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1. Introduction.

Let x be an n-dimensional random variable whose density function p

is a convex combination of normal densities, 1i.e.,

&) = 0 p,(x) £ i
p&x £9y py(x or xe[R,

where
) m o N
a1>0, 1§1a1 1,
and
1 1260750 Ge®)
e 3¢ g WOER

p,(x) =
i (2“)11/2 th;IIIZ
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1f {xk}k_ Nan is an independent sample of observations on x, then
. ey
a maximum-likelihood estimate of the parameters {ai,pl. 1}1 1 is a
geen '

choice of parameters '”1'20}1-1 % which locally maximizes the log-

_ Y
likelihood function

b

L= k_llog p(xk),

in which p s evaluated with the true paramaters {“1'“1 i}i- o Teplaced
»

by the estimate {g L.} (In the following, it is clear from the

1'M90%474a1,. . 0"
context which parameters are used in evaluating the density functions Py and

p. Therefore, these parameters are not explicitly pointed out.)

Clearly, L 1is a differentiable function of the parameters to be estimated

Equating to zero the j;artial derivatives of L with respect to these parameters,

one obtains, after a straightforward calculations the following necessary con-

ditions for a maximum-likelihood estimate:

a, N pi(xk)
R oy
1 N py(x) 1 N Py(x) i=1,...,m.
1 Pi(xk ¥ P&

These are known as the likelihood equations, and we shall assume that the para-

meters under consideration here are rcstricted to sets in which these 2quations

are sufficient, as well as necessary, for a maximum-likelihood estimate.
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The likelihood equations suggest the following iterative procedure for
obtaining a solution: Beginning with some set of starting values, obtain
successive approximations to a solution by inserting the preceding approximations
in the expressions on the right-hand sides of (1.a), (1.b), and (l.c).

This scheme s attractive for its relative case of implementation, and it has
been investigated by a number of authors. Pmpirical studies of Day [1], Duda
and Hart [2], and Hasselblad [3] suggest that this scheme is convergent and
that convergence is particularly fast when the component normal densities in p
are "widely separated" in a certain sense. No proof of convergence is given in
these papers, although Peters and Walker [8] have shown that, with probability
approaching 1 as N approaches infinity, a related procedure (which includes
this one as a special case) converges locally "o the consistent maximum-likelihond
estimate whenever a certain "step-size" is sufficiently small. (An iterative

procedure is said to converge locally to a limit if the iterates converge to

that limit whenever the starting values are sufficiently near that limit.)
Peters and Coberly [7] have proved that, if all of the parameters I,

and Ei are hela fixed, then the iterative procedure suggested by the equations

(1.a) alone converges locally to a maximum-likelihood estimate of the para-

meters Q i=1,...,m. They also report on numerical studies in which the

i
computational feasibility of this procedure is demonstrated. In this note,

we provide sufficient conditions for the iterative procedure suggested by the
equations (1.b) alone, for fixed parameters ay and 21. to converge locally
to a maximum-likelihood estimate of the means Hyo i=1....,m. These conditions

are, roughly, that either m = 2 or the component normal densities in p be

"widely separated" in a certain sensc.
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2. Preliminary discussion.

We denote by O the m-fold direct sum of R™ with itself, and we re-

present its ...ments as columns

(0f course, 37{ is isomorphic to[k.mn.) We also find it convenient to represent

parameter sets {ai}i- T and (21}1-1,....m as columns
% g
a=|. and L = |, ’
L
m m

and, in the following, we use the fact that a and L belong to normed vector
spaces without explicitly introducing these spaces or their norms.

Setting

. N Pi("k) N "1("1;)
Mi(a,u.z) {E k- }/N k-l P("k) i=1,...,m,

we define




which we regard as a function from 37( to itself depending on parameters a

and I. The equations (1.b) can now be rritten as
(2) T o= M(a,u,D),

and the iterative procedure under consideration is the following: Beginning with

—(1)

some starting value J ", define successive iterates inductively by

—(k+1 - (g} =
(3) TR TCRTILN 5!
for ke 1,2,04+

In our results concerning the convergence of the procedure (3), the
Fréchet derivative of M with respect to U, which we denote by V—u- M, |is
of central importance. (For questions concerning the definition and properties

of Fréch/ - derivatives, see Luenberger [6].) Indeed, if «,u,and . satisfy

(2) and if || || 41s any norm on §J{, then one can write
M@ - T = HED D + [ 11D
for U~ near H. Consequently, if there exists a norm || || on J¥ with

respect to which VEM(E;E;E) has operator norm less than 1, then M is

locally contractive in that norm near E; i.e., there is a number A, 0 < A < 1,

such that

(4) | IM@&,5°,%) - %] <A [[w* -]



vhenever 1~ 1is sufficiently near M. Since an inequality of the form (4)
implies the local convergence of the iterative procedure (3) to Y, our
objectives will be met by giving sufficient conditions for VEH(EIE,E) to have
operator norm less than 1 (with respect to some norm on §J{ ) at parameter
vectors E;E; and I which satisfy (2).
A fal

We not' calculate VEM at a set of parameter vectors d,u, and i (with
components ai’ai' and Ei’ i=1,...,m) which satisfy the likelihood equations.
We first define inner products <°,'>1 on ﬂan

<X,y>, = xT(ﬁiizl)y for x,y €[R noi=1,...,m.

i

Then, denoting the Fréchet derivative of My with respect to uj by Vu M

y &
one verifies with the aid of the likelihood equations that
R L .
AAA Nkél p(x) l-l)< p(xk)(xk j)') if 143
vu Hi(anusz) e
: 1 N () A P (x5
-ﬁ kgl pka)(xk p(xk)(xk U )u if 1 = j.

This yields the following expression, in the form of a matrix of Fréchet derivatives,

for VEM at a solution of the likelihood equations:

an AAA
vV M (a2,u,L) ... V. M (a,u,l)

-M(a,u,L) = - ;
= B AAA A A
Vulum(a.u.z) i Vumu (a,u,L)

R — B T e — — e -




p,(x ) [ P, (x) T
e T R O (I e PR T
1 N . .
=1 - {ﬁ kgl 5 : }.
P, (%) \ P (x )
_;T;;Y(xk-ﬁm) e Jvan p(xk)(x £ ),'>

The inner products <-.'>1 induce an inner product <*,¢> onm « In
the following, || || will denote both the vector norm and the operator norm
defined by this inner produc.. It is apparent from (5) that, at a solution
of the likelihood equations, VEM is of the form I-Q, where Q 1is positive
semi-definite and symmetric with respect to the inner product <*,*>, In fact,
we prove in an appendix that Q 1is positive-definite with probability 1
whenever N 2 mn. It followe that, with probability 1 for N 2 mn, ||VEH||

at a solution of the likelihood equations if and only if ||Q|| < 2. We con-

clude these preliminary remarks with the following

Lemma : [|Q|| < m.

Proof: Since Q 1is symmetric with respect to <*,*>, one has

llol] = 88w, qw.

[v]]<1
If {vi}iﬂl,...,m < " is such that
V1
v=|" |e M satisfies ||v|]| <1, then
v
m




- m m ] N py(x) ) (xk) N

VQv> = L) gk N k€11 p(x,) (xHg)>g <vyo p(x) ("k Hy)>y
m 1 p py(x)) 2 1/2 N pl(xk) 5 1/2
iljl{Nkl i’ (xk)(xk i) {Ek-l 4 px)("k Hy)>y 3

P4 %) a1 1/2
lgl jz ‘“1'[N kz () Oy “1 p(xk)] 1 V171

T P (xk) 112
ey .[N k- 1% 3 )(xk p(xk’] j 4>y

~
Gipi(x)

since —;R;T—_ <1 for i=1,...,m. From the likelihood equations, one con-

cludes that

S III m
B85 ® o 1/z<v v o112 1/2,2

1f1 381 Vve?y 37y = R Ypvey ) s

and the lemma is proved.

3. Sufficient conditions for local ccnvergence.

Sufficient conditions will now be ~iven for local convergence of the pro-
cedure (3) to a solution of (2). Our first condition is given by the theorem
below.

AAA
a,u,L

Theorem 1: Suppose that m =2 and N 2 2n, and let be vectors of

parameters which satisfy the likelihood equatioms. If a,4, and I, satisfy
AA A
(2) and lie sufficiently near a,u, an( L, then the iterative procedure

(3) converges locally to U with prcbability 1.




Proof: From the preliminary discussion, we know that the procedure (3) converges

locally to -ﬁ if v—nr&,'ﬁ,t‘) has operator norm less than 1 w..h respect to
some vector norm on JJ{ . Then, since H depends continuously on a u, and
-f, it suffices to find a norm on m with respect to which V—-‘H(g,% L) has
operator norm less than 1 in order to prove the theorem.

Now V-iﬂ(ﬁ,%,%) = [-Q, where Q 1is the operator introduced in the pre-
liminary aiscussion. With probability 1, Q 1is positive-definite as well as
symmetric with respect to <*,*>, and, from the Lemma, |[Q|| <m = 2. Con-

AAA
sequently, ||V;H(u,u,£)|| < 1 with probability 1, and the proof is complete.

We now define an operator Q° on ¥ by

pl(x) o 1(x) T

o
p(x)(x Ul) e AT p(x\ g (X = )' 1

Q° = [ : : p(x)dx,

Ru P (x) & p, (x)

m
20 \Tm

o

(x-um) 2! )ﬂ

in which the true parameters (whose vectors we denote by ?.;0, and fo) are
used in evaluating the functions Py ani p and the inner products <','>1.
The operator Q° can be thought of as an m*Xm array of operators on[Rn, the

ij-‘-:l‘- operator of which is

Py (x) p, (x)
f ———(x=} ) —‘L('T(x My W )j p(x)dx.

p(x)
R

I1f the component normal densities in p are "widely separated"” in the sense

that each pair of parameters u;’. and Z: differs greatly from every other
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pair, then the off-diagonal nperatcrs in this array are near zero. On the
cther hand, regardless of the "separation" of the component densities, the
diagonal operators define an operator on m which lies strictly between the
zero operator and the identity operator in the ordering on symmetric operators
defined by the inner product <+,*>., Consequently, if the component normal
densities in p are sufficiently "widely separated"” in this sense, then the
operator I-Qo has spectral radius less than 1, and, hence, there exists a
norm on 30 with respect to which I-Qo has operator norm less than 1. (See

Householder [4).) This motivates our second condition.

.
Theorem 2: Suppose that the component normal densities in p are sufficiently

"widely separated" that the spectral radius of 1-Q° 1s .less than 1. Then
the probability is 1 that, for sufficiently large N, there exist neighborhoods
of ?.?. and I° such that, if o,d, and L 1lie in these neighborhoods

and satisfy (2), then the iterative procedure (2) converges locally to H.

Proof: Astraightforward calculation and an applicaticn of the Strong Law of
Large Numbers (see Loéve [5]) yields that VEM(?,EO,EO) converges with
probability 1 to I-Q° as N approaches infinity. Since I-Qo is assumed
to have spectral radius less than 1, 1t follows that, with probability 1,
if N 1is sufficiently large, then Vaﬂ(a,i,_f) has operator norm less than 1
with respect to some norm oum whenever E,E, and L 1lie near '&o,ﬁo, and
T Ie V;H(E.E.f) has operator norm less than 1 and a,u, and L also

satisfy (2), then the iterative procedure (3) converges locally to H.

This completes the proof.
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Appendix

We now prove that the owerator

1
Q=% 2 :
N el :
Pa (%) P (%)

P("k) (x-k"ur) P("k) (xk Um) )

is positive-definite or EHI with probability 1 whenever N 2 mn. Clearly,

it suffices to show r.aiL the vectors

Py (%)
P(x )(x Hy)
V(x) = : , k=1,...,N,
(x )
“‘ R

span 6]( with probability 1 whenever N 2 mn. This ‘ollows from the more

general result below.

Lemma. Let {xk}k-l y be an independent sample of observations on a
g ey

random variable x in [R °

which is distributed with a probability density
function p. If V 1s a real-analytic function from R ® to R ¢ whose
component functions are linearly independent, then the vectors V(xk),

k=1,...,N, span [R k with probability 1 whenever N 2 t.
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Proof: Denoting the jth component function of V by w we define a real-

from (R ® to ﬂl ] by

jt

analytic function VJ

vl(x)
Vj(!) = :
(x)

b
for §=1,...,t. Our proof of the lemma consists of showing inductively that,
for j=1,...,t, the set {Vj(xk)}k-l,...,j spans [R I with probability 1.
We make the preliminary observation that, since the real-analytic functions

v, are assumed to be linearly Independent, ..ny non-zero linear combination

3
of them vanishes only on a set of Lebesgue measure zero in [R N
From the observation above, Vl(xl) is non-zero with probability 1;
hence Vl(xl) srans [R 1 with probability 1. Suppose now that, for some
p i
J, 1sj<t, the set {Vj\xk)}k-l,...,j spans [R ° with probability 1.

Then, with probability 1, the set {val(xk)} fails to span

+1
R ;)

k=1,...,3+1
if and only if

]
(*) Vo150 = EE; x Vyer ()

for some set of corstants {ck} If (*) holds, the constants

k=l,...,§" “k

are determined by




with probability 1, where “\/j is the j»*] mat:ix whose kth column

is Vj(xk). Thus, with probability 1, (*) holds i and only if

Ve (%)

- T .

e NEWR S ) - Vypy(xgyy) = 0.
"j+1(xj)
Now
"j+1("1)\
- T

AR RO I RN

vj+1(xj)

is a non-zero linear combination of the functions vl,...,vj+1 and, hence,

vanishes only on a set of Lebesque measure zero in [R ®. oOne concludes that

1 i+l
{vjnl(xk)‘k-l....,j+1 fails to span [R with probability zero. This
completes the induction, and the lemma is proved.
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