General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

VAS A

Cl. |43 €9>L

FORTRAN AUTOMATED CODE CVALUATION SYSTEM (FACES)

USER'S MANUAL

Version 2

Septemhar 1975

FOATRAN AUTCMATED CCDE

(FACES) USER'S MANUAL,
InC.,
CSCL 09B

(NASA-CR-143994)

EVALUATION SYSTEM
VERSION 2 (Brown and Famamoorthy,

Berkeley, Calif.) 38 p HC $3.75

BROWNE &

N76-10753

Unclas
G3/61 42346

RAMAMOORTHY, INC.

255
(415) 848-0261

aslegraph Avenue, Suite 404, Berkeley, Ca., 94704

Table Of Contents

FACES Objectives
Overview of System Operation

Capabilities

Appendices
Acceptable FORTRAN Code

Motivation for Queries

Deck Set-Up

IT
111

T T T P S RS - P

FORTRAN AUTOMATED CODE EVALUATION SYSTEM

USER'S MANUAL

I. FACES OBJECTIVES

The FACES system provides analysis services for FORTRAN
based software systems not normally available from system software,
FACES {s not a compiler; compiler syntax diagnostics are not dup-
licated. For maximum adaptation to FORTRAN dfa]ects, the code pre-
sented to FACES is assumed to be compiler acceptable.

The FACES system concentrates on acceptable FORTRAN code
features which are 1ikely to produce undesirable results, Emphasis

is placed in the following areas: | |

1. Interface integrity among modules.

2. Misleading code subject to maintenance ﬁroblems.

3. Keypurich errors Tikely to escape the compilation process.

4. Potentially malformed execution Sequences.

5. Use of compiler sensitive code.

The purpose of FACES analysis is to qdertify poteﬁtia] trouble
areas before they becomé execution time malfunctions.

While many messages indicate solid errors, messages are pro-
vided primarily to motivate user inspection of suspicious code
Messages should be evaluated by the criteria,’

1. Do I understand how the mechanism. works?

2.

Is the feature suffic1ent1y documented by comments or

the system documentat1qn?

@ Nt e Lm0 it i) et i o . :

in

a5 et 1t e it et

b e i b ben L

3, Would this feature confuse mailitepnance personnel?

4, Can a set of data values cause an error in execution?‘

5. Would a simple change improve code clarity? ‘
Code features should be examined for suitability as well as "will
1t work",

The FACES user is assumed to be conversant with FORTRAN but
at a disadvantage with code hulk and peculiarities of the FORTRAN
language. FACES attempts to inform the user fully as possibie
what is being fouﬁd as well as status information on system operation.
It is the user's responsibility, however, to distinguish error poten-
tial from superficial differences in expression., Maximum advantage
is gained by directing the user's intelligence to pregram areas most

1ikely to cause problems,

S b B LG T L

O U S

B L S S S R I LT PRI IR

IT. OVERVIEW OF SYSTEM OPERATION
FACES.1s intended for application to FORTRAN based software

systems composed of moderate to large number of modules. Modules
usually become available for analysis in groups over a period of
time. FACES is designed to incorporate new modules jnto the system
as they become available.

In general, previously submitted modules are considered stable
components. That is, once analyzed! the modules usually remain un-
changed,

In practice, however, occassionally need arises to modify an
existing module. Rudimentary capébi11ties exist for replacing modules
in the system; FACES is not, however, a general purpose file manage-
ment system.l

Anticipated operating environment. Software modules should be

compiled and preferably unit! tested prior to submission to the FACES
systeh. Thét is, the programmer should have some level of confidence
in the software.

The first set of modules presented causes a Tibrary of modules
to.be created.n The Yibrary consists of module source code and
various,anajysis tables which characterize the code, As new modules
become available,’they are analyzed, and incorporated with previous
software modules. | . | ‘

The existing modu1és of the software system can be analyzed

by selecting inspection criteria, called queries, to be_app]ied to

T N IR L it - .

the software system. Queries may be selected either while adding

new source or on independent runs. _ . S

L4

I, 2

After ana1izing the modul=+s for sbecified constructions the
user can request a report. Reports are annotated program 1istings,
truncatc . 11sting, and displays of data extracted from the software
system.

The major reporting vehicle is the primary report, The

primary report is an annotated module 1isting simjlar - to a cqmpiler
1isting with analysis messages attaclied to source Tines where
detected conditions were found. _

Many problems are appargnt only by consi&ering muitiple moduies

or portions of a s1n91é moduie, Secondary 11stings extract and

display source Tines from several modulas or portjons of a moduTe
on a single 1isting For examplo, if a COMMON b1ock problem is de-
tected, considering all probiems with a single block usually y1e1ds
a better solution. Secondary listings minimize page flipping among
various modules and hand tracing of contrd] paths when evaluating
repdrt results.

| The third report form is the glgglgg._Jg_rt Display reports
are organized data extracted from the software system. They differ
from secondary 1istings in that source code i5 not extracted for
display. '

§§mmary of Internal Operation. - FACES is rough1y‘organized

into a driver section with three subsystem components. The main
driver is responsible for fil€ manipulations and interpreting user

commands, The subsystems are; i

L]

1. FORTRAN Front End (FFE). The FFE analyzes submjtted source

code and constructs tables which characterize modu]g operation, New
modules and references to other modules are 1nserted‘in a module Direc-
tory for system use. Source code of submitted modules is captured on |
a Source Code Catalogue file for use 1n generating reports, Situa-
tions which 1imit processing effectiveness are recorded on the Flag
file.

‘ 2, Automatic Interrogation Routine (AIR). AIR examines the

tables generated by the FFE for the constructions selected by the

‘user. If the specified constructions are found, diagnostic messages

are recorded on the Flag file.

3. Report Generator. The Report Generator combines the contents

of the Flag file with the module source code to produce user reports.

Phased operatfion. Due to unavailable system services, the
FACES system is implemented in three phases. The three phases are
identical to the three sybsystems: FFE, AIR, and Report Generator,
Implémentation in phases restricts manipulations and reports
available during a single run, but does not reduce analytic capa-

city. "

FACES SYSTEM OVERVIEW . . &

User Commands

FORTRAN
Source Code

v

CONTROL DRIVER

FORTRAN FRONT AUTOMATIC REPORT

END (FFE) INTERROGATION GENERATOR
ROUTINE (AIR)

Analysis
) ¥
Source Table Analysis
File
R
Limitations esults Reports

06

Message
Flag
File

OC

Source

Code
\Catalogue f

IIX. CAPABILITIES

The user controls FACES operation through commiand cards.

Commands cause new source to be added to the software system under
analysis, investigations to be selected, and results reports to be
generaged.

Module Directory. To catalogue the software system under

analysis, a directory is maintained by FACES. Entries of the
directory are all module: submitted for analysis and all references
to other modules not yet dofined. The directory also maintains
pointers to file entries for module analysis table access and

retrieval of source code.

As modules are added to ihe system, undefined directory entries

become defined and the source code is considered in the analysis.

The user controls directory entries by controlling modules submitted -

to the system,
Reports. The three report types are,

1. Primary 1isting reports. Annotated 1isting of modules.

2. Secandary listing reports. rTruncated 1isting of source

code participating in a query message,

3. Display reports. Displays of data extracted from the

software system under analysis.

. : ! ‘ '
The Primary 1isting report contains both query analysis results
- and FORTRAN diagnostics issued for modules added to the system. The

user controls primary reporis through the REPORT command and indirectly

~ through queny‘$e1ection. Default options produce reports only for

modules to which messages are to be attached.

R)

Secondary 1isting reports are ordinasily supplemental to the
information on the primary report., Secondary reports may be sup-
pressed through query se1eétion. Alternatively, the secondary
report can be produced in 1ieu of primary report messages.

Display reports are produced only if queries are selected
which generate reports in the display form.

Principal user ct.trol of messages is through the query
number. Each query message contains a numeric field indicating
the query number which generated the message., The message may be
. turned off by excluding the query from the analysis tist of sub-
sequent runs.

FORTRAN Front End messages appearing on the 1isting cannot
be controlied. They appear only when the module is analyzed for

incorporation in the system.

Command Cards

Syntax. Command cards ar: free format single card images of

L

80 co1umﬁs. Command items on thc card are order dependent character
strings terminated by a blank or a special symbol.

Blanks are separators in command card figlds. Several blanks
are equivalent to a single biank. Therefore, the character string
AB is a single element, while A B are two separate elements.

Command items are alghanumepric symbols classified as:

‘1. Command key words - | .

2. User specification controls

' LI
it e
13

111,

The general format for conmand cards is,
Key word b Option list
where: Key word 1s an alphanumeric charater string without
" jmbedded bianks.
B 1s one or more blank columns.
Option 1ist 1is a command relative 1ist of options
with specific defaults. |

Available Commands, The following is a description of commands

for controlling FACES operation:
INITIAL System. The INITIAL System command causes a

new software system to be created for analysis, The card format is,
| INITIAL SYSTEM
where SYSTEM is an optional entry in the command
The INITIAL command clears the module Directory, Source Code
Cata]ogue, and Table File.
WARNING: The INITIAL card should be used only once to create

- & software system. Use of this card after the first run will cause

previously created data to be destroyed.
ADD Source. The ADD source card causes new modules to
be 1ncorpora£ed in the analysis files. The card format is,
ADD SOURCE
where SOURCE js an optional entry
The ADD command causes source code modules to be processed and added
to the analysis files. New source code {s added to the Source Code

Cata1bgue. New modules participate in analysis as soon as they are

added,

. et s e o P T | AT

If a new module name is an existing Directory entry,
the new module replaces the previous module, A message is issued
to inform the user of these replacements. File space 15 not re-
covered on replacement,

QUERY. The QUERY command causes a software system to be
examined for specific features. Querjes are indentified by number
- (see Table I), A query list is specified by a sequence of
query numbers separated bx commas. For example, the construction
110,120,411, 190 specifies queries ANSIST, RESWRD, CBTYPE, UNINT,
BIénkﬂ may appear between elements of the 1ist. Numgrical order is
not required. The 11st is terminated by the absence of a comna.

QUERY commands have two forms:

Predefined QUERY group
QUERY group exceptions

where: ggggg 1s an establiched category of queries
ALt (default) - examine all moaules for all features
LOCAL - only queries which treat internal construc-
~ tions of a module are selected.
GLOBAL - oniy queries which examine module inter~
faces are selected,

exceptions are an optional 1ist of queries to be ex-

cluded from.the group.

QUERY QUERY
NUMBER NAME
110 ANSIST
120 RESWRD
130 DATVAR
140 FUNPAR
150 MULBRA
160 REDLOP

170 - DOTERM
171 DOTERM
180 ASNUSE
190 UNINT*
191 UNINT*
400 CBNENT

111,

SUMMARY OF AVAILABLE QUERIES

o
]
S
=
o

[
ITrocoro

><

oo

> >

X

TABLL 1

& Ny m—

Purpose
Detect misleading use of ANSI Standard
function names,

Detect misleading use of FORTRAN 'Reserved'
words, '

_Detect COMMON variables set by DATA
statements outside BLOCK DATA.

Detect FUMCTIONS which modify parameters.
Detect multiple branch statements which

do not lead to next statement,

Detect redefinition of DO loop control
parameters,

Detect use of DO Toop control index after
loop termination,

Show paths using control index after
termination.

Detect local variables assigned values but
not used {possible keypunch error).

Detect uses of uninitialized local variables
(possible keypunch error).

Show path of uninitialized use,

Detect COMMON blocks with different
number of.entrie§.

.;I;-,a'.i-..«i’f..o,;;_’..‘,, Ve e

NUMBER

401
410
411
420
421
430
440

441

450

451

460

461

500

501

nwe AL
CBNENT X
CBTYPE X
CBTYPE X
CBDIM X
CBDIM X
CBONE X
CBNAME X
CBNAME X
CBINDS X
cBINDS X
CBTOTS X
CBTOTS X
PLNENT X

PLNENT X

o>

nL e
Purpose,

Show COMMON blocks with different number
of entries on a single]1st1ng.

Detect COMMON blocks with entries having
different type.

Show COMMON blocks with type variations
on & single listing.

Detect COMMON blocks with entries having
different dimensions.

Shoy COMMON blocks with dimension variations
on a single 1isting.

Detect COMMON blocks attached to only one -
module (possible keypunch error on label).

Detect COMMON blocks with different names
in corresponding entries,

Show COMMON blocks having different entry
names on a single listing.

Detect COMMON blocks with entries having
different sizes.

Show COMMON blocks with different sized
entries on.a single listing.

Detect COMMON blocks of different total size.

Show COMMON blocks of different sizes on a
single listing. |

Detect parameter 1ists having a_different
number of parameters.

Show calls and module definition for dif-
fering parameter 1ists.

NUMBER NAME
510 PLTYPE
511 PLTYPE
520 PLDIM
521 PLDIM
600 CYCALL

III.

AL & Purpose

i X Detect parameter 1ists with different
types passed.

X X Show CALLs and module definition for
type differing parameter lists.

X X Detect parameter 1ist entries with
fncompatabls dimensions.

X X Show CALLs and module definitien
for dimension incompatable parameters.

X X Detect potential cyclic calling patterns
among routines.

*available only through QUERY ONLY option

i 13 e e i o o o P pmam e bl Pt i P 2

EXCEPT = "query 1ist
The specified queries are to be excluded from
the group, |

(defauit) - no exceptions

EXAMPLES
QUERY ALL all queries are applied to the
" QUERY software system '

QUERY LOCAL EXL'PT=120,171 -
Perform all local queries excehi RESWRD.
Do not generate path 1isting for DO loop index variable

- used after Toop terminated normally.

QUERY GLOBAL EXCEPT=401,460 |
Perforn all global quer‘ies.. COMMON blocks with
different number of entries will not be produced
as a separate 1isting. COMMON blocks with dif-
ferent sizes will be indicated only in a sepa-

rate Tisting.

User defined QUERY group

QUERY ONLY= query list
where guery 1ist is a user defined_group of queries to be
performed.
The queries specified in the query 1ist are executed in the
order specified by the user. Although numerical order is not required,

1

maximum processing speed results from ordered query 1ists. ¥

T s it et A s e B s e s £ 25 A YAt - o @A e £ L o

[S B S

EXAMPLES
. QUERY ONLY= 501, 140, 171
~Causes a separate 1isting for parameters 1ists which have a
different number of entries, primary listing messages for functions
‘which modify their parameters, and paths displayed where DO Toop
control variables are used after normal termination,
REPORT. The REéORT command causes analysis to be displayed.
The REPORT command has the form:
'REPORT option |

where option controis primary listing feports:

ALL ~ print 1isting of all modules in the software
system being analyzed.

FLAGGED (default) - print listings for only the
modules with attached messages.

Jecondary reports of separate listings are not affected by
the option selected.

Secondary reports are generated if selected query and]ysis
pﬁoduces secondary results. If no report-is requested, a default
flagged report is.generated. | | | '

After a report has been‘p?ocessed,_the analysis Flag file is
set empty'. '

Abbreviations on <ommands. To minimize keypunch and spe111ng

.errors, only the first character of key words are considered
in determining the command. (Note: S1nce the INITIAL command poses

special jeopardy 1h the system, INITIAL command cards must contain -

s
AR B T S RV SN . B
T T R | ST

all alphabetic characters.

I = INITIAL

G - QUERY
A - ALL
L - LOCAL
6 - GLOBAL
£ - EXCEPT
0 - ONLY

Command card order,

11I. 10

A

Abbreyiations accepted are as follows:
A - ADD source
R - REPORT
A - ALL
F - FLAGGED

The INITIAL System command must be the first command card

if a new software sysEem

{5 being established. For operation in

phases, the following sequence is required in command cards:

PHASE 1 -

PHASE 2 -
PHASE 3 -

INITIAL System {only for first run)
all ADD Source commands

all QUERY commands

REPORT commaﬁd

If a particular command s not required onfa run the command

cards can be omitted. The processing phase for that command set

will perform a "no-op" in this situation. For example, if no source

code is to be added for an existing software system, QUERY and REPORT

cards can be used to yJenerate reports. PHASE 1 will perform no ac-

tions in this event.

Appendix A
Acceptable FORTRAN Code

Any dialect of FORTRAN may be presented to FACES although

: certajin machine dependent forms will be excluded from the analysis.

' Input source code to FACES is expected to be farge1y ANSI Standard
constructions. Commonly accepted dialectal extension§ of the stan-
dard are included. If unrecognized machine dependent code i$ present,
portions of the statement text will not partizipate in the analysis.

i ‘A diagnostic will be issued to indicate lines of code not included

in the analysis.

Input godrce code is assumed to be compile error free. Very
| 1'mited syntax checking is performed by FACES. If a syntax error occurs
" . which limits statement processing, the statement is'truncated'at the
error position. In some instances, error recovery is possible; the poor-
1y formed‘or'unrecognized section will be skipped.
Syntax-diagnostics are produced only on the run in which the
sourcé code ¥5 added to the system.

Summaﬁy uf Processed Consiructions. The foﬁ1ow1ng description

is a brief review of FORTRAN constructions processed by FACES, A

description of detailed constructions is presented.in Appendix.D.

1. Character set.

blank character (significdnt only in Tfterals)
g T alphabetic tia.2cters A-Z
numeric characters 0 -9

sbecia1 characters =4 -*/ , (). $"'"

'PRECEDING PACE BLANK NOT FILMED

.”....J.A_,_n_,mﬁ;‘—‘j\‘\-“

2, Card format. ANSI standard format.

3. Continuation cards. ANSI standard format.

4, Comment cards. Any character other than blank or a number

in column 1 causes the card to be treated as a comment.

Blan

k cards are comments.

5. Symbol'e names. Eight character or less beginning with

an alphabetic character.

6. Data types. Extended ANSI standard type definition.

7. Constants.

Logical 3

Integer | ‘

Real >“ ANSI standard

Double Precision

Complex J

Hollerith - 1iteral constants only

Neutral - Statement labels, Subroutine ::z:“dEd

‘names, Common block labels, etc.

Integer

Real ANSI standard forms

Double Precision

Complex - mixed precision permitted
- Logical - .TRUE. .T. .FALSE, .F.
- wH char string

Literal

' char string !

" char string "

Nondecima) base constants =~ WZ hex chars

8, Program variables., Varjable names are 1imited to 8

characters or Jess and must begin with an alphabetic
character. Array dimensions are not restricted in number.
Subscript references may be any arithietic expression.

9. Operators.
Arithmetic operators + =~ [* **
Logical operators .NOT. .N. .AND. A, .OR. .0,
Relational operators .EQ. .NE. .GT. .GE. .LE. .LT.

10, Arithmetic expressions may contain either logical or

arithinetic operators.

11, Branch targets may be either statement labels or variables

set by ASSIGN statements.
Summary of Processed FORTRAN Statements. The following des-

‘cription is a brief sunmary of FORTRAN statements currently pro-
cessed By FACES. A detailed description of allowable syntax is

presented in Appendix D,

1: Module'header card.
PROGRAM type FUNCTION
BLOCK DATA SUBROUTINE

2. Data 'dec1ération§.

DIMENSION IMPLICIT EQUIVALENCE.

INTEGER COMPLEX DOUBLE PRECISION
LOGICAL REAL COMMON
DATA EXTERNAL

3. Control statoments.

GO TO (unconditional, assigned, and computed)
ASSIGN
IF (3 branch arithmetic, 2 branch logical, and
conditional statement execution)
-
- CONTINUE PAUSE STOP END

4, Assignment statements.

5, Input/Output statements.
READ MWRITE PRINT PUNCH
END FILE . REWIND BACKSPACE

6. Subprocess statements.

ENTRY Statement Function definitions
CALL Function References
RETURN EXTERNAL

_ Excluded Statements. The following statement forms are ex-
cluded from pﬁocessing:

L Eggﬂﬂl. Information from FORMAT statements is not re-
quired for current processing. The presence bf FORMATSs
produces no diagnostic message orrloss of capabilitg.

2. NAMELIST. NAMESLIST forms vary among FORTRAN dialects.
A NAMELIST statement is recognized.but the varjables
specified are not processed. A diagnostic is issued to

inform the user of omissions in the processing.

3. ENCODE/DEZODE, These statement forms and operational
requirements differ among FORTRAN dialects, ENCODE and

DECODE statements are recognized but not procassed,
Variables specified in ENCODE and DECODE statements do not
participate in the analysis.

Required order for FORTRAN source code. .FACES is designed
to minimize deck modifications in‘submitt1ng code for analysis.
The basic requirement 1s that all modules begin with a module
header card (e.g. PROGRAM, SUBROUTINE, FUNCTION, and BLOCK DATA)
and end with an END card, Array declarations must appear prior
to the first executable use of an array element. Statement func-
tion deciarations are not constrained. Internal order of other
statements is not significant. |

Some FORTRANs default the main program to a module not
jdentified as a subprogram. In this case, a PROGRAM card must
be inserted to identify the module in the Directory. This mechanism
" was selected to prevent a spurious line of sourcé code between
moduies from being ﬁdentified‘as a "new" main program, replacing
valid analysis data for the actual main program.

For user convenience, Comment cards are permitted between
decks. These cards are associated with the next module defined
for the'softwére system. Comment text is ignored in the analysis.

Since modules are identified by namé, only one BLOCK DATA
may be submitted for a software system. If muitiple BLOCK DATA

rbutines are presented, the last deck encountered §s used in analysis.

S - . 4 e e ¢ i e b e e <l ot s

F

Appendiy B
MGTIVATION FOR QUERIES

FACES diagnostic messages are not necessarily programming

errors;

rather, they indicate code sections which merit inspection.

The investigations should include consideration of the following

aspects:

1.

Vulnerability to Cowpiler Interpretation. ANSI Standard
forms are not "perfect code", however the standard con-
structions define precise operations whitth must be imple-
mented by compiler authors. Variant forms are selected at
the compiler writer's option for implementatior, If un-
specified compiler features are used in the program, there
is no guaranteec the next version of the compiler will comply

with current techniques. Compiler diagnostics are usually

| not generated when these changes are made.

As a minimum, the code used for system implementation
should conform to concrete operations specified in the
FORTRAN user's manual. If.the code will be transported to
another system, only ANSI Standard forms should be employed.

Techniques which enhance execution speed of generated
code, called "optimization", may produce undesired and sur-
prising results in execution. The brogrammer must be wary
of certain hazardous techniques if optimization is used in
the compiler.

Potential Misinterpretation. Program operation-js almost

always clear to the author in the beginning. Tu a second

T b sraar a st s~ i

. party, style and uniformity are as important to compre-
hension as algor{ithm completeness, Hidden variations in form
are invitations to futurc failure during maintenance and
medification,

3. Implementation Errors., Even thoroughly tested code is

subject to fmpiementation errors. Often, the "right" test
case has not yet been encountered. Keypunch and coding
errors frequently produce valid FORTRAN code, These problems
are more quickly surfaced if "unusual" coding patterns are
displayed for user fnspection.

4, Interface Fumbies. Interface consistency reduces chances of

incorrect operation, Since module interface checks are
difficult 4o verify manually, unusual jnterface operations
are indicated by FACES analysis. |

5. Runtime Linkage. Operations among modules in the normal

~compile/1ink/load mode are not precisely defined by the ANSI
Standard. Many surprises await large software systems with
imperfect calling protocalls. Little diagnostic information
on module linkage error is provided by computer suppoft soft-

vara,

Path Tracing. FACES does not consider program logic in path

tracing, hence "impossible" paths may be produced. When considering
these paths, the user should be aware that "impossible" conditions may
bécome "possible" in error environments or in the expanded scope of

The cost of a few additional assignment statements

4

future modificacions.

.-
o
P
;_
[
.
-

B_. 3

or extra tests must be éarefu]]y weighed against tho cost of

potential future malfunctions.

Individual Query Consideretions. The foliowing dicaussion is

intended to assist the user in the evaluation of malfunction potential

as indicated by messages,

110 = "ANSIST - The use of an AHSI Standard function name as a program
variable may mislead maintenance personnel. The potential
for misinterpretation is especially high if the variable is
subscripted.

The use of an ANSI Standard function name as a software
module name is bpth misleading and dangerous, If unother
module attempts to use the standard function, 1inkage will
normally be generated to this software module. Thus, the
use of this name will exclude the use of the standard function
in the system.

Defining a function with the same name as an ANSI Stan-
dard name is even more proklematic, In some cﬁmpi]ers, many
standard functions are effectively compiled "in-1ine" -~ no
linkage 1s created to external modules. As a result, the
code will evaluate the standérd function rather than call the
user's routine.

If optimization is performed by the compiler, the
user's routine reference may be mistaken for a reference to '
the standard function. This may result in the optimization

creating incorrect code,

120 - RESHRD ~ Use of FORTRAN “rescrved" words miuies code
difficult to read. How would you like to follow code 1ike:

DO i = IM(K) {an assignment statement).

130 - DATVAR - Data siatements to COMMON variables in routines other
than BLOCK DATA are contrary to the ANYI Standard, If this
restriction 15 intended to protect the user from initializing
the same variable more than once, Multiple initiaiizations
make program operation "load dependent" (i.e., the initial
value is set by the last module Joaded),

If the system is required to operate in an overlay
fashion, DATA statements may reinitialize the COMMON.variab1e
on cach overlay; alternatively, the variable may not be re-
initialized each time. Exact operation is machine dependent.

BLOCK DATA, however, is usually Toaded once.

140 - FUNPAR -~ Functions which modify their parameters can lead to
unexpected results. Since the ot “put from a function is
thvough the function name, programmérs are less cautious
of parameter side effects., Input parameters to functions
are frequently constants; modification of a constant may
upset the calling routine. Since the error occurs on the
other side of an interface, this error is particularly
difficult to find.

For example,

Y = FUNC(2., X*3)

[BAY

1
FUNCTION FUNC(A, .B)

A = A¥*2 (2. 1is now the value 4)
who‘wou1d expect 2. to suddenly change value?

Another problem with side effect functions occurs if
compiler optimization is performed. If an exbression, for
example X*3, is changed, a bad value may be passed to a
later computation containing the "common subexpression" X*3

Since functions may appear in IF sfatement conditions,
compiiers may not execute the function as often as the user
expects. Some logical conditions are compiled to branch as
soon as a LTRUE. or .FALSE. value is determinad; if the

function appears several 'times in the Togical expression,

' sider,

IF(FUNC(I) .OR. FUNC(J)) B =¢C
If the first FUNC reference produces .TRUE. , the second

reference may not occur at aiil.

150 - MULBRA - Multiple branching statements which do not branch to

‘the statement immediately following, are necessarily errors,
There is a streng chance the branch list.is incorrect. If
correct, this type of bvénch is rather unusual and may re-

present a "special case" or code "patch" to be removed in

the future,

" the function may only be referenced once. For example, con- -

S, PP

B.

160 - REDLOP - The redefinition of DO loop control variables
within the loop body violates the ANSI Standard. Loop
operation is usually unpredictable, At the very least,

this technique is highly compiler sensitive.

170 - DOTERM - Use of the DO loop index variable after normal 1oop.
termination i; “undefined" by the ANSI Standard, The value
aésigned the variable can be quite surprising, depending
upon compiler implementation. Using an assignment statement
at the end of the Toop will normalize operation.

If this use is detected; a secondary listing will be
‘prpd0ced showing paths on which the index variable is used.

]
(See "Flow of Control Path Tracing".)-

180 - ASNUSE - Local variables assigned values but never used
are often keypunch errors or historical legacies. They
may be caused by errors in program ldgic,

190 & 191 ~ UNINT - The use of an uninitialized local variable is
caused by either keypunch errors or errors in program logic.
The paths taken to the uninitialized use are available on a

secondary report. (See "Flow of Control Path Tracing".):

P S -~ s S PUPE S

400 - 461 ~ COMMON Block Misalignment _

COMMON Blocks which are not identical are usually
“errors waiting to happen'. Mainlenance is much less error-
prone where uniform COMMON structures are ;mp1oyed. The
eff{ciency of mixing modes and changing structures must be
carefully weighed against difficulty in interpretation.

Keypunch erprors are particularly troublesome in COMMON.
A mispunch can create a new labeled BLOCK totally detached
from the rest of the system. A misspelled or transposed
variable name may not be currently used; if referenced
during medification, the programmer can expect a long and

tedious search for the error,

500 - 52] Parameter List Misalignment
| Parameter alignnent prqbiems frequently lead to
~execution errors. They may be caused by keypunch errors or

Tmprecise interface definition.

Parameter count and type problems are obvious.
Incompatible argument dimensions are elther outright errors
or invitations to malfunction. The use of differing

dimensions should be approached with caution.

600 - CYCALL - Cyc1ic calling sequences usually result in infinite
Toops unless recursive calling is.expiic1t1y supported.
Upon closing the cyc1é, the original entry reﬁﬁrn address
is destroyede - This makes it impossibie to "get back" to the

initial routine,

e e vt mmn PR T e el

Appendix C
Deck Set-Up

It 45 beyond the scope of this manual to present a detailed dis-
cussion of how to use JCL to set up the execution of FACES. This task
is left to the dser, although examples are presented.

A number of files must be allocated by the user. Some are direct
(random) access files; most ape sequential access files, Some files
are‘needed in only one phase; other files are needed in all phases of

FACES execution,

FACES uses eight files, which are 1isted below. Un]eés otherwise

- noted, each is a sequentiaj} file.

2 - FLAG: Flag File (FMSG: Fortran Message File)
3% - TABL: Table File

4* -~ SCAT: Source Code Catalogue File

6 - PRNT: Print File (Output File)

8 =~ -ANSI: ANSI Standards Function Names File

9 - CTRL: Control File |
10 - SCIN: Source Code Input File
11 - RESW: Fortran Reserved Word File

*direct (random) access file

v vivp——
i

C. 2

These files are used during the following execution phases:

Phase 1 . Phase 2 Phase 3
2 - FLAG 2 - FLAG 2 - FLAG
3 - TABL 3 - TABL 3 - TABL
4 - SCAT ' 6 - PRNT 4 ~ SCAT
6 - PRNT 8 - ANSI 6 - PRNT
9 - CTRL 9 « CTRL 9.- CTRL
10 - SCIN 11 - RESH

.Significant File Sizes:
FLAG ~ 76 bytes, 10,000 records
TABL -~ 400 bytes, 24,000 records
SCAT - 80 bytes, 100,000 records

FACES normally operates in four steps:
1) Phase 1 {Fortran Front End)

2) Phase 2 (Automatic Interrogation Routine)
3) Sorting of FLAG File
4) Phase 3 (Report Genérator)

Before Phase 1 can-execute, the source cede to be analyzed must

reside in.the SCIN File, and the‘command cards used in Phase 1 must reside

in the CTRL File. Allowable Conmand Cards for this phase are

¢c. 3

INITIAL-SYSTEM and
ADD SOURCE

During Phase 1 execution, flags are placed in the FLAG File, tables
are produced and placed in the TABL File, the source code is catalogued
and placed in the SCAT File, and all messages to be printed pass through
the PRNT File.

If a new software system is to be analyzed, the CTRL File must
consist of

INITIAL SYSTEM and
ADD SOURCE

'If new modules are to be added to Ehe softwaré system being analyzed,

the CTRL File must consist of
ADD SCURCE

and the TABL and SCAT files must contain the {.formation created on a
previous run which depicts the software system being analyzed, (The
TABL and SCAT files must be saved after a run if fﬁture analysis is
desired which bypasses Phase 1.) |

The SCIN File may be discarded after Phase 1.

Phase 2 uses two files used nowhere else in FACES., These files
are ANSI and RESH. They are "read only" files. They are not needed if
the user does not invoke queries 110 and 120 (seareh for ANSI Standards

Function Names or Fortran Reserved Words used as user-defined names).

The CTﬁL File may coniain only
QUERY
commands.

- During Phase 2 execution, flags are placed in the FLAG File, tables
are read in from the TABL File or are produced and placed in the TABL
File, all messages to be printed pass through the PRNT File,'and ANSI and
RESW are used as "read only" files for certain queries.

.
The sorting step involves oriy the FLAG File. Each record in the
file has the following format:
FORMAT (5(2X,I5), 2X, 2A4, 3(2%,15), 2X, 2A4)
The sort is performed on the first seven integer fields, left-to-
right, in ascending order. The sort is performed through JCL; FACES has
no sorting ‘capabilities. For further discussions, see the detailed

description of the FLAG File.,~

For Phase 3, the CTRL File consist; of the command,
REPORT
This controls what information is to be printed during Phase 3.
During Phase 3 éxecution, flags are read in from the sorted FLAG
File, information is gleamed from the TABL and SCAT files, and.everything
to be printed passes through the PRNT File.

Examples: |
To analyze a software system completely for the first time, a deck

might appear as

~JdCL

INITIAL SYSTEM
ADD SOURCE
JCL

QUERY ALL g
QUERY ONLY = 190,191
JcL

. (Sort)
REPORT FLAGGED
acL

To add modules to a software system whibh has already been analyzed
and whose TABL and SCAT Files have been saved, and needing only local

3

analysis, a deck might appear as

Tt i i

C.
JCL

ADD SOURCE
JoL

QUERY LOCAL

JCL

(Sort)
'REPORT FLAGGED
JCL '

To perform a global analysis of a software system which already
has been analyzed and whose TABL and SCAT Files haye been saved, and

needing a Tisting of all source code analyzed, a deck might appear as
JCL

up

QUERY GLOBAL

JCL

(Sort)
REPORT ALL |
JCL

Note that Phase 1 has teen bypassed.

£ NC 1469 JOB ([,
f7 ACT. 80, INNTSY2ESLAOCA
J7C0PA1L EXEC POMePHASEL,T
FISTEPL IS DD OSKN=8iNDA .U
2/ FI10¢FLT]
/I
F7FTQ3FCTL
i
—— I FTI26F 0L
i
J1FT0aFCCL
J/FT23FC21
J/ETI2FCOL
F757Y500unp

yRICLEVEL®)
IRE=3 RECION=300R
NiteDISK.DESP~"*

0D SYSOUT=a
00 »
0D »
00 SYSOUT=a

CYRL FILE
SCIN FILE

R TP T |

.

SHRRKEEP) o VOL-SEa=C(5(001
00 OSN=CEFLAC,UNIT=DISK,DISPeiNEu,.PASSY,

FPALI ol Too L 1C0, 200100 (LRECL =T MRECFM=FO BLRSIZ2E=Ts)

DD OSSN LETABL UNIT*DISK ,CISPeiNEm,Pass),

SPALE= (400, 2400C)) OB (RECFMoF ,LRECL*400,8LRSI2E=420)
DD OSA=LLSCAT, UNIT=DISK,.DISP=(NCW,PASS),
SPACE= (80, 1100Co0 1) 0C0° (HECFAF JLRCCL=B0,BLR5IZE=00)

IEF2301 ALLUC.
LEF23TL 154
LEF23T1 132
LEF23TI 132
IEF23T71 132
IEF2371 473
IEF23T1 433

FUR KCO11449 wOPNML
ALLOCATED T3 STEPLIS
ALLOCATED TQ FIC2FOO1
ALLOCATED YO FTOD3FOOL
ALLOCATED TO FTO&FOO1
ALLUCATED TO FiCeF0O1
ALLOCATED TO FTO9FOOL -~
IEF2371 434 ALLOCATED TO FTI0FOOL
IEF2371 474 ALLOCATED 71O SYSUDUmP
1eFls2l - STEP wAS EXECUTED - COND CODE 0000
1EF 2851 SANDR
IEF2851 VUL SER NOS= C5COC1.

~—1EF 2051
1EF 2851
leFaest
1EF2851
1EF 2351

ST PO PO IR LT
® © 9 9 °

VOL SER NOS= 222222.
5Y575230.7T112604,Av000.N001 1449, TABL
VOL SER wsusS= 222222.
S5YST5230.7112004.RVUCO. NOOL 1449, SCAT
1EF2851 vOL SER wNO5= 222222.
—~——JEEIT3] SIEP JGUPM) /O START 75230.112e -
IEF37&] STEP /COPmL 7 STOP T75230.1218 CPu
F7COPH2 EXEC PO PHASE2,TINE*S,RECION=30CK

4408027020
£/FT03F 001
—— AT D% 421
27 FTO8F I
Z/FIGIFOII
J/7FT11FCOL DD
J7575J0UR> DD
IEF2381 ALLOC.

vl
0o
oo
i
0D =

DSN=LLFLAC, IS =1 0LD,PASS)
OSN=LLTABL QISP I OLD,PASS)
S5YSQuT=2

CTRL FILE

SY50utea
FOR NCOL1449 GOP M2

SYS75230.T1126004.AV000. K001 1449 . FLAG——— ~ PASSED

JESTEPLIB D0 GOSN~ SANOA UNITSDISK,DISP=(SHR,KEEP) »VOL®SER=C 5C001

DSN=ANS L UNITDISK,DISP =l SHR,KEEP) , YOL=SER (5002

KERT s e -

" EE-

ZAIN 20.325EC RAIN 228K LCS on

USNSRESW , UNITOQISK,UISP oI SHRA,KEEP) . VOL=SER=C5(001

ALLOCATED TO STEPLID -
ALLUCATED TN FTO2FO01
ALLOCATED T3 FTO3FO0OL
ALLOCATED TO FTD&FOOL
ALLOCATED TO FTO8FOO)
ALLOCATED TO Froes0QO1

=—1EF23T7L 154
IeF2371 M2
1EF23T 132
LEF2371 &7)
LEF23TI 156
IEF2371 435

— JEF2371 154 ALLOCATED TO #TL1F001 -
TEF23T1 474 ALLCCATED Tu SYSuDume
BEFL&21 = STEP wAS EXECUTED - COND CODE 0000
1EF 2851 BANDR

~~ LEF2051 VOL SER NOSe CSCO01. ‘
IEF2B5] SYS75230.T112604.RV000.NOD) 1449.FLAG

REPT
PASSED

—— JEF2851-—-- VOL SER NOSe= 222222.-
iEF2851 SY575230.7T112604.AV000.N001 1649 TABL
1EF2851 vOL SER NOS= 222222.

1EF2451 ANS1
IEF2asl VoL

SER NOS= C5CO01. -

— FEFZ0851 AEsw
IEF 2051 vOL SER NOSe C35CO01.
— EF BTN STEP JGOPH2 / START T75230.1218
IEF3TAL STEP /GGPHW2 / STCP 75230.1222 ©W
= ~—— #T30AY EXEC SOATD
KR30aT EXEC POM=IERRCUO0,AEC ION=26N
nus?t B0 SYSOUTea
RESORTLID OD DINAmE=SYS). S0R -
FIAGAT, SCATIN DL usu-;tl;h:l’lu:;ﬁ:u’:tu

"o

L e e T I L I %

Foasiagirfaste e FlLs l‘..‘l\l‘.'..."

ccaliget § B ‘...n..,n..n--‘-"' ..:-||..
- ve o o "t 00y

'
‘. a‘:.....

PASSED
REPT

KEPT

ORIN 3. 495EC mAlN 256K LCS oK
20000013
«000001)3
000001

FEBINT, SCATOUT DO USN=LLFLLL, DL P sinEw-Pags) SUNIT=DISK,

il ———————

-

100 9| dwes

a i aoaban o oo

o @ © © O © © O 0 0 © © © O ® & ® © O ¢ 0 0 0O @ o v U

JITS504T §x
TXSORT
RSV SGaT
ERSORTL B
— A S0AT. 501
J/353RT. 501
' 52 .t
' oC Bl
F75JAT, 501
FI5IRT, 504
——— FFSORT, 504
FI53RT, 561
J750a0, 5vS
TEF23al AL
IEF237] &7
IEF23T1
r— JEFZITL 13
T1EF2371 1)
IEF23T1 13
IEFZ3TL 13
1EF2371 1)
IEF23T1 13
— fEF23T1 4)
1EF1&21 =
1EF 2851
1EF 2850
1EF2051
1EF2s58
— JEFe 851 - -
1EF 2851
IEF 2851
LEF2851
lEF2851
IeFaest
— EF 2851
IEF2851
IeF2ast
IEF<B51
FEF3T3L ST
1EF3T&l ST
——— 7 e0Pn) Es
FISTEPLID
F7FTL2FG0L
f7FTICIFRCL
FIFTOGFCOL
J/FICsFCRL
—— F7FTO9FOCH
J75Y 500 UNP
i
1EF23sl
IEF23T] 15
IEF2371 13
— JEF2371 1)
LEFZ371 1
IEF23T1 &
IEF23T1 &)
LEF23T1 &7

—1EFL&21 =
1EF 2851

—EF2 051 —
1EF 2851
— 1EF2051
1EF3 4851
1€F2a51
1EF23851

—iEf20%] -

LEFDITIL STEP /L0PHD
STEP JCOP®)

1EF3T&L

151

ALLOC.

Aisw A
vOL SER hkO3e C3COCI.

EP JG0PH f START 75230.01210 - —_

EP FGLPH2 /S STOPF T7523C.1222 CrU ORIN 43.49%3EC mAlN 25K LCS ox

EC Soarp

EXEC PLme [ERACCIOLREL ION=26K 20077013
oo SYS0uT=a «00o. 013
'} DSMAmMESYS 1. SORTLIS .01 SPeSHR (LR 1

TiN DU OSNSLIFLAG,DISP=(OLOD.DELETZ) o
TOUT DD USN-LLFLGL. olsa-tu&u.vnssl.uult-li!n.

*(7001004200 ,ALSED

RECFMeF R, LA ECL= To BULRSILE=T o)

Twk01l DO UNIT=DISK,SPACE=ICYL,L1D)

ToaC2 DD UNIT=QlSK, SPACE=ICYL.(1))}

Tunl3 D0 WNIT=Disn,5PalE=ICYL L 00D
Tax06 0D UNIT=DISK,SPACE=(CYL,E1D)
IN 0D »

LOC. FOR WIDil4s9 Suatd

3 MLOCATED To SYsowr
ALLOCATED 7O SORTLIB
2 ALLOCATED TO SJATIN e
2 ALLOCATED T SJATOuT

2 ALLOCATED T SORTexOl

< ALLOCATED TO SORTwRO2

2 ALLUCATED TD SORTwxOD)

& ALLOCATED TO S0ATes0e

TSQRT

L] ALLOCATED 1O SYSIN -
STEP wAS EXECUTED - COND CODE 0000
SYS1.50aTLI®

VOL SER NUSe» NASACL.
SY575230.7112804.Av000.N001 1449, FLAG
vOL SER NO3= 222222.

SYSTS430.T1 12604 AVO00.NCOL LG9 FLEL
VaL SER NuSe 222222.
SYST5230.T1 13004, Bv000.NOD1 1449.A0000009
YOL SER musSe 222222.
SYSTS230.7T112604.Av000.N001 1449, 00700010
VUL SER NUSe 222242.

KEPT
DELETED

—— PASSED
DELETED

DEL TED

SY375230.7112604.4v000. NOOL 1649.R0110001) ——
VLL SER NUSe 222222,
SYS7523C.T1526046.4v000.NOO1 1449.80000012 |
VOL SER NOSe 222:22.

EP /50RT J START 75230.1222

EP /350RT / S5TOP TS230.1223 C*-
EC PCRoPrASES, TINE® I, RECION =100

DELETED
DELETED

OMIN 03, 37SEC mAIN 404 LCS O

oo os»-au.oa.uuu-oul.on9-un.tun-m-sn-(scul
DD OSN=CLLFLGL ISP~ I0LD JDELETE) »UNI TDI 5K
OD OSN*"LLTASLLOISPoIOLD LAY
0D DSN=LESCAT,OISP=i0LD LDELETE)

” Sllnultl .

~—— CTRL FILE Ik}
Ol svsauion

FOR MOC1144% oOP W)

- ALLOCATED YO STEPLI®

2 ALLOCATED TO FTG2FO0QL

2 — ALLOCATED %O #TOOFOO0 — - — —— ——— ——
2 ALLOCATED TO FTO&FDOQ]

3 ALLCCATED TO FTOsFQO1

1 ALLOCATED TO FTO9FOO1

5 ALLOCATED TQ SYSuUDump

STEP wAS EXECUTED - COND CODE 0000 - N

81 @OV IVATON

l
|
|

|
|
'
|

LELIL) KEPT
VOL SER NOSe (SCOCH. —— ‘
SYST5230.T1 12804, l'ﬂ..“ﬂll‘t’.ful DELETVED
vOL SER NOS= 222222. . lll
SYSTS2IC.TI12804.AVO00. NOOL 1649, TABL PASSED
YOL SER xOSe 222222.
lill...'.lt.

$5573230.71 12004.8V000. HOOI 1649, 5CaT

vOL SER NOSw 2222824
7 STARTY nuo.nn

f SToR T9230.122% Crv CAIN B0.025EC maln Tam LCS o

® & & o o @ & © & & © O ° & O & & % 8 s 0

LE]

-

® © © o © @ ¢ o © o o & @ o © O & o o

k
1
3
E

LEFI&21 = STEP wAS EXECUTED - COND CODE Q000
1EF 2481 3ANOR KEPT
—— JEF2850— V0L SER NGSe CSCICls - ———— — e e e - ———————— e ==
LIEF 2851 SYS75230.T112604.2AVv000.N001 1649, FLEL DELETED
— LEF 2851 vOL SER NOS= 222222. &
LIEF2ast SYSTS230.TL 12606, RVD00.NON1 1649, TABL PASSED
LEF2851 VUL SER %NulSe= 222222. - = =
IEF 2851 SYST75230.T112604.EV00C0. NOOQL 1449.5CAT DELETED
—JEF2451 - VOL SER NlSe= 222222. e B e — e i U ——
TEF3T3L STEP /C0PHM) J/ START 75230.1223
IEF3741 STEP /GCPH3 / STIP T75230.1225 CPU ONIN 08.025EC MALN T » . oen
[EF2851 SYSTS230.T112604.RVD00. NOQL 14649, TAB. DELETED
1EF 2351 VOL SER NOS= 222222. e ——— e i S &
 LTEF3TSI JOB /NOOL1&&v/ START 75230.1126
———1EF3T6l -2080 /N001L44a 9/ STOP - -75230.1225 CPU—3NIN 16.205EC i s TR e+ i) S D
(o=
BB - —— . e
-3 Tty P e
TR N
L Rkt ==
RUN O 18 380 FOR FOATRAN OF Aus Comp
s.ATUAN AGTORATED COOE EVALUATION SYSTEM (FACES) Rus - VEASIGN 2 mOD 1}

INAT ML

3{

r

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf

