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Invis•	 Tra-;or.ic Flow Computations with Shock Fitting

N. J. 5cv	 TD A. R. SEF.BASS
University of Arizona

Surrmar _

First- and second-order numerical procedures for calculating two-
dimensional transonic flows that treat shock wavers as disconti- a 0
nuities are disc-. '°_ca.	 Thic short comnun ; c.z*_inn i 11 Lstrates their W- = y
application to a simple but non-trivial problem for which th ere are ^ c y
'limited theoretical results. n
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Some of the numerical difficulties that arise in inviscid transonic " H o
H^

flow computations occur because the solution that is being sought x
ao

is discontinuous and the numeri-.al procedures often employed ap- ro m x
O c

proximate the discontinuities by steep gradients; thus relatively n

small mesh sizes are required if dissipative and dispersive trunca-

tion errors are to be acceptable. 	 Further, the difference ry H

equations used, as Murman has pointed out [1), must be chosen with

H
u1H'^7

z so0 x
-carp if entities that are conserved by the basic equations across -^ O

discontinuities are to be conserved by the finite difference scheme.
:Dox
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We believe there are important advantages to computing such Flows (no  r

with numerical procedures that treat discontinuities as such, pro-
t" 

a a:N
mmvided this can be done without major programing complexity. U° 

Moretti (2] has been the most constant advocate of doing preciLely w
this, and he has computed a number of steady and unsteady flows w

using procedures	 are essentially tailored to hyperbolic

problems.	 Salas 13 1 has recently computed supersonic duct flows ^ =
C7 n O^

using somewhat analogous techniques, and Yu and Seebass [4] ex- -4 w

amined a transonic flow problem where the discontinuity could be

traced from a boundary where the flow was hyperbolic. fi

The use of similar procedures for mixed flows, with a minimum of

additional computational complexity has been pursued by Hafez acid
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Cheng (5), and by bs. Some of our results are the subject of this

brief cocranunication.

Transonic Flow- Past a Wedge
r

We have applied various numerical procedures to calculate flows

past simple two-dimensional lifting airfoils; we illustrate one of

? them here for a very simple, but non-trivial, problem that models

slightly suLsonic flow past a .:edge. The mathematical problem as-

sociated with the small pertur ation approximation has Leen solved

analytically for a sonic free stream, and we know the first deriv-
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	 ative of the drag with Mach number evaluated at sonic conditons

(Guderley and Yoc:hihara (6]; Liepmann and Bryson (7)). With the

use of modern computers to evaluate the hypergeometric function, it

would seem that precise results could be obtained for a r?.nye of

Mach numbers.

The correct hodograph formulation of this prob"em was tackled

numerically by Yoshihara (8] nearly two decades ago. hhile these

results may not be definitive enough to validate the computation of

the supersonic domain, they are accurate in their predictions of

the pressure coefficient on the nose of the wedge,-and consequently,

a.	 the drag.

The mathematical formulation of this problem is simple and well-

known. We need to solve

(K +	 nn = 0	 subject to

(1)

^n (^,u) = 0	 for	 10,11, mn kC,0) = 1 for	 e (0,1].

The solution must behave as

CD

2n 3K (C - Kn )
_m

for C2+n2 -►	 This expression is useful for supplying bou.,dary

data on a finite domain used in numerical computation. For small

values of K. i.e., for near sonic flow, a less severe asymptotic

representation must be used. As K - 0 we can use the results of

Reference 5. Here Q is proportional to the perturbation velocity



potential, K is the u:.ual tr, ,.nsonic similarity parameter

(MM 	 [(Y+1) d) 2/3 , d the wedge half angle and E and q the

usual non-dimensional coordinates. The jumrj relations that follow

directly from (1) and the irrotationality cindition, are

(K 2 (^^ + ^^)) (Q^^ -m^) 2 = (fin-0n ) 2,

.,	 _ 1	 %`I
do/d^ _	 (K + 2 (^ +	 2^^, J 

Here - denotes val4es downstream of the shock wave. As Oswatitsch

(9) noted many years ago, the wave drag of a body is directly re-

lated to the entropy produced by these waves. For this problem,

the normalized drag coefficient may be determined, to lowest order,

by the alternate expressions

CD	x(1,0) - x(0,0) a (a,,/6U)(Qt - ^t )ado

where a * is the critical speed, U the free stream velocity, and do

an element of shock surface. For K -; 0, CD 1.75 + 2K.

Numerical Procedures

For these calculations we have used a first-order accura--e conser-

vative scheme to calculate the solution to Equation (1). In

conjunction with this scheme we have also used shock fitting.

Because we anticipated treating the shock as a discontinuity and

satisfying the jump relations across it, we were not initially con-

cerned with using conservative differencing which has been shown to

be essential across shock waves[l). Our results indicated, however,

that our shock-fitting procedure will not converge to the correct

result if it is introduced into a converged non-conservative

calculation.

Equation (1) is of mix%d type, and it is either hyperbolic or

elliptic depending on whether K + ^& is positive or negative.

Type dependent difference schemes, first introduced by Murman and

Cole [103, have proved effective in solving such equations. To de-

termine the type of the equation K + ^& is computed both by the

central and by backward difference approximations. These results
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are then used to select prop.,r difference approximations for the

derivatives. The only difference between the prerient scheme and

the fully conservative scheme (1) is in the choice of the sonic

point approximation. The fully conservative scheme failed because

of the poor approximation of the differential equation at the

sonic point caused by insisting upon flux conservation. Along the

first characteristic of the expansion fan the first term in the

differential equation (1) must precisely balance the second term

as K + ^^ ► 0. Consequently, we have found ii necessary to adopt

a non-conservative approximation of the sonic point. It is obvious,

of course, that at the smock point the flux conservative form must

be used if the shock is not treated as a discontinuity. There the

differential equation is of little consequence, but flux conserva-

tion is.

Shock Fitti

When shock waves are embedded in sharp gradients, fairly refined

mesh spacing may be required if we want accurate results from a

flux conservative difference approximation. T,n alternative, as we

have mentioned, is to treat the shock as a discontinuity in the

later stages of such calculations. For some problems this may prove

to be essential; for otters, it may be desirable, and for many

simply superfluous. It may prove particularly beneficial for shock

waves that originate with an elliptic behavior downstream and then

undergo a transition to hyperbolic behavior there. Shock fitting

also provides an easy mecha;iisn for calculating the lowest order

wave drag by integrating the entropy rise across the shock. For

flows in which the flow behind the shock is elliptic, flux con-

servative calculations provide a reasonable definition of the shock

and also can be used to calculate the entropy rise. For these

calculations we have not introduced our shock-fitting procedures

until we have obtained a reasonably well-converged first-order

result. The initial shock position is d etermin,a by interpolating

the sonic position in the supersorlc to subsonic transi.tior:s, and

the shock point (s) are then treated as regular computational

points (see sketch). The flow properties ahead of the shock can be
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determined either by extra-

polation from the upstream

conditions at Q and R, or by

using the characteristic re-

lations along C ±. For these
calculations the simple extra-

s'

value at P an: Q C is obtained

from the jump relation (2).

Should the shock slope extra-

polation provide a shock intersection at s', as indicated by the

dotted line, then the value of ^ is fixed at s' by using the values

of Q = ^, ^^ and n at s. At each stage of the calculation wa

correct the position of the shock by the simple procedure

(3)

Various values of k have been tried; values near one seem to be

the most satisfactory. The rationale for (3) is simple: if the

flow ahead of the shock has increased in speed, i.e.,
ern+1 - ^Cn	 0, (3) allows the shock to be swept downstream and

flow properties are re-calculated using the new shock, position.

Such corrections are repeated with each iteration until the changes

in ^ are judged sufficiently small. We examined a simple one-

dimensional problem (discussed in Bauer et al. (111) . using the pro-

ceduress described above. We found that the shock approaches the

exact location independent of the initial guess for its location.

The computation time for this simple model was .;omFarable to that of

an equivalent shock point operator scheme, and the accuracy slightly

better.

Hafez and Cheng 181 have pursued somew%at similar calculations.

They calculated the transonic flow over a parabolic-arc airfoil

using a shock-fitting scheme. In their scheme the shock is located

polation method was used.

Behind the shock 
4'n 

is ex-

trapolated by the usual dif-

ference method using the old

C-

R	 4 \`	 s

JI

C+

P(i,j)

4
r



by a numerical procedure that detects a jump in Q C and the dif-

ference approximation at the point following the shock is construct-

ed using the jump relation. Such a scheme may be inherently less

accurate than ours; it is also less complex and may be less sensi-

tive to the initial data used. The -esults they report are in good

agreement with the fully conservative results of Murman (1) and with

our results. If we start with a converged flux conservative calcu-

lation and introduce shock fitting we find minor changes in the

shock shape and tha local shock slope, For flow past curved pro-

files we find a beh.:.vior that closely approximates the Oswatitsch-

Zierep (12) singularity expected behind the shock.

Results and niscussion

a I

	

	 The supersonic portion of the flow field calculated using a first-

order shock-fitting scheme is depicted in Figure 1 for K = - 0.5

and a mesh spacing that cor.res^ponds: to twenty points on the wedge

nose. The total computational region was -2 < C. < 4 and 0 < n < 6.

A weak shock seems to originate near the wedge corner but it has

been smeared out by truncation errors. There is further evidence of

such a shock in the second-order calculations which we have carried

out. Figure 2 depicts the pressure coefficient C 	 = -2(K + Q^)

for three values of T1. Figure 3 depicts the shock image in the

(q , 5)-rlane were q = K + ^ C and 6 is the normalized local flow

deflection angle 0/6. Near the tip of the shock, the shock is of

the supersonic-supersonic type.

ti
The normalized drag coefficient CD for K = -0.5 has been calculated

using various schemes. The shock-fitting algorithm gives a no--mali-

zed drag coefficient of 0.656 when evaluated by pressure integral,
ti

and 0.561 when evaluated by entropy production. The values of CD

for non-conservative first- and second-cider approximations are

0.677 and 0.723 respectively. Until we are able to carry out

calculations with more refined mesh spacings and at smaller values
ti

of K it makes little sense to compare them to the result C D 'L 1.75

+ 2K for K ; 0. Nevertheless, it is probably reasonable to conclude

that this theoretical value underestimates the drag (see 18)), and

hence so do the calculations we have reported here.
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As noted earlier, we have applied the algorit)un outlined here to

flows past airfoils. The small perturbation velocity distribution

for a flux conservative calculation is compared in Figure 4 to that

obtained using shock fitting for the same c-mputational grid.

Aside from the better definition of the singular behavior of the

pressure gradient behind the shock and minor changes in shock shape

(not shown), the results are comparable.

The research was suplwr ted by the NASA on Grant NGR 33-010-057.

1. Murman, E. M.: Analysis of Embedded Shock Wavcs Calculated by
Relaxation Methods. AIAA J.	 (1974) 626-633.

2. Moretti, G.: A Circumspect 11	 ion of a Difficult Feature
of Multi-dimensional Imbedded	 ks. AIAA 2nd Computational
Fluid Dynamics Conference (197 	 ^0-16.

3. Salas, M. D.: The Anatomy of Floating Shock Fitting. 7,1A.A 2nd
Computational Fluid Dynamics Conference (1975) 47-54.

4. Yu, N. J.; Seebass, R.: Computational Procedures for Mixed
Equations with Shock Waves. Proceedings, Computational
Methods in Nonlinear Mechanics, Austin, Texas (1974) 499-508.

5. Hafez, M. M.; Cheng, H. K.: Convergence Acceleration and Shock
Fitting for Transonic Aerodynamic Computations. USC AE Report
132 (1975). See also AIAA Paper No. 75-51.

6. Guderley, K. G.; Yoshihara, H.: The Flow over a Wedge Profile
at Mach Nuirber 1. J. Aero. Sci. 17 (1950) 723-735.

7. Liepmann, H. W,; Bryson, A. E.: Transonic Flow Past Wedge
Sections. J. Aero. Sci, 17 (1950) 745-755.

8. Yoshihara, H.: On the Flow over a Wedge in the Lower Tran-
sonic Region, WADC Technical. Report 56-444 (1956).

9. Oswatitsch, K.: Der Luftwiderstand als Integral des Energi-
stroms. Nachr. Ges. Wiss. Gottingen (1945) 88.

10. Murman, E. M.; Cole, J. D.: Calculation of Plane Steady Tran-
sonic Flows. AIAA J., 9 (1971) 114-121.

11. Bauer, F.; Garabedian, P.; Korn, D.; Jameson, A.: Super-
critical Wing Sections II. Springer Verlag (1975).

12. Zierep, J.: Der Senkrechte vcrdichtungsstoss am GekrU mten
Profil. ZAMP 9b (1956) 764-776.



Co

C	 0

-2

2

0

s

.o

^*__I	 2	 !
WEDGE SHOULDER

Fig. 1 Sonic region and charac- 	 Fig. 2. Pressure coefficient ver-

teristics.	 sus ^ for three values of r,.

Fig. 3. Shock polar showing
	 Fig. 4. Velocity dist_ibution

supersonic conditions behind
	 along the chord of a 6% thick

tip of the shock.	 parabolic arc for Mc. - 0.909
with and without shock fitting.
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