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ABSTRACT

Harrison's one-electron bond-orbital model of tetrahedrally coord-
inated solids is generalized to a two-electvon model, using an extension of
the method of Falicov and Harris for treating the hydrogen molecule. The
s8ix eigenvalues and eigenstates of the fwo-electron anion-cation Hamiltonian
entering this theory can be found exactly even in the most general case.

In this first paper, however, the non—orthogonality of the anion and cation
g_E? hybrids is neglected to simplify the treatment and to emphasize the

nost essential features of the model. The two-electron formalism is shown

to provide a useful basis for calculating both non-magnetic and magnetic
properties of semiconductors in perturbation theory. As an example of the
former, we calculate expressions for the electric susceptibility and the
dielectric congstant. In the limit of no electron correlation, our expres-
gion for the susdéptibility agree with that found by .

Harrison and by Harrison and Ciraci. As an example of the latter, we calecu-
late new.expressions for the nuciear exchange and pseudo-dipolar coefficients.
A simple uhéétetical relatioﬁship between the dlelectric éonstant and the
exchanpe coefficient ié also found in the limit of no'corrélation. The
.expressions fﬁr the exchange and pseudo-dipolar coefficients are quantita—
.tively evaluated in the limit of no correlation for twenty elemental and
binary_semicondgctors, and the resuits ére éompared with existing experi—:'
men;al data. Preliminéry stu&ies on the quanﬁita;iva effects of correiation

on the various quantities considered here are also discussed.



L. INTRODUCTION

In a recent paper1 Harrison has introduced what he calls the bond~
orbital model of tetrahedrally-coordinatad solids. This model is a general—'
ization of the cruder linear-combination-of-atomic-orbitals (LCAO) model
originally proposed by-Hall2 for elemental group IV semiconductors and sub-
sequently considered by various others.over the past tweﬁty_years or so.

The LCAO or tight-binding basis set used in this model is made up of four
5_3? hybrids on each atom directed towards the four nearest neighbors in the
solid. At most, only one-center integrals and two-center integrals linking
nearest-neighbor anlon-cation pairs are rétained. In his first formulation,
Harrison neglected the nonorthogonality of the anion and cation hybrids,

although this was explicitly retained in the reformulated version of the

" model by Harrison and Cirac13 (hereafter referred to as HC). In any case,

the few surviving matrix elements'are fit t2.experiment and the emphasis of

the bondrorbital model is on understanding a wide range of properties of semi-

conductors and insulators-in terms of a few parametérs of the aniom-cation bond.

While Harrieon's borid-orbital model seems to be quite successful
in achieving its objectives, there are further refinements one might consider
incorporatiﬁg into the theory. One such refinement is the effect of electron
corzelation in the bond. = Conventional tight*binding theory, of course, ig a
6ne4electron method, yet the most fundamental property. of the bond is™ that

it contains two electroms. Tt is of interest, therefdre, to consider what

"modifications a two—electron botid—orbital model implies. In Sec. II of this
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paper we formulate such a model using a generalization of the method of
Falicov and Harr134 (hareufter referred to as Fl) for treating the hydrogen
molecule.

Our two~electron bond-orbital mo&el has several noteworthy features.
First, the conceptual simplicity of Harrison's original treatment 1s largely
retained. In the one-electron bond-orbital method one relates crystal pro-
pertles to the properties of the bonding and anti-bonding orbitals assoclated
with the anion-cation pair. The latter orbitals and thedir energy eigenvalues
can be found by diagonalizing a simple two by two matrix. In the two-electron
bond-orbital method, the two by two matrik'is replaced by a six by six, which
can still be diagonalized analytiecally even in the most generul case. TFor
the sake of simplicity and clarity, howev,r, we will confine our attention in
this first paper to certain limiting forms of the general results. Clearly;
all the results of our analysis can be used to determine how the predictions
of the one—elecﬁron theo:ylare modified in specific cases.

.An equally important fgature of the twd—electron formulation is the
appearance of the three triplet aﬁd twe singlet excited sﬁates in addition to

the singlet ground state. This allows one to perform, in a self-contained

- manner, perturbation calculations which involve elther singlet-triplet or

singlet-singlet coupling. An example of the former is the indirect inter-

action between nuclear spins via the bond electrons. In Sec. III expressions
for the nuclear exchange and pseudo-dipolar interactions are obtained for

the first time in terms of bond-orbital-model parameters. An example of
singlet~singlet coupling is the induced polarization caused by an external

electric field. This is the perturbation involwvad.in the calculation of the



dielectric constant, which we also consider in See. III. The quantitative
predictions of the formulas derived iﬁ Sec, II1l for real semiconductors are

considered in $<c. IV, and in Sec, V we draw. our conclusions.



II. FORMULATION OF THE TWO-ELECTRON MODEL

The twb—electron bond-orbital model 1s most_simply and elegantly
formulated in the language of second quantization. In this treatment it is
necessary to assume that the anion and cation 5_2? hybrids, e.fl. <p“1 tl?)
_and' ¢%1(;2) , are orthogonal. While the actual overlap matrix element

S = § ok @) (M dF @

may be quantitatively large, in conceptual terms the inclusion of overl pp
represents a refinement on the basilc theory. This overlap may be incorpor-
ated into the theory without fundamental difflculty, and will be treated in
the second paper of this series.

The Hamiltonian for a general many-electron system can be ohta.aed

in second-quantized form from the prescription

H= {yfy [T+ Vo (EY] W (FYd P

b3
) ,- . e Ly, R Pk T 2
+ 5 v V@) e vrtE e @
| -l
where \{"(F) and \l)+(F) are the usual field operators, T is the kinetic-
energy operator and Vext(?) is the external potential arising from charges
other than thoge of the electrons under consideration. We wish to focus our

attention on the two electrons contained in a single snion-cation bond, so

in our cdse



L ¥}

Yy = Cat fup (F) + CM‘i’M(") + Cop Pep 7Y * L-‘¢"-‘“ ’
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where C:} “and CM , etc. are the usunl Fermion creation and annihila-

tion operators, and

=N Py + V(B + . ve(d)
'\fﬂt(;—\ Ve (1) e S . (4)
The potentials Vo) and Ve (')  are centered on the anion and the

cation, respectively. Hach of these potentials includes a bare-icn p.otent-
1al due to the nucleus and the coré electrons plus the potentiesl associated
.with the three filled hybrids not involved in the bond.in question. The
potentital Vt(F) :Ls ihaL arising from the nucleus, core and four Iilled
hybridé of the 'i_th' neighbor of the anion-cation pair. B

Using Eq. (3) in Eq. (2) and setting Mgt = C.-L? Cot , etc., one |

obtains in a straight-forward manner

Ho= 6 (Tapt Mas) + &0 (et Tes)
+ P
-V, { C:T Ley T C-i:b Cey T Car Cap F Lo Gy )
+ N Mar Mag  t Yo Tler Ty

+ K (ﬂmf'ﬂ f.’f + Map Ry t Teas Nep ¥ May Moy ) "y
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vhere &, and €. are the one-center energy cxpectation values:

o= (s YL Tt Ve (Y Loy () 47 ©

with a similar expressism for E:,_ s Vi 1is the two~center transfer or hop-

ping integral (called the covalent enexrgy by HQ)

V. =~ (%,,; (F3ET+ Vzat(F>] ‘{’cf('f)“’: ¢ )

o

Mk and 'b‘; are the one-center Coulomb integrals:
. K, ' t*.'z =¥ i -y
Ug = W <{)M () d)M(\-’) e B, (P P (VAP (g

with a s:[.;uj.lar,(axp,ressidn for U, ; and K is the two-center Coulomb integral

en‘.

= (§ 4 P83 E TFoRT ) Ry (TR

The remaining two~center Coulomb integrals have been get to zero consistent

with seuj&ing S=0» in Eq. (1). 1In analogy with FH, the following identi-

ties caﬁw,' ‘be derived from the»fact that there are two electrons in our system:
Yl-c\f’ + Pn_ﬂ\b = 2~ ( ?1C1'+ nC\L)

| B ('nuf ‘ﬂq‘b '1'7?;.;:- '.)?..;L)

(%CT‘rﬂC-‘L .) = |t nq-'nc\i, - %o.f 71&&

:’l;’i
i R/ B . u



These results can be used in turn to simplify Pq. (5) to the foxm

— / d _ . /
H=¢& +& +K+ L H wn

where the (dimensionless) Hamiltonian, H, is

! !4 " . t
H = X“ 71,0.? ’n,&; + Xc 7?-::1' 'n-CL - L ('t-T Ter t Co.; Cer : (12)
+ .
+ Cep Cap Cc!; Cays ) )

where we have set

= (Ua=K) /W, — (& - &) /%,

X a
Ko = (Ue-KY/V, + (-0 A

? ! '
For £, =& and o.= We » the Hamiltonian H given by Eq. (11) is

formally equivalent to that considered by FH.
A. Eigenvalues of H

To find the eigg_nvalues and eigenfunctions of H, we need only
consider dlagonalizing H‘ , since E;. + EL + K and V. are const'an.ts.
Again we follow FH. There are six linearly independent two-electron states
in terms of which all the eigpnstates of H can b.e expressed. Symbolically,
these basis states are. [_M Y |q¢.cL) R [o,p add 5 jetosy .

]M ¢d> and [CPald , where |atC}) means (o C:r tep ’
ete. If we denote these states simply as ]t , where ¢= 1 _J_,,. ST

then we ce’' solve the Schroedinger equation



H (MY = EniM2, oM=L E
' (14)
by making the expansion
vy = 2 &uli> | (15)
SN
In the usual way, one is led to the condition
- / o=
{ Hy ~ EN =0 | e
for the eigenvalues
. | | E‘,
EH = f, + & tK T V, M (a7

/

It is a straight-forward matter to determine the P{ij and Eq. (16) 1s easily

shown to be

- EM' .O. o n “ y
.o — EMF o - - ]
!
D O Xa_- EM 0 —" "" i
- L (18)
- ’ ’ B

D o 0D 'KC.‘ EH .--! —' ,‘

. i

0 o - - kg oo

.

- _\ I Y I' :



The six cigenvalues of Eq. (18) may be divided into three triplet-state

energies, which are degenerate and equal to zere for all X 4 and )(_k :
EP; =0 or EM ‘-“E‘:'f‘(f‘:’fk’ I " (19)

and three singlet-state energiles, which are solutions of the gubic equation

£F - (Xat X BT+ (XaXem 4 EL 2 (XarX) oy

The three roots of Eq. (20) may, of couzse, be written down immediately For
arbitrary X‘\and Xc , but it is more instructive to consider the speciai
cases -Xo. -.-.X¢ and Xa= "x.:_ » The formez case corresponds to taking i,
and 5.; = E; in Eq. (13) [or more generally ( Ua-MU, v = 2 ( Eé -~ &1,
This 1s the appropriate solution for the elemental group IV semicoﬁductors,

where the anion and cation are the same. We shall denote this as the

Falicov-Harris limit. Dropping the subscripts a and ¢ and defining

Vq, = ('L{"‘K)/‘z = VZ.X/:Z_

. (¢1a)
and
Xo=2 Va/V, | | (21b)
one can imadiafzely factor Eq (20) and obtain |
!
EE’. = 28+ U
- ag4 K F2U,
ot v, . o
By = 28+k+ L[ x 1 ooy J
o L o - (22) .

:2£’+K+V‘+ j-'\(“q-V)l'f‘v:},z

- . . P v . ) e . R o
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Clearly, -¢gr 1s the ground state energy of the system for all values of
and V+ . An cnergy-level diagram for the Falicov-Harris limit is shown iIn
Fig. 1.

The other speecial case, Xa ™= -~ X¢ , corresponds to  Wa = et A
in Eq. (13) [or moxe generally to Uo + e =2K 1. We denote this as
the Harrison limit, since one is led to the results of the one-electron bond-

orbital model in this case. Defining

| Vs = (gl~2)/2 = VX/2 ,

and

(232)

Y= 2W/v, . (23b)

the three solutions of Ea. (20) are again ecasily found and one obtains

Egp = &t &+ K
Evgq = &a+8c tK L Vi [T+
| | _ = E,.’ +_E: +k % D‘JV:“*'V;

(24)

Again = yr is the ground state energy for all V:_ and V; . Also note that
the state I]I) is degenerate with the three triplet states. The cnergy-
level dlagram for the Harrison limit ds shown in Fig. 1.

Because [ " is the total energy of two bond eclectrons, the proper
relationship between E g and the one-electron bénding energy _E}‘ of
Harrisonl-is

m b_ ee R B o @25)

F/
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where [from Eq. (9) of Ref. 1]

E, = (et e = (Wl I

(26)

and Ee,e is the electron-electron interaction energy, which 1s counted twice

in 2 Eb . Using the bond orbital

-

PUFY = Aah (P pe b, 4 LF) 27

and the fact that . + Mo = ] , it is simple to show that Lo = B

in the limit that %, «» Y = K . Equation (25) thus shows that

€a= E T K

= fcbq:("?)[‘r+ Va ] PagiF)dv

M D e by (F) &, (7P
+ g 4’&1 (¥) [v,; (r)t S o e s

| P - ¥ Pt

(28

+ L [qa:?-z?x Vi (FY oy (FY A7

with a simllar expression for 6,. . The_ first integral on the right-hand-
side of Eg. (28) is just the Hartree-Fock expectation value of [ .'l" 1

Va (-\?) 1. The second and third integrals, bn the other haﬁd, vanish ident-
._:Lcal_ly_.in the limit that 4?0_1, (F"}. .a.nd 474 (F) do not overlap. in real

materials, however, these latter terms may not be negligible.
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Similarly, uvne can relate the other five two-electron eigenvalues
In the Harrison limit to Eb and Ea, , the onc-electron anti-bonding energy
level. This correspondence ls illustrated graphically in Fig. 1. The six
two~el~ntron energy levels represent the six unique ways two electrons can
occupy ,Eb and Ea. +  Thus E',‘Zl corresponds to having two electrons (one
with spin up and one with spin down) in Eb . The four degenerate levels
E,» Eg» Eg and Eg arise from the four spin combinatieons one can
have with one electron in 'Eb and the other in [, . Finally, ., corres-

ponds to two electrons occupying E‘JL .
B. Elgenstates of H

Returning to Eqs. (14) and (15}, one can determine the expansion
coefficients @y using the calculated [, in the usuzl way. For the

three triplet states one obtains

[r™ = ey - i.’lﬁ'ﬂ?)

1Ty = jay = jas cd (29)
lwy = & (157165 = 5 (1aree>-lcrar ) "

for all X..\_ and Xr. . 'I’he singlet states are gi\}en by
M7 = ‘p'(g“, (X B 37+ (Xar B 4 (K B 60 G

[ X. EM)I"\T“‘D F(Xa- I‘MHCTCIP |
£ (Ko B LB Y(raraay e e |

il

(30)

e T, T, o m

72
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where

D(EQS = ‘_(-Xc" EI-:-Y-* (XA“E;.:Y +:zi.' (.X..:'Ep;) (Xu," Ep-:) J *.
| (31)

In the TFalicov-Harris limit, Xc = Xp,, =X s the singlet states are

found to be

{xy = 'in' ( [Mt&}) - ICT(L)’)
.

fvomy = [ XF+16 F X (s | L2 {1atary ¢ 1eres)
v (X 5 {X1g Y latery ¢ lctai>) | ’

(32)

where X is giﬁén by Bq. (21). Note that in this case 'll':\'[) dpes not fol-
. ! :
lov from Eq. (30), because DI{(Ey) vanishes. In the Harrison limit X - X,

L XY

= Y » on the other hand, Eq. (30) reduces to

lw>y = (z‘(va)“t [2( {arat‘,v——ic:fcw)—_-_‘r’Ucwcuuf {LT;\J-))}
Ty = £ (Y ey [y 7)) ()

| (33)
(Y EFEE ) ferery w2 (lateiy retasny

where Y is given by Eq. (23b).



TII. PERTURBATION THEORY

Just as in the one-electron bond-orbital method, one may now proceed
to calculate a wide range of properties uf the solid in terms of the eigen-
functions and eigenvalues obtained in Sec, II. 1In particular, if the bond is
subject to a small perturbing potential, one can employ standard perturbation
the&ry to calculate the energy shift i ‘duced by the potential. We consider
here two such calculations. The first is the energy shift resﬁlting from the
applicétion of an extermal électric field. This, of course, leads one to
formulas for the electric susceptibility X and the dielectric constant € .

The second calculation we consider is the energy shift induced by the magnetic
interactlon between the nuclear spins and the bond-electron spins. This cai—
culation leads cne to expressions for the nuclear exchange and pseudo-dipolar

coefficients Fc and FFd
A. External Electriec Field

If we apply an electric field E? to our system, an electron will
gain a potential energy u{;‘ =er . é . Following HC we chose thé origin
for ° at the geometrical centér of the bond and take E? in ‘the +¥X direc-
tion. This makes the caléulation of the endrgy shlft equivalent for all
bonds in the solid and we thus aeed only consider the calculatilon for an

isolated bond lying in the (Ifl) direction. With this geometry Ilé _

becomes

14
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U = ( %+XU€€
= (‘;%}'—;""7(:_\ eé } ' (34)

vhere Xa and 3((_ are ¥ coordinates measured from the anion and the cation,
respectively, and A is the bond length. The corre_sp‘onding Hamiltonian in
second-quantized form, HE. , 1s found from Eqs. (2) and (3) with V.. - o,

Using the first of the identities (10) and neglecting all overlap terms, one

. finds

= / \ . / 5 :
H, = FReRe) = A (g e+ (gt e e 2

H (35)
- where h')"(&:—-. <4’a1~\x“‘¢qb> ) _)Z; 5:"‘<4’.;1~’>(:.|’-pu:’ and
3 Y( +§:c..)
_Y’ — I - ‘j: ( d& : (36)

The definition of )’" glven by Eq. (36) is the same as that made in Eq. (106)
of HC. Also note -X—cu and —)'(-c_ are expected to be positive quantities, be-
cause the EI:_B hybrid on the anion is 3 List>~+ 1Riy + 1Py + | Py >

while that on the cation is ;'sz[ 17~ | f’;-‘)- Iﬂf?"ff';}_‘. Thus Vg = % 4%
' and *e =3L<SCIK¢| P>, which are both positive because the § and p
wé.vefunct:f.ons will have the same sign at large . This implies ‘({'4[

and we have confirmed this for the case of silicon, as discussed in- Sec Iv .

below. Because X.— X, is a constant, one cam write

{!
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HE_—;‘(.R‘:‘X&\!’ZZ ‘- H‘i. ea J (37)

so thut the energy shift out of the ground state to second order in & Is

. A u e s GIH MY M 6>
Agr.—-[;(xc-me(C‘rlHalG/]ut +r§mr sy ez) (g

where we have denoted |{¥I7 as [&> and Ey as Eg; . From
elenentary electrostatics considerations, one has in each unit volume of the

solid

T aE = - 2 | Po"é’)-é_"%ﬁl ‘ (39)

BONDS BoNDs

-
where P, is the (zero-field) polarization of the bond. Comparing Eqs. (38)
and (39) one has

P o= - B [(X-R) - <6l Hilg> | (40)

and

4

v e - NS LGl MM G D

Mol Ee - Ew 5 (41)

whezre N is the val‘ence.. electron density din the sd_lid. l(Note that N/;_ is
the dgnaity'of bonds; since tﬁare afe two valeﬁce eléctroﬁs per bond.). Tt
is a straight—foﬁgarc} matter to work out the matrix elements {M| H{’G)using
~ Egs. _(29); {30), (35), and (37). As .e:.cpecte.d,. the eiécﬁric f‘ield-does'not

couple the ground-staté éinglet to the three excited triplet states, so

DooEw
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{mlingla7 =o, M= LT and o
‘ (42)

On the other hand, the ground state is coupled, In general, to itself and tb

the two remaining singlet states:

{. . r' _ ] o I _ "E’ Kc_E-,r "
(MI¥ei&? = F5Epen [(X B0 EQ) - (X EQXED |
M=, T, and UL,
Let us now examine the above results in the Falicov-Harris and

Harrison limits. In the former case, the only-non-zero matrix element is

(| H 16y  and using Bqs. (22), (32), (35), (37) and (40)-(42), one

finds
Po =0 )
and
. N(T ed)
K =
2 V. p ) (45)
where

B= [ X (X*+0)+ (X*+8) [ +10 1 /32 (46)

x

= |+ 4+ X +5 X"+ -----

(43) |
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Clearly, F?l for X »® and (3"‘?1 asX‘-"L‘ . The

dielectric constant in the Falicov-Harris limit is thus

é::l't"q"ﬂ'x'

N (rledY L (47)
[ T v
3 "P »

Fd #»
In the Harrison limit both <'[I[ I He ,q‘Pand (G,Ha lc{?are non
zero. Using Egs. (24) and (33) together with Eqs. (40)-(43), one obtains
in+this case:

:_a > \r- ('){c-i— 3 ! s
P° - @ [ 3 d .‘k__ t+ Y 10(P ] éP , 48)

where O(P is Harrison's polarity parameterl

dp = RAYERRYS , - (49)
and _ '
CON(wed) WVt
_% N | 2. (V> +) 7 (50)

The dielectric constant is ‘thus

N | | (51)
N (ed ) V. -

3 ( VJL""\GF)#" ,

€= 1t
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Bijuation (51) for & agrees with the corresponding result obtained by
Hf_irrisg_)nl and HC. In HC all corrections to Eq. (51) are adsorbed inte y/

bir fi‘é‘ting £ to experiment. This leads to values of ]" greater than one.

It is dmportant to note that in both the Falicov-Harris and Harrison
limits 'X/ can be expréssed entirely in terms of EéI - Em and matrix ele-
ments of lér> . Any explicit reference to the eigenstate [T can be removed

by the ideritity

(G’(H{)nlCﬂ = | (miHsja? R H;](-T7Ih} (52)

which follows from the completeness of the states |M 7 , Eq. (42} and the
fact that ¢ T{I HE’ | & > =0 . This is consistent with the fact that
Harrison and HC cbtained thelr expressions for & withouf reference to the
one-electron e_mti—bon&ing orbital.
. It :L;s of interest to compare Eq. (45) with Eq. (50) in the case
that V; =0 , that is, for the elemental group 1V semiconductors. Clearlf/.,
for fixed Y' and 'V, , %is décreased by a féctor of _B*‘ wh.en electron
cofrelation effects are includéd. It follows that (Y')l/ Ve will be
increased by é factor of { if the dielectric function .ic fit to exia‘eriment:
with Eq. (47) insf:eaﬂ of Eq. (51). In Sec. IV below we make sbme rough esti-
mates of Vj and(-’» for the group IV elements.

It is also instructive to .examine. the polérity of the stéﬁes { O
and |¥L 7 = l(;) which are coupled .byz . The polari.tsr of state (R

is naturally defined as

y ) N _ T o
"{f = 0‘3_M ”_o‘ﬂrﬂ , o o (53) -
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where l;, and 4y are expansion coefficlents entering Eq. (15). In the
Falicov-Harris limit o{‘aﬂ =D for all slx states, as one expects and as is
obvious from Eqs. (29) and (30). In the Harrison limit, on the other hand,
oi;r = "lf' and Oﬁam"" [ , a5 can be inferred from Eq. (33). (Also
note that Di?v 5 o= 0{‘» .} Thus for materials 6t:her than the elemental
group 1V semlconductors there is a shift in polarity, and hence a shift in
the distribué-.-ion of the wavefunction, between the excited and ground states.
This import::ﬁxt feature is absent in the more familiar Penn model’of the di-
electric constant and partially explains the difference between that result

and Eq. (51), thus verifying Harrison's speculation to’this effect.®
B. Maguetic Interaction

4—4
An electron with spin "-1:_‘ T ¢ in the presence of a nucleus with

i

Spin ] will change its potential energy by

—p

ua"—" I - - g ' (54)

1}

where

(55)

In Eq. (55) Mp is the Bohr maguneton, T 1is the gyromagnetic ratio and
is the position of the electron relative to the nucleus. Representing the
cartesian coordinates of ? by the usual Pauli spin matricies and using Egs.

(2) and (3), the perturbing Hamiltonian is found to be

_ S : : 7 *
- N = T + A Ner - N t ou Cat Gag '
Ha ‘50.(71{?1 'nﬁ_i.). e (et c4) * (56)

: A. + S ' ¥+
+- g&- Ca¢ Ca‘r + . EC, (-c't‘ Ccd, -+ EC, L,_-b C‘.'T
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where again all overlap terms have been neglected and where we have set

— o] A
Aa= Lo+ Aa 2 (57)

and —

ga'—'—" Ia, 'K‘x '(%“;a)

with P\a = <4’a¢l A lci’m b and simlilar expressions for 4, , . and
Ac_ . Using Eqs. (29) and (30) together with Eq. (56), one may again obtain.
the matrix elements < M| HAlGr 7 without difficulty., In this case, the per-
turbating Hamiltonlan HA couples the ground-statessinglet only to the three

degenerate triplet states:

KTl Hle> "= KTl HalG > = =% V. B (R-8) (- 8)/E,

2 . (58)
J{miMale») = = Vo B (2a-2) /E,
and
{MIHAlG 7 = 0, M=T, V. .and ¥ ,
where 7
E‘__:' = -4 (Xa"’ Ec,rf(x-c’ Ec:)'z (5'9)

Vi B¢ D*(EJY -

. - , gl r
(Note that Eb is a positive quantity, since 1—_& <0 .) DBecause };H s
for the triplet states, £ g - Eu= V_; ECT_ and the energy shift to

—)
second order in A is just

] (Tl HAleY) KT HaTE>]T
aE = . V, E, R

(60).

4

- [(Ea:"gcs(ga*'f'sck) + (.A“*Acfl /E"

R



Note that the dependence of AL on the parameters of the bond-orbital model

i contained entirely within the factor E,"' . This remalns true aven when
overlap 1s included into the calculation of (M? and EM , bapause -b‘:a:i PP ;
and Eﬁ"EM for the triplet states can at most be altered by constant
factors. Moreover, the only detall of the triplet states vhich affects F.

is the triplet eigenvalue. Any explicit dependence of E., on the triplet

eigenfunctions 1s removed by the ildentity

el 1ay = 2lcal il Kmfmla> ™

which follows from Eq. (58) and the completeness of the states fi"i 7o

Now using Eq. (57) in Eq. (60}, one has

More explicit expressions for AA and Ao can be obtained by directly insert-
ing i}f’ hybrids for | ‘l’,”-? and l¢:,'} 7 and discarding all matrix elements
which vanish by symme&y. Doing this, one finds

-a
) 2

=, ke _.;.:'1 2 An e
Aa = % /HB’F\”&[ R P ﬁ)“(sr‘“‘_“" 0] 63)

= o A
with a similar expression for Ac. . In Eq. (63 ., is a unit vector

directed from the anion to the cation and

A = ar s Sy ls> = Rsio) (64)
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where Rg“’) is the § radial wavefunction evaluated at the origin, and

p= <elv7Ple> (65)

where |I'7? is any one of the three P states of the hybrid. If one writes

A E as a sum of two cliemical shifts and an interaction term,

AE = = 4E, -sE.. T 4 Eac (66)

and uses Eq. (63) in Eq. (62), then

—3 “d e " .
e — 4 . T .1 p r. )
T r;)d [ 3 ( Il\ LTS “ Gis i B i

AEqu = "-“‘;F.e Tala * (67)
e P I
with a gimilar expression for 4 E“ and

In kgs. (67) and (68)

P{"'C = /ut: ‘kz T‘o..rc. ‘: df]?’g:-‘&: + E—% zﬂ" F‘] /Lf-' (69)

and

ag IL Q. AR 1 v . ."
rf‘d T jAB T;l Yo\ T& [—fl—o‘ (45‘7‘ (Ft_.- + /.Sc {fm) * I:f_-; 9:,‘ }j x'!}_;f?'O)

Y-S aa 14 C e
with sinilar expressions for [, [lg » ¢ and [y . The quantities

'|"Q = l";cand rd = PF ;'r'are the nuclear exthange and pseudo-dipolar coefficients, .
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respectively., Note that l’;,‘; is dinherently positive and consequently the
pseudo~dipolar interaction is of opposite sign from the direct dipole-dipole
interaction, which is in broad agreement with experimental observation. 1In
Sec. 1v below we compare [, and r[‘,d calculated from Egs. (69) and (70) with
experiment. Finally, we observe that Eqs. (69) and (70) are similar to the
earlier results obtained by Clough and Goldbm:'g7 with a cruder model. For
the case of tetrahedrally bonded sc:lids,8 th2 essential differences between
our results and theirs are: (i) what we call E;' is an arbitrary., unspec-
ified constant 2) in their .treatfent, (i11) they do.not distinguish between
either /dg_ and 4, nor ¥, and P_ , and (iii) the term'involving
(,8: {',1 <+ ,5:' f’a\ ~ in Eq. (70) is a factor of two lé.rger than the correspond-
ing term'in thelr Bq. (24). |

It only remains to evaluate the factor E:‘ in Eqs. (69) and (70).

In the Falicov~-Harris limit, one obtains

E's 3w T

(71)
where _
"‘{ =+ [ x*+8 + X [X+1¢ ]/J}{"HL
= I+-—1£X+,5.£_Xz'+-___ _ (72)

As with F -defined in Eq. (46), '?-,,l forX;vo and 3‘ q-asx‘.;,

Thus for fixed Y/, the effect of correlation is to enhance both [ . and

i i



In the larrison limit, on the other hand,
. &
EJC = T 3
= " T -
b o)

% {73)

i
= T e ,

Y ‘
‘ vhere ., = U"JPL) '15 Harrison's covalency pau:aunczter.1 It is very interest-~
ing to unote that in this limit X , [-',_,_ and P[’L\ all have the same depend-
ence on V,. and V3 . Using this fact, one may obtain & simple relationship

between the dielectric constant € and I—'e :

é-lch‘/‘{:' (74)

§ _ wliere (= \FW (I‘%)L/[ﬁé’ﬁt Va ¥e (7%3:5:*'%' (,‘ P')g and an anélagous
result linking £ -1 to ri"l » In deriving Eq. (74) we have used the fact
that N = -‘;}ﬁ _/d"’ for a diamond or zinc-blende structure. | The quantity ¢
here is not necessarily a constant, but it 1s a function of only intra-atomic
! parameters. The origin of the relationship (74) can be traced to the degen-

: eracy of rt:he singlet state [T/ and the three triplet states in the |
Harrison limit. The inclusion of overlap terms alone into the bond-orbital
model will not Llift this degeneracy, as can be inferred from Fig. 1. The
inclusion of correldtion into the bond-orbital model, on the other hand, will
lift the degeneracy and hence modify the result. In the Falicov-—-Ha_rris limie,

for instance, the right-hand side of Eq. (74) should be multiplied by a fa.tor

of  BY = 4 X ¢ E KT oo




IV. APPLICATIONS

In this section we briefly cénsic‘.er the quant:itat:ive predictions of
the new Fformulas derived in Seec. III for real mateprials. Our analysis is nec-—
essarlly incomplete because of our neglect of ove.rlap terms In both the two-
gelectron bond~orbital model and in the perturbation calculatioms.

However, the above formulas are sufficiently realistic te expose signi-
ficant trends and allow us to draw some tenative conclusions. 1In this regard,
it should be mentioned that HC found that the effect of including the overlap
matrix element § in t1_1e one=-electron bond-orbital model was simply to renor-
malize V, by (- ¢*}? and Y’ and V; by (1-3‘)'* . Since they
eventually fit all three of these parameters to experiment, the effect of
‘oY, €, e amd [jy can, in fact, be dmplicitly included in Eqs. (50),

(51) and (73).
A, Pe.. and F\’d in the Harrison Limit

In order to evaluate our expressions for {, and PM in the
Harrison limit one needs, in additisn to V, and VB , -values of the
Intra-atomic parameters & and ¥ . Relevant values for these quan‘titiés are
available from the Hartree—Fock atomic structure calculations of Mann.9
Mara's values of y and P are listed in Table I for the group III, IV
and V elements of interest here. It is convenient to calculate (b and Voo
in units of [y = W TaY. /43 , the direct dipole=dipole interaction

- coefficient. In terms of [,y and the ratio
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R = L P/’ (75)

onc has, using Eq‘é. (69) and (70),

le /Pdd = C A4 ('*2 KuRf-)ds/ E,
r’Pd /Pf{d = Ch ,5;/3:2 ( Ru'f' ’Rc'f .KJQ‘R‘:) dh/Ev (76)

and

Pl’d /Pe = (Rn"'wc‘*‘gf\w&)/(”‘z‘g“w‘-) )

where C, = )‘sl /{8 . If P, and ¥. are expressed in .\,u. ,
is :l.n}i\, and E, i1s dn ¢V , then C, = 1.362 x 10"4. Using Eqs. (73) and
(76) and the HC values of V, and Vg' , we have evaluated e d R
and Pr'd / le for a total of twenty of the group IV elements and the group
IV and III~V compecunds. These results are listed in Table II together w'i'tﬁ. '
the small amount af'rel.evant experimental data available in the literature.
One can see from Table II that the theorétical t”'e is consistently

i.arger than the experimént:al value, while the reverse is true for iy

The theoretical values Of. f"e ’ howéirer, correctly follow the experiment-
ai trend of increas:l.ng r‘e | with inéreasing mean atomic number and 'co_nsa?
quently with increasl:zi‘,{g.bond length. ThiS':‘”:{;s.:: iﬁore clearly illustrated in

| Fig. 2, where we havé plotted boﬁh the th.eoretical and exp.erimental values

_of. T, as a function of 4 . One additional interesting result that can be

seen from Table IT is the almost constant value we calculate for the ratio
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Prd / Pc . This result is quite cjearly a consequence of the insensitivity
of R to atomic number, but it is not in accord with the two experimental num-
bers we have for comparison.

The lack of detalled agreement here between theory and experiment is
not unexpected, however, and a number of factors could be responsibie. One
important effect concerns the choice of 5 and { wavefunctions used in cai:
culating the matrix'elements_g and ¥ . The use of Hartree-Fock free-atom
wavefunctions 1s not necessarily an optimum choice for the solid. To test
the sensitivity of T’e and FM to this choice, we have calculated two
other séts of atomic wavefunctions for silicon (one .se.t for the ground state

38 S_E_?' conflguration of the free atom and one for the execited 3§ $p”

10 to the Hartree-~Fock

configuration) using the Herman—Skillmén approximation
potential field. These wavefunctions were used in turn to determine values
of  and ¥ and 1, and [; . The results of these calculations are
compared with the Hartrée—Fo_ck results in Table IIL. Clearly the Herman-
Skillman approximation has a large effect on the calculated magnitudes of

_Pp_ and FM s increasing these quantities by almost a factor of two over
the Hartree-Fock values. On the other hand, the configuration change f;‘om
35"':;121_ to 3§'_ 3]33 has a much smaller effect on [% and F’,.,{ separately,
bup.g larger effect on the ratio de /lwu .. The obvious implication from.
this study is that small changes in the atomic potential can significantly
alter the 3 a_nd I wavefunctions of the » i hybrids, malcing__ experiment a.
sensitive check on first-principles caleculations of [jq and )}y

A second obwvious e_ffect_ which could modify the results of Table II

is, of course, two-electron correlation. As menticﬁnéd in Sec.. II1, how.evt_ar,

coxrelation can at most alter the value of £, and consequently cannot affect



" vwhere

the ratio PVJ/["& . The preliminary indication is, as discussed below, that
correlation can significantly enhance the theoretical velues of [, and ."\

in the group IV elements. A similar effect in the III-V compounds would be

in the right direction for r]id , but not for [ . ’

| A third possible factor here is the overlap term ('k.hlf{ “,‘; /

which was dropped from consideration in deriving Eq. (56). Unlike the ordin-

‘ary overlap and correlation corrections to tite bond-orbital model, this term

could lead to a change in the ratio of H‘J/l"e\ . For this reason, we shall
want to inelude this term when we consider overlap effects inpaper II.

The accumulation of edditional experimental data will be important
in elerifying this situstion further. In particular, note that the chemical
shifts » L. and 4 E.. eech contain an isotropic pert with respective coupl-
. ny, ‘L: . . . . .
ing constants | and [, and an anisotropic part with coupling con-

n A - €C
stants P and If‘al

. Since these interactions will have differ-
ent angular dependences, they are separately measurable. Thus for binary
compounds, including [ and {;; , there are six const_anfs vhich can be
measured in principle. Neglecting the overlap term .<’f’¢] /i" Ihe » , these
six measurables are a function of only five parameters of the splid, PLERN
Ac » o+ P ad E_ , so that the latter cen all be determined
from experiment. When <{i] R M’c)is included, the number of parameters will
exceed six, although some of the a&ditional parameters may be negligible.

Thus an ép}_iroximate determination of the largest parameters may still be
possible. The gituation is similar for the group IV elemental semiconductors,
Tl_ﬂ& = i";_‘ , etc. In this case there are four measursbles, three

theoretical perameters when the overlap term is neglected, and more than four

-parameters when the overlap term is included.
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Bc 6 VS, rle,

An empirical determination of the factor ( entering Eq. (7)) for
a given material is possible if corresponding values of ( and /. are known.
To examine any possible trends in ( » we have plotted in Fig. 3 experimental
values of &  versus experimental values of r'e/ [ d* for the six III-V
compounds for which we have data on both guantities. Remarkably, the points
for IsP , IsAs and TnSh fall on en almost perfect straight line.

Clearly, however, more data is needed to determine whether or not this trend

-a.pplies to other series of compounds as well.
C. Effects of Correletion

To examine the quentitative effects of correlation, one needs
values for the Coulomb integrals W and K . Values for W are readily

9
calculable from Mann's atomic structure results. In terms of his two-

electron | ang G integrals, one Tinds for an $ p? hybridll

U= 17 [ Frosno)+ 6 F(Roint) + 46 (mointy + 9F(mriny)

. (r1)
36 2 .
+3F F(mint) ],
where ) is the principal quantum number and £ =9 =and {*) are the orbital

angular-momentum quantum nuwbers of the & and P wavefunctions. The values

of Y so determined for the group III, IV and V elements are given in Table I.

Good estimates of K  are more difficult to obtain, however,

without detailed calculation. One can infer from Egs. (8) and (9) that

R

e Ky | (18)

for the group IV elements. The upper and lower limits on K eare, respective-

ly, the va_‘l.ues for very small and very large separation of the two members
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of the bond. Equivalently, one can view these limits as those of large

and small (s~t¢) overlap of the & 33 hybrids. Most calculated \.ralues]'2
of S lie in the range 0.5 - 0.7, so that neither limit is probably appro-
oriate. One might expect a dependence on § like K~ U (=13) ¢
‘With S = 0.6 this leads to the formula Vg = (’bl“ e"/‘,;)/g . TFor lack
of a better prescription, we have based the calculations discussed below on
this equatioﬁ. The assumed value of K dis clearly important, however, be-
cause of the large magnitude of I .

For W+ K 1t 1s desirable to obtain new empirical values of \'
before trying to estimate the quantitative effects of correlation. The HC
value of V,_ , which we now denote as V,_ "e , was obtained by fitting
Ee~ Ey (the anti-bonding-bonding energy gap) to the principal experi-
mental opticél absorption peak E, . In a two-electron theory L.+ L )

is to be replaced by E - EQ , as is obvious from Fig. 1. It'readily

follows from Eq. _(22) that one must have
_ o he - - o
Vo = V"% (1= Vayy e (79)

in the Falicov-Harris limit to fit the experimental E‘: . Clearly, V/, <«
for .V4_ o, In_ Table IV we list our refitted va.lues of \v'rk, togel:hei:
with other relevant parameters for the group IV elements. The quantity
Vz.Hc/V, F is the factor by which. the susceptibility % is multiplied when
. correlation effects are included. This factc;wr tepds to resist change as
U~ K is increased, because V, is decreased .while f is increased. Fox

'

the case of silicon one requires a value of ‘[’J- = Ll.44 to fit the
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experimental dielectric function if Vi = (- e'/d Y&, Noc wnexpec tedly,
this value of ¥’ is significantly greater than the values we have calculated
from Eq. (36) us:l.ng Herman-Skillman wavefunctions. (Ses Table III).

While the effect of correlation on ’b and € is partly adsorbed
into VJ_HC » the same is not true for rle and ﬂ,d + The quantity
entering Eqs. (69) and (70) is increased by a factor of V‘m r&: /'\".._ when
correlation effects are included for the group IV elements. TFrom Table IV
it is clear that this factor can be significantly greater than one if 11~
is not small. In this case both “{ and V',:' are Increased as T{- KN is
increased.

Just as V,,HC is replaced by Eq. (79) for V. in the group IV ele-
ments, 'V;HC , the HC value of Va , must be altered for the binary compounds
when correlation effects are included. In this regard, it should be noted
that the V,“c » which were empirically determined by fitting to the experi-
mental dielectric constant of each material, are consistently smaller (except
possibly for SiC) than one would predict on the basis of the formula
V, = (éq_-fa.)/l . (Bee, for example, Fig. 3 of HC) This situation is Eurther
aggravated when the renormalization factor of (l- st )_m% is _included in_ Vo
T.o see if correlation effécts might help account for the sm.all values of [ °
we have made the following two calculations. First we have calculated
E.z Eg - Eg fﬁr eight binary compounds, using \,"¢ , V, deter-
mined from the Hartree-Fock wvalues of E:‘c_ and GL\ given in Table I, and
K= Ua = Ue ~ (i.e.; no correlation). These caiculations were then
rep.eated.g using V/, '(a;‘. .;;:Lv.en Ey Table IV), the same V; s and S N
-'ez/d ] / _L- v [In the latter calculations it was necessary to solve

the cubic equation (20) w:f_.th _X_az ('b{a" K-2 V; )/ V;. and
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}(.c = ( Ue-K *+2 Vs. )/V-,, '.] The results of both sets of calculations
are plotted in Fig. 4 together with the experimental values of [= , + 'The
general tendency is for E:. to increase with increasing V.-: and to decrease
with increasing fua,(_—Kl + Except for SiC and BP, it would appear that
our calculated effects of correla.t'.i'on have overcompensated for the larger
values of Vg . Of course, theve results will most probably be modified
when overlap effects are explicitly included. Note, for instance, that the

-1 : |
(1-5*) V. factor increases \f3 by 25% for S = 0.6.

'

W

o A




V. CONCLUSIONS

We have attempted here to illustrate the essential features of a
two-electron bond—orﬁital model by considering the simplest special case of
a full theory. We have seen that several classes of problems can be readily
treated using this model as a basis. In addition to the non-magnetic pro-
perties considered by Harrisonl and HC, such as the electric susceptibility
and the dielectric constant, magnetic properties, such as the nuclear ex-
change and pseudo-dipolar interactions, fall naturally into the scope of
such a theory. Moreover, for each property it is possible to assess the
quantitative effeet of electron correlation in the anion-cation bond. It
is clear that the empirical HC parameters ’V;Hc and T?g”c must be re-~
adjusted when correlation parameters such as \Z* are introduced. The pre~
ldminary indication is that 'V, < V.he , vhile V5 SV for Va »e
In some properties the appearance of VA will partly compensate for these
changes,.éuch as appears to be the case in the electric.susceptibility. In
other cases, however, the effect may be cummulative, as seems to be true for
the nuclear exchange and pseudo-dipolar cbefficieuté.

There are, of course, a whole series of additional properties of
tetfahedrélly bonded solids which ome can examine within the framework of ouf
two—eleﬁtron bond-orbital model. A natural extension of this method would
be to the célculatidn of the.magnétic sdsteptibility{' Aithough we anticipéte

such applications in the future, it will first be desirable to generalize

34



the model to inelude overlap effects explicitly before proceeding further.
Thig will be done in the second paper of this series. It will also be

essential to obtain more accurate estimates of the correlation parameter

Vy .
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TABLE I

38

Intra~atomic parameters of interest for the group III,' IV and V elements in-

ferred from the Hartree~Fock atomie structure calculations of Mann (Ref. 8).

Values of -E
a,c

?

and U are given in eV, while,g and P =xe given in a.u.

: 2
Element €. ¢ U P P M = 9/5P/%
B 9.68 13.96 4.21 0.776 0.0789
Al 6.96 9.27 5.44 1.09 0.0661
Ga 7.L4% 9.37 9,34 2.89 0.0596
51 9,38 11.34 6.94 2.03 0.0759
Ge 9.28 10.96 11.0 4.73 0.0708
- Sn 8.33 9.63 12.7 6.75 0.0758
16.92 21.20 7.78 3.02 0.0698
P 11.95 13.27 8. 44 3.27 0.0825
As 11,46 12.36 12.5 6.85 0.0786
Sb 10.11 10.67 14.1 9.23 0.0832 i

LG, | 7 o T i e | et



TABLE II

39

Nuclear exchange and pgeudo-dipolar coefficients for group LV elements and

group IV and III-V compounds in units of the direct dipole-dipole intex-

[0}
action coefficient. The bond length d is given in A.

0.610

0.146

I /r r_./r r /T
Element d el’dd pd’"dd pd’e
Theory Expt. Theory Expt. Theory Expt.
c 1.54 0.0253 0.00444 0.175
S 2.35 0.473 0.0735 0.155
Ge 2.44 3,35 0.487 0.145
Sn 2.80 1.1 1.72 0.155
SiC 1.88 0.0828 0.0137 0.165
B 1.57 0.0177 0.00307 0.173
BP 1,97 0.0909 0.0151 0.166
BAs 2.07 0.234 0.0379 0.162
ALN 1.89 0.0597 0.00958 0.160
AlP 2.36  0.296 0.0451 0.152
Alks 2.43 .~ 0.768 0.114 0.148
AiSb 2.66 1.17 ~0,02 0.180 0.154
GaN T1.94 0.174 0.0267 0.153"
GaP 2.36 0.807 0.118 0.146
Gahs 2,45 2,12 0.66% ©  0.301 0.47 0.142 0.71
GaSb 2.65 . 4.17 1.892
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TABLE II (Continued)

N 2.15  0.347 0.0554 0.160
Inp 2.54 1.35  ~ 0.55°  0.205 ~1.0° 0.152 1.8
InAs 2.61 3.64 2,06  0.538 0.148

InSh 2,81 6.82 5.26%  1.04 0.152

2R. K. Sundfors, Phys. Rev. 185, 458 (1969).
bM. Fngelsberg and R. E. Norberg, Phys, Rev. B3, 3395 (1972).

€R. K. Hester, A. Sher, J. F. Soest and G. Weisz, Phys. Rev: B10, 4262 (1974).
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TABLE III

Sensitivity of various parameters of silicon to small changes in the atomic
5 and p wavefunctions making up the EE? hybrid. The symbols lIF and HS de-
note results for Hartree~Fock and Herman—Skillman caleculations, respective-

are given in eV, while x is given in R.

ly.- Values of "Ea,c
HF S HS
Configuration 3523p2 3523p2 3513p3
X 0.359 0.388 0.333
v' - 0.471 | 0.501 ©0.509
P 6.94 . 8.02 8.15
P 2.03 2.69 2.90
R 0.0759 0.0753 0.0787
re/Tad - 0,473 0.844 0.895
T/ ad 0.0736 0.130 0.145

rpa/Te | 0.155 0.154 - 0.162
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TABLE 1V

Effect of corielation on the parameters of the two-electron bond-orbital

model fo¥ the group IV elements based on the assumption that V, = (u-e®/d) /5.

nc

The quantities VZ , the Harrison-Ciraéi value of VZ,'our (refitted) value of

V2 and V4 are glven In eV.

HC ' ' ' Ic ne,.

Element V2 V2 V4 1/2X% B £ V2 /VZB V2 E_',/V2
C 6.10 5.21 1.66 .32 1.39 1.36 0.84 1.59
Si 2.20 1.59 1.04 0.66 2.01 1.8 - 0.69 2.51
Ge 2.15 1.56 1.01 0.65 1.99 -1.80 0.69 2.48

$n 1.76  1.23  0.00 0.7%  2.18  1.92 0.66 2.75
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Fig. 1.

Flg. 2.

Flig. 3.

Fig. 4.

FIGURE CAPTIONS

Energy levels of Harrison's one-electron bond~orbital model and the
present two-electron bond-orbital model in the Harrison and TFalicov-
Harris limits, as described in the text. Note that the six two-

electron states derive from the six unique ways (including spin)

- that two electrons can occupy Eb and l;m .

Theoretical and experimental values of [le/l%4 , the ratio of
the nuclear exchange coefficient to the direct dipole~dipole inter-
action coefficient, as a function of bond length in the group IV

elements and various group IV and III-V compounds.

N L .
Experimental values of € -1 versus experimental values of ' */l.i-

for III-V compounds on which data is available. This plot is sug-
gested by the theoretical result given by Eq. (74). Note that
Nad* = 7" rnved

Theoretical calculations of the energy gap E, = Elg' Eq compared
against'thé energy of the principal experimental optical absorption
peak IZL for eight binary compounds. The triangles indicate cal-
culations dome with Vi'¢, U, = (€c-€)/2 | ana K= Ua 4,
while the dots denote calculations done with our refitted V', , the
same -V5,’ and.K = [(ua+lh)/l"qzﬂ/ﬂ.as described in the toxt.
The open cirqles for the group IV elements represent values fit to

experiment.
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