General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



e WS Cl. 145993
A

.

FORTRAN AUTOMATED CODE EVALUATION SYSTEM ( FACES )

FUNCTIONAL CHARACTERISTICS

Version 2, Mod 0O
Septembar, 1975

Contract : NAS8-30928

v

(NASA-CR-143993) FORTRAN AUTOMATED CCDE R76-10754
EVALUGATTION SYSTEM (FACES) FUNCTIONAL
CHARACTERISTICS, VERSION 2, MOD 0 (Brown and

Unclas

Ramamoorthy, Inc., Berkeley, Calif.) 7S p
CSCL 09B G3/61 42347

HC $4.25

BROWNE &
RAMAMOORTHY, INC.

2550 Telegraph Avenue, Suite 404, Berkeley, Ca., 94704
' (415) 848-0261




=

o

Table of Contents

I. Introduction ;
II. Detailed Description of FACES Acceptable FORTRAN
ITI. Fortran Front End Codes
1. Transition Pairs Recording Codes
2. Summary of Anaiysis Table Codes
3. FFE System Anomalies
IV. Detailed Description of Queries
1. Queries '
2. Query Peculiarities
V. Flag File Description
1. Flag Fi1e Format ,
2. Flag File Peculiarities
3. Flags Generated by FFE
4, Flags Generated by AIR
VI. Analysis Table File Structure

Tt an a3 e > AT e ks i

TP T K P o



1.1

I. Introduction

Functional Characteristics are a level of description too
detailed for a User's Manual, yet too abstract for detailed d8cumentation.
This information describes the external behavior of major subsystems
or the total system. Some descriptions are simply summaries of
information available in scattered locations.

Codes and capabilities are likely to change with system
modification and extension. This material is provided as a detailed

reference source for personnel familiar with the FACES systenmi.



II.1

11. DETAILED DESCRIPTION OF J'ACES ACCEPTABLE FORTRAN

FACES js designed to operate with a compiler. The compiler
is responsible for policing acceptable constructions which can be
exccuted; FACES is responsible for analyzing syntax which 1s compiler
acceptable.

In defining the syntax for FACES, maximum latitude is given
to form. Yhere possible, feaiures are a composite of nonconflict-
ing capahilities from several compilers. The presence of a parti-
cular construction implies the source code can be compiled.

The following description is intended to define syntactic
constructions recognized by FACES; this is not a description of
FORTRAN, A FORTRAN vser's guide should be consulted for an ex-

plaination of code operation.

Chafacter Set

Blank character (significant only in Hollerith 1jteral
strings)
A-Z Alphabetic characters

0-9 Dpecimal numeric characters

%«w‘s_‘u‘m:}\._‘%g T D AL LS



1.2

Special Characters /
‘ = equal sign + plus sign
- minus sign * asterisk
/ slash . » COmma
( left parenthesis } right parenthesis
.. period § dollar sign

' apostrophe {single quote)

yuotation mark (double quote)

Card Format

Standard FORTRAN format with numeric statement labels in
columns 1 through 5, continuation in column 6, and source statement
text in columns 7 through 72. Columns 73 through 80 may contain
optional card identifications,

Statement labels.

Statement labels are composed of from 1 to 5 unsigned numeric
characters without leading zeroes.

Continuation cards.

Statements may be continued on the next card by placing any
character other than blank or zero in column 6.

Comment Cards

Cards containing any character other than blank or a numeric
character in column 1 are considered comment cards. Blank cards

are considered comment cards.




I1.3

Source Code Components

Symbolic Names. Symbolic names are from 1 to 8 alphanumeric

characters, the first of which must be alphabetic.
Constants.

1. Inteqger Constants. A string of decimal digits not

formally constreined in length,

2. Real Constants. Real constants have one of the

following forms:
\ L% A § i. basic real constants
basic real constantDE j
iE§
where: i and i_;re integer constants.
The basic yeal constant and exponent may be

optionally <iqned,

3. Double Precision Keal Constants. Double precision

constants have othe form,
{basic real constant) D
where: the basic real constant and integer exponent

may be optionally signed.

4. Complex Constants. The form of complex constants is,
(el,c2) |
where: cl and c2 are either real o~ double precision
constants. Mixture of preciSion is permitted,
¢l and/or c2 may be signed. |

5. Logical Constants. Logical constants may be one of

the following forms,

.TRUE.  .FALSE. .7. .F.



I1.4

6. Litcral Constants. Literal constants are character

data of the form,
w H {char string)
' {char string)'
v dehar stringd” \ |
where: <€har string® s a series of adjacent card char-
acters including blanks.
v is an unsigned integer constant indicating the
length of the character string.
1f two adjacent delimiting markers (i.e. '' or "")

appear they are-interpreted as a

single mark of text,

7. Nondecimal Based Constants. Machine dependent constant
forms for radix other than 10.
w Z {hex constant string?
0 octal conslant string) (more than 7 chars)
{octal constant stringy B
7 {hex constant string)  (in DATA 1ist only)

Operators. )
1. Arithmetic operators. The following arithmetic operators

are permitted:

- ) Kk

2. Logical operators. The following logical operators are

permitted:
.NOT. .N. .AND. .A. .OR, .0.




11.5

3. Relational operators. The following relational operators
are recoqnized:
IEQ. INE. lGTl OGEI ‘LE. ILT.

Program variables.

Variable names are limited to 8 or less alphanumeric charac-

ters, the first of which must be alphabetic.

Array dimensions are unlimited, ODimension specification must
be declared by either an unsigned constant or unsigned variable.
Array reference subscripts may be any arithmetic expression,

Data Types. The following types are processed by FACES:

INTEGER

LOGICAL ‘

REAL

DOUBLE PRECISION

COMPLEX

HOLLERITH (only as a constant)

NEUTRAL  (untyped routine names, statement labels, and COMMON

block iabels)
Expressions. Expressions are processed by content only. Expression
syntax is not examined. Operator precedence is ignored. Any valid
expression acceptable to a FORTRAN compiler will be accepted by FACES
if components of the expression contain acceptable operators and operénds.

1. Simple Arithmetic Expressions.

Simple arithmetic expressions contain the following components:
Operands: Constants, scalar variables, array references

viithout subscript lists.




I1.6

Operators: Arithmetic operators, and logical operators.
Other: Organizing parentheses.

2. Arithmetic Expressions: Arithmetic expressions contain the

the following components:

Operands: Constants, scalar variables? arrays with unres-
tricted subscripts, function references, and
statement function references.

Operators: Arithmetic operators and logical oparators.

Other: Organizing parcntheses.

3. Logical Expressions: Logical expressions contain the

following components:

Operands: Constants, scalar variabies, arrays with unres-
tricted subscripts, function references, and
statement function references.

Operators: Arithmetic operators, logical operators, and
relational operators.

Expression type is evaluated only for expressions used as
array subscript references, or actual parameters to functjons or
subroutines. The type is determined by the highest level type of
any operand in the expression:

COMPLEX

DOUBLE PRECISION

REAL

INTEGER

LOGICAL / HOLLERITH (extended type)

o vim e RN Rt ke



11.7

Nesting of function and array references within function
actual parameters, array subscripts, and subroutine actual parameters

§s currently limited to 5 levels.

. SOURCE CODE STATEMENTS

Control Statements. Branch targets, t, in control statements

mag; be either statement labels or variables set by ASSIGN
statements. A branch target list is a series of branch
targets separated by conmas . |
GO TO Statements.

GO TO t (unconditional GO TO)

GO TO (<branch tarvet iistd), v

ASSIGN £ TO ¥

GO T0 v, ({branch target 1ist)) (ASSIGNED GO TO)

where t is a branch target

v is and unsubscripted variable

% is a statement label

The branch target list of the ASSIGNED GO TO is optional
IF Statements.

IF(Grith expr)d) ti, t2, t3

IF(iogical exprd) 11, t2

II;(<1 ogical expr)) statement
where t1, t2, and 13 are branch targets

{arith exprd is an arithmetic expressibn

{logical expr) is a logical expression.

O T T PP T S



I1.8

00 & DO control 11std
where & is a statement label,
4p0 control 1ist) is the form,
y = nl, nZ, n3
with v and unsubscripted variable.
nl, n2, n3, the optionally signed DO control
parameters,
nl, n2, n3, may be either constants or unsub-
scripted variables.
n3 may be omitted,
CONTINUE

Identified control statements.

The following control statements may optionaily con-
tain an identificaiion, n, indicated by an unsigned
constant or symbolic name.

PAUSE n

STOP n

END

=

Assignment Statements. Assignment statements have the usual

form,
v = arith expr)
where v is a subscripted or subcripted variable,

{arith expr) is an arithmetic expression.

Input/Output Statements. (/0 statements are composed of

an 1/0 action, I/0 control specification, and optfonal - |

1/0 variable list.

P A 2l A e 1 R ) 0 S B Nk BRI 0 N T L e B 2 K e g g e s ¥ e e NP T 7 B b . ame st




1/0 control specifications are of the form,

(u'r, f, ERR = bl, END = b2 )

11.y

where u is a mandatory unit specification expressed as a

constant or unsubscripted variable.

r is an optional record specification restricted to

a simple constant or unsubscripted variable.

f is an optional FORMAT specification expressed as

a statemer® label or variable name.
bl and b2 are branch targets,
1/0 lists ;re comma separated V1ists of I/0 elements.
1/0 elements are:

1. Simple operands {constants or variables)

2. 1/0 elements separated by commas enclosed in parentheses.

3. lmplied DO loops of the form

({1/0 element 1isty, €0 control 1ist))
1/0 Statement Forms.

WRITE /0 Conurol Spec) €1/0 145t
READ 1/0 control spec) {1/0 1ist
PRINT £, €1/0 1ist)
PUNCH £, {1/0 “ist)

where f is a format specification

the I/0 1ist is optional

END FILE
REWIND
BACKSPACE

L]

je=



11.10

where u is an I/0 unit specification

FORMAT  only the statcment label of a FORMAT 1s

processed.

Variable Declaration Stalements. Variable deciarations define
the data type, structure, and stofage allocation of program
variables. -
i Type specifications may be one of the following

INTEGER

REAL

DOUB.E PRECISION

COMPLEX

LOGICAL

Un1gss redefined by an IMPLICIT statement, the leading
character of the variabls cstablishes ANSI standard type.

A through B and 0 through Z - type REAL

I through N - type INTEGER

A variable declaration list is a comma separated list
df variables which may be optionally subscripted. Subscript

specification implies difinition of array dimensions,
A variable iist is a comma separated 1ist of subscripted

or unsubscripted variable which reference program variables
or elements of arrays.
IMPLICIT type specy({etter Vist)), ... ,
g type spec) ((letter 1ist))

L B e Bt

'u..S
<t




11.11

where {kype spe€> is a defined type specification,
(ﬁefter 1ist)is a comma separated form with elements of:
1. Single Jetter
2. Range of letter specified as L1-L2.
L2 must be alphabetically ahead of L1.
DIMENSION {yar declr 1ist)
<&ype speé}(yar declr list)
EQUIVALENCE ((var\1is§)).(<&ar list)), ... ,({var 1isq> )
DATA  {var 1ist)/{data spec list)/. ... ,
{var 1ist)/ {data spec list)/
where {data spec list) is a comma separated 1ist with elements cf:
1. Optionally signed simple constants
2. p*c wvhere p is an unsigned repeat specifi-
cation and ¢ is an optionally signed constant.
comMoN (block spec) {var dectr 1ist) ....
<b'|ock spec> <var declr h’st)
where <b10ck speq) is the form / symbolic name /
If the first block specy is absent, the COMMON Block

is blank COMMON.
A missing symbolic name explicitly r:ferences blank

COMMON (e.q. / / ).

T O T T T I T T ST I P TN T T U o R



11,12

Subprocess Statements.

Dummy parameter lists are comma separated 11sts pf
unsubscripted variab1e$ enclosed in parentheses.

Actual parameter 1ists are comma separated 1ists of
arithmetic expressions, the simplest form of which is a
variable or constant, enclosed in parentheses,

PROGRAM  name
where name is the symbu’irc name of the main program.
Optional text following name is not processed.
Ctype spec) FUNCTION name (dumy parm 1ist)

where <&ype spec) is optional
SUBROUTINE  name <ﬁummy param 115§>

where (dummy param ]is§> is optional
BLOCK DATA
ENTRY name (dumny pavam 1ist)

where name is the symbolic name of a secondary entry

point.
The type for nome is dgrived independently of
' the primary entry.
(dummy param fisﬁ}is optional.
sfname  dunmy garam Tist) = arith expr)

where sfname is the symbolic name of a statement

function distinct from any declared array.

EXTERNAL némel, néheZ{_ «..y nameN

where namel .is the symbolic name of an external func-

tion or subroutine,



11.13

RETURN 1
where 1 s an optional consfant or unsubscripted
~ variable return specification.
Function reference )
name <actual param list)
where name is the symbolic name of an external func- \
tion or function entry point.
CALL name actual param 145t} |
where name is the cyambolic namc: of a subroutine,
<§ctua1 param 1is€> is option:.’,

Statement Order Requirements.

Minimum order requirements are implemented in FACES to pro-
vide maximum flexibility to FOKTRAN dialects consistent with single
pass operation.

1. A1l modules must begin with a header card identifying

the module. Header cards are PROGRAM, BLOCK DATA, SuB-
ROUTINE, and FUNCTION.

2. A1l modules must terminate with an END card,

3. References to arrays must appear after declaration of the

array in a CTMENSION, TYPE, or COMMON statement to avoid

ambiguity with statement function definitions and function

references.

Other Requirements.

Since modules are identified and replaced by name, only one

BLOCK DATA module js permitted in the software system.




Parameter

Value

!

Transition Recording gydeé'for TRANS

Type of Transfer

PPCode

Values Recorded

Predecessor

1

10

11
12

Branch to label

DO LOOP

RETURN -

Logical IF statement

External procedure
reforence

END

Praogram termination
Pfimary entry point
Secondary entry point
Branch through variable

Not used

Statement function
reference

1

Node number of
branch statement

Symbal table
position of DO
Tabel

fode number
of RETJRN

Node number of
IF statement

fode number of
IF statement

Node number of
calling statement

Node number of
END statement

Node number of
terminating
statement

Special code for
primary entry
{70000)

Special code for
secondary entry
(80000)

Node number of
branch statement

1

Node number of
statement calling
statement function

111.1.1

Successor

Symbo1 tabte
position of
branch label

fode number of
DO statement

Special Return
code (20000)

Node number of
ﬁéatement after

Node number of
second state-
ment after IF

Special Call
Code {10000}

Special END
code {30000)

Special transi-
tion code (40000)

Node number of
module header
card

Node number of
ENTRY statement

Specia? code fof
variable branch
(60000)

Special code for
statement function
reference (50000)

B Y RS SR . S i e -



FURTRAN FROKNT ERD CODE
DIFCCTAORY Caies
MUDULLE TypEe
O=UNDEF 1-PHIG
5~-SECAD SU3 ENTRY

S5yvelL COCES
CHARACTERESTICS
TYRPE CNOES -

O=-UNLLF 1-FP 2-C
CLA%S CANDLS -
O-INQLCF 1-SUP
6-SCALAR 7-CLMLA
12-DPNRCG 13~TEMP
Ust TANJLE CODES
USE CCPES
0~ ENETYY 1-
4=~ 170 INVAR &=
H= DO INC Q-
12- NDATA ENTRY 13-
16—~ FUN DUMMY 17-
20= CCADIR VAR 2)1-
24= CGLTO INDX 285~
28— MTYPL RETHN 24-R
3/~ DGN SHC 33-
-~ FQUIV RNTY Z7-C
40U- DECLARE 41-
o§ 44— 43~
NORE TARLE CCRDES
STATLVMENT TYPRS =
C~ UNDETF i-
H- PRINT 5
2= NDECGHE G
12~ EXTERMNAL. 13-
16- 17-
20- ENDFILE 21=
24~ BACKSPACE %=
28= DIVENSLUN  2G-
32- PROGIAN 33~
36= COMMIN a7-
40~ FQUIVAL 41~
44— CONTINUE aG5=-
48- ENTRY 50-
853= DL SIVT S4 -
99~ UNRECOGNI ZED

SUCCESSOR TaBLE
SUCCEES0R CODES
0 —= UNCEF ‘ 1 -
10C20 -~ EXT REF
40020 -~ PRIJG HALTY
9C00C -~ UNCEFR LABEL

PREDECESSOR TAELE
PREDECESSCR CODES
G - UNDEF 1 -

7O0CD0~FPRINME ENTHY
90020-UNDEF LABEL

(HHGHWULIMKHE
OF POOR QUALITY,

SUWNARY

I11.2.1

2-5L0 3-FUNC 4a-HLKDATA
6-GLCANE FUN ENTHY
F  3-CMPX 4-L0G 5«NTRL 6-CHAR  7-INTG
2-3TFUN A-ARRAY A=F UN &=LABEL
? A-CUNS GmENTRY 19~ 1=
14~ 1E~STF UM 10~EXTPRCC
ASCh (VAR 2- ASGN [VAR 2= [/C OVAR
B89 INUX VAR &- DC START 7- N0 ENC
LAV DHF 10~ XFR TO LAA 11- CCM ENTRY
ARRY OICLR 14- TYF ERTEY  15= SUMSCRIEPT
SLi3 DUMMY 18- FUN ACTUAL 16- SUS ACTUL
EXT PEOC 22— ASSIGN VAR 23- Ak THRU VAR
PO LAVFL © 20— 1/C UNIT 27~ TCHMAT REF
FF LAY LCC 3C- PGN LISYT 1= END LIST
END SHE 34~ GRE CVAR  35- SPE VAR
XTRKN ENTY  28- 3G-
CATA VAL  42- RIPEAT 43— ID INDEX
‘ a6-5T FUN CALL 47- I/C RECRD
2- 1- FORMAT
INKLICTT 6~ NAMELLIST 7- ENCUDG
DUNL F 1C~ IF 11- CONOLEX
RLCCK DATA 14- ENC 15= READ
18- LG~
22~ 23+ REAL
R6- LOGICAL 27- FUNCTION
3¢~ SUBROUTINT 31- DATA
COUL PEL 24=- CALL 35~ INTEGFER
. AB- ASSICN 39- WRITE
sTow 42— REWIND 42-
GCTC 4G - 4=
PALSE 1= RETURN 52— ASGNMT STMT
ST FUN
$G39  STATEMENT NUMRER
20000 - RLCTUFRN 30900 = ENG STMT
59000 - STFUN REF 60700 - HR THRU VAR

5939 STATEMENT NUMBLER
BCCOO0-SECND ENTRY

At b e eda D e oy

;



I11.3.1

Summary of System Anomalies

Datected hy FORTRAN Front End

FORTRAN Front End anomalies are dctected processing conditioﬁs
which indicate unusug1 circumstances. Anomalies should not appear if
the FORTRAN text is well formed and tables do not overflow. Unusual
syntax or table overflow may cause anomalies to appear aithough the
error should be controlled.

Anomalies\are reported in the form,

**kk% FFE SYSTEM ANOMALY # DETECTED BY RRRRRRRR IN

NNNNNNNN CARD CCC VALUES =< II1 ARAAAAAA
where,
# is an anomaly code indicating the type of situation
which occurred,
RRRRRRRR is the FFE rcutinc which detected the error,
NNNNNNNN s the module being processed when the anomaly was
detected,
CCC is the (approximate} card number relative to the
beginning of the module,
‘III is the value found in question, and

AARAAAAA is the name of the data element.




I11.3.2

Table of FFE Anomaly Code

Code Number Meaning
1 Bad parameter value passed
Bad table value detected
Bad table positioning detected
Unexpected sequence encountered
Probable lockup cleared
Unacceptable form found
Incapable of-performing the requested function

Algorithm produced suspicious result

O (o2 ~J (=] (3] BwWw N

Processing table overflow




1v.1,1

QUERIES

FACES aliows a user to request the search for certain pre-deter-
mined unusual language constructions in the user's FORTRAN source code.
Such a search is called a query. The user also has some control over
the format of the messages produced when such incongruous constructions

are located.

110 (ANSIST) - Search for ANSI Standards function names that are not
being used as ANSI Standards functions names. A list of these
names appears in Table 2, which was derived from,the ANST FORTRAN
manual ANSI X3,9-1966. A1l messages appear in the primary listing.
Example: DIMENSION IFIX(10)

ABS = IFIX(MOD) (ABS and MOD are variables)

120 (ﬁESNRD) - Search for FORTRAN 'Reserved' words being used as names.
A list of these words appears in Table 1. A1l messages appear
in the primary listing.

Example: DIMENSION IF(5,5)
DO = IF(4,5) (DO and IF are variables)

130 (DATVAR) - Search for DATA statements not in BLOCK DATA which cﬁntain
\
- COMMON Block variables. These DATA satements are loader dependent.
A1l messages appear in the primary 1isting.



ASSIGN
CALL
COMMON
COMPLEX
CONTINUE
DATA
DECODE

ABS
AINT
ALOG
ALOG10
ATMAG
AMAXO
AMAX1
AMINO
© AMINL
AMOD
ATAN

D0 60TO
ENCODE IF

END IMPLICIT
ENTRY LOGICAL
EXIT PAUSE
FORMAT PRINT
FUNCTION PUNCH

"Reserved" FORTRAN \lords

Table 1
ATAN2, DATAN ~ DSIN
CABS DATAN? DSQRT
€C0S DBLE EXP
© CEXP DCOS FLOAT
CLOG DEXP 1ABS
" CMPLX DIM IDIM
CONJG DLOG IDINT
c0S DLOG10 IFIX
CSIN ~DMAXL INT
CSQRT DMOD - ISIGN
DABS  DSIGN MAXO

Standard FORTRAN Function Names

Table 2

A L B i e e,

READ
REAL
RETURN
REWIND
STOP
WRITE

MAX1
MINO
MIN1
MOD

REAL
SNGL
SIGN
SIN

SQRT
TANH

A 2k e B sk ATa e 4 wee .

Iv.1.2

g
1
3
8
4
3




i

Iv.1.3

If the COMMON Block variable is EQUIVALENCED to a variable
which appears in a DATA stalement, then both varijable names
appear in the message.

Example: SUBROUTINE SUB
COMI4ON X,Y,7
EQUIVALENCE (V,Q)
DATA X,Q/7.3, 9.5/ "(Set values of X and Y)

140 (FUNPAR) - Search for fﬁnction dumny parameters assigned values
within the function itself. These represent dangerous side
effects. A1l messages appear in the primary listing.

If a dummy parameter is EQUIVALENCED to a local variable
which is assigned a value, then both variable names appear in
the message.

Program boundaries &re not crossed. The use of a duﬁmy
parameter in an actual purameter list is ignored for this

query.

Example: FUNCTION FUN{X,Y)

EQUIVALENCE (Y,Q)
X = X+3 (X value changed)

Q = X (Y value changed)

150 {MULBRA) - Search for multiple branching statements which do not
branch to the statement immediately following. These are highly
questionable logical constructions. All messages appear in the

primary listing.

s rmanw. o R i i me e a e e < ekt e A B Ry i rdlr N B ok o e ARk el 4 gt e L e s e e, r_uu..-i

a e Ao o e L e 4+ s A e as A



Iv.1.4

Example: IF (X) 100, 200, 300
50 C = FUN(I)

160 (REDLOP) - Search for the redafinition of DO Loop control variables
within the loop itself. Such redifinitions are illegal. Al]l
messages appear in the primary listing. ’

If the control variable is EQUIVALENCED to some other °
variable which is assigned a value within the loop, both variab’z
names appear in the message,

Program boundaries are not crossed. If a DO'Loop control
varijable appears in an external refaerence as a.parameter. it isf
assumed that the value of the control variable is not changed
in the external reference.

Example: EQUIVALENCE (J,M)

DO 100 I = J,K,L
M= (modifies J)

[ = 141 (modifies 1)

100  CONTINUE

170 (DOTERM) - Search for DO Loop index variables used after the DO
Loop has terminated normally. For many compilers, the DO Loop
index variable is undefined after the loop terminates under
normal conditions. A1l messages appear in the primary listing.

If the DO Loop index varfable is EQUIVALENCED to a local
variable which is used after the loop termiprated normally,

then both variable names appear in the message.
r

CRcie ek wn eae Kl o v R sl Ao ¢ an el L A A L A ke & e e M



IV.1.5

Program boundarics are not crossed. If the index variable
appears in a parameter 1ist, it is assumed that the index variable

is not used as an input paramecter,

171 (DOTERM) - Same a 170, except that the messages appear in the secondary
listing.
The message in the secondary listing contains the following:
1. The first statement in the module, /

The statement containing the beginning of the DO Loop.

. The statement containing the end of the DO Loop.

> W™

A1 statements in the path(s) leading from the end of the
DO Loop to the use of indax variable.

. The name of the DO Loop index variable.

(44 ]

6. If the DO Loop index variable is EQUIVALUNCED to a local
variable which is used after the loop terminated normally,
the equivalenced name appears in the secondary listing.

Example: EQUIVALENCE {(J,K)
I=0

10 I = 1+] (use I on backward branch)
DO 100 I = 1,10
DO 100 J = 1,5
100  CONTINUE

LENGTH = X (use of J)
GO 70 10 |

et e Kt FE e ks e el e et o A O L e otk B



IV.1.6

180 (ASNUSE) - Search for local variables assignod values but never used.
These variables ofien represent keypunch errors or historical
legacies. Ai] messages appear in the primary 1isting.

Example: SUBEOUTINE SUB(B)
P = FUNC(B) | (P assigned but not used)
RETURN
END

190 (UHINT) - Search for uniﬁitialized local variables. A1l messages
appear in the primary 1isting.
Program boundaries are ﬁot crossed, If the variable appears
/ in a parameter list, it is assumed that the variable receives a

value within®*that external reference.

191 (UNINT) - Same as 190, except that the messages appear in the secondary
1isting.
The message in the secondary 1isting contains the fo]lowiné:

1. The first statement in the module.

2. Ali the statements in the path(s) 1eading*from the first
executable statement in the module to the use of the unin-
itialized variable,

3. The name of the uninitialized variable.

Example: SUBROUTINE SUB(A,B )
A = B+ (C is uninitialized)
RETURN
END



Iv.1.7

400 (CBNENT) - Search for corresponding LOMMON Block declarations which
do not have the same number of entries. Such constructjons are
highly error-prone and sone are machine dependent. (see example).
A1l messages appear in the primary l1isting.

Each message contains:
1. The name of the COMMON Block,
2. The number of entries in the COMMON Block.
3. The name of module the corresponding COMMON Biock declaration

appears in.

401 (CBNENT) - Same as 400, excepl that the messages appear in the secondary
lis*ing and that each mestave contains, for both the model COMMON
Block declaration and for the comparison COMMON Block declaration:
1. The first statement in the module.
2. The statement containing the TOMMON Block declaration.

3. The name of the COMMON Block.

4

. The number of entries *there are in the COMMON Block.

Example: SUBROUTINE SuB1
COMMON A,8,C
COMMON/COM/X,Y,Z

SUBROUTINE SUB2
COMMON D(3)
COMMON/COM/X, Y




IvV.1.8

410 (CBTYPE) - Search for corresponding entries in corresponding COMMON
Block declarations whick do not have the same type. Such con-
structions are highly errov-prone. The comparison of two declarations
halts after the first mismatch is Tocated.

Each message contains:
1. The name of the COMMON Blnck,
2. The name of the COMMON Black entry,
3, The entry's type.
4. The entry number. This indicates where the entry appears in
the COMMON Block declaration. ’
5. The name of the module the corresponding COMMON Block declaration
appears in.

411 (CBTYPE) - Same as 410, except that the messages appear in the secondary
Tisting and?that each message contains, for both the model COMMON
Block declaration and for the comparison COMMON Block declaration,
1. The first statement in the module.

2. The statement containing the COMMON 8lock declaration.
3. The name of the COMMON Block.
4, The name of the COMMON Block entry.
5. The entry;s type. '
6. The entry number. This indicates where the entry appears in
the COMMON Block declaration,
Example: SUBROUTINE SUB1-
COMMON A,B,C

SUBROUTINE SUB2
LOMMON A,B,1



Iv.1.9

420 (CBDIM) - Search for corresponding entries in corresponding COMMON
Block declarations which o not have matching dimension. Such
constructions are highly crror-prone. The comparison of two
declarations halts after the first mismatch is located. Al
messages appear in the priwary 1isting,

Each message contains:
1. The name of the COMMON Block
2, The name of the COMMON Block entry.
3. The number of dimensions the entry has, from zero to n.
4. The entry number. This indicates where the entry appears in
the COMMON Block declaration.
5. If the entry is an array, the actual dimensions of the entry.
6. The name of the module the corresponding COMMON Block declara-

tion appears in.

421 {CBDIM) - Same as 420, except that the messages appear in the sec-
ondary listing and that each message contains, for both the model
COMMON Block declaration and for the comparison COMMON Block
declaration,

1. The first statement in the module.

2. The statement containing the COMMON Block declaration.

3. The name of the COMMON Block.

4. The name of the COMMON Block entry.

5. The.number of dimensions the entry has, from zero to n.

6. The entry number. This indicates where the entry appears in
the COMMON Block declaration.

7._If the entry is an array, the actual dimensions of the array.



. Iv.1.10
|

.Example: SUBROUTINE SUB1
COMMON A(1), B(?)
COMMON/COMl/C(ld),D
COMMON/COM2/E(2,3)

SUBROUTINE SUB2 ‘
COMMON A,B

COMMON/COM1/C(11)

COMMON/COM2/E(3,2)

DIMENSION B(2)

430 (CBONE) - Search for COMMON Biocks which appear only once in a
software system. This oftien represents a keypunch error or a

{
historical Tegacy. All meszages appear in the primary listing.

440 (CBNAME) - Search for corresponding entries in corresponding COMMON
Block declarations which do not have the same name, Such con-
structions are 6onfusing and error-prone. ,The comparison of the
dec1arations halts after the first mismatch is Tocated. A1l
messages appear in the primary listing. |

| Each message contains -
1. The name of the COMON Block.
2. The name of the COMMON Block entry.
3. The entry number. This indicates where the entry appears in
the COMMON Block declaration. '
4. The name of the module the corresponding COMMON Block declaration

appears in,




v.1.11

441 (CBNAME) - Same as 440, except that the messages appear in the
| secondary 1isting and that cach message contains, for both the
model COMMON Block declaration and for the combarison COMMON
Block declaration, |
1. The first statement in the module.
2. The statement containing the COMMON Block declaration.
3. The name of the COMMON Block.
4, The name of the COMMON Block entry. |
E. The entry number. This indicates where the entry appears in
the COMMON Block déc1aratiun. -
Example: SUBROUTIKE SUB1
COMMON A,B,C
COMMOH/COM1/X Y

SUBROUTINE SUB2
COMMON A,C,B (B and C transnosed)

COMMON/COM1/X{2)

450 (CBINDS) - Search for corresponding entries in corresponding COMMON
Block declarations which do not have the same individual size.
Such constructions are error-prone. The comparison of two
declarations halts after the first mismatch is located. All
messages appear in the primary listing.

Each message contains:

1. The name of the COMMON Block.
2. The name of the'COMMON Block entry.

3. The size of the entry, in computer words.




/ 1V.1.12

4. The entry number. This indicates where the entry appears

' jn the COMMON Block decluration.

5. The name of the module the correspo.nding COMMON Block

declaration appears in.

451 (CBINDS) - same as 450, except that the messages appear in the

secondary 1isting and that each message contains, for both the

mode]l COMMON Block declaration and the comparison COMMON Biock

declaration,

10
2.

S 1 B W

The first statement in the module.

The statement containing the COMMON Block declaration.

. The name of the COMMOM Block.

The name of the COMMON Block entry.
The size of the entry, in computer words.

The entry number. This indicates where the entry appears

in the COMMON Block declaration.

Example: SUBROUTINE SUB1

COMMON A(3),B(3)
COMMON/COM1/DP
DOUBLE PRECISION DP

SUBROUTINE SUB2
COMMON A(4),B(2)
COMMON/COM1/DP
INTEGER DP

o T e e

L feidine Aot



1v.1.13

460 (CBTOTS) = Search for correspunding COMMON Block declarations
which do not have the samc total size. Such constructions
are highly error-pronc and are machine dependent. A1l messages
appear in the primary listing.
Each message contains
1. The name of the COMMON Block.
2. The total size of the COMMOM Block, in computer words.
3. The name of the module the corresponding COMMON Block

declaration appears in.

.461 (CBTOTS) - Same as 460, except that the messages appear in the secondary
1isting and that each message contains, for both the model COMMON
Block declaration and the comparison COMMON Block declaration,

1. The first statement in the module.
2. The statement containing the COMMON Block declaration,
3. The name of the COMMON Block,
4. The total size of the COMMON Block, in computer words.
Example: , SUBROUTINE SUB1
COMMON A,B,C
COMMON/COM1/DP
DOUBLE PRECISION DP

SUBROUTINE SUB2
COMMON A,B,C,D (Yonger by 1 variable)
COMMON/COML/DP (size difference caused by

sforage allocation)



Iv.1.14

500 (PLNENT) - Search for corresponding parameter 1ists which do not
have the same number of entries (parameters). Such coﬁstructions
are highly error-prone and are machine dependent, The model for
comparison is always the forma] (dummy) parameter list of a sub-
progrém. The name of an external reference {a subpfogram) is
considered to be the first entry in its own parameter list.
A1l messages appear in the primary liSting.

Each message contains

1. The number of parameters in the parameter 1ist.
2. The name of the module which contains the corresponding

parameter list.

501 (PLNENT) - Same a 500, except that the messages appear in the secondary
listing and that each mersage contains, for both the formal para-
meter list and for the actual parameter list,

1. The first statement in the module.
2. The statement containing the parameter 1list.
3. The number of parameters in the parameter 1ist.
Example: CALL SUB1
K= IX(M,N) | b

SUBROUTINF SUB1(A)

FUNCTION IX(M)

3 RSN TR TN = Ve Iy O B 1 1) T L T PN S e TPy T P A TP L WP



IV.1.15

510 {(PLTYPE) - Search for corresponding entries (parameters) in cor-
responding parameter 1ists which do not have the same type.
Such constructions are hichly ervor-prone. The model for com-

parison is always the formal (dunmy) parameter 1list of a sub-

program. The name of an external reference (a_subprogram) is

4 . .
. considered to be a parameter.

A1l messages appear in the p;imary listing.
Each message contains
1. The name of the parameter.
2. The parameter's type.
3. The parameter number. This indicates where the parameter
appears in the parametler Jist.
4. The name of the module which contains the corresponding

parameter iist. .

517 (PLTYPE) - Same as 510, except that the messages appear in the
secondary listing and that each message contains, for both the
formal parameter list and for the actual parameter 1ist,

1. The first statement in the module.
2. The statement containg the parameter list.
3. The name of the parameter.
4. The parameter’s type, s
5. The parameter number. This indicates where the parameter
appears in the parameter 1ist.
Example: Q = FUNC(X,V,z} (reference to REAL FUNCTION)
CALL FUNC(X,Y,Z) \SUBROUTINE reference to a FUNCTION)

INTEGER FUNCTION FUNC{X,Y,I) ({actual parameter for I is REAL)

.
B L T Fo R T T o P T



1V.1.16

520 (PLDIM) -.Search for corresponding entries (parameters) in cor-

responding parameter 1ists which do not have compatible dimensions.

Such constructions are highly erron-prohe. The model for com-

parison is always the formal (dummy) parameter 1ist of a sub-

program. The name of an external reference {a subprogram} is

considered to be the first entry fn its own parameter list. A1l

messages appear in the primary listing.

1)

2)

3)

4)

Corresponding parameters do not have compatible dimensions if
The actual parameter is an array and the dummy parameter is a
scalar.

The actual paramcter is an element of an array and the dummy
parameter is an entire array, except
a} when both parameters have the same number of dimensions and
b) the subscripts of the actual parameter are all ones, e.g.,
' CALL SUB{A(1,1).N,M)
SUBROUTIME SUB(B,MN,M)
DIMENSION B(N,M)
The actual parameter and the dummy parameter are both arrays,
but they do not have the same number of dimensions.
The actual parameter and the dummy parameter are both arrays,
they have the same number of dimensions, but the dimensions
are not identical, except
a) when the dummy array has dummy dimension, e.g.,
DIMENSION A(N)
or
b) when the dimensions of the dummy array are all ones, e.g.,
DIMENSION A(1,1)



!v.l.17

Each message contains

—

. The name of the parameter. '

~N

. The number of subscripts the parameter has, from zero to n.

(5]

. The pavameter number. This indicates where the parameter
appears in the parameter 1ist.

4. 1f the parameter is an array, the names of the subscripts.

5. The name of the module which contains the corresponding.

parameter 1ist.

521 (PLDIM) - Same as 520, except that the messages appear in the
secondary listing and that eéch message contains, for both the
formal parameter 1ist and for the actual parameter iist,

1, The.first statement in the module.
2. The statéﬁent containing the parameter 1ist.
3. The name of the parameter.
4, The number of subscyipts the parameter has, from zero to n.
5. The parameter number. This indicates where the parameter
appears in the paramcter tist.
6. 1 the parameter is an array, the names of the subscripts,
Example: DIMENSION A(10),8(5),C(10),D(10,3)
CALL SuB (A,B(2),C,D)

SUBROUTINE SUB(X,B,C,D)
DIMENSION B(5),C(11),D(3,10)

H};ﬁ;.ﬁ_.,«,‘,.‘s;:..;)eu Sy



1v.1.18

600 {CYCALL) - Search for cyclic calling sequences, Such calling
sequences are illegal. All ﬁessages appear in the display
Tisting.

The message contains the names of the routines involved

in the cyclic calli'g sequence. No source code statements are

displayed.
Example: SUBROUTINE A
CALL B

SUBROUTINE B
CALL C

SUBROUTINE C
CALL A



Iv.2.1

Query Peculiarities

130 DATVAR - Flag DATA statements nov in BLOCK DATA wivich contain
COMMON Block variables.
If a DATA statcwent refers to a variable which appears
in an EQUIVALENCE 1ist, then all members of the EQUIVALENCE

1list are examined.

140 FUNPAR - Fiag function dunmy parameters which are assigned
value within the function itself,
If a function dummy parameter appears in an EQUIVALENCE
1ist, then all memberc of the EQUIVALENCE 1ist are examined.
- Program boundaries are not crossed. The use of a

dummy parameter in an actual parameter list is ignored, 2.9.,

FUNCTION Fut: (X,Y)

CALL SUB (X.2)
The use of X in the actual parameter 1ist SUB is ignored while

processing this query.

160 REDLOP - Flag DO Loop control variables which are assigned values
within the loop itself. _
If a control variable appears in an EQUIVALENCE 1ist,
then all members of the EQUIVALENCE 1ist are examined.

170 & 171 DOTERM - Flag DO loop index variables which are used after

the Toop has terminated)under normal conditions.



Iv.2.2

If a DO loop index variable appears in an LQUIVALENCE
list, then all members of the EQUIVALENCE 1ist are examined.
If there exists a path such that a DO Yoop index variable
is used after the path terminated normally, a warning

message is printed.

Example 1:
5 DO 1001 =1,K
6 IF (1.GT.3) GO TO 110
7 100 CONTINUE
8 M0 9 =1

In Query 171, the path{(s) leading to a DO loop index variable
used after the loop terminated normally are printed, «: weil
as the beginning and end of the DO loop. The above example

would produce in a secondary report.

5 D0 1001 =1, K
7 100 CONTIHUE
8 110 J=1

A certain amount of path tracing is performed for this query.
if a Dorloop index variable or a variable EQUIVALENCED to it
appears in an actual parameter 1ist outside the DO loop,

then it is assumed that the variable is assigned a value by
that external reference. This assumption is made because

the query does not cross program boundaries.




Iv.2.3

Example 2: Example 3:
00 100 1=1, 10 D0 1001 =1, 10
100 CONTINUE 100  CONTINUE
K =1 CALL SUB(I)
K=1

Example 2 receives a varning flag, Example 3 does not.

180 ASNUSE - Flag local variables which are assigned values but
never used.
If a local variable appears in an EQUIVALENCE 1ist,
then all members bf the EQUIVALENCE list are examined,
This query does not differenctiate between an array
and an element of the array. If one element of the array is
used, then it is assuned that every element of the array is

used,

190 & 191 UMINT - Flag uninitialized 1ccal variables.
1f a local variable appears in an EQUIVALENCE statement,
then all members of the EQUIVALENCE list are examined. If
there exists a path such that a local variabl~ is uninitialized,

a\warning message is printed.



Iv.2.4

Cxample 1:
5 IF (J.LE.0) GO TO 10
6 L=25
7 k=1
8 GO0 TG 20
.9 100 L=7

10 20 'J = K+L

In Query 191, the path{s) leading to the use of an un-
initialized variable are printed. The above example would
produce in a secondary report

5 IF (J.LE.O) GO TO 10

9 10 L=7

10 20 J = I+L

/
This query does not differentiate between an array and

an element of the'array. If one element of the array is
assigned a value, then it is assumed that every element of

the array is assigned a value,

Example 2: Example 3:
SUBROUTINE SUB SUBROUTINE SUB
DIMENSION A{10) DIMENSION A(10)
B = A(1) A(2) = 1.1
B = A(1)

Example 2 receives a warning flag, Example 3 does not.
"While searching for uninitialized variables, a certain

amount of path tracing is performed. If a varfable or a

R L I TR Y S S R - s L

S e Al e mears - vq o b ar e ke m e



Iv.2.5

variable EQUIVALENCED to it, appears in an actual parameter
1ist, then it dis assumed that the variable is assigned a value
by that external reference. This assumption {is made because

the query does not cross program boundaries.

Example 4: Example 5:
SUBROUTINE SUB SUBROUTINE SUB
K=1 CALL SUBRT(I)
| K=1

Example 4 receives a varning flag, Example 5 does not.




Iv.2.6

COMMON Block Misalignment:

The queries dealing with COMMON Block misalignment
share a number of peculiarities and limitations.

To begin with,'queries which compare individual COMMON
Block entries do not produce any warning messages if an
entry in one COMMON Block declaration does not have 2

corresponding entry in another declaration. For example,

SUBROUTINE SUBI SUBROUTINE SUB2
COMMON/BLOCK/ A,B,C COMMON/BLOCK/ A,B

No warning messages «<hich concern type, dimensionality,
individual entry size, or aame mismatch are printed for
variable C, However, werning messages are produced by those
queries concerned with ihe total size of the COMMON Block
and the number of entrics in the CCHMON Block.

Secondly, the COMHMON Block misalignment checks use the
first appearance of a COMMON Block as the model for comparison
of all occurrences of the COMMON Block. Since modules are
stored in alphabetical order, a COM4ON Block declaration re-
siding in a module which jis at the beginning of the alphabetical
1isting is always used as the model. The primary Iisfing
contains the name of the module which contains the COMMON Block
declaration being compared against. J

One limitation is that after the first mismatch in a
COMMON Block declaration is found by a query, the query halts N

processing on that COMMON Block declaration. For example,

TR




400 4 401

410 & 41

1v.2.7 ‘
SUBROUTINE SUB1 SUBROUTINE SUB2

COMMON/COM/ A,B,C COMMON/COM/ T1,J,K

T}pe mismatch warning messages appear only to A and I, and
not for B, C, J, or K.

Another 1imitation is that only the statement con-
taining the first appearance of a given COMMON Block in a

module is printed in the secondary listing. For example,

SUBROUTINE SUB
COMMON/COM/ A,B,C ‘
COMMON/COM/ D,E

In a secondary 1isting, only
CCMMON/COM/ A,B,C

appears. /

CBNENT - Flag corresponding COMMON Block declarations

which do not have the same number of entries,

SUBROUTINE SUB1 SUBROUTINE SUB2
COMMON/COMY/X, Y, 2 COMMON/COM1/X, Y
COMMON/COM2/ A(2) COMMON/COM2/ C,D

HWarning messages are printed for both /COM1/ and /COM2/
CBTYPE - Flag corresponding entries in COMMON Block
declarations which do not have the same type.

SUBROUTINE SuUB} SUBROUTINE  SUB2
COMMON/COM1/ A,B,C COMMON/COMY/ A,B,I
Warning messages are printed for C and I in /COM1/

el L U e L DB T s td kLR Tk B e e v F e e ekt T I el A T e g N e N dy o u i M wlllL a..,‘u‘.m.....mmm..j B




Iv.2.9

420 & 421 CBDIM - Flag corresponding entrijes in COMMON Block
declarations which do not have identjcal dimensijons.

Scalars are defined as having zero dimensions,

SUBROUTINE SUB) SUBROUTINE SUB2
COMMON/COM1/ A COMMON/COM1/ A(1)
COMMON/ COM2/ B(2,3) COMMON/COM2/ B(3,2)

Warning messages are printed for A in /COM1/ and for B

in /COM2/

440 & 441 CBNAME - Flag corresponding entries in COMMON Block

declarations which do rot have identical names.

SUBROUTINE SUBI SUBROUTINE SUB2
COMMON/COM1/ A,B,C COMMON/COM1/ A,B,X
COMMON/COM2/ D(2) COMMON/COM2/ D,E

Name mismatch messages are printed for € and X of /COM1/

and for D and E of /COM2/

450 & 451 CBINDS ~ Flag corresponding entries in COMMON Block
declarations which do not have the same individual size.
For the following example, assume integers are one word long

and reals are two words long.

SUBROUTINE  SUB1 SUBROUTINE SUB2
J INTEGER B |
COMMON/COM1/ 'A,B,C COMMON/COM1/ A,B,C

COMMON/COM2/ D(2,3), E(3) COMMON/COM2/ D(3,2), E(2)

Individual size mismatch warning messages are printed for B

of /COM1/ and E of /COM2/

PRECEDING PAGE BLANK NOT FILMED

TP UL SV AR S PR ¥ DR PP Y 7 A & aa-i i ok falebd % A st SO Rl i




V.2.10

460 & 461 CBTOTS - Flag ccrresponding COMMON Blocks which do not

have the same total size.

SUBROUTINE SUBI SUBROUTINE SUB2
COMMON/COM1/ A,B,C COMMON/COM1/ A,B,C,D
COMMON/COM2/ X,Y(2,2) . COMMON/COM2/ 1,R,S,T,U

Warning messages are printed for /COM1/




Iv.2.11
Parameter List Misalignment:

The queries dealing with parameter list misalignment
share a number of peculiarities and 1imitations,

To begin with, quéries which compare individual
parameters do not produce any warning messages if two
corresponding parameter 1ists do not have the same number

of parameters. For example,

CALL SUB(X,Y,Z)

SUBROUTINE SUB(A,B)

No warning messages concerning type or dimensionality mismatch
are printed for Z. However, a warning message is printed by
g | the query which compares the number of parameters appearing
in corresponding paraneter lists.
Secendly, the parameter 1ist misalignment checks nuse
formal (dummy) parameter 1ists as the models for compari;on.
Thirdly, the name of the parameter 1ist is processed as

the 0th parameter in the parameter list. For example, in
FUNCTION FUN{X,Y)

FUN is the O%" parameter, X the 15t, and ¥ the 2M.
Finally, all parameters in a parameter 1ist are examined.
If a parameter is a subexpression, then the parameter is

assumed to have the name *SUBEXPR.



Iv.2.12

500 & 501 PLNENT - Flag corresponding parameter 1ists which do

not have the same number of parameters.

CALL SuBl CAL SUB2 (X+Y)
SUBROUTINE SUB1(K) SUBROUTINE SUB2(Z)

Warning messages are printed for SUBI.
510 & 511 PLTYPE - Flag corresponding parameters which do not have
the same type.

IMPLICIT REAL (A-7)
K = FUN (X,Y)

INTEGER FUNCTION FUN (X,Y)
INTEGER Y

Warning messages are printed for pacameters FUN and Y.

520 & 521 PLDIM - Flag corresponding parameters whick do not have
compatible dimensions. See Queries for a more detailed

discussion.

TR Rl e T e G e Y s i i 2 A e T n I 0 Al i P e e s 4



V.11

. Flag File (Sort File) Format

| Statement I Violation :
, Location Fields v Flag Fields :
Global Source CodeiFirst Card Last Card :Integer Alphanumeric
Number Key Index Key !Key Key ' Key Key |
. - -
;
[}
H
1 2 3a 3b da 4b

Data Fields

Occurrence Ordering

- Key Key

1
Number of  Internal !
Elnteger Alphanumeric

5 6 7a 7b

There are seven sort fields and three data fields. All are {integer
fields, except the alphanumeric Flag Field and the alphanumeric Data
Field. Any field, alphanumeric or integer, which does not contain any

information contains a zero. The output format is

FORMAT{5(2X,15), 2X, 2A4, 3(2X,I5}, 2X, 2A4)

L]

1. Global Number Key - This sort key specifies whether the violation
is to appear in the primary listing or in the secondary or display

listings. A one in this key indicates that the violation is to



v.1.2

appear in the primary 1isting. An integer >1 1indicates that
the violation is to appear in the secondary or display listing.

Source Code Index Key - This sort key specifies the location of
the beginning of the source code for the module in which the
violation occurs. If the violation does not occur in a specific

module, as in cyclic calls, then this key is zero.

Statement Location Fietds - This area consists of two sort fields,

the Fiéﬁt Card wey and the Last Card Key.

a. First Card Key - This sort key specifies the first card of the
statement in whicﬁ the vio1ation occurs. If the violation does
not occur in.a specific card, as in cyclic calls, then this key
contains a zero,

b. Last Card Key - This sort key specifies the last card of the
statement in which the violation occurs. If the violation does
net occur in a specific card, as in cyclic calls, then this key

contains a zero.

Violation Flag Fields - This area consists of two fields, an

integer sort field and an aphanumeric non-sort field.

a, Integer Violation Flag Key - This sort key specifies which
violation has occurred, Each type of violation has its own
integer code. If a violation is to appear within the primary
1isting or the secondary listing, this key specifies which.

b. Alphanumeric Violation Code - This field contains .the alpha-

numeric name of the violation.



5'

v.1.3

Number of Occurrence Key - This sort key keeps track of the
order in which violations of the same class occurred.

If the query searches for local violations, then this sort
key is set to zero each time a different module §s examined, and
incremented each time a violation occurs.

If the query searches for global violations not invelving
path tracing (Parameter List A igrment and COMMON Block Alignment),
then this sort key is set to zero when the query is invoked, and
incremented each time a violation occurs.

If the query searches for global violations using path
tracing (Cyclic Call Search), this soirt key is set to zero each time

the query starts at a new path beginning.

Internal Ordering Key - This sort key specifies the internal
ordering of the data concerning a violation. Since a violation may
involve a great deai of information to be passed on to the user,
this information must be placed in some order. For example, in a
dimensional mismatch, the violation information would include (in
the Data Fields) the name of the variable in violation, how many
dimensions it has, and what those dimensions are. These pieces of

data must retain their proper order for the output to be intelligible.

Data Fields - This area consists of two fields, an integer data

field amdan alphanumeric data field.

a. Integer Data Field - This field contains integer data that des-
cribes or pinpoints the violation, such as the size of a COMMON

Block.

B T T S T U Y T T



v.1.4

b. Alphanumeric Data Field - This field contains alphanumeric data

' that describes or pinpoints the violation, such as the name of

a variable.

b e d A 80 e 2
el dan o od i T L N e LB it B S o M d e s e e .



v.2.1

Flag File Peculiarities

Unless otherwise noted, all warning messages appear in the primary

tisting.

Unless otherwise noted, all warning messages are directly attached

to the FORTRAN statements the messages reference.

In the Global Numbey column, N is assigned values during exeﬁution

such that N>1. For a further discussion on the contents of this

column, see the discussion on the Global Number COMMON Block, /GLO/.

In the Internal Ordering column, there are entries of the form

*(0) 1'. This refers to the problem of variables being equivalenced

to other names. If the variable is not equivalenced to another name,

or if the equivalenced name is not part of the violation, then the

internal ordering column contains a zero and no equivalenced name

appears in the flag file. On the other hand, if a variable and name

equivalenced to it are part of a violation, then the internal ordering

column will contain a '1' and '2' respectively.

In the Integer column of the DATA field,

a. 'entry number' indicates that a variable is the nth COMMON Block
variable in a COMMON Block dec\;ration.

b. 'parameter number' indicates that a parameter is the nth parameter
in a parameter list,

In dimensionality misalignment searches, a variable may have anywh .e

from zero to n dimensions. ’

For Parameter List Alignment, the model parameter 1ist is always the

formal (dummy) parameter ist, while the comparison parameter 1ist is

always the actual parameter list.

g N T S | e T TSN



v.z‘ﬂz

8. In the Flag Integer Column, a '1‘ indicates that a statement
1s to be printed by the Report Generator, but that no message is

to be printed with it. /

T Sy TA S N AP



= TR

! FLAG ' | DATA
| !
Global ! Alpha- Internal ! Alpha-
FORTRAN FRONT END FLAGS Mumber | Integer numeric Ordering ,  Integer numeric Comments
Statement not processed 1 012 | NOPROC| . O h ' Not used in processing
Unrecognized Statement 1 013 UNRECOG 0 Statement not in FFE
processing set
Statement Truncated - 1 | 022 |(STM TRUC 1 Display of Statement process
form at trun-| terminated before
2 cation point | statement completed
' 3 1 2
. 3 4
N .
Statement Aborted 1 023 | SABORT 1 Display of Statement process
.. : form at stop | halted for syntax
ﬁ position 1 problem , .
Branch List Truncated 1 042 | BR TRUC 0 Branch list of
statement truncated
due to overload
Node Table Overflow 1 043 {NOD FULI 0 Node Table full.
' No more statements
added to tables for
- : module
Predecessor Table Overflow 1 | 044 |PRE FULL 0 No predecessors added _
to statements which
follow -

LAY L ]




LI i e R e

ERLLE L

LA

' FLAG v 1 DATA
! -
Global ! Alpha- :Interna1 ; Alpha-
FORTRAN FRONT END FLAGS Number | Integer numeric Ordering |  Integer numeric Comments
Successor Table Overflow 1 045 }SUC FULL 0 No successors for node
A that follow
Use Table Overfiow 1 046 USE FULL 0 Uses for statements
' which follow not
recorded
) = _ —t
Symbol Table Overflow 1 052 NO SYM 0 Symbol Symbol not added to
_ (8 chars.) symbol table
Symbo1 Truncated 1 053 SYM TRUC 1 Symbol string| Truncated form used
2 of truncated | internally
form ’
N
Header Card not Found 1 062 NO HEAD 0 Header card not found
after last module end
End Statement Missing 1 063 NO END 0 No end card on module
Unrecognized Symbol 1 082 SYM UREC 0 Symbol tUnknown character or
, context of use
Undefined Statement Label 1 083 [NODEFN | O Label Branch label
Parenthesis too Deep 1 084 c Parenthesis too deep

PARENS

in nes;ed v{) forms




! FLAG i 1 DATA
i ' |
Global ! Alpha- |Internal | Alpha-
FORTRAN FRONT &iD FLAGS Number | Integer numeric Ordering |  Integer numeric Comments
Unable to Locate Desired 1 085 | MISSING 0 Symbo1l Looking for symbol but
Symbo1 ' cannot find
Unknown Form 1 086 FORM 1 Display of Tﬁfs form of con-
2 unknown form | struction not
recognized
3
N
Card Exhausted while Trying 1 087 {700 SOON Hollerith constants

to Complete an Element




et I i a bt o b pn Sl h

: FLAG I ; DATA
' ]
Global ! Alpha- | Internal | Alpha-

Query Number tInteger numeric i:0Ordering ! Integer numeric Comments
Search for ANSI Standards ANSI
Function Names used not as 1 110 ANSIST 0 Standards
ANSI Standards Functions Name
Search for FORTRAN FORTRAN
Reserved Words used as 1 120 RESHRD 0 Reserved
names : Word -
Search for DATA statements [ 1 130 | DATVAR [(0) 1 ﬁgﬂgagfe
containing COMMON Block Fauivalenced
variables not in BLOCK DATA 1 130 DATVAR 2 Ngme
Search for function dummy 1 140 | FUNPAR |(0) 1 T oamotor
parameters assigned value eyuiva1énced
within the function itself 1 140 FUNPAR 2 ngme
Sear:h for multipie branching
statements which do not
branch to the statement ! 150 MULBRA 0
immediately following
Search for the redefinition | 1 160 | REDLOP |(0) 1 rame of con
of DO Loop control variable Fauivalenced
within the Toop itself 1 160 | REDLOP 2 Name

U7 R




AT IR TR RS T TR T

' FLAG ' i DATA
1 : |
Global ! Alpha- Internal | Alpha-
Query Number | Integer numeric Ordering , Integer numeric Comments
Search for DO Loop index
variable used after the
loop has terminated normally |
Warning messages to appear 1 170 DOTERM | {(0) 1 Name of index
in primary listing variable
1 170 | DOTERM 2 Fquivalenced
Hérning messages to appear 1 1 DOTERM 1 1St statement
in secondary listings in module
statement containing
1 1 DOTERM 2 beginning of DO Loop
istatement containing
1 1 DOTERM 3 ;end of DO Loop
- t
Name of index|1°° statement
L 1 DOTERM 4 variable in path
1 DOTERM n+2 Name of index n-ISt statement
1 variable in path
th
Name of index|n” statement
N 7 DOTERM n+3 variable in path
N | 171 | DOTERM n+4 Equivalenced
Search for local variables Name of
assigned values but never used L 180 ASNUSE 0 variable




TR TRTE T TVRTIE AR ey A e e

ittt

T

) ' FLAG ! , DATA
' o
Global ! Alpha- :Interna1 | Alpha-
Query Number | Integer numeric Ordering | numeric Comments
Search for uninitialized
local variable
T T
Warning messages to appear in Name of
primary listing 1 190 URINT 0 variable
Warning messages to appear '1 1 UNINT 3 15 statement
in secondary listing in module
t
Name of 1°* statement
L 1 UNINT 2 variable in path
1 1 | UNINT n+l Name of n-15% statement
_ ‘ variable in path
th
. Name of n~ statement .
- N 19 UNINT n+l variable in_path

508 |




: FLAG : . DATA
i I
Global : Alpha- Internal i Alpha-
Query Number | Integer numeric brdering : Integer numeric Comments
Determine if corresponding ’
COMMON Block declarations
have the same number of
entries
1 400 | CBNENT 1 Number of | Name of
entries COMMON Block
) Name of the
1 400 CBNENT 2 other module
Warning messages to appear | - st '
in secondary 1istings N 1 CBNENT 1 1 1 g §tat§m$nt In
| model indi- model modute
cator)
N 401 CBNENT - 2 Name of
COMMON Block
R N 401 CBNENT 3 Number of
entries
N CBNENT 4 2 15t statement in
1 . {comparison comparison module
indicator)
Name of
N 401 CBNENT 5 COMMON Block
Number of
N 401 CBNENT 6 entries
l




BT O v

e R SR R B Eid b 3 M el P

S T R LTty

A VA

' FLAG I | DATA
I ! 1
Global ! Alpha- |Internal ! Alpha-
Query Humber } Integer numeric Crdering | Integer rumeric Comments
Determine if corresponding
- | entries in corresponding
; COMMON Block-declarations
have the same type
-Warning messages to appear Entry!
A . S OPER . y's Name of
in primary listing ! 410 | CBTYPE 1 ldata type COMMON Block
Entry Name of
1 410 CBTYPE 2 number entry
Name of
1 410 ,CBTYPE 3 _{other module
ST *1 st
Warning messages to appear . 1°" statement in
| in secondary 1isting N 1 CeTYpe ! (ﬁgg:lo;i moce] moduie
: Entry's Name of
N m CBTYPE 2 data type COMMON Block
Entry Name of
N 411 CBTYPE 3 Number entry
? st
. . 1°" statement in
N 1 CBTYPE 4 (ggﬂgzglggg comparison module
Entry's Name of
N am CBTYPE S |eata type COMMON Block
Entry IName of
N 4 CBTYPE 6 number: entry




s AT DT TR AT RN RS R T R ra et

' FLAG 1 i DATA
! : S
Global ! Alpha- ﬁnterna] ; : Alpha-
Query Number f Integer numeric Ordering | Integer numeric Comments
Determine if correspon&ing
entries in corresponding
COMMON Block declarations
have mﬁtching dimensions
Warning messages to’appear Number of Name of .
in primary listing 1 420 CBDIM ! dimensions COMMON Block
Entry Name of
] 420 CBDIM 2 Number entry
o 15t Name of TSt dimension does not
1 420 CBDIM 3 dimension other module jexist if entry is a
scalar
_ nth
1 420 CBDIM - on+2 dimension )
LT - ST 1 st -
Warning messages to appear N 1 CBDIM 1 |[model in- 1°" statement in
;in secondary listing dicator) model module
' . Number of Name of
N 421 - | CBDIM 2} dimensions | COMMON Block
; Entry Name of
N a1 CBDIM 3 number entry
'ISt
N 421 CBDIM 4 dimension
) L ] [ ] V - - n L]
(continued) N a2 CBDIM n+3 ddimension

9''A



module

COMMON Block

- ! FLAG ; ! DATA
1 ! {
Global Alpha- :Internal ; Alpha-
Query Number ! Integer numeric Crdering | Integer numeric Comments
R R 2 st .
{continued from preceding N 1 CBDIM n+4 1°" statement in
page) ' (fg'gggﬁgg? comparison module
Number of Name of
N 421 | CBDIM M5 ldimensions  |COMMON Block
Entry Name of
N 421 | ceom n+6 Pmmber Jen e
N a1 CBDIM n+7 {imension
) mth
N 421 C8DIM n+m+6 dimension
Determine if a COMMON '
Block appears in only one 1 430 | CBONE 0 flame of

LA




e

L o ERT Y

g't'A

1 ; FLAG | ) DATA
i : !
Global Al1* a- |[Internal ! Alpha-
Query : Number f Integer numeric Crdering | Integer numeric Comments
Determine if correspcnding -
entries in corresponding )
COMMON Block declarations
have identical names .
Warning messages to appear Name of
in primary listing 1 440 | CBNAME ! COMMON Block
Entry Name of
1 440 CBNAME 2 Number entry
' Name of
L 440 CBNAME 3 other module
T T [ 1St statement in
Warning messages to appear - N 1 CBNAME 1 {(model in- model module
in secondary listing : - dicator)
Name of
N 441 CBNAME .2 COMMON Block
Entry fame of
N m CBNAME 3 number entry
2 , st
R : 1" statement in
N 1 . | CBNAME 4 (§23§§§1§?? comparison module
Name of
N el CBNAME 5 - {COMMON Block
‘ Entry Name of
N 44] CBNAME 6 number entry
{




L L ——

: ; FLAG : \ DATA
| !
Global ; Alpha- ‘Internal ; Alpha- :
Query Number , Integer numeric brdering " Integer niumeric Comments
Determine if corresponding
entries in corresponding
COMMON Block declarations
have the same individual size
KWarning messages to appear Size of Name of
in primary listing % 450 CBINDS ! entry COMMON Block
Entry Name of
1 450 CBINDS 2 Number entry
Name of
1 450 CBINDS 3 other module i
AR 1 st :
Warnirg messages to appear o 17" statement in
secondary listing . N 1 CBINDS ! (gggglolg model moduie
Size of Name of
N 451, CBINDS ) 2 entry COMMON Block
Entry Name of
N 451 CBINDS 3 number entry
2 : st
17" statement
N 1 CBINDS 4 (gzggzgizg? in comparison module
Size of Name of i
N 451 CBINDS 5 entry COMMON Block
Entry Name of
N 451 CBINDS 6 Number entry

GDFO




T R Y A A T R T AP O AT

! FLAG | \ DATA
| ' i
Global ! Alpha- Internal : Alpha-
Query Number ! Integer numeric Ordering ; Integer numeric Comments
Determine if corresponding )
COMMON Blocks have the same
total size
| Warning messages to appear - | Total Name of
in primary listing L 460 CBTOTS L size COMMON Block
, Name of
1 460 CBTOTS 2 other module
LT e T st .
Harn1ng messages go appear N 1 CBTOTS 1 (model in- 1 statement in
in secondary listing dicator) model module
Name of
N 461 CBTOTS 2 COMMON Block
| Total
N 461 CBTOTS _ 3 size
2 st R
. 17" statement in -
N 1 CBTOTS 4 (gﬁggggizgg comparison module
Total Name of
. N 461 CBTOTS 5 size COMMON Block
Total
N 461 CBTOTS 6 size

NT H°A



S e A T R R R N RN R TR m R s

L A

! FLAG | I DATA
1 ! i
Global ° Alpha- lInternal ; Alpha-
Query Number | Integer numeric brdering M Integer numeric Comments
Determine if corresponding
parameter lists have the
same number of parameters *
Warning messages to appear in 1 500 PLNENT 1 Number of Name of para-
primary listing parameters meter 1ist
1 500 PLNENT Z Name of other
module
Warning messages to appear st -
in secondary listing N 1 PLNENT 1 (mo;el in- 1% statement in
. dicator) model module
N 501 PLNENT 2 Name of para-
meter list
Number of
N 501 PLNENT 3 parameters .
S
N 1 PLNENT 4 2 .17 statement X
{comparison comparison module -
indicator) ,
N | 501 |pLNENT 5 Kame of para-
N 501 PLNENT 6 Number of
parameters

TT AR




R e TR I

t
'
'
'

FLAG

1

——— - ——

DATA

Giobal Alpha- ﬁnternal Alpha-
Query Number f Integer numeric Ordering Integer numeric Comments
Determine if corresponding
parameters in corresponding
parameter Tists have the
tame type
iifg}g%;ﬂ;?%%%i%ﬂg° appear 1 510  |PLTYPE Parameter's Number of parad
) ‘ type Tist
1 510 PLTYEE Parameter Name of -
Number parameter
, Name of other
1 510 PLTYPE module
"""""""""""""""" 1 st
Warning messages to appear 1 ; odel in- 17" statement in
in_secondary listing " PLTYPE ] (zgcgto:? model moduTe
' Name of para-
N 511 | PLTYPE 2 | fora e | meter Tist
Parameter Name of
N S11 PLTYPE 3 nunber parameter ‘
2 st .
s 1°" statement in
N 1 PLTYPE 4 | (comparison comparison module
indicator)
Parameter's | Name of para-
N 511 PLTYPE 5 type meter 1ist
Parameter Name of
N 511 PLTYPE 6 number parameter

-




S T it o8 T

' FLAG i ) DATA
, i ' I
Global ! Alpha- [lIntoernal Alpha-
Query Number | Integer numeric Ordering f Integer numeric Comments
Determine if corresponding E
parameters in corresponding |
parameter 1ists have ; 5
compatible dimensions | '
Warning messages to appear E ; }Nuﬁber of Name of para-i
in primary listing 1 520 PLDIM % 1  subscripts meter list
Parameter i Name of ;
1 520 | PLDIM 2 Number parameter
1 520 PLDIM 3 g::zro;odule
i . 1 | Name of 15% |
g 1 520 PLDIM 4 subscript i
th
1 520 | PLDIM n+3 ':‘Gﬁgc:}fpg




!
'
I
i
|
i

FLAG

DATA

[ Global Alpha- internal Alpha-
Query Humber , Integer nureric Urdering Integer numeric Comments
(continued) A !
Warning messages to appear N 1 PLDIM 1 r o | 15 Statement 1n
in secondary listing - | (model indi- " model module
cator) t
N 521 | PLDIM | 2 Number of  |Name of para- !
| | subscripts |meter list !
Parameter Name of :
- N 521 PLDIM 3 numbeyr parameter i
t y
Name of 1% |
N 521 PLDIM 4 subscript :
th
, Name of n
N 521 PLDIM n+3 subscript
2 st .
. 17" statement in
N ! ‘ ?LDIM n+4 (?gggg;;::? comparison module
N Number of Name of para-
N 521 PLDIM n+S subscripts meter list
; Parameter Name of
N 521 PLDIM n+6 number parameter
t
.- Name of 1°
N 521 PFDIM n+, subscript
th
Name of m
N 521 PLDIM n+m+6 _subscript
|




' FLAG " y GATA
' ! i
Global ! Alpha- [Internal ; , Alpha-

Query Number , Integer numeric Crdering , Integer rumeric Comments
Search for cyclic calling N 600 CYCALL 1 | Name of 15f:Eember of
sequences warning messages - ’ ‘calling cyclic sequence
to appear in display listing routine

. Name of an member of
N 600 CYCALL 2 calling cyclic sequence
routine
N 600 CYCALL n Name of nth member of
- calling cyclic sequence
routine {same as beginning

of sequence)

SU't°A



Vi.1

Jable file Structure

Global

Data Global Header

Global Tables

Local Data
for
Module 1

Local Data
for
Module 2

T TN

LocggrData Local Header
Module i Local Table Data

af”“"?\\\‘\h__’
”',‘—‘H\“Na____,n

Local Data
for
Module
N




Associated
Common Block

/GHD/

/DIR/

/SK/

/SHD/

/15/

/15D/

/COi/

JLIN

Table File

Global Table Allocation

GLOBAL
HEADER

MODULE
DIRECTORY

SYSTEM
HIERARCHY
TABLE

SYSTEM
HIERARCHY TO

"~ DIRECTORY

TABLE

INVERSE
SYSTEM
HIERARCHY
TABLE

INVERSE
SYSTEM
HIERARCHY TO
DIRECTORY
TABLE

CCMMCN
BLOCK
NAME
TABLE

LINK LIST
FOR COMMON
NAMES
TABLE

Bk AL

Starting

10

14

18

22

26

29

»

Record

V1.2

Length
{words)

28

800

400

400

4C0

400

300

1000




Associated
Common Block

/MHD/

. /SYM/ SYMTAB

/SYM/ SYMOVR

JUSE/

/NOD/

/SUC/

/PRE/

Local Table File Structure

for a Module

LOCAL
HEADER

MAIN
SYNMBOL
TABLE

SYMBOL
OVERFLOW
TABLE

USE
TABLE

NODE
TAELE

SUCCESSOR
TABLE

PREDECESSOR
TABLE

Starting
Record Number

N+1

N+28

N+30

N+70

N+ 98

N+108

where N determined from module number

entry of the Directory.

VI.3

Length

in Hords

2800

200

4000

2800

1000

1000



