General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
WATER HYACINTHS FOR UPGRADING SEWAGE LAGOONS TO MEET ADVANCED WASTEWATER TREATMENT STANDARDS: PART I

By B. C. Wolverton
R. C. McDonald
Title and Subtitle
Water Hyacinths for Upgrading Sewage Lagoons to Meet Advanced Wastewater Treatment Standards: Part I

Author(s)
B. C. Wolverton and R. C. McDonald

Performing Organization Name and Address
National Space Technology Laboratories
Bay St. Louis, Mississippi 39520

Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546

Abstract
Water hyacinths, (Eichhornia crassipes) (Mart.) Solms, have demonstrated the ability to function as an efficient and inexpensive final filtration system in a secondary domestic sewage lagoon during a three month test period. These plants reduced the suspended solids, biochemical oxygen demanding substances, and other chemical parameters to levels below the standards set by the state pollution control agency. The water hyacinth-covered secondary lagoon utilized in this experiment had a surface area of 0.28 hectare (0.70 acre) with a total capacity of 6.8 million liters (1.5 million gallons), receiving an inflow of 522,100 liters (115,000 gallons) per day from a 1.1 hectare (3.8 acre) aerated primary sewage lagoon. These conditions allowed a retention time of 14 to 21 days depending on the water hyacinth evapotranspiration rates. The desired purity of final sewage effluent can be controlled by the water hyacinth surface area, harvest rate, and the retention time.

Key Words
Water hyacinths
Sewage
Tertiary filtration
Wastewater

Distribution Statement
Unclassified - Unlimited

Security Classification
Unclassified
WATER HYACINTHS FOR UPGRADING SEWAGE LAGOONS TO MEET ADVANCED WASTEWATER TREATMENT STANDARDS: PART I

INTRODUCTION

Although effluent from the typical sewage lagoon is an improvement over the untreated influent, this nutrient rich discharge is still frequently high in suspended solids and biochemical oxygen demanding substances. As a result of more stringent requirements being placed by regulatory agencies on sewage effluent entering rivers, streams, and estuarine areas, microbiological treatment alone is not adequate. Since the effluent from a typical sewage treatment plant is also rich in chemical nutrients, the replacement of lagoons with expensive conventional sewage treatment plants would not likely solve the additional treatment requirements. The simplest and most economical means of accomplishing final filtration to remove nutrients, heavy metals, and other chemicals from domestic wastewaters appears to be the utilization of vascular aquatic plants as demonstrated by Wolverton et al. 1, 2, 3, 4, 5, 6, 7, 8, 9

Water hyacinths, *Eichhornia crassipes* (Mart.) Solms, were used in this field study because they have demonstrated the most promise in laboratory studies in removing nutrients and chemicals from static water systems. This plant has also demonstrated the ability to produce phenomenal quantities of biomass when grown in a warm, nutrient enriched environment. This easily harvested plant possesses levels of minerals and protein which make it a good candidate for a new southern crop to be utilized in producing animal feed, organic fertilizer, and soil conditioner, or methane gas and inorganic fertilizer from the microbial anaerobic fermentation of water hyacinths. This aquatic plant is also a candidate for use in northern climates when used in conjunction with hydroelectric power generating plants. Thermal discharges from the condenser cooling water could conceivably be mixed with sewage pumped into large lagoons near power generating facilities and water hyacinths grown year-round in this warm, nutrient enriched water. This concept could possibly supply an additional bonus as a radioactive safety filter where the thermally polluted water comes from nuclear power plants. These facilities normally produce larger quantities of hot water than conventional power plants along with the added risk of contaminating the aquatic environment with radioactive
elements such as plutonium, strontium, cesium, etc. as a result of reactor disruption or leakage from unforeseen disasters.

MATERIALS AND METHODS

The system evaluated in this field study is a secondary domestic sewage lagoon located at Orange Grove residential development in north Gulfport, Mississippi. This secondary lagoon receives domestic sewage effluent from a 1.1 hectare (3.8 acre) aerated primary sewage lagoon with a two week average retention time. It has a .28 hectare (0.7 acre) surface area and contains a total volume of 6.8 million liters (1.5 million gallons). The average flow rate into this secondary system is 522,100 liters (115,000 gallons) per day, resulting in an average retention time of approximately three weeks.

Background data was obtained on biweekly grab samples for two months before the system was completely covered with water hyacinths, *Eichhornia crassipes* (Mart.) Solms. Biweekly grab samples were continued after saturation with water hyacinths, along with samples from a control lagoon free of water hyacinths. Grab sample data correlated well with monthly 24-hour composite samples obtained with an ISCO Water Sampler Model 1392.

The following analyses were performed on all samples: pH, total kjeldahl nitrogen (10), total phosphorus (11), biochemical oxygen demand (BOD$_5$) (12), fecal coliform (MPN) (13), suspended solids (14), dissolved solids (15), and total organic carbon (TOC) (16). Dissolved oxygen concentrations and temperature were obtained directly in the field with a YSI Model 54 Oxygen Meter.

The effluent was also monitored for any contamination by toxic heavy metals using atomic absorption or flame emission with an IL Model 253 spectrotometer.

RESULTS AND DISCUSSION

The preliminary results of the field test using water hyacinths, *(Eichhornia crassipes)* (Mart.) Solms, as a final filtration system in a secondary domestic sewage lagoon has shown great promise in reducing suspended solids, BOD$_5$ and other parameters to levels below the standards set by the Environmental Protection Agency and state pollution control agencies. Monthly averages of this preliminary data are presented in Table 1 along with state pollution control standards.
Suspended solids which are mainly due to algae were reduced in the water hyacinth lagoon by 74 percent during the month of July, 63 percent for August, and 80 percent for September. The water hyacinth covered lagoon also reduced the biochemical oxygen demand of the sewage entering this lagoon during these critical summer months to levels below the established state standards. Total kjeldahl nitrogen levels averaging 3 mg/l entering the water hyacinth lagoon were reduced to averages of 1.2 mg/l in the final effluent with a nitrogen reduction of approximately 60 percent. The average total phosphorus entering the water hyacinth lagoon was 5.5 mg/l with a maximum phosphorus removal of 26 percent for the first five weeks. Phosphorus reduction rates after this period of time suggests that plants should be harvested at five week intervals for maximum phosphorus removal.

The pH was maintained at 6.5 for the effluent from the water hyacinth lagoon. The average influent pH was 7.7. The fecal coliform count was reduced from an average of 121,000 MPN/100 ml for the influent to an average of 40,000 MPN/100 ml effluent. However, no definite correlation of the effect of water hyacinths on fecal coliform over the normal effect on fecal coliform in a lagoon without these plants has been established during this brief test period. As expected the dissolved oxygen level dropped from 5.9 mg/l in the influent wastewater to 2.0 mg/l in the wastewater leaving the lagoon. However this lower dissolved oxygen concentration produced no adverse effects such as an increase in undesirable odors. Upon natural reaeration from mixing action of the wastewaters leaving the Orange Grove sewage system, the dissolved oxygen level was brought back up to between 5 and 6 mg/l, which is adequate to meet the pollution control permit requirements.

As shown in Table 2, many elements essential to both plants and animals were found in this secondary sewage lagoon. No toxic levels of heavy metals were detected by atomic absorption or flame emission in either the influent or the effluent sewage wastewater.

CONCLUSIONS

Based on data presented in this preliminary report, cities located in the tropical and subtropical regions of the world should be able to utilize water hyacinths as a final filtration system for reducing the levels of polluting substances in domestic sewage to levels which comply with advanced wastewater treatment standards.

Water hyacinths have demonstrated the ability to absorb organics, nutrients, and other chemical elements from sewage waste in the process of
producing large quantities of plant material. This biomass when grown in enriched sewage waste free of toxic heavy metals can be harvested and possibly processed into valuable high protein food and feed products, organic fertilizer and soil conditioner, methane gas and inorganic fertilizer or other products as presently being demonstrated by NASA and university scientists.

The volume of water hyacinths required depends upon the amount of sewage to be processed and the desired purity of the final wastewater required by the local effluent quality criteria. For complete or near complete removal of phosphorus from typical domestic sewage from a city or community of 5,000 people would require approximately ten acres of water hyacinth surface area, but complete removal of phosphorus is usually not required or even desirable. Therefore much smaller systems could be utilized to meet present and future wastewater effluent standards.
Table 1. Orange Grove Sewage Lagoon Preliminary Field Test Data

<table>
<thead>
<tr>
<th></th>
<th>Total Suspended Solids, mg/l</th>
<th>Total Dissolved Solids, mg/l</th>
<th>Biochemical Oxygen Demand (BOD₅), mg/l</th>
<th>Total Kjeldahl Nitrogen, mg/l</th>
<th>Total Phosphorus, mg/l</th>
<th>Total Organic Carbon, mg/l</th>
<th>pH</th>
<th>Dissolved Oxygen mg/l</th>
<th>Temperature °C</th>
<th>Fecal Coliform MPN/100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Effluent Quality Criteria</td>
<td>Influent</td>
<td>Effluent</td>
<td>Influent</td>
<td>Effluent</td>
<td>Influent</td>
<td>Effluent</td>
<td>Influent</td>
<td>Effluent</td>
<td>Influent</td>
<td>Effluent</td>
</tr>
<tr>
<td>Data After the Addition of Water Hyacinths</td>
<td></td>
</tr>
<tr>
<td>1. Monthly Average July, 1975</td>
<td>35</td>
<td>9</td>
<td>296</td>
<td>201</td>
<td>23</td>
<td>7</td>
<td>2.22</td>
<td>1.03</td>
<td>5.80</td>
<td>4.41</td>
</tr>
<tr>
<td>2. Monthly Average August, 1975</td>
<td>35</td>
<td>13</td>
<td>294</td>
<td>278</td>
<td>26</td>
<td>5</td>
<td>2.47</td>
<td>1.17</td>
<td>5.34</td>
<td>4.79</td>
</tr>
<tr>
<td>3. Monthly Average September, 1975</td>
<td>43</td>
<td>6</td>
<td>197</td>
<td>180</td>
<td>22</td>
<td>7</td>
<td>4.44</td>
<td>1.07</td>
<td>5.03</td>
<td>3.77</td>
</tr>
<tr>
<td>Data for Water Hyacinth - Free Control Lagoon</td>
<td></td>
</tr>
<tr>
<td>1. Monthly Average July, 1975</td>
<td>77</td>
<td>40</td>
<td>370</td>
<td>340</td>
<td>59</td>
<td>45</td>
<td>4.70</td>
<td>4.50</td>
<td>7.30</td>
<td>7.26</td>
</tr>
<tr>
<td>2. Monthly Average August, 1975</td>
<td>33</td>
<td>52</td>
<td>334</td>
<td>420</td>
<td>-</td>
<td>-</td>
<td>6.17</td>
<td>6.80</td>
<td>5.09</td>
<td>5.69</td>
</tr>
<tr>
<td>3. Monthly Average September, 1975</td>
<td>42</td>
<td>46</td>
<td>390</td>
<td>380</td>
<td>27</td>
<td>30</td>
<td>4.52</td>
<td>4.46</td>
<td>4.80</td>
<td>4.80</td>
</tr>
</tbody>
</table>

* After Chlorination
** Before chlorination
Table 2. Metal Analysis of Orange Grove Sewage Lagoon

<table>
<thead>
<tr>
<th>Metals</th>
<th>Influent, ppm</th>
<th>Effluent, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>0.41</td>
<td>0.25</td>
</tr>
<tr>
<td>Boron</td>
<td>2.22</td>
<td>2.00</td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.30</td>
<td>1.26</td>
</tr>
<tr>
<td>Chromium</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Cobalt</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Copper</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Iron</td>
<td>0.33</td>
<td>0.23</td>
</tr>
<tr>
<td>Lead</td>
<td>< 0.008</td>
<td>< 0.008</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.788</td>
<td>0.829</td>
</tr>
<tr>
<td>Manganese</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Mercury</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Nickel</td>
<td>< 0.005</td>
<td>< 0.005</td>
</tr>
<tr>
<td>Potassium</td>
<td>4.71</td>
<td>4.41</td>
</tr>
<tr>
<td>Silver</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sodium</td>
<td>41.67</td>
<td>40.19</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.038</td>
<td>0.007</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES (CONT'D)

15. Ibid, p. 266.

APPROVAL

WATER HYACINTHS FOR UPGRADING SEWAGE LAGOONS TO MEET ADVANCED WASTEWATER TREATMENT STANDARDS: PART I

By B. C. Wolverton
R. C. McDonald

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the NSTL Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

Henry F. Auter
Director, Applications Engineering
National Space Technology Laboratories