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ABSTRACT

Harrison w s one-electron bond-orbital model of tetrahedrally coord-

inated solids is generalized to a two-electron model, using an extension of

the method of Palicov and Harris for treating the hydrogen molecule. The

six eigenvalues and eigenstates of the two--electron anion-cation Hamiltonian

entering this theory can be found exactly even in the most general case.

In this first paper, however, the non-orthogonality of the anion and cation

a 23 hybrids is neglected to simplify the treatment and to emphasize the

most essential features of the model. The two-electron formalism is shown

to provide a useful basis for calculating both non-magnetic and magnetic

properties of semiconductors in perturbation theory. As an example of the

former, we calculate expressions for the electric susceptibility and the

dielectric constant. In the limit of no electron correlation, our expres-

sion for the susceptibility agree with that found by

Harrison and by Harrison and Ciraci. As an example of the latter, we calcu-

late new expressions for the nuclear exchange and pseudo-dipolar coefficients.

A simple theoretical relationship between the dielectric constant and the

exchange coefficient is also found in the limit of no correlation. The

expressions for the exchange and pseudo-dipolar coefficients are quantita-

tively evaluated in the limit of no correlation for twenty elemental and

binary semiconductors, and the results are compared with existing experi-

mental data. Preliminary studies on the quantitative effects of correlation

on the various quantities considered here are also discussed.
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1. INTRODUCTION

In a recent paper  Harrison has introduced what he calls the bond-

orbital model of tetrahedrally-coordinated solids. This model is a general-

ization of the cruder linear-combination-of-atomic-orbitals (LCAO) model

originally proposed by Hal lZ for elemental group IV semiconductors and sub-

sequently considered by various others over the past twenty years or so.

The LCAO or tight-binding basis set used in this model is made up of four

a P3 hybrids on each atom directed towards the four nearest neighbors in the

solid. At most, only one-center integrals and two-center integrals linking

nearest-neighbor anion-cation pairs are retained. In his first formulation,

Harrison neglected the nonorthogonality of the anion and cation hybrids,

although this was explicitly retained in the reformulated version of the

model by Harrison and Ciraci 3 (hereafter referred to as HC). In any case,

the few surviving matrix elements are fit to experiment and the emphasis of

the„bond-orbital model is on understanding a wide range of properties of semi-

conductors and insulators°in terms of a few parameters of the anion-cation bond.

While Harrison's bond-orbital model seems to be quite successful

in achieving its objectives, there are further refinements one might consider

incorporating into the theory. One such refinement is the effect of electron

correlation in the bond. ' Conventional tight-binding theory, of course, is a

one-electron method, yet the most fundamental property of the bond is that

it contains two electrons. It is of interest, therefore, to consider what

modifications a two-electron bond-orbital model implies. In Sec. II of this
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paper we formulate such a model using a generalization of the method of

Falicov and Harris  (hereafter referred to as FR) for treating the hydrogen

molecule.

Our two-electron bond-orbital model has several noteworthy features.

First, the conceptual simplicity of Harrison's original treatment is largely

retained. In the one-electron bond-orbital method one relates crystal pro-

perties to the properties of the bonding and anti-bonding orbitals associated

with the anion-cation pair. Tlie latter orbitals and their energy eigenvalues

can be found by diagonalizing a simple two by two matrix. In the two-electron

bond-orbital method, the two by two matrix is replaced by a six by six, which

can still be diagonalized analytically even in the most general case. For

the sake of simplicity and clarity, howev.;r, we will confine our attention in

this first paper to certain limiting forms of the general results. Clearly,

all the results of our analysis can be used to determine how the predictions

of the one-electron theory are modified in specific cases.

An equally important feature of the two-electron formulation is the

appearance of the three triplet and two singlet excited states in addition to

the singlet ground state. This allows one to perform, in a self-contained

manner, perturbation calculations which involve either singlet-triplet or

singlet-singlet coupling. An example of the foimer is the indirect inter-

action between nuclear spins via the bond electrons. In Sec. III expressions

for the nuclear exchange and pseudo-dipolar Interactions are obtained for

the first time in terms of bond-orbital-model parameters. An example of

singlet-singlet coupling is the induced polarization caused by an external

electric field. This is the perturbation involved in the calculation of the
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dielectric constant, which we also consider in Sec. III. The quantitative	 s
A	 .F

predictions of the formulas derived in Sec. III for real semiconductors are

considered in Sc. IV, and in Sec. V we draw our conclusions. 	 t
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I1. FORMULATION OF THE TWO-ELECTRON MODEL

The two-electron bond-orbital model is most simply and elegantly

formulated in the language of second quantization. In this treatment it is

necessary to assume that the anion and cation s P hybrids, e.g.	 l at k,v)

and C,. t ( r) , are orthogonal. While the actual overlap matrix element

S = SaT (r)°^ ? (r) dr
	

(1)

may be quantitatively large, in conceptual terms the inclusion of over?"Rp

represents a refinement on the basic theory. This overlap may be incorpor-

ated into the theory without fundamental difficulty, and will be treated in

the second paper of this series.

The Hamiltonian for a general many-electron system can be obh.Raaed

in second-quantized form from the prescription

H — S^ t(i) ET+ V>xt ('r)J ^(r)dr
z

+ 2.'4t(r)^Vr(r,^ ^r—r'^ycr'^ytri^+"i,(z)

where 41 (h) and	 ) are the usual field operators, T is the kinetic-

energy operator and V (
ext 

r) is the external potential arising from charges

other than those of the electrons under consideration. We wish to focus our

attention on the two electrons contained in a single anion-cation bond, so

in our case

4
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C	 (r) ± Ca b^'aL( r ) + C+-r ^ct ti)1,/ t () = ai TaT

^^+(w) = Cnt t( i= ) + Cay ^'ai (r, + C t+Ct ( -F) + C';t

t
where C t.t and (rat , etc. are the usual Permion creation and annihila-

tion operators, and

V(r) = Vti(1) t Vc(1) 4 ^ V^ (r)	 (4)
eKt	 4 *

The potentials Vo.(r) and V4 (r) are centered on the anion and the

cation, respectively.. Each of these potentials includes a bare-ion potent-

ial due to the nucleus and the core electrons plus the potential associated

with the three filled hybrids not involved in the bond. in question. Ibe

potential	 Vt(r)	 is $;list arising from the nucleus, core and four filled

hybrids of the t th' neighbor of the anion-cation pair.
r

Using Eq. ( 3) in Eq. (2) and setting	 ?L at = Cat Cr.t , etc., one

obtains in a straight -forward manner

H	 E ( 7La t + na.y )	 ^c (11c? + ^tCt )
IL

f

^i ( C+Ce4 + G y Cci + het ta? f C .J C4 4 )

+ 6(a %at	 t ,IC, 7let 7 'LC t

+ K ( tat 71 c7 + 7-at 7tc4 t n'1	 YLct k n't C 

(5)



where E0. and Ec, are the one-center energy expectation values:

^4 =	 tar 
(r) [ T h Veit (r) <^n? (r) d r	

(6)

with a similar express,{.^n for ^r ; Vz is the two-center transfer or hop-

ping integral (called the covalent energy by HO)

^at (r) L T+ Vu^ t (i ) +,t(r') A	 (7)

U,. and tic are the one-center Coulomb integrals:

.x

ua = Sf ^at	 I Al	 r

with a similar_ expression for U. ; and k is the two-center Coulomb integral

K	 S 1nM t1"=) <r(r) T	tat (rcli"crr;(9)

The remaining two-center Coulomb integrals have been set to zero consistent

with setting S = 0 in Eq. (1). In analogy with FI1, the following identi-

ties cat,; be derived from the l*fact that there are two electrons in our system:

nar + nab	 2- Olet+ ncd.

t nqf n, t 7t &t 7tcy + )1na nc ? t 7401,
	

(10)

t	 ( 'Yn r 71 % y 1 71 r YL. l

( ncrtnCa) - 1 F n^,nci,	 %at 71q

IL
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These results can be used in turn to simplify Fq. (5) to the form

H = ea +	 +K+ VzH'	 (11>

where the (dimensionless) Hamiltonian. H 1 is

H^ = X . %&t qi ,a{ + X. 7L ct 71 cb - ^ C,i pct -f B OA Cat,	 (12)
r.

+ C t Cat `t C 44 Cab

where we have set

X, a = l Ua Vi r 
(Eel,

For	 E I = Ec and	 i( 0. = I! c , the Hamiltonian H given by Eq. (11) is0.
formally equivalent to that considered by FH.

A. Eigenvalues of H

To find the eigenvalues and eigenfunctions of 1- , we need only

consider-diagonalizing H ' , since E0. + E, + K	 and v are constants.

Again we follow M. There are six linearly independent two-electron states

in terms of which all the eigpnstates of H can be expressed. Symbolically,

these basis states are I RT GTE , 10.4- C l> , j 0.r CL O	 i. P b j

0.f C1> and IGro,a> , where IaTGT> means

etc. If we denote these states simply as ^i^ , where i = I,;,	 (.	 ,

then we ce" ,solve the Schroedinger equation



H IMF — EM IMF,	
M! T, e.	 . ^	

(14)

by making the expansion

'^ I
1

> (15)

In the usual way, one is led to the condition

H;' - ^N II - (16)

for the eigenvalues

EM = ^Ga	 -t' E^ `f	 K t V, N (17)

It is a straight-forward matter to determine the 	 H J and Hq.	 (16) is easily

shown to be

1

1 n

o ° Xa- EN °

p J(c EM	 —^ -`0

0 0
i
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The six eigenvalues of Eq. (18) may be divided into three triplet-state

energies, which are degenerate and equal to zero for all _X A and X I. :

M̀ = o 	 0r	 =aptE^h}. 	 I`I=I.	 s(19)

and three singlet-state energies, which are solutions of the cubic equation

E'3	
(XA +X c.) E' l -t (Xa X, -4)^,^ +a(k„''X `^zo)H

The three roots of Eq. (20) may, of cou se, be written d(rm immediately for

arbitrary X C and X C , but it is more instructive to consider the special
cases a X, and X A = - X c . The former case corresponds to taking

and	 in Eq. (13) [or more generally	 2 ( 6C - to M.

This is the appropriate solution for the elemental group IV semiconductors,

where the anion and cation are the same. We shall denote this as the

Palicov-Harris limit. Dropping the subscripts a and c and defining

	

V4 = (1d—I<) /2 = WX /2	 (21a)
and

X = z V* Vz

one can immediately factor Eq. (20) and obtain

E^	 2 E't U

( K + 21X4

V4 

X±	
1

E q ,a	 z E+ K+ 	 r ^^

4 — V+V,+V,,:

(21b)

(22)
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Clearly, 1.. t2 is the ground state energy of the system for all values of

and V+	 An energy-level diagram for the Falicov-11arris limit is shown in

Fig. 1.

The other special case, X a - - X c , corresponds to	 hl , y 4t, N

in Eq. ( 13) for more generally to	 to r U. c = 2 K 1. We denote this as

the Harrison limit, since one is led to the results of the one -electron bond-

orbital model in this case. Defining

V3 = ( L, _ ^' ) 12 — Vs. k / 2	 ,	 (23a)
and

1 = 2	 Vz	 (23b)

the three solutions of Eq. (20) are again easily found and one obtains

[ = Ea + E^ +IY	

(24)

E' + E +K ± 2vs'+V1:

Again P yr is the ground state energy for all V, and V3 . Also note that

the state IlY> is degenerate with the three triplet states. The energy-

level diagram for the Harrison limit is shown in Fig. 1.

Because E = is the total energy of two bond electrons, the proper

relationship between E yt and the one-electror, bonding energy

Harrison1 is

EM: = 2E 6 - Eee	
a
	

(25)



where [from Eq. (9) of Ref. 1]
,

L

and C ee is the electron-electron interaction energy, which is counted twice

in 2 ^y . Using the bond orbital

and the fact that Ma t Me = I , it is simple to show that 	 L,.1;

in the limit that 'is y ,,, Nc =K	 Equation (25) thus shows that

n - F-n t h

Sar(r)L7+ Vc	 OtA FF- 	I--

t	 tc}^nt(r) U{ (r1^ ht (r) c(^
+a,t

with a similar expression for ^c . . The first integral on the right-hand-

side of Eq. (28) is just the Hartree-Fock expectation value of [ T i-

Vn (^) ]. The second and third integrals, on the other hand, vanish ident-

ically in the limit that ^,t (-r) and Oct (r) do not overlap. In real

materials, however, these latter terms may not be negligible.

11

(26)

(27)

I
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Similarly, one can relate the other five two-electron eigenvalues

in the Harrison limit to E b and E a , the one-electron anti-bonding energy

level. This correspondence is illustrated graphically in Fig. 1. The six

two-el- ma tron energy levels represent the six unique ways two electrons can

occupy 9 and E0 . Thus r= Fl corresponds to having two electrons (one

with spin up and one with spin down) in P b . The four degenerate levels

[r^ , E II , C TL and	 arise from the four spin combinations one can

have with one electron in L and the other in a	 Finally, i. i corres-

ponds to two electrons occupying E 0. .

B. Eigens rates of I-{

Returning to Eqs. (14) and (15), one can determine the expansion

coefficients (X; M using the calculated E- M in the usual way. For the

three triplet states one obtains

11"7 = t= > = la^^l>
(29)

for all X ft and X,	 The singlet states are given by

HVI = DlEri) I_^ ^C-El)13/+(Xa
C-[' )14>+ z ^Xv-trf)t

.
lx r^f)t 1 ' •r,F'I

L(X -EM)^^raa^ r (Xa-I^) It^ct7
J ul^M)

-} -	 I 1c i	 t	 i	 y ",^ i	
(30)

EM){Y.^'Lh)^ ^	 ) I^	 ^ 1

f

f

I

i

i

I I
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where

(X4—E^,)'+z cx^—c„^`(x,—E:^^=l
(31)

In the ralicov-Harris limit,	 = X a. _ X , the singlet stales are

found to be

QTY) =	 ( ^ a?0.,L - ^CPC0

jv,t,> = [ X2+ic r X ^x	 f 'Cz(^nrki> + Ict^L >) 	
(32)

+i	 +Ib ^^ ^nTcL)+ (cTnL?)`1

	

II	 7

where X is given by Eq. (21). Note that in this case rY > does not fol-

low from Eq. (30), because D ( E ' ') vanishes. In the Harrison limit

I , on the other hand, Eq. (30) reduces to

( z Y*a)'` L 2 ( Iatcko—IC TCL))— Y(jcact )Pic3«+^lj

(33)

—(Y	 (Ct”) +2	 L taI;)

where Y is given by Eq. (23b).



III. PERTURBATION THEORY

Just as in the one-electron bond-orbital method, one may now proceed

to calculate a wide range of properties uf the solid in terms of the eigen-

functionsand eigenvalues obtained in Sec. II. In particular, if the bond is

subject; to a small perturbing potential, one can employ standard perturbation

theory to calculate the energy shift i ;duced by the potential. We consider

here two such calculations. The first is the energy shift resulting from the

application of an external electric field. This, of course, leads one to

formulas for the electric susceptibility ',1,and the dielectric constant- C .

The second calculation we consider is the energy shift induced by the magnetic

interaction between the nuclear spins and the bond-electron spins. This cal-

culation leads one to expressions for the nuclear excb nge and pseudo-dipolar

coefficients P, and ( 'l d .

A. External Electric Field

If we apply an electric field 
rG 

to our system, an electron will

gain a potential energy u k = e- 'r	 Following HC we chose the origin

for r at the geometrical center of the bond and take E in the + X direc-

tion. This makes the calculation of the energy shift equivalent for all

bonds in the solid and we thus need•only consider the calculation for an

isolated bond lying in the (II"1) direction. With this geometry 1l^

becomes



k 15
;I

I

I

"j

=I

\	

FS

^1

£

'r	 j
r	

+ 7^
- (34)

r

c\ 2,r̀3
1

a

^ 4

where X C,	 and Xc are x	 coordinates measured from the anion and the cation, {
c	

^I	 respectively, and d	 is the bond length. 	 The corresponding Hamiltonian in j

second-quantized form, H F , is found
j j

from Eqs.	 (2)	 and (3) with ^i,; 1<
^

Using the first of the identities (10) and neglecting all overlap terms, one ^I

finds

_	 I -
H	 X^' X a^ -

i
ct7	 •r,1ay^	 f^ma4

dY (11^q	 p	 yf cL^ !!
41	 £	 L^ z^

(35)

Where Xa °-	 Oat 1 X aI ` 'Z L 	 1	 Xc 	 and

I 
c 

I — -	
( 

(36)

The definition of ^' given by Eq. (36) is the same as that made in Eq. (16)

of HC. Also note Xa and X c are expected to be positive quantities, be-

cause the r,3 hybrid on the anion is i L	 W) t I T'} i t I ^'^ ? j

while that on the cation is ? Is`^ I Pk` > — ry 7 — 1 P;`>^. Thus	 =	 j

and Xc = z ( S` l Xc PX y ,	 which are both positive because the s and p

wavefunctions will have the same sign at.large 	 This implies	 1341

and we have confirmed this for the case of silicon, as discussed in Sec. IV

below. Because X^- Xa is a constant, one can write

q

Y
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He = – (Xc– Xal^^ r H£ e E ^	
(37)

so that the energy shift out of the ground state to second order in G is

<&IH , IMw"iH^I Cr > 	 z
oE^[( X^ ical+ <GI H^ 14^jeZ t- 7-	 S	 — 

I ec)fl Ilj	 EQ - EN 	 (38)

where we have denoted ITI:	 as ICT >	 and Eqt as S_i} . From

elementary electrostatics considerations, one has in each unit volume of the

solid

3 AE c — 2 ( pu'E)- %EZ	)	 (39)
s 00PS	 BON PS

y
where p^ is the (zero-field) polarization of the bond. Comparing Eqs. (38)

and (39) one has

po = — e [ C x^- Via) — <GI ME IG > d	 (40)

and

	

N=t.y	 EG - E M	 (41)

where N is the valence electron density in the solid. (Note that IV/; is

the density of bonds, since there are two valence electrons per bond.) It
7

is a straight-forward matter to work out the matrix elements < MINT ^ using

Eqs. (29), .(30), (35), and (37). As expected, the electric field does not

couple the ground-state singlet to the three excited triplet states, so
1

ir
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<M	 lG> = o	 M = L, 7r and Z
(42)

On the other hand, the ground state is coupled, in general, to itself and to

the two remaining singlet states.

r	 \	 (l^"^'f.gl^^ —	 r'Y	 [(xa EH^(^^a ^GJ - lXc-
D(En) D(E^l 	 (43)

(^ = JZ , V, an cl M

Let us now examine the above results in the Falicov-Harris and

HarrtFon limits. In the former case, the only-non-zero matrix element is

<$l N£ I4>	 and using Eqs. (22), (32), (35), (37) and (40)-(42), one

finds

Po = °	 (44)

and

12	 V=

where

X(XZ +I6) t (x'-t B) X'+I6	 /3Z

-f ; X t	 X'1- + -- ---

(45)

(46)



Clearly, ^ > I for X > 0 and IS ^ I as X
	

c	 The

dielectric constant in the Falicov-Harris limit is thus

-TF

I t 	 (47)

'	 qIn the Harrison limit both <TY NC jq^and 	 z Tare non

zero. Using , Eqs. (24) and (33) together with Eqs. (40)-(43), one obtains
i&-this caea,

py
1= ("

0	

[ C3
F	 (48)

where	 is Harrison ' s polarity parameter I

c4	 -V3	 (49)

and

Aj Y'le	
V. 

2*

1 2	 Vl + ifL fez (50)

The dielectric constant is thus

7 N (Ve d )L	
Vt1 (51)

3	 v2L+vi,^)

I	 Ll

LN
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Equation (51) for E agrees with the corresponding result obtained by

HixrrisS)n1 and HC. In HC all corrections to Eq. (51) are adsorbed into 	 ^^

bSt fitting £ to experiment. This leads to values of y l greater than one.

I

f

It is important to note that in both

limits x/ can be expressed entirely in terms o

ments of I(T7 . Any explicit reference to the

by the identity

\GI^H£)a1^T7— I< :M jH£I C^ ^ly+

the ralicov-Harris and Harrison

E E G - E-= and matrix ele-

eigenstate J[E can be removed

I<GI H S I(T-;,I` )	 (52)

which follows from the completeness of the states I jvj ) , Eq. (42) and the

fact that < Vj HE1 G > = O  . This is consistent with the fact that

Harrison and HC obtained their expressions for E without reference to the

onp-electron anti-bonding orbital.

It is of interest to compare Eq. (45) with Eq. (50) in the case

that X73 =.o	 , that is, for the elemental group IV semiconductors. Clearly,

for fixed y' and 'V2 , % is decreased by a factor of P -1 when electron

correlation effects are includdd. It follows that (Y ' ) 2 / V,- will be

increased by a factor of ( if the dielectric function it fit to experiment

with Eq. (47) instead of Eq. (51). In Sec. IV below we make some rough esti-

mates of Vµ and ^ for the group IV elements.

It is also instructive to examine the polarity of the states 1

and 12r 7 = C?	 which are coupled by	 The polarity of state 1 h l )

is naturally defined as

N	 ^-	 a

°^F o 
a31A	 A-+	 )	 (53)
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where 4( 3n and ir jj are expansion coefficients entering Eq. (15). In the

Falicov-Harris limit M =o^p	 o	 for all six states, as one expects and as is

obvious from Eqs. (29) and (30). In the Harrison limit, on the other hand,

ur
Ok	 and	 as can be inferred from Eq. (33). (Also

note that C) TV = - ^	 ) Thus for materials other than the elemental

group IV same conductors there is a shift in polarity, and hence a shift in

the distribution of the wavefunction, between the excited and ground states.

This important feature is absent in the more familiar Penn model 5of the di-

electric constant and partially explains the difference between that result

and Eq. (51), thus verifying Harrison's speculation to , this effect.6

B. Magnetic Interaction

} -4
An electron with spin 2 ry Q in the presence of a nucleus with

y
spin ] will change its potential energy by

	

14 = T A a3 	 (54)

where

	

Ei
	 c r) 9(	 r 

(55)

In Eq. (55) M 5 is the Bohr magneton, 1- 1 is the gyromagnetic ratio and ('
is the position of the electron relative to the nucleus. Representing the

cartesian coordinates of Lr by the usual Pauli spin matricies and using Eqs.

(2) and (3), the perturbing Hamiltonian is found to be

f	 }

HA = 
'6 '

 
( W

eii - 7Z' y i 
Ac ( nct - 'A I ^ t 

° ^ C`^t C` ^'	
(56)

+ Sc
h +

	

a Ca4Cat +	 Fc CctCc '°	 c:°^ Cct
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where again all overlap terms have been neglected and where we have set

 -	 A

'6"X = Xn	 A q ' z	 (57)

and	
ga 

= Iq • Aa ' (x `^

with Aa =	 qT I {^ (qT >	 and similar expressions for A, , v and

j{ c 	Using Eqs. (29) and (30) together with Eq. (56), one may again obtain

the matrix elements < MI HA  (^ > without difficulty. In this case, the per-

turbating Hamiltonian HA couples the ground-stam %singlet only to the three

degenerate triplet states:

I,	 P	

t (^ [^\ r +^ r t	 r
<IIHA I(T>'2	 <=I 	IHAI`-'- 12="Z Vi G(Oq-04J(Dp-uc^C..

(58)
<111HA1Gr	 - - v= E^

and

0A  HA I(I = d
	

M = 7- , V , anc ]Zj

where

Va ECT D (r )

	 (59)

(Note that E. is a positive quantity, since ):G o .) Because ) rt _ ,

for the triplet states, E G - ^M = Va ECT	 and the energy shift to

second order in A is just

z^ Crl HAIL> ► ` + I «I HAIG>1L
A E	 VL .E

(66)

^ (pq- oc^(Sa Eck ^+(aa -Qc)1 ^ /Ir0
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Note that the dependence of G E on the parameters of the bond-orbital model

is contained entirely within the factor E-„4 	. This remains true even when

overlap is included into the calculation of 'M? and E_H , because -,; , : I
t
 :i . + ,

and Et,- E M for the triplet states can at most be altered by constant

factors. Moreover, the only detail of the triplet states which affects G ,

is the triplet eigenvalue. Any explicit dependence of E. on the triplet

eigenfunctions is removed by the identity

^ 4 1 H A I	 'I<T ^^p^^ 7 ^^ t < !4A	
L	

(61)

which follows from Eq. (58) and the completeness of the states IN1 j

Now using Eq. (57) in Eq. (60), one has

hE--	 a A a`Ic'Ac^'L XXtYYr^S^'(^^a'I;°/+..

More explicit expressions for Land A. can be obtained by directly insert-

ing	 hybrids for I ^AT ) and I k Q > and discarding all matrix elements
which vanish by symmetry. Doing this, one finds

.-,	
d r
	 3	 n	 1,

Af3ra ^ 3 ^ti	 S llat3rac^^,." fl 11 (63
A O.	 )

with a similar expression for At.	 In Eq. (63p	 ^,^	 is a unit vector

directed from the anion to the cation and

-A 2- 	 ¢1r BSI S (i) 15> = R S!'

	

S ( o)	 (64)
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where R6 10 ) is the S radial wavefunction evaluated at the origin, and

Ir ' < r I r ; I P> 1	 (65)

where jf';^ is any one of the three _' states of the hybrid. If one writes

e F_ as a sum of two chemical shifts and an interaction term,

L [ _ - & E A , — a Ec c `f d E- 0. c	 (66)

and uses Eq. (63) in Eq. (62), then

d ^aa' s ^E	 Xa is +	 `fd	 3^1a`r.^^^lrnr.'l,t
_	 (67)

with a similar expression for n Er. and

at A^ = 
rac 

la`T^ + ^ryr^ ^3(z..'^^^^^(r:. `i,) 	 (es>
e	

Z^ T1•-	 J•

In Lqs. (67) and (68)

f

and

N^
f^ 1

	

a [	 to	 a	 4'0	 „,t ,

as	 nn	 Cr
	with similar expressions for Pe	 F.V	 and rr r ,	 The quantities

^c = ( ẑN^and rd _ ^Pd `are the nuclear exchange and pseudo-dipolar coefficients,
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respectively. Note that (),,t is inherently positive and consequently the

pseudo-dipolar interaction is of opposite sign from the direct dipole-dipole

interaction, which is in broad agreement with experimental observation. In

Sec. i'v below we compare (ye. and rrd calculated from Eqs. (69) and (70) with

experiment. Finally, we observe that Eqs. (69) and (70) are similar to the

earlier results obtained by Clough and Goldberg 7 with a cruder model. For

the case of tetrahedrally bonded solids, 8 the essential differences between

our results and theirs are: (i) what we call E4i is an arbitrary, unspec-

ified constant 2X in their^treattent, (ii) they do-not distinguish between

either	 a and ^{^ nor Va and 'p` ,-and (iii) the term involving

as 'c y go b'n	 in Eq. (70) is a factor of two larger than the correspond-

ing term, in their Eq. (24).

It only remains to evaluate the factor 
EU

I
 
in Eqs. (69) and (70).

In the Falicov-Harris limit, one obtains

r _	 1

l.o	 •{-Vy -f ^	
(71)

where

,{	 + 3	 z +	 (72)=	 i X ;Z x	 ___

As with defined in Eq.	 (46), >	 for X 7 o and i ^t as X

Thus for fixed V. the effect of correlation is to enhance both f,;	and
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In the Harrison limit, on the other hand,

z

Gp	
4 \ Vz* 3̂ ^j/L

(73)

where ,^( = (^'d P )' is Harrison's covalency parameter. l It is very interest-

ing to note that in this limit }( , [' e and opal	 all have the same depend-

ence on y.,, and V3	Using this fact, one may obtain a simple relationship

between the dielectric constant E and ^e

	

C - i	 C N 14	 (74)

	

I	 (	 z
where	 =	 11 ^V'^)

4 
^} {Cit ^" r' \ IB '^^ ^` k ^S ^` ^7 ^^ and an analagous

result linking	 to bpd	 In deriving Eq. (74) we have used the fact

that N = J'3la 3 for a diamond or zinc-blende structure. The quantity !

here is not necessarily a constant, but it is a function of only antra-atomic

parameters. The origin of the relationship (74) can be traced to the degen-

eracy of the singlet state	 and the three triplet states in the

Harrison limit. The inclusion of overlap terms alone into the bond-orbital

model will not lift this degeneracy ; as can be inferred from Fig. 1. The

inclusion of correlation in.m the bond-orbital model, on the other hand, will

lift the degeneracy and hence modify the result. In the Falicov-Harris limit,

for instance, the right-hand side of Eq. (74) should be multiplied by a f.at,tor

r^J



IV. APPLICATIONS

In this section we briefly consider the quantitative predictions of

the new formulas derived in Sec. III for real materials. Our analysis is nec-

essarily incomplete because of our neglect of overlap terms in both the two-

eletron bond-orbital model and in the perturbation calculations.

However, the above formulas are sufficiently realistic to expose signi-

ficant trends and allow us to draw some tenative conclusions. In this regard,

it should be mentioned that HC found that the effect of including the overlap

matrix element $ in the one electron bond-orbital model was simply to renor-

malize V,. by	 ^- $') -I	 and r' and ^f3 by	 I- 5') ''	 Since they

eventually fit all three of these parameters to experiment, the effect of

on x , e , re and Ga can, in fact, be implicitly included in Eqs. (50),

(51) and (73).

A. re and rpd in the Harrison Limit

In order to evaluate our expressions for re and ^'^•^ 	 in the

Harrison limit one needs, in addition. to V, and V3 , values of the

intra-atomic parameters , and ^ . Relevant values for these quantities are

available from the Hartree-Pock atomic structure calculations of Mann.9

Mana's values of $ and P are listed in 'Fable I for the group III, IV

and V elements of interest here. It is convenient to calculate fle and i

in units of rdd = -k' 'r,, 	 /d 3 , the direct dipole-dipole interaction

coefficient. In terms of Fa d and the ratio

26
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one has, using Eqs. (69) and (70),

le/Ida	 ^, 'O ^t-Oc (' -t- Z g.gc)^3/E0

rPdf raa _ CO ZAAe ( Nat 'R e +YaV.:) &^/Lo

and

rr^ / re = (`'at We t
'Ra Inc 	 ^ ^ f 2- 4ia^c

where C,, = f1 64 Its	 If fn and ^^ are expressed in

is in A , and E. is in C V	 then C	 1. 362 x 10 ' . Using Eqs. (73) and

(76) and the HC values of V,	 and V3	 , we have evaluated 	 ! i ',,{

and rPd rc	 for a total of twenty of the group IV elements and the group

IV and III-V compcinds. These results are listed in Table II together with

the small amount of relevant experimental data available in the literature.

One can see from Table II that the theoretical Pe 	 is consistently

larger than the experimental value, while the reverse is true for i^,^

The theoretical values of ('e 	 , however, correctly follow the experiment-

al trend of increasing Ic	 with increasing mean atomic number and conse-

quently with increasing bond length. This is more clearly illustrated in

Pig. 2, where we have plotted both the, theoretical and experimental values

of re as a function of i(	 One additional interesting result that can be

seen from Table II is the almost constant value we calculate for the ratio

27
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Ppd / re . This result is quite c)aarly a consequence of the insensitivity

of Y, to atomic number, but it is not in accord with the two experimental num-

bers we have for comparison.

The lack of detailed agreement here between theory and experiment is

not unexpected, however, and a number of factors could be responsible. One

important effect concerns the choice of S and f wavefunctions used in ca +.

culating the matrix elements ) and 'e . The use of Hartree-Pock free-atom

wavefunctions is not necessarily an optimum choice for the solid. To test

the sensitivity of re and rpd 	 to this choice, we have calculated two

other sets of atomic wavefunctions for silicon (one set for the ground state

3 S'3Pz	configuration of the free atom and one for the excited 3 S ,P'

configuration) using the Herman-Skillman approximation lo to the Hartree-Pock

potential field. These wavefunctions were used in turn to determine values

of A and F and re and Cpa	 The results of these calculations are

compared with the Hartree-Pock results in Table III. Clearly the Herman-

Skillman approximation has a large effect on the calculated magnitudes of

P.- and f'PA , increasing these quantities by almost a factor of two over
the Hartree-Pock values. On the other hand, the configuration change from

3S	 to 3 S1 3p3 has a much smaller effect on re and	 separately,

but a larger effect on the ratio rj,,t 	 e	 The obvious implication from

this study is that small changes in the atomic potential can significantly

alter the 5 and 1 wavefunctions of the 5e hybrids, making experiment a

sensitive check on first-principles calculations of 	 and Ip^

A second obvious effect which could modify the results of Table II

is, of course, two-electron correlation. As mentioned in Sec. III, however,

correlation can at most alter the value of e. and consequently cannot affect
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the ratio rri/re . The preliminary indication is, as discussed below, that

correlation can significantly enhance the theoretical values of it and , ,

in the group IV elements. A similar effect in the III -V compounds would be

in the right direction for ^'F^ , but not for ('c

A third possible factor here is the overlap term 	 1A I 1;; I,
which was dropped from consideration in deriving Eq. (56). Unlike the ordin-

ary overlap and correlation corrections to C ,.e bond-orbital model, this term

could lead to a change in the ratio of Fp,I/(' e . For this reason, we shall

want to include this term when we consider overlap effects in paper II.

The accumulation of additional experimental data will be important

in clarifying this situation further. In particular, note that the chemical

shifts 1, E,,. and a E,, each contain an isotropic part with respective coupl-

a "	 Cc
ing constants re	 and ^e	 and an anisotropic part with coupling con-

I aq	 -1 cc
starts	 F i, d 	and	 IFA	 . Since these interactions will have differ-

ent angular dependences, they are separately measurable. Thus for binary

compounds, including (e and (^^ , there are six constants which can be

measured in principle. Neglecting the overlap term 	 these

six measurables are a function of only five parameters of the solid,

and E , 	, so that the latter can all be determined

from experiment. Wheat^^'al I^C. )is included, the number of parameters will

exceed six, although some of the additional parameters may be negligible.

Thus an approximate determination of the largest parameters may still be

possible. The situation is similar for the group IV elemental semiconductors,

where P"N= IC c	 etc. In this case there are four measurables, three

theoretical parameters when the overlap term is neglected, and more than four

parameters when the overlap term is included.

r

t



I	 I	 _I	 I	 I	 I	 I
1	 f

30

B. C vs. re

An empirical determination of the factor C entering Eq. ( 74) for

a given material is possible if corresponding values of c and Ik are known.

To examine any possible trends in C	 , we have plotted in Fig. 3 experimental

values of E versus experimental values of re /(.W O	 for the six III-V

compounds for which we have data on both quantities. Remarkably, the points

for In 	 , In As and In 56 fall on an almost perfect straight line.

Clearly, however, more data is needed to determine whether or not this trend

applies to other series of compounds as well.

C. Effects of Correlation

To examine the quantitative effects of correlation, one needs

values for the Coulomb integrals ),( and K . Values for 1( are readily

calculable from Mann's atomic structure results. 9 In terms of his two

electron F and CT integrals, one finds for an 5 e3 hybridll

Z( 6LF`(xo;ko)t6F°( 7LoihI) +4Gr(m 

.t 1-4s
 

F'

	

	
(77)

 (^t^i^I

where A is the principal quantum number and A = ° and .Q -1 are the orbital

angular-momentum quantum numbers of the S and P wavefunctions. The values

of 74 so determined for the group III, IV and V elements are given in Table 1.

Good estimates of	 are more difficult to obtain, however,

without detailed calculation. One can infer from Eqs. (8) and (9) that

for the group IV elements. The upper and lower limit3 on ^ are, respective-

ly, the values for very small and very large separation of the two members
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of the bond. Equivalently, one can view these limits as those of large

a
and small (5 ,+^ r ) overlap of the ^ 'L	 hybrids. Most calculated values 

12

of 5 lie in the range 0.5 - 0.7, so that neither limit is probably appro-

priat p . One might expect a dependence on S like K 	 5 ti I• (I :.)	 ! t

1
With S = 0.6 this leads to the formula V4 = (1.(- For lack

of a better prescription, we have based the calculations discussed below on

this equation. The assumed value of K is clearly important, however, be-

cause of the large magnitude of ?t

For LI t- K it is desirable to obtain new empirical values of k'

before trying to estimate the quantitative effects of correlation. The 11C

value of V, ,which we now denote as V2 
if c	

was obtained by fitting

En.^ E1,	 (the anti-bonding-bonding energy gap) to the principal experi-

mental optical absorption peak E L . In a two-electron theory L r • L. 
1.

is to be replaced by E Gz - E4 , as is obvious from Fig. 1. It readily

follows from Eq. (22) that one must have

Vz = Yslic	 l'" V4^v C_
	

(79)	 '

in the Falicov-Harris limit to fit the experimental G ; . Clearly, l,', <

for V4 > o In Table IV we list our refitted values of V, together

with other relevant parameters for the group IV elements. The quantity

a /V,	 is the factor by which the susceptibility X is multiplied when

correlation effects are included. This factor tends to resist change as

U - h is increased, because V2 is decreased while ( is increased. For

the case of silicon one requires a value of )' = 1.44 to fit the



32

experimental dielectric function if Vp. = ( b(- e4/d ) /-^ . Not unexpectedly,

this value of r' is significantly greater than the values we have calculated

from Eq. ( 36) using Herman-Skillman wavefunctions. (Sea Table III).

1,1hile the effect of correlation on Z and C is partly adsorbed

into V2Hc
	

, the same is not true for re and ( 	 The quantity

entering Eqs. (69) and (70) is increased by a factor of VA 3 1• l 	 when

correlation effects are included for the group IV elements. From Table IV

it is clear that this factor can be significantly greater than one if 'ln- h

is not small. In this case both 
T 

and V,; 1 are increased as ;,t' K is

increased.

Just as 
V1kc 

is replaced by Eq. (79) for V in the group IV ele-

meats, V3 HC , the HC value of V,3 , must be altered for the binary compounds

when correlation effects are included. In this regard, it should be noted

that the V3 He , which were empirically determined by fitting to the experi-

mental dielectric constant of each material, are consistently smaller (except

possibly for SiC) than one would predict on the basis of the formula

"V3 _ (E^- Ca^^2	 (See, for example, Fig. 3 of HC) This situation is further
r

aggravated when the renormalization factor of ^1- .5 , 	is included in

To see if correlation effects might help account for the small values of

we have made the following two calculations. First we have calculated

E, c C - Ec	 for eight binary compounds, using V, 	 V,	 deter-

mined from the Hartree-Fock values of L, and Cn given in Table I, and

(i.e., no correlation). These calculations were then

repeated using V. (as given by Table IV), the same V, , and r, = t 3, it

[In the latter calculations it was necessary to solve

the cubic equation (20) with X a = 11 n k - 2 V3 ) V.	 and

r,
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X. = ( uc — K +2 V; ) / Va	 .1 Tile results of hnth seta of ralenlnf-inns

are plotted in Fig. k together with the experimental values of G . '111e

general tendency is for C. to increase with increasing v, and to decrease

with 4-:creasing I'JA,^^e. - k I . Except for SiC and BP, it would appear that

our calculated effects of correlation have overcompensated for the larger

values of V3 . of course, these results will most probably be modified

when overlap effects are explicitly included. Note, for instance, that the
i

1-S' )- '	 factor increases V. by 25% for S = 0.6.

rj

ai

Ik

i

l

i';	 i
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V. CONCLUSIONS

We have attempted here to illustrate the essential features of a

two-electron bond-orbital model by consiaering the simplest special case of

a full theory. We have seen that several classes of problems can be readily

treated using this model as a basis. In addition to the :ion-magnetic pro-

perties considered by Harrison1 and HC, such as the electric susceptibility

and the dielectric constant, magnetic properties, such as the nuclear ex-

change and pseudo-dipolar interactions, fall naturally into the scope of

such a theory. Moreover, for each property it is possible to assess the

quantitative effect of electron correlation in the anion-cation bond. It

is clear that the empirical HC parameters V, ,Ifc and 'V,. H( must be re-

adjusted when correlation parameters such as 'T¢ are introduced. The pre-

VC N.

liminary indication is that Vi <  	 , while V3 7 V, for V H > :.

In some properties the appearance of Vq will partly compensate for these

changes, such as appears to be the case in the electric susceptibility. In

other cases, however, the effect may be cummulative, as seems to be true for

the nuclear exchange and pseudo-dipolar coefficients.

There are, of course, a whole series of additional properties of

tetrahedrally bonded solids which one can examine within the framework of our

two-electron bond-orbital model. A natural extension of this method would

be to the calculation of the magnetic susceptibility. Although we anticipate

such applications in the future, it will first be desirable to generalize

i

.r

i
i
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the model to include overlap effects explicitly before proceeding further. i

This will be , done in the second paper of this series. it will also be
!1

j	 essential to obtain more accurate estimates of the correlation parameter

V4	
f

I f	
'!
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TABLE I

Intra-atomic parameters of interest for the group III, IV and V elements in-

ferred from the Hartree-Pock atomic structure calculations of Mann (Ref. 8).

Values of -Ca	 and U are given in eV, while and p -ze given in a.u.c

Element -Ca,c U
;R 

= 915 p /S2

B 9.68 13.96 4.21 0.776 0.0789

Al 6.96 9.27 5.44 1.09 0.0661

Ga 7.14 9.37 9.34 2.89 0.0596

In 6.56 8.43 11.1 4.46 0.0654

C 13.14 17.62 5.91 1.66 0.0856

Si 9.38 11.34 6.94 2.03 0.0759

Ge 9.28 10.96 11.0 4.73 0.0708

Sn 8.33 9.63 12.7 6.75 0.0758

N 16.92 21.20 7.78 3.02 0.0898

P 11.95 13.27 8.44 3.27 0.0825

As 11.46 12.36 12.5 6.85 0.0786

SU 10.11 10.67 14.1 9.23 0.0832

i
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TABLE II

Nuclear exchange and pseudo-dipolar coefficients for group IV elements and

group IV and III-V compounds in units of the direct dipole-dipole inter-

n
action coefficient. The bond length d is given in A.

re/rdd rpd/rdd rpd/ra
Element d

Theory	 Expt. Theory	 Expt. Theory	 Expt.

G 1.54 0.0253 0.00444 0.175

Si 2.35 0.473 0.0735 0.155

Ge 2.44 3.35 0.487 0.145

Sn 2.80 11.1 1.72 0.155

Sic 1.88 0.0828 0.0137 0.165

BN 1.57 0.0177 0.00307 0.173

BP 1.97 0.0909 0.0151 0.166

BAs 2.07 0.234 0.0379 0.162

AIN 1.89 0.0597 0.00958 0.160

Alp 2.36 0.296 0.0451 0.152

AlAs 2.43 0.768 0.114 0.148

A1Sb 2.66 1.17	 -0.0 
a

0.180 0.154

GaN 1.94 0.174 0.0267 0.153

GaP 2.36 0.807 0.118 0.146

GaAs 2.45 2.12	 0.66a 0.301	 0.47c 0.142	 0.71

GaSb 2.65 4.17	 1.89a 0.610 0.146

1

i
?b...



TABLE II (Continued)

InN 2.15 0.347 0.0554 0.160

InP 2.54 1.35	 N 0.55b 0.205	 1.0b 0.152	 1.8

InAs 2.61 3.64	 2.06' 0.:38 0.148

InSb 2.81 6.82	 5.28' 1.04 0.152

'R. K. Sundfors, Phys. Rev. 185, 458 (1969).

bM. Engelsberg and R. E. Norberg, Phys, Rev. B5, 3395 (1972).

l;	 c	 (1974)•R. K. Hester, A. Sher, J. P. Soest and G. Weisz, Phys. Rev. B10, 4262 

rt

t

40

t

i1

d



1	 1	 1	 1	 1

TART   I1-

Sensitivity of various parameters of silicon to small changes in the atomic

s and p wavefunctions making up the sp a hybrid. The symbols lIF and HS de-

note results for Hartree-Fock and Herman-Skillman calculations, respective-

ly. Values of -e a c are given in eV, while x is given in R.
e

HF HS HS

Configuration 3s23p2 3s23p2 3s13p3

-Ea,c 9.38 8.29 8.84

x 0.359 0.388 0.333

Y ` 0.471 0.501 0.509

6.94 8.02 8.15

2.03 2.69 2.90

0.0759 0.0753 0.0187

r e/r dd 0.473 0.844 0.895

rpd/r dd 0.0735 0.130 0.145

rpd/r e 0.155 0.154 0.162

1

`f

i

fE

^F

^F



Effect of nn"elatinu on the parameters of the two-electron bond-orbital

model lof the group IV elements based on the assumption that V 	 = ^U~e^/d\/5"	 (	 ^
4	 ^	 '	 ''

J1OThe quantities Y.2	 v the Darziaoo~Ciraoi value of V2^ our (refitted)̂  vaIue of	 |	 '
^

z	 4V 	 and V	 are given in eV.

|

Element	 ^2	 ^2	 94	 l/8}{	 8	 E	 ^2	 /V2^	 ^2	E/^2
BC	 tic	 DC	 ^

^

 | 	 `
O	 6,10	 5^21	 1.66	 0.32	 1^28	 1^26	 0^84	 1^59

^

Si	 2.20	 1^59	 1.04	 0^66	 2^01 1^81	 0^69	 2,51 |
!	 !
|	 ^̀

Qa	 2^15	 1.56	 I^Ul	 0.65	 1^99	 I^OU	 0.69	 2^48
>

Do	 I^76	 1^23	 O^UO	 0^73	 2,18	 1,92	 0^66	 2,75	 '	 !
^

/

^
^
1

^

 .
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FIGURE CAPTIONS

i!

Fig.	 1. Energy levels of Harrison ' s one-electron bond-orbital model and the
II

I

present two-electron bond-orbital model in the Harrison and Falicov-
ii

Harris limits, as described in the text.	 Note that the six two-

electron states derive from the six unique ways (including spin)

that two electrons can occupy 	 E b	and E,t

Fig.	 2. Theoretical and experimental values of 	 Te /f'j,k	 the ratio of

the nuclear exchange coefficient to the direct dipole-dipole inter-

action coefficient, as a function of bond length in the group IV i
elements and various group IV and III-V compounds.

Fig.	 3. Experimental values of E -1 versus experimental values of

for III-V compounds on `,which data is available. 	 This plot is sug-

gested by the theoretical result given by Eq.	 (74).	 Note that

Fig.	 4. Theoretical calculations of the energy gap	 E, = E n	 L,a compared

against the energy of the principal experimental optical absorption j

peak t i	 for eight binary compounds. 	 The triangles indicate cal-

culations done with	 Vz^<
	 V; = (E c- E a^^-	 , and	 F _ 1r.,	 ii,

while the dots denote calculations done with our refitted	 the
g

same	 V3 , and ti' = CW0' Uc)1 2	 %175; as described in the text.
fj

a;f

The open circles for the group IV elements represent values fit to ^F

experiment.
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