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6.2 Installation Drag Considerations as

Related to Turboprop and Turbofan Engines

G. A. Burnett
Garrett AiResearch Manufacturing Company of Arizona

Introduction

Considerable effort is presently being expended by NASA, various univer-
sities, and industry to improve and develop technology in many areas directly appli=-
cable to general aviation aircraft design. One of these major areas is directed toward
new airfoil designs for improved lift-to-drag-ratio characteristics for improved climb
and cruise performance. Another is directed toward high-lift-device improvements
that could open the door for increased wing loading design criteria, thus reducing
wing area and cruise drag. The results of these programs will undoubtedly provide
some significant aerodynamic improvements when the research and development work
has been completed; however, the testing, proving, and optimization of most of these
concepts are still in the early-to-moderate stage with respect to being introduced into
production general aviation aircraft.

With this in mind, it would appear advantageous to approach the problem of
improved aircraft performance and/or drag reduction along at least two parallel paths
which consist of new technology development and identification of areas where
potential improvement with existing technology could be attained. The latter would
also tend to complement advanced technology .

One such area is the drag penalties associat ed with propulsion system instal-
lation. Typically, at representative cruise operating conditions, the total installed
drag of a turbofan engine installation can effectively amount to between 10 and 15
percent of the total aircraft drag. Similarly, a turboprop engine installation can
amount to between 20 and 40 percent of the total aircraft drag. As a starting point,
some of the specific areas associated with straight jet and turboprop engine installation
have been outlined where drag reductions and, thus, improved aircraft system per~

formance can be obtained.

Discussion

Before the subject of drag reduction can be addressed, an accounting pro-
cedure for evaluating the propulsive effort must be defined. For the straight jet

engine installation, this is a relatively simple procedure, as shown in Figure 1.
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With the use of accounting procedures that have been accepted where drag is defined
as the summation of forces acting on the outside of the stream tube bounding the flow
that passes through the complete engine and thrust is defined as the summation of forces
on the inside of the stream tube, the complexity of thrust and drag accounti ng becomes
relatively simple.

Obviously, this same exact procedure cannot be applied to a propeller powered
installation, since the stream tube or slip stream now has moved from the inside of the
engine fo the oufside. However for a turboprop engine insta!lafion, an extension of
the basic straight jet accounting procedure may be established as shown in Figure 2.

The purpose of defining an accounting procedure is twofold. First, it provides
the means of completing a preliminary performance assessment of one engine installation
withrespect to another, which is an obvious requirement for aircraft performance
analysis and trade-off studies; and secondly, it provides a method to identify areas
of potential improvement. This procedure has apparently not been as fully utilized
on propeller installations as straight jet installations. This is indicated by the lack
of design guidelines and installation aerodynamic trade-off data. This may be
attributed in part to the fact that propeller-powered aircraft engine installations come
in many variations, whereas straight jet engine installations are fairly standard in

terms of comparing one installation to another, independent of thrust or application.

Air-Intake Design Considerations

All turboprop and straight jet aircraft propulsion system installations have
primory air intakes for directing airflow from the free stream into the engine. Most
installations utilize secondary air intakes for providing cooling and ventilation air-
flows to various components and hot sections of the engine. The design considerations
in terms of sizing, design-point selection, location, and shape can significantly affect
the propulsive effort of the propulsion installation (net thrust, nacelle drag, and
additive drag).

The design objective for most business jet intake systems is minimum length
for weight and surface area considerations while maintaining a high drag-rise Mach
number, low spillage drag characteristics, and high total pressure recovery with low
flow distortion to the engine. With the advent of modern high=bypass~-ratio turbofan
engines (high flow per unit frontal area and increasing maximum diameters), this
objective has become quite a challenge to the aerodynamicist. If the intake sizing

is too large for the required engine airflow (low mass-flow ratio), flow spillage
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results which can lead to flow separation. If the forebody shape (fineness ratio) is not
adequate, supersonic expansion can occur which may result in flow separation. If
the inlet lip (from the highlight to the throat) and internal diffuser characteristics are
not considered, excessive additive drag can result.

Up to now the NACA Series I profile has been used for most forebody air-
intake designs; but at low mass flow ratios, excessive spillage drag can result due to
the high local flow angle at the inlet lip or highlight. This is especially true of
modern high-bypass-ratio turbofans used on general aviation aircraft where fixed-
geometry air intakes are used predominantly, The air-intake throat is sized for good
cruise diffuser performance, but the static takeoff conditions require generous highlight-
to-throat-area-contraction ratios to preclude flow separation during static ground and
crosswind operation. As a result, during some operating conditions (speed and engine
power setting), exiremely low mass flow ratios can result. While operating in these
conditions the stagnation streamline can be located well within the air intake to the
inside of the highlight, which will require the flow on the outside of the streamtube
(spillage flow) to rapidly accelerate and expand around the highlight within the for=-
ward region of the cowl. If theflow separates, the effect of the suction pressure loss
reduces the lip suction force and , thus, increases the additive drag in addition to
the basic pressure drag of the nacelle. Some recent studies have suggested that the
problems associated with low-mass-flow air-intake operation may be alleviated by
incorporating forebody profile shapes similar to those being investigated for super~
critical airfoils--the principle being that the suction pressure on the modified forebody
shapes is retained well beyond the point where suction pressure collapse occurs on a
Series 1 profile.

As shown in Figure 3, the reduction in additive drag from a NACA Series |
forebody and a modified supercritical forebody is indicated as:

Mass Flow Ratio o Spillage, Based on Frontal Area
0.6 -43%
0.4 -77%

With turboprop engine installations, the problems associated with air-intake
design can become more of a challenge than that of straight jets. This can be attri-
buted to propeller slipstream interaction effects, which complicate accurate local
flow field definition. As a consequence, the air intakes on most propeller-powered
aircroft are oversized to offset the uncertainties, thus resulting in high additive

drags, increased surface areas, and propeller blockages. In addition to the basic
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drags associated with the air intakes, the parasitic drag resulting from local flow

separations on the nacelle due to prediffusion can be significant.

Turboprop Exhaust-Duct Arrangement

Some turboprop engine installations offer options in the approach to designing
the required exhaust duct and cooling systems. When these options exist, trade off studies
in terms of aircraft constraints, cost, weight, and performance should be completed
to assess the best configuration for the engine installation and, thus, the total aircraft
system.

Figure 4 shows three possible exhaust-duct configurations that may be con-
sidered for a typical turboprop aircraft installation. As shown, the three configurations
consist of a straight duct that has been designed to minimize internal pressure losses
(no bends; minimum length), to provide maximum use of the jet thrust, and to minimize
frontal area or blockage.

The second duct is a typical compromise that could be encountered on some
installations. Like the straight exhaust, it has been designed to utilize the available
jet thrust, but at the expense of additional internal pressure loss and external drag.

The third duct illustrates a configuration where the designer may consider
minimizing external drag and frontal blockage at the expense of utilizing the engine
exhaust jet energy.

To provide insight as to impact on propulsive effort of the three exhaust-duct
configurations considered a simple performance assessment is shown that considers
the relative effect of each configuration with respect to the power attainable with an
uninstalled specification engine. The result obtained from this parametric analysis
is unique for each exhaust-duct area considered ‘with respect to internal pressure loss
and external drag.

As expected, the straight duct configuration results in the smallest power loss
(approximately 1.5 percent). The difference between the compound side exhaust
(optimum area) and the straight duct (optimum area) is approximately 5.0 percent,
which is attributable directly to external drag and internal pressure-loss effects on
the engine. The optimum area stub side exhaust performance was estimated to be
approximately 8 percent lower than the straight exhaust duct.

In terms of airplane drag, the difference between the optimum straight duct
design and the stub side exhaust design represent 30 to 35 Ibs drag differential at a

typical cruise operating condition.
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Turboprop Cooling Systems

As previously indicated for exhaust-duct trade-offs, turboprop engine cooling
requirements (compartment ventilation and oil cooling) provide some design alternatives.
Most systems use either full ram systems, which are dependent upon recovering kinetic
energy from the propeller slipstream or free-stream velocity, or augmented systems using
the kinetic energy of exhaust velocity to provide an eductor. Both systems have advan-
tages and disadvantages.

At static or low-speed operating conditions, where the free-stream kinetic
energy is low, eductor systems con provide the augmentation necessary to obtain the
required cooling flows; however, the optimization of an eductor system requires a com-
plete parametric analysis at the design point and 6ff—design operating conditions to
fully assess the interaction of the interrelated flows and the effect on propulsive effort.
In comparison , full ram systems are simpler to analyze due to the elimination of the
interacting flow fields. Improperly sized eductor systems can result in significant
engine power loss and ram drag at normal cruise operating conditions.

As indicated previously, full ram systems are less risk to design than flow-
augmentation systems. Proper designs can be obtained that result in minimum per-
formance loss to the aircraft if proper design criteria are followed for air-intake
sizing, internal diffuser design, and flow control employed for cruise operation where
the cooling flow requirements are low.

Figure 5 shows the cruise power loss as a function of flow control area ratio
for a full eductor cooling system and an isolated ram cooling system design. The points
at 100 percent area ratio show the power loss if no flow control is used. As indi-
cated, the power loss of the full ram system amounts to approximately 6 percent (oil
cooler plus compartment ventilation), whereas the eductor system cruise power loss
is only 2 to 2.5 percent. If the full ram-system flow control is implemented, the
resulting power loss of the ram system can be reduced to approximately the some
level as the eductor system. This is in direct contrast to the requirements for the
flow-augmented eductor system. As shown on the figure, if flow control is imposed
on the eductor system through a variable-area air intake or some internal device,
the cruise power loss increases as the eductor flow is decreased. This is attributed
to interacting effects of off-design eductor operation (higher pressure loss, incom-
plete mixing) being more pronounced on engine performance than the reduction in ram
drag. These performance effects do not include the additional drags that may be
encountered with each of the systems, such os additional wetted area, blockage, and

nacelle interference drags with the full ram system.
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Proposed Programs for Drag Reduction

The performance penalties associated with the propulsion system installation
can result in a significant percentage of the total e ffective aircraft drag. The
specific areas associated with the engine installation where the major performance
penalties are encountered should be identified and evaluated for potential improve-
ments through improved design criteria.

Fundamental to improving design criteria is the definition of a propulsive
effort thrust and drag accounting method that clearly identifies the interaction of
the propulsion system and airframe. These procedures must be defined early in the
preliminary phases of an aircraft program and maintained through flight test.

Through this approach of identification and accounting, a technical data
base applicable to each component considered in assessing the effectiveness of the
propulsive effort would be accumulated for defining improved design procedures.

In addition, it would tend to reduce the uncertainties associated with evaluating
.preliminary aircraft performance.

Specific areas that suggest potential performance improvements on current
and future general aviation aircraft are the design considerations used for air-intake
sizing on all general aviation aircraft, and exhaust duct geometries and cooling
system arrangements for propeller-powered aircraft. Studies have indicated that the
power loss at typical turboprop aircraft cruise conditions can range from 16 percent
(for a stub side exhaust duct, with no flow control installation) to between 2 and 3
percent (for a straight exhaust, full flow confrol system), thus suggesting a 13- to
14- percent improvement in system performance.

The key to arriving at @ minimum drag, maximum propulsive effort engine
installation on any aircraft system is the interface between the airframe and engine

manufacturers. The concept of "teaming" has been an accepted practice, to a
limited degree, among the larger airframe and engine manufacturers for some time.
However, within the last few years, the realization of the true significance of the
concept in terms of achieving the best performing aircraft system (airframe/engine
intergration) with minimum cost and program delays has been acknowledged.

From the general aviation point of view, the concept of teaming should be
even more significant, since a large percentage of general aviation airaraft evolve
through engine retrofits for performance improvements. In order to obtain the full
aircraft performance potential, the general aviation airframe and engine manufacturer
must understand each others sytems in terms of constraints, performance, penalties,
and trade-offs. '

The proposed programs for drag reduction are summarized on Figure 6.
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