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Applications of Numerical Codes to Space Plasma Problems

T. G. Northrop
Head, Theoretical Studies Group
Goddard Space Flight Center

T. J. Birmingham
Theoretical Studies Group
Goddard Space Flight Center

F. C. Jones
Theoretical Studies Group

Goddard Space Flight Center

C. S."Wu
University pf Maryland

A Study of Applications of Numerical Codes to Space Plasma Problems

was conducted on January 7 and 8 by the Theoretical Studies Group at Goddard

jointly with the Institute for Fluid Dynamics and Applied Mathematics at

the University of Maryland. The organizing committee consisted of

T. G. Northrop, T. J. Birmingham, F. C. Jones (all.GSFC,) and C. S. Wu

(University of Maryland).

The purpose of the study was to expose space plasma theorists to

the capabilities of numerical codes developed at the Naval Research

Laboratory, and to assess whether space plasma theory and observations

have,arrived at the point where a large effort of the NRL type would

enormously enhance progress in space plasmas, or whether such an effort

would be premature.

in order to limit the scope of the Study sufficiently to fit into

two days, the committee decided to concentrate on three areas: solar

wind, Earth's bowshock, and magnetospheric convection and substorms.
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The aim was to have, in each of these three areas, two invited speakers;

one familiar with the state of observations and another with the theory.

The NRL group was invited to speak first, describing their numerical

codes and some of the problems successfully attacked with them. The

invited speakers in each of the three chosen areas of concentration

followed '„he NRL presentation. The presentations ended with a short

series of spontaneously generated talks by invited attendees. The Study

ended with a short discussion of the "where are we going, what should

we do" variety.

A questionnaire was passed out to the attendees asking for written

responses to the questions or for any other commertts.

The substance of each invited presentation is summarized in the

following pages.

T. Coffey (N.R.L.) 'Overview"

The N.F:L. group consists of 25 theoretical physicists and 25

computational physicists. The requirements for a successful group are

three: "a critical mass" of experts in computational physics and in the

appropriate areas of theoretical physics, large computers, and finally
t1

a strong link to experimental programs. The role of computation is:

1) to serve as a tool for understanding details ofphysical processes not

analyt^,cally tractable or experimentally accessible, 2) to extrapolate

beyond the experimental state of the art and to define experiments to

be performed to answer outstanding questions.
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A list of 14 recent N.R.L. computational projects was given and

each briefly discussed. The list included: 3 dimensional (plus time)

'	 {	 calculations of reacting neutral fluide, 2D and 3D models of auroral
k	

a	 ,
I

	

	 arcs and of the midnight auroral oval, and 1D to 2D Fokker-Planck codes

for collisional relaxation in plasmas.

Possible applications of the N.R.L. codes to NASA programs include

the following areas: solar wind flow past planets, modeling of solar

flares and transport in the solar atmosphere, detailed analysis of

Atmospheric Explorer data, chemistry and transport of Shuttle effluents,

planetary atmosphere modeling, ionosphere-magnetosphere coupling, and

interplanetary plasma interactions.

HJ. Boris (N.R.L.) "Computational Physics"

A computer performs two functions - bookkeeping and discovering

new physics. in spite of a large improvement in, computer technology

about 5 years ago, and better computational techniques (which gained

a factor of 10), it is still impossible to compute on microscopic and

macroscopic scales simultaneously. The macroscopic consequences of

microscopic processes must be fed into the macro codes after being

separately calculated.

i
Numerical experiments are desirable because: 1) actual experiments

i	 are escalating in cost; 2) increased leadtime is needed for experiments;

{III 3) they can supply scaling laws and quick diagnostics; 4) they can supply

quick evaluation of new concepts. Numerical experiments can: ^) make

S	 accessible regimes not accessible on Earth (pulsars, quasars); 2) study

scaling laws over large ranges; 3) study effects of changes in parameters	 F

in the problem; 4) permit changes in the basic physics. Numerical

r
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experiments are done by: 1) choosing the governing sets of equations;

2) discretizingj these equations; 3) creating algorithms to solve the

discretized equations; 4) writing and running the computer code; and

5) analyzing the results, in obtaining the governing sets of equations,

one must ofiAn synergize various disciplines, such as atomic physics,

magnetohydrodynamics, and plasma kinetic theory from the Vlasov equation.

The capabilities of :half a dozen particle codes were described.

They vary in the nimber of dimensions in which particles are allowed to,

move, the types of interactions permitted among the particles, and the

terms retained in Maxwell's equations. Similarly, nine fluid codes were

described. N.R.L. has found that fluid codes really bring the answers

to problems home to sponsors because these codes deal with macroscopic

quantities which are easily measured and visualized.

Recent computational advances include: 1) a solution to the Alfven

problem (i.e., how to account for Alfvdn waves in low density plasmas,

where these waves carry energy away, but their phases are of no direct

interest in the problem); 2) asymptotic integration methods (which

permit solution of "stiff" differential equation systems); 3) multi

fluid algorithms for counterstreaming fluids; A) use of dynamic magnetic

coordinates (a "natural" coordinate system); 5) development and use of

triangular coordinate systems (which permit following fluid interfaces

f , r long times); 6) flux corrected transport for solving continuity

equations (which permits calculation of shock propagation without

artificial damping)

Finally, the attributes of the 1I.R.L. Advanced Scientific Computer
e

0
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(to be delivered by Texas Instruments in 1976) were briefly described.

D. Papadopoulos (N.R.L.) "Multifluid Codes"

Microscopic processes in plasmas take place on a time scale of the

plasma period and space scale of the Debye length. Particle codes are

needed on the micro scale. Macroscopic fluid processes take place on

time scales that are slower by factors of 10 4 to 1010 and space scales

that are larger than the Debye length by 10 4 to 10L0 . It is impossible

with present computers or any..on the horizon to use the micro codes on

macro time and space scales. The microscopic effects must be modeled into

the macro codes. For each fluid there is a continuity equation, a m^,rentum

equation, and an energy equation. And the Maxwell equations complete the

set. In each of the fluid equations there are anomalous terms which really

contain the plasma physics, which may take months or years to unravel,

and into which go the results of microscopic calculations.

Several examples of such calculations were presented: 1) streaming

of plasma across a magnetic field; 2) penetration of a magnetic field

into a plasma (in a laboratory experiment); 3) non-linear damping of

magnetosonic pulses; and finally 4) overtaking of slow solar wind

streams by faster ones.

The computer model of this last phenomenon attempted, with some

success, to reproduce observed features (ion heating without electron

heating, and helium to proton temperature ratio of 4-5, as examples).

However, a brief discussion (and a much more extensive one later in the

Study) revealed disagreement as to the observations and raised questions

SY

C



re the adequacy of the computer model.

Editorial comment: Here is a problem where much more coml

modeling, guided by close collaboration with the experimental

is almost certain to yield results.

i
{

S. Ossakow (N.R.L.) "Ionospheric Irregularities"

Numerical modeling of three phenomena was reviewed: 1. I

instabilities, 2. Dynamics of barium cloud releases, 3. Spr(
F

1, and 3. produce ionospheric irregularities naturally, i

produces them artificially. Ionospheric irregularities are t]

of instabilities and degrade communication and radar. To get a predictive

capability is a goal of numerical simulation. The models are principally

2 dimensional, since modern computers cannot really do 3 dimensions with

fine resolution. The dimension parallel to the magnetic field is usually

integrated out. For the equatorial electrojet the numerical experiments	 a

succeed in generating the observed short wavelength vertically propagating

instabilities from the long wavelength horizontally propagating gradient

drift instabilities The barium cloud release numerical models show

that the E region conductivity should dominate what happens to the

I	
_.

barium plasma when the release is in the F region; in fact image stria-

tions are predicted in the E region and could be looked for as a test
t

of' the `model. This is an example of the predictive capability ofi

numerical models

Remaining ionospheric irregularity problems can probably be attacked

si 6cessfully now, although much effort is required.

LL 'k. ORIGINAL PAGE
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N. Winsor (N.R.L.) "Modeling Laser Plasmas"

Laser pulseis impacting solid deuterium -tritium is being tried as

a source of hot, dense, plasma for controlled thermonuclear purposes.

Other applications are as an intense source of X-rays, and to produce

in the laboratory highly stripped atoms of astrophysical interest.

When the laser pulse hits say an aluminum Target, the metal is

e^!aporated, ionized, and propelled outward from the surface by the

pressure gradient. Densities are such that the plasma is optically

thick. The numerical calculation must thus handle three types of physics,

all linked - the magnetohydrodynamics, the atomic rate equations, and the

radiative transport. The calculation correctly predicts the total

X-ray output and spectrum. Conversion efficiency of the laser pulse

to X-rays is as high as 50%. Experimentally, where the laser pulse

is obliquely incident on the aluminum, rather than normally, the X-ray

output is reduced. This reduction is due to decreased plasma temperature,

but has not been quantitatively predicted numerically, since the numerical

code is axisymmetric about the laser beam.

Editorial comments: 1. The geometry of a laboratory problem can

be adjusted in contrast to many space problems. This simplifies numerical

work. 2. The laser fusion effort has profited greatly by having

a sizable group of theorists of diverse expertise and computational

experts working closely with the experiments.

L. Burlaga (Goddard) "Solar Wind"

Burlaga reviewed the particle fluxes in the solar wind. He then

described the geometry of colliding streams. There is a thin layer between

the temperature and density peaks at the interface between the streams.

i
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This cannot be reproduced numerically without introducing shocks and

more plasma effects than (Burlaga) used so far. Papadopoulos has

started with different initial conditions, but no one knows what the

correct conditions to be imposed are, particularly at the photosphere.

J. Hollweg (High Altitude Observatory) "Solar Wind"

The basic problem in solar wind models is to find a mechanism that

will heat the protons to the extent observed. Furthermore, the electron

heat flux is only about 1/40th of that predicted by classical (i.e.,

Chapman-Enskog) electron thermal conductivity.

Possible mechanisms for increasing the calculated ion temperatures

are the following: 1) Fast MHD waves and P_lfve'n waves radiate from the

Sun and deposit their energy. Numerical calculation may be useful in

studying non-linear damping and energy deposition by these waves.
k

2) Two stream instabilities due to currents in the presence of large

k f

	

	 magnetic field shears at colliding stream interfaces However, this

preferentially heats the electrons, so has the wrong effect. 3) Helmholtz

instability at the interface does in fact preferentially heat protons,

but only there.

The heat flax discrepancy is also 'difficult to resolve. The

electron velocity distribution is observed to have a central "core",

peaked at the solar wind velocity, plus wings on either side (the "halo"
t

electrons) which carrythe heat flux. Another possibility (due to Perkins)

is that electrons are trapped between the Sun and an electrostatic poten-

tial hill some distance from the Sun.	 a

ORIGINAL PAGE IS
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The most fruitful area for computol simulation is in understanding

the role of instabilities in controlling the electron heat flux and in

increasing electron-proton coupling so as to increase ion temperature.

In the discussion Borslund said the electromagnetic ion cyclotron

instability is the most likely candidate. One needs to use the quasilinear

theory of this instability. Perkins said that a multidimensional Fokker-

Planck equation should be solved numerically.

Editorial comment: Resolving the difficulties encountered in

explaining the solar wind will require use of the correct "non-classical"

transport coefficients. By contrast, the laser plasma problem is much

easier to handle. There may be microscopic instabilities there also,

but the densities are so high that classical collisions control the

transport. The controlling physics is all-known. By contrast, this

is not so in the solar wind, and moreover the geometry has less symmetry.

	

li	 D. :Fcrslund (Los Alamos) "Solar Wind and Bowshock"

Observed proton angular i?istributions in the solar wind show flow

I

	

5	 along the magnetic field. The',elocity distribution is double-humped

near colliding streams. The Los Alamos group is using the complete

i
	^I	 linear dispersion relation for a plasma in a magnetic field to test

I
the stability of observed distribution functions. The philosophy is

that the wave mode controlling the transport of heat and the exchange of

energy among species will, be ths- one closest to marginal stability. The

dispersion relation must be solved numerically. One finds that the

complete dispersion relation must be used; nothing;,can be neglected.

This makes it difficult to predict whether electrostatic or electro-

magnetic instability will dominate,
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The coarsest categorization, of bowshocks is into two classes:

laminar and turbulent, depending on how regular the magnetid field

transition is. The two classes correspond to whether electron whistlers

have sufficient velocity to phase stand in the upstream region. If

they can, a turbulent shock rosults. otherwise, laminar. The whistler

decays parametrically into other waves, the type of decay depending

on the plasma parameters. Numerical simulation (with particles) has

demonstrated strong ion heating, ass observed by spacecraft instrumenta-

tion. The numerical calculation to date has been one dimensional as

far as the whistler decay is concerned. one could probably do a 2

dimensional simulation, using a hydrodynamic code for the electrons and

treating the protons as particles. A 2-dimensional simulation is desirable

because whistlers are unstable to decay into waves over a wide cone.

The result would be more turbulence than predicted by the 1-dimensional

simulation.

Editorial Note: This is an area where more numerical simulation

should be supported, particularly in view of the future I.S.E.E. missions

designed to make bowshock solarwind and magnetospheric observations.

Better theoretical guidance would be most desirable.

E. Greenstadt (TRW) "Bowshock"

The categorization of bowshock crossings into types has been refined,

and the number of categories: increased over the original two (laminar and

turbulent). Magnetic field and plasma property tracings for the different

types were shown. The categorization is based on a few dozen cases.

u
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Editorial comment: Greenstadt is well aware that his categorization

is subjective, to some unknown degree. Of course, if the number of cate-

gories approaches the number of cases studied, the categorization is

not very meaningful. There is a question whether the types of bowshocks

form a discrete spectrum or a continuum. More numerical simulation

like Forslund's would help sort this out.

P. Kellogg. (Univ. of Minesota) "Bow Shock"

Electric-.field measurements have been made with antennas on IMP-6.

Electron whistlers are not the only wave seen upstream of the bowshock.

There is a sharp peak in the power spectrum at 20 kilohertz, which is the

electron plasma frequency. This mode is excited by electrons reflected

upstream from the shoat and is not seen on field lines that miss the

shock. Only the more energetic electrons make it upstream (low energies

are swept back into shock;, so that the upstream electron energy distri-

bution is peaked.

Downstream of the shock one sees "runout" noise. This noise has

a much broader power spectrum than the upstream noise. The spectrum

(and angular distribution) of the electric field is the same ir. the

shock as downstream. hence the instabilities operative in the shock

should be ascertainable from the runout waves. The runout noise spectrum

is different at different points on the bowshock: This means that

several instabilities are at work over the entire shock. The dawnside

has more runout noise than elsewhere.

The only case in which the direction of the electric field in the

shock was steady enough to be measured was that of a maynetosonic shock
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(magnetio field up and downstream parallel to the shock surface). In

this case the electric field was also in the plane of the shock and

perpendicular to the magnetic field. This would be consistent with a

current driven instability in the shock.

Editorial comment: in the discussion following this talk, Forslund

pointed out that in the laboratory shock experiments at Garching, the

operative instabilities had been fully diagnosed.

ORIGINAL PAU T

R. McPherron (UCLA) "substorms"	
OF 

POOR QUALITY"

The UPSi group consists of 32 people, 30 of whom are supported by

outpide contra;zf,;. They have handled the data for about 2000 substorms,

and Ods group is best knowat for this area of research. The Earth's

magnetic field is never steady, but goes repetitively through a sequence

of geometric changes on about a 3 hour time scale on the average. One

cannot yet predict when a substorm will occur, but the morphology is

wel-t studied.

NASA does not devote enough resources to theory or to data analysis.

Experimenters tend to avoid seeking out intensive interaction with

theorists because such an interaction may become at least a year's Under-

taking. But by the end of a year the project is being closed down

(hopefully to be replaced by another project to support the group).

There is only sufficient life and dollars in the project to go through

the data file once and to get the data in the literature. And the

project is being closed down by the time the theorists learn of and get

interested in the data.

Another problem is that hardware overruns rob data analysis funds.

The situation is exacerbated by the tendency to underestimate the cost

E

I

F



i

13

of data reduction and analysis, and to underestimate the time required

to do it by a factor of 3 or more.

Recommendations: 1) Increase data analysis dollars at the cost of

experiments. 2) Separate hr:rdware and data analysis dollars. 3) After

each project, support 4 years of data analysis at the level of: 2 graduate

students + 1 postdoctoral + 1/3 senior scientist + 1 full time programmer.

The postdoctoral should be half theoretical and half experimental.

The third and fourth years should be contingent upon cooperation with

theorists. For the price of just one flight experiment, 20 theorists
q

can be supported for a year.

Editorial comment: This talk stimulated a considerable amount of

valMable discussion. McPherron was not aware, until this Study, of the

amount of work that has gone into the N.R.L. codes. He does not believe

that we are far enozlgh advanced with magnetospheric survey to use these

ccaes to great advantage for substorms. Krall, (Science Applications, Inc.)

commented that full documentation of a code is not-sufficient to permit

a stranger to use it. Responsiveness and help of the computational

physicist who designed it is essential.

R. Wolf (institute for Advanced Study) "Magnetospheric convection".

No system of equations simpler than that presented . in his talk can

really represent magnetospheric convection. From the N.R.L. presentation,

he believes the system is slightly beyond current capabilities, Whether or

not these equations would produce substorms in the presence of a perfectly

steady ,solar wind is unknown - i.e., whether solar wind fluctuations are

necessary to trigger substorms is not known.

s
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The magnetosphere can be divided into three regions. Region I is

the magnetosheath, where isotropic pressures and magnetohydrodynamic (MHD)

equations are valid. No systematic anisotropies are observed. Region II

f

	

	 is the far tail and high latitude tail. The magnetic ficlu is weak in

portions of this Region, and M.HD equations do not apply. It is a com-

pletely 3-dimensional problem. Region III is the inner magnetosphere,

where adiabatic theory applies, and bounce averaging permits reduction to

a 2-dime.^isional problem.

The present status of solving such sets of equations is that a steady

state with one species with a given magnetic moment has been tried at

Rice University. The computer time even for so simple a model is about

one hour per hour of magnetospheric time. Because the magnetosphere has

been separated into three regions, there are critical problems with choosing

boundary conditions.
>
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Five Minute Talks

Contributed papers of 5 minutes each were given by Burch (Simulation of
I	 y	 5

s

Shuttle Experiments), Kaiser (Numerical Simulation of Cosmic Ray Diffusion),

Goldstein (Ditto), Stern (Particle Motions in Neutral Sheets), Perkins
i

(Necessity for obtaining a Predictive Capability). 	 G
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Discussion

After the 5 minute talks, approximately one hour was devoted to

general discussion. For the most part what followed was an elaboration

and development of questions and ideas that had first arisen during the

previous day and a half.

A considerable portion of the time was devoted to the question of

what constitutes a "critical mass" of workers and what sort of skill mix

is required. The N.R.L. group consists of about 50 people involved in

many different programs. A ;i.'critical mass" can be as small as ,2 people

for a simple calculation, but many more for large scale modeling. The

skill mix, according to Boris, should be about half and half, theoy:etical

physicists and computational physicists, but almost entirely physicists

because a thorough understanding of the physical problem must permeate

all phases of the development of the numerical codes`, One can burn a lot

of money with a computer unless the physics is well understood.

There was no unanimity on the applicability of the N.R.L.. codes to

problems in space physics. The opinion was expressed by Krall that

almost all of the codes would be useful to space physicists practically

without modification. On the other hand it was asserted by Hollweg with

equal vigor that space physicists should develop their own codes rather

than rely on existing ones. Most opinions fell between these two limits.

A question was raised concerning the size of the computer required

to run the codes that had been discussed. The answer was given that

commercially available computers of large but non-gigantic capacity are

quite adequate for many problems (i.e., an IBM 7094 or larger). However,

Boris in his presentation had stated that in spite of the large improvement
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is computer technology which occurred about 5 years ago, plus improvements

in computational techniques, it was still impossible to compute on a

microscopic scale for macroscopic times and distances. The list of fifteen	
f

particle and fluid codes presented by Boris contained only two three-

dimensional codes. Three-dimensional codes are expensive to run and can
	

kz

only be run at coarse resolution that hides some of the physics. It will
	 r

be several years before 3D codes get where 2D is now. Most of the 15 N.R.L.

codes have been developed in the last 5 years.

All in all there appeared to be a widespread opinion that computer

simulations should play an increasingly important role in space research

and that it was high time if indeed not past due that space theorists turn

their attention to this approach. Furthermore the opinion was overwhelmingly

expressed that space science in general and NASA in particular should

devote far more effort to theory than has been the case up to now. It
i

was further asserted that this theoretical effort should take place both

before and after (and indeed in some cases instead of) the launching of

a space experiment.
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Response to Questionnaire

At mid-morning of the second day the following short questionnaire

was distributed to all participants.

We would like your written comments on what the future role
of numerical computations in space plasma physics should be.
As a guide you might consider answering the following
questions. Although we have rather arbitra%ily limited this
study to three areas (solar wind, bow shock, and substorms),
your discussion need not be limited to these.

1. What do you think of the present balance among theoretical,
computational and experimental activities in NASA?

2. In your area of space research, what do you perceive the
role of numerical computation to be in the future? Is the
most urgent need presently for additional data, for
mathematical modeling and analysis, or for numerical
computation?

3. Of the NRL codes or any others that you are now aware of,
would any be useful to you? Which ones and what would
be the application?

Thirty participants (about 75%) completed and returned them. Identification

of the responder was optional: twenty signed, ten preferred anonymity.

As m;;ght be expected, a wide spectrum of opinion was obtained.

Categorization of the responses is hence difficult: some answered

the questions, others contributed interesting and relevant observations

on other aspects of the topic. We here report ;..,at we judge to be

the most significant comments gleaned from these questionnaires.

1. There was almost unanimous agreement that the balance in NASA's

scientific program is too heavily weighted toward the experimental side.

Data analysis is shortchanged, plasma theory is poorly appreciated

and inadequately supported; and computational physics is non-existent.

Two people cited the Atmospheric Explorer effort as one in which pre- 4
f
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and post-launch collaboration between theorist and experimentalist has

greatly enriched the %slue of the project. AE is, however, a singular

(highly commendable) example.

2. Several people commented that NASA allows too short a period for

data analysis: project money is cut-off before a thorough run-through

of the data rain be accomplished. A more extended funding period would

permit the closer data examination needed to come up with substantial

conclusions. The examination should preferably be by both theorists

and experimenters. As a result of the present NASA policy, large amounts

of`aanificant data from past projects lies unused.

3. As a corollary to 2, it was suggested that mini-computers be used

for data handling. Such usage would be cost-effective and free larger

computers for modeling efforts of the type discussed by the NRL people

4. There was a general feeling that many areas of space exploration

are ready, at least in part, for computer simulation; among these are

the three discussed at this Study. A major reservation on the part of

participants, however, was the unavailability of experimentally determined

boundary conditions for input to the simulations. The NRL people answered

this concern by arguing that boundary conditions can be left as explorable

free parameters in simulation work. Boundary conditions to which the

calculation is sensitive are the important ones to measure.

5. it was emphasized that computer simulation is a task for Ph.D.

level computational physicists. Experience has shown that only they

have the motivation and understanding needed to come up with sensible

results in reasonable time intervals. Further the compztational physicist

is most effective when working closely not only with the space plasma

theorist, who has an overview detached from the numerics, but also with

s
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experimenters, who provide him input and with whom he compares

ti

s.
output.

Modeling is a team cefort.

6.	 it was pointed out that an essential ingredient of global codes,

such as a solar wind code, is an understanding of the fundamental plasma

physics involved. 	 This includes both basic theoretical analysis and

the numerical study of micro-physics, and is by no means a closed book.

Fundamental plasma physics should be accorded a support by NASA commensurate

with any large modeling support.

7.	 Model studies of plasma magnetospheric, and auroral experiments for

the Space Shuttle were suggested.

8.	 It was suggested that a catalog of the codes available at NRL and

elsewhere be made available to space plasma physicists. 	 Further, it
E

was suggested that a vehicle be found for transmitting new developments

in the modeling area to potential users.

9.	 Significant concern was expressed about the utilization of NRL

codes without the direct involvement of the code developer. 	 For example,

boundary conditions are often such a fundamental „ingredient of a code
i

that changing them to space conditions might be as much work as re-writing

the code itself.
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STUDY OF APPLICATIONS OF NUMERICAL CODES TO SPACE PLASMA PROBLEMS

Tuesday, January 7, 1975

8:30 - 9:00	 Introductory Formalities

9:00 - 12:00	 NRL Presentation

Tim'Joffey: "Overview" 	 15 min.
Jay Boris:	 "Computational Physics" 	 25 min.
Dennis Papadopoulos: "Multifluid Codes" 	 25 min.
Sid Ossakow: "Ionospheric Irregularities" 	 20 min.
Neils Winsor: "Modeling Laser Plasmas" 	 25 min.

12:15 - 1:30	 Lunch in Building 1 Executive Dining Room
($2.00 tickets available at Information Desk)

1:30 - 5:00	 Other Invited Speakers

Len Burlaga	 30 min.
Joe Hollweg	 30 min.	 Solar Wind
Dave Forslund	 20 min.
Gene Greenstadt	 20 min.	 Bow Shock
Paul Kellogg	 30 min.
Bob McPherron	 30 min.	 Substorms/Convection
Dick Wolf.	 30 min.

5:30 - 6:30

	

	 Reception, Room 200, Building 26, tickets $3.00 at
Information Desk

Wednesday, January 8, 1975

Wednesday morning we are leaving informal. If the Tuesday afternoon
session runs late, we will postpone one or two talks until Wednesday.
We also would like a contributed talk from anyone. If you wish to talk,
please tell one of us (Northrop, Birmingham, Jones, or Wu) sometime
Tuesday.
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