ohmic contacts of

specific contact resistance on the order of 102 ohm-cm2.

In the fabrication of small area devices, evaporated

contacts are preferred, and gold, silver, and a number of

their alloys were investigated.	 Gold-germanium-nickel and

gold-silicon have produced low resistance ohmic contacts to

n-type boron phosphide, and gold-'beryllium has formed low

resistance ohmic contacts -to p-type material,	 On heavily

doped -.baron phosphide crystals, evaporated gold contacts were

found to be ohmic after annealing.

,a VII. C	 Preparation and Characterization of P-N Junctions and

Point-Contact Diodes

Boron phosphide p-n lunation structures were prepared

by -the epitaxial growth of boron phosphide using thermal
f reduction of a boron trit)romid,e-phosphorus trichloride mixture

a: with hydrogen on solution grown boron phosphide platelets as

_ described in chapter IV.	 The procedure had to be modified,

however, in case of low resistivity n-type boron ,phosphide

substrates.	 Silicon nitride or a boron phosphide layer with-

out intentional doping was deposited on the back side of

the boron phosphide platelet.	 The front side of plate-

let -was then lapped and polished mechanically, and the

 boron phosphide epitaxial layers grown on the polished front

r
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a

fece were sometimes n-type and sometimes p-type-in conductivity.

After preparing boron phosphide layers containing a p-n

junction, mesa diodes were isolated by electrolytic etching

(chapter III) or by lay er scribing.	 Figures 7-1A and 7.113

show, respectively, an array of laser scribed boron phosphide
^^

diodes and the typical current-voltage characteristics, 	 Built-
z

in p-n, junctions in solution grown boron phosphide crystals i
r	 u	 Golc? or	 old-were also	 .isolated ^y electrolytic etchin g• .	 g 3,.. .

silicon contact: were evaporated onto the n-type region and

gold-beryllium contacts were evaporated on the p-type region.
r After evaporation, the contacts were annealed in hydrogen at
y

o

8 .50 C to reduce the contact resistance.	 The fabricated boron

7 phosphide diodes were mounted on a TO-18 header with a single

component silver epoxy. 	 The mounted diodes were generally

encapsulated in Hysol LED epoxy before making measurements.

Figure 72 shows the current-voltage characteristics of

an unpassivated epitaxial boron phosphide diode fabricated on

an-n =type solution grown substrate.	 The n value in the diode

equation is approximately 29 due to high series resistance of

the device.;	 The reverse breakdown voltage was higher than

20 volts.	 The excessive leakage current was reduced by pas-

sivation.

The current-voltage and capaci =tance-voltage characteristics
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(B)

Figure 7.1 (A).An Array of Laser-Scribed Boron Phosphide P-N

Junction Diodes (B) current-Voltage Trace of a

Laser scribed Boron Phosphide P-N Junction Diode

(Horizontal 2 V/Div, _ Vertical - 1 mA/.jiv)
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of a built-in p-n junction in a solution grown boron phosphide

crystal are shown in Figures 7.3 and 7.4 respectively. Over

a small range of voltage the n value is approximately 2 at
300'K	 and 3.4 at 77`K.	 This is due to the recombination of

carriers in the space charge region.	 A linear relat.nship

between C 
2 and V indicates an abrupt nature of the junction.

The voltage intercept is about 2.1 V, slightly greater than 	 a

the band gap of boron phosphide. 	 This is attributed to -the

presence of p-i-n structure in place of a simple p- n junction.

The carrier concentration calculated from the slope of t-2
G

-

versus V relation is approximately 1018 cm 3.

A	 d undo ed boron phosphide crystalsOn prob^no doped an	 stallp	 P	 P	 Yr

with a metal point, strong rectification was observed. 	 The

crystal was placed on a metal sheet, and a metal point-contact,

gold or tungsten -tip was applied to the surface of the crystal..

Figure 7.5A and 7 . 5B show typical rectif ication curvoo, obtained	 1

-typewhen an nboron phosphide crystal was probed with a gold

probe.

VII.D;; Electroluminescence from P-N Junctions. and Point-

`Contact Diodes

Electroluminescence 	 is the emission of optical radia-

tion as a result	 of electronic excitation in a 	 material

under the application of an electric field.	 The electronic
.1



_g
10

1

L
10

r

ra

10-5

x °^. TI

10^^

10- 7

10



40

CO!

i

..wi...

i



139

yr
	 ^`

Av,	gc	 .

s. ! .1k.ea YrrYrir ^	 ras+.......^+. iYrrr

A)

I figure 7-5 Typical Rectification Characteristics of Phosphide

Point-Contact Diodes (Horizontal 5 V/,Jiv, Vertical

1 MA/Div )
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transitions that follow the excitation in a semiconductor or

an insulator - are shown schematically in Figure 7.6. 95 	 In a

semiconductor, injection of minority current carriers is suffi-

cient to lead to recombinations of the type shown in Figure 7.6

as transitions (1a) to (1c) and (2a).	 This can occur by injec-

tion at point-contacts, over forward-biased p-n junctions, or

by tunnel.injection.	 Transitions of the type (2b) an ,' (3)	 can-,

occur at revers3biased p-n junctions, by impact ionization, or

"avalancheby	 injection" (microplasma J:ormation). 	 A given semi-

conductor may, therefore, emit in different spectral regions,

and by different mechanisms, de pending onthe magnitude and

direction of the applied voltage, the nature of the contacts,

etc. Figure 7,7 shows schematically the injection-electrolumin-

escence mechanism in a p-n junction.

The electroluminescence from boron phosphide p-n junction

diodes and point-contact diodes was studied under do and pulsed

conditions.	 For spectral measurements, the diode emission was

focused on the entrance slit of a Perkin-Elmer model E-1 mono-

chromator.	 The detector was a RUCA 7102 photomultiplier tube

(with S-1 c haracteristi.cs)

The emission in solution grown diodes appeared -to

origina:be from n-type region. 	 Also, electroluminescence was

observed when the diodes was under forward or reverse bias,

although the brightness level was much higher under reverse
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arm

{

bias.	 Figure 7.8 shown the spectral emission of a solution

(j grown boron phosphide p-n junction under reverse bias. 	 The

spectrum consists of bands associated with transitions between

impurity states.	 The spectrum extends into near infra red

(about 1. 5 eV).

The electroluminescence from epitaxial p-n junctions

was of less intensity than the slution grown diodes.

Electrolumi.nescence from point-contact diode and built-

in junction diodes was visible in room light.	 Figure 7.9

shows, the'spectral emission from a point-contact diode.- 	 In

addition to broad band emission, there are strong peaks at

6200 0 ,6500, and 8200	 These correspond	 to near bared gko

and relatively deep impurity transitions.

k

VII . E	 Summary

Boron phosphide epitaxial p-n junctions and solution

grown D-n junctions have been fabricated. 	 The electrical

characteristics and electroluminescent properties of the

boron phosphide p-n junction diodes and point-contact diodes

were studied . .	 ;Electroluminescence from these diodes is

characterized by near band gap, shallow, and relatively deep

I
impurity transitions.
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CHAPTER VIII

SUI'lltliAiLY ^JO CONCLUSION

., A review of the literature indicated that essentially

f no device work on boron phosphide had been carried out.

This is attributed to several factors:	 (1) the crystal

growth of boron phosphide of reasonable size and perfection

i and of controlled impurity suitable for device is an extreme-

. ; ly difficult task, ,(2) boron phosphide is refractory and is

chemically inert at room temperature, rendering the device
^

b	
j

_` a fabrication an extremely 	 ifficult process,Y	 p	 , (3) the appre-

ciable dissociation pressure of boron phosphide at 1200°C or

above poses a serious problem to the .formation of p-n

junctions.	 Thus, the objective of this research was to

^ prepare device quality boron phosphide single crystals and

epitaxial layers, to develope device fabrication techniques,

and to characterize boron phosphide homojunction and hetero-

junction devices.

(1)	 The growth of single crystals of boron phosphide

by recrystallization has been carried out using stationary'

and accelerated crucible rotation technique. 	 The boron

phosphide crystals grown here are considerably larger than

those reported heretofore. 	 These boron phosphide crystals

LA
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have well developed faces and are ideal as substrates for

the epitaxial growth of boron phosphide. 	 For the first time,

the intentional doping of single crystals of baron phosphide

4
has been carried out, and both n-type and p-type boron phos-

phide single crystals have been obtained by the recrystal- -

` lization technique.	 The room -temperature carrier concentra-

tion of these solution grown crystals was approximately

^m-3.10 cm

i

(2)	 The electrolytic etching of boron phosphide has
7

r been investigated for the first time, and has been used in

device fabrication.	 A technique has been developed to etch

and polish	 e boron phosphide.	 In contrast	 n in-P^^	 P-type	 P	 P	 : a i
soluble film tended to fora on n-type boron phosphide, and

^ the removal of material was very slow.	 Due to a large dif-

ference in etch rates between p-type and n. -type materials,

F
boron phosphide P-n junction interface has been delineated

` b	 electrolytic etchin 	 electrolytic etchin. 	 has been alsoY	 g

applied to the fabrication of mesa type boron phosphide p-n

junction and boron phosphide-silicon carbide heterojunction

structures.	 Because of the inert nature of boron phosphide,

electrolytic etching is the most suitable means available to

remove p-type material and to isolate mesa type junctions.

i
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(3)	 Epitaxial layers of boron phosphide have been

deposited on hexagonal silicon carbide platelets and solution

grown boron phosphide platelets by the hydrogen reduction of

f t^ a boron tribromide-phosphorus trichloride mixture at 1075 0 to

i
o

1100 C.	 The optical microscopy and reflection electron

s& diffraction examinations showed the grown boron phosphide

layers to be single crystalline and epi •taxial with respect

' to the substrates.	 The boron phosphide layers grown on

silicon carbide substrates and on p-type or n-type boron

`` phosphide platelets were p-type, and p-type or-n-type boron

phosphide layers were obtained by doping with hydrogen

; selenide.	 The boron phosphide- layers deposited on n+-boron 	 a

phosphide crystals were n-type presumably due to autodoping

effect during the deposition process. 	 F-type layers could,

however, be grown on n+-boron phosphide crystals by coating;

the back face of the substrate with boron phosphide or

silicon nitride.	 For the first time,the epitaxial boron

j phosphide layers have been used for the fabrication of

heterojunction and homojunction devices.

O	 In search for a suitable dielectric for the sur-

^:. face passivation of boron phosphide devices and as the

insulator in DDS structures, thermal oxidation, thermal

nitridation, and electrolytic oxidation of boron phosphide

s' have been investigated. 	 Of the three processes, electrolytic
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oxidation appears to produce the best results. Silicon

dioxide and silicon nitride filmswere also deposited on

boron phosphide) however, they are inferior to those

deposited on silicon at higher temperatures. The boron

phosphide-insulator-metal structures with silicon nitride

(or silicon dioxide-silicon nitride) layer as the insulator

ma are characterized by the presence of negative charges in the

semiconductor-insulator interface.

(5)	 Silicon carbide-boron phosphide heterojunction
n

r , structures have been fabricated and characterized. 	 L^esa	 r
e diodes were fabricated by electrolytic etching. 	 The current-

# voltage characteristics of (n) silicon carbide-(p) boron

F phosphide heterojunc-cion structures have been found to

deviate considerably from p-n homojunction structures and

indicate a high recombination rate at the interface,
i'	 M

(6)	 Boron phosphide p-n junction diodes have bcten

fabricated and characterized.	 Epitaxial boron phosphide p- n

junction structures deposited on solution grown substrates

were isolated into mepas by electrolytic etching or laser

k scribing.	 Built-in p-n juncti.nns in solution grown boron

phosphide crystals .,°re isolated by electrolytic etchl

.	 _ The current-voltage anc' capacitance-voltage characteristics

4 of these diodes have been investigated.

t
I	 'i

fILil.
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}

{ Easily visible electroluminescence has been observed

from both epitaxial and built-in p-n junctions as well as

`
f

from point contact diodes.	 ElectroluIainescence from these

diodes was characterized by near band gap, shallow and

relatively deep impurity transitions.
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