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A Subvortex Technique for the Close Approach

to a Discretized Vortex Sheet

Brian Maskew *
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The close-approach problem associated with flow calculation methods

based on vortex-lattice theory is examined numerically using two-dimensional

discretized vortex sheets. The analysis first yields a near-field radius of

approximately the distance apart of the vortices in the lattice; only within

this distance from the sheet are the errors arising from the discretization

significant. Various modifications to the discrete vortices are then con-

sidered with the objective of reducing the errors. This study leads to a

near-field model in which a vortex splits into an increasing number of sub-

vortices as it is approached. The subvortices, whose strengths vary linearly

from the vortex position, are evenly distributed along an interpolated curve

passing through the basic vortices. This subvortex technique can be extended

to the three-dimensional case and is efficient because the number of vortices

is effectively increased, but only where and when needed.
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1. Introduction

Velocity distributions calculated close to a discretized-vortex sheet

show distortions because of the singular behavior of the induced velocity

field near each vortex. The problem is associated with all vortex-lattice-

based methods (e.g., Refs. 1-5), but it has been circumvented in the past by

calculating near-field velocities only at special points, e.g., midway between

the vortices, or by interpolation between velocities at nearby "good" points.

For calculations involving multiple vortex sheets, 4s5 the near-field problem

often requires that adjacent lattices be made to correspond across the gap

between the sheets. However, such a solution is not practical for recent

developments in vortex-lattice methods which incorporate iterative calculation

schemes for trailing vortex relaxation3,5 (i.e., force-free wake). Although

the new methods have proved to be very versatile in general, close-approach

situations involving multiple discretized votex sheets require careful treat-

ment, and ideally, the near-field problem should be removed.

The purpose of this investigation, therefore, is to develop a near-field

modification for the discrete vortices which will allow velocities to be cal-

culated anywhere in the flow field irrespective of the proximity of discre-

tized vortex sheets. Such a modification would enhance the versatility of

vorteX-lattice-based methods.

In the investigation, a near-field region is first defined and its

extent examined numerically (Sec. 2) before considering two near-field models

(Sec. 3) which lead to the subvortex technique. The latter is describ.d in

Sec. 4, and an application is given in Sec. 5. The analysis is performed

using two-dimensional situations, but the application to the three-dimensional

case is taken into consideration in the choice of a suitable model.
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2. Extent of the Near-Field Region

In determining the extent of the near-field region, two aspects of the

.	 close-approach problem are of interest: 1) How close can a discrete vortex

approach a discretized vortex sheet before its lateral position relative to the

lattice control points distorts the vorticity solution significantly? 2) How

close can a discretized vortex sheet be approached before the calculated

velocity distribution shows significant errors? The two aspects are clearly

related and would be expected to yield similar near-field criteria, but it is

instructive to consider them separat_-y, bearing in mind that both situations

can occur in multiple-component calculations with force-free wakes.

For this investigation errors greater than 0.5% will be regarded as

significant, i.e., this figure will define the edge of the near-field region

here. It is well below current experimental accuracy for velocity measure-

ments.

2.1 Vorticity Solution

To examine aspect (1) of the close-approach problem, consider an infinite

discrete vortex situated above and parallel to an infinite plane surface. The

flow field is two-dimensional, and the vorticity distribution induced on the

surface is:

Y(y) - -TZ/ n[(y - Y) 2 + Z2 ]
	

(1)

where y is measured along the surface (Fig. 1), (Y, Z) is the vortex location,

and T is the vortex strength.

The region -1.0 4 y < 1.0 is now discretized using "N" equally spaced

vortices. Control points are positioned midway between the discrete vortices

(Fig. 1) following standard vortex-lattice procedure. The boundary condition
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specified at the control points is that the vortices in the surface induce

the so= normal velocity as that induced by the replaced part of the vortex

sheet:

N

26 1: '1y' —p 7 _ W(ycj) ;	 i 1, 2,.., N-1
cj	vi

i=1

where ycj _ JA - 1 . 0 are the control points; yvi - (i - 0.5)6 - 1.0 are the

vortex points; 6 2.0/N is the vortex spacing; and Ti are the (unknown)

vortex strengths;

and

7Z	 1 In 0 - Y) 2 + Z2 C .1 + y}2
W 	 -

2n2 [(y - Y ) 2 + Z2] 2
	

(1 + Y) 2 + Z2 1 - y

+z tan 1 V Z ) + tan-1  rl Z Y 1

The Nth equation concerns the conservation of ci\rcula , ft, i.e., the strengths

of the surface vortices must add up to the circulation of the replaced part

of the vortex sheet:

N

r Pi	 —^  tan 1 ( 1 Z Y ) + tan 1 r 1 Z Y l
L
i=1

Using Eqs. (2) and (3) we can solve for the vortex strengths T i and

obtain the "discretized" vorticity solution:

Yi = Ti/A

In order to keep the edges of the discretized region remote from the

region of interest (in terms of vortex spacing), a large number of discrete

vortices (N = 40) were used. Solutions were obtained for a range of free

vortex vocations (Y, Z); at various heights above the sheet the onset vortex

(2)

(3)
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was traversed laterally from a station above a control point to a station

above a vortex point.

The calculated vorticity distributions for three heights, Z - A, 0.5A,

and 0.2A, are shown in Fig. 2 (centered on the onset vortex lateral position)

together with the exact solution from Eq. (1). Appreciable deviations in

the solution occur only below Z - A. Above that height the vortex position

relative to the lattice arrangement is not critical, e.g., at Z - 2A the max-

imum error in vorticity in the peak region is of the order of 0.001x, while at

Z - A it is only 0.37%. With the onset vortex at Z - 0.5A the error near

the vorticity peak varies from +10% to -10% as the vortex moves from a point

above a control point to one above a vortex point. When the vortex is at

either end of the traverse, the vorticity errors decrease with distance from

the peak vorticity position and are symmetrical about that point (Fig. 2b).

For intermediate locations of the onset vortex, however, the errors are

appreciable over a wide region, and they tend to be antisymmetrical about

the peak vorticity position. For very small heights, where the solution is

tending towards a concentrated vortex, even larger antisymmetric errors

appear in the solution unless the vortex lies above a control point or above

a vortex point (Fig. 2c).

An interesting observation is that the solution with the vortex above a

control point has a positive error, while that for the vortex above a vortex

point has a negative error of about the same magnitude. Combining the two

solutions at the middle station gives a very small error. It might be

possible to make use of this fact in situations where a single vortex is very

close to a discretized vortex sheet.
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ri( Yvi)
[(y - Yv,} 2 + z2
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2.2 Velocity Distributions

To evaluate the near-field distance for the velocity calculation aspect,

consider a flat, two-dimensional vortex sheet with a parabolic vorticity

distribution:

Y(y) - Y( 1 - Y) ; 0 1C G 1

The exact induced velocity components are: 	
//

V(y, z) - ^[Y(y - 1) - z2 ] T(y, z) + 2z (0.5 - y)L (y, z) + zj 2u

W(y, z) - {2z (0.5 - y) T (y • z) - [y (y - 1) - z2]L (y, z) + 1!ỳ r - 0.51l2v

where

L(y , z) - 1 !fin	
2 + z2	

;	 Y 0 0, y 'f 1 if z - 0
2	 y-	 +z2

and	

1T(Y. z) - tan-' (Yz-) -
 tan'i \r Yz 1/

and V is the velocity component parallel to the vortex sheet; W is the normal

component, i.e., in the direction of z.

Now discretize the vortex sheet using "N" equally spaced vortices at

locations:

yvi - (i - 0 . 5)A ;	 i - I t 2 9 ..., N

where A - 1.0/N is the vortex spacing.

Integrating the vorticity over each vortex region yields the vortex

strengths:

Ti - yvi ( 1.0 - yvi)A - (0/12);	 1 - I t 29...,N

The velocity components induced by the discretization are:

	

^N+	
Tiz

	

Vd(y . z) - - I 
L 

1(y
i-1 	 - yvi)

2 + t



Using forty discrete vortices, velocity distributions were calculated

over a region between two midpoints near the quarter position on the segment

(Fig. 3a). Error contours are shown in Fig. 3b. The discretization gives

negligible errors for both components of velocity in the region beyond 1& from

the sheet. In effect the "holes" in the representation are not sensed until

we enter the 16 region.

Inside the la region the errors increase rapidly except along special

lines of approach to the sheet. For the normal velocity component, the zero-

error lines follow approximately the normals to the sheet at the points midway

between the vortices and also at the vortices. (Deviations from the normal

lines occur because of the gradient in vorticity across the region.) Both

sets of positions on the surface are used in the extended vortex-lattice

method, 5 i.e., the midpoints arc used as control points, as in the standard

vortex-lattice theory, and the vortex points are used when applying the

Kutta-Joukowski law for local forces and also when performing the trailing-

vortex roll-up calculations. The zero-error lines for the tangential velocity

component are less well known; these lines enter the near-field region above

the quarter and three-quarter positions between the vortices and approach the

vortex locations along approximately elliptical paths. All the zero-error

paths are situated on extreme "precipices" in the error contour map; small

deviations from the paths result in large errors and lead to the near-field

problems.

3. Near-Field Models

The previous section indicates that errors arising from the discretiza-

tion of a vortex sheet became appreciable only within the 16 region. Clearly,

if we wished to calculate velocities very close to the discretized vortex
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sheet, we could simply decrease the Kize of d by increasing the number of

vortices; however, for three-dimensional problems the computing time could

then become prohibitive. An alternative solution is to apply a near-field

treatment to the vortices. This treatment would be applied only to those

vortices that are within a specified "near-field radius" (e.g., 16) from the

point where the velocity is being calculated. A number of near-field models

were considered in this work in two groups, i.e., "core-models" and "spread-

models." The distinguishing feature between the groups is that whereas core

models ax:, applied without reference to neighboring vortex positions, spread

models rer^uire that information to generate connecting "vortex sheets." ons

model from each group is described in this section. These lead to the sub-

vortex technique, which is described separately in Sec. 4.

3.1 Core Models

A core model offers the simplest near-field treatment which removes the

singular behavior of the velocity field. In such a model the velocity induced

by the vortex is factored locally so as to remain bounded at the vortex center.

The Rankine Vortex and Lamb's viscous vortex are well known examples, but

there are other possible forms. Core models have been used in the past to

smooth the motions of vortices used in two-dimensional roll-up calculations

(e.g., Refs. 6 and 1).

Several core models were tested using the discretized parabolic vorticity

sheet from Sec. 2 . 2,•but none were found satisfactory for both components of

velocity. For example, they fail to restore the tangential component of

velocity near the vortex sheet. This can be seen in Fig. 3c (i) which shows

the error contours for a Rankine vortex model with a core diameter of A.

Although the tangential velocity errors appear slightly worse than for the

unmodified vortex [compare Figs. 3c (i) and 3b], the normal component errors

-8-
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are improved on the whole within the core. but the error levels are still

significant, and the zero-error lines no longer approach the vortex points.

3.2 Spread Models

In spread models the vortex itself is modified, and its strength is

effectivell distributed along a line representing the local position of the

vortex sheet. Compared with core models, spread models would be more difficult

to apply to the three-dimensional case and would be expected to consume more

computing time.

There are a number of ways of spreading tha strengths of the vortices;

one based on a linear distribution of vorticity proved very effective. In

this model the vorticity associated with a vortex is distributed in a tri-

angular fashion on the two straight segments joining the vortex to its

immediate neighbors. When several neighboring vortices are treated in this

way, the local effect is that of a piecewise, linear distribution of

vorticity--a model already known to work well in two-dimensional aerofoil

theory (e.g., Ref. S).

When evaluating this model on the discretized parabolic vorticity distri-

bution from Sec. 2.2, it was found necessary to extend the near-field radius

of the vortices from 16 to 46 to achieve the required accuracy. (The larger

radius is required only for the lateral distance along the sheet; it is not

required for the normal distance from the sheet, which is still 16.) The

reason for the extended radius will be discussed in Sec. 4.2.

With the larger near-field radius, the errors for this problem are less

than 0.5% everywhere in the flow field, including the surface of the vortex.

sheet. However, the three-dimensional form of this model can be cumbersome

to apply in a general method. A discretized form of this model was therefore

considered, and this formed the basis of the subvortex technique.

-9-



4. Subvortax Technique

In the subvortex technique, the spreading of a near-field vortex ig

achieved by splitting it into a number of nail vortices which are placed

between the basic vortex positions. The technique offers a number of advan-

tages over the linear vorticity model and has ssveral novel features.

4.1 Features of the Technique

(a) Subvortax positions

The subvortices are distributed evenly along the vortex sheet joining the

vortex to !ts two immediate neighbors. Unlike the linear vorticity model

considered in Sec. 3.2, the joining sheet is not necessarily a straight line;

the subvortices can be placed on an interpolated curve passing through the

basic vortices, and so a better representation of curved vortex sheets is

possible. Half intervals separate the basic vortices from the nearest sub-

vortices (Fig. 4a), and so the basic vortex positions become midpoints in the

subvortex system. This feature improves the accuracy of the calculated

velocity at the basic vortices (see Sec. 4.3).

(b) Number of subvortices

The number of subvortices used is such that the point where the velocity

Is being calculated cannot "see the toles" in the discretized vortex sheet,

i.e., the point is kept just outside the new local 1B region of the subvortex

system. Figure 4b shows tow this works using the following expression for the

number of subvortices on one side of the basic vortex:

NSV - integer-part-of (1 + pjH) 	 (4)

where H is the aormal distance of the poirc from the segment. Use of this

expression keeps the number of subvortices to a minimum and helps to keep

computing costs down. When applied to the vortex-lattice methods. the mid-

points between the vortices (i.e., the control points) should remain
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midpoints in the subvortex system; RSV must then be even, i.e., as shown

dotted in Fig. 4b.

A maximum limit NSVMAX is placed on the number of subvortices to avoid a

runaway condition When the height H approaches sero. This limit controls the

closest approach that can be made to the vortex sheat More the new local

16 region of the subvortices is entered. It can therefore be used to control

the "accuracy" of the calculation in a trade-off with computing time, i.e.,

by increasing the limit the error region would decrease in air,*, but the

computing time would increase, and vice-versa.

(c) Subvortex strengths

The subv-irtices must have a combined strength equal to that of the

associatee.'BAs:c vortex. In the technique as used here their strengths

vary linearly with distance from the basic vortex position. With equal

spacing, therefore, the ith subvortex has strength

ri (MV)2 {i - 0.S)	 for i • 1, 2,..., WSV on each side
of the basic vortex, Fig. 4a.

where T is the strength of the basic vortex. When several neighboring basic

vortices are treated in this way, the local effect approaches that of a

piecewise linear vorticity distribution. Clearly, higher order distributions

could be used but would involve more than one basic vort*% interval on each

side.

{d) Subvortex cores

Because of the practical limit HSVMAX placed on the number of subvortices,

it is possible for a point where the velocity is calculated to fall within

the (reduced) 16 region of the subvortex system. Because of this each

subvortex has been modified with a Rankine-Vortex core (Sec. 3.1) of diameter

approximately equal to the distance between the subvortices. This smears out
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the discontiot •ity associated with the sheet but only over the now, diminished,

near-field region.

An alternative, but more complicated possibility when a subvortex near-

field region is entered is to apply a special "sheared core." For this the

velocity point is physically moved the small distance to the nearest midpoint

between subvortices when evaluating the local contribution. The usual velo-

city calculation then provides the local mean velocity, to which is added the

local vorticity contribution. The latter is half the local vorticity value

(evaluated by dividing the nearest subvortex strength by the subvortex spacing)

and is directed along the local tangent on one side of the vortex sheet and

in the opposite direction on the other side. A similar sheared core was one

of the models tried earlier (Sec. 3.1) but was not satisfactory for the broad

intervals of the basic vortices; however, it should improve the subvortex

technique.

(e) Extension to three divensions

The subvortex technique can be adapted tothe segmented vortices used in

vortex-lattice-based methods. The location of the ends of each subvortex

segment is a simple extension of the two-dismnsionai method.

4.2 Near-Field Radius

As in the case of the linear vorticity model (Sec. 3.2), when testing the

subvortex technique, the near-field radius had to be increased beyond 1A to

obtain the required accuracy. The reason for this extension is that the

induced velocity from the "distributed" model does not match that from the

basic vortex until some distance away. For the subvortex model this result is

fairly insensitive to the number of subvortices (see Fig. 5). Thus, when one

vortex has the near-field modification applied, several neighboring vortices

must also be modified, otherwise small "jumps" occur in the calculated velocity
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distribution as we pass over the near-field boundary of each vortex. These

jumps can be made as small as we please by increasing the near-field radius.

For the subvortex technique the jumps are effectively eliminated when using a

near-field radius of 5A.

Although the near-field radius of 54 is strictly required only in the

direction parallel to the vortex sheet (the normal distance is still 1A), a

true radius of 5A is now used. This can result in superfluous calculations if

the point actually lies beyond U from the sheet, but it does provide more

reliable conditions for highly curved vortex sheets. The possible penalty in

computing time is alleviated by the fact that the tangential distance between

the point and the segment is no longer required and that only a small number

of subvortices are used for the outer region, i.e., the region 1A to 5A

(Fig. 4b).

4.3 Error Contours

The technique was tested on the discretized parabolic vorticity distri-

bution considered in Sec. 2.2. The error contours (Fig. .3c(ii)) appear not

quite as good as those for the linear vorticity model (Sec. 3.2); a small

region with significant error is indicated very close to the vortex sheet

where the approach is closer than the subvortex spacing and is associated

with the maximum limit placed on the number of subvortices (Sec. 4.1b). In

these calculations NSVMAX was 10.

The normal component of velocity calculated at the vortex locations has

always been slightly less accurate than that calculated at points midway

between the vortices. (The vortex points are effectively midpoints in a

coarser discretization.) For the present discretized parabolic vorticity

distribution, the error at the vortices in the region considered (see Fig. 3a)

is 2.8% compared with 0.03% at the midpoints. With the subvortex technique
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applied, the error at the vortices decreases to 0.2%; this reduction is helped

by the fact that the basic vortex locations become midpoints in the subvortex

system (Sec. 4.1a).

5. Two-Dimensional Application

For a more general situation the subvortex technique was applied to the

two-dimensional, time-dependent, roll-up calculation of the vortex sheet shed

from a wing with elliptical load distribution:

Y(y) - 2y/ i - y2 ; -1 i y 41

This problem has been considered by a number of authors, e.g., Refs. 6-8

(most recently). The vortex sheet is first discretized then the motion of the

discrete vortices under their mutual interactions is followed over a number

of small time steps 6t. After the ith time step a point on the trajectory of

a vortex is calculated here using the expression

ri+1-ri+6t Vi

where Vi is a mean velocity calculated at a midpoint in the time interval.

This point is obtained by extrapolating the conditions at the two previous time

steps. Before calculating Vi all the vortices are moved to their midpoint

positions. Unlike most previous roll-up calculations, the influence of the

vortex on itself is not ignored here; because the vortex point is a midpoint

in the subvortex system (Sec. 4.1a), the vortex can now influence itself if

the vortex sheet is curved or stretched locally.

In the present calculation ten equally spaced vortices are used on one

half of the sheet, and the time step 6t is 0.075. (This is smaller than the

shortest orbital period of the vortex pairs in the system (see Ref. 8), that

value being 0.2 here.) The vortex positions are shown in Fig. 6a after

twenty time steps, i.e., after a time of 1.5. The curve drawn through the
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vortex locations is the interpolated curve on which the subvortices are

placed. With so few vortices in the roll-up region, interpolation there is

difficult; the scheme used here is based on a linear combination of two

circular arcs over each interval, but even this breaks down (i.e., crosses

itself) after a few more time steps beyond that shown. (When developing the

three-dimensional version of the model, such problems will be alleviated by the

use of a vortex-amalgamation technique, such as that used by Moores)

Having obtained a representative distribution of discrete vortices, a

velocity scan was taken through the roll-up region at y . O.S. The rwo

velocity components are shown in Fig. 6b, c with and without the subvortex

technique being used. The basic discretization (with small Rankine-vortex

cores applied) shows the characteristic velocity deviations near the discrete

vortices and ignores the presence of connecting vortex sheets. Qualitatively,

the subvortex technique shows a plausible modeling of the discontinuities

associated with the (inviscid) vortex sheet. By increasing the limit on the

number of subvortices NSVMAX (from the ten used here), the representation of

the discontinuities would be sharpened. Quantitative comparisons are still

required for a general case, but these will be pursued after the technique

has been incorporated in a three-dimensional method.

The end vortex near the center of the roll-up region requires further

treatment, possibly in the form of a viscous core; such a treatment coupled

with the amalgamation technique mentioned earlier should improve the cal-

culations near a roll-up region.

6. Conclusions

Discretization of a vortex sheet introduces significant velocity errors

only within a distance from the sheet equal to the vortex spacing in the
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lattice. Core models applied to the vortices help to limit the size of errors

but do not reduce.them to a satisfactory level when the field of interest

approaches close to the vortex sheet. The region where significant errors

occur can be reduced to a small region of controllable width close to the

vortex sheet by the use of the near-field model in which a discrete vortex

splits into an increasing number of subvortices as it is approached. The two-

dimensional problems considered here demonstrate that the subvortex technique

can achieve the objective of this investigation, viz., to provide accurate

velocities anywhere in the flow-field irrespective of the proximity of dis-

cretized vortex sheets. (Clearly, quantitative comparisons with experimental

results are still required, but these will be pursued after the model has

been incorporated in a three-dimensional method.)

In summary, the subvortex technique promises to enhance the versatility

of vortex-lattice-based methods by providing the effect of a much finer

discretization. The technique is efficient because the number of vortices in

the lattice is effectively increased but only where and when needed and by an

amount just sufficient to prevent the "holes" in the lattice from being "seen."
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Figure 3.- Concluded.
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Figure 6.- Concluded.
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