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A Technique for Accelerating Iterative Convergence in Numerical
Integration, with Application in Transonic Aerodynamics

E. DALE MARTIN
NASA Ames Research Center
Moffett Field. California, USA

Summary

A technique is described for the efficient numerical solution of nonlinear partial differential equa-

tions by rapid iteration. In particular, a special approach is described for applying the Aitken acceleration

formula (a simple Fade approximant) tor accelerating the iterative convergence. The method finds the

most appropriate successive approximations, which are in a most nearly geometric sequence, for use in

the Aitken formula. Simple examples are given to illustrate the use of the method. The method is then

applied to the mixed elliptic-hyperbolic problem of steady, inviscid, transonic flow over an airfoil in a

subsonic free stream.

1. Introduction

The numerical solutions of nonlinear partial differential equations such as those governing fluid

flows frequently are obtained most efficiently by iterative methods. The rate of iterative convergence of

the method chosen is an important consideration, and various means of accelerating the iterative conver-

gence have been useful.

One popular device for accelerating convergence of a sequence of numbers such as provided by

^iteration is Aitken's extrapolation formula (or A- process) [ 1 j, whose use is described in most books on

numerical methods [2] and which is identified (3-5) as a simple Fade approximant if the successive

iterates are partial sums of a power series. Shanks [31 provided generalizations of Aitken's transformation

and studied their use. In [6] Wynn gave a simple algorithm for rapid computation of one of the non-

linear transforms studied by Shanks, and later Wynn [7] discussed application of this acceleration tech-

nique to vector and matrix problems, including application to boundary-value and initial-value problems.

The present paper describes a special technique for applying the Aitken extrapolation formula for

accelerating iterative convergence in the numerical solution of partial differential equations. The method

was first introduced and used in [8] and then used in a modified form in [9J with additional results

given in [9,10]. Although the application to be discussed is in a numerical finite-difference solution, the

general method applies equally well, for example, to analytical solutions or to numerical solutions by

finite-element methods. The use of the simple Aitken formula with three successive iterates is emphasized



(even though the elegant e-algorithm of Wynn with longer sequences could be used), because the eventual

applications are expected to be those numerical problems requiring significant computer storage. The

Aitken formula, using only three iterates, requires less storage than other forms of the e-algorithm.

Often the use of the Aitken formula with iterates obtained arbitrarily by successive approximations

does not lead to a significantly improved approximation. However, because Shanks [3] showed that the

formula works best if the sequence is "nearly geometric," the present approach seeks to obtain successive

iterates that are in a nearly geometric sequence. (Because of the work of Shanks in popularizing the

Aitken formula and his valuable demonstration of the special applicability to "nearly geometric sequences,"

our past work has referred to the simple extrapolation formula as the "Aitken/Shanks formula.") The

sequence of approximations can be most nearly geometric if obtained from a power-series construction.

Therefore, the basis of the present approach is the construction of successive approximations derived

from formal power-series expansions to obtain as closely as possible a nearly geometric sequence. The

technique is based on the concepts of perturbation-series expansions (in the sense of Poincare; see

Bellman [11]) . An artificial parameter is introduced in such a way as to obtain three problems to solve

for terms of a nearly geometric series, for use in the Aitken/Shanks formula. Expansion in powers of an

artificial parameter has also been considered by Genz [5] to develop a mathematical proof (unknown by

the authors of [8] at that writing), but the central idea in the present approach is that the artificial-

parameter expansions are used, in combination with an "artificially extended form" of the equations to

be solved, as a device to determine most appropriate successive approximations. This technique produces

the nearly geometric sequence of solutions, even in nonlinear problems. The previous application of the

Aitken/Shanks transformations to acceleration of iterations in numerical integration by Wynn [7] used

simple straightforward iterations. The results of such a procedure with use of only the simplest accelera-

tion formula are described below for an example problem and are compared with the present method.

The present approach based on perturbation series requires that complete perturbation solutions be

available on the entire computation field (or entire domain of the equations) at each iteration. This con-

cept therefore adapts well to a finite-difference method using "direct elliptic solvers" [12—15] in the

iterative procedure to determine the solution simultaneously at all points on the entire computation field

(rather than in successive traverses over the field as in a point- or line-relaxation method). Such methods

have been referred to as "semidirect" [8-10].

After several simple examples to illustrate the method, it is applied to the problem of inviscid flow

over an airfoil in a subsonic free stream, including conditions for which the flow equations are of mixed

type (elliptic in an outer region, with an embedded hyperbolic region and a shock wave). This transonic-

aerodynamic-flow problem has also been treated by Hafez and Cheng [16] using the Aitken/Shanks

acceleration formula, but in a quite different way, in combination with a line-relaxation method.



2. General Formulation of Method

Consider the general par t ia l -di f ferent ia l or difference equation system and the accompanying boun-

dary conditions represented by

LU-F(x) = NU in R, (2.1)

BU = G(x) on B, (2.2)

where U = U(x) is a vector funct ion of the position vector x, L is a separable, linear, elliptic differen-

tial or difference operator, F(x) is a given vector function and N is a possibly nonlinear operator such

that the operation NU is a vector of the same dimension as U and has components that may involve U,

x, and derivatives of the components of U with respect to the components of x. Assume for simplicity

that B is a linear operator The boundary condition (2.2) is applied on B, which includes all appropri-

ate boundary segments of the domain R. For illustration of this notation and of the method, simple

one-dimensional examples are given in the next section. Examples treated in the earlier version of [8]

included (i) the scalar Laplacian as L with a scalar, i//, as U, and (ii) a Cauchy-Riemann operator

matrix as L with two components of U, denoted as u and v. The right side of (2.1) can be compli-

cated and can make the equation system hyperbolic or parabolic in some regions [8-10] .

In the formulation of a problem to be solved, L and F(x) are chosen judiciously and may be the

result of "scaling and shifting" transformations [ 1 7.9] for increasing the rate of iterative convergence or

of addition of terms [9 ,10] for s tabi l iz ing iterations. For treatment with additional terms, an extended

Cauchy-Riemann solver for use in present calculations has been described in [ 18 J.

In the methods to be discussed for the iterative solution of eqs. (2.1) and (2.2), suppose Uj(x) ,

U2(x), t and Uj(x) are successive approximations to U(x) in R. Let u(x) and un(x) be respectively

each a single scalar component of the vectors U(x) and Un(x) ( n = l , 2 , 3 ) . Then one form of the

Aitken/Shanks extrapolation formula f 1,3 1 for an improved approximation u*(x) to u(x) is

*>
u i u i - u - j -

u*(x) - - *—* — -— (2.3)
uj - 2u2 + 113 .

Application of the formula in this way to individual components of U at each x separately is referred

to by Wynn [7] as use of a "primitive inverse" of the e-algorithm. Wynn concludes that use of the

primitive inverse is competitive with use of other more complicated inverses. The work of Hafez and

Cheng [ 16] considers coupling of the matrix elements in the numerical solution, which is related to the

more complex inverses of the e-algorithm.

2.1 Artificially extended equation. For obtaining power-series solutions to (2.1) and (2.2) that are

most appropriate for use in the Aitken/Shanks extrapolation formula, it has been found convenient to

artificially extend eq. (2. 1) by inserting both an artificial parameter e and an "initial approximation,"

U0(x), to U(x) as follows. Let

LU-F(x) = (l-e)NU0 + 6NU in R (2.4)



along with condition (2.2). Note that the solution U to (2.4) with (2.2) depends on e (as well as on

the specified function Uo(x) ): U = U(x,e). However, at e = 1 , the solution to (2.4) with (2.2) is the

same as the solution to the original equations (2.1 ) wi th (2.2). Furthermore, if Uo(x) is close to the

solution U(x), then (2.4) is nearly the same as (2.1) and the solutions then are nearly the same. Thus,

either of the conditions e = 1 or Uo - U makes (2.4) the same as (2.1). Both of these facts can be used

to advantage in the methods to be discussed.

2.2 Method 1. The simplest i teration scheme is a straightforward method of successive approxima-

tions. Although this method can be combined with use of a relaxation parameter (see [8,9] ), for simpli-

city here we omit that useful device. If we let e = 0 in (2.4) and define Uo(x) as a previous iteration,

we obtain the following equations for the iterative solution denoted as Method l(a):

LU n-F - NUn . j in R? (2.5a)

BUn = G(x) on B, (2.5b)

where subscript n denotes iteration number.

If, as is frequently done, the Aitken/Shanks formula is used to attempt to accelerate the convergence

of the iteration, we denote as Method l(b) the solution of (2.5) for three successive iterates and substitu-

tion of the results for one component of each Un into (2.3). (This designation of Method l(b) is useful

for a comparison in an example problem below.)

2.3 Method 2. The new approach for applying the Aitken/Shanks formula, first introduced and

used in [8] and in a modified form in [9] , is referred to as Method 2. The two versions are called, respec-

tively, Methods 2(a) and 2(b) for later convenience.

Consider the solution to (2.4) with condition (2.2). The solution evaluated at e = 1 is a solution to

(2.1) with (2.2). The specified Uo(x) can be used as an initial approximation to U. For obtaining a

most nearly geometric sequence of approximations, assume that

U(x.e)~ U1 ' (x) + eU2 ' (x) + e2U3'(x) + ____ • (2.6)

Successive approximations to U(x) are then defined by n-term truncations of the series (2.6):

un = e '~ ux ) <2-7>
>=1

Although (2.6) is equivalent to a Taylor series or asymptotic series expansion about e = 0, its conver-

gence or lack of convergence at e = 1 is not of particular significance for applicability of eq. (2.3) (see

[3]). If the series (2. 6) is substituted into the problem of eq. (2. 4) and condition (2.2) and coefficients
/

of powers of e are collected, one obtains equations to solve for the Un :

-4-



i ' -F - NU0 in R : B U j ' = G(x) on B ; (2.8a)

LU2' = N U ] ' - N U 0 in R: BU:' - 0 on B ; (2.8b)

LU3' - N2' |U2 ' .L'1 '} in R; BU^' - 0 on B; (2.8c)

in which N2 is defined by the perturbation expansion

NU - N U j ' + eN2' | u 2 ' ,U j ' } + O ( e ) . (2.9)

With the definitions (2.1) and

N2 |u 2 ,Ui} = N U ] ' + eN2 ' |U2 ' ,U]'| (2.10)

one can also solve the following equations for the successive approximations, Un:

LUi -F - NU0 in R; BUi = G{x) on B (2.11a)

LU 2 -F = NUi in R; BU2 = 'G(x) on B (2. l i b )

LU 3 -F = N2 {U2 ' u l f in R- BU3 = G**) on B (2.1 Ic)

in which it has been assumed that e - = I . Note that if the right side of eq. (2.1) is linear in U(x), then

the problems for the successive Un in eqs. (2. 1 1 ) are the same as (2.5) for Method 1 .

We denote as Method 2(a) the solution of eqs. (2.1 1) for three successive iterates and substitution

of the results for one component of each Un into (2.3) to obtain an improved approximation. (If NU

is linear in U, this is the same as Method l(b)). Note that when tiie solution is near to convergence at

any x, significant errors will be introduced by the loss of significant figures in applying eq. (2.3).

An alternative procedure (denoted as Method 2(b)) that eliminates the difficulty near convergence

is to replace eq. (2.3) by the equivalent expression (at e - 1):

u*(x) = u] - —, - r , (2-12)
113 -u2

where each un (x) is a single component of the vector Un (x). That is, eqs. (2.8) are solved for Un(x),

and (2.12) is used for extrapolation.

In a numerical solution, u*(x) can be used as the next uo(x) in a repetition of the sequence.

3. Example Problems and Comparison of Methods

This section gives simple analytical one-dimensional examples for illustration and comparison of

the methods.

3.1 Example 1. Consider the nonlinear problem

(d/dx+ l)u = ( l /2)u 2 in 0 < x < ° ° , (3. la)

u(0) = 1 . . (3.1b)

—5 —



The iterative solution by Method 1 is found from

<d/dx + l )un = ( l / 2 ) u ^ j , un(0) = 1 . (3.2)

The analytical solutions for n= 1.2,3 (assuming uo = 0) are:

ii |(x) = e'x , (3.3a)

in(x) = e'x [1 + p ( x ) J . (3.3b)

u3(x) = e'x [ I + p(x) + p2(x) + | P
3(x) | . (3.3c)

•J

where

p(x) = ( l /2)( l-e-x) . (3.4)

For Method 2, the artificially extended equation is:

( d / d x + l ) u = ( l-e)( l /2)u0
2 + e n / 2 ) u 2 , (3.5a)

u(0) - 1 . (3.5b).

Substitution of

u = u j ' ( x ) + eu2'(x) + e2U3'(x) + . . . (3.6)

into (3.5) leads to

Du! = ( l / 2 ) u 0 . U l ( 0 ) = l , (3.7a)

(d/dx + 1)112' - (1/2) | < U ] ' ) 2 - u 0
2 ] , in'(O) = 0, (3.7b)

( d / d x + l ) u 3 ' = u i ' i n ' , "3'(0) = 0, (3.7c)

or equivalently, with e = 1 and eq. (2.7),

(d /dx+ l ) u i - ( l /2)u0
2 . u i (0) = 1 , (3.8a)

, in(0) = 1 , (3.8b)

( d / d x + l ) u 3 = ( l / 2 ) u 2 - ( l / 2 ) ( u i - U 2 ) 2 , U 3 ( 0 ) = 1 . (3.8c)

The analytical solutions to (3.7) with uo = 0 are:

un'(x) - e-x[p(x)]"-1 , (3.9)

where p(x) is given by (3.4) and where the solutions un to (3.8) are given by (2.7). Evaluations of

these solutions at x = 1 and applications of the appropriate forms of the Aitken/Shanks formula are

given in Table 1. The results for the extrapolated solution u* may be compared with the exact solution

to (3.1),

u(x) = Zd+e31)'1 , (3.10.)

-6-



Table 1. Results of Example 1 at x = 1 (uo = 0)

METHOD:

EQUATIONS:

n

1
1

^

3

u*(l) =

Exact u(l) =

Kb)

(3.2) & (2.3)

un(l)

0.3678794412

.4841515202

.5247721376

.546583145

.5378828428

2(a)

(3.8) & (2.3)

«n(D

0.3678794412

.4841515202

.5209005060

.537882842

.5378828428

2(b)

(3.7) & (2.12)

"n'<D

0.3678794412

.2325441579

.1469959430

.5378828426

.5378828428

evaluated at x = 1: u ( l ) = 0.5378828428 to ten significant figures. We note first that the extrapolated

solution u* by Method Kb) is somewhat closer to the exact value than 113. but not significantly closer.

We note further that the third approximation. U3, by Method 2(a) is not as good an approximation as

U3 in Method 1, but that the extrapolated solutions by Methods 2(a) and 2(b) are exact except for loss

of 1 or 2 significant figures. (Method 2(a) is less exact because of loss of significant figures in (2.3).)

The striking accuracy of Method 2 in this example occurs because the sequence of solutions produced by
/ r

Method 2 is precisely geometric, i.e. un+]/un = constant for all n at a given x. The difference from

Method 1 is seen by comparing eqs. (3.2) with (3.8), in which (3.8c) has an additional term that produces

the geometric sequence.

3.2 Example 2. Consider next an example which is linear (so that Method 2(a) would give the same

results as Method l(b)), but for which the iterative sequence is "nearly geometric." Let us use Method

2(b) for this example (eqs. (2.8) with (2.6), (2.7), and (2.12)).

The problem is

du ~ du -. n ., ^ //Vv n-:— -2 = -x-j— - 2u m 0<x <°° . u(0) = 0 ,dx dx (3.11)

which is written in this way in analogy to more complex problems in which one may put a very simple

operator on the left and the rest of the terms on the right for iteration. (One can also shift the term 2u

to the left side, with very similar results.) The artificially extended equation is

du0

dx (-x^-2u) in
(3.12)

u(0) = 0

•7 —



Substitution of (3.6) leads to (with uo - 0):

/ i l x -2 = 0. u i ( 0 ) = 0. (3.13a)

dm'/dx = - x d u ] ' / d x - 2 u j ' , u:'(0) = 0, (3.13b)

dtij ' /dx = -\ din ' /dx-2u2' , "3(0) = 0 . (3.13c)

The analytical solutions are

un '(x) = (-l)n+I (n+l)x n ' (3.14)

and the successive approximations are given by (2.7). The sequence (3.14) is not geometric, but since

2imn-K» {un+](x)/un '(x)J exists at given x, the sequence is "nearly geometric" [3] . Evaluation of the

solutions (3.14) at x = 0.5 gives (uj , UT , U3 ) = (1.00, -.75, .50) so that the successive approximations

are ( u j , U2, u?) .= (1.00, .25, .75). Substitution of the un' into (2 .12) gives u*(.5) = 0.55, which com-

pares well with the exact solution to (3.1 1),

u(x) = (2x + x 2 ) ( l+x) ' 2 , (3.15)

from which u(0.5) = 5/9 = 0.555555 ____

4. Transonic Flow Over an Airfoil

For application of the methods described above, consider two-dimensional, steady, inviscid flow

over a thin symmetrical parabolic-arc airfoil in a subsonic free stream. At high subsonic Mach numbers,

part of the flow can be supersonic, so we consider the transonic small-disturbance equations, which are

nonlinear elliptic partial differential equations in subsonic regions and hyperbolic equations in super-

sonic regions. Transition of the velocity field from a subsonic region to the embedded supersonic zone

is smooth, but transition from the supersonic to subsonic region is usually discontinuous, through a

shock wave. The improved finite-difference method of Murman and Cole [ 19-22] captures the shock

waves (in a fully conservative way) but spreads the rapid transition over several mesh points.

In [8] a semidirect finite-difference method, based on the use of a fast direct Cauchy-Riemann

solver [ 15] , was applied to solving the equivalent of Murman 's transonic finite-difference equations [21 ]

iteratively for the perturbation velocities, u and v. (The iteration procedure has been formulated in

such a way that at nonelliptic points terms on the right side of the difference equations cancel out the

elliptic character of the left side when the iterated solution converges. ) Both Methods l(a) and 2(a)

described above worked well for subcritical and for slightly supercritical (local Mach number > 1 ) flows,

except that Method 2(a) could be used only before any part of the solution was nearly converged. In

[9] the method was extended to strongly supercritical flow by the addition of stabilizing terms to the

difference equations and In the Caucliy-Kicmami solver | 1H | . Also introduced in [9| was the method

version denoted here as Method 2(b), which can he used when the solution is nearly converged. In

smooth subsonic flows the acceleration technique is effectively used repeatedly. However, in transonic



flows with strong shock waves, the acceleration technique is not helpful at the beginning of the iteration

when the shock wave and its location are not well defined. Therefore in [9J it was considered desirable

to use the straightforward iteration Method l(a) until the maximum residual is reasonably small, so that

the supersonic region is nearly defined, and then use Method 2(b) to extrapolate three iterates to a final

solution. A fully conservative second-order-accurate formulation has been introduced in [ 10] , and so a

fomulation that includes either Murman's fully-conservative first-order-accurate formulation or the

second-order formulation will be used here.

4. 1 Governing equations and boundary conditions. Let the dimensionless X and Y axes be

respectively along and normal to the airfoil chord, the free-stream Mach number be M^ < 1 , and the

dimensionless velocity components in the X and Y directions be U,V. One may then define perturba-

tion velocity components u.v through a Prandtl-Glauert transformation with (3^(1 - M , ^ ) ' :

U = 1 +(T / j3 )u , V = rv, Y = y/0, X = x, (4.1)

which amounts to shifting and scaling of certain terms (cf. 1 17, 8--10] , so that the transonic small

disturbance equations take the form

fx + gy = 0 , uy - vx = 0 (4.2a,b)

where

f = f(u) = u - a u 2 , g = g(v) = v, (4.3a,b)

a = T(7+l)M^/203 , (4.4)

in which a is a transonic similarity parameter and T is an airfoil thickness ratio. Eqs. (4.2) are often

written in terms of a perturbation velocity potential 0 defined by u = 0X, v = 0y, and all the develop-

ments to be described apply as well to that potential equation.

The equation system (4.2) is elliptic, parabolic, or hyperbolic depending on whether u - u^j^ is

negative, zero, or positive, where the transformed critical velocity is u™ = l/2a. The corresponding

pressure coefficient is Cp = -2(r/0)u.

The linearized surface boundary condition for the symmetrical parabolic-arc airfoil, whose upper

surface is given by Yfo(x) = rF(x) = r(0.5 - 2x i) in - .5<x<.5 (with F(x) = 0 in |x|>.5), and the

v(x,0+) = F'(X) , (4.5a)

conditions at infinity are

u,v -»• 0 as x~ + y -»• <» . (4.5b)

Eq. (4.2a) is written in a "conservation-law" (or divergence) form, in terms of flux components f

and g. Therefore discretized forms of (4.2a), for numerical solution, can represent in a fully conserva-

tive way either that differential equation or the corresponding integral form. These discretized forms

can thus be formulated correctly to represent transitions between elliptic and hyperbolic regions [21,10] .



Since only the term fx in the system (4.2) determines the type of point (depending on the local

value of u), one can write the genera! type-dependent difference equations in the form:

(ix)T + (gy)c = 0 . (uy)c - (vx)c = 0 . (4.6a,b)

where subscript C indicates a central-differenced representation of a derivative and subscript T, which

indicates type-dependent differencing, may be replaced by E, H, P, or S at points defined respectively

as elliptic, hyperbolic, parabolic, or shock points [21,10]. At all points where the difference equations

are clearly elliptic or hyperbolic, subscripts E or H are used. Transition points from elliptic to hyper-

bolic (progressing downstream from left to right) are P points, and transitions from hyperbolic to

elliptic are S points.

For defining the finite-difference operators. Fig. 1 shows a staggered u,v mesh, with the shaded

area indicating a mesh cell for eq. (4.2a). The center of a mesh cell is the point at which 0 would be

defined on a conventional mesh and is the point that is designated E, H, P, or S. The indices j and k

indicate respectively the x and y directions. Second-order-accurate central differences are

(ux)c = (

(uy)c = (

In general, (fx)j is represented by

uj.i i k ) /Ax ,

- u j<k)/Ay

= Afj i k -

(vy)c = (v j ) k -V j k . ] ) /Ay

(vx)c = (vj+i .k - vji

(4.7)

where

(4.8a)

(4.8b)< fG>j,k = f«"G)j,k) ^

and where UG is either a "hyperbolic form" upj or an "elliptic form" U£. With (i) the definition (4.8)

for the difference operator (fx)j. ( i i ) a condition to determine whether each (UG): k is represented by
UE o r 'UH' and (iii) specifications of up and upj to obtain the finite differences (4.8a) to the order of

U;j -2.k-H j . k - t - t

U j-2.k

Vl.k-1

| --------- AX

Fig. 1 — Differencing mesh and mesh cell.
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accuracy desired, all four type-dependent operators are obtained. As derived in [ 10) , (i) the second-

order-accurato elliptic operator, ( i i ) either the first-order or second-order-accurate hyperbolic operator,

and ( i i i ) the corresponding parabolic-point and shock-point operators are all produced in (4.6) with (4.7)

and (4.8) by the following re la t ionship:

where

a k = 0 (and ur = UF) if u: k < urJ,k- «j t J,K «^
- 1 (and UQ = uj^) if li: ^ >

j.k (4-11)

and where X = 1 for the first-order-accurate hyperbolic operator, X = 2 for the second-order-accurate

hyperbolic operator, and 6 is a parameter that may be varied from 0 to °° but is derived as unity for

Murman's first-order-accurate operators [ 2 1 ] . As an example to illustrate, suppose X = 1 , 5 = 1, and

U; k < U£R and Q:.| ̂  > U(-R. Then for the shaded mesh cell in Fig. 1 , eqs. (4.8) — (4. 10) give

which is equivalent to Murman's [ 2 1 ] first-order shock-point operator. In a similar way the Krupp-

Murman first-order parabolic operator [20] is also obtained. Both the first- and second-order-accurate

hyperbolic operators given by (4.8) - (4. 10) with X = 1 and X = 2 are equivalent to upwind difference

operators originally proposed by Murman and Cole [ 19] ; the fully conservative second-order P and S

operators were introduced in [ 10]. Analysis of all these E, H, P, and S operators [10] has verified

their consistency, accuracy, and stability in the examples computed.

Because of the slow iterative convergence of the second-order-accurate iterative method to be

described, two methods of adding artificial viscosity have been proposed and used [ 10] . Both leave

the scheme fully conservative and formally second-order-accurate.

The boundary conditions for the finite-difference equations (4.6) are the same as (4.5) but with

(4.5b) replaced by a far-field condition on an outer rectangular boundary B:

uj,k = uB (x-y> or vj,k = vB^x 'y) on B (4.12)

where, for example, ug and vg are given by a Prandtl-Glauert solution (see [15,8,9]).

For solution of eqs. (4.6) with (4.7) through (4.1 1) and with conditions (4.12) by the semidirect

methods, one must rearrange the equations so that the left side is an appropriate elliptic operator and

provides a stable iteration scheme. One first adds (u
x)c ~ (fxh" t° b°tn si^5 of (4.6a) to obtain •

(ux)(: + (vy)c = (ux) c-(fx)T , . (4.13a)

(uy)c-(vx)c = 0. (4.13b)

-11-



This set contains a central-differenced elliptic operator on the left side regardless of the local type of the

equations. The nonlinear type-dependent term has been shifted to the right side where, in an iterative

procedure, it can be computed from n previous iteration. Although the iteration of these equations (8)

converged well for subsonic and sl ightly supercritical How, it was found (9,10) that terms with param-

eters multiplying u: k and ii: j k needed to he added to both sides of (4.1 3a) to produce iterative

convergence at higher Much numbers . A more specific form of the difference equations, in which the

second-order-accurate relations (4 .7 ) have been substituted, is

Dj k (u r v) = R j i k ( u ) , Ej)k(u,v) = 0, (4.14a,b)

in which

Djk(u.v) s (1 _ a | ) U j . k - ( ] + « 2 ) u J - U < + J " " ( v j , k - V j , k - l ) , (4.15a)

Ej,k(u,v) s (U j > k + 1 -u j i k ) -M(Vj + l t k -v j i k ) , <4.15b)

R j ;klu) - n - a i ) u j > k - ( l + a 2 ) U j _ 1 > k - A f j i k . (4.15c)

and where Af; k is defined by eqs. (4.8) (4. 1 1) and p. = Ay/Ax. The formal order of accuracy of

eqs. (4.14) depends on the value of A used in (4.9).

4.2 Equations for Method l(a). As described in section 2.2 above, the straightforward iteration

Method 1 (a) for eqs. (4. 1 4) is simply

Dj.k<Vn> = R j , k < l ' n - l > > E j ,k<un>vn> = ° - (

For determining each a: k in (4.10), eq. (4.1 1) uses un_ j. The presence of a ju: k and a->u- j k on

both sides of eq. (4.16a) allows the interpretation and treatment of these terms as an off-centered time

derivative, 3u/9t, multiplied by a constant. When the solution converges, these terms cancel out. The

semidirect Method l(a) proceeds by solving the left side of (4.16) in terms of the known right side by an

"extended Cauchy-Riemann" solver ( 18) for un and vn at all points simultaneously. The iteration with

aj or a^ ^ 0 needs a reasonable (but very roughly approximate) ini t ia l approximation (uo), such as a

Prandtl-Glauert solution. Ret. [10] gives variable specifications of c^ for best convergence.

The boundary conditions on (4.16) arc

vn(x,0+) = F'(x), (4.17a)

un ~ up or vn = vg on B . (4.17b)

4.3 Equations for Method 2(b). The artificially extended form, (2.4), of eqs. (4.14) is

D j k(u,v) = ( l-e)R j k(u0) + eRj> k(u), (4.18a)

Ej>k(u,v) = 0. (4.18b)

-12-



For Method 2(b) assume that

u(x,y,e) = iii'u,y) + eu? '<x,y) + eu 3 ' ( x ,y ) + - , (4.19a)

v(x.y,e) =v 1 ' (x ,y) + ev-? '(x,y) + e2V3'(x,y) + ... . (4.19b)

The successive approximations are then (for n = 1,2,3 . . .)

un - e1' U j ' (x ,y ) . vn - c ' V j ' f x . y ) . (4.20)
i=l i=!

Substitution of (4.19) into (4.18) leads to

Dj,kK'' ^ = Rn-l • E j ,k(un'>vn'> = °> (4-21)

where:

R0 = Rj;k(u0) (4.22a)

' (4.22b)

(with uo being used in (4.1 1) in determining o: k for use in R: k (u ] )) and

R2 = (1 -a jXui ' J j j .k ~(1 + a2Xu2\k -(M2)j,k • (4.22c)

Af2 = < f 2 > j . k - ( r 2 > j - K k - (4.23a)

i f2>j,k = (1 - °j,k> U"2\k ~ 2a (ul 'u2'>j,k J

i . . - 2 , k ] • (4.23b)

The boundary conditions are:

v,'(x,0+) = F'(x): vn'(x,0+) = 0 (n = 2,3) : (4.24a)

uj' = iig or V] ' = vg on B; (4.24b)

un' = 0 or vn' = 0 on B (n = 2,3) . (4.24c)

With some reasonable approximation for (uo).- k. such as a nearly converged solution by Method l(a),

eqs. (4.21), with n= 1.2,3, give three successive approximations u j ' , UT', 113' at each j,k to use in

(2.1 2) to obtain an extrapolated solution.

4.4 Results and discussion. A research computer program written to solve the transonic small

disturbance equations by the methods described above for a biconvex airfoil at zero incidence, includes

the option of switching after some iterations by Method l(a) to the extrapolation technique, Method

2(a). A conversational version of the program, for interacting with the program, was run on an IBM

360/67 computer, and computing times were measured on a Control Data 7600 computer.

-13-



Pressure distributions have been computed for a range of subsonic and transonic Mach numbers

from both first- and second-order-accurate formulations. Examples by Method l(a) are shown on Fig. 2

for a thickness ratio of 10 percent and M^ = 0.825. For this calculation the boundaries were at one-half

chord upstream and downstream of the airfoil edges and at 3.5 chords above the airfoil. The results com-

puted on a 39X32 uniform mesh compare well with a line-relaxation program [22] , which uses a variable

and finer mesh. On a very coarse (19X32) mesh, with only 10 mesh intervals on the airfoil chord, the

first-order-accurate results, of course, are not good. The shock is badly smeared, and an anomalous jump

behind the sonic point that is characteristic of the first-order P operator is exaggerated on the coarse

mesh. However, the second-order-accurate results are very smooth through the sonic point and are

surprisingly accurate.

-Cr

-.8
-.75 -.50 -.25

= 0.825, T = O.IO

1st ORDER,
39x32 MESH

2nd ORDER,
39x32 MESH

MURMAN 6t dl,
VARIABLE MESH,
REF. 22

-.75

, = 0.825, T=O.IO

o 1st ORDER,
19x32 MESH

A 2nd ORDER,
19x32 MESH

MURMAN 6t dl,
VARIABLE MESH,
REF. 22

Fig. 2 — Pressure on a thin biconvex airfoil.
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Figure 3 shows an interesting effect of switching to Method 2 before the iteration has converged

enough, when the types of all points are not yet quite the same as the final types. Method I (a) was used

for nine iterations; then Method 2 (b) wus used to obtain the three successive terms at each point and the

extrapolated solution shown in Fie. 3. A property of the Aitken /Shanks extrapolation as used in

Method 2 is that all the significant figures of the three successive approximations at any point contain

information about the exact so lu t ion , even though those successive approximations themselves are not

very close to the exact solution (see example problems above, in section 3). It thus appears possible in

Fig. 3 that this procedure may be picking up the fact that the exact solution to the equations (or the

solution on a very fine mesh) has the well-known logarithmic singularity just behind the shock, even

though the. converged solution on the coarse mesh smears over this singularity. Even the finer mesh used

by the program in ( 2 2 ) was not fine enough to pick up the singulari ty, partly because that point appar-

ently occurs between the mesh points for this case. This phenomenon illustrated in Fig. 3 is not an iso-

lated case but is a typical occurrence in Method 2. It may be that the numerical solution in Fig. 3 is as

good as representation of the exact solution to the equations as is the fu l ly converged solution in Fig. 2(a)

(circles).

The most significant property of the semidirect method is the relatively short computing time

required. On the 39X32 mesh, the time per iteration was measured as 40 milliseconds in a very ineffici-

ently coded program, but for various reasons discussed in [10] it is expected to be reduced to 20 ms.

(The direct solver requires only 14 ms) The subcritical cases were sufficiently converged in 3 iterations

or less, and a slightly supercritical case (first-.order-accurate? using Method 2) required 6 iterations. The

-.8

=0.825, r = O.IO

1st ORDER,
39x32 MESH

WURMAN et Ol,
VARIABLE MESH,
REF. 22

-.75

Fig. 3 — Pressure distribution resulting from Aitken/Shanks extrapolation (Method 2(b))

before iterative convergence.



first-order-accurate case shown in Fig. 2(a) required 20 iterations by Method 1 and, as described above,

the results of Fig. 3 required only 9 iterations by Method l(a) followed by 3 more by Method 2(b).

At this writing, the program has not yet been written for the above formulation that includes the

second-order-accurate formulation in Method 2. It is expected that when this is done, the program can

be run rapidly with the first-order (X = 1) operators on the very coarse mesh using Method 1, then

switched to second-order (X - 2} and Method 2 for final extrapolation.

5. Concluding Remarks

It has been shown that a special procedure (Method 2) is effective for obtaining most appropriate

successive approximations for use in the Aitken extrapolation formula for accelerating the iterative con-

vergence of numerical solutions to nonlinear partial differential equations. The procedure is based on the

combined ust of artificial perturbation-series expansions and an artificially extended equation. It was

shown in a previous paper [8] that one version of the technique was very effective for accelerating itera-

tive convergence when the solutions are smooth. The method, in a modified version, has now been applied

with some success to a strongly supercritical transonic flow problem, in which the flow equations are of
*

mixed type and whose solutions have shock-wave discontinuities. The method is expected to be extended

to more general flows, including lifting airfoils and three-dimensional flows.
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