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ABSTRACT

The charged particles considered in this paper are scattered by
random fields while they propagate along the diverging lines of force
of a spatially inhomogeneous guiding field. Their longitudinal transport
is described in terms of the eigenfunctions of a Sturm-Liouville operator
which incorporates the effect of adiabatic focusing along with that of
scattering. The relaxation times and characteristic velocities, which
appear in this matrix formulation of the transport problem, are graphed and
tabulated. The particle demsity that results from a localized impulsive
injection is evaluated as a function of space and time for two different
regimes. In the first regime, where focusing is relatively weak, a
diffusive mode of propagation is dominant, but coherent modes are also
present, and they become prominent as the intensity of focusing inéreases.
In the second regime, where focusing is strong, diffusion does not occur,
and the propagation is purely coherent. This supercoherent mode corresponds
exactly to the so-called scatter-free propagation of kilovolt solar flare
electrona. Moreover, diffusive propagation in the first regime offers an
explanation of several poorly understood aspects of solar cosmic-ray events.
On a larger scale, focused transport provides an interpretation of many

observed characteristics of extragalactic radio sources.

Subject headings: cosmic rays: general - hydromagnetics
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I. INTRODUCTION

The diffusion equation underlies much existing work on solar and
galactic cosmic-rays. However, if particle propagation takes place along a
diverging guiding field under the influence of adiabatic focusing, the
diffusive idealization is valid only if the mean free path for scattering
in random fields is small compared to both the scale length for spatial
variations of the density and the scale length for spatial varlations of
the puiding field. Tiis paper describeé the deviations from diffusive
behavior that occur when neither of these conditions is satisfied. This
formulation of transport theory 1s mathematically similar to the approach
that I toock in three previous papers (Earl 1973, Paper I, 1974a, Paper II
and 1974b, Paper III). Counsequently, these papers and the equations therein
will be designated below by their roman numerals. Most of these references
are to Paper II which analyzed a coherent mode which is qualitatively similar
to the supercoherent mode that occurs when adiabatic focusing is sufficiently
intense. The systematic effect of focusing considered here is completely
different from the stochastic effect considered by Goldstein,Klimas and
Sandri (1975), which arises from small scale divergences of the random field.

In §II, the transport problem is formulated in terms of eigenfunctions
of an operator which incorporates both scattering by random fields and focusing
by a spatially inhomogeneous guiding field. The behavior of these eigen-
functions is described in §III. Focused diffusion, a transitional mode
which spans the gap between the purely diffusive transport that occurs when
focusing is weak and the purely coherent transport that occurs when focusing
is strong, is discussed in §IV. The supercoherent mode is introduced in 3V.
Thus, the theory developed in these sections not only identifies and describes
a novel mode of particle propagation but also establishgs its relationship to

diffusion.



The existence of pronounced coherent effects opens up many possibilities
for the interpretation of astrophysical phenomena. These possibilities are
explored in an interplanetary context in §VI where the so-called scatter-
free propagation of solar flare electrons is explained and where several
peorly understood aspects of solar cosmic-ray events are interpreted. In
§VII, the structure of extragalactic radio sources is explained in terms of
focused transport. Here, the transport phenomena introduced in this paper
give rise not only to the twin lobes of radio emission, which are a basic

feature of these sources, but also to many other detalls of their morpholegy.



IT. MATRIX FORMULATION OF TRANSPORT THEORY

The particle distribution function f£{u, z, t} evolves according to
the equation
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o 2y of
It (1« %) ™ (1)

in which the effect of adiabatic focusing 1s represented by the second
term on the right hand side (Roelof 1969), which involves the scale

length L for spatial variations of the gulding field,
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In equation (1), z is distance parallel to the mean field, u is
the cosine of the pitch angle, V is particle velocity, and t is time.
The Fokker-Planck coefficient for pitch angle scattering will be des-
cribed by

olu = alul¥ - wy ©)
in which q is the spectral index of the power law that gives the mean
square amplitude of field fluctuations at wave number k within an
interval dk, Qxx(kolk}q dk, in terms of the spectral density Qxx at a

reforence wave nunber ko. Here, the parameter A,

-2 Y q
Aw=2T 2 Qxx(korL) . (4

can be expressed in terms of the particle rigidity R, velocity V, and
Larmor radius T and the spectral parameters Qxx' q, and ko (Jokipii
1966). Although the validity of the quasilinear approach that underlies
equation (4) has been questioned, this simple relationship is invoked

here for purposes of illustration with the understanding that the



numerical values of certain parameters, which are expressed below not
only as functions of q and A but also in general terms, may have to be
revigsed when a consensus is reached on the correct treatment of pitch
anpgle scattering. Such a revision would not affect the qualitative
validity of the conclusions reached here.

The assumption that L is constant, which will be adopted through-
out this paper, greatly simplifies the analysis that follows, but as
long 2s L does not change much within one scattering length, it does
not significantly limit the applicability of the results. This assump-
tion implies that the guiding field decreases exponentially, which means
that its lines of force diverge from one another as z increases. Because
of this divergence, the lateral area over which particles are spread
increases with z, for particle transport perpendicular to the field lines
proceeds relatively slowly. Consequently, the normalization that

corresponds to a fixed toral number of particles is

NO @ % fl f+m ez/L f{u, z, £} duy dz =-/-+°° ez“‘ Fo{z, t} dz (5)
9 —
in which the exponential factor takes into account this variation in
the area over which the isotropic density FO is spread.
When equation (1) is integrated over u from -1 to +1, the scatteriag

term contributes nothing because ¢ vanishes at both limits, while the

focusing term can be integrated by parts to yield

e [t

where S is the streaming flux defined by

+1
§ = (vlz)f uf dy . (7)
-1 .



Because the expression in square brackets is the divergence operator
(Roelof 1969), equation (6) expresses an important and familiar equality
between the temporal rate of change of the density Fo and the negative
divergence of the flux.

Papers I, II, and III invoked expansions of f in terms of eigen-
functions of the scattering operator which appears as the first term on
the right hand side of equation (1). To describe the effects of focusing,
this paper invokes eigenfunctions of a very similar operator which also
includes the focusing term. Thus, the focusing eigenfunctions QK{u},
which are defined in the same spirit as the scattering eigenfunctions
RK{u}, satisfy the following equation:

dQ dqQ
d K v a __!(_ _2_ =

where the eigenvalue (Z/GK), which replaces the scattering eigenvalue
(ZITK). describes the temporal decay of an anisotropy proportional to

QK‘ Equation (8) can also be written in the form

e Q= 0 (9)

dy = - X (10)

v H

ig the same as the one defined by equation (I11-32) except for a scale
factor (1/L). The important parameter (V/AL), which is the ratio of the
scattering length (V/A) to the scale L of guiding field variatioms,
characterizes the intensity of focusing. The following boundary condi-
tion, which is to be imposed at p = +1 and at u = -1, completes the

specification of the eigenfunctions and ensures that they are well behaved:
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In the limit L + =, QK = RK' but, in contrast to the situation

discussed previously, where even numbered RK were even functions of 2
and odd numbered RK were odd functions, the QK have no special symmetry
when L is finite. In its usual sense as a description of spatial
symmetry, the word parity is obviously inappropriate here. Nevertheless,
this word will be used below in its mathematical sense to designate
whether the indlces of eigenfunctions are odd or even.

Because equation (9) has the form prescribed by Sturm~Liouville
theory, the functions QK form an orthogonal set in terms of which the

distribution function can be expressed as a series expansion

flu, z, t} = 3 £ iz, t} 4 Q{ul (12)

where the factor dK defined by
+1 1
}q = (.[ e G QK2 du) ® (13)
~1

converts QK into a normalized eigenfunction and where the coefficients

fK are given by
o
£, = d"'[q e Cq fau. (14)

In equétions (13) and (14), which typify the integrals that occur when
orthogonality is invoked, exp{-G} is a weighting function which emphasizes
the contribution from the region u < 0 where the odd function G is
negative. This asymmetry, which becomes very pronounced when (V/AL) is
large, makes focused transport qualitatively different from rectilinear

transport.



When equation (12) is substituted in equation (1), orthogonality
implies that the coefficients fF are described by a set of

differential equations the first four of which are

of
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where the characteristic velocities,
+1 -G
UJK = Uy, = VdeK -,:1 we Qg QK du , (19)

play the role of matrix elements that couple the temporal evolution of
the coefficlents to'their gradients. This matrix formulation of trans-
port theory is analogous to that derived previously (see eq. [II-10] .-
[1I-13]), but it differs in that each coefficient is coupled to its own
gradient through the diagonal velocity elements UKK which appear on the
left hand sides of equations (15) - (18). Moreover, the source terms
on the right hand sides of these equations embody coupling between
coefficients of similar parity that did not appear in previous papers
where the characteristic velocities corresponding to U02 and U13 were
zero. However, in the limit L + =, the matrix elements that couple
coefficients of opposite parity, UOl’ 003, U12’ and U23, reduce to the
same characteristic velocities, V01' V03, Vlz, and V23, that appeared in

Paper 11.



The first eigenfunction, Qo = constant, 1s an isotropic component
which satisfies equation (8) provided that the relaxation time 9, is
infinite. Because all of the higher order eigenfunctions are orthogonal
to Qo’ they must satisfy

+1 -G
f e Q duw=0, (20)
-l
but this condition does not imply that the isotropic density associated
with the higher-order eigenfunctions is zero, for this weighted integral
is not the same as the unweighted average that gives the density. More

specifically, the density is given by

+1 .
F°”5f-1 Fau =Y <0 f, 1)
where

+1
€Q ) =y f_l Qe {u} du (22)

is the average density associated with QK' Similarly, according to

equation (7), the flux is

S‘kafx

where the velocity VK defined by

+1

Vg = %VdK f u QK{u} du (24)

-1
characterizes the flux associated with QK' Because the expressions for
density and flux involve all components, the situation is different from
that in unfocused transport where the demsity is idemtical to the
isotropic component and where, consequently, the lowest-order matrix
equation is also the flux equation. Instead, the derivative (aFolat)

that appears in the flux equation (eq. [6]) must be calculated by
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suming the quantities <QK> (afxlat) predicted by the matrix equations

(egs. [15] - [18]). In the resulting expression,

BFO afo
: - f, (Qz) £,
= [€Qyd Uy, +<Q DU, +Q,> U,y + .00 ] % e
- * a8 ] (25)
the sums within square brackets reduce to
. 1

which is an identity that follows from equation (24) when the integrand

uQK is expanded in an eigenfunction series with the aid of equations {14)

and (19). A second identity, which relates VK to the relaxa-
tion time UK’
Q> v
9 .

follows from
+1 1 dqQ
= .‘!.[ - 2y —K -
vf M du = -3 (1~ 5= du =
-1 -1
+1

+1 v
¢'e’ av f e Q du= -:—;—- Q du (28)
-1 -1 K«-1

in vhich the first equality results from an integration by parts, the

second from the following substitutions (see eqs. [9] and [10]):
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du OK 1 K
46 o V1l-w?
du L ¢lu} °

and the third from a further integration by parts. When these identities
are invoked in equation (25), it reduces to the flux equation, for the
gradient terms sum to (35/3z) while the ((‘%(> fKIUK) terms sum to {S/L).
If some of the matrix equations are left out of this summation, the flux
equation is not satisfied. Consequently, when the integral specified by
equation (5) is performed upon the solutions of a truncated set of

matrix equations, the resulting total number of particles changes with
time. Although this deviation from proper normalization is disconcerting,
it has minor significance as long as the real temporal evolution is

rapid compared to the relatively slow decay artificially introduced by

truncation.
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III. TFOCUSING EIGENFUNCIIONS AND EIGENVALUES

Focusing eigenfunctions are analogous to the familiar orthogonal
functions that occur in classical and quantum physics. In particular,
when q = 1 and (V/AL) = 0, they reduce to Legendre polynomials. But
it is only in such exceptional cases that analytical methods yizld closed
expressions for eigenvalues and characteristic velocities. In general,
these parameters must be evaluated numerically. There is no nced to
present here the lengthy details of this evaluation, for the final results
are sufficient %o specify cowpletely the matrix formulation of transport
theory. Nevertheless, it is appropriate to outline briefly the method
that gave these results. It was basically the iterative method of
Stodola and Vianello (Hildebrand 1949, Chap. 5) supplemented by the

procedures described by Boul.idis and Ruggiero (1944) for determining
' higher order eigenfunctions. For each value of q, scattering eigenfunctions
for (V/AL) = 0 were calculated by iteration starting with the approximate
eigenfunctions derived in Paper II-5II a: =-e initial trial functions.
Then (V/AL)} was incremented in small At each step, new eigen-
functions were calculated using the eigenfunctions from the previous step
as initial trial functions. The main objective of this section is to
present graphs that show how these eipgenfunctions and the parameters
derived from them as specified in 5II depend upon gq and A.

Por weak focusing, a workable alternative to numerical methods is
to treat the focusing term as a perturbation whosez effect can be
approximated with the aid of standard quantum mechanical perturhation
formulae. In a preliminary version of this paper, perturbations of the

approximate scattering eigenfunctions given in Paper II were evaluated
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with the aid of second-order theory. Although most of the results in
§IV were first obtained through this procedure, it was eventually
abandoned, because an intractable divergence of the perturbation expansibns
made it impossible to analyze the strong focusing limit discussed in §V.
But, in the course of this exercise, several useful relationships weée
discovered. Although the perturbation approach will not be pursued, it
does confirm the fundamental validity of these identities,which appea-
here as numerical coincidences.

In the discussion that follows, three specific values of the spectral
index are given special emphasis. The first, q = 1.0, corresponds to
the isotropic scattering considered in classical transport theory. Thus,
the results obtained for this index illustrate the effect of focusing upon
classical rectilinear transport. The second index, q = 1.5, approximates
that observed for magnetic fluctuations in space. Thus, the predictiomns
obtained for this index apply to the interplanetary propagation of solar
and galactic cosmic-rays. The third value, q = 1.9, corresponds to very
anisotropic scattering. In this situation, the eigenfunctions can be
evaluated numerically, but they are qualitatively similar to those for
q > 2, where the evaluation is complicated by the divergent behavior of
the function G defined by equation (10). Thus, the results obtained for
this index indicate how focusing affects the coherent regime discussed
in Paper II.

The effect of focusing, for q = 1.5, is illustrated in Figure 1
where the focusing eigenfunctions for (V/AL) = 1 are compared with
the scattering eigenfunctions. 71'e latter functions, at the left, exhibit

two qualities which also characterize Legendre polynomials. (See Abramo-
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witz and Stegun, 1964, Fig. 22.8.) First, the number of zeros between
u=<-1 and y = +1 is equal to the index. Second, Rl and R3, whose indices
are odd numbers, are odd functions of u, while RO and Rz, whose indices
are even, are even functions., Because the first of these features is a
consequence of general theorems ( Courant and Rilbert, 1953, Ch. 6.), it also
appears in the focusing eigenfunctions, at the right, where the zeros are shifted
slightly toward smaller values of u bﬁt where their number is unchanged.
The second symmetry, which is a characteristic of rectilinear transport,
is less fundamental. Thus, the focusing eigenfunctions display a
prominent asymmetry such that their absolute magnitude is generally
larger when u > 0 than it is when u < 0. This asymmetry becomes very
pronounced for large values of {V/AL) where all eigenfunctions are small
except in the vicinity of u = +1 where they are large and positive.
Within the scope of this paper, a comparison of observational details
with theory is not possible. WNevertheless, it is worth noting here the
striking similarity of the Q1 anisotropy in Figure 1 to the angular
‘distributions reported for solar protons and electrons by Nielsen,
Pomerantz and West (1975).
In Figure 2, eigenvalue spectra are plotted as functions of (V/AL)
for the three spectral indices mentioned above. In all cases, the
deviation of the eigenvalue (ZIAGK) from its unperturbed value (ZIATK)
increases quadratically with small values of the parameter (V/AL) and
linearly with large values. For q = 1.5 and q = 1.9, this linear
increase of (2/A01) and (ZIAUZ) is such that these eipenvalues differ by
a small and nearly constant separation, but for q = 1.0, the increase is

such that they become egual at (V/AL) = 11.5. This degeneracy disappears



15

at q = 1.2. On the other hand, when focusing is absent, the spectrum for q = 1,9

foreshadows the degenerate behavior that appears when q > 2, for (2/A01) is nearly
equal to zero and (2/Ac,) is nearly equal to (Z/A“3)- Because this convergence does

not occur when (V/AL) > 0, it can be inferred that focusing removes the
degeneracies, discussed in Paper LI, that characterize the coherent
regime. This inference was confirmed at q = 2.0 by a detailed analysis
which also showed that the dependence of (2/A01) upon (V/AL) 1is purely
linear. A tendency toward this disappearance of the quadratic regime
is evident in Figure 2. Similarly, in the strong focusing limit, the
existence of a quadratic regime affects the intercept of the linear
relationship but not the slope. Thus, in this limit where (V/AL) -+ o,
the eigenvalues vary as (2/0) a (V/L). They do not depend sensitively
upon the parameters q and A which describe scattering.

Figure 3 shows how the four velocities that have finite values in
the absence of focusing, UOl’ U03, U12 and U23, depend upon (V/AL). In
all cases, they approach zero in the strong focusing limit. For
sufficiently anisotropic scattering, exemplified by the curves for q = 1.5
and q = 1.9 at the right, this approach takes the form of a monotonic
decrease with (V/AL) which sets in at smaller values of this parameter
and becomes more precipitous as q increases. For isotropic scattering,

illustrated by the curve for q = 1.0 at the left, the velocities 001 and

and U,, go through maxima and minima

U23 decrease monotonically, but U03 12

before decreasing.
The six characteristic velocities that vanish when focusing is
absent are shown in Figure 4. For weak isotropic scattering, they

exhibit the intricate behavior shown at the left by the curve for q = 1,
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but as (V/AL) + =, U and U.. decrease slowly toward large negative

33

increase from small negative values toward

00* U11

values. Similarly, and UO

13 2
zero, while U22 becomes large and positive. When the scattering becomes
anisotropic, this complicated and unsymmetrical pattern simplifies drama-
tically as is illustrated at the right by the curves for q = 1.5 and 1.9.
Here, the velocities that couple coefficients of odd parity te themselves,
U11 and U33, and to each other, U13. are positive and relatively large,
while the velocities that couple those of even parity to themselves, U00
and 022, and to each other, UOZ’ are negative and relatively large. This
pattern gives rise to the supercoherent modes discussed in §V. 1In the
strong-focusing limit, the coupling between coefficients of opposite parity,
which causer diffusive effects, becomes weak for anisotropic scattering.
This absence of coupling has a quantitative reality that cannot be
adequately described by the graphical representation in figures 2 and 3.
For example, when q = 1.5 and (V/AL) = 6, U23, which is the largest of the
velocities that couple unlike parities, is only 6% of UOZ' which is the
smallest of those that couple like parities. When (V/AL) = 10, this ratio
decreases to 0.1%.

Table 1 gives numerical values of the three eigenvalues and ten

characteristic velocities. From these entries, all of the parameters

defined below can be calculated.
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IV. FOCUSED DIFFUSION

In the weak focusing regime, which coincides approximately with the
quadratic regime of Figure 2, all of the characteristic velocities are
large enough to be significant, but the higher-order relaxation times are
much smaller than 0y- Under these circumstances, as was discussed in
Paper I, the coefficients f2 and f3, which are approximately proportional
to 02 and 03, play a relatively minor role. Consequently, focused
diffusion, which is the fundamental mode that occurs here, can
be discussed in terms of a truncated set of matrix equations in
which the two lowest order coefficients, fo and fl, are retained in
equations (15) and (16), but the small coefficients of higher order

eigenfunctions are neglected. These equations, which are

Bfo af af

0 _ _ 1
TR Voo 7z Vo1 3z (29)
of £ of of
1,1 1. _ _0
3t o, ' U1l %z Y13 (30)
involve three velocities, UOO’ UOl’ and Ull’ and one relaxation time Oy

In the discussion that follows, they will be solved with the aid of the
methods invoked in Paper II. However, it is worth considering first the

result of eliminating fl from equations (29) and (30)

2 2 2 2
3 :0 + o= ;fg - U012 i :0 - Wyo Uyy) : :.0 = Ugg * Ugy) :zif - ‘:oo ::0
at 01 t 9z 3z 1

(31)

in which the left hand side is the telegrapher's equation (eq. [1I-35]).
The terms on the right hand side, which embody the effect of focusing,

vanish when L + =, Thus, in this limit, the solutions given below reduce to
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the well known results discussed in Paper I1I-§IIL.

To obtain these solutions, it is appropriate to express both fo and

fl as Fourler integrals over wavenumber «
oo S
fofz,t} = f de alx} eiKz + iut . fl{z,t} =f de B{k} eiu:z + 1wt .
(32)
in which, by virtue of equations (29) and (30), the amplitudes o and B
must satisfy
(w + Uoox)a + U01 B =0, (33)
Ulea + (w + UllF - i/dl) g =0 . (;4)

‘Because these are linear homogeneous equations, the two frequencies for
which they have a solution must satisfy a quadratic equation,

22

o1 ¢ = 0, (35)

(w + UOOK)(m + U, .k - i/ol) -U

11

which states that the determinant of the coefficients vanishes. These

frequencies, wy and w_, which can be written in the form

w, = (/o) +V x ¢ 1v*[x12 - (x - i-cz)zlli (36)
where
o, = 201 (37)
2 2.5
= 3. -
v, [U01 + H(UOO Ull) 1%, (38)
U
c, »——OL_ (40)
1 2. V 2
Cll *
u -0
ey = 00 (41)
o, V
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correspond to normal modes for which the ratio (8/a)
does not change with time.
The general solutilon can be expressed as a linear combination of
these modes that satisfles appropriate initial conditions. Two factors

complicate its specification. In the first place, the isotropic density

Fo =<Qp> £, +<QD £,
e iz i t 1w _t
-f de e [(<Q0>a++<ql> B+)e + (<Q0>C£_ +<Ql> B“)E }

-0

(42)
which is what experiments measure, should be described rather than the

individual components fo and fl. In the second place, the initial aniso-
tropy must be more carefully treated in focused transport, where it has
an important effect uvon the evolution of the density, than in purely
diffusive transport, where it has a minimal effect. The solutions given
below describe how the density depends upon space and time after the
injection of a localized pulse with a finite initial velocity. In this
situation, the injection velocity specifies the initial anisotropy in a
physically meaningful way.

The initial conditions that correspond to such an injection at t = @,

z =, of a pulse moving in the +z direction with a velocity VT are first

N e
Fo{z,O} = Ny §{z} E% f dx eiKz . (43)

-
in which &{z} is the Dirac delta function, and second

-z/L F{z - v t}

Fo{z,t} = @ +

in which the exponential factor is necessary for proper normalization and

which is equivalent to



20

bl 2 _1,]
at V+[az *L1Fo (44)
The linear combination of modes that matches these conditions must satisfy

two equations involving the amplitudes Gy A, B+ and B_,

[<Qy> e, +€Q; 28,0 + [{QyDa_+<Q, >8] =N /27, (45)

and
lo, + Yy = 1/1)] [<Qp>a, +€Q, > 8,]

* lu_ + V. (x - 1/1)) [<Qy>a_ +(Q1) Bl=0, (46)
which correspond respectively to the first and second conditions. When

the solution of these equations is substituted in equation (42), F. is

0
given by fu_t 1m+t
NO +e ikz [m++V’_(K - i/L)]e = [w_+V (x - 1/L)]e
Fo ™ an f dc e ‘ ' “n
0 2n - W, -

which is similar in form to equation (II-47).

With the aid of equation (36), this expression can be rewritten as

N

Yo o i ] L _1
FO v, exp{ (t/o,) u:z(z + Vct)} [c* + V+(r2 T ) +
+ .V + 3_- - (2v + Vv ) _3__] P{z,t} (48)
2°¢ Bt c +7 Bz * '

in which the propagation function P is defined by

1 1
exp{v*t(nclz + 52)'5} - exp{-v*t(ncl?'+ sz)ﬁ}

I b
Plz,t,} = — f ds exp{-s(z + V t)} 3
2ni wiw c ("12 + 82)1‘;

1 1
3 ]
IO{Kl(V+t ~2)" (z+V )%}, -Ve<z <+ LA

= ( ,z<-V_t;z>+V+t, (49)

where 58 = - ik - Ky is the Laplace transform variable invoked by Abramowitz
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and Stegun (1964, eq. [29.3.92]). Near the origin, P behaves as a
modified Bessel function, but it jumps to zero at two discontinuities ,one
of which woves in the +z direction with velocity

V_._ - V* - VC » (50)

while the other moves in the -z direction with velocity

Vo=V V. (51)

At the discontinuities, the numerical value of P remains constant at
unity. Between them, it grows monotonically with time to form a bell
shaped spatial profile whose peak moves in the -z direction with velocity
Vc. Thus, the phenomena predicted by equation (48) are qualitatively
similar to those discussed in Paper II-§III. More specifically, the
spatial and temporal derivatives of the step discontinuities in P give
rise to 8 functions which represent two localized pulses moving in
opposite directions. Initially, these coherent disturbances contain all
of the particles injected, but as trajectories are scattered, the number
of particles in an extended wake, which is spread continuously between
the pulses, grows larger. This wake, which arises from the continuous
portion of P, develops into a moving Gaussian analogous to the familiar
diffusive profile.

Because of the artifact mentioned above, equation (47) is not
properly normalized to a constant total number of particles. Thus, when
the integration specified by equation (5) is performed, the integral
over z gives a delta function in «, 8{1/L}, which immediately leads to

o w+{i/L}eiw"{i/L}t - w_{i/L}ei“+{i/L}t
f e FO{Z,t} dz = NO . (52)
- m+{i/L} - w_{i/L} ;
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Because equation (36) specifies that the frequencies w+{i/L} and w_{1/L}
are both positive imaginary numbers, this expression represents a sum of
two exponentials decaying with different time constants. Similar sums
arise in the radioactive decay of genetically related nuclides and in the
fragmentation of cosmic-rays, but in contrast to these situations where
the initial nugber of secondary particles 1s zero, the coefficients in
equation (52) are such that the initial slope is zero. Consequently,
there is a brief period after injection during which the normalization
integral is virtually constant. Then, it decays at an exponential rate
corresponding to w_{i/L} which is the smaller frequency. Figure 5 shows

how the ratio 9y w_{1/L} of this rate to the rate l/dl. which characterizes
the overall evolution of the distribution function, depends upon (V/AL).
In all cases, the normalization failure is insignificant in the weak
focusing limit where this ratio varies as (V/AL)a. In the case of
isotropic scattering, q = 1, the normalization failure becomes intolerable
in the strong focusing limit where the ratio approaches unity. In the
case of anisotropic scattering, on the other hand, the normalizatien
failure is not very important, for the maximum relative decay rates are
only 8% and 5% at q = 1.5 and q = 1.9, respectively. However, even these
small deviations from proper normalization can lead to significant effects
at long times after the injection. Thus when t >> l/w_{i/L} and alse when the
scattering is isotropic and focusing is intense, the solutions given here
are not accurate. Under these circumstances, higher—order components,
such as fz and f3, should be taken into account.

The average density <F0) is defined as an unweighted integral of

F, over z. In this integration of equation (47), the factor exp{z/L} does
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not appear, and the delta function becomes &{0} which leads to

e ~t/o
<F0> = f l-‘o{z,t}dz * NO - NO(V+01/L) (1 -e 1) . {53)

-

The average density is proportional to the numbe ' of particles injected,
but it also depends upon initial conditions and time. The latter depénd-
ences are not surprising, because the local density depends, as a result
of guiding field convergence, not only upon the number of particles
present but also upon where they are located. For isotropic injection,
V+ = 0, the average density 1s the same as if focusing were absent. This
average density also occurs just after injection with a finite velocity,
but the transient component decays with time constant 01 to give at
equilibrium anenhanced density for V. < 0 and a reduced density for v > 0.
An interesting example of this behavior is the case V, = (L/ol) in which
the average density decays to zero.

In Paper II, the density f_  was expreséed as the following weighted

0

sum of two elementary disturbances f + and f. associated, respectively,

0 0
with coherent pulses wmoving in the +z and -z directions:

_ + -
£olz,t, V)= BI1 + (VY 16T + 5601 - (v /v DIE"

where
22 2.k
IS e"tlzrl[[ §{z - V..t} +-IU{<1/211V01)(V01 A
0 0 01 &11V01
L 22 2%
. (z + V01t) 11{(1/2T1v01)(v01 t z") ]]
1 *
— aY}d v
22 2.5
- -t/21 Lo Q20 Ve Vg t" = 27) )
fo = Noe 1|} 6{z + VOlt} + AV
1701
Vo,t - z':);E 11{(1/211V01)(V012t2 - zz)%}
(z + V. __t) 41,V

01 101
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which is equation (II-51) repeated to facilitate comparison. The
analogous result obtained from equations (48) and (49) is
+ -
Folz, e, V.1 = H[1 + (V_ + V)V IFy" + (1 - (V + VI/VIF,
where

Fo - NO exp{ - (t/o,) - rz(z + Vct)} [[ {z - v, t}

L 1 (z +V t)ﬁ
+ﬁ—[;:+vcx2+v*(»c2- )]I{y}"'?'(Vt_ {Y}]]

F, = N, exp{ - (t/o,) ~ xz(z + Vct)} [[ 6{z + v_t}

0 0
1,1 1‘"""‘)% ]]
+-2—‘}-;[;:+vc.<2+v+(oc --—)]I{ }+-2—' (z+v t)lﬁ l{Y}

and where y is the argument of the Bessel function that appears in
equation (49). The rectilinear transport described by the first of
these expressions differs from the focused transport described by the
second in the following respects:

(1) The weighting factors {1 # (Vc + vf)/v*] are such that the

contribution of FO_ vanishes when Vf = V+ while that of Fo+ vanishes when
V+ = - V_. The corresponding disappearance of f0+ and fo- occurs at equal
positive and negative velocities, V, = + V.. However, in all cases, if

i - 01

the injection ‘elocity coincides with the velocity of either coherent
pulse, thun‘Lhc other pulse is absent.

(2) In addition to a temporal dependence similar to that in
equation (54), the expunential factor in equation (55) also embodies a
spatial dependence such that the pulse moving in the -z direction is
enhanced relative to the one moving in the +z direction.

(3) In contrast to f0+ and fo- which are independent of the

injection velocity, the elementary disturbances Fo+ and FO- depend
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explicitly upon V+ through the factor multiplying the I_ component of

0
the wake.
(4) In the arguments of the Bessel functions and in the factor

multiplying the I. cowmponent, the parameter (1/211V01) that appears in

1

equation (54) is replaced by «, in equation (55).

1
Because of its complexity, the implications of equation (55) are
best discussed, as is done below, in terms of limiting cases for which
a gimplification occurs. To give perspective on these i1llustrations,
figure 6 shows how the velocities of the coherent pulses depend upon
(V/AL). When the scattering is anisotropic, as it is at q = 1.5 and
q=1.9, V_1is slightly larger than V+, and in the strong focusing
limit, both velocities increase slowly with (V/AL). However, when q = 1,
the coherent velocities diverge, for V_ increases as before while V+
continues to decrease with (V/AL). Perturbation theory led to the

identity x, = (1/2L}). The approximate validity of this relationship is

2
demonstrated, for q = 1.5 and q = 1.9, in figure 7 where the product
2K2L lies within a few percent of unity over a wide range of (V/AL).
The dotted curve, which refers to the co-ordinate scale at the right,
shows that the relationship is also valid within + 20% for q = 1.0
provided that (V/AL) < 5.

The Gaussian limit of equation (54) applies when V_.t >> |z] and

01
t:IZT1 >> 1. Under these cirenwmstances, in which the Bessel functions
approach their asymptotic form exp{y}/(Zwy)%, the square rooc appearing
in their arguments can be expanded with the-aid of the binomial theorem
to yield

FO exp{- zzlth}

fo{z.t} = (56)

1
2(nDt) °
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which is the familiar Green's function for one dimensional diffusion from
an impulsive injection at t = 0 localized at z = 0, and which involves the
coefficient of diffusion D = T1V012. (See eq. [II-43] for a more direct
derivation of this expression.) Similarly, when V_ t >> lz + vct| and
rlv*t »>> 1, and if the second terms in the asymptotic expansions of I0

and 11 (Abramowitz and Stegun, 1964, eq. [9.7.1]) are also taken into

account, equation (55) reduces to

(z + V,t - A)z
t T.{. exp - [‘U#t
—_—+ — = : : 7
Fo = NOC exp{ry + < czk} g , (57)
Z(HD#t)2
where 3
v g,V
* *
Dy * 7. ° ; (58)
1 01
is an important new parameter that 1 call the coefficient of focused
diffusion, where
= F K 3
Ve =V + (K /K V, =V * (D,/L) (59)
is the velocity with which the peak of the bracketed Gaussian moves in
the -z direction, and where
. 2
y G- U
T, | 4o.V,U (60)
¢ 1* 01
describes an exponential growth that does not occur in the absence of
focusing. Similarly, the factor
2 2 2 . 2
v, + k(U UL L5Y AV, UL, - U - A0 VL)
1 * + *
c=5|1+ 00 11 11 00 1 (61)
U01V*

depends upon V, and deviates from the value of unity that it has in

equation (56).
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The length A, given by

olv*(vc + V+)

A= cu

(62)
o1

represents a small displacement of the z co-ordinate which arises because
injection occurs, in effect, over the distance covered by the
initial pulse before it decays rather than strictly at z = 0. The time
Ty given by

2
T = olv* [1 - 3 + (u) ] (63)
1 4 U01 C CV*

characterizes a small correction which depends upon the injection velocity
but which becomes negligible as t increases. These two corrections arise
from the second terms mentioned above. Although they do have a minor
effect upon rectilinear tramsport, they do not appear in the standard
Gaussian approximation where isotropic injection is implicitly assumed.
They were taken into account here in an attempt to improve the accuracy of
the Gaussian representation, but for many purposes they can be neglected.
Equations (57)-(60) have three implications which mean that focused
diffusion is strikingly different from ordinary diffusion. In the first
place, the point of maximum density, which occurs at z = X - V#t where
the argument of the Gaussian function is zero, moves in the -z direction
with velocity V#. In ordinary diffusion, the Gaussian remains centered
at z = A. In the second place, the coefficient ‘D# is substantially
larger than D whenever (V/AL) is large. In the third place, th~ factor
C exp{t/T#} multiplying the Gaussian not only depends upon the injection

velocity V?, but alse increases exponentially with time.
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To provide a reference to ordinary diffusion against wbich these
implications can be compared, f{gure Ba, at the left, shows profiles of
density vs z, for ¢ = 1.5, at the instant t = (10/4) ==arl following an
injection with vV, = + V01' The wake calculated from equation (54), which
is rigorously exact and which is shown as a solid line, drops discontinuously
to zero at z = i_VOlt. Because the velocities at injection are collimated
in the +z direckion, the wake peaks at a point, z =:V”lrl = ), to the
right of the point of injection. Following a suggestion made in
Paper II, the coherent disturbance (dotted curve) is represented here by
a Gausslan whose width (D*t);i is characterized by a coefficient of
dispersion D, = (D/20). Within the region where the density in the wake
is finite, the dashed line, which represents the Gaussian predicted by
equation (57) for L = =, provides a fairly accurate description of the
actual wake. Near the maximum, the two curves are nearly coincident, but
the Gaussian is about 25% too low at z = + VOlt where the asymptotic
expressions for the Bessel functions ar2 not accurate. For lz] > VOlt,
the Gaussian gives a finite density which misrepresents the actual value
of zero. Nevertheless, the contribution of this incorrect prediction to
the total area under the dashed curve compensates for the underestimated
density in the range ]z[ < V01t in such a wav that the area under the
Caussian is the same as that under the exact profile. Thus, in the case

of ordinary diffusion, the Gaussian approximation is correctly normalized.

For injection toward the left with V, = - VOl’ the profile is the mirror

image obtained by reflecting around z 0 the profile for V+ =+ V. ..

01
In figure 8b, profiles are shown for focused diffusion with (V/AL) =

1.0, q = 1.5, t = (10/A) and V+ = + v+ = (0.549V. Because these profiles,
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at the center, refer to the same time and to nearly the same positive
injection velocity as those for ordinary diffusion, at the left where
Y+ = Vo1
apparent must be attributed to focusing. Even though the injection is

= 0.563V, the qualitative differences that are immediately

toward the +z direction, the wake is largest near the discontinuity at
z = - V_ t. Near the other discontinuity at z = + V+t. the density in
the wake is relatively small. Consequently, the coherent pulse, which
is represented as before by a Gaussian plotted as a dotted line, seems
insignificant even though it contains 53% of the injected particles.

Because the velocity VvV, = 1.081V is greater than V_ = 0.631V, the

#
Gaussilan peak lies far to the left of V t. Consequently, the density
predicted by equation (57) (dashed line, for which D# = 1.07(V2/A) -
1.34D) decreases monotonically with increasing z from its maximum

value at - V t. This decrease does not reproduce the exact prediction
of equation (55) (solid line) which exhibits a maximum just to the

right of - V_t. Nevertheless, the largest difference betwecn solid and
dashed curves is only 6%. It is apparent in figure 8b, where the
vertical scale is expanded by a factor of 3 over that in figure 8a,

that the density in the wake for focused diffusion with positive inject-
ion velocities is much smaller than that for ordinary diffusion.

In figure B¢, which refers to the same conditions as figure 8b
except that the injection velocity is negative, VT = - V_, the exact
profile (solid line) decreases monotonically from its maximum at
z = -~ V_t. The wake, which is plotted on a vertical scale reduced

relative to that of figure 8b by a factor of 10 and relative to that

of figure 8a by a factor of 3.33, is much larger than the wake associated
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with ordinary diffusion or with focused diffusion after injection

toward diverging guiding fields. The coherent pulse (dotted line),

which 1s 313 times larger than the one in figure 8b, is a prominent
feature of the density profile, but it contains only .12% of the injected
particles. The Gaussian approximation (dashed line) peaks well to the
left of z = - V_t. It approximates the solid profile with a

maximum deviation of 22%.

Because the bracketed expression in equation {57) has the form of
a normalized Gaussian, the expression multiplying it represents the
total area under the approximate profile fromz = - @ to 2 = + =.
Obviously, from figures 8b and 8¢, this area has no straightforward
relationship to the area under the exact profile, for most of it lies
near the peak in a region where the density actually is zero. Con-
sequently, the expressiﬁn multiplying the brackets should be regarded
as one which gives an accurate approximation and not as a normalization
parameter.

The tendency of the Gaussian peak to outrun the discontinuity
moving in the -~z direction must disappear when focusing is very weak,
for the unfocused Gaussian is stationary. This Zisappearance is
{1lustrated in figure 6 where the dotted lii. . .presenting V# crosses
the solid line representing V_ at a value of (V/AL) below which focused
diffusion is governed by the extreme weak focusing limit discussed in

the next paragraph. Evidently, this value becomes small as q + 2.

To interpret solar particle events, many authors have assumed that

interplanetary propagation is governed by the diffusion equation for
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spherical geometry. In the present context, this equation corresponds

to the result of substituting into equation (6) a first-order approxi-

mation to the flux, S = - n(arolaz), (see Paper III) to yield a diffusion
equation
2
an _ D BFO - 3 Fb 6
3t L 3z N (

With the aid of the transformation
wv=2z+ (D/L)t ,

equation (64) can be put in a form,

3%, azpo
a8 Pz ° (65)
ow
whose solution,
2 2
Fy = N, exp{ - w /4Dt} _ N, exp{ - [z + (D/L)t]"/4Dt) ' (66)

Z(ﬂDt)% 2(1rDt)I'é
is a Gaussian similar to the one in equation (57) except that D appears
in the place of D#. Equation (66) dogs not take into account the
quantitative difference between these coefficients, it does not include
the exponential growth that occurs when focusing is intemse, and 1t does
not describe either the prominent coherent pulses or the pronounced
dependence upon i-° -tion veloeity that characterize focused diffusion.
Because these considerations also apply to the diffusion equation for
spherical geometry, existing work on interplanetary diffusion should be
re-examined from a point of view which correctly incorporates the effect
of focusing.

The 1limite KIV;t + 0 is 2 simple case that illustrates the transition

from focused diffusion to supercoherent propagation but that does not
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depend upon the detailed properties of Bessel functions. In this

gpecial case, where I0 = 1 and I1 = 0, equation (55) reduces to

Fo{z.t} a NO exp{ - (tfo,) - xz(z + vct)} L1+ (Vc + V+)IV*]6{z - V+t}
(v, - V)
R N S S -

+ 501 - (v +V)/V18(z + VL) 4 v, [0* 51 ]H (67)

in which the ddentity «, = (1/2L) has been invoked. Here, the coherent
§ functions are weighted as before, and the wake spread between them
depends upon z and t only through the exponential multiplying the
brackets. In the diffusive regime, the Gaussian form reached by the
wake is virtually independent of conditions at injection, but in the
relatively strongly focused regime exemplified by equation (67), the
wake depends critically upon V+. In particular, if V+ = V+ and
L =3 a*(V* - 2Vc), the wake is completely absent, and there is only
one coherent pulse., It moves toward regions of reduced guiding field
while its amplitude decreases as expl - (z/L)}. Because the exponential
factor appearing in equation ¢(5) compensates for this decrease in
density, the total number of particles in the pulse is constant. On
the other hand, if V. = -~ V_, there is one coherent pulse moving with
constant amplitude into stronger puiding fields. There is also a
substantial wake whose density decreases exponentially with distance
away from the pulse. In this situation, according to equation (5), the
nunber of particles in the pulse decreases exponentially with time, but
this decrease is accompanied by a growth of the number in the wake
such that the total remains constant.

As was discussed in Paper II-SIII, the first of these examples

embodies the most pronounced alignment in the +z direction of particle
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velocities at injection that can be adequately treated in a description
which invokes only the two components f0 and fl' In this sfituvation,

the wake 1s insignificant and nearly all of the injected particles
remain in a coherent pulse whose amplitude decreases rapidly as a result
of the geometrical divergence of field lines but very slowly as a result
of scattering. Qualitatively, this stability of the number of particles
within a bunch whose velocities are collimated along the guiding field
occurs because the rate at which they are realigned by adiabatic
focusing exceeds the rate at which they are scattered. 1In the second
example, on the other hand; the same effect works in the opposite
direction, for focusing aids scattering by rapidly removing parcicles
from a bunch whose velocities are aligned in the -z direction. In spite
of this rapid reduction in the number of particles, the density within
the bunch remains stable, because particles moving in this direction
converge together laterally along with the guiding lines of force.
Because particles removed from the pulses constitute the source of the
wake, the above considerations also explain why the wake associated

with an injection toward stronger guiding fields is more pronounced

than the one assoclated with an injection toward weaker fields.
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Y. THE SUPERCOHERENT MODE

The discussion in §IV outlined the changes which occur as the intensity
of focusing i1s increased while other conditions are unchanged. In the weak
focusing limit described by equation (66}, where the scattering length (V/A)
is much smaller than L, the Gaussian profile of ordinary diffusion drifts
slowly into stronger guiding fields. In focused diffusion described by
equation (57), where (V/A) = L, the drift velocity exceeds the particle
velocity, the diffusive wake,which is no longer a bell shaped Gaussian,is
dependent upon conditions at injection, and the coherent disturbances are
very prominent. In the strongly focused regime described by equation (67),
where (V/A) » L, coherent effects dominate and the wake is Insignificant.
In the supercoherent mode to be discussed in this section, which occurs
when (V/A) >> L, the tendency of focusing to enhance coherent transport and
to suppress diffusive transport reaches a limit in which the wake is
completely absent and particle propagation is coherent. The word super-
coherent is appropriate here because transport phenomena in this regime are
. analopous to those in the superfluid and superconductive states. Unlike
these states, the supercoherent mode does not appear at a discontinuous phase
transition. However, the supercoherent transition does occur very abruptly
with the disappearance of the velocities in figures 3b and 3c which embody
the coupling between coefficients of opposite parity that leads to diffusive
effects.

Because the three negative velocities in figures 4b and 4c display almost
the same pattern as the three positive velocities, it might be expected that
a second supercoherent mode would propagate in the direction opposite te the
one that actually does propagate in the +z direction. In fact, the second

mode decays rapidly and leaves its particles in an extended wake. T7The
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reason for this decay can be seen in equation (25) where the expression
within square brackets that multiplies (Bfolaz) must vanish according to
equation (26). But the terms proportional to U01 and U03 are small when
(V/AL) is large, while those proportional to U00 and Uo2 are large and
negative. Consequently,because the truncated form of this expression takes
on negative values instead of the required value VO = 0, the flux equation
is not e;en approximately satisfied when f0 and f2 are finite. Thus, a
mode that propagates coherently in the -z direction can be constructed as
a linear combination of Q0 and QZ' but it can not be properly normalized.
In this situation, which involves strongly focused disturbances that move
in the -z direction, a perturbation approach analogous to that employed in
Paper II1 is more appropriate than the method of eigenfunctions. Such an
approach cannot be pursued here, but its qualitative effect can be judged
in Figure 8c where dispersive effects would mix together the triangular
wake and the coherent pulse to give a broad disturbance propagating quasi-
coherently in the -z direction with an effective velocity of UOO' T call
this the pseudodiffusive mode.

Only a few of the positive terms that éppear inside the bracketed
expressions multiplying (afllaz) and (szlaz) in equation (25) are needed
to approximate Vl and V3. Consequently, an accurately normalized super-
coherent mode can be constructed as a linear combination of Ql and Q3-
Because these eigenfunctions are not coupled to Q0 and QZ’ only the two
odd transport equations are required to describe this mode. This simplifi-
cation 1s similar to the one that appeared in Paper II-§IV where the purely
coherent modes that occur when q > 2 were discussed in terms of two transport

equations. However, these modes, which arise because pitch angle scattering is

very weak near u = 0, are physically different from the superccherent mode,
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which occurs because the tendency of focusing to alipgn particle velocities

overcomes the tendency of scattering to make them isotropic.

The equations which describe the supercoherent mode were obtained from
equations (16) and (18) by neglecting the small gradient terms in UOl’ U03,

012 and U23 while retaining the large omes in U13. U11 and U33. They are,

af af £ of
1 1,1, 3
at + U11 3z + 01 U13 3z (68)
af af £ af
-3 _3.,3_._ 1
5t Ya T To, V1332 (69)

Because their form is very similar to that of equations (29) and (30),
there is no need to derive in detail the solutions discussed below, for
each step corresponds exactly to a step taken in SIV to derive solutions

for focused diffusion. Thus, the frequencies w,_ and w_ can be obtained by

-+
substituting into equation (36) the following expressions:

20, ©

1 %3
g, = T s (70)
* 9 + 04
V.= U2 4, - U 2)? (71)
o = U7 + Wy - Upg '
= - i
v, Sy, U (72)
4]
0 =2 -, (73)
w? %3 %
U.. -U
1
W, 3 91

Because the parameters that specify wy and w are the same as those that
appear in equation (55), these redefinitions determine completely the
exact solutions that apply in the supercoherent regime.

If these frequencies are substituted in equation (52), it predicts truly
minuscule deviations from proper normalization. In contrast, the frequencies
that apply to the mode that propagates in the -z direction, which follow

from two transport equations obtained from equations (15) and (17),
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Y Y Y3

0 0 _ %
e T Yoo 3z Yoz 32 ° (75)
it 22 3z 99 02 3z °

lead to an extremely rapld decav of the normalization integral. This
analysis establishes the positive-velocity supercoherent mode as a unique
and fundamental feature of strongly focused transport.

In spite of the mathematical identity embodied in equations (70)-(74),
supercoherent propagation is different from focused diffusion. In the
latter regime, where Vc is small and V, is large, the bell shaped profile
of the propagation function drifts slowly in the -z direction while the
discontinuities move rapidly in opposite directions. This configuration
leads to the diffusive evolution of a wake spread between two coherent
pulses. In the former region, where Vc is large and V, is small, both
discontinuities of the propagation function move in the +z direction, and
the bell shaped profile spread between them also moves in the same direction
with an intermediate velocity. This configuration leads to the unidirectional
propagation of localized disturbances. The velocity Va of the leading
discontinuity ahead of which there are no particles is given by

VoS hU, U Y, (77)
while the velocity Vb oflthe trailing discontinuity behind which there are
no particles is given by

Vb = %(Ull + 013) -V, - (718)

if the injection velocity V_ is positive and if it lies between Va and Vb,
the density profile is given by equation (55). This rigorous solution

includes a coherent disturbance associated with each discontinuity, but
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these higher-order pulses, which are analogous to those discussed in
Paper I1-SIV, rapidly become insignificant compared to the continuous
profile. The breadth of this profile can be determined from figure 9
where the velocities of fts boundaries, Va and Vb. are plotted against
(V/AL) for q = 1.5 and q = 1.9. If V, > V_, ejuation (55) does not hold,
because eigenfunctions above Q3 must be included in a proper description
of the strong anisotropies implied by'this initial condition. However,
these anisotropies decay rapidly to leave a situation similar to the one
that follows the injection of a pulse with velocity Va. Because the same
consideration also applies to the strongly anisotropic injection of solar
particles, profiles calculated with V+ = Va are most appropriate for
comparison with observations. If V+ < Vb, the supercoherent disturbance,
which is very similar to the one that follows injection with V+ = Vb, is
accompanied by a broad pseudodiffusive wake moving in the -z direction.
The proper description of this disturbance also involves eigenfunctions
above Q3, but negative or small positive injection velocities do not
correspond to solar injection. Thus, for virtually all plausible initial
conditions, the supercoherent profile can be accurately described by
substituting the parameters defined by equations (70)-(74) in equation (55).

The Gaussian limit of this solution, which applies when V.t >> |z - Vctl

is
(z - Vet - A)z
. eXp {1 - 4Dt
P.=N_C exp{ - — - x,Al 3 , (79)
where 3
v g, O
*
Dy = "3 - 3 U1|Ir (80)
1 1 3 "13
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ia the coefficient of supercoherent dispersion which plays much the same

role as the coefficient of dispersion D, defined in Paper II-§IV, where

:2 V* V*
V. = -V ~=vyv =5+ U, +%(1-—)1U (81)
§ c Kl * 013 11 013 33

is the supercoherent velocity with which the peak of the Gaussian moves in

the +z direction, and where

2
1 11 1, ey
v "oy %t W, (82)
§ 1 3 1 * 13
describes an exponential decay of the amplitude. The factor
2
o, + 0 4o, o, V
1 3,2, 2 _ 2, . - 1 3 '*
(a - )V* +'*(U11 U33) vy (Ull U33+c -g L)
1 1 3 1 3
C"f 1+
Y« V13

embodies the dependence of the supercoherent Gaussian upon injection velocity.

The offset 1is given by

v*(v+ + vc)
A= T . (84)
9 T 9 13

The correction characterized by 1, is negligible,
.In figure 9a, the dotred line which represents V§ for q = 1.5 almost

coincides with the dashed line which vepresents V+. In figure 9b, where

q = 1.9, this coincidence is v~arly exact, but, for clarity, only the dotted

(83)

line i3 skown. This means that the supercnherent Gaussian moves with virtually

the same velocity as the coherent delta furction of focused diffusion. 1In
Paper I1-§IV, the coherent Gaussians, which had the same velocity as the
coherent delta functions, embodied an improved representation of coherent
disturbances in which dispersion was included. Similarly, it appears here
that the consideration of higher-order eigenfunctions leads to an improved

representation which embodies the dispersive evolution of the supercoherent
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disturbance. To carry this line of reasoning one step further, if the super-

coherent pulse is equivalent to the delta function in equation (67), then the
wake predicted there should give a reasonable estimate of the small diffusive
wake that remains in the supercoherent regime.

These points are illustrated in figure 10 where a supercoherent pulse
for q = 1.5, (Y/AL) =5V, = Va = .8/ and t = (2/A) is shown by a solid line,
which represents the exact selution, and by a dotted line, which represents
the Gaussian approximation. Associated with this pulse is a wake predicted
by equation (67) which is also shown as a solid line. Decause K, is negative,

exp{ - K, z} increases with z. Because of this weighting, the supercoherent

velocity V. is only slightly less than the velocity Va of the leading dis-

5
continuity, and the profiie drops to zero just in front of its peak. Con-
sequently, the Gaussian width (Dgt:)lﬁé overestimates the actual width. However,
this complication does not occur when t + =, The same weighting effect which
puts the Gaussian peak in a region where the asymptotic representation of the
Bessel functions 1s not accurate, underlies the ~ 15% difference by which the
exact and approximate peaks are separated in figure 10.

In figure 10, the dashed wake and Gaussian pulse are those of figure 8b with
their horizontal scale transformed in such a way that this profile for focused
diffusion corresponds to the same time and to the same value of L as the
supercoherent profile, but to scattering 5 times uwore intense. This change in
A, which goes across the supercoherent transition, leads to a dramatic increase
in the magnitude of the wake relative to that of the pulse. However, the
dotted supercoherent Gaussian has about the same shape as the dashed coherent
one. More quantitatively, the effect of increasing (V/AL) from 1 to 5 is to

reduce the coefficient of dispersion from a virtually unfocused value
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D, = .0405 (VzlA) to the supercoherent value D§ = ,0123 (V2/A). This
reduction by a factor of 3.3 is slightly overcompensated by the factor of 3
decrease in A, but the supercoherent Gaussian is not perceptably wider because
the width, at a given time, has a v.2ak square~root dependence upon the
coefficient of dispersion.

The Gaussian supercoherent pulse embodies an equilibrium pitch angle
distribution in which the opposing effects of scattering and focusing balance.
Because of the collimation produced by focusing, stochastic varlations in the
pitch angle of an individual particle average to give a net velocity which
is finite and approximately equal to that of the other particles in the bunch.
Statistical fluctuations in this averaging of random velocities give rise to

dispersion. This section has put this physical picture on a rigorous basis.
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VIi. INTERPLANETARY PROPAGATION OF ENERGETIC PARTICLES

Twenty years ago, Meyer, Parker and Simpson (1956) concluded that
diffusion could explain the temporal profile of solar cosmic-ray intensity
on 23 February 1956. Subsequent investigations have confirmed the basically
diffusive nature of particle propagation in interplanetary space, but they
have also uncovered many effects that can not be understood in terms of
pure diffusion. The objective of this section is to show that several of
these unexplained features arise as natural consequences of ad‘abatic
focusing in the spiral interplanetary field. Because the present theory
takes into account neither perpendicular diffusion nor convenction, it
would be premature to attempt a quantitative comparison of observed and
predicted solar event profiles. Instead, the discussion that follows gives
a qualitative interpretation of prompt events in which these relatively slow
processes play a minor role compared to rapid propagation along field lines
that trace out a reasonably direct connection between the Earth and a flare
on thg western limb of the Sun. Focusing must have important effects in
cosmic~ray modulation, but this steady state phenomenon, in which convection
plays a crucial role, also lies beyond the scope of the present discussion.

One of the most striking and least understood aspects of interplanetary
physics is the "scatter-free" propagation of kilovolt flare electrons in
which an impulsive burst of particles, usurily followed by a slowly decaying
tail, arrives at Earth with an average velocity parallel to the field of
0.8V (Lin 1974). From observations of Type III radio noise generated by
this bunch of electrons, Lin, Evans, and Fainberg (1973) have demonstrated
that it travels = 1.2 AU along a sriral field line. Although this phenomenon
corresponds to the coherent mode discussed in Paper II, there are two dis-

crepancies which make untenable an interpretation based upon this agreement.
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In the first place, the predicted velocity is closer to 50% of the particle
velocity than it is to 80%Z. 1In the second place, developments in scattering
theory subsequent to Paper II indicate that scatterirg near u = 0 is not
weak enough to allow the purely coherent mode to persist (Jones, Kaiser and
Birmingham 1973, Volk 1973, Owens 1974). These discrepancies do not apply
to the supercocherent mode, for it occurs even in the presence of scattering
at 4 = 0, and its velocity is close to the observed one. Thus, we can
interpret "scatter-free" events as supercoherent bunches which propagate with
very little dispersion in the strongly diverging fields near the sun. In
this situation, the parameter (V/AL) is not constant, for the scale length
of the interplanetary field is approximately (r/2) where r is the distance
to the sun. Moreover, the radial dependence of (V/A) undoubtedly leads to
additional variations of the focusing parameter. 1If (V/AL) lies above the
supercoherent transition, these variations merely cause the supercoherent
velocity to change without affecting the basic nature of the mode. This
decrease in parallel velocity corresponds exactly to the "deceleration' of
the Type III exciter reported by Evans, Fainberg and Stone (1973). However,
it occurs because the pitch angle distribution of particles with a given speed
becomes broader as focusing decreases, and not because the speed of an
individual particle changes. Thus, the observed transit time, which represents
an average over a gradual decrease in velocity, corresponds to a velocity
larger than the local one. However, this enhancement should be small,
because regions where the velocity is slow are more heavily weighted than
are those where it is fast. Most supercoherent events involve electrons,
but they can also involve protons. An example is the event on 24 March 1966
(McCracken, Rao and Bukata 1967).

Within the same framework, the properties of two other types of solar

burst, reviewed by Kundu (1965), can be understood. The U-type bursts, in
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which an ascending frequency branch appears after the descending branch of
a Type III burst, are interpreted in terms of closed magnetic lines along
which the electron bunch returns toward the sun after moving up from the
flare site. The "shortness" of the ascending branch compared to the
descending one can be explained in terms of the greater dispersion of a bunch
moving pseudodiffusively down into converging lines relative to that of a
bunch moving supercoherently upward. The V-type bursts, in which a Type III
burst is followed by a brief period of broad-band continuum radjation, can
be explained as synchrotron radiation from a nearly isotropic cloud of
electrons which forms after the bunch passes through the supercoherent
transition. This phenomenon is very similar to those discussed below at
greater length.

The chief objection to this interpretation is that the values of (V/AL)
calculated for electrons from observations of interplanetary field fluctuations
lie below the supercoherent transition. Thus, in the example discussed in
Paper 11 and presented there as figure 6, where 38 KeV electrons were

-4 2 . -1
¥

Hz at £ = 0.5 Hz

0
and for which q = 1.9, the focusing parameter is (2V/Ar) = 0.022 which is

scattered by fluctuations for which Pxx = 6,3 x 10

well below the value (V/AL) = 0.5 required, in figure 3¢, for supercoherent
propagation. Within the framework of current theories which predict tha:

pitch angle scattering increases with decreasing rigidity, this objectfon an

not be overcome. However, there are compelling intuitive reasons to expert

a regime where low rigidity particles follow adiabaticallv the stochastic wanderini
of magnetic lines of force with very little scattering relative to the local

field direction. The correspondence between the "scatter-free" and super-

coherent effects can be regarded as empirical proof of the existence of such

a regime where scattering decreases with Jecreasing rigidity as it merges
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into the Alfvenic idealization. Consequently, more theoretical effort should
be devoted to exploring the low rigidity limit of piteh angle scattering.
Less effort should be devoted to analyzing the detailed dependence of ¢ upon
u, for most of the special significance of weak scattering near p = 0
disappears in the present context where focusing moves particles rapidly
through this region.

There.is a localized region in which the nature of interplanetary
propagation changes from supercoherent to diffusive, for the focusing parameter
must eventually pass through the supercoherent transition by virtue of its
inverse dependence upon r. In this situation, showm schematically in
figure 11, solar particles propagate supercoherently to a fairly abrupt
transition (wiggly line) beyond which focused diffusion occurs. In effect,
the injection of particles into this region of focused diffusion is highly
anisotropic and occurs far from the sun. Thus, because V+ = V§ ] V+, the
density profile can be described by the function Fo+ given by equation (53)
with the origin, 2z = 0 and t = 0, chosen to be the place and time at which
the superccherent pulse hits the trénsition.

A well known prediction of the telegrapher's equation is that, within 2
mean free paths of an impulsive injection, the temporal profile has an
abrupt onset followed by a monotonic decay. At larger distances, the profile
exhibits a relatively gradual increase from onset to a broad maximum which
is followed by a2 monotonic decrease. Similarly, there is a certain distance
from the point of injection within which the maximum density predicted by
F0+ {z, t} occurs at onset and beyond which it occurs after onset. This

distance z, is given by the positive root of the following quadratic equation:

2
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Because its coefficients are complicated, the implications of this equation
are best illustrated by quoting the numerical result 2y = 35.8 (V/A) obtained
for q = 1.5 and (V/AL) = 1, which is the case illustrated in figure 8. This
distance is 6.3 times larger than 2 mean free paths. Thus, a basic effect
of focusing is to enlarge the spatial region within which temporal profiles
have abrupt onsets.

The region of focused diffusion can be divided by the dashed line in
figure 11, whic£ is located at a disténce Z, bevond the superccherent
transition, into two zones in which flare profiles are qualitatively
different. The lccation of Earth relative to the wiggly and dashed dividing
lines in figure 11 depends upon the intensity of interplanetary magnetic
fluctuations and upon the velocity and rigidity of the particles being
observed. Consequently, the nature of observed flare profiles is expected
to show considerable variability from day to day, and, at a given time, it
may not be the same for all particle species.

In the zone between the dashed and wiggly lines, dispersive effects
broaden the coherent pulse and smear out the discontinuous onset of the wake.
Consequently, the temporal profile exhibits a fairly abrupt omset whose
duration corresponds to the width of the coherent Gaussian. Then, the intensity
decays monotonically from its maximum. Many authors have assumed that the
interplanetary diffusion coefficient is the ome which appears in the diffusive
Gaussian that best fits the profile observed during a given event. But, if
this procedure is applied to an abrupt-onset event, the coefficient of dis-
persion is obtained instead of the coefficient of diffusion. {(See Paper II,
eq. [94].) This misidentification explains why the coefficient of diffusion
seems to be paradoxically small when the overall behavior of the profile

corresponds to large mean free paths.
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Abrupt-onset flare profiles are very commonly observed not only for the
low-energy solar protons and electrons recorded by satellite monitors but also
for the high energy nuclel sensed by ground level neutron monitors. Their
high probability of occurence is inconsistent with a purely diffusive picture,
because the 2 mean free path zone where they are expected is narrow and lies
close to the sun. Because focusing widens this zone and moves the polnt of
injection outward toward Earth,’the frequent occurence of abrupt-onset profiles
is a natural feature of the configuration shown in figure 11. To describe in
detail the strong initial anisotropies of such events (McCracken 1962,
McCracken, Rao and Bukata 1967), it is necessary to evaluate the individual

components fo and f, whose separate behavior differs from that of the linear

1
combination specified by equation (42). This calculation can not be under-
taken here, but the enhancement of coherent effects caused by focusing means
that anisotropies persist for much longer times than they would in the absence
of focusing. On many occasions, the initial anisotropy disappears suddenly
sbout an hour after onset. This phenomenon can be understood from figure 11
as the arrival of a disturbance propagating pseudodiffusively back toward
the sun from distant regions of weak focusing where scattering finally succeeds
in making the distribution function isotropic.

Beyond the dashed line where maximum intensity occcurs after onset, flare
profiles resemble those of classical diffusion. If a diffusive Gaussian
is blindly fitted to one of these profiles, which are described by equation (57),
the best fit occurs, not for the coefficient of ordinary diffusion D, but
instead for the coefficient of focused diffusion D#. Because D# > D, this
misidentification can lead to an overestimate of D. Moreover, in

determining the distance to be invoked in the fitting procedure, both the

distance to the supercoherent transition and the offset A should be subtracted
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from the Sun to Earth distance. If these corrections are not subtracted,
then D‘ is underestimated.

In the late stages of many flare events, the decay takes on an exponential
character which differs from the temporal power law predicted by diffusion
but which can be explained by postulating a free-escape boundary far from the
Sun (Meyer, Parker and Simpson 1956). Such an exponential decay appears as
an inherent characteristic of focused diffusion. Its relaxation time T,

derived from equation (57), is given by
I A S (86)

This time decreases from its infinite unfocused value to approach 1, = 201
in the strong focusing limit. Because typically observed relaxation times
of many hours are much greater than any plausible value of Ty the rate of
exponential decay must be controlled by weakly focused diffusion in the
outer solar system. An accurate description of this regime would take into
account the radial variation of the focusing parameter. This can not be done
here, but it seems reasonable to expect that a region of uﬁiform density would
be set up in the inner solar system through the rapid equalization of density
inhomogeneities by coherent effects. Farther out, gradients would develop in
a reglon of weakly focused diffusion through which particles escape at a
rate leading to a slow exponential decay.

The Jovian electron bursts recorded on Pioneer 10 result from the inward
propagation of low rigidity particles along interplanetary fields (Chenette,
et al. 1974, Teegarden, et al. 1974, Smith, et al. 1975). The supercoherent
mode does not apply here, but quasi-coherent propagation into converging fields
is predicted by equation (57), for relatively weak focusing, and by the

pseudodiffusive idealization, for strong focusing. The brief duration and
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10 hr modulation of the Jovian bursts can be explained in terms of these
modes, but they are difficult to reconcile with pure diffusion. Outside
Jupiter, electrons might propagate supercoherently. Here, the intensity of
Jovian bursts would decay more rapidly with distance than it does inside, but
their temporal fine structure would be better preserved. Observations of
these effects could confirm the asymmetrical nature of focused transport.
Several poorly understood interplanetary phenomena correspond to
predicted features of focused transport. However, the current status of pitch
angle scattering theory at low rigidities does not allow these features to be
quantitatively related to the observed intensity of interplanetary magnetic
fluctuations. In particular, a weak scattering regime at lew rigidities is
indicated not only by supercoherent electron events but also by the findings
of Bryant, et al. (1965) in which profiles for proton events were dependent
upon the distance travelled Vt but were independent of rigidity. Such
behavior can ocecur only if A is a linear function of V alone, which means
that (V/AL) is independent of both velocity and rigidity. Thus, the
observations suggest that a broad region of rigidity-independent scattering
lies between the low-rigidity regime, where scattering at a given velocity
increases with rigidity, and the high-rigidity regime, where it decreases.
The transport theory developed in this paper sidesteps these ambiguities and
goes directly to the macroscopic description of density profiles in space
and time. These profiles depend ultimately upon only three parameters, q
which characterizes the anisotropy of scattering, A which characterizes
the intensity of scattering, and L which characterizes the intensity of
focusing. Until an improved description of pitch angle scattering comes forth,

attempts to relate observed profiles to these parameters may be worthwhile.
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VII. THE STRUCTURE OF EXTRAGALACTIC RADIO SOURCES

Double radio sources, between which there is usually found an
optical galaxy, are among the largest and most energetic phenomena of
astrophysics. In spite of the detailed knowledge of their structure
(Mackay 1971, Fomalont 1969) made available by recent advances in inter~
ferometry {Ryle 1975), there is still no generally accepted explanaticn
of these remarkable objects. The interpretation put forth in this section,
which adopts a widely held view that the radiating electrons gain their
energy within the central galaxy, describes the symmetrical transport of
these electrons to great distances from this source and the subsequent
evolution of the clouds they form there, but it does not attempt to describe
their acceleration. This interpretation rests on the assumption that a large
scale magnetic field, which threads through the galaxy, cxtends far into
intergalactic space to form a diverging guiding field along which focused
transport occurs. Here, the basic morphology of the double sources arises,
in much the same way as in interplanetary propagation, when two bunches of
electrons move rapidly out in opposite directions to supercoherent transitions
where they form relatively long lasting clouds which constitute the actual
radio sources. On the time scale implied by the large separation of the
clouds from the central source, the Compton-synchrotron mechanism of energy
loss plays an important role which will be mentioned below but which cannot
be treated in detail.

The chief objection to this interpretation is that the strong anisotropy
of the supercoherent mode might be rapidly attenuated by the collective
effects reviewed by Wentzel (1974)}. However, the conventional view, that
these wave effects limit streaming velocities to the Alfven velocity,applies
to steady state conditions. In the absence of reliable knolwedge of the inter-

galactic medium and in view of the slow growth of waves, there is no reason to
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beiieve that scattering could be significantly enhanced during the brief
period in which a supercoherent pulse sweeps over a given volume of the
medium. In any case, as was documented above, the supercoherent mode can
persist in the presence of scattering, including that generated by the
particles themselves through collective effects. The interplanetary analogy
may be relevant here, for Jovian bursts do persist while generating waves
(Smith et al. 1975).

Underlying the striking symmetry of double sources is the symmetry of
the guiding field, which arises because Maxwell's equations guarantee that
as many lines of force diverge out from a local condensation as converge
into it. For example, if intergalactic currents are absent, the field would
take on a dipolar character, and, if the central galaxy is surrounded by an
expanding medium, the field would develop a radial pattern analogous to that
of the interplanetary field, Within these bilateral configurations,
electrons propagate and radiate in similar magnetic environments on
opposite sides of the source. No matter how the electrons are accelerated,
scattering within the central galaxy, which makes them isotropic there,
ensures that the two bunches contain equal numbers of electrons. When these
bunches hit the supercoherent transitions, particles are rapidly scattered
into two clouds. Because these clouds contain equal numbers of isotropically
distributed electrons and because their diffusive evolution is slight during
the time required for light to travel between them, the two lobes of the
radio source appear to have nearly the same luminosity regardless of the
angle between their axis and the line of sight. The axis is perpendicular
tothe E vector of the polarized emission from the clouds. These predicted
symmetries are the same as those observed by Macdonald, Kenderine and Neville
(1968), who found that the intensity ratios of double sources in the 3C catalog

are strongly clustered near unity and that the polarization are strongly
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clustered around the direction perpendicular to the axis. However, Mitton
(1972) subsequently found that the latter correlation is l2s8s pronounced
than it had seemed.

Within this picture, minor deviations from symmetry, which appear in
many sources,are possible. For example, large scale shearing motions of
the intergalactic medium could displace the supercoherent transitions,
which define the two lobes, in different directions along the field line
through the central source. This apparent longitudinal displacement of
the galaxy from the center of the axis joining the lobes could be accompanie
by a lateral displacement perpendicular to the axis and by unequal emission
from the lobes. Similar distortieons could arise from the uniform motion of
a rotating galaxy through the intergalactic medium. Another class of
deviations from the canonical pattern, which obviously fits into the picture
given here, involves emission from the central palaxy.

The spatial profile of synchrotron emissivity, which underlies obhserved
maps of radio intensity, is not the same as the profile of electron demsity

F_, for it also depends upon B. More specifically, the emissivity is given

0!
by

gE(ytl) ~h(y-1) . g1.8 -0.8

E“Fo 0 »

87)

where vy is the electron spectral index and where the second equality gives
the dependence expected for a typical radio spectral index of 0.8. In the
present context, where the theory does not consider perpendicular transport
and where existing maps do not always resolve structure perpendicular to

the axis, the most appropriate quantity for comparison with observations is
the axial prefile of power emitted per unit distance parallel to the field.

From the emissivity given above and from the relationship n

0 x (FO/B), it

follows that this quantity is given by

(dP/dz) « ng Pt (-1 ¥, ge(y-1) (y-1) £, 0.8 -0.8

d

(88)
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where B is the number of particles per unit distance. In the theory
discussed above, where B depends exponenutially upon z, this equation leads

to a welghting

(dP/dz) = F, exp{ -%k(y-1)(z/L)} = F, exp{ -0.8 z/L} (89)

0 0
which displaces the radio profile toward the galaxy relative to the density
profile. Because of this weighting, most of the radio emission comes from
a tiny fraction of the electrons which are nearest the galaxy in relatively
strong fields. Moreover, in focused diffusion, the Gaussian peak of the
radlo profile moves toward stronger fieldiwith a velocity given by

V0 + (y - 1) (D#/L) =y V (90)

#
Thus, if a series of discrete explosions occurs in the central galaxy,

clouds from earlier events drift inward where they

appear as weak secondary lobes lying on the axis betweer the intense lobes

from later events. The following double sources with well marked lobes each

resolved into a close pair have been reﬁorted by Macdonald et.al. (1968):

3C33.1, 3C46, 3C61.1, 3C184.1, and 3C234. These authors also report that,

in all these cases, the innermost members are weaker than the outermost.

If the explosions occur frequently or if the acceleration is continuous,

electrons drifting inward form a continuous bridge between the lobes.

Clearcut examples of this behavior are 3C46, 3C274.1, 3C284, 3C430 and 3C432,

but more or less continuous emission along the axis is seen in many extra-

galactlic sources. Because the Compton/syacnrotron mechanism has more time

to act on the electrons in these inner components. their radio spectrua is

expected to be steeper than that of the outer lobes. This prediction is in

accord with the finding of Macdonald et al. (1968) that the emission from

between the main components has a steeper spectrum than the source as a whole.

Radio trails (Wellington, Miley and van der Laan 1973, Miley 1973) are

believed to delineate magnetic fields dragged out behind as the central pgalaxy
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moves théough a stationary medium. In this magnetospheric configuration
(Jaffe and Perola 1973), the velocity of the galaxy may exceed the velocity,
defined by equation (90), with which the radio Gaussian d¢rifts forward.
Consequently, electron clouds from successive explosions are strung out in
a trail behind the primary lobes which form, as before, at supercoherent
transitions moving with the galaxy. This interpretation predicts that

the radic emission from the tail decreases in intensity systematically with
distance from the galaxy while its spectral slope increases. These are the
effects found by Miley (1973) in 3C129 aund NGC 1265.

Except for the effects interpreted above in terms of ageing and except
for the flat spectra of central components, which can be similarly inter-
preted, the structure of radio sources is not strongly dependent upon
frequency {Macdonald et al,1968, Mackay 1969). This indication that the
electron spectral index is uniform means that intergalactic propagation is
not strongly dependent upon rigidity. The same conclusion was reached
above in regard to interplanetary propagatiom.

The time required for electron bunches to reach the superccherent
transitions is smaller than that required for the clouds to dissipate.
Consequently, the probability of observing a double source in its supercoherent
phase is small., Nevertheless, among the many sources that have been studied,
it is reasonable to expect that a few are currently in this phase. Such
sources would appear as two relatively compact radio lobes moving apart with
a veloeity slightly less than twice the speed of light. This superluminous
velocity of recession is only a little smaller than the velocity found in
30279 and is the same as that found in 3C273 by Cohen, et al. (1971, see also
Whitney, et al. 1971.) Because projection effects lead to an overestimate
of the velocity of recession when the axis is not perpendicular to the

observer's line of sight, the predicted velocity seems to be in good sqree~
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ment with those observed in these two quasars.
Compton/synchrotron energy loss during the supercoherent phase sets
an upper limit on the size of radio sources. More specifically, the

maximum distance - in Kpe at which an electron can arrive with energy E

in GeV is

5

.94 x 10 _2.1%10° (B/v)?
2

W+ .0369<B°>1 E W+ .0369 <B*>

4
max

, (91)

where W is the photon energy density in eV cm'3 and < Bz> is the mean
square magnetic field in microgauss (uG) averaged over the pitch angle
distribution and over the distance travelled by the electron at V = c.
The expression following the second equality, whose form is convenient for
the analysis of radio data, refers to electrons whose maximum radio
emission in a field B in uG occurs at frequency v in MHz. If this formula
is applied to the radio palaxies observed at v = 5000 MHz by Branson et al.
(1971) and by Pooley and Hembest (1274), who invoked equipartition to deduce
magnetic fields that can be used to approximate < Bz> , the calculated values
of Z ax lie.comfortably above the observed semi-major axes by factors of 4
to 10. Similarly, in the extremé case of 3C236, which was studied at
v = 612 MHz by Willis, Strom and Wilson (1974), where B = 0.6 microgauss
and where the electronlifetime is set by the microwave background (W = 0.38 eV
cm-a) rather than by the synchrotron effect, 2 ax 16.7 Mpc, which is somewhat
larger than the distance of 2.8 Mpc between the outer lobes of this giant
object and the central galaxy. In these examples, energy loss may be
significant during the evolution of the clouds, but it is insignificant during
the supercoherent phase.

ir contrast, for the compact outer lobes of Cygnus A (Hargrave and Ryle
1974), where B =290 uG and v = 5000 MHz, 2z = 16.3 Kpc, which is sub-

stantially smaller than the 100 Kpc separation of these components
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from the central galaxy. On the basis of arguments similar to those
underlying this estimate, these authors reached an equivalent conclusion
that the synchrotron lifetime of the electrons in these lobes is less than
the time required for light to reach them for the central galaxy.

Several considerations soften the impact of this conclusion. Te
obtain more accurate values of 2 ax than the crude estimates obtained above
by substituting in equation (61) the square of the equipartition field, a
proper evaluation of (Bz> should take into account not only the collimated
angular distribution of the supercoherent mode, but also the decrease of B
with distance from the central galaxy. It is possible that the reduction
in <Bz> arising from the first of these effects significantly outweighs the
enhancement arising from the second. Of greater significance is the
possibility that the electron energy density is actually larger than the
magnetic energy density, for the transient evolution of electron bunches
and clouds can be controlled by fields weaker than the minimum field
required for steady state confinement. For the supercoherent phase, this
possibility seems especially plausible not only because the lateral pressure,
which tends to disrupt the guiding field, is much smaller for a collimated
bunch of particles than for an isotropic cloud but also because it is exerted,
at a given point, for a shorter period of time. Thus, 1t seems appropriate
to assume that the compact components are emitted by electrons that have just
formed superdense clouds after propagating supercoherently across Cygnus A
in a field of 120 uG corresponding to equipartition within the extended
components. In this situation, Znax 61.2 Kpc, which is slightly smaller
than the actual separation of 100 Kpc, but which could probably be made
consistent by invoking a more accurate value of <Bz> and by taking int> account
the possibility that equipartition does not apply to the extended compoﬂents.

These arguments show that energy loss significantly affects the propagation
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df electrons in Cvgnus A and suggests that the pressure exerted by
particles may affect the large-scale configuration of the magnetic field.
If a substantial flux of nuclei accompanies the pure flux of electrons
assumed above, the latter suggestion becomes conclusive. Thus, outward
particle pressure, which straightens the lines of force, may underlie '
the well known tendency for the structure of powerful sources like Cygnus A
to be simpler and more regular than that of weaker sources whose field
configurations are more easily influenced by motions of the intergalactic
medium.

The model of extragalactic radio sources developed here is similar
to previous interpretations, reviewed by Longair, Ryle and Scheuer (1973),
which assume that relativistic particles carry energy from the central
galaxy to the radio lobes. Unlike these interpretations, which invoke
local acceleration within the lobes, the radio waves are emitted here
by the same electrons that transport the energy. Fundamental characteristics
of this transport, which takes place in the same magnetic fields that are
required to explain the synchrotron emission, give rise to the basic
worphology of radio sources. Specifically, the emission is confined to
an axis because electrons propagate parallel to the magnetic field more
readily than perpendicular to it. Symmetrical lobes appear on this axis
because electrons are deposited at the supercoherent transitions far from
the central galaxy where they propagate diffusively. The slow drift
velocities which characterize this propagation explain the secondary
structure between the main lobes and establish a relationship between double
sources and radio trail galaxies. The supercoherent propagation by which
electrons reach the lobes proceeds at superluminous velocities of recession
comparable to those observed In some quasars. Thus, focused transport gives

rise to the radioc source structures that are summarized in figure 12.

Except for relatively slow changes which may occur in powerful sources due
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to particle pressure, only static magnetic fields are involved. Con-
sequently, the adiabatic energy losses that embarrass interpretations
in which electrons are transported within expanding clouds of thermal
plasma do not occur in the present model. Finally, the basic features
of focused‘transport are confirmed by interplanetary observaticns. 1In
retrospect, it seems surprising that the relationship between the
scatter-free propagation of solar electrons and the intergalactic
transport of radio emitting electrons had not been recagnized.
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FIGURE CAPTIONS

Figure 1. The scattering eigenfunctions at the left, which were
defined in Paper II, are symmetvrical functioms of u. In contrast, the
focusing eigenfunctions at the right are asymmetrical,

Figire 2. The focusing eigenvalues increase monotonically with {(V/AL).

Figure 3. The four characteristic velocities that reduce in the
absence of focusing to the finite velocities defined in Paper IT all
vanish when focusing becomes intense. This absence of coupling between
eigenfunctions of opposite parity leads to supercoherent propagation.

Flgure 4. For isotropic scattering, q = 1, the six characteristic
velocities that vanish when focusing is absent display a complicated
dependence upon (V/AL). When the scattering is anisotropic, as it is af
q =1.5 and q = 1.9, this intricate pattern is dramatically simplified.

Figure 5. This graph shows that the artificial decay associated
with the truncated set of equations that describe focused diffusion plays
an unimportant role in the overall evolution of the distribution function.

Figure &. The coherent velocities, V+ and V_, that appear in focused
diffusion are not strongly dependent on (V/AL).

Figure 7. This graph shows that <, = (1/2L}.

Figure 8. Density profiles which compare ordinary diffusion (a) to
focused diffusion with positive injection velocity (b) and to focused
diffusion with negative injection velocity (c).

Figure 9. The velocities that describe the supercoherent mode are
plotted as functions of (V/AL).

Figure 10. A supercoherent density profile is compared to the
corresponding profile for focused diffusion.

Figure 11. Schematic diagram of the sclar neighborhood showing three

reglons "n which there appear qualitatively different solar event profiles.
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Figure 12. An atlas of radio source configurations that can be
explained in terms of ideas presented in this paper: (a) two symmetrical lobes
of emission on opposite sides of the central galaxy, (b) two secondary
lobes between the primary lobes, (c) a succession of lobes deployed
behind a moving galaxy,and (d) two compact lobes moving away from the central

galaxy with velocities slightly less than that of light.
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TABLE 1

FOCUSIRG EIGENVALUES AND CHARACTERISTIC VELOCITIES

v 2 2 2 Yo fu % ‘o ‘u ' W¥] Y2 f»  n
1 R Ao Ao, A0, v v v v v v v v v v

1.0 0.0 2.00 6.0) 12.01 L0000 .5783 0000 L0000 .0oao L5153 ,Q00a ,0000 . 5090 ,0000
1.0 2.20 6.17 12.14 ~.3119 .5211 ~, 00696 . 0046 L1836 L5094 -~.0202 L0439 5075 ,02318

2.0 2.80 6.59 12.55 -.53a1 4006 -.1143 0150 . 2866 L4993 -.0358 .0810 .50 L0467

3.0 .79 7.29 13).22 -.6723 L2879 -.1314 L0252 L3137 4967 - 0461 L1073 4956 0675

4.0 5.13 8.24 14.19 -.1510 L2070 -.1304 L0320 . 3012 . 5068 ~.05%31 .1226 L4843 .0B56&

5.0 6.81 9.4} 15. 46 =-.H0D0O3 . 1945 -, 1207 L34 2712 L9303 -.0588 L1307 L4671 L1013

6.0 8.76 10.83 17.06 -. 8134 1221 -, 77 NiERiY L2283 . 56h5 -.065%8 L1406 LAL0]3 L1147

7.0 10.89 12.41 19.08 -.851712 .1034% -. 0415 L0291 L1632 6118 -, 0766 . 1684 L4000 . 1259

8.0 13.12 14.13 21.51 -.B750 0939 - 07H4 L0216 L0559 6541 -.0922 L2381 3449 L1339

9.0 15. 36 15.94% 24.45% -.BBH9 0H99 =620 180 -, 1110 .Hh4S -.1101 3707 L2794 L1368

10.0 17.5%6 17.83 27.89 =-. 90110 OHHO - 0447 U134 -.3212 L6046 -.1242 .5517 .2129 .1323

1.5 0.0 . BO G.42 7.05 Ml . 5626 L QuUoD L1278 L0000 L4109 L0000 . 0000 5120 0000
0.5 .93 4.%3 T.14 ~.35996 L4610 -.11HK1 L1192 . 3087 . 3667 0591 -.0588 .50%9 LDR30

1.0 1.32 4.84 7.4 -, 5544 L2916 I R 1% ] 1on? 4721 367 i Yel-1: -. 1308 4855 L1698

1.5 1.92 5. 14 7.92 B TL:E 1660 -.2115 L7095 . S4B0 L2819 1540 -.,227%4 b4 .2636

2.0 2.66 5.99 B8.64 -.7012 L0911 ~.2119 579 L5983 2235 1877 -.3258 .3218 . 3563

2.5 3.49 6.72 9.59 ~-.1317 (J4H9 -.2058 .018L b4l .1b37 L2103 ~. 4157 L2841 6324

3.0 4. )7 7.51 10.76 =-. 7659 0207 -, 1913 L0229 AR5 R L2178 -, 4793 L1952 L4832

1.5 5.8 a.13 12.09 -, THHS RIINY -. 1299 L0129 L7109 .0700 L2142 -.5%201 L1244 .5137

4.0 6.21 9.17 13.5%4 -, BIKO Loon? - 1671 L0070 . TIH0 L0424 . 2049 -, 5487 0754 5334

4.5 .16 10.03 15.08 - Bi40 L0034 -.1555% NILET) L7616 L0249 L1934 -.5715 0442 .54B7

5.0 B.13 10.92 16.68 -, B178 0017 -.1491 0020 L7823 0144 . 1815 ~-.5%4%19 .0253 .5626

1.9 0.00 11 3.21 3.66 0000 L5118 L0000 L2549 L0000 L3115 L0000 .0e00 L4599 L0000
0.25 .28 3.52 3.85 -.519) L1094 -.25%73 R EYA L5170 1270 L2542 -.37124 .2556 . 3847

g.50 .57 3.9% 4.4L0 -.9915 .0119 -, 2044 L0158 .5%18 L0234 L2707 -. 4479 0548 L4670

6.75 .91 4.133 5.04 -, 0271 0013 -, 24529 000 . 5789 0031 .2629 -. 4560 0080 RX2R)

1.00 1.26 4.74 5.70 -.6571 L0001 -, 2403 L0002 6024 L0004 L2547 -. 4639 0010 4852

1.25 1.64 5.17 6.40 -, 6832 - -. 7288 - ¥ - . 2465 -. 4735 0001 4927

1.50 2.013 5.61 7.11 -, 7057 - -, 21719 - L6450 - . 2184 - 4844 - L5002

1.75 2.44 b.06 "7.8% -.72%1 - -, 2078 - .b641 - L2304 ~.4959 - L5077

2.00 2_85 6.51 8.60 -.742% - -. 1984 - .6819 - L2226 -.5078 - 5151

2.25 3.28 6.98 9.8 -.7577 - -.1897 - .6YB4L - L2150 -.5199 - .5226

2.50 3.712 7.45 10.17 -.7713 - -.1817 - 71136 - L2075 -.5318 - .5299
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