General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
A FIELD-EFFECT TRANSISTOR (FET) MODEL FOR ASAP (International Business Machines Corp.)

N76-10377

Unclas

63/33 03969

RECORDS RETENTION COPY
BOX # 851-A

A FIELD-EFFECT TRANSISTOR (FET) MODEL FOR ASAP

SPACE GUIDANCE CENTER
HUNTSVILLE ENGINEERING OPERATION

HUNTSVILLE
ALABAMA
150 SPARKMAN DR.
P. O. BOX 1250
A FIELD-EFFECT TRANSISTOR (FET) MODEL FOR ASAP

Written by: L. Ming

Approved by: L. M. Overhultz

DATE: April 13, 1965
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF DEFINITIONS</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>THE FET MODEL</td>
<td>2</td>
</tr>
<tr>
<td>THE APPLICATION OF THE FET MODEL IN ASAP</td>
<td>7</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>16</td>
</tr>
<tr>
<td>AN IMPROVED FET MODEL</td>
<td>23</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF DEFINITIONS

A. Field-Effect Transistor (FET)

D, drain terminal
G, gate terminal
S, source terminal

\(V_{ds} \), drain-source voltage
\(V_{gs} \), gate-source voltage

\(V_p \), pinch-off voltage, the gate-source voltage which reduces
the drain current to the reverse saturation current of the

gate-channel diode.

\(I_d \), drain current

\(I_{dss} \), saturation drain current with zero gate-source bias
voltage at any drain-source voltage in the pinch-off
region below breakdown.

\(I_{d(on)} \), \(I_{dss} \) when measured at a specified drain voltage in
the pinch-off region

B. Hypothetical Transistor in FET Model

\(I_b \), base current
LIST OF DEFINITIONS

I_c, collector current

I_e, emitter current

V_{be}, base-emitter voltage

β, current gain $= \frac{I_c}{I_b}$
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic of a FET Model</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Characteristics of (a) Field-Effect Transistor, (b) PNP Transistor, (c) Transistor with Feedback Resistor</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Currents and Voltages in the FET Model</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>I_c vs. V_{be} Curve for Hypothetical Transistor</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Schematic of FET Model Circuit for ASAP</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Topological Input Data to ASAP</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Typical ASAP Output Data</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Comparison of FET and FET Model Drain</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>Bias Design Curves for 2N2497</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Effects of Change in $I_{d(on)}$ on the FET Characteristics for 2N2497</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Temperature Effects on $I_{d(on)}$ for 2N2497</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Schematic of an Improved FET Model for ASAP</td>
<td>111</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

IBM has been applying ASAP (Automated Statistical Analysis Program) in the analysis of electrical circuits. Recently the field-effect-transistor (FET) has been appearing in many of these circuits. Since ASAP accepts circuits containing only resistors, voltage and current sources, and conventional transistors, a FET model consisting of these components has to be derived to be able to use ASAP on circuits containing the FET.

This report describes the derivation of the circuitry of a FET Model, the procedure for adapting the Model to ASAP and the results of applying ASAP on this Model.

This work was done under NASA Contract Number 8-14000 for Marshall Space Flight Center.
II. THE FET MODEL

A FET Model was derived consisting of a resistor, a current generator and a hypothetical transistor. The schematic of the model is shown in Figure 1.

Figure 1. Schematic of a FET Model
In the Model R_b is a resistance in the order of megalohms which simulates the high gate input impedance of the FET.

To simulate the FET electrical behavior, a constant current source is required to provide a source of transistor base saturation current independent of the base-collector voltage. The constant current source was derived through consideration of the characteristics of the transistor without any other elements and then with a feedback resistor. The transistor characteristics corresponding to the FET characteristics would be the collector current versus collector-emitter voltage curves for constant base currents where the collector current, collector-emitter voltage and base current of the transistor correspond respectively to the drain current, drain-source voltage and gate current or voltage of the FET. The characteristics of a PNP transistor operating in the common collector mode and of the FET are shown in Figure 2.

From Figure 2 it can be seen that for low base currents the transistor is almost turned off while the opposite condition must exist to give FET action. Thus a path for the base saturation current must be provided to allow the transistor to be saturated at low base currents. A resistor inserted between the base and collector terminals would provide such a path.
Figure 2

Characteristics of
(a) Field Effect Transistor
(b) PNP Transistor
(c) Transistor with Feedback Resistor

I_d
V_g = 0
V_g > 0

G
R

S (E)

I_d

(c) Transistor with Feedback Resistor

I_b > 0 (FET, V_g = 0)
I_b = 0 (FET, V_g = 0)

V_c

(b) PNP Transistor

I_c

V_g = 0
V_g > 0

(a) Field-Effect Transistor
It was found that the transistor with the feedback resistor did not give the FET action. The characteristics of the transistor with feedback resistor are shown in Figure 2. This transistor circuit did not simulate the FET behavior because even though the resistor provided the base current path, the base current was now a function of the base-collector voltage. Thus, another condition had to be imposed. The condition was that the source of transistor base saturation current be independent of the base-collector voltage. The constant current source meets the description of the required element.

The above conditions may be described mathematically by the following expressions. From Figure 2 for the transistor with feedback resistor,

\[I = I_c + I_b + I_g \]

\[I_c = f(I_b) \] (1)

\[I_b = g(V_{bc}) \]

\[I = F(V_{bc}) + I \text{ where } F(V_{bc}) = f \left[g(V_{bd}) \right] \]

\[g(V_{bc}) \gg I_g \]
It may be noted that \(I_g \) accounts for the gate leakage current.

It is the last equation in (1) which controls the behavior of the characteristics of the transistor with feedback resistor and which must be modified to generate the FET characteristics.

To realize the FET behavior, the following condition must be satisfied.

\[
g(V_{bc}) \ll I_g
\]

Physically, the mathematical expressions define a requirement for a base current which is independent of the base collector voltage. And it is precisely the constant current source which enables this condition to be satisfied.

A PNP transistor is used for the Model to be consistent with the voltages applied to the FET terminals.

The validity of the Model was verified experimentally in the laboratory to the extent that the characteristics of the Model behaved in a similar manner to that of the FET.
III. THE APPLICATION OF THE MODEL IN ASAP

For application of the model in ASAP, the characteristic I_c vs. V_{be} and β must be defined for a hypothetical transistor. For the determination of these two parameters, the circuit equations must be solved for the model.

Let the voltages and currents be defined as shown in Figure 3.

![Figure 3. Currents and Voltages in the FET Model](image-url)
Then
\[I_d = I + I_c = I_g + (\beta + 1) I_b \]
\[I = I_g + I_b = \text{constant} \]
\[I_g = \frac{V_{gs} + V_{be}}{R_b} \]
\[I_b = (1 - \alpha) I_c \]
\[I_c = \alpha I_e \]
\[\beta = \frac{\alpha}{1 - \alpha} \]

A value for \(R_b \) is assumed. From the FET data a value \(I \) for the current source is calculated. A value for \(V_{be} \) is assumed from which \(\beta \) is calculated. Finally, from the FET data the \(I_c \) vs \(V_{be} \) curve is generated.

In an application on a typical FET, the detailed steps will now be described to obtain the necessary information to use a 2N2497 P-channel FET.

The value \(I \) for the current source may be determined by considering the FET when it is pinched-off, and \(V_{be} = 0, I_b = 0 \). Then, the only current flowing in the circuit is the gate leakage current or \(I_g \). The pinch-off voltage, \(V_p \), for the nominal static
characteristic of the 2N2497 data is

\[V_p = V_{gs} \text{ (pinch-off)} = 0.07 \text{ volts} \]

Therefore,

\[I = I_g = \frac{V_{gs} + V_{be}}{R_b} = \frac{2.07}{10^7} = .207 \mu A \]

having assumed a value \(R_b = 10 \text{ Megohms} \).

Calculations will be made using data along a constant drain-source voltage line of the FET characteristics at \(V_{ds} = 2 \text{ volts} \).

From the data

\[
\begin{align*}
I_d &= 1.65 \text{ ma} \\
V_{gs} &= 0
\end{align*}
\]

A value for \(V_{be} \) is now assumed. Since \(V_{ds} \) corresponds to \(V_{ce} \) of the transistor, \(V_{be} \) cannot exceed \(V_{ds} \), or \(V_{be} \leq V_{ds} \).

Therefore, let

\[V_{be} = 1.90 \]

\[I_g = \frac{V_{gs} + V_{be}}{R_b} = \frac{1.90}{10^7} = .190 \mu A \]

\[I_b = I - I_g = .017 \mu A \]

\[\beta = \frac{I_d - I_g}{I_b} \]
then, \[\beta = \frac{1.65 \times 10^{-3} - 2.07 \times 10^{-7}}{1.7 \times 10^{-7}} \approx 10^5 \]

From the data
\[I_d = 1.30 \]
\[V_{gs} = 0.2 \]

Thus, \[I_b = \frac{I_d - I_g}{\beta + 1} \approx \frac{I_d}{\beta} = \frac{1.30 \times 10^{-3}}{10^5} = 0.13 \mu a \]

for \(I_d \gg I_g \) and \(\beta \gg 1 \).

Then, \[I_g = I - I_b = 0.207 - 0.013 = 0.194 \mu a \]

and \[V_{be} = I_g R_b - V_{gs} = 1.94 - 0.2 = 1.74 \]

The process is continued until a sufficient number of points have been obtained to define the \(I_c \) vs \(V_{be} \) curve \((I_c = \beta I_b) \). The transistor curve generated is shown in Figure 4.

The Model is now ready to be applied in ASAP. The circuit used to test the Model in ASAP is shown in Figure 5. To apply the circuit, a topological description of the circuit is required in the input data to ASAP.
Figure 4

I_c vs. V_{be} Curve for Hypothetical Transistor
Figure 5. Schematic of FET Model Circuit for ASAP Test
Punch, Debug, Recurse 8,1 Case

INPUTS
VCC=-20 TOL 0
RB, VIN IC T0 VB=1E4 TOL 0
RL, VCC T0 VD=2 TOL 0
IA, VB T0 VCC=2.07E-4 TOL 0
TF, PNP, VB, VD, GND, CURVE1, BETA1=1E5 TOL 0
DF, VD T0 VB, CURVE2
VINC=1E-20 TOL 0
INCREMENTS-2

OUTPUTS
VGS=VINC
VD
IRL=(-VCC+VD)/RL
VB
ITF=Q1(1)
IDF=Q1(2)
IGS=(VINC-VB)/RB
ITEST=IDF+ITF+IA
CURVE1 -1,-1E20,-1E20,0,0,0,1E-1,.66,.66,2E-1,.85,.85,
3E-1,1.04,1.04,5E-1,1.22,1.22,8E-1,1.39,1.39,10E-1,1.57,
1.57,13E-1,1.74,1.74,17E-1,1.90,1.90
CURVE2 -.25E-5,-20,-20,-.15E-5,-5,-5,-.12E-5,-4,-4,-.05E-5,
-3,-3,0,0,0,1E-6,.36,2E-6,.55,.55,3E-6,.74,.74,5E-6,.92,
.92,8E-6,1.09,1.09

END

Figure 6. Topological Input Data to ASAP
Figure 6 demonstrates the format of the topological input data which must be supplied to ASAP for the circuit in Figure 5. The data in Figure 6 indicates that the output is obtained for variations in supply voltage at a constant gate-source voltage. The same data with exception to the gate voltage is then used to obtain the output for variations in supply voltage at a different gate voltage. This process is continued to obtain the output for variations of gate and supply voltages for the purpose of obtaining the I_d vs V_{ds} characteristics.

Nominal Value of performance parameter $V_{gs} = 1.000000E-20$
Nominal Value of performance parameter $V_d = 2.642582E 00$
Nominal Value of performance parameter $I_{rl} = 1.678709E 00$
Nominal Value of performance parameter $V_b = -1.891408E 00$
Nominal Value of performance parameter $I_{tf} = 1.678520E 00$
Nominal Value of performance parameter $I_{df} = -1.074178E-06$
Nominal Value of performance parameter $I_{gs} = 1.891408E-04$
Nominal Value of performance parameter $I_{test} = 1.678728E 00$

Figure 7. Typical ASAP Output Data
Figure 7 contains the ASAP output data for the FET Model for particular values of gate and supply voltages. Similar ASAP output data for the Model were obtained for other values of gate and supply voltages. From the output data, the I_d vs. V_{ds} or Drain characteristics of the Model were constructed.
IV. RESULTS AND DISCUSSION

The first set of Drain characteristics obtained for the Model displayed extremely flat, non-sloping characteristics in the pinch-off region. This type of behavior is indicative of an extremely high output impedance. Thus, to adjust the Model characteristics for a better simulation of the FET characteristics, the high output impedance was effectively reduced through adjustment of the reverse characteristics of the base-collector diode, DF, of the Model. The Drain characteristics of the Model with this adjustment included are compared to those of the FET in Figure 8.

It may be noted that the characteristics of the Model behave in the same way as those of the FET as a function of the gate voltage. While all the Drain characteristics do not follow exactly along the constant gate voltage lines, the maximum error in drain current is 0.05 ma for any drain voltage.

Most of the remaining error exists in that the slope of the characteristics in the pinch-off region does not change as a function of the gate voltage. This change in slope is indicative of a varying input impedance. Thus, this error may be compensated
Figure 8
Comparison of FET and FET Model Drain Characteristics

<table>
<thead>
<tr>
<th>Vgs (volt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
</tr>
</tbody>
</table>

Vds (volt)

Ig (milliampere)

0 5 10 15 20 25
for by making the input resistance R_b variable and describing the resistance with a curve in the ASAP input data.

Therefore, dependent upon the accuracy required the latter corrective measure may or may not be adopted.

Normally the FET characteristics for a particular unit vary with temperature changes. In addition FET characteristics vary from device to device as a result of manufacturing tolerances. In ASAP these variations would be accounted for by specifying tolerances about a mean characteristics. No tolerances were specified in the Model for test purposes.

The variation in the characteristics is the result of the change in I_{dss} the saturation drain current with zero gate-source bias voltage at any drain-source voltage in the pinch-off region below breakdown. I_{dss} when measured at a specified drain voltage in the pinch-off region, I_{dss} is approximately $I_{d(on)}$.

For the 2N2497, $I_{d(on)}$ is measured at a drain source voltage of 10 volts. The manufacturer's tolerances on $I_{d(on)}$ are $I_{d(on)} = 1 \rightarrow 3$ ma. With these values the effect of $I_{d(on)}$ on other curves of constant gate voltage are determined from the Bias Design Curves.
of Figure 9. Figure 10 shows the effects of the tolerances on $I_{d(\text{on})}$ on the FET characteristics.

Temperature effects on the FET characteristics take place through $I_{d(\text{on})}$ by the dependence of $I_{d(\text{on})}$ on temperature. This dependence is shown in Figure 11.
Figure 11

Temperature Effects on $I_{d(on)}$
for 2N2447

$V_{ds} = 10\, \text{V}$
$V_{gs} = 0\, \text{V}$

Free-Air Temperature (T_a) * °C

Normalized I_d (on)
Figure 10

Effects of Change in $I_{d(on)}$ on the FET Characteristics for 2N 2497

$T_a = 25^\circ C$

$I_{d(on)} = 3.0$

$I_{d(on)} = 1.0$

$V_{gs} = 0$

$V_{gs} = 1.0$

$V_{ds} \times \text{Volt}$
Figure 2
Bias Design Curves for 2N2497

\[V_{ds} = 10 \, \text{V} \]
\[T_\alpha = 25 \, ^\circ\text{C} \]

\[I_d \, \text{Milliampere} \]

\[I_{d(on)} \, \text{Milliampere} \]

\[V_g \, \text{g}^8 \]

0 V

0.5 V

1.0 V

1.5 V

2.0 V
V. AN IMPROVED FET MODEL

The performance characteristics of a FET change and the changes are exhibited in the Drain characteristics. In Section IV it was pointed out that temperature had certain effects on the Drain characteristics. More specifically the changes effected by temperature are a manifestation of the variation of the gate input impedance and gain of the FET with the temperature.

The gate input impedance varies also with the applied gate voltage and the gain with the drain current. In Section IV these FET parameters were related to the corresponding parameters \((R_b \text{ and } \beta)\) in the Model. Also, suggestions were made for considering the variation of \(R_b\) and \(\beta\) with temperature and \(R_b\) with the applied gate voltage. In this section the suggestion is made for considering the variation of gain with the drain current.

To account for the latter consideration, it is required only that \(\beta\) for the transistor in the Model be described by a curve \(\beta \text{ vs } I_c\).

In the final analysis, it is obvious that the initial FET Model may be improved by including in the model all the factors which contribute to the performance characteristics of the FET. In addition,
an improved model would simplify elements where simplification is possible. Notably R_b may be replaced by a diode, and the current source may be described in the curve for the base-collector diode. The schematic of an Improved FET Model Circuit for ASAP is shown in Figure 12.
Figure 12. Schematic of An Improved FET Model for ASAP
VI. CONCLUSION

From the results of the application in ASAP of the FET model described in this report, the conclusion is that the Model (as shown in Figure 12) is a proper Model and that the Model may be made to behave in the same manner as the FET to any accuracy desired, even to the extent of exact duplication of the FET Drain Characteristics.

Although calculations were made for a specific FET (2N2497), the Model circuitry and procedures may be applicable to other FET types.