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FOREWORD

The basic MOSC Study encompassed a 9-month effort which examined the requirements for and established the
definition of a cost-effective orbital facility concept capable of supporting extended manned operations in Earth 	 I

orbit beyond those visualized for the 7- to 30-day Shuttle/Spacelab system. The study activity was organized into
the following four tasks:

t
^	 E

Task I Requirements Derivation

Task 2 Concepts Identification

Task 3 System Analysis and Definition ^_
Task 4 Programmatics

In Task I the payload and mission requirements were examined for manned orbital systems with operational
f	 capabilities beyond those presently planned for the Shuttle/Spacelab program. These research activities were trans-

lated into characteristics of representative grouped payloads, including physical and operational parameters. The
manned approach to research implementation was emphasized, as well as the lessons learned from previous Apollo
and Skylab experience.

The second study task originally centered about the identification and definition of attached and free-flyer manned
1	 concepts to satisfy the requirements evolved from Task 1. Based upon the material presented in the first formal

briefing, the study was redirected to conclude work on the attached mode of operation and concentrate the remain-
ing effort on free-flying concepts.

a

Task 3 provided detailed definition of the baseline MOSC concept and the critical subsystem areas to a level required
for subsequent programmatic analyses.

F

Task 4 developed project cost and schedule milestones related to the baseline concept in order to provide NASA with
data useful for long-range planning activities and program analyses.

The study results are reported in four books, Book I presents an executive summary and overview of the study;
{	 Book 2 describes the derivation of requirements; Book 3 describes configuration development; and Book 4 describes

the programmatic analyses.

Questions regarding this report should be directed to:

Donald R. Saxton
MOSC Study Manager, Code PS 04
National Aeronautics and Space Administration
George C. Marshall Space Flight Center, AIabama 358I2	 a
(205) 453-0367

or

Harry L. Wolbers, PhD
MOSC Study Manager
McDonnell Douglas Astronautics Company
Huntington Beach, California 92647
(714) 896.4754

'hr
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Section 1

INTRODUCTION

The decision makers within the National Aeronautics and Space Administration

(NASA) responsible for determining objectives, allocating funds, and devel-

oping schedules and mission plans to attain this nation's long-range space

goals are faced with a significant challenge. On the one hand, long-range

programs of national and international scope require considerable lead time

in fiscal commitments for the timely development of the systems and equip-

ment needed to implement them. On the other hand, in scientific investigations

and the exploration of new environments, unexpected events sometimes con-

tribute more significantly to the advancement of knowledge than do planned

ones; these unexpected developments can significantly impact system design

and mission operations and the attendant program costs. The ability to

respond rapidly to new discoveries or new mission potentials requires plan-

ning and the development of system concepts that are sufficiently detailed for

long-range programming yet are adaptzible to changing constraints and prior-

ities based upon changing scientific, political, economic, social, and tech-

nological factors.

In order to provide essential data needed by NASA in its long-range program

planning, the Manned Orbital Systems Concepts (MOSC) Study has attempted

to define, evaluate, and compare concepts for manned orbital systems that

provide extended experiment mission capabilities in space, flexibility of

operation, and growth potential. Extended capabilities include flight durations

longer than the 7- to 30-day periods available on Spacelab, free-flying modes

of operation which are autonomous to the Orbiter, disturbance-free and con-

tamination levels lower than those available with the attached mode, and

capabilities to support very large payloads that could not be accommodated

in the Orbiter's cargo bay. Further, -the free-flying mode of operation is

inherently rnvr{ rlexible than the attached mode of operation; payloads and



supporting subsystems can be left in orbit and do not necessarily need to be

retrieved each time the Orbiter returns to Earth. The extended capabilities

are typical of the advantages that a MOSC offers in structuring future and

advanced missions.

Extending the available mission periods beyond the current 7- to 30-day

limits is desired for future payload programs. For example, longer-duration

missions are essential for time-dependent phenomena, such as physiological

adaptation and physical growth processes, to be investigated. Furthermore,

advantage can be taken of unproved efficiency that results from the crew

learning to work more effectively with repeated trials and becoming accli-

mated to the space environment. Longer missions offer potential savings by

allowing a less tightly constrained timeline and work schedule, which in turn

allows more flexibility to meet expected mission anomalies. Likewise, longer

missions permit a given amount of work to be accomplished with fewer flights,

thus permitting cost-effective utilization of the STS. Savings could also be

expected in ground operations from the reduction in the number and extent

of turnarounds, refurbish cycles, and checkout operations. The realization

of longer-duration space missions will have significant impact upon the

effectiveness, the economies, and the breadth of research opportunities

possible.

The key issues to which the MOSC Study addressed itself are as follows:

o The identification of scientific and technological areas which require

or can be implemented more cost effectively by extended space

flight.

® The delineation and exploitation of man's role in simplifying orbital

operations.	 a

® The effective and judicious use of the wealth of available background

data, with emphasis on recent Skylab experience.

0 The effective use of existing Skylab/ Shuttle/ Spacelab hardware and

technology.

0 The establishment of an evolutionary path of concept development

that most efficiently proliferates growth and future applications.

2
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* The assurance of man's safety and the enhancement of long-duration
mission potential through design for reliability and maintainability.

® The development of credible programmatic assessments of costs,
schedules, and supporting research and technology requirements.

® The sensitivity of cost to schedule variations and changes in mission
requirements.

® The establishment of a valid and reliable evaluation methodology
to select the best MOSC approach.

* The investigation of unique applications of, and new mission
potentials for, the concepts.

In order to provide proper perspective and to maintain a sense of proportion
in advanced design studies, it is believed helpful to consider in scenario form
the alternative courses of action and the objectives which singly or in com-
bination represent potential space futures. Figure 1-1 illustrates such a
scenario. In the area of manned .space systems specifically, long-term
objectives include eventual manned planetary missions, lunar bases, space

Figure 1 .1. Space Systems Scenario

3
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colonization, and permanent Earth-orbital space stations, including facilities

in polar and geosynch3ronous orbits. The role of the systems planner is to

develop a plan that will lead to these long-term goals in the most expeditious

manner, taking into account the real-world constraints and conflicting

demands of financial, technological, and manpower resources. The purpose

of the MOSC Study is to examine one step in this overall scenario, that of

extending the presently projected capability circa 1980 to longer-duration

missions through the most effective use of man and his capabilities, and to

do this in a logical and cost-effective manner.

The following definitions were developed for use in the MOSC Study and will

be followed in the material reporte' in the following pages. These definitions

are believed to reflect the most common usage of the terms as they appear in

other NASA-sponsored studies. Other terminology used in the MOSC Study

was based on the usage established in Appendix A of ESRO Spacelab Payload

Accommodation Handbook, October 1974, ESTEC Reference Number

SLP/2104.

1. Flight:

	

	 That portion of a mission encompassing the period from

launch to landing or launch to termination of the active

life of a spacecraft.

2. Mission:

	

	 The programmatic effort involving the performance of a 	 !

coherent, related set of investigations (experiments) or

operations in space to achieve program goals.

3. Payload:

	

	 A specific complement of instruments, space equipment,

support hardware, and/or su•?plies carried to space to

accomplish a discrete activit r or part of a mission.

4. Cargo: Everything contained in the Shuttle cargo bay plus other

equipment located elsewhere in the Orbiter that is user

unique and not carried in the standard baseline Orbiter

weight budget.

4



_L -

5. Experiment: An activity, in space, the objective of which is to obtain
data on a single physical phenomenon or to perform a
single specific limited taEk.

Altogether, 103 potential payloads were examined to determine the value of
extended-capability flights in accomplishing the desired research objectives.
Of these 103 payloads, 46 required or could significantly profit from extended
stay times in Earth orbit. These 46 payloads were collated in turn into 19
MOSC payload groups based upon the commonality of the scientific objectives
and/or application areas, and commonality of system and operational require-
ments (altitudes, inclinations, environmental perturbations, etc. ). The 19
payload groups are summarized in Table 1-1. For each group, the study
team identified the requirements which these typical research programs of
the future may impose on manned space facilities. The critical facility sizing
parameters include crew size, physical accommodations for payload equip-
ment and supplies, and operational characteristics such as flight duration
and orbital requirements. These requirements are major determinants of
the subsystems that provide the onboard services and resources, such as
electrical power, environmental control, propulsion, vehicle stabilization,
communications, and data management functions. Likewise, the physical
properties of the payloads influence space allocations, services to be pro-
vided, and operational considerations such as deployment and pointing
requirements, orbital inclination and altitude operating regimes, total STS
flight and cargo requirements, and major scheduling factors.

This volume of the final report describes the procedures followed and the
analyses conducted in establishing the baseline requirements to be used in
the conceptual design of the manned orbital systems concepts.

Section Z describes the research data base used in the study, Section 3 dis-
cusses the role of man in future missions, Section 4 discusses the require-
ments for extended capability, Section 5 describes the mission/payload
concepts, and Section 6 summarizes the preliminary design and operational
requirements which should be met by future manned orbital systems.

5
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Table 1.-1	 !
MOSC PAYLOAD COMBINATIONS

Weight
1, 000 lb
	 Volume

Crew	 (kg)	 43
Payload	 Description	 Manhours

Cl IR Astronomy 1,454 31(14) 25(11) 4,500(135)
Cz UV Astronomy 3,845 24(13) 14(6) 1,100(33)
C3 Solar Observations 4,187 15(7) 14(6) 1, 000(30)
C4 Space Sciences 1 2,070 17(8) 15(7) 2,700(81)
C5 Space Sciences 2 1,608 16(7) 12(5) 2,200(66)
C6 AMPS/Earth Science 3, Z80 24(11) 14(6) 1,900(57)
C7 Space Technology 884 Z6(IZ) 17(8) Z, 300(69)
C8 Cloud Physics/Technology 88Z 15(7) 13(6) 2, 000(60)

C9 Earth Science 1 851 25(11) 24(11) 6,100(183)
C10 Earth Science 2 690 2602) 26(12) 6, 000(180)
C11 High-Energy Astronomy/ 1,118 20(9) 20(9) 1,200(36)

Technology
C12 Life Science/ Materials 8,289 100(45) 66(30) 13, 300(399)

Technology I
C13 Life Science/ Materials 4,039 81(36) 60(27) 10, 600(318)

Technology 2
C 14 IR./ UV Astronomy 1,427 45(20) 17(8) 2,000(60)
C15 UV Astronomy, Advanced 585 24(11) 16(7) 1,000(30)
C16 Cosmic Ray Lab 5,800 50(23) 37(17) 5,600(168)
C17 LD Life Science Lab 23,200 39(18) 34(15) 2,600(78)
C18i Advanced Technology 493 8(4) 7(3) 1,600(48)
C 19 Space Manufacturing 11,000 7(3) 6(3) 200(6)

Up	 Down.	 (m3)

-'6



Section 2

RESEARCH DATA BASE

The MDAC team was provided at the outset of the study with sortie payload

descriptions and references listing 99 payloads to be considered as potential

candidates for MOSC. The sources of these descriptions in the listing included

( 1) SSPDA Sortie Payloads Level A documents and Level B documents, dated

1974, (2) a preliminary Level A description of the Life Sc;ences Long-

Duration Laboratory, (3) the referenced Blue Book Cosmic Ray Physics

Laboratory FPE, and (4) a referenced 1973 Level A description of the 4000-

pound version of the Communications/Navigation Shuttle sortie laboratory.

(As a point in clarity, no SSPDA Automated Payloads were considered.) In

addition, and as will be discussed later, four in-space manufacturing pay-

loads were added to the list, making a total of 103 payloads considered.

Preliminary descriptions of these four potentially high-payoff space produc-

tion activities are further detailed in Appendix A. A listing of these 103

payloads together with the sources of the data is presented in Table 2-1.

To serve as a technical management tool in the assessment, analysis, and

comprehension of t2:e zharacteristics and properties of each payload listed

in Table 2-1, a tabular summary (see Appendix A) was prepared by the study

team. In the initial analysis, that is before the four space production payloads

were introduced, 99 payloads were investigated. For each of these 99 payloads

some 120 factors were analyzed, as describsd in the appendix. These were

of use in (1) analyzing the payload for desirability or advantages of extended

capability and/or (2) determining the individual payload requirements which

have both a physical and operational impact on the carrier space research

facility. The data and £actors analyzed were derived from SSPDA data or are

extrapolations from these data together with additional information derived

frgm other sources.

7



i	 I_- I-1_ I	 l	 l-1
Table 2 -1 (Page 1 of 3).

SORTIE PAYLOADS IWESTIGATED

Data Source

0 0

	

;i	 Pi

	

m
ej	 0	 t-	

C;

tn

101,	 z
ASTRONOMY

	

AS-01-S	 1. 5-m Cryogenically Cooled IR Telescope [I]

	

AS-03-S	 Deep Sky UV Survey Telescope [2]

	

AS-04-S	 1-m Diffraction-Limited UV Optical Telescope [3]

	

AS-05-B	 Very-Wide-Field Galactic Camera

	

AS-06-S	 Calibration of Astronomical Fluxes	 3

	

AS-07-S	 Cometary Simulation	 V,	 3

	

AS-08-S	 Multipurpose 0. 5-m Telescope [21]	 3

	

AS-09-S	 30-m IR Interferometer	 V,

	

AS-10-S	 ADV. XUV Telescope [22]

	

AS-11-S	 Polarimetric Experimqnts	 3

	

AS-12-S	 Meteoroid Simulation	 3

	

AS-13-S	 Solar Variation Photometer [23]

	

AS-14-S	 1. 0-m Uncooled IR Telescope	 3

	

AS-15-S	 3.0-m Ambient Temperature IR Telescope [4]

	

AS-18-S	 1. 5-km IR Interferometer

	

AS-19-S	 Selected Area Deep Sky Survey Telescope [24]

	

AS-Za-S	 2. 5-m Cryogenically Cooled IR Telescope

	

AS-31-S	 Combined AS-01, -03, -04, -05-S 25

	

AS-41 -S	 Schwartzschild Camera	 3

	

AS-42-S	 Far UV Electronographic Schmidt	 3
Camera /Spectrograph

	

AS-43-S	 UCB Black Brant Payload 	 3

	

AS-44-S	 XUV Concentrator /Detector 	 3

	

AS-45-S	 Proportional Counter Array	 3

	

AS-46-S	 Wisconsin UV Photometry Experiment 	 3

	

AS-47-S	 Attached Far IR Spectrometer 	 3

	

AS-48-S	 Aries/Shuttle UV Telescope	 3

	

AS-49-S	 First UCH Black Brant Payload	 3

	

AS-50-S	 Combined UV/XUV Measurements (AS-04-S, 	 3
10-S)

	

AS-51 -S	 Combined IR Payload (AS-01-S, 15-S)
	AS-54-S	 Combined UV Payload (AS-03-S, 04-S) [ 261 	 3
	AS-61 -S	 Attached Far IR Photometer (Wide FOV) 	 3

	

AS-6Z-S	 Cosmic Background Anisotropy
o	 AS-01-R	 LST Revisit [271

HIGH-ENERGY ASTROPHYSICS

	

HE-11-S	 X-ray Angular Structure 	 3

	

HE-12-S	 High-Inclination Cosmic-Ray Survey

	

14E - 13 -S	 X-ray/Gamma-Ray Pallet 	 3

	

HC-14-S	 Gamma-Ray Pallet [2B]	 3

	

HE-15-S	 Magnetic Spectrometer

	

HE-16-S	 High-Energy Gamma-Ray Survey 	 3

	

HE-17-S	 High-Energy Cosmic-Ray Study 	 3

	

HE-18-S	 Gamma-Ray Photometric Studies

	

HE-19-S	 Law- Energy X-ray Telescope [29]

	

HE-20-S	 High-Resolution X-ray Telescope

	

HE-03-R	 Extended X-ray Survey Revisit	 3

	

I-TE-11-R	 Large High-Energy Observatory D Revisit 1301	 3
	(2) HE -X-s 	 Cosmic-Ray Physics Lab FPE [5]

*Payloads identified for extended missions based upon mission, model assignments 1984 and beyond.
0 Payloads proposed for extended missions by MSFC personnel in the science and applications areas.

-ID No. ref. Table 2-2
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SOLAR PHYSICS

© SO-01-S Dedicated Solar Sortie Mission (DSSM) [6]
SO-11-S Solar Fine-Pointing Payload
SO-12 -5 ATM Spacelab

ATMOSPHERIC AND SPACE PHYSICS

© AP-06 -S Atmospheric, Ma	 etospheric, and Plasmas in
Space (AMPS)	 7]

EARTH OBSERVATIONS

3 	 EO-01 -S Zero-0 Claud Physics Laboratory [11]
M	 EO-05-S Shuttle Txnaging Microwave System (SIMS) [12]

EO-06-S Scanning Spectroradiometer [13]
EO-07-S Active Optical Scatterometer	 [14]

EARTH AND OCEAN PHYSICS

© OP-02-S Multifrequency Radar Land Imagery [15]
T	 Q OP-03-S Multifxequency Dual Polarized Microwave [16]

Q OP-04-S
Radiometry

Microwave Scatterometer [17]
OP-05-S

M	 OP
l(^/Jf

	

-06-S
Multlepectral Scanning Imager 	 [18]
Combined Laser Experiment19]

SPACE PROCESSING APPLICATIONS

SP-01 -S SPA No. 1 - Biological (Manned) (B+C)
SP-02 -S SPA No. 2 - Furnace (Manned) (F+C)
SP-03 -S SPA No. 3 - Levitation (Manned) (L+C)

-	 SP-04-S SPA No. 4 - General Purpose (Manned) ( G+C)[31]
SP-05 -S SPA No. 5 - Dedicated (Manned) (B+F+L+G+C)[32]
SP-12-5 SPA No. 12 - Automated Furnace (FP+CP)
SP-13-5 SPA No. 13 - Automated Levitation (LP+CP)
SP-14-S SPA No. 14 - Manned and Automated

(B+G+C+FP+LP) [20]
SP-15-S SPA No. 15 - Automated Furnace /Levitation

(FP+LP+CP) [33]
r	 SP-16-S SPA No. 16 - Biological /General (Manned)

(B+G+C) [34]
SP-19 -S SPA No. 19 - Biolo ical and Automated

(B+C+FP+LP} [35
SP-Z1-S SPA No. Zl - Minimum Biological (B+C)
SP-22 -S SPA No. 22 - Minimum Furnace (Manned) (F+C)
SP-23 -S SPA No. 23 - Minimum General (G+C)
SP-24 -S SPA No. 24 - Minimum Levitation (Manned)

(L+C)
SP-XI-S Production of Surface Acoustic Wave Components
SP-X2-8 Production of High -Ductility Tungsten
SP-X3-S Separation of Iso-Enzymes
SP-X4-S Solar Furnace for Production of Semiconductor

Silicon Ribbon
(1) Special preliminary data shoot.
[ ] - ID No. re£Tab1e 2-Z

3 	 3
3 	 3
3

3 	 3

3 	 3
3 	 3
r	 3
3 3

3 	 3
3 	 3

3 	 3
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Table z-1 (Page 3 of 3'
SORTIE PAYLOADS INVESTIGATED

Data Source

xa
n
W

Pa
on

Q Pa ? -̂i

_-U,
^S  cn

►^ N
I

^i

R y ti Qi .A

Ao IndP.

U toO z

LIFE SCIENCES

	

LS-04-S	 Free-Flying Teleoperator [36]
	LS-09-S	 Life Sciences Shuttle Laboratory [37)

	

LS-10 -S	 Life Sciences Carry-on Laboratories [38]

	

Q LS-X -S	 Life Sciences Long-Duration Laboratory [8]

SPACE TECHNOLOGY

ST-04-S Wall-less Chemistry + Molecular Beam. (Facility
No. 1) [39]

ST-05 -S Superfluid He + Particle /Drop Positioning
(Facility No. 2) [40]

ST-06 -S Fluid Physics + Heat Transfer (Facility No. 3) [41]
ST-07-S Neutral Beam Physics ( Facil. No. 4)

T	 ST-08-S Integrated Real -Time Contamination Monitor [42]
ST-09-S Controlled Contamination Release
ST-11-S Laser Information/Data Transmission
ST-12 -S Entry Technology
ST-13 -S Wake Shield Investigation

*	 Q ST-21-S ATL P/L No. 2 (Module + Pallet) [9]
ST-22-5 ATL P/L No. 3 ( Module + Pallet) [43]
ST-23 -S ATL P /L No. 5 (Pallet Only) [44)

COMMUN11CATIONS AND NAVIGATION

Q CN -02-8 Comm/Nav Shuttle Sortie Lab (4000 -1b version) [10]
CN-04 -S Terrestrial Sources of Noise + Interference [45]
CN-05 -S Laser Communication Experimentation
CN-06-•S Communication Relay Tests [46]
CN-07 -S Large Reflector Deployment
CN-08 -S Open Traveling Wave 'rube
CN-11 -S Stars and Pads Experimentation
CN-12-S Interferometric Navigation and Surveillance

Techniques
CN-13-S Shuttle Navigation Via Geosynchronous Satellite
(1) Special preliminary data sheet.
[ ] - ID No. ref. Table 2-2
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The- major  categories-of the-payload data are as--foll.owa:..
1. Mission model emphasis (number of assigned flights in 1954

and post-1984 period).
2, Payload type (accommodation mode — module, pallet, module/pallet,

carry-on).
3. Orbital parameters (apogee, perigee, inclination, launch window,

etc.).
4. Crew requirements (number of personnel, manhours, extravehicular

activity requirements, skills, etc.).
5. Physical characteristics (volume, weight, power, consumables,

additional items of equipment, spares, etc.).
6. Viewing and pointing requirements.
7. Environmental requirements.
8. Experiment data requirements and characteristics.

Information has been extracted .front the source documents, which in general
described requirements based upon payload characteristics for missions of
7 days ? duration. These 7-day figures were extrapolated when feasible
to mission times of 30, 60, and 90 days. From this parametric treatment
of the data, growth curves were plotted and estimates were made of payload
requirements for missions of any duration out to 90 days. This information
permitted optional mission periods to be evaluated as well as assessments to
be made of payload sensitivities to changes in mission period.

In light of Skylab experience, when flight periods are extended, additional
requirements for such items as spare parts, tools, test equipiment, and the
like can be expected. This type of information is not included in either the
Space Shuttle Payload Description Activity (SSPDA) Level A or Level B
descriptions. Therefore criteria were established for each class and category
of payload as to the requirements of these items as a function of flight dura-
tion. The assumptions leading to the sparing criteria are detailed in
Appendix A.

Initial recommended payloads for extended-capability missions were sug-
gested by Marshall Space Flight Center (MSFC) personnel in the science and
applications areas as indicated by circled check marks on the left side of
Table 2-1. These payloads received primary study emphasis. In addition to

11



i

the 20 payloads originally- suggested by NASA, the study team identified 26
additional payloads for more detailed analysis. These were payload areas
in which the multiple number and frequency of flights in the mission model
for the post-1984 calendar period suggested that greater efficiencies of

I,	 operation and greater scientific value would be achieved by incorporating F

them into missions of longer duration. Table 2-2 contains important char-
acteristics of the 20 NASA-recornmended and the 26 MDAC-recommeaided
payloads.

Those payloads tentatively identified for extended capabilities are distinguished
by an asterisk ( T) in Table 2-1. As seen from the table, there are Level A or
equivalent descriptions available for all but 15 of the payloads marked by the
asterisk. Because the SSPDA sources are generally lacking in requirements
for flight durations in excess of 7 days (a few are detailed for 30-day
flights), the study relied on discussions with NASA payload discipline special-
ists, Skylab experience and other data sources to develop longer-duration
research requirements. Alternative methods of "packaging" these payloads
within missions and flights were examined. The 20 payloads recommended by
the MSFC Payloads Panel provided the initial point of departure for this pay-
load packaging activity. A statistical analysis of the 20 payloads described in
Table 2-2 reveals the following:

a. The Cosmic Ray Physics Laboratory (Blue Book derived) and the
Long-Duration Life Science Laboratory (special SSPDA) represent
uniquely large and oversized facility requirements when compared
with the other 18 payloads. Therefore, it is proposed to treat these
two payloads as special cases (potentially classified as dedicated

i
laboratory modules) as the study progresses.

b. The remainder of the 18 payloads requires an aggregate of 25,243
manhours of orbital support. This represents, on the average, a
workload of 1,402 manhours required to complete a typical payload
protocol.

C. The average total weight of the complement of instruments, space
equipment, support hardware and/or supplies making up each of the
18 payloads is presented by experiment discipline in Figure 2-1. This
figure also presents an aggregate average of all 18 payloads as a.
function of mission duration.

12



T able , 2.2

CHARACTERISTICS OF 46 PAYLOADS

ID
No.

No. of
7-Day

Flights

Total
Man-
Hours

Payload Physical Characteristics

Voltune	 Weight	 Average
100 ft3	100 lb	 Power	 Energy
(m3)	 (kg)	 waits	 kWh

Orbital Parametersr

Inclination	 Altitude
deg	 nmi (km)

NASA PANEL RECOMMENDATIONS

1 8 1,403 8 (23) 73 (3,296) 944 148.0 28 216 (400)
Z 6 873 6(17) 83 (3,774) 992 172.0 28 162 (300)
3 23 4,002 4(11) 40 (1,836) 400 58.0 28 16Z (300)
4 9 765 33 (94) 117(5,326) 944 148.0 28 216 (400)
5 6 800 56 (160) 330 (15, 000) 690 4,990.0 28 200 (370)
6 20 5,000 30 (86) 124 (5,619) 70Z 63.0 30 189 (350)
7 27 8,424 15 (42) 118 (5,381) 2,525 425.0 28 235 (435)
8 6 1,920 9 (25) 462 (21, 000) 8,000 1,346.0 28 108 (200)
9 5 620 12 (34) 30 (1,353) 430 104.0 Z8 100 (185)

10 a 984 12 (35) 43 (1,955) 21100 126.0 60 Z00 (370)
11 5 177 3 (9) 18 (797) 400 2.0 28 108 (200)
12 12 1, 028 57(164) 164(7,432) 1,880 231,0 70 235 (435)
13 13 209 1 (3) 11 (520) 914 19.0 65 183 (339)
14 1Z 318 0.3(l) 10(443) 264 32. (f 90 100 (185)
15 11 303 4(10) 32 (1,470) 2,192 197.0 57 108 (200)
16 7 193 1 (2) 14(633) 350 18.0 57 108 (Z00)
17 6 225 0.3 (1) 9 (388) 475 20.0 90 108 (200)
18 11 303 4(10) 32 (1,470) 2,192 197.0 90 108 (Z00)
19 3 182 1 (2) 8(343) 560 51.0 57 108 (200)
20 8 234 32 (90) 140 (6,365) 10,000 1,130.0 28 108 (200)

MDAC STUDY TEAM RECOMMENDATIONS

21 96 816 0.3 (1) 12 (554) 100 14.0 28 255 (473)
22 6 936 2 (5) 9 (426) 400 62.0 Z8 248 (460)
23 192 1,248 0.04 (0.1) 0.4 (20) 20 0.3 28 100 (185)
24 10 720 3 (9) 22 (1,000) 400 58.0 28 216 (400)
25 15 2,340 18 (50) 176(8 1 009) 2,429 371.0 28 162 (300)
26 5 780 10 (28) 154(7,017) 1,392 201.0 28 162 (300)
27 7 672 12 (35) 97(4,400) 1,200 115.0 28 281 (520)
28 5 65 6(18) 103(4,687) 360 56.0 28 120 (223)
29 5 390 IM 40(1,814) 356 56.0 22 120 (223)
30 5 480 13 (38) 97 (4,400) 1,200 1,400.0 15 250 (463)
31 8 82 1 (3) 51 (2, 325) 2,400 260.0 28 100 (185)
32 8 527 4(10) 156(7,085) 4,800 1,130.0 28 100 (185)
33 8 48 0.1 (0.3) 108 (4,907) 3,600 860.0 28 100 (185)
34 8 186 2 (7) 69 (3,119) 2,400 360.0 28 100 (1B5)
35 8 152 2 (5) 127 (5,793) 3,600 970.0 28 100 (185)
36 8 72 1 (3) 8 (345) 445 4.0 28 100 (185)
37 20 21,600 1 (2) 56 (2,529) 2, 507 358,0 28 200 (370)
38 16 224 16(46) 6(261) 756 50.0 28 100 (185)
39 16 544 2 (5) 14(643) 497 16.0 55 270 (500)
40 16 544 5 (14) 7 (330) 453 16.0 ze 100 (185)
41 16 704 1 (4) 14(622) 304 11.0 28 100 (185)
42 50 0 0.04 (0. 1) 1 (53) 147 26.0 28 100 (185)
43 5 606 11 (30) 1 (35) 574 98.0 28 100 (185)
44 6 782 15 (44) 71 (3,228) 21100 242.0 60 200 (370)
45 5 861 3 (8) 6 (289) 1,058 17.0 55 200 (370)
46 5 781 1 (4) 15 (678) 1,460 20_ n 55 200 (370)
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Figure 2-1. Weight Summary —18 Payloads

When extrapolating Spacelab payload requirements for extended missions, the
point of origin was taken from the SSPDA 7-day mission requirements. Fig-
ure 2-1 shows a rapid increase in payload weights of Space Processing Pay-
loads. This is due to the requirements for the consumables required to
support the processing operations. These consumables are of two types:
(1) consumables used directly in the operations, such as electrolytes, buffer
solutions, inert gases, and dewars for freezing specimens; and (2) LOX, L112,
fuel cells, water containers, inve.ters, and cooling systems, used for power
generation, power conditioning, and heat dissipation.

As a typical example, using the SSPDA space processing payload, SP-14-S,
1,050 pounds of consumables are required to support a 7-day flight of which
66 pounds are electrolytes and buffer solutions; the remaining weight is com-
posed of power-related equipment for generation, conditioning, and heat
dissipation. Using the MOSC ground rules that two days are not usable (one
day up and one day down), this relates to a consumable requirement of

i
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210 pounds/day of operation. Extrapolating this data out.to 30-, 60-, and
90-day flights (28, 58, and 88 operational days), the following consumable
requirements are obtained:

30 days	 60 days	 90 days

5, 880 lb	 12, 175 lb	 18, 470 lb
(2, 671 kg)	 ( 5, 533 kg)

	
(8, 395 kg)

Spares requirements necessary to support the payload during extended oper-
ations were identified as follows:

30 days	 60 days	 90 days

280 lb	 700 lb	 1, 400 lb
(127 kg)	 (318 kg)

	 ( 637 kg)

These weight requirements are then added to the basic payload equipment
weight of 12, 950 lb (5, 888 kg), resulting in the following total payload
weights:

Equipment
Consumables
Spares
Total

30 days

12, 950 (5, 888)
5, 880 (2, 671)

280 (127)
19, 110 lb
(8, 686 kg)

60 days

12, 950 (5, 888)
12, 175	 533)

700 ( 318)
25, 8Z5 1b
(11, 739 kg)

90 days

12,950 (5, 888)
18, 470 (8, 395)

1,400 ( 637)
32, 820 lb
(14,920 kg)

The daily requirement for data records (3.. e., film, magnetic tape, log books)
has been estimated using factors derived from Skylab experience and
described in Appendix A and has been included. For example, film require-
ments considered not only the raw film stock but also included film spools,
reels, cassettes, and storage containers. Similar methods were used to
estimate extended magnetic tape requirements and other data documents.

In many cases the volumetric and weight estimates of these records appear
to be excessive. In these cases, the payloads were flagged for further analy-
sis and review. Usage factors determined from Skylab experience have
allowances for storage containers and associated protective devices.
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Section 3

ROLES AND REQUIREMENTS FOR MAN IN FUTURE SPACE MISSIONS

An important factor to consider in future program planning is the establish-

ment of the requirement for man in fugure space missions, and a definition

of his roles and relationships in all areas of investigation. The results and

first-hand experience obtained from the conduct of the Apollo and Skylab

Programs provide considerable insight in this regard. Table 3-1 lists a

workable breakdown of specific crew functions patterned after manned

spaceflight experience.

Table 3 -1

CREW/TASK FUNCTIONS

Experiment Activities	 (Act as subject, experimenter; evaluate results,
and. Operations	 extravehicular activities, interfacing and coordi-

nating with ground and other space operations.)

Transfer Operations	 (Unstowlstow and relocate equipment and
materials.)

Maintenance and Repair	 (Perform scheduled and unscheduled maintenance,
troubleshooting, repair/test/checkout.)

Data/ Communications	 (Control configuration of voice, teletype and
communications command set, record voice/data/
video, process data, edit, reload film and tape
machines, log book entries ; personnel conver-
sations and communications with ground.)

Extravehicular Activities (Configure equipment, perform maintenance,
(Vehicle Oriented)	 service expendables, control remote

manipulators.)

Housekeeping	 (Swab, wipe and vacuum, waste collection and
disposal.)

Station-Keeping	 (Station activation, subsystem and equipment
and Operation	 checkout; unstowing and stowing of apparatus,

accessories and supplies; removal of protective
devices.)

'1
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Table 3-1 (Continued)

CREW/TASK FUNCTIONS

Personal Support	 ( Eat, sleep, personal hygiene, relaxation and
recreation.)

Emergency Operations	 (Abort procedures, restoration activities.)

General	 (Planning and redirection activities, mission
control.)

In examining the requirements payloads place upon the carrier both in terms
of operations and in terms of services, it was instructive to examine the
influence the crew could have on establishing service limits both in terms of
constraints and in terms of additional capabilities that they provide to the
overall facility. Grew influence on mission operations and system services
is discussed in the remainder of this report section.

3.1 FUNCTIONAL CAPABILITIES
In manned operations, the crewman plays the primary role. The system must

i
	 be designed in a manner that permits man to utilize his strong points, such

as manipulative skills and judgmental capabilities, and the machine should be
assigned to tasks it can do better than Evan. Typically the machine can per-
form routine or repetitive functions to an advantage. It is in the areas of
performing equipment servicing or unscheduled maintenance functions and
dealing with unforeseen events that man is clearly superior to a machine. An
important consideration in the design of any manned system should be to
ensure that the equipment is designed so as to allow manned access for
servicing.

As an example, Skylab estimates indicated that a manual deployment mode
for the solar arrays would have produced a 15 percent weight saving in that
subsystem. The relocation of power cables on a routine basis to service
appropriate apparatus represents an example of where crewmen could play
a contributary role in the power distribution system, thereby saving system
weight and complexity. The presence of the crewman may permit the use of
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a simpler and lighter heat rejection system through the installation of

temporary systems to accommodate periodic or transient loads above

normal. These examples reinforce the argument for routine as well as

one-time-only functions performed manually to replace otherwise com-

plicated automatic functions. In the area of data management and communi-

cations, the crewman plays the major role. Besides his presence allowing a

simpler system, such as patch panels and plug-in components versus auto-

matic switching, he provides the discretionary intelligence valve judgment

in terms of what data is to be handled, how it is channeled and processed,

and where it is routed. A crewman can initiate or suspend communications

or data management functions as required to better use the capacity of the

system as operational demands may dictate. Similar benefits may be

realized on other systems.

On Skylab, for example, the crew performed servicing operations that were

never originally planned or intended to be done in orbit. Leaks in the airlock

module cooling loops resulted in a condition where Coolanol fluid had to

be added.

If service ports had been provided in the system, it would have been a simple

matter to replace the fluid. As it was, the crew had to install a saddle clamp

and puncture a lire in order to add Coolanol to the system. This potentially

important role of the flight crew on a space vehicle is typified by thz com-

ments, general impressions, attitude, and behavior of the first Skylab crew,

who are quoted as stating, "We can fix anything, given the proper tools, in

space that we can fix on the ground. " The experience by all three crews

demonstrated clearly that man is the key link in enhancing mission success

by retaining, or restoring to service, critical functions. To do this the man

must have access in both extravehicular (EVA) and intravehicular (IVA)

operations.

One of the biggest problems in the Skylab EVA repair operations was the lack

of EVA restraint devices. One of the very important lessons learned from

Skylab about EVA operations was that the crew needed the ability to get to

any place on the outside of the vehicle for repair jobs. An important ground
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rule for any future manned system would be that the crewmen have equipment

and suitable restraint and mobility aids to go anywhere on the interior or

exterior of the vehicle while in orbit. Because EVA may still prove costly

i
in terms of manhours and effort expended, if constant volume suits are not

operational by the 1980 t s the use of remote manipulators that could bring

equipments to airlocks or to mounting provisions in the cargo bay must be

considered.

Future manned systems must be designed to maximize the potential for the

crewmen to perform troubleshooting and maintenance. As an example,

systems should not be designed with fasteners in inaccessible areas which

would preclude on-orbit maintenance actions by the crewman.

One of the strongest arguments for the Shuttle-type operations is the potential

economies possible by reusing equipment on succeeding flights. To achieve

this potential saving, parS:icularly in free-flying concepts, the crew will iden-

tify and implement the 7-eturn of modules for repair. There are many impli-

cations in such a design approach that involve the man in terms of how the

system is to be tested, how the systems are to be built to allow return of

modules for refurbishment, and the size and stowage provisions of the

modules aborad the return vehicle. All of these factors must be considered

in the total system design if the optimal usage is to be made of the space

crew.

In the area of on-orbit improvisation and modifications, the crewman offers

some rather distinct advantages. On the Skylab, the crewmen were required

to drastically correct the heat balance of the workshop by erection of make-

shift thermal shields. Later in the mission, the Skylab crews restored the

malfunctioning airlock module coolant loop to service by resupplying the

cooling fluid.

Man's sense of sight and visual perception is a valuable attribute which can-

not be duplicated in automated equipment. Viewports and other visual capa-

bilities must be provided for certain roles such as the overall control of
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orbital and vehicle orientation and maneuvering. The visual inputs can be
supplied either by having the remote sensors portray appropriate informa-
tion on visual displays or by having the pilot positioned so that he can see
directly through viewports particularly in the close-in maneuvering (for
example, docking).

In both the Apollo Telescope Mount and the Earth Resources Experiment
Package Payload on Skylab, the crewmen proved invaluable in assisting and
directing the pointing capability of both these experiments. The crewmen
greatly enhanced the quality of the data retrieved by being able to observe
the overall situation and direct or point the experiment at the areas of
interest. It is in this area of making selective executive decisions that
man's role is irreplaceable.

3. 2 WORKING AND LIVING VOLUMES
Crew size is important in sizing the vehicle because of the necessity to have
a usable volume sufficient to accommodate the crew and provide a place for
them to perform their work. On Skylab it was found that the space limitations
that a man experiences here on Earth due to gravity did not necessarily apply
in orbit. In the debriefings, all crewmen agreed that zero gravity will allow
the designer of an orbital system more freedom in selecting volumes and
weights for the crewmen to manipulate. For example, the large (in excess
of 6 ft3 and over 250 pounds in weight) food lockers were very readily relo-
cated in zero gravity by one crewman working alone as compared to four
men required on the ground. One crewman made the statement that it would
have been feasible in space to relocate an object the size of the film vault.
(The Skylab vault was in excess of 12 ft 3 and weighed approximately 3, 000
pounds.) The lessons learned can be directed towards designs and configura-
tions that allow for mechanically unaided manual relocation of relatively
large and dens s components ( 250 to 300 lb/ft 3 ) which would be entirely
practical for the crewmen in space.

3.3 CREW SIZE/SKILL MIX/M.ANPOWER
The crew size and skill, mix will be primarily dependent upon the payload
demands for operators. With longer missions, a higher degree of cross
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training can be expected especially when a diversity of payloads is on board.
It can be expected that on longer missions with a proper skills mix and cross
training, a relatively small crew complement car"• provide the needs of the
payload.

Skyla'a crew experience of 84 days in orbit and supporting medical evidence
has established the fact that man fully qualified for the mission durations
being considered in the MOSC Study. The presence of man will enhance the
probability of mission success through his command and control functions
and by repairing and restoring critical functions of simpler and lighter sys-
tems (as opposed to the weight penalties associated with redundant automated
design).

An analysis was made of the crew time requirements necessary to support
experimental activities during various flight durations. A number of factors
were considered in the analysis and recent Skylab experience was the domi-
nant influence. From the Skylab experience, it can be demonstrated on the
average, out of a 24-hour day, a crewman will devote 13-1/2 hours to
personal activities (including sleep), 2-1/2 hours to station operation and
housekeeping activities, leaving eight hours for experiment activities (see
Figure 3-1).

In arriving at these conclusions, an in-depth analysis of the crew perform-
ance of the 60-day second Skylab mission (Skylab II) was made. This crew,
considered by many persons knowledgeable with manned spaceflight opera-
tions to be typical of the best that could be expected, performed the space
assignments remarkably well. For each of the crewmen, the as-flown flight
plan provided a daily log of their activities. Figure 3-2 is an example of a
typical day taken from this flight plan. From the timeline across the top of
the log for each crewman, 15 classes of activities can be identified along
with the time spent by each crewman for that day in the various classes.
These activities are listed in Table 3-2.
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Figure 3-1. ©istrihution of Crew Time (Skylab II Experience)

A tabular listing of each of the three crewmen's daily activities is included

in Appendix B, this data having been taken directly from the Skylab H. As-

flown flight plan summary statistics were generated for each crewman as

well as for the three crewmen in total. These figures are presented in

Tables 3-3 through 3-6.

Figure 3-3 portrays the statistics contained in Table 3-6 on a percentage

basis in order to show the relative amount of time spent, on the average, on

each activity on a daily basis. The staticin -keeping segment contains the

following activities: 7 maintenance operations, -10 house-keeping and equip-

ment transfers, 14 launch and recovery operations and 15 station activations/

deactivations. In Table 3-7, the 15 activities are gathered into three basic

groups as listed in Columns 2, 3, and 4 of the table. Column 2 represents

personal duties of the crew accumulating sleep, eating, hygiene, training

and rest and relaxation. Column 3 represents experiment operations includ-'

ing Apollo telescope mount time, Earth resources experiment package
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Table 3-2
SKYLAB CREW ACTIVITIES

I - Sleep

2 Eating (Includes Food
Preparation), Pre- and Post
Sleep Periods

3 - Operation of Apollo
Telescope Mount

8 -- Personal Hygiene

9 - Personal Training

10 - Housekeeping and Equipment
Transfer

11 - Rest and Relaxation

4 - Operation of Earth	 12 - Student Experiments and
Resources Package	 TV Operation

5 - Operation of Corollary Experiments 13 - Extravehicluar Activities

6 - Operation of Medical Experiments 14 - Launch and Recovery Operations

7 - Maintenance Operations 	 15 - Station Activation/Deactivation

Table 3-3
ACTIVITY STATISTICS (HOURS) - SKYLAB H COMMANDER, BEAN

Activity	 Mean	 Std Dev	 Std Err	 Max	 Min	 Range

Sleep 7.88 1.15 0.15 9.70 0.00 9.70
Eat 4.26 1.56 0.20 7.70 1.00 6.70
ATM 2.02 1.76 0.23 6.90 0.00 6.90

EREP 1.40 1.71 0.22 5.60 0.00 5.60
Corollary 2.00 1.99 0.26 7.30 0.00 7.30
Medical 1.35 1.49 0.19 5.90 0.00 5.90

Maint. 0.69 1.47 0.19 8.30 0.00 8.30
Hygiene 0.40 0.25 0.03 1.10 0.00 1.10
Training 0.71 0.49 0.06 2..00 0.00 2.00

Hskg. 1.12 1.19 0.15 4.80 0.00 4.80
R and R 0.30 1.02 0.13 5.60 0.00 5.60
Student 0.17 0.39 0.05 1.80 0.00 1.80

EVA 0068 2.32 0.30 12.00 0.00 12.00
L and R 0.28 1.53 0.20 9.10 0.00 9.10
Act/Deact. 0.51 1.90 0.25 10.00 0.00 10.00

t
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Table 3-4
ACTIVITY STATISTICS (HOURS) -SKYLAB H SCIENCE PILOT, GARRIOTT

Activity	 Mean	 Std. Dev	 Std Erx•	Max	 Min	 Range

Sleep 7.84 1.16 0.15 9.70 0.00 9.70
Eat 4.35 1.45 0.19 8.00 1.00 7.00

ATM 3.34 2.56 0.33 9.00 0.00 9.00
EREP 0.76 0.98 0.13 3.10 0.00 3.10
C6rollary 0.89 1.40 0.18 6.10 0.00 6.10
Medical 2.09 1.93 0.25 8.20 0.00 8.20
Maint. 0.18 0.53 0.07 2.00 0.00 2.00
Hygiene 0.48 0.29 0.04 1.20 0.00 1.20
Training 0.63 0.43 0.06 1.10 0.00 1.10
Hskg. 0.98 0.93 0.12 4.20 0.00 4.20
R and R. 0.26 0.77 0.10 4.00 0.00 4.00
Student 0.67 1.54 0.20 10.50 0.00 10.50

EVA 0.45 1.83 0.24 11.60 0.00 11.60

L and R 0.32 1.56 0.20 9.10 0.00 9110
Act/Deact. 0.56 2.01 0.26 10.70 0.00 10.70

operation, corollary experiment attendance, medical experiments and student
experiment and television operations. Column 4 is a summary of the daily
time spent by the crew on stationkeeping activities as monitored above. Table
3-8 is a statistical summary of the data contained in Table 3-7 and presents
the daily time division averages alluded to at the beginning of this section.

Figure 3-4 is a plot of the frequency distribution of the total daily crew time
devoted to experiment operations. This plot was computer-generated and each
star ( T ) represents one of the 60 mission days. The average of 23.84 hours
for the three crewmen represents about eight hours available from each to 	 <` 1

devote to experiment and payload activities. Figure 3-5 suggests that the
distribution of Skylab experience follows a trimodai characteristic. A
Poisson-like distribution characterizes eight days out of the mission where
on the average only 3.12 hours were spent on experiment operating by all the



Table 3-5

ACTIVITY STATISTICS (HOURS) -SKYLAB II PILOT, LOUSMA

Activity	 Mean'	 Std Dev	 Std Err	 Max	 Min	 Range

Sleep	 7.84	 1.17	 0.15	 9.70	 0.00	 9.70
Eat	 4.17	 1.34	 0.17	 7.00	 1.00	 6.00

ATM	 2.12	 2.02	 0.26	 7.00	 0.00	 7.00

EREP	 1.55	 1.74	 0.22	 6.20	 0.00	 6.20
Corollary	 1.75	 1.58	 0.20	 5.50	 0.00	 5.50
Medical	 1.78	 1.86	 0.24	 7.50	 0.00	 7.50
Maint.	 0.30	 0.62	 0.08	 2.00	 0.00	 2.00
Hygiene	 0.45	 0.22	 0.03	 0.90	 0.00	 0.90
Training	 0.78	 0.40	 0.05	 1.50	 0.00	 1.50
Hskg.	 1.17	 1.23	 0.16	 6.60	 0.00	 6.60
R and R	 0.22	 0.70	 0.09	 3.50	 0.00	 3.50

Student	 0.05	 0.14	 0.02	 0.60	 0.00	 0.60
EVA	 0.77	 2.50	 0.32	 12.00	 0.00	 12.00
L and R	 0.28	 1.53	 0.20	 9.10	 0.00	 9. 10
Adt/Deact. 0.59	 2.06	 0.27	 10.50	 0.00	 10.50

crewmen. These days out of the mission would fall in the periods of activa-
tion and deactivation of the station when most of the crew time is required to
verify system operation and prepare the spacecraft for routine operations to
follow or secure for the unmanned periods. The second class of operations
follows a typical Gaussian distribution associated with normal day-to-day
routine. Here 54 percent o-f the Skylab II mission days were involved where
on the average 27.9 hours total was available for experiment activities. A
second Gaussian distribution, with a mean of 32 hours total, is observed
and is characteristic of those extraordinary operations, such as EVA, where
the crew devotes the maximum amount of available time to experiment
operations.

Another question addressed by the study dealt with the amount . of learning
which can be expected in the crews on extended missions. Learning in this
case refers to the degree of adaptation to the zero-g environment which can

t
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Table 3-6
AVERAGE STATISTICS (HOURS) - THREE SKYLAB II CREWMEN

Activity Mean	 (%)	 Std Dev Std Err	 Max	 Min	 Range

Sleep 7.92 33.0 1.15 0.15 9.70 0.00 9.70

Eat 4.32 18.0 1.34 0.17 7.00 1.00 6.00
ATM 2.50 10.4 1.52 0.20 4.80 0.00 4.80

`	 EREP 1.25 5.0 1.40 0.18 4.70 0.00 4.70

Corollary 1.55 6.5 1.16 0.15 5.10 0.00 5.10
Medical 1.75 7.5 1.35 0.17 5.20 0.00 5. ZO
Maint. 0.39 1.6 0.72 0.09 3.40 0.00 3.40
Hygiene 0.44 1.8 0.21 0.03 0.90 0.00 0.90
Training 0.71 3.0 0.33 0.04 1.50 0.00 1.50

Hskg. 1.09 4.6 0.92 0.12 4.80 0.00 4.80

R and R 0.26 1. 1 0.69 0.09 2.90 0.00 2.90

Student 0.30 1.3 0.54 0.07 3.50 0.00 3.50

EVA 0.63 z.6 2.10 0.27 11.80 0.00 11.80

L and R 0.29 1.2 1.54 0. 20 9.10 0.00 9.10

Act/ Deact. 0.55 2.4 1.97 0.25 10.40 0.00 10.40

be expected and the attendant improvement in efficiency in task performance
resulting from longer periods in space. To resolve this question, data
obtained during the 88-day third Skylab mission (Skylab III) was examined and
analyzed within the context of Experiment M151, "Time and Motion Study,
as reported on by Joseph F. Kubis, et al. 1

Figure 3-6 presents the three selected tasks, the mean values and standard
deviations of performance times for the initial, middle and final third of this
mission. The Kubis data was acquired inflight during the conduct of three
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When the data points are connected by the best fitting straight lines on log-
log grid paper, an estimate of the learning ( performance improvement)
experienced during the mission can be made. As noted on the graph continuing
performance of M092, M171 and M093 resulted in learning curve slopes of 87
percent, 72 percent, and 84 percent, respectively. In light of this experience,
it is believed reasonable to utilize a learning factor of 85 percent for MOSC
missions when extrapolating the manhours required for a specific set of
activities.

The Skylab experience is invaluable when guidelines need to be developed for
future manned space system. concepts. From insights gained during the active
mission periods when problems had to be solved "in real time" and adjustments
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COMBINED GROUPED ACTIVITY TIMES FOR
"AS-FLOWN" FLIGHT PLAN - SKYLAB II

Experiment	 Station:
Operations	 Keeping	 Daily Total
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Personal Duties

Mission Day	 (hr)
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Table 3-7 (Page 2 of 2)
COMBINED GROUPED ACTIVITY TIMES FOR

"AS-FLOWN" FLIGHT PLAN - SKYLAB II

Experiment Station
Personal Duties Operations Keeping Daily Total

Mission Day (hr) (hr) (hr) (hr)

4vi 3u aG: L a.4•4i^.^ V•r'
1

2- L L.

44 42.7 L. 5 • LC; 72 -CC
a. ZZ U 31 .36 1-910 7e .6L

46 36 - LP L: 3 0 -C U ; 0 .5 C. 7L - L U
[4 7 .b3 5 2 " i .9G .'L, G^7;;..0

t1b U - 1 0 4L; - a..t 1 •ZA, / 
J .:	 -l; L7

49 3L -7L L9 a4`. 3. V L 72.ou
56 37.46 3 L- 1 L ntILU 7`-t L,
51 47. 2 1: L t!-4t• ./;i: 7`.6L:

52 3/1640 3 1.5L .`- IC 72 *CC
53 36 ak:C. 2E -/IL; 3.4[. 7.2 -L.C,

54 . u .40 27#00 F. .0  7 42; -L0
55 39 0 A 23aL. L. 9 • bC 7e- a C; G

556 36 - 2C .,2.C,L: 3 -C, U. 72 9CC

57 ZIL	 5L 27-GL; t,050 7f. - u C,
S5 33 .16 .	 0 cS .CL, 72-.E C
59 37.40; a 6 L 3 4 .66 72.6 6
60 ;5066 -C L: 34;.96 37*90

Table 3-8
AS-FLOWN GROUPED STA'T'ISTICS (HOURS)

Activity Mean Std Dev Std Err Max Min Range

Personal 13.63 2.25 0.29 15.60 1.00 17.60

Experiment 8.02 3.16 0.41 1Z.10 0.00 12.10

Station Keeping 2.35 2.97 0.38 13.10 0.00 13.10
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Figure 3.6. Estimate of Crew Performance Efficiency

had to be maAe to the .flight plan on a dynamic basis, the following observa-
tions and guidelines are presented:

1. Concurrent sleeping periods for all crewmen should b ps considered
the normal made of MOSC operations. Flight experience has shown
that alternate sleeping periods in space is not desirable. Because
of the disturbances created by the non-sleeping crew members,
sleeping in shifts appears only feasible for the very largest of
space stations. Approximately 7 manhours of crewtime per day
will be required to support station activities such as housekeeping,
maintenance and planning the activities of the flight. A portion of
the 7 manhours should be considered reserved for contingencies
which cannot be planned or timelined in the flight.

2. The crewman would be expected to perform actual experiment
operations for 8 hours of each nominal working day in orbit.
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On missions in excess of 7 days, every seventh day should be an
unscheduled day for "catch-up activities' or a day of nominal rest.
It can be expected, however, that those tasks requiring daily per-
formance would be continued on the seventh day although the nones-
sential activities would be relaxed.

3. The nominal operational day should be scheduled to provide between
10 and 12 hours of continuous experiment operations for the entire
crew. This may be extended to a limit of 16 hours as particular
experiment conditions warrant. Under special specific conditions
it would be possible but highly undesirable to have the crew duty
cycles realigned to perform round-the-clock manning, but this
can be resorted to for short periods of time (approximately two
days) under unusual circumstances. This is not to preclude
equipment being remotely operated from the ground while the crew
is sleeping and any experiments requiring 24-hour-a-day functioning
should be designed to operate in this manner.

4. In some cases it can be anticipated that the crewman will be
involved directly in the research activities as either the subject
or the experimenter and as such will have the sole responsibility
for the conduct and evaluation of the orbital research program.
In other cases, the crewman will share with or yield to the oper-
ational control of counterparts on the ground. In these latter
experiments (typically in the areas of astronomy, high energy phys-
ics, Earth observations and Earth and ocean studies) the ground-
based personnel actually can be considered as extending the
capability of the orbital facility by operating the equipment when
the crew members are either not available by virtue of sleeping
or are performing other experiments. Providing more experiment
control to the principal investigator on the ground suggests that the
on-orbit crew skills will tend to fall into two classes, L e. , those of
a laboratory support technician in some areas, and those of a
principal investigator in others. For 46 candidate experiments
examined, only 5 identified the need for the physical presence
of the principal investigator.
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Using the Skylab results as the initialization point, Table 3-9 and Figures 3-7
and 3-8 relate experiment manhours to various mission durations for several
crew sizes. Table 3-9, Manpower Available During Flight, shows the
manhours available for a two-man crew for 7-, 30-, 60-, and 90-day flights.
Figure 3-7 shows the summation of manhours available for crew sizes of two,
four and six. Figure 3-8 plots various crew sizes and mission durations for
the required experiment manhours versus the number of flights required.

Table 3-9
CALCULATION OF MANPOWER AVAILABLE DURING FLIGHT

Crew Size
Net

Flight Work MH/ Days Two Four Six
Duration Days Day Off Men Men Men

7 da^ -s: (7-2) X8 X1 80 160 240
30 days: (30-2) X8 X6/7 384 768 1152
60 days: (60 -2) X8 X6/7 795 1590 2385
90 days: (90-2) X8 X6/7 1207 2414 3621

CR 28

7

f

FLIGHT DURATION (DAYS)

Figure 3.7. Available Manhours
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Figure 3-8, Flight Scheduling Requirements

3.4 OTHER FACTORS TO BE CONSIDERED

In some cases during relatively short flights, continuous around-the-clock
operations need to be scheduled in order to perform the prescribed observa-
tions within the available tune. These classes of requirements could demand
larger crews necessitated by multiple shift operations. If longer flight times
were available, then the observations could be made by single shift operations
to accomplish the same job. Normal crew motion may involve low levels of
mechanical disturbances and forces and payloads which are sensitive to these
disturbances should be identified so that protective and/or preventative
measures can be provided. These measures can be scheduled and include
restricted crew activities and location of the crew near the center of gravity
of the station during critical periods of the flight.

3.5 REFERENCES AND OTHER SOURCE MATERIAL

The sources of information that were examined and used during the study
included documented results of the experience gained daring the Skylab Pro-
gram. For example, the 13 Skylab Experience Bulletins provided useful

36



i

commentary on such subjects as translation anodes, airlock requirements,
sleeping quarters, sleep restraints, inflight maintenance, space garments,
personnel restraints, cleansing provisions, tools and test equipment, and
supplies required for inflight support operations. Additional insight was
provided by the lessons learned from the Skylab Program reports.
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Section 4
REQUIREMENTS FOR EXTENDED CAPABILITY

The advantages to be gained by extended-capability missions for each of the
46 payloads (Table 2-2) were assessed. It was noted that in no case were
there payloads that would be adversely affected by longer than 7- to 30-day
durations. In the life science and space processing areas there were new
fields of research which could be addressed by longer missions.

In examining the impact of the research requirements and/or advantages of
extended capabilities, the following five major capability extension areas
were considered for each payload:

1. Flight Duration
2. Weightlessness
3. Contamination
4. Resources
5. Schedule

Exposure tame, observation opportunities
G -levels, gravity-induced disturbances
Physical, chemical, thermal, electromagnetic
Weight, volume, power, energy
Number of flight, equipment items, economies,
practicalities.

The capability areas generally found to be important in each payload discipline
are summarized by discipline in Table 4-1. In assessing the requirements for
extended capability, discussions were held with NASA personnel involved with
payload studies and payload planning activities in each of the discipline areas.
Additionally, other scientists were contacted for their views of the valve and
requirements for extended capability. In summary the results of these dis-
cussions are as follows. For the astronomical payloads, driving requirements
are a contamination-free environment and an opportunity to make observations
undisturbed by the other operations of the facility. In high-energy astrophysics
the primary concern is the deployment of the massive detector elements in
space for a sufficient period to record a statistically significant numbe_ of
cosmic ray events. In the case of solar physics, the ability to observe at

ftEOMIN,	
PLANk X yr

`	
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Table 4-1

PAYLOAD REQUIREMENTS FOR EXTENDED CAPABILITIES

Capability Extension. Areas

Flight Weight- Contamina-
eayload Disciplines Duration lessness 	 tion	 Resources Schedule

Astronomy X	 X	 X X

H. E. Astrophysics X X

Solar Physics X

AMPS X	 X

Earth Observations X X
E and O Physics X X

Life Science X	 X X

Space Processing X	 X	 X X	 X

Space Technology X	 X	 X

Comm/Nav X X

least one solar rotation cycle (approximately 28 days) was important and

flight durations of 60 days would be desirable in order to capture two solar

rotations. Extended flight durations are also highly desirable in Earth

observation and Earth and ocean physics where clear weather coverage and

multiple passes over a given geographical location are important to the

researchers. In life science, long-duration flight experience is mandatory

to study the role of gravity in life processes. The AMPS and Comm/nav

investigations are to a lesser degree dependent upon extended flight dura-

tion. The space processing and space technology disciplines are most con-

cerned with maintaining a micr ogravity-disturbanc e -free environment for
conduct of the experiments. The discussions which follow probe in greater

detail the advantages to be gained by mission extension for each of the ten

discipline areas.

4.1 ASTRONOMY

Space-based astronomy takes advantage of the orbital vantage point to make

observations in those regions of the spectrum not available from ground

observatories and to reduce the obfuscations resultant from atmospheric
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effects such as sky light, twinkle and flint which limit resolution and record-

ing time. Specifically, the regions of the spectrum in the IR from 10 to 1

micron and the UV from Z, 000 to 50 angstroms, not available on Earth, can

be observed from space. In addition the high regions of the spectrum extended

to gamma ray frequencies, which are absorbed by the atmosphere, become

accessible from space.

It is a well-known fact that Earth-bound astronomical instruments of large

aperture (>3 meters) experience atmospheric degradation before theoretical

resolution limits are encountered. In theory, space-based instruments of

these larger apertures will not experience degradation and therefore could be

expected to perform to their theoretical diffraction limits if so constructed.

However, the larger aperture, finely figured optics, space telescopes can

be adversely affected by local conditions experienced in the space vehicle

environment. The reflective characteristics of the instrument optics are

particularly sensitive to contaminants such as non-volatile hydrocarbon

(strong absorbers in the UV) which can deposit on the optical surfaces.

Therefore, one of the most desirous improvements in capability would be

a well-controlled low level of contaminants.

Another important consideration is a vibration-free, precision pointing, all

attitude stable mount. The larger instruments (apertures >l meter) when

performing to diffraction limited capabilities can resolve sources with

angular separations of about 0. 1 second (at 4000 angstrom) and below). This

level of performance requires an equally precise stable mount to isolate the

instruments from mechanical disturbances and perturbations introduced by

other space system elements. When operating attached to the Spacelab and/or

Orbiter sources of disturbances which are difficult to isolate against include

periodic thrustor firings, vibration from rotating machinery, crew motion

and thermal creep. The attached mode of operation is also subject to sources.

of particulate and chemical contamination resulting from outgassing, venting

and engine firings. The extended capability offered by a free-flying platform

could serve to alleviate both the stabilization and disturbance problems and

the contamination situation encountered in an attached-to-the-Shuttle mode

of operation.
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Flights of longer duration (>30 days) also offer desirable advantages to space
astronomy. While individual observations do not require excessive periods
of time, series of observations as encountered in sky surveys and star field
mapping do require extended periods (>30 days) for completion. When these
classes of astronomical activities are structured within 7-day flight mission
segments, then either multiple instrument sets are required to accomplish
the work within a fixed number of flights or many flights are required to
satisfy the requirements of the observation program. It is far more desir-
able from the scientific point of view to perform the measurements with a
single instrument of known and well-established performance characteristics
than to use several similar instruments. No two astronomical instruments
perform exactly alike. Individual idiosyncrasies that are observed from
instrument to instrument include such differences as exact focal length,
resolving power, spectral characteristics, magnification, field linearity,
pointing accuracy (exact hour and declination angles) and so forth. Using a
single instrument to perform an all-sky survey would ensure that all frames
of the total set would exhibit the same scale and resolution. Also,
instruments used for astronomical observation experience changes in certain
characteristics with passing time. These changes occur as components
creep or drift and as wear sets in. The most desirable operation would be
to start and finish one particular survey in a single continuous mission
where the instrument would be subjected to the minimum amount of
disturbances during the course of the observations. Little is known of the
effects on instrument performance by having to transport it several times
by means of the Shuttle transportation system, by numerous startup and
shutdown cycles, by experiencing different operators and crew members
from flight to flight, and so forth. Calibrations would have to be repeated
often and the data adjusted for each flight on an individual basis to match all
the data for correlative purposes. In short, longer-duration flights would
greatly simplify and remove uncertainties from those to be expected with
shorter orbital stay times.

4.2 HIGH-ENERGY ASTROPHYSICS
The study of cosmic rays is concerned with the scientific issue of the origin
and composition of the universe, a most profound subject indeed. Informa-
tion is sought concerning the spectra, energy and flux of particles and

s.
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electromagnetic radiation which cannot be detected on the ground due to

interactions of the cosmic rays with the constituents of the atmosphere. The

study of isotopic abundancies for the heavier transition elements reveals

clues of the individual age or life cycle of a particle encountered. The

problems facing the scientists in this area of research center around the

extremely low level of flux (incidence of cosmic ray events) and the extreme

energy levels of the cosmic rays to be measured.

There are two presently used experimental methods in high energy astro-

physics investigation, both of which center around the cosmic ray detection

mechanism. The first attempts to measure the rays dire ctly by their inter-

action with an active detector where controlled electrical and magnetic

forces are indicative of the phenomena observed. Because of the energetic

properties of these rays very high electrical and magnetic fields are required

necessitating the employment of such advance techniques as superconducting

magnetic devices which present state-of-the-art calls for cryogenic cooling to

near the absolute zero point. The magnet is used to cause the charged parti-

cles to bend to be able to separate the species and thereby obtain the identity

of the chemical composition and isotopic abundances of the cosmic ray. In

order to measure the energy of the rays ordinarily a total absorption detector

is employed. This device is needed to stop the cosmic rays so that their

energy can be measured. One of the most important characteristics of the

detector is its geometric factor. That is, a certain sized detector can stop

particles of certain energy levels: the larger the factor, the higher the energy

levels measurable. Along with the geometric factor is a time factor. That

is, with a low flux rate of cosmic rays to be observed, then one must expect

that a longer period would be required to experience an encounter. The

geometric factor and the time factor form a product which should be as

large as possible. When the detector size is limited by practical constraints,

then the flight duration becomes the pacing requirement.

The other approach to measuring cosmic rays consists of an array of emul-

sions which are essentially passive elements (they do not require power or

cooling provisions). The emulsions can be either silver halide photographic

detectors or other substances such as plastic sheets wherein the cosmic ray

encounter histories are recorded in the emulsions. Upon development of the
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emulsions the histories of the particle interactions with the emulsions are
indicative of the properties of the rays. These schemes differ from the
active approach in that there is no real time readout possible. However, they
possess the same geometric time factor product criteria as before.

Professor P. Buford Price, Department of Physics, University of California
Berkeley is one of the Skylab principal investigators interested in cosmic
ray research from space. Contract through his research assistant,
E. K. Shirk, provided most valuable insights into the importance of
extended capability to their research interests. Professor Price's
experiment, Trans -Uranic Cosmic Rays (5228), provided the recording of
130 cosmic ray events of interest during the 253 days of Skylab space
exposure. In this experiment it was the numerical product of detector
volume and exposure time, as mentioned above, that is the pacing param-
eter. In future space experiments these scientists state that it would be
desirable to increase the time-volume product by 50-100 and increase the
detector density by a factor of three. For MOSC era missions a natural
tendency would be to increase the mission duration thereby reducing the
amount of detector volume with payoff of decreased payload delivery and
return weight. Experimental interest, circa 1984, might well be directed
toward the investigation of isotopic abundances in rare heavy elements in
cosmic rays. These investigations require larger volume-time products in
order to gather a statistically sufficient number of events to provide the
identification of the isotopes detected. This interest would necessitate
longer duration missions involving relatively massive payloads.

4.3 PHYSICS
4.3.1 Solar Physics
Raw numbers of available and planned observing hours can be misleading in
assessing the true objective temporal requirements of a solar observation
program. Figure 4-1 portrays the time and space scale of certain typical
solar phenomena. The abscissa of the chart depicts on a logarithmic scale
the periodicity and lifetime of certain solar events. These cyclic phenomena
range from subsecond events at the lower end of the scale to those extending
beyond the 22-year observed solar activity period. A program of at least
3800 hours of discretely spaced observations extended across one or more	 r:
22-year cycles would be adequate to fully cover the solar activity changes.
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Figure 4.1. Solar Phenomena Range and Extent in Time and Space

The data returned by the Skylab Apollo telescope mount experiments proved
to be both event-oriented and statistical in nature. Events such as bursts,
fluxes and solar cosmic ray events were observed. where the onset of the
phenomena was of utmost concern and interest. Needs remain for both high
rate observation of transients and long term coverage of the basic solar
activity cycles. Both requirements drive toward longer periods to make
observations and toward periods when continuous or near continuous
observations are desirable.

Figure 4-2 shows application areas that could be expected to benefit from
the indicated study of solar phenomena. For example, unproved and more
accurate long range weather forecasts will undoubtedly result from new
insights and fuller scientific understanding of solar activity cycles. Long
term observations of the sun will lead to improved analytic and descriptive
models of the sun and its interaction with the Earth = s atmosphere. Another
instance of terrestrial application of solar studies is in the area of coronal
studies. Observation and analysis of the mechanisms and sources of coronal
heating which is currently only partly understood can bring additional insight
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Figure 42. Solar Phenomena Research Implications

and understanding of magnetohydrodynamic processes with future power
source implications.

Observations of the sun are bound to remain a very important area of scien-
tific interest. Extended capabilities in space will enable the solar physicist
to pursue new areas of research with potentially important implications to
mankind.

4, 3.2 Atmospheric, Magnetospheric, and Plasma Physics in Space (AMPS)
The AMPS investigations involve measurements of the characteristics of
near-Earth space. For the most part observatioLis of atmospheric and mag-

!	 netospheric phenomena, as opposed to the plasma and plasma sheath experi-
ments, will benefit from longer exposure periods to permit the acquisition of
data by means of a continuous set of measurements using the same calibrated
instruments. Here the remote sensing missions would benefit from long dur-
ations to observe atmospheric changes occurring on a seasonal basis and as
influenced by variations in the energy and spectra of the solar input during
solar activity cycles. Flight durations of 60 days and longer are desirable.
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In the plasma physics area certain of the investigations require the release
of vaporized chemicals. Upon release these chemicals become partially ion-
ized and, because they dissipate fairly quickly (one to two hours), extended
duration flights provide the opportunity to make numerous releases at differ-
ent places in the orbit thereby covering much more area than possible with
single releases. This added flexibility is most desirable in the planning and
conduct of the perturbation experiments.

4.3.3 Earth Observations and Earth and Ocean Physics
The SSPDA payloads associated with these two application categories largely
contemplate flights where the major purpose of the mission is to qualify the
basic instruments and sensors for operational use. As such these applica-
tions do not demand extended capability or longer duration missions. It can
also be expected that the shorter sortie class missions will allow for only
limited coverage of the entire globe for all of the various conditions that
could be encountered. Many of these limitations can be avoided by longer
flight periods which would permit repeated observations over the same site
and would make available coverage of an area by a subsequent orbital pass
when the first planned pass encountered cloud cover or some other local
conditions which could negate the observational opportunity.

Another aspect of longer duration flights is that it would be possible to plan 	 -j
a series of investigations perhaps of international scope and participation.
As was experienced by the International Geophysics Year 1957-1958 (IGY) a
worldwide program of Earth-oriented research could be conducted with the

I	 cooperation of many nations and thousands of individual scientists. The	 j
IGY approach can be directed toward a systematic study of the Earth and its
environment and a semi-permanent orbiting laboratory could serve as the 	 1
observation focal point of the program.

4.4 LIFE SCIENCES	 1	 a
E

With flight durations limited to 7 to 50 days' duration the extent of the life
science research program would of necessity be limited. For example, the
following last summarizes some of the important areas of investigation
requiring more than 30 days in orbit:

1. Two generations of man surrogates (small animals)
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2. Calcium and collagen bone development and/or repair (mineral
metabolism)

3. Vision
4. Electrolytes
5. Exercise (amount and types)
6. Cardiovascular dynamics
7. Hematology
S. Dose response g capability
9. Psychomotor adaptation to zero-g

10. Habitability (living and working architecture)
11. Work/rest schedules
12. Small group dynamics
13. Plants (seed-to-seed generation)
14. Countermeasures
15. Life support system components (for long-duration manned

missions, i. e., Mars)

The life science discipline, perhaps uniquely over all the other disciplines,
requires longer-duration flights and missions. While shorter periods (seven
to 30 days) can be useful to investigate responses to the change in gravity
stimuli in space, these periods are not sufficiently long to study the adapta-
tion of life forms to weightlessness. It is in the adaptation phenomena that
answers to questions are sought as to the role of gravity in biological proc-
esses and mechanisms. In this area of research durations extending to two
years are needed to meet the scientific objectives.

4.5 SPACE PROCESSING
In attempting to establish objectives and characteristics of materials proc-
essing research in space and to supplement the data derived from the source
documents, Skylab experiment principal investigators were contacted during
the course of the study. Informal discussions were concerned with the scien-
tific benefits and research advantages of longer than seven to 30-day duration
mission periods insofar as their individual fields of interest and experimenta-
tion were affected. The scientists expressed keen interest in extended flight
periods for their experiments.
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One of these was Professor William R. Wilcox of the College of Engineering,
University of Southern California. Professor Wilcox's work is concerned with
the material sciences and space processing. His Skylab experiment, Mixed
III-V Crystal Growth (M563), was aimed at determining how weightlessness
affects directional solidification of binary semiconductor alloys. These types
of studies requiring longer periods im space can be contrasted to those
experiments such as crystallization from a melt (e. g., the Czochralsky
method of crystal growth) and zone refining which can be accomplished
in a relatively shorter period of time. One example requiring longer
periods in space cited by Dr. Wilcox and which could have high economic
interest, was growing synthetic calcite crystals where the natural supply
of calcite is being rapidly depleted on .Farth. The growth of commercially
useful crystals of this sort would require periods of several weeks
duration.

The work of Professor Wilcox is representative of the class of research in
the materials science area directed toward producing substances with unique
electrical or mechanical properties. The thrust of this research area is
highly applications oriented; that is, the development of production techniques
for materials which have immediate use in industry as base material for
solid state devices and as elements for super efficient structural configurations.

In the opinion of Professor Wilcox, every Skylab materials science experi-
ment produced some valuable and unexpected results. At the beginning of
his involvement in the Skylab experiment program Professor Wilcox was
skeptical. However, now that the mission results are in he is a strong
advocate of further materials science missions in space. He is particularly
interested in the capabilities that MOSC can offer. Professor Wilcox's experi-
ence is typical of the other Skylab principal investigators who were concerned
with materials science and manufacturing in space. For example, Dr. Harry
Wiedemeir of Rensselaer Polytechnic Institute revealed great promise for
space processing in his Skylab experiment Vapor Growth of II-VI Compounds
(M556). As a group these scientists provide invaluable insights as to the
directions that further space processing efforts should take.

One of the most severe problems encountered in terrestrial materials science
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experiment and production activities involves the crucible. These problems
involve contamination of the melt by the walls of the crucible. Various
levitation schemes have sought to eliminate this source of trouble with varying
degrees of success. Containerless melting and processing are possible
attractive methods to be employed in space especially on extended durations.

Electron beam heating, as opposed to induction heating, is considered the
most efficient method of applying heat to the process. The power require-
ments of a silicon crystal production machine utilizing a floating zone method
to produce a 3- to 4-inch diameter specimen are estimated at 20 kW as an
upper limit. This amount of power required could be reduced by employing
the proper insulation techniques. One technique suggested by Professor
Wilcox's work involves a glass cylindrical shroud with a thin gold film
deposited on the inner surface of the glass. The gold film acts as a very
efficient reflector of the infrared radiation but still permits the visible portion
of the spectrum to pass, thereby facilitating visual observations and photo-
graphic recording of the process. With this insulation approach, the power
requirement could conceivably be reduced tenfold.

The production of semiconductor quality silicon has large economic interest
especially in the manufacture of large scale solar cells for the direct convers-
ion and production of electrical energy from sunlight. In space silicon crystals
can be produced at the rate of a few inches per hour so that a flight duration
of a few days would be adequate to produce a single specimen. Extended
periods would provide the opportunity to continue the production process and
produce many crystals from the same setup.

Another space processing technique involves the production of eutectic
materials. Potentially valuable commercial eutectics include certain
binary mixtures. When these mixtures solidify, one of the two phases can
form fibers, filaments, or platelets in a matrix of the second phase. These
matrix form eutectics produced on Earth are limited in perfection by the
presence of discontinuities, faults and surface irregularities caused by
mechanical vibrations and thermal convection in the melt during solidification.
In most cases, these defects render the Earth-produced materials ineffective 	

I

or useless for solid-state devices. If the solidification process is performed
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in a space environment, where convection is reduced to near zero by the null-
gravity and where vibration and mechanical disturbances are minimized in

s free flight, one can expect to produce continuous fiberlike eutectics with
special electrical, thermomagnetic, optical and superconducting properties
with immediate commercial value. The Skylab experiment M564, Metal and

Halide Eutectics, provided investigators Yue and Yu Z with. sufficient
evidence to indicate that space-produced matrix materials display certain
superior properties compared to Earth-produced control ingots. Eutectic
work requires flights of at least seven days and it is desirable to have longer
duration exposures of 30 days or more.

Another space processing technique involves the growing of crystals from a
liquid or vapor phase. These processes are characterized by a relatively
slow growth rate on Earth to produce perfect crystals free from dislocations
and surface defects. Since it requires weeks to produce specimens of
industrial value, liquid and/or vapor grown crystal production are candidates
for the longer duration space manufacturing missions. Professor H.
Wiedemeier and associates on Skylab experiment M556, Vapor Growth of
.U-VI Compounds, demonstrated the positive effects of null-gravity on crystal
growth. 3 Considerable improvement was observed in the space crystals over
the ground-grown controls in terms of surface perfection, crystalline homo-
geneity and defect density. These features are mandatory if the produced
materials are to be of economic value. Further it was observed that greater
mass transport rates were produced than were expected in null-gravity. This
evidence is; of;basic scientific and technological significance and is indicative
of the irnprov^ed; efficiencies ,experienced in the space environment. The con-
clueions=:drawn from Professor Wiedemeier's investigations are readily
adaptable _to ;the growth of commercially important electronic materials.
This process requires extended flight durations up to 60 days.

Another importati.t,pass i? lity, for space processing is in the area of the health

Hal cle ati eetic Growth ` ''A. S. Yue and J. G. Yu. UCLA, Po. 469-489. Pro-
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sciences. Medical interest is centered around processes to separate living
cells which are difficult to accomplishment by ordinary physical or chemical 	 i
means. One such technique, termed electrophoresis, offers promise to
separate cells by taking advantage of their electric surface charge and potential
differences. On Earth the size and dimensions of the electrophoresis tube are
limited because of buoyancy; that is, larger size tubes are affected more
quickly by convection, settling, sedimentation and other gravity related effects.
By reducing the size of the tube to permit sufficient time for the electrophore-
sis separation to take place, only small setups and yields are possible. Other
schemes to negate the gravity effects have been employed by Van Oss and
Associates  to a limited degree. These include vertical liquid columns con-
taining variable density mediums for electrophoretic transport of the lympho-
cytes. Normally, however, cells fall to the bottom of the tube in the time
required for electrophoretic separation. Increasing the density of the solution
creates osmotic and other problems. Thus the ideal condition for the electro-
phoretic separation of cells must be sought in space. This example is typical
of the in vitro research, development and production in space of substances
finding use in the treatment of a variety of immunological diseases, various
malignancies and other types of cancer and chronic infections.

Review of concurrent study efforts at MSFC pertinent to the space processing
payloads provided the study team with valuable insights regarding future
mission requirements for potential MOSC applications. An appraisal of the
outlook and expected development of space processing activities described
space activities as evolving in three phases: (1) an early research period
where the Spacelab/Shuttle capabilities appear adequate to support the basic
investigations and studies of materials behavior in the microgravity environ-
n ant, (2) a process development phase where individual and prototype pro-
duction approaches will be evaluated in the sense of pilot-plant operations
and (3) a subsequent routine industrial utilization period characterized by
commercial production and manufacturing operations in space. The latter
two phases of space processing will produce the driving requirements insofar
as potential MOSC configurations are concerned. The system drivers are
expected to be high power requirements and logistics support.

Preparation Electrophoresis of Living Lymphocytes, C. J. Van Oss,
P. E. Bigazzi, C. F. Gillman, School of Medicine, State University of
New York and R. F. Allen, MSFC, pp. 755-762, ibid.
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Four concepts are being evaluated as typical beneficial users of space during

the process development and routine industrial periods. These include

(1) production of surface acoustic wave components, (2) production of high-

ductility tungsten, (3) separation of iso-enzymes and (4) production of semi-

conductor grade silicon in a continuous ribbon form. They are discussed in

the following paragraphs.

1. Surface acoustic wave (SAW) components are used in electronic cir-

cuits as frequency-sensitive elements and delay lines (filters for

radar frequencies, etc.). A typical component is about 2 millimeters

long and has blazed on its active surface circuits variably spaced

at from 1/4 to 1/2 wavelengths. For higher frequencies these

spacings approach 100 angstroms. The present Earth-bound technique

to manufacture SAW components involves photographic procedures to

make a mask to etch the circuits on the substrate. Vibrations and

mechanical disturbances from both man-made and seismic sources

limit the spacing that can be achieved to an equivalent 4 gHz upper

frequency while the requirement is present to raise the limit to

about 30 gHz. In the vibration and seismic disturbance free environ-

ment of space, it is forecast that circuits produced by electron

beam etching ,.echniques could satisfy an annual market of 800,000

units. It is estimated that these circuits could be produced in space

during a 70-day flight which would be equivalent to ten 7-day Space-

lab flights. In addition to the reduction in the number of flights

required to accomplish the annual production requirement (in this

case one flight versus ten for the Spacelab), a time advantage in con-
tinuous operations both for improved efficiency associated with

learning experience and for elimination of startup/ shutdown opera-

tions associated with each flight. The machine required to produce

the circuits would weigh about 925 pounds.

2. Tungst-an is used in manufacture of x-ray tube targets. The effective

life of a typical x-ray tube is limited by the embrittlement of the

tungsten. Highly ductile tungsten can be produced by melting and

solidification under controlled conditions. On the ground the crucible

and furnace are major sources of chemical contamination. In space,

by using containerless melting techniques such as levitation, it is

speculated that high ductility tungsten targets can be produced. The
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market for these targets is about 14, 300 per annum, and they could
be produced during a single flight of about 56 days instead of eight
7-day Spacelab flights. As with Concept 1, similar time advantages
can be experienced in learning and repeated startup / shutdown cycles.

!	 The estimated weight of the furnace is 880 pounds.
3. The separation of biological materials has tremendous significance

in the health sciences field. Isolation of specific enzymes from
others of similar structure by virtue of the distinctive electrical
surface properties can be achieved by electrophoresis. Large-scale
production of iso-enzymes, as they are called, by electrophoresis
on the ground is hampered by gravity induced sedimentation. The
same process in microgravity is expected to provide substantial
increases in yields and purity. One postulated iso-enzyme has a
market of about 1 , 200,000 units or kits annually, which could be
produced during a single 70-day flight.

4. The production of semiconductor -grade silicon in ribbon form offers
substantial savings in the manufacturing of microcircuits. By
reducing the waste caused by slicing and cutting operations when
using conventional silicon crystals, considerable increases in
product yield can be expected. A preliminary estimate of the
increase in yield at the silicon level approaches 500 percent if the
material were available in the appropriate ribbon form.

5. Each of the four concepts highlighted here can be expected to share
benefits of single setups for annual production runs and the advan-
tages of leaving the heavy process and production machinery (25 to
100 times the total weight of the product produced) in space. In this
extended -capability anode of operation only the raw materials would
be delivered to orbit and only the finish product returned to Earth.

4.6 SPACE TECHNOLOGY
In this category of space activity a multidiscipline approach to advancing
research and applications technologies is evidenced. The payloads included
in this area involve specific disciplines and investigations such as chemistry
and physics in microgravity, materials behavior, crystal growth, spacecraft
contamination, laser communications and data transmission, entry vehicle
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thermal protection, high vacuum environments (wave shield technology),

sensor technology, and Earth observations. Therefore, a similar rationale

for extended capability can be put forth for this discipline as has been cited

for the individual disciplines that are involved in the applications areas.

4.7 COMMUNICATIONS/NAVIGATION

The issues of extended capability pertinent to this category of applications

have been studied 5 . It was concluded that the total program objectives in this

area might well be served by time-phasing the future options ( See Figure 4-3).

In this plan an early laboratory, suitable for 1-week Spacelab flights would

be followed by a growth version laboratory for 1-month to 1-year flight dur-

ations and eventually a total laboratory in a station-attached configuration

with orbital periods up to 10 years. In this context the growth versions of

the communications/navigation applications are prime candidates for free-

flying MOSC missions.

4.8 DESIRABILITY OF EXTENDED CAPABILITY

In summary, the advantages of extended flight duration, are more clearly

seen from the perspective of an advancing sequence of flights and missions.

The early flights are characteristically those basic investigations and pre-

cursor activities leading to the more sophisticated approaches of the future.

Table 4-2 lists for each of the 50 payloads, from the scientific or technologi-

cal point of view, the desired flight duration for the operational phase mis-

sions; that is, if the SSPDA 7-day flights are most desirable during what is

considered the research and development activity periods, then the Table 4-2

durations represent flight periods of interest during the operational phases

of the mission. The operational phase flight duration requirements also

reflect the transition to advanced activities aimed at producing substantially

more results and heavier work loads on a more tightly programmed and/or

routine basis. Earlier flights during the R&D period would concentrate on

proving methods and procedures as well as undertaking basic scientific and

technological investigations (seed studies) which would serve as precursor

5 Definition of Exi	 t and Instruments for a Communication/Navi /Navigation
Research Labor
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Figure 43. Possible Time Phasing for Future Options

activities to the larger scale operatio' s later in the program. Similarly,
research plans could be scheduled is a less structured and more flexible
manner allowing for on-orbit adjustments to cope with the unexpected. Like-
wise longer observation periods would permit larger quantities of data to be
acquired, especially where measurements are made of signals in the presence
of noise and where rare occurrences in nature are being studied. Because
of the statistical techniques employed in the analysis and interpretation of
these classes of observations, any improvement which offered an increase
in data quality would be particularly attractive.

Also included in Table 4-2 is a sampling of the type of emphasis that the
operational phase might address during the MOSC era. For example, the
Earth observations, Earth and ocean physics, communications/navigation
and certain of the space technology payloads might be involved in a large-
scale international program of coordinated research patterned after the
International Geophysical Year — 1957 /1958 as noted by IGY in the emphasis
column.
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Table 4-2
DESIRED FLIGHT DURATIONS FOR LATER OPERATIONAL PHASES	 °a

Up	 30	 60	 1 Year	 Up	 30	 60	 1 Year

SSPDA	 to 30 to 60 to 90	 and	 SSPDA	 to 30 to 69 to 90	 and	 ?`
Payload	 Days Days Days Longer 	 Typical Emphasis	 Payload	 Days Days Days Longer	 Typical Emphasis

Si

AS-01-S	 •	 Survey, discrete sources 	 AS-54-S	 •	 Survey, whole sky

AS-03-S	 •	 Survey, whole sky	 AS-01-R.	 7 days	 Revisit	 ^^

AS-04-S	 s	 Survey, discrete sources 	 HE- 14-5	 •	 Survey synoptic	 i

AS- 15 -S	 •	 High resolution faint 	 HE-19 -5	 •	 Survey synoptic	 Y.^
sources	

f_^HE- I1-R	 7 days	 Revisit	
11HE-X-S	 •	 Isotopic abundances and

spectra	 SP-04-S	 •	 Production processes

SO-01-S	 •	 3 synoptic solar resolutions	 SP-05-S	 •	 Prototype tests
IGY

SP-15-S	 6 months	 Pilot production
AP-06-S	 o	 1GY 

5P- 16-S	 •	 Pharmaceuticals
E0-0i-5	 •	 Expanded test protocol

SP- 19 -S	 6 months	 Pilot production
ED-05-S	 •	 IGY

SP-1X-S	 r	 Space manufacturing
EO-06-S	 s	 ICY	 operations

EO-07 - S	 •	 IGY	 SF-2X-S	 •	 Space manufacturing	 y,
;l

operations
OP-02-S	 •	 IGY

SP-3X-S	 •	 Space manufacturing
OP-03-S	 o	 ICY	 operations

OP-04-S	 a	 IGY	 SP-4X-S	 •	 Space manufacturing	 i
operations

OP-05-S	 s	 1GY
LS-04-S	 Not applicable	 Teleoperator	 +

OP-06-S	 •	 1GY
LS-09-S	 •	 Response and adaptation i

SP- 14 -S	 6 months extended processing
LS-10 -S	 Not applicable	 Carry-on

LS-X-S	 •	 Adaptation of several
generations	 ST-04-5	 s	 Advanced tests	 ~i

ST-21 . 5	 •	 LGY	 ST-05-S	 •	 Advanced tests

CN-02-S	 •	 IGY	 ST-06-S	 •	 Advanced tests

AS-08-S	 •	 Survey, whole sky	 ST-08-5	 Not applicable	 Contamination monitor

AS-10 -S	 •	 Survey, whole sky	 ST-22-S	 •	 IGY

A5-13 -S	 •	 3 continuous solar	 ST-23-S	 s	 IGY
revolutions 1GY	 ``9

CN-04-S	 •	 IGY	 3
AS-19 -S	 •	 Survey, whole sky	 1

CN-06-S	 a	 IGY
AS-31 -S	 s	 Survey, whole sky

c:

ORIGINAL WAGE
OF POOR QUALM
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Most notably in the Life Sciences discipline area extended capabi.li.zies in

terms of large payloads and laboratory facilities coupled with greatly increased

flight duration over that available on Spacelab offers a vastly expanded dimen-

sion to the research potential offered by a MOSC. This research area and many

similar ones that can be studied in a MOSC have direct relationships to

immediate needs of mankind on Earth. For example, increased understanding

of the growth phenomenon of living organisms can assist directly in the

establishment of more precise nutritional requirements; aberrations in cell

division observed in space may be of direct importance in cancer research;

the manufacture in a weightless environment of extremely pure pharmaceuticals

and materials with unique properties with significant interest to the fields

of health and economic be^^efits to mankind.
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Section 5

MISSION/PAYLOAD CONCEPTS

The 46 payloads considered candidates for MOSC class missions, were

grouped into 19 compatible combinations. The grouping was accomplished

based upon similar needs of the scientific investigations and application

activities in space. The combinations consist of those payloads which could

be carried on the same flight and as such would have similar orbital require-

ments and be compatible from the operational point of view. Table 5-1 lists

the 19 combinations, their corresponding SSPDA or other composition and

their general characteristics. Table 5-2 lists the payload characteristics

for each of the combinations.

The following discussion covers each of the 19 combinations in turn.

Combination C-1, IR Astronomy

1. Two 40-day flights will provide the time necessary to gather the required

IR information from stars, nebulae, galaxies and planets. The second

flight, six months after the first, will provide for gathering information

from positions 180° apart in the Earth's orbit around the sun, allowing

views of the entire celestial sphere.

Forty-day flights will help keep launch weights down in that the payl,

contains sensors that are cryogenically cooled. Extended flights wo

require the launching of larger quantities of cryogens or resupply.

2. The orbit plane is not a constraint on payload operation, and a 28.5`

inclination is acceptable. The altitude must be sufficient to insure t

atmospheric effects are minimized, and altitude range of 160 to

260 nmi is acceptable with 216 nmi preferred.
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Table 5-1
OSC COMBINED PAYLOADS COMPOSITION AND DESCRIPTIONS

Payload SSPDA (or other) Research and Application Driving Requirements and
Ident Payloads Inc luded ( see notes) Areas Addressed Critical Characteristics

C-1 AS-01-S, AS-15-S 1R Astronomy Precision pointing and vibratiun free

C-2 AS-03-S, AS -04-S, AS-08-5, UV Astronomy Contamination and disturbance free
AS-10 -S

C-3 SO-01-S, AS-13-S Solar Obser y 60-day continuous observation

C-4 AP-06-S, CN-02-5 ( 1) Space Sci Nu, 1 High levels of onboard activity

C-5 AP-06 - S, CN-04-S, CN-06-5 (1) Space Sci No. 2 High levels of onboard activity

C-6 AP-06-S, EO -07S, OP - 05-S( I) AMPS / Earth Sci Onboard data management by crew

C-7 SP- 14-S, ST-04-S, ST-05 - 5 Space Technology Low microgravity ( }10 -4 G), high power

C-8 EO-01 -S, ST-21-S, ST-22-S Cloud Phys /Tech Crew involvement for extended periods

C-9 EO -05-5, OP-02-5 (2), Earth Sci No. 1 Onboard data management by crew
OP-06-5 (1)

C-10 EO-05-S, EO-06-S, OP -03-S, Earth Fci Nu. 2 Onboard data management by crew
OP-04-S (1)

C-11 AS-19 -S, HE-14-S, HE-19-5, I'M Atttro / Tech Contamination free environment
ST-06-5

C-12 SP - 04-S, SP- 05-S, SP-16-9, Life Sci /Matt Deep crew involv ement, high power
LS-0 13-S, LS- 10-S il) Tech Nu.	 1

C-13 SP-15-5, SP-19-5, LS-09 - S, Life Sci/Marl Deep crew involvement, high power
LS-10-S(1) Tech No, L

C-14 AS- 31-S (3) 1R/UV Astronomy Contamination, precision pointing

C-I5 AS-54-S ( 3) UV Astronomy Contamination free environment

C-16 IiE-X-S (3) Cosmic Ray Lab High power, massive payload

C.-17 1S-X-S (3) LI) Life Sci Lab Very lon g flight duration P-1 year)

C-18 ST -Z3-S Adv Technology Deep crew involvement

C-19 SP-X5-S (4) Space Nlanuf High power, low disturbances

VOTES: t 1) SSPDA payloads appearing in more than one combination reflect the requirements for more frequent
flights or extended mission periods.

121	 Equipment requirements fur OP-02-S and OP-05-S are identical and therefore only OP-02-5 is listed.
(3)	 These payloads constitute major dedicated facilities or payloads already grouped.
141 Combination of preliminary space manufacturing payloads SP-XI-S, SP-X2-S, SI J-X3-S and

SP-X4 -S.	 General: The LST and HEO revisits ( AS-01-R, HE-11-R) not included, payloads
ST-08-S and LS -04-S were considered to be operational support equipment by 1984 and
therefore not included.



Table 5-2

SELECTED CHARACTERISTICS OF MANNED ORBITAL FACILITY PAYLOAD COMBINATIONS

ID
No.

Payload
Description

Initial
Weight

klb (103 xgm)

Return
Weig ht

klb (10 3 Kgm)

Payload
Volume

100 ft3 (100m3 )

Mission(1)
Duration

(flays)

Crew
Support
(mnhr)

No. of
Flights

1 IR Astronomy 31(14) 25 (11) 45 (1) 80 1454 2

2 UV Astronomy 24(11) 14(6) 11 (3	 3) 140 3845 2

3 Solar Obsery 15 (7) 14 (6) 10 (3, 160 4187 4

4 Space Sci No. 1 17 (8) 15 (7) 27 (1) 70 2070 2

5 Space Sci No. 2 16 (7) 12 (5) 22 (1) 80 1606 2

6 .AMPS/Earth Sci 24(11) 14(6) 19 (1) 120 3280 2

7 Space Technology 26 (12) 17 (8) 23 (1) 40 884 1

8 Cloud Phys/Tech 15 (7) 13 (6) 20 (1) 50 882 1

9 Earth Sci No. 1 25 (11) 24 (11) 61(2) 50 851 2m
10 Earth Sci No. 2 26 (12) 26 (12) 60 (2) 80 690 2

11 HE Astro/Tech 20 (9) 20 (9) 12 (0.3) 70 1118 2

12 Life Sci/Mail Tech No. 1 100 (45) 66 (30) 133 (4) 400 8289 4

13 Life Sci/Mail Tech No. 2 81 (36) 60 (27) 106 (3) 200 4039 2

14 IR./UV Astronomy 45 (20) 17 (8) 20 (1) 120 1427

15 UV Astronomy 24(11) 16 (7) 10 (0.3) 50 585 2

lS Cosmic Ray Lab 50 (23) 37 (17) 56 (2) 360 5800 1

17 LD Life Sci Lab 39 (18) 34 (15) 26 (1) 720 23200 1

18 Adv Technology 8 (4) 7 (3) 16 (0.5) 45 493 1

19 Space Manuf 7 (3) 6 (3) 2 (0.1) 900 11000 10

3735 75702 45

( ' ) Flight Duration = Mi8i	 Dii : ation

No. of 1-J-1ghts



Combination C-2, UV Astronomy

1. A combination of two 70-day flights will be required to acquire UV

information for this combination. The initial flight will provide one-

half the basic data. A second flight, 6 months after the first, will

provide for gathering the remainder of the information from positions

180° apart in the Earth's orbit.

Z. The orbit plane is not a constraint on payload operation, but the altitude

must be sufficient to insure that atmospheric effects are minimized; an

altitude range of 240 to 250 nmi is acceptable with 248 nmi preferred.

Combination G-3. Solar Observation

1. Four 40-day flights provide sufficient coverage of four complete revolu-

tions of the sun. Extended flights (i. e. , 60 days) will provide for cov-

erage over multiple revolutions and also obtain information on solar

phenomena. Spacing and scheduling of flights over the fundamental and

several harmonics of the sun activity cycle (11 years) provides infor-

mation during quiet and active solar periods.

2. The orbit plane is not critical to any of the solar observing instruments.

The altitude range of 190 to 220 nmi is acceptable with 216 nmi

preferred.

Combination C-4, Space Science No. 1

1. Flights of 35-day duration are desirable for the AMPS remote sensors

to provide coverage of the Earth's atmosphere under varying conditions

as well as sufficient time to overfly several times specific geographical

areas which are sources of terrestrial noise. A series of two flights

will provide additional information with relation to natural externally

produced radiation, such as increased or decreased solar activity.

Observations at both high and low latitude of the Earth's atmosphere,

magnetosphere and for performing plasma physics investigations.
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The communications/navigation sensor desire a minimum of 60° inclina-

tion. An altitude range of 212 to 270 nmi is acceptable with 215 nmi

preferred. However, the polar orbit could satisfy both the AMPS

measurements and the higher latitude requirements of communication/

navigation. Therefore, the polar orbit is preferred as being universal in

meeting the needs of the combined observation program.

Combination C-5, Space Science No. 2

1. The combination is a counterpart to C-4, with the AMPS instrumenta-

tion repeated but including a different complement of communications

experiments. Two 40-day flights are desirable to provide coverage

of the Earth's atmosphere under as varying conditions as possible.

A series of flights will provide additional information concerning noise

sources and tests of communications relay equipment under varying

conditions.

2. As stated above earlier, the polar orbit is preferred for C-4. An

altitude range of 212 to 245 nmi is acceptable with 216 nmi preferred,

Combination C-6, AMPS/Earth Science
I. Two 60-day flights are of sufficient duration to obtain data, in addition

i
to AMPS, on the Earth's atmosphere and weather conditions over an

extended period of time. A series of flights will provide additional

information gathered during selected two month intervals of the Earth's

seasonal cycle.

2. Polar orbit is required to obtain maximum coverage of the Earth's

surface. An altitude range of 200 to 210 nmi is acceptable with 200

nmi preferred.

Combination C-7, Space Technology

I. One 40-day flight could satisfy the requirements of this payload. It

should be noted that these are research applications for this discipline

and not the pilot, prototype or operations contemplated in the processing

?1
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facility of Combination C-19. The 40-day flight will provide sufficient
time to (l) manufacture a quantity of material to support planned ground
usage and (2) perform the technological studies planned and modify
tests to produce desired information.

2. Orbit parameters are not critical for this payload; a 28.5° inclination and
an altitude range of 100 to 350 nmi is acceptable with 200 nmi preferred.

Combination C--8, Cloud Physics/ Technology

1. The mission of this payload is to obtain data on the Earth's climate

conditions over an extended period of time. During this era, the cloud

physics laboratory would no longer be a development unit and the final

configurations would have been identified. Longer durations would pro-

vide sufficient time to perform planned operations and to modify tests

to produce desired information. The flights will provide additional

information during the Earth's seasonal cycle.

A 50-day flight will provide the on-orbit payload time required by the Pl.

2. Orbit parameters are not critical and a 28.5° inclination is satisfactory.

An altitude range of 100 to 300 nrni is acceptable, with 100 nmi

preferred.

Combination C-9, Earth Science No. I

1. Two 25-day flights are desirable to provide multiple passes over the

Earth's surface and to provide seasonal coverage of climatic conditions.

The series of flights will provide additional information during the

Earth's annual cycle.

Altitude considerations indicate that a range of 200 to 210 nmi is

acceptable with 200 nmi preferred. A polar orbit will provide for

maximum coverage of the Earth's surface.

i

64



Combination C-10, Earth Science No. 2
1. This payload is a counterpart of C-9. Two 40-day flights are desirable

to provide multiple passes over the Earth's surface to minimize data
loss caused by local and regional adverse conditions. The weather
flights will provide additional information during specifically signifi-
cant and selected portions of the Earth's seasonal cycle.

2. An altitude range of 200 to 210 nmi is acceptable with 200 nmi and a
polar orbit preferred.

Combination C-11, HE Astronomy/ Technology
1. Two 35-day flights will provide the time necessary to gather energy

information from stellar and intergallacti.c regions. The second flight,
six months after the first, will provide for gathering information from
positions 180° apart in the Earth's orbit.

Z. An inclination of 28.5° is desired for this combination. An altitude of
135 nmi is recommended based upon the following considerations: The
MOSC combination payload C-11 comprises four scientifically compa-
tible SSPDA Sortie payloads: AS-19-S, Selected Area Deep Sky Survey
Telescope; AE-14-S, Camma Ray Pallet; HE-19-5, Low Energy X-Ray
Telescope; and ST-05--5, Fluid Physics Plus Heat Transfer (Facility
No. 3). The altitude constraints as described in the SSPDA for ST-06-S
are any altitude above 186 km. HE-14-5 and HE.-19-5 indicate maxi-
mum altitudes of 237 and 245 km, respectively. The altitude require-
ments for AS-19-S specify a minimum of 250 km. The logical combina-
tion of the four separate payloads, as far as altitude is concerned, is
compromised at 250 km (135 nmi). The two high-energy cosmic ray
astrophysics payloads (HE-14 and HE-19) have maximum altitude and
maximum inclination constraints. These requirements are typical of
this class of payload where the precipitation and background radiation
from trapped particles in the lower regions of the Van Allen belt are
to be avoided. As for the AS-19 astronomy payload, the minimum
altitude requirements stem from the consideration that any portion of
the atmosphere could hinder o'-servations in the far ultraviolet region
of the spectrum.
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A polar orbit is preferred to provide additional coverage not offered

to C-1 and C-2 where 28.5° inclinations are indicated. The altitude

range acceptable is 130 to Z20 nmi, with 16Z nmi preferred.

Combination C-15, UV Astronomy

1. Two 25-day flights are desirable to obtain both survey and narrow

field UV information from stellar and intergallactic sources. The

two flights, separated by six months, will provide for gathering infor-

mation from positions 180 apart in the Earth's orbit. The mission

should be scheduled a year or two after C-2 since it is supplemental

to the C-2 mission.

Z. As cited above a polar orbit with an altitude of 130 to 220 nmi is

acceptable, with 162 nmi preferred.

Combination C-16. Cosmic Rav Lab

1. A single flight of 360 days' duration is most desirable for this payload.

This duration would provide for a statistically significant number of

cosmic ray events of the rarely encountered species to be recorded.

2. An inclination of 28. E 0 and an altitude range of 150 to 250 nmi is

acceptable, with 200 nmi preferred.

Combinatio C-17, LD Life Science Laboratory

1. This is a long-duration lab with a flight time of two year s. This flight

period would be desirable, as its mission would be scheduled subsequent

to the precursor 100-day and possibly longer periods of C-12 and C-13.

Combination C-17 activities emphasize long-term adaptable of organisms

to the environment of space.

Z. The orbit is not critical and a Z8.5°, 200 nmi altitude circular orbit



Combination C-12, Life Science/Materials Technology No. 1
1. This combination contains life science payloads which require extended

flight durations (greater than 60 days) and space processing payloads
which can be satisfied by shorter periods but would benefit economically
by extended durations. The life science laboratory and its associated
investigations included in this combination is particularly suited for a
100-day flight. Four 100-day flights will be required to satisfy the
activities scheduled for this combination.

2. The orbit plane is not critical for this combination. An altitude range of
150 to 350 nmi is acceptable, with 200 nmi preferred. A 28.5° orbit is
s ati s facto ry.

1

Combination C-13, Life Science/ Materials Technology No. 2
^. This payload is a counterpart to C-12. Two 100-day flights will provide 	 F

sufficient exposure to complete the life science investigation begun in
C-12.

2. The orbit plane is not critical for this combination. An altitude range

of 100 to 350 nmi is acceptable, with 200 nmi preferred. A 28.5° orbit

is satisfactory.

Combination C-14, IR/UV Astronomy

1. Two 60-day flights will provide the time necessary to gather the

required correlated multispectral information from stars, nebulae,

galaxies, and planets. The second flight, six months after the first,
i

will provide for gathering information from positions 180° apart in the
Earth's orbit. This combination, which would fly several years after i
C-1 and C-2, is =-omplementary to C-1 and C-2 and is planned to fill
gaps in the coverage of the earlier missions and benefit from instru-
ment improvements and should be scheduled for a later period in the
MOSC era. Flights at 60 days' duration also keep launch weights down i
as compared to a single mission of longer duration. One ,of the payloads
in this combination contains sensors that are cryogenically cooled;
therefore, extended flights will require the launching of massive
quantities of cryogens.
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Combination C-1$, Advanced Technology	
4

1. One 45-day flight would be adequate to accomplish the activities and to	 {
provide the crew support necessary to satisfy the technical objective
of these payloads.

2. Polar orbit is highly desirable because of maximum coverage of the
Earth's surface by the advanced sensors being evaluated. An altitude
range of 100 to 300 nmi is acceptable, with 200 nmi. preferred.

Combination C-19, Space Manufacture
1. This production facility should he flown annually with a duration of

90 days.

2. Since one of the production facilities was a solar collector furnace, a
polar orbit or sun-synchronous inclination is desirable with an altitude
range of 200 to 300 nmi acceptable, and 200 nmi preferred.

In the area of crew skills and manpower requirements each payload and
payload group were re-examined and the crew skills defined in accordance
requirements spelled out in the Level B SSPDA using standardized categories
as listed and referenced in the ESSEX Corporation report, Role of Man in
Flight Experiment Payload Missions, dated August 1973. An assessment of
the crew requirements suggests that for 60- or 90-day flight durations,
adequate support can be achieved by the assignment of two to four crewmen,
provided that adequate cross training has been accomplished. This con-
clusion is based upon the number of experiment manhours accumulated as
a function of flight duration compared to the total payload manpower require-
ments. In addition, a statistical treatment of the payload/crew skills
requirements has led to possible multidiscipline and interdiscipline assign-
ments as described below.

Appendix C contains the computational results of analyzing the payload
crew assignments by means of a factor analytic technique. For the 46

SSPDA class payloads investigated there were 15 skills, as defined by the
standardized terminology, required to satisfy the needs of the payloads.
These skills are identified in Appendix C along with the number of times,
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on the average, that each skill appeared as a requirement. The factor

analysis solution led to the identification of six new specialities or

rnulti,discipline/interdiscipline assignments which could have favorable

impacts on crew selection and training criteria.

In addition, it was determined that a seventh skill, in this case that of

an astronomer, would be required to fill out a complementary grouping of

new skills across the 46 payloads. Table 5.-3 lists these six skill groupings

along with their composition in terms of the original 15 skills as related to

the standardized definition,a.

Figure 5-1 describes the relationships between the manpower and mission

duration requirements for each of the 19 MOSC payloads. The family of

curves representing mission durations of from 50 to 1000 days was calcu-

lated using a factor of eight hours per day per crewman available for pay-

load operation and allowing one day in seven as a day when no work would

be scheduled (a day off). Improvement in onboard performance as a function

of time in orbit was based upon an 85 percent learning curve as discussed

in Section 3. These factors are substantially the same as were observed

in the Skylab mission operations. The points shown on the figure are plots

of required manhours versus mission duration for each of the 19 payloads.

It may be seen that a crew size of four appears sufficient, with two excep-

tions, to meet the demands of the 19 payloads under varying conditions of

mission duration and workloads. The payload combinations C-4 and Ca17,

as shown in the figure, exceed by a small extent the crew size of £our.

However by extending the flight period for C-4 slightly (from 35 days to

38 days) the required manpower would be available. For combination. C-17,

the manpower requirement of 23, 200 manhours would require about 846

days to accumulate (as contrasted to the desired 720-day flight duration).

Considering the very long flight duration called for by C-17 and the pre-

liminary nature of the estimated requirement for 23,200 manhours, there

is a question and an uncertainty as to the adequacy or inadequacy of the

four-man crew to satisfy these requirements. Further definition of this

payload is required before the establishment of the exact crew size is

justified. Furthermore, no payload group (see Appendix C) required more
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Table 5-3
CREW SKILLS COMBINATIONS

No. of
_	 Combos

Using

Newly Defined Skill Combination

I. D.	 Description

Individual Skills
Standardized

Nomenclature

No. of
Payloads

Using Skill

3 A Earth Sciences Specialist Geologist 5
Oceanographer* 8
Agronomist 3
Geographer 4

3 B Life Sciences Specialist Medical Doctor l
Behavioral Scientist 3
Biologist* 3

4 C Meteorologist/ Photographer Photo Technician 3
s'	 o Meteorologist* 3

5 D Materials Sciences Specialist Biochemist 2
t Metallurgist/ Chemist* 12

7 E Physical Sciences Specialist Electronics Engineer 7
Physicist* 7

19 F Engineering Technician Electromechanical/ 29
Optical Technician

b G Astronomical Sciences Astronomer /Astrophysicist 14
Specialist

(1) Crew skill classification scheme currently used in Sortie Lab Program
Indicate prime or lead skill
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Figure 5-1. Crew Sizing

than four of the skill categories identified. When this finding is considered

along with the manhour requirements of the payload groups, it would appear

that a 'Four-man crew size should represent the nominal or baseline case
to use in the configuration sizing activity.
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Section 6
PRELIMINARY DESIGN AND OPERATIONAL REQUIREMENTS

6.1 OPERATIONAL REQUIREMENTS

	

	 II
The operational requirements and physical characteristics of the 19 combi-
nations of payloads considered for MOSC are summarized in Table 6-1. The
data in the column labeled "Orbit Altitude" is a summarization of the desired
operational altitude for Each of the 19 payload combinations. These data
were arrived at by assessing the needs of each individual payload and its
requirements, which made up each combination. Where several ranges
of altitude requirements were indicated as acceptable the desired altitude
was taken, in general, as the lowest value that would satisfty the needs of
each individual member of the combination. The range of acceptable altitudes
as well as the desired altitudes for each combination was used further in
the study to establish the nominal and polar orbit MOSC operational altitudes
of 200 nmi. The selection rationale for the baseline altitude is presented
in Book 3 of this report.

The characteristics of the 19 payloads have been arranged in order accord-
ing to (1) ascending payload weights, (2) initial calendar year desired for
operating capability, and (3) required orbital inclinations. The ordering of
the payload combinations for these three parameters is shown in Tables
6-2, 6-3, and 6-4, • respectively. The data arrangement in Table 6-4 clearly
shows that the requirements dictate both a polar orbiting facility (nine pay-
loads) as well as a facility located in a nominal 28.5° inclination. The
operational implications of these data suggest that both the ETR and the
WTR will be required to support MOSC missions.

As discussed previously the 19 payload combinations are made up of 46 indi-
vidual payloads. In the Level A sheets of the SSPDA, the desired payload
use per year is indicated. Correlating these payloads to the October 1973
Space Shuttle Traffic Model results in the schedule, shown in Table 6-5, for
Shuttle launches to accommodate these payloads on the Spacelab seven-day

r
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Table 6-1
MOSC PAYLOAD COMBINATION CHARACTERISTICS AND REQUIREMENTS

r^

u
.p

No. of

Desired Mission and Flight Parameters Physical 1;haracteristics Skills

Orbit Up
SSPDA Experiment Flight Crew Altitude. Orbit Weight, Volum^. Avexage Combo

Ident. 7-Day Crew Time, No. of Duration, Size, nmi Inclination, l%b 100 ft Power, Energy. Skills
No. Flights man-hours IOC Flights days people (km) degrees (10	 g) (100n^ ) kW kWh Req'dr

C-1 17 1,454 1984 2 40 3 216(400) 28 31(14) 45(1) 1 1.112 FOG

C-2 131 3,845 1985 2 70 4 248(460) 28 24(11) 11(0.3) 1 998 FFGG

C-3 212 4,187 1988 4 40 4 216(400) 28 15(7) 10(0.3) 1 241 FFGG

C-4 15 Z,070 1986 2 35 4 216(400) 90 17(2) 27(1) 2 2,008 EEFF

C-5 17 1,608 1986 2 40 3 216(400) 90 16(7) 22(1) 2 1,615 EEF

C-6 36 3,280 1986 2 60 4 200(370) 90 24(11) 19(1) 2 3,270 ACEF

C-7 40 884 1985 1 40 4 200(370) 28 26(12) 23(1) 10 2,801 DDEF

C-8 15 882 1988 1 50 3 100(185) 28 15(7) 20(1) 1 850 CEF

C-9 31 851 1987 2 25 3 200(370) 90 25(1') 61(2) 2 874 ACF

C-10 31 690 1987 2 40 3 200(370) 90 26(12) 60(2) 2 1,079 ACF

C-11 36 1,118 1987 2 35 3 135(250) 28 20(9) 12(0.3) 1 704 DFG

C-12 35 8,289 1986 4 1'00 4 200(370) 28 100(45) 133(4) 10 20, 509 BBDF

C-13 28 4,039 1986 2 100 4 200 (370) 28 81(36) 106(3) 6 21 , 265 BBDF

C-14 15 1,427 1988 2 60 2 162(300) 90 45(20) 20(1) 2 1,581 FG

C-15 5 585 1989 2 25 2 162(300) 90 24(11) 10(0.3) 1 689 FO

C-16 Not SSPDA 5,800 1990 1 360 2 200 ( 370) 28 50 ( 23) 56 ( 2) 1 8,640 EF

C-17 Not SSPDA 23,200 1992 1 720 4 200 ( 370) 28 39 ( 18) 26(1) 8 94,800 BBFF

C-18 6* 493 1988 1 45m 2 200(370) 90 8(4) 16(0.5) 2 857 EF

C-19 Not SSPDA 11,000 1990 10 90 2 200(370) 90 7(3) 2(0.1) 5 20,000 DF

'See Table 5-3 for multidiscipline skills mix.
**The original SSPDA Level A data sheets estimate that 782 crew mission hours will be required to

satisfy the requirements of this payload. With a crew of two, and factoring in the learning expected
to be experienced with longer flight durations, this requirement can be fulfilled by a single flight of
45-days duration.



Table 6-2
PAYLOADS SORTED ACCORDING TO

INCREASING TOTAL WEIGHT

Initial Weight VVluzrf
Payload lb ( 10	 g) ft	 (m )

Space Manufacturing ( C-19) 7,000 ( 3) 200 (6)
Adv Technology ( C-18) 8 , 000 (4) 1,600 (46)
Solar Obsery (C-3) 15,000 (7) 1,000 (29)

Cloud Phys/Tech (C-8) 16,000 (7) Z, 000 (57) i
Space Sci No. 2 (C-5) 16,000 (7) 2,200 (63)

Space Sci No. 1 (C-4) 17,000 (8) 2,700 (77)
f

HE Astro / Tech ( C-11) 20,000 (9) 1,200 (34)
UV Astronomy ( C-2) 24,000 ( 11) 1,100 (31)

AMPS/Earth Sci (C-6) 24, 000 (11) 1,900 (54)

UV Astronomy (C-15) Z4,000 (11) 1,000 (29)
Earth Sci No. i (C- 9) Z5,000 ( 11) 6,100 ( 17-^) r^
Space Technology (C-7) 26, 000 (12) 2,300 (66)
Earth Sci No. 2 (C-10) 26,000 (12) 6,000 (171)

IR Astronomy (C-1) 31,000 (14) 4,500 (1Z9)
LD Life Sci Lab (C-17) 39,000 ( 18) 2,600 (74)

IR/UV Astronomy (C-14) 45,000 (20) 2,000 (57)
Cosmic Ray Lab (C-16) 50,000 (23) 5,600 (160)
Life Sci /Matl Tech No. 2	 (C - 13) 81,000 (36) 10,600 (303)
Life Sci/Matt Tech No. 1	 (C-12) 100,000 (45) 13,300 (380)

3

flight program.	 A total of 58, 472 manhours is required to support payload
activity in the 7-day flight period sortie mode of operation for the above
f lights, not including the manpower requirements for C-16, C-17 and C-19.
For these three payloads the manpower requirements were estimated for
a MOSC mode of operation and equate to 40, 000 xnanhours.

r

Based on evaluation of Skylab data, it is suggested that an 85-percent learn- f
{ing curve for crew performance (see Figure 6-1) should be applied for longer

flights.	 Consequently, the flight schedule constructed and shown in Figure
6-2 reflects the factoring in of this expected performance improvement.

I
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Table 6- 3

PAYLOADS SORTED ACCORDING TO INCREASE YEAR OF
INITIAL OPERATING CAPABILITY DESIRED

Payload IOC Year

IR Astronomy (C-1) 1984

UV Astronomy (C-2) 1985

Space Technology (C-7) 1985

Space Sci No. 1 (C-4) 1986	 j

Space Sci No. 2 (C-5) 1986

AMPS/Earth Sci (C-6) 1986

Life Sci/Ma.tl Tech No. 	 1 (C-12) 1986

Life Sci/Matt Tech No. 2 (C-13) 1986

HE Astro/Tech (C-11) 1987

Earth Sci No. 1 (C-9) 1987

Earth Sci No. 2 (C-10) 1987

Adv Technology (C-18) 1988

Solar Obsery (C-3) 1988

Cloud Phys/Tech (C-8) 1988

IR/UV Astronomy (C-14) 1988

UV Astronomy (C-15) 1989
Space Manufacturing (C-19) 1990

Cosmic Ray Lab (C-16) 1990

LD Life Sci Lab (C-17) 1992

This schedule takes into account an improved efficiency in available payload

hours over what is required for the basic Spacelab 7-day flight program.

The flight schedule also shows a reduced number of flights based on pro-

viding an equivalent payload program as defined for the basic Spacelab 7-day'

flight program. The total hours derived from sortie mode SSPDA descrip-

tions required for the payload program has been reduced because of learning

to about 35, 702 hours. It should be noted that the preferred time on-orbit

for most payloads has been modified to reflect the benefits from extended

capability. Also note that three payloads (C-16, C-17 and C-19) should not

be included in comparative launch requirements of the various modes, in
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Table 6 -4

PAYLOADS SORTED ACCORDING TO
ORBITAL INCLINATIONS REQUIRED

Payloads Requiring Z8.5' Orbits

IR Astronomy (C-1)

UV Astronomy (C-2)

Solar Obsery (C-3)

Space Technology (C-7)

Cloud. Phys/Tech (C-8)

HE Astro/Tech (C-11)
Life Sci/Matl Tech No. 1 (C-12)
Life Sci/Mail Tech No. 2 (C-13)

Cosmic Ray Lab (C-16)

LD Life Sci Lab (C-17)

Payloads Requiring Polar Orbits

Space Sci No. 1 (C-4)

Space Sci No. 2 (C-5)

AMPS/Earth Sci (C-6)

Earth Sci No.	 I (C-9)
Earth Sci No. 2 (C-10)
IR/UV Astronomy (C-14)

UV Astronomy (C-15)
Adv Technology (C-18)
Space Manufacturing (C-19)

Table 6 - 5
SHUTTLE LAUNCHES FOR SSPDA SPACELAB SORTIE PAYLOADS

Year 80	 81	 82	 83 84	 85	 86	 87	 88	 89	 90	 91

Shuttle Pre-MOSC 27	 31	 26	 31	 30	 29	 28	 28 Total	 229Flights
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MOSC CALENDAR YEAR
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Figure 6-2. Typical MOSC Payload Flight Schedule
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order to provide a consistent basis for comparison with the Spa.celab. How-
ever, these payloads should be given consideration in the design and opera-
tions of a longer-duration research facility. The comparative figures
excluding C-16, C-17, and C-19 support requirements indicate that about
58, 472 hours of operation are required in the sortie mode versus about
35, 702 hours for the MOSC mode of operation.

Two additional issues bearing upon mission operations and system design
that were considered during the performance of this task included Earth
viewing times from polar orbits and orbital decay as affected by drag. Since
all of the Earth observations and Earth and ocean physics payload instru-
ments prefer a polar orbit, the conditions that are encountered in these orbits
were also examined,

Figure 6-3 portrays typical ground tracks that a MOSC would follow from a
200-nmi-altitude circular polar orbit. If land masses are to be observed, it
can be seen from this figure that sequen^dal viewing opportunities for over-
flying a given geographical area exist on a relatively few number of consec-
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utive revolutions. In the example shown, only three orbits occur consecu-
tively to view North America, below the spacecraft (Nos 6. 0, 7. 0, and 8. 0).
If these passes are made during the daylight, then the Asian land mass is
overflown in the dark. Farther, about 70 percent of the time the nadir of
the spacecraft is on the surface of the ocean. When the requirements for
specific lighting conditions (e, g. , sun angle) and seasonal factors are con-
sidered the result is that only a relatively few number of revolutions during
a flight are suitable for performing specific Earth observations.

Figure 6-4 is a plot of the orbital altitudes where subsynchronous ground
track repetitions are encountered. The subsynchronous periods (days
between, exact ground track repeats) are shown along the abscissa of the
chart with the corresponding circular polar orbital altitude plotted as the
ordinate. If there is a specific requirement to overfly the same geograph-
ical point repeatedly th,: n the selection of the orbital altitude can be made
from these data. It is significant to note that if an altitude change capability
were inherent in MOSG, a relatively small altitude adjustment can establish
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a variety of subsynchronous operations. For example, a nominal altitude of
from 200 to about Z10 nmi coincides with a five-day period. Maneuvering to
an altitude of 295 nmi results in a daily repeat cycle. The impulse required
for this maneuver can be determined from Figure 6-5.

Figure 6-6 plots the decay time, assuming merely the effects of aerodynamic
drag on the spacecraft with solar cells deployed, to an orbital altitude of 100
nmi from various initial altitudes. For example, from a nominal 200-nmi
altitude, it would take about 600 days to experience the decay to 100 nmi.
Figure 6-7 which combines the relationships found in Figures 6-5 and 6-6
can be used in determining the amount of orbit-keeping impulse required to
maintain specific circular polar orbit altitudes.

6. 2 CARRIER REQLUREMENTS
Figures 6-8 through 6-13 are histograms of some of the more pertinent
characteristics and carrier requirements of the 19 MOSC payload combina-
tions. Portrayed are the (1) payload weight at lift off, (2) payload volume,

(200) F
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Figure 6.5. Impulse Requirements Far Altitude Change

81



400

350 NO

1) MEAN SOLAR ACTIVITY
2) WEIGHT = 96000 LBM

LAUNCH YEAR

ILI 1

1 B4

A 1,	 1

11600)

300

250L (400)

200

15()(200)	 100
1(4.5)	 10(4.5)	 100 (45)	 1000(450)	 10,000(4500)

DAILY IMPULSE REQUIRED — 4 LUM SEC/DAY (100 KGM SEC/DAY)

CF28

400

g	 35D

^ f6001

z	 300

w
0

250

< (400) — 200
_j

z

(200) 
k_ inn

00,

716

.0e
SOLAR ACTIVITY-

2a HIGH

2o LOW1
—MEAN

41

1

1000001	 10	 100	 1000	 10000

DECAY TIME IN DAYS TO 100 NMI (185 KM)

Figure 6-6. Orbital Dewy

CR28

Figure 6-7. Orbit•Keeping Impulse Requirements

82.



1%j

U) 8

U.
0
a: 4

O 2z

2 4 6 8 10 12

10

O
6

0 4

G3

z 2

0

. CR28

PLANNED LANDING WEIGHT

MAX TAKEOFF WEIGHT
SERVICE BY
MULTIPLE
LAUNCHES

0
0	 2	 4(2)	 6	 8	 (4)	 10	

1	
12

WEIGHT — LB (KG) X 10.4

Figure 6.8. Payload Weight

CR28
10

(a
C3

O
cr 4

Z 2

0
a	 2	 (100) 4

Figure 6-9. Payload Volume

MAX CARGO
BAY ENVELOPE

MULTIPLE
MODULES

6 (200)	 8	 10 (300)	 12

VOLUME — r-T3 x 10 im")

CRZ3

POWER — KW

Figure 6-10, Nominal Power

83



Y.

10

p B
a
Or
a sa
LLO 4ww
m

O 2z
i - I	 I	 I	 I

20	 40	 60

REQUIRES 2-YEAR
MISSION

80 1 aD^>i

CR28

FLIGHT DURATION — DAYS

Figure 6-11. Flight [Duration

CR28
10

tl1d
a

0
r
Yaa
LL

0

Cc
LLm

z

300	 11000	 3,000	 10,000

CREW TIME — MAN-HOURS

Figure 6. 12. Crew Time

ju,uuu

CR28

O
aOr
a
U.
O

m
m

Z

i

LEGEND:

A - EARTH SCIENCE	 19
B — LIFE SCIENCE
C — METEORIPHOTOG
D — MATERIALS SCIENCE
E — PHYSICALSCIENCE
F — ENGR TECHN	 ee
G — ASTRONOMY	 A	 r



(3) nominal electrical power demand, (4) flight duration, (5) manpower
requirements per flight, and (6) crew skills. The largest demand or highest
requirement combination is identified in the histograms. As seen in Figure
6-8 only two payloads (C-12 and C-13) exceed the Orbiter maximum cargo
takeoff weight and therefore these payloads would require multiple launches
in order to become established in orbit. Figure 6-9 depicts an analogous
situation for C-12 and C-13 from the standpoint of available Orbiter cargo
bay volume. As also seen in Figure 6-8, the weights of 14 out of the 19

t
payloads do not exceed the planned landing weight of the Orbiter and could
be easily returned by a single flight, as the payloz-1 program demands. The
other fivea loads could be retrieved b dividing their equipment  intoP Y	 Y	 g
acceptable return packages.

As seen from Figure 6-10 two payloads (C-7 and C-12) require a very signif-
icant amount of power, if the power required by these payloads exceeds the

E	 nominal design of the facility, they could be accommodated by an auxiliary
solar array or alternate power source. Figure 6- l l indicates that each pay-
load flight could be accommodated during a single 90-to-100-day period with
the exception of the long-duration 2--year flight period required for C-17.

The three life science combination payloads consistently appear as the most
demanding, namely C-12 and C-13 Life Science /Materials Technology Nos. l
and 2 and C-17 long-duration Life Science Laboratory. This would suggest
that the life science payloads, as a class, would best be served by a dedi-
cated MOSC facility not encumbered by the conflicting demands of the other
disciplines.

6. 3 MOSC DESIGN CRITERIA
From the standpoint of the physical and operational requirements of the pay-
loadsexamined for extended-duration flights, the following design criteria
summarize the carrier requirements. Flight durations of up to 720 days
will be required to support very long term life science investigations;
most of the other payload combinations can be readily scheduled in a nominal
90-day flight duration. A crew size of four individuals with up to four payload
specialties represents the suggested minimum for the baseline design. Con-

r
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tinuous payload power levels of 8 kW with supplementary capability to 10 kW

occasioned by the high power space processing payloads will prove adequate.

Initially one MOSC at an altitude/inclination, of 200 nmi and 28.5° (nominal

orbit) and another MOSC at 200 nmi and 90° (polar orbit) can satisfy the

requirements of all the payloads provided that an altitude Change capability

of up to 95 nmi is available when required. For payloads containing

remote sensors and optical instruments which require precision pointing

the platform vehicle orientation should include an all-attitude 0. 1 0 stabi-

lized pointing accuracy capability. High-precision fine pointing can be

achieved by added 'instrument gimbaling as required. On-board disturbance

levels, for critical periods of payload operations, should be limited to a

rnicrogravity of 10 -5 g. Contamination from. all sources should be contained

for pressurized and unpressurized critical payloads at an environment

equivalent to the 100, 000 class clean room criterion.



Appendix A
PAYLOAD DATA

A. REQUIREMENTS DATA FOR CANDIDATE MOSC PAYLOADS
This appendix consists of the data describing the 50 payloads considered for
further analysis by the MDAC study team. These payloads were (1) the 20
recommended by the NASA study panel, (2) the additional 26 recommended
by the study team, and (3) the four space manufacturing payloads recom-
mended by the space processing study activities. The data presented for
(1) and (2) above is in the form of tabular summaries; the space rnanufactur-
ing payloads are described by preliminary SSPDA Level A daea sheets. 	

t

GENERAL REQUIREMENTS
Sheets AI-1 and -2 coat?in the general mission requirements for each payload;
identification of the codes used on these sheets is as follows, reading the
nine columns from left to right:

1. Payload identification number and name per SSPDA, July 1974; an "N"
preceding the number identifies the payload as one recommended by the
NASA study panel.

2. Identifies the number of SSPDA flights planned during the MOSC era
(1954 -h).

3-6. These columns identify the type of payload. These types are
module (M), pallet (P), module and pallet (M+P) and carry-on (C- O).

It should be recognized that this identifies where major hardware items
are located. Some payloads (i. e. , AS--01-S) require a limited amount
of controls in a pressurized area, such as at the orbital payload
specialists station.

7. This column. identifies the total number of manhours of orbital operations 	
c

that are desired by the payload during the'-MOSC era. This is determined
by multiplying the total number of flights (Column 2, this sheet) by the
manhours for each 7-day flight, as specified in the SSPDA.

A-1
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GENERAL REQUIREMENTS (SHEET AI-1)
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ASTRONO>IY

AS-01-5	 --	 1. Gm Cryagenlcally-Cooled M Telescope	 91 p c^

AS-03-S'	 —	 Duep Sky UV survey Telescope	 1	 6 X73
AS-41-S	 —	 Im Diffraction Limited UV Optical Telescope 	 Z 3	 P	 I qOOZ A B
AS-U8-5	 —	 multipurpose 0.5m Telescope 9 6	 P ` ^	 P 6
AS-10-S	 —	 Adv. X1JV Telescope f	 p

[ 	 I

C^ 36

AS-13-S	 —	 Solar Variation Nlwtometcr 192- C-O	 l 2 g p

N	 AS-15-5	 —	 3. ow Ambient Temperatur* iR Telescope 9 B
AS-30-5	 —	 Selected Area Deep Sky Survey Telescope f n	 r^^ p

AS-31-5	 —	 Combined AS-01, -03, -04, -05-5 ? S Ip1 1	 Z 3	 ^ A
AS-54-S	 .-	 Cumbincd UV Payload (AS-03-S, 04-S)	 I S

'
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IIE-14-S	 —	 Gamma Ray Pallet ,^ P 6s
IIE-19-S	 —	 Low Enurgy X-ray Telescope
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K tiE-A-5	 milk M1 PH13115 Cars Few 7-6D M

EIE-11-R	 —	 Large High Energy Observatory D Revisit S ? zp 1

SOLAR PEEYSICS

^i 5o-01-S	 —	 Dedlenwil Solar Sonic Mission. (DSSM) ^ 5 00 R
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N	 EO-01-S	 —	 Z,:ru-6 Cloud Physics Laboratory s M X77
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Pl	 fJ

EO-05-S	 —	 Sbultle Intubing Microwave System (SIZAS) r z
/0 Z?

C0-00-S	 —	 acamming Spectroradiomeler 13 P 209
Y	 EO-07-6	 —	 Active Opticai Scattcromutor 1 Z P 31-0 1 fl
EARTH A;ND OCEAN PifYaiCS
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GENERAL RMUIREMENTS (SHEET AI-2)
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8. This column contains comments regarding general requirements for the
payloads.

9. Identifies the types of sheets that are included in the July 1974 SSPDA.
The Level A sheets are the two page summaries of the payload characteris -
tics and requirements, while the Level B sheets contain the more detailed
information on the payloads. The notation Blue Book 6 refers to a general
characteristics writeup describing space station payload requirements
not included on SSPDA sheets.

CREW REQUIREMENTS
Sheets All-1 and -Z contain the assessment of crew requirements and support
for each payload. Identification of the codes used on these sheets is as follows-,
reading the Z4 columns from left to right:

1. Payload identification number per SSPDA, July 1974. An "N" preceding
the number identifies the payload as one recommended by the NASA study
panel.

The SSPDA identifies the requirements for three general types of skills;
technician, experimenter, and scientist.

Z, 4, 6. ThesE: columns indicate the number of technicians, experimenters, or
scientists required to support the payload.

3, 5, 7. Identifies crew skills code for each general type of skill. These are
the standardized, classification skills described in Section 3 of this report.
The skill codes used on these sheets are:

Z Biochemist
3 Medical Doctor
4 Behavioral Scientist
5 Astronomer/Astrophysicist
7 Electr ,.rnechanical/Optical Technician
8 Photos,.-=,pl^=.c Technician
9 Geologist

10 Meteorologist
11 Oceanographer

6Reference Earth Orbital Reseerch and Applications Investigation,
NHB 7150. 1, NASA, ,Tanuary 15, 1971.
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CREW REQUIREMENTS (SHEET AII-Z)
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12 Agronomist
13 Geographer

14 Electronics Engineer

17 Metallurgist
18 Chemist
19 Physicist
21 Biochemist

S, 9. Indicates, in manhours, the level of crew support required on a daily
basis and extended over a 7-day flight.

10. Indicates ground control capabilities. A "Y" or "yes" indicates that
primary control of the payload operations remains on the ground. An
"S" indicates that control is shared between orbital and ground opera-
tions. A "--" indicates no ground control.

11. The requirements for extravehicular activities (EVA) are shown by
entries indicating the number of crew members required for EVA.
A "C" indicates that EVA is on a contingency only basis.

:i

12. This column indicates the duration of required EVA in hours.
F

	13, 14. These two columns indicate the compatibility with or the desirability	 l

	

of a 30-day duration flight compared to a 7-day duration flight consider- 	 i
ing the crew/payload interface. An "X" indicates compatibility or
desirability. The code for the numbers in these columns is as follows: i

1 Desired by principal investigator ^i

2 Required by principal investigator
3 NASA panel recommendation
4 MDAC recommendation

15. The crew size for a 7-day flight is shown. A ' 1 1/2" in this column
F	 {indicates that the payload requires only part-time support.

16, 17. These columns indicate the number of manhours required per day
and for a 7 -day flight.

A-7
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18-23. These columns indicate the number of manhours per day and entire
flight for flight lengths of 30, 60, and 90 days.

24. Intentionally blank.

ORBITAL REQUIREMENTS

Sheets AIII-1 through -4 compile the specific orbital requirements for each

payload in both English units and the International System of units (SI).

Identification of the codes used on these sheets is as follows, reading the
24 columns from left to right;

1. Payload identification number per SSPDA, July 1974. An "N" preceding
the number identifies the payload as one recommended by the NASA
study panel.

2-10. These columns indicate the apogee, perigee, and inclination for each
payload. The desired value is for optimum operation; the minimum and
maximum values are those which can provide acceptable results.

11. This column identifies the most acceptable launch sites, due to inclina-
tion requirements. ETR is the Kennedy Space Center and WTR is the
Vandenberg Launch Site.

12. Intentionally blank.

13-16. These columns identify specific viewing orientation requirements and
any special constraints that should be satisfied for payload operation.

17. Pointing accuracy required of the gimbal mount/platform is indicated in
this column.

This column indicates the pointing stability required of the gimbal
7

mount/platform.
r

The maximum duration in hours per operation that the pointing system
must maintain the required values is identified in this column.

A-8 '^ i

18.

19.



ORBITAL REQUIREMENTS (IN ENGLISH) (SHEET AIII-1)
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:BITAL REQUIREMENTS (INSI) (SHErT AIII-2)
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ORBITAL REQUIREMENTS (INSI) (SHEET AIII-4)
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20. This column identifies the maximum allowable angular velocity or jitter

rate of the payload line of sight.

21. This column indicates the field of view of the payload equipment (such
as antenna, telescope.or detector).

22. A "yes" in this column indicates that a special gimbal mount or pointing

platform is required in order to obtain satisfactory data. A "no" indi-
cates that the basic Spacelab/Orbiter pointing accuracies are acceptable.

t

23. This column identifies the translational acceleration limits of each
payload, while operating. The use of "E" refers to exponent (i. e. ,
I.E-03 is 1 x 10-3).

24. Intentionally blank.

WEIGHT AND ENERGY REQUIREMENTS

Sheets AIV-1 through -4 compile the weight and energy characteristics for
each payload, in English units and in the International System of units (SI).
Identification of the codes used on these sheets is as follows, reading the
24 columns from left to right:

1. Payload identification number per SSPDA, July 1974. An "N" preceding
the number identifies the payload as one recommended by the NASA
study panel.

2. This is the launch weight for the payload for a 7 -day flight. Includes
equipment and consumables.

3. This is the payload weight after a 7 -day flight.

4. This column indicates the weight of consumables for a 7-day flight.

5-7. These columns indicate the weight of consumables for 30-, 60-, and
90-day flights. These values are extrapolated from the 7-day consum-
able values. In these calculations it was assumed that payload operation

A•13

- _---A



WEIGHT AND ENERGY (IN ENGLISH) (SHEET AIV-1)
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WEIGHT AND ENERGY (IN SI) (SHEET AIV-2)
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WEIGHT AND ENERGY (IN ENGLISH) (SHEET AIV-3)
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WEIGHT AND ENERGY (IN SI) (SHEET AIV-4)
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time equals flight time minus one day up and one day down. Consequently,
a 7-day flight has 5 days operation time, a 30-day flight has 28 days, a
60-day flight has 58 days, and a 90-day flight has 88 days.

8-10. The requirements for spares become-more important as an extended
mission is undertaken. These caslumns indicate weight for these spares
as a percentage of payload launch weight. Each payload is assigned a
spares group and the appropriate factor is applied as shown in Table A-1.
The group assigned depends on type and size of payload hardware, com-
plexity, amount of pressurized and unpressurized equipment, type of
support equipment, and type and quantity of consumables.

11-13. These columns indicate total payload weight for 30-, 60-, and 90-day
flights assuming payload oper-tion consistent with the 7-day flight
specified in the SSPDA.

14. Spares group (A, B, C, or D).

15-16. Intentionally blank.

17-18. These columns indicate the basic power requirements for each
payload. The average power level is that required while operating on
orbit. The peak power is the highest occasional, short-duration peaks
that occur during operation.

Table A-1
PERCENT OF PAYLOAD WEIGHT TO BE SPARED

Group	 30 Days	 60 Days	 90 Days

A	 1
B	 2

2 4
5 10

i'_ 20
22 40



19. This column indicates the energy required for a 7 -day flight.

20-22. These columns indicate the energy required for 30-, 60-, and 90-day
flights. These values are extrapolated from the energy requirements
for a 7-day flight in the same manner as the weight of consumables
(Columns 5-7).

23, 24. Intentionally blank.

VOLUME REQUIREMENTS
Sheets AV-1 through -4 compile the volume requirements for each payload,
both in English units and the International System of units (SI). Identification
of the codes used on these sheets is as follows, reading the 24 columns from
left to right:

1. Payload identification number per SSPDA, July 1974. An "N" preceding
the number identifies the payload as one recommended by the NASA
study panel.

2. This column indicates the pallet length required by unpressurized
equipment.

3. This column identifies the volume of payload equipment to be installed
in a pressurized area, not including access space.

4-7. These columns indicate the volume of pressurized area required to
store the data recorded on orbit to be returned to Earth. The 7-day
value is determined by applying volume factors to the various types of
data requirements specified in the SSPDA. The volumes for 30-, 60-,
and 90-day flights are extrapolated from the 7-day value assuming con-
sistent flight operations. It is assumed that payload operation time
equals flight time minus one day up and one day down. Consequently, a
7-day flight has 5 days operation time, a 30-day flight has 28 days, a
60-day flight has 58 days, and a 90-day flight has 88 days.

A-19



VOLUME (IN ENGLISH) (SPARES AV-1)
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VOLUME (IN SI) (SHEET AV-2)
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VOLUME (IN SI) (SHEET AV-4)
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The storage volume of film required was determined by multiplying the
required number of frames by the following factors:

a) 35 mm	 0.0006 m 3	Per 1, 000 frames
b) 70 mm	 0. 001 m3	Per 1, 000 frames
C) 200 mm	 0. 003 m3	Per 1, 000 frames
d) 16 mm	 0.00067 m3	Per 10, 000 frames

o- C. 0005 m 3	Per reel (7, 500 frames)

Factors a, b, and d were determined by using data obtained from Skyl;<b
ICD 13M13519. Experiment and Operational film to OW5 Film Vault,
Stowage Requirements. This ICD describes the stowage requirements
and film cassettes and magazines for all of the Skylab experience using
the film vault. For factor a, a 35-mm 50-frame cassette requires a
volume of 1.7 in 3 = 0. 0001 ft 3 = 0.00003 m 3 . Therefore, 1, 000 frames
require 0. 0006 m3.

For factor b, a 70-mm 500-frame cassette requires a volume of
28. 9 in 3 = 0. 017 ft 3 = 0. 0005 m 3 . Therefore, 1, 000 frames require
0. 00 j. m3.

Factor c was computed by multiplying factor b by 2.

For factor d, a 16-mm 400-ft cassette requires a volume = 27.2 in3
0. 015 ft  = 0. 0005 m 3 . A 400-ft cassette is 120, 000 mm. For 16 mm
film this would be 7, 500 frames. Therefore, 10, 000 frames would
require 0. 00067 m3.

Each reel is 0. 000 5 m3.

It should be noted that no volume is allowed in the estimates for the film
vault if required to provide protection for unexposed and exposed film.

8-11. The volumes for other consumables (contained in a pressurized area)
are indicated in these columns for 7-, 30-, 60-, and 90-day flights.
These volumes are calculated in the same manner as those for data
(Columns 3-6).
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12-15. These columns indicate total volume required in the pressurized
area for 7-, 30-, 60-, and 90-day flights.

16. This column identifies the volume of payload equipment to be installed
in an unpressurized area.

17-20. The volumes for consumables (contained in an unpressurized area)
required to support the payload are included in these columns. 'These
values are calculated in the same manner as the pressurized volumes
(Columns 12-15).

21-24. These columns indicate total volume required in the unpressurized
area for 7-, 30-, 60-, and 90-day flights.

ENVIRONMENTAL REQUIREMENTS
Sheets AVI--1 through -4 compile the environmental requirements for each
payload, in English units and in the International System of units (SI), anr,
potential hazardous conditions that could, in event of equipment failure,
result in injury to personnel or cause damage to other equipment. Identifica-
tion of the codes used on these sheets is as follows, reading the 24 columns
from left to right:

1. Payload identification number per SSPDA, July 1974. An "N" preceding
the number identifies the payload as one recommended by the NASA
study team.

2-3. The cleanliness (class) requirements for the pressurized and
unpressurized equipment are identified in these columns.

4-7. The maximum and minimum temperatures for the payload pressurized
and unpressurized equipment is provided in these columns. These
temperatures are at the payload -Spaeelab/Orbiter interface.

8. This column identifies the maximum allowable relative humidity.

9. This column indicates the allowable overall acoustic levels
(0 db - 20 4N /m^).

A-25
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ENVIRONMENTAL (IN ENGLISH) (SHEET AVI-3)
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10.12. These columns indicate the maximum allowable radiation rates and

total allowable radiation that the payload equipment can tolerate. The

use of "E" refers to exponent (i. e., IE-03 is 1 x 10-3).

13, 14, Intentionally blank.

15-20. These columns identify potential hazards from the payload that, in

the event of failure, could cause injury to personnel or damage to other

equipment.

21-24. These columns identify potential hazards that could affect satisfactory

operation of the payload.

SPACE PROCESSING PAYLOADS

In addition to the 46 original SSPDA payloads identified for additional study,

four new payloads were identified. These space processing payloads were

not analyzed separately for MOSC impact but only in combination, identified

as C19 in Section C of this appendix. These four payloads are:

SP -1X-S Production of Surface Acoustic Wave Components

SP-2X-S Production of High Ductility Tungsten

SP-3X-S Separation of Iso-Enzymes

SP-4X-S Solar Furnace f.)r Production of Semiconductor Silicon Ribbon

LIFE SCIENCE PAYLOADS

In addition to the three life science payloads included in the SSPDA documen-

tation, a special data sheet on the Long-Duration Life Science Payload (LS-X)

was provided and is included.

a+'y
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SORTIE PAYLOAD DATA SNEET
	

PFSYLUAU NO,  
SP-Xl-S

LEVEL A

PAYLOAD NAME
PRODUCTION OF SURFACE ACOUSTIC WAVE CONTONENTS

DEVELOPMENT AGENCY NASA

PREPARATION DATpec.11,1974 FsEVISI0N13ATE_ 2- 5-75	 LTR A

PURPOSE PRODUCTION CIF F.T.P.CTRnNTC'- CIECTITT k-,0MP )NF

i

DISCIPLINE PAYLOAD TYPEXODE	 - -

q

q

q

q

q

q

q

q

q

q

ASTRONOMY

HIGH-ENERGY
ARIROPHYSICS

SOLAR PHYSICS

ATMOSPHERIC &
SPACE PHYSICS

EARTH OBSERVATIONS

EARTH ^ OCEAN P14YSICE

SPACE PROCESSING

LIFE SCIEE4ES

SPACE TECHNOLOGY

COMM/NAV.

OTHER (SPECIFY)

I	 DESIRED
+ i^ h10DULE^	 q PALLET	 TIME

q ON ORBIT CONTROL	
GN•ORBiT

qMODULE/PALLETGROUND CONTROL	 90(2)q 	 ^
^	 El CARRY-ONDAIS

NO. OF MISSIONS PER YEAR

CY 79 80 81 82 83 84 85	 1 86 87 88 89 90 n 91_

SORTIE 1 1 1 1 1 1 1 1

OPERATIONAL ORBIT, CHARACTERISTICS

ALTITUDE, APOGEE, km

ALTITUDE, PERIGEE, km

INCLINATION, deg

DESIRED	 MINIMUM	 MAXIMUM

ANY

Ali Y

ANY-

MAJOR INSTRUMENTS/EQUIPMENT

NAME DESCRIPTION MEASUREMENT OBJECTIVE/FUNCTION	

.-

Engraver/
Microscope

Electron beam etcher &
scanning microscope

Engrave lithium niobate slabs to
controlled 100 X space (1 M3)

Control Console
Contain controls,
monitors & displays

Control engraver and sc3anning electrcn
beam microscope. 	 1 M )

Storage Containers
Contain raw materials
and fi nished produc ts

Provides protection and storage space
for lithium niobate raw stock and finish
products.	 Contain 8UU,U	 units approx.
1 mm x 1 mm x 2 mm (.16 M3 , 50 Kgm)

1

SPECIAL REQUIREMENTS/ASSUh1PTIONS

REFERENCE DOCUMENTS

Discussions; MS"C, GE and MDAC personnel at MSFC, November 22, 1974
SSPD{ LA- 114174	 A-31
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SORTIE PAYLOAD DATA SHEET

LEVEL A
	

PAYLOAD N0. SP—X1—S_ 	 I

PAYLOAD NAME PRODUCTION OF SURFACE ACOUSTIC WAVE COMPONENTS
	

PAYLOAD MODEL CODE NO, (NEW)

• PHYSICAL CHARACTERISTICS OF PA	 WEIGHT, kg

• TOTAL P11. AT LAUNCH, ky 470

• PRESSURIZED EQUIP„ kg	 20
• UNPRESSURIZED EQUIP., kg 0
• CONSUMABLES AT LAUNCH, kg; 0

EXPENDED CUNSUNIAIII-LSt4 tUU'Y.

NUT RETUIINL• U 1II • EA11111, kg
• EST. PALLET I.ENGT11, rn	 ^^
• PtILSSURIZED EQUIP. VOL, m 3 2.16

• ENVIRONMENYALI NMGDE I 	 OPERATING	 NON OPERATING
REO'MTS IN-FLIG'IT LOCATIOrJ 	 PRESS I UNPRESS	 TRESS	 UNPRESS
*TEMP LIMIT, 'K MAX

MIN

• HUMIDITY %
• CLEANLINESS CLASS
*ACOUSTIC LIMIT, dL' OVERALL
*ACCELERATION LIPAIT, g

• RADIATION RATE LIMIT, J/I(y-s

REQUIREMENTS ON SHUTTLE/SPACELAB
• PAYLOAD PERSONNEL

• ESTIMATED NUMBER OF P/L PERSONNEL 	 1
•TOTA^ PrL PERSONNEL TIME, hr/day
• TOTAL P/L PERSONNEL TIME, hrinnssion 	 280	 (2)

• P/L PERSONNEL OPERATION 1 SHIFT [{] 2 SHIFTS
• NO. OF PLANNED EVA	 0
• AVERAGE DURATION OF EVA, hr 0
• CONTINGENCY EVA YES q NOO

+ PAYLOAD POWER — IN FLIGHT

DC (I`1)	 AC V)
• AVERAGE POWER
• PEAK POWER	 0	 1000
• ASCENT/DESCENTPVIR 10

PEAK POWER DURATION, hr ranti nuou- —7 0 days

TOTAL ENERGY, kWhr __ 	 1 6H0

AC FREQUENCY 60 Hz (3 400 Hz q OTHER q

+ DATA/COMMUNICAT IONS — ON ORBIT

• IS USE OF TORS ASSUMED? 	 YES[] NOQ
• VOICE — UP	 YES []X NOD	 — DOWN YES q NOE)
• PHOTO FILM STORAGE WEIGHT, kg

STORED L— DOWNDIGITAL	 RT•	 DUn1P-
RATE (MAX), b/s	 1000	 1000,Iij/^
DURATION, hr/opn	 /	 l	 ,f^/^^^

	

hr/day
.

 , l I	 1 . .... r
TOTAL, Mb/day	 , /^T/	 -.36

Mblmission
• ANALOG	

rTTT?`^^ 3 :,•' .^ y.,^ +r^^ r^^,ti

BANDWIDTH (MAX), MHz

DURATION, hr/opn 	

16
0hr/da

TOTAL OURATION,hrlmsn 

• TV	 COLOR, br/day
BLACK & WHITE, hr/day

+	 POINTING (SHUTTLE/SPACELAB).
(3)• ACCURACY, arc sec 	 NR

DURATION, lirlupn max_
REPETITION RATE, opn/day
TOTAL POINTING TIME, hr/mis

• STABILITY, arc sec	 11R^3/
io q

DURATION, hr/opn max

• STABILITY RATE, arc Tc/seC PdR 3

• VIEWING CONSTRAINT S — 3
• ORIENTATION	 P1R _

+ SUPPORT/IIJTEG. EQUIP. REQ'D (NOT PROVIDED BY P/L)
•SPECIAL GIMBAL MOUNT/ POINTING PLATFORM? YES 	 NO®

TYPE	 EST. WEI G HT, kg_

IaTY	 TYPE/SIZE

• AIRLOCK	 0
• BOOM	 0 I
• VIE vP3FIT n_
• OTHER	 j 1 i A

+'TIPAE CRITICAL`TI?11ErvURA-
ACCESS ON	 11	 ^TION	 PURPOSE

GROUPED	 I' (HI11^^[H,^}

• BEFORE LAUNCHIr--O II
• AFTER LAUNCH L. 0 J	 I ^^^ —

+COMMENTS U Engraver and :onsole can be

left in space, (2) operations active for

'f0 days, 3 no specific re q uirement for

pointing so long as the 10-4 vibration

free environment is maintained.

UP

+ POTENTIAL HAZAPOS (Clil-;CK)

?^>'i;^% ^	 q, 41GH ^'FrES5U^i1: LOTT LES	 q TOXIC GASES

q VYN0T20H_.0CS	 q CRYOGCNICS
0 OTHER

+ COMPUTER SUPPORT REQ'D 	 YES[] NOO u RAPID ACCESSMElIORV SIZE 	 WORDS

• MAX WORD LENGTH	 BITS	 • NO. OF COi1PU TATIONS PER SECOND	 MAX

• BULK MEMORY SIZE	 w01IDS o COMPUTER FUNCTIONS:

"SPD(LA-2) 4/14	 • FIT = real time; DUMP = data dumped to ground within one day.

ORIGINAL PAGE 13

OF 1p00R QVA^JITY
1	 A•32
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i -r^ 1J 	 SORTIE PAYLOAD DATA S)iEET	
1'A rLUAD NU. SP-X2-S

LEVEL A

PAYLOAD NAME PRODUCTION OF HIGH DUCTILITY TUNGSTEN

NASA
DEVELOPMENT

PREPARATION DATE
Dec.11,197 1+ REVISION GAIE - 2_5_?5- LTR	 A

PURPOSE PRODUCTION OF X-RAY TUBE TARGETS

0ISCIPIJNE PAYLOAD T1(PE/11`ODE

q

q

q

q

q

q

q

q

ASTRONOMY
HIGH ENERGY

ASTPOPHYSICS

SOLAR PHYSICS

ATMOSPHERIC &
SPACF PHYSICS

EARTH OBSERVATIONS

EARTH R OCEAN PHYSICS

SPACE PROCESSING

LIFE SCIENCES

SPACE TECHNOLOGY

COMM/NAV.

OTHER (SPECIFY)

r	 DESIRED
MODULE^'	 q PALLET	 TIME

q ON 011BIT CONTROL 	
0N-ORBIT

^'^	 q GROUND CONTROLMODULE/PALLE T	('^^	 I	 o0(3)
I	 ^ 	 q CARRYON	 OA.YS

NO. OF MISSIONS PER YEAh
Cy	 79	 00	 81	 82	 81	 64	 85	 86	 87	 88 1	 89	 90	 91

SORTIE 1 1 1 1 1 1 1 1

^— -- —
OPERATIONAL OROIT, CHARACTERISTICS

DESIRED	 MINIMUM	 MAXIMUM

ANY
ALTITUDE, APOGEE, km

ALTITUDE, PERIGEE, kw	 ANY

INCLINATION, deg	 ANY-----

MAJOR INSTRUMENTSIEDUIPMENT

NAME DESCRIPTION MEASUREMENT OBJECTIVE/FUNCTION

Furnace
Levitated melt e,b.
furnace

IMelts tungsten in levitated state in
Jelectron beam furnace

Control Console
Contains controls,
monitors & displays Controls furnace

Storage containers
contain raw materials
and finished prodiicts

Provides protection and storage space
for tun	 ten Larget material
.1	 143)

I

SPECIAL REQUIREMENTS/ASSUMPTIONS

ALF,EREWE DOCUMENTS

Discussion/ MSFC, GE and MDAC personnel at MSFC, November 22, 1 1J74

SSPO (LA . 1) 4n4	 A-33



+ POTENTIAL HAZARDS (ChiECK)

fi%% "''^^•^%^ ^^I^	 q i11Gii OR	 SLIAE GOTTLES	 [] TOXIC GASES

q, YYHUTECiii^t%S	 q CRYOGENICS

(1) Furnace and controls can be
f^;,'•,'!^;i left in space, 2 no specific pointing

requirement s so iong as 10	 vibration
_ free environment maintained, 3 active

neriod - 70 days.

I	 ^

SORTIE PAYLOAD DATA SHEt F

LEVEL A	 PAYLOAD NO, SP-X2-S

PAYLOAD NAME PRODUCTION OF HIGH DUCTILITY TUNGSTEN	
—PAYLOAD MODEL CODE NO, (NEW)

+ PHYSICAL CHARACTERISTICS OF P/L 	 WEIGHT, kg
• TOTAL P/L AT LAUNCH, kg	 550

• PRESSURIZE" EQUIP., kg 	 400
•UNPRESSURIZ.ED EQUIP., kg – 	 0
• CONSU M ABLES AT L AUNCH, kg 150

EXPENDED CUNSUNIABLES & ELI UIP,
NOT R ETURNED TO -EAR TI I, kg —4 00, (1)	 —

• EST. PALIFI LENGTH, in
• 1 1 I1 ESSUIIIZED E Q UIP. VOL, m3 _1 r

+ ENVIRONNTEN -iAL	 NiODE

REO'MTS IN-FLIGHT LOCATION

e T EMP LIMIT,'K MAX

MIN

• HUMIDITY %
• CLEANLINESS CLASS
*ACOUSTIC LIMri,dB OVERALL
• ACCELERATION LIMIT, 9
• RADIATIGN RATE LIMIT,J/Ictis

OPERATING
	

NO!"!-OPERATING

PRESS I UNPRESS
	

WRESS I UNPRESS
ambient

amnien

0

REQUIHENIENTS ON SIIUTTLE/SPACELAO

+ DATA/COMNIUNICAT'ONS– ON ORBIT
• IS USE OF TORS ASSUMED? 	 YES q NO

• VOICE - IIP	 YES q NDn	 – DOWN YES[] rxmK
• PHOTO FILM STORAGE WEIGHT, kg	 0

+ PAYLOAD PERSONNEL

•ESTIMATED NUMBER [IF P/L PERSONNEL_ 	 l
• TOTAL P/L PERSONNEL TIME, hr/day
• TOTAL P/L PERSONNEL TIME, hr/tn+ssion_ ?80
• P/L PERSONNEL OPERATION T SIIIFT 7 2 SIT IFTS q
• NO. OF PLANNED EVA	 0

• AVERAGE DURATION OF EVA, hr 	 (1
• CONTINGENCY EVA YES Q NO q

+ PAYLOAD POWER – IN FLIGHT
	0  (N!)	 AC (W)

AVERAGE POWER	 + M7

PEAK POWER
ASCENT/DESCENT PVR	 j

PEAK POWER DURATION, lu 1 4 36

TOTAL ENERGY, kVllir	 10+296

AC FREQUENCY 60 Hz 	 400117 []UTHERD

• DIGITAL	 5TORE0

RATE (MAX), b/s
DURATION, hr/opn

hr/day	 ^^T
TOTAL, Nib/day	 I!/

Mb/mission	 rJ r r
^o ANALOGi ^sr

BANDWIDTH (NIAX), MHz ^,

 –DURATION,hr/opn
hr/day

TOTAL DURATION, hr/msn
*TV	 COLOR, hr/day	 –

BLACK & WHITE, lit/day	 .^

+ POINTING (SIIUTTLE/SPACELAB).
o ACCURACY, arc sec_ TM ( 2

DURATION, hr/opn max
REPETITION RATE, opn/day
TOTAL POINTING TIME, hr/mission

• STABILITY, arc we	 UP 2)

DURATION, hr/opn max

• STABILITY RATE, a1c src/sac DM U)

• VIEWING CONSTRAINTS— NIR

•ORIENTATION	 NR

+ SUPPORT/INTEL. EQUIP. REQ'O (NOT PROVIDED BY P/L)
•SPECIAL GIMBAL MOUNT/ POINTING PLATFORM? YES q 1`100

TYPE	 EST. WEIGHT, kg

OTY	 TYPE/SIZE

• AIRLOCK
	 0

• B00.14
	 0

• VIEWPJRT
	 o;

• OTHER
	

1 1 Access to vacuum of space

+TIME CRITICAL rTV'1 uUnA
ACCESS ON	 TION	 PURPOSE

GROUND	 I (H'.1) (Hri}

• BEFORE LAUNCHI
o AFTER LAUNTH t

DOWN	 ;

RT'	 DtimR"	
11P

+ CON,PUTER SUPPORT REO'D	 YES[] N 0 Q o RAPID ACCESS MEMORY S;ZE 	 WOROS

• MAX WOAD LENGTH 	 BITS	 • NO. OF C01,11 1 LI ATIONS PER SECOND	 __	 MAX
o BULK N1ENIORY SIZE	 WOBOS o CUM.PUTER FUNC iJ.CS:w

SSPD(LA-2) 4174	 • FIT = teal time, 0UMP = data dumped to ground within one tray.
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T	 PAYLOAD TYPElA13DEr

MODULE	 r

	

El PALLET

q ON-ORBIT CONTROL

q MODUI E/PALLET	 y.	 '`	 C^ GROUND CONTROL

[] CARRY-ON

TMEREO

ON-ORBIT

90(1)

GAYS

NO. OF MISSIONS PER YEAR

CY 79 80 81 02 83 84	 1 85 86 87 88 89 90 91

SORTIE 1 1 1 1 1 1 1 1

OPERATIONAL ORBIT, CHARACTERISTICS

DESIRED	 MINIMUM	 MAXIMUM

ALTITUDE, APOGEE, km	 ANY

ALTITUDE, PERIGEE, km	 ANY

INCLINATION, deg	 ANY	 _I

^	 i	 I
t^

}.
	

t1 1

SORTIE PAYLOAD DATA S14EET	
PAYLOAUNO. SP—X3—S

LEVEL A

SEPARATION OF ISO ENZYMES
PAYLOAD NAME

DEVELOPMENT AGENCY NASA

PREPARATION DATE Dec ,11 , 197 ) 11 EVISION DATE 2-5-75 _LTR A

PURPOSE 12RODU .TION OF IS. O -EN7 YMF BIQ1,00TICALS

DISCIPLINE

q ASTRONOMY

q HIGH•ENEHGY

AS1 ROPHYSICS

q SO LAR PHYSICS

q ATMOSPHERIC &
SPACE. PHYSICS

q EARTH OBSERVATIONS

q EAR i H & OCEAN PHYSICS

SPACE PROCESSING

q LIFE SCIENCES

q SPACE TECHNOLOGY

q COMM/NAV.

q OTHER (SPECIFY)

MAJOR INSTRUMENTS/EQUIPMENT

NAME	 DESCRIPTION	 MEASUREMENT OBJECTIVE/FUNCTION

Electrophoresis	 Segregates 150-enzymes according to
Separation Cover	 separation apparatus electrical surface charge properties

Contains controls, 	 Controls electrophoretic separation
Control Console	 monitors & displays	 column

Contain materials	 Provides protection for finished product

Storage Container	 for processing	 and storage for waste materials

SPECIAL REQUIREMENTS/ASSUMPTIONS

REFERENCE DOCUMENTS

Discussions; MSFC, GE and M_7.AC personnel. at MSFC, November :2, 1974
SSPD(LA• 1) 4174	 A-35



SORTIE PAYLOAD DATA SHctT 	
SP-X3-S

LEVEL A	 PAYLOAD NO.

PAYLOAD NAME SEPARATION OF ISO ENZYMES 	
PAYLOAD MDDEI CODE N0, NEW

+ PHYSICAL CHARACTERISTICS OF P/L 	 WEIGHT, kg

	+T01 AL P/L AT LAUNCH, kg	 525

	

• PRESSURIZED EQUIP., kg	 --
•UNPRESSURIZEO EQUIP., kg

• CONSUMABLESAT LAUNCH. kg  2QQ
• EXPENDED CONSUMABLES& EQUIP.

225(^)NOT RETURNLD TO-EARTH, ko	 —

• EST. PALLET LENGTH, ri
• PRESSURIZED EQUIP. VOL, m 31.3

+ ENVIRGNMEN'iAl_ MO0E 	 OPERATING	 NON OPERATING

REQ'h1TS IN-FLIGHT LOCATIOfJ^SSPRESS I f'RESS	 UNPRESS
• TEMP LIMIT, 'K - MAX

M1U

• IIUM101TY %
• CLEANLINESS CLASS
•ACOUSTIC LIMIT,	 OVERALL
• ACCELERATION LIMIT, g
*RADIATION RATE LIMIT,,!/kU-s

REQUIRENIENTS ON SHUTTLE/SPACELAB

+ OATA/COMMUNICATTNS— ON ORBIT
r IS USE OF TORS ASSUNIED? 	 YES[:] NO 

• VOICE — UP	 YES q N0[d 0	 — DOWN YES[] NOD
• PHOTO FILM STORAGE WEIGHT, kg

DOWN
STORED	

RT'	 .lICti1P"	 UP
7j^%j/i^

• PAYLOAD PERSONNEL

•ESTIMATED NUMBER OF Ph PERSONNEL 	 1
w TOTAL P/L PERSONNEL 1IME, Itr/day
• TOTAL P/L PERSONNEL TIME, hr/mission 	 280	 (1)
• Ph PERSONNEL OPERATION 1 SHIFT rO 2 SHIFTS
• NO. OF PLANNED EVA	 0
• AVERAGE DURATION OF EVA, hr
o CONTINGENCY EVA YES Q NOU

+ PAYLOAD POWER — 1,14 FLIGHT
DC (W)	 AC (W)

AVERAGE POWER	 270

PEAK POWER	 350
ASCENT/DESCENTPWR	 0

PEAK POWER DURATION, hr - :20U

TOTAL ENERGY, IrWhr 	 590
AC FREQUENCY 6011zn 40011z E] OTHER

* POINTING (SHUTTLE/SPACELAB).
o ACCURACY, arc sec 	 NR

OURATiON, hr/opn max
REPETITION RATE, apn/day

TOTAL POINTING TIME, hr/mission
• STABILITY, arc sec	 NR

DURATION, rr/opn max

• STAGILITY RATE, aresechtc NR
• VIEt"DING CONSTRAINTS	 NP

• ORIENTATION	 NR

+ SUPPORVINTEG. EQUIP. kEQ'D (NOT PROVIDED BY P/L)
*SPECIAL GIMBAL MOUNT/ POINTING PLATFORM? YES q Ai093

TYPE	 EST. WEIGHT, kg

• DIGITAL
RATE (MAX), b/s

DURATION, hr/apn

hr/day
TOTAL, Mb/day

Mb/mission
o ANALOG

BANDWIDTH (NIAX), MHz
DURATION, hr/opn

hr/day

TOTAL DURATION,hr/msn
• TV	 COLOR, hr/day

BLACK & WRITE, Itr/day

OTY	 TYPE/SIZE

• AIRLOCK

• BOOM
o VIEEWPORT

• OTHER

+'TIME CRITICAL MTI VI$I URA-
1- ION	 PURPOSE

GROUND N
	

i (HR) HR) ^
• BEFORE LAU^ICh	 3^	 LOAD BIOLOGICALS
• AFTER LAUNCH ^1 1 IRETRIEVE BIOLOGI CALS

	

NIL	 1 + POTENTIAL HAZARDS (MiECK)

	

NIL r,^^%ri%%i; 	 illGii t'RESSIjRc L'OTTLES	 q TOXIC GASES
PYROTEZX(00S	 q CtRYOGENICS

; '	 //^'rl,'^'^,^• 1 +	 (1) Active period - 70 days

	

^i',	 ,^.	 CONibI`cNTS

^''t'► 	
; ^/..,.r .,	 ,,	 (2) Flectro apparatus can be left in orbit_	 I^/	 y ;/J
^. r .^' •ALL.:"+^y^.^	

-	 -	 -	 ---	 - --	 -- -
0	 J	 __^

+ COMPUTER SUPPORT RE(I'D	 YES q N0EJ	 WORDS
• MAX WORD LENGTH	 BITS	 • NO. OF CONTUTATIONS PER SECOND	 MAX

• BULK MEMORY SIZE	 WORDS • COMPUTER FUNCTIONS:

''ZPO ILA-2) 4/14	 • RT = real time; 0 UMP = data dumped to bround within one bay.

Ok. sIlVAL PAGE IS
OF FW11 UAL?TY
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SORTIE PAYLOAD DATA SHEET	 PA rLOA0 NO. 3P-x4 -S
LEVEL A

PAYLOAD NAME
SOLAR FURNACE FOR PRODUCTION OF SILICON RIBBON

DEVELOPMENT AGENCY  NASA

PREPARATION OATE Dec.11 , 19 7 ^iEVISION DATE	 2-5-15	 LT 	 a

PRODUCTION OF SEMICONDUCTOR SILICOIT IN RIBBDN -FORM
PURPOSE

DISCIPLINE PAYLOAD TYPE/MOOE

q

q

q

q

q

q

[

q

q

q

q

ASTRONOMY
HIGH-ENERGY

ASTROPHYSICS

SOLAR PHYSICS

ATMOSPHERIC &
SPACE PHYSICS

EARTH OBSERVATIONS

EARTH & OCEAN PHYSICS

SPACE PROCESSING

LIFE SCIENCES

SPACE TECHNOLOGY

COMM/NAV.

OTHER (SPECIFY)

q MODULE	 ^^'	 PALLET

ON-ORB!TCONTROL

,.	 q GROUND CONTROLF1 MOIJULE/PALLET
q CARRYON

DESIRED

ON-ORBIT

DAYS

NO. OF MISSIONS PER YEAR

CY 79 80 B1 82 83 B4 B5 85 87 88 89 90 91

SORTIE 1 1 1 1 1 1

OPERATIONAL ORBIT, CHARACTERISTICS

ALTITUDE, APOGEE, km

ALTITUDE, PERIGEE, km

INCLINATION, deg

DESIRED	 MINIMUM

ANY

ANY

ANY

MAXIMUM

—

MAJOR INSTRUNIENTS/EQUIPMENT

NAME OESCRIPTIPN MEASUREMENT OBJECTIVE / FUNCTION

Sclar Furnace Energy collector

Processing Module
Ribbon shaping an
storage device

SPECIAL REQUIREMENTS/ASSUMPTIONS

REFERENCE DOCUMENTS

UNKNOWN	 Discussion - F. Shepphird/W. ?viarx, MDAC
SSPO(LA-1) 4/74
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DOWN
STORED	

RT"	 7 OUMP"	
UP

I1^LLlL[111r	 --	 `^^^^ ^r	 /	 ^

`	 NIL

^l,I I I L	 Ir /z"	 "' S	 ^r	 r	 r'	
J,.

0

• DIGITAL
RATE (MAX), b/s
DURATION, hr/opn

hr/day

TOTAL, Mb/day
Mb/mission

• ANALOG

BANDWIDTH ( MAX), MHz

DURATION, hr/opn
Why

TOTAL OURATION,hr/msr
• TV	 COLOR, hr/day

BLACK & WHITE, hr/day

+ SUPPORT/INTEG. EQUIP. REQ D (NOT PROVIDED BY PIU
*SPECIAL GIMBAL MOUNT/ POINTING PLATFORM? YES q NOQ-

TYPE	 EST. WEIG HT, kg

QTY	 TYPE/SIZE

• AIRLOCK
• BOOM
• VIE4WPORT
• OTHER

+ iTIME CRITICAL TI ME s)URA
ACCESS ON T10N PURPOSE

GROUND I(HR) (H)

• BEFORE LAUNCH I

• AFTER LAUNCH

+ POTENTIAL HAZARDS (CHECK)

SORTIE PAYLOAD DATA SHEET
LEVE L A	 PAYLOAD NO. SP—A—S

PAYLOAD NAME SOLAR FURNACE FOR PRODUCTION OF SILICON RIBBON 	
PAYLOAD MODEL CODE NO, NEW

+ PHYSICAL CHARACTERISTICS OF P/L 	 WEIGHT, kg

• TOTAL P/L AT LAUNCH, kg	 1400
• P FIESSURIZEO EQUIP., kg	

—

• UNPRESSURIZED EQUIP., kg 1 200
• CONSUMABLES AT LAUNCH, kg	 200

+ ENVIRONMENYAL4	 NODE	 OPERATING

REQ'MTS IN•FLIGI,T LOCATION 	 PRESS	 UNPRESS
•TEMP LIMIT, °K • MAX	 UNK	 UNK

• MIN

• HUMIDITY %	 UNK

• CLEANLINESS CLASS	 UNK	 UNK

•ACOUSTIC LIM!T,d3OVERALL	 UIIK

*ACCELERATION LIMIT, g	 UNK

• RADIATION RATE LIMIT,J /kgs	 LINK	 UNK_

NON-OPERATING

iPRESS UNPRESS

• EXPENDED CONSUNIABLES& EQUIP.
NOT RETURNED TO-EARTH, kg	

200	 (1)
• EST. PALLET LENGTH, m	 b
• PRESSURIZEU EQUIP. VOL, m3

REQUIREMENTS ON SHUTTLE/SPACELAB
+ PAYLOAD PERSONNEL

^ POINTING (SHUTTLEISPACELA8).
•ESTIMATFO NUMBER OF PIL PERSONNEL 	 1	 e ACCURACY, arc sec 	 NR

• TOTAL P/L PERSONNEL TIME, hr/day 	 2	 DURATION, hr/upn max
• TOTAL P/L PERSONNEL TIME, hr/mission	 1`0 (p)	 —	 REPETITION RATE, opnlday
• P/L PERSONNEL OPERA T ION 1 SHIFT q 2 SHIFTS E]	 TOTAL POINTING TIME, hr /mission
• NO. OF PLANNED EVA	 — 1	 • STABILITY, are sec—	 NR
• AVERAGE DURATION OF EVA, hr 	 S

• CONTINGENCY EVA	 YES r] cV0 q 	
DURATION, hr/opn max

• STAGILI T Y RATE, arc sec/sec 	 NR

+ PAYLOAD POWER — IN FLIGHT	 Im• VIEWING CONSTRAINTS
DC (W)	 AC (W)	

•ORIENTATION	 SOLAR INERTIAL

• AVERAGE POWER	 3500	 _

PEAK POWER	 3500

ASCENT/DESCENT PWR 	 0

PEAK POWER DURATION, hr	 2160
TOTAL ENERGY, kWhr 	 7500
AC FREQUENCY GB lizo 400 Hz r]OTHER q

+ DATA/COMMUN1CArtONS— ON ORBIT
• IS USE OF TORSASSUMfD? 	 YES q NO0

• VOICE — UP	 YES q NO q 	 — DOWN YES q NO©
+ PHOTO FILM STORAGE WEIGHT, kg

HIGH PRESSURC GOTTLES 	 q TOXIC GASES

	

q PYROTEZENICS	 q CRYOGENICS

q OTHER

+ COMMENTS (1) furnace can be ].eft in nrbit,

(2) active -nerind

• COMPUTER SUPPORT REQ ' D	 YES q NOq a RAPID ACCESS NiENIORY SiZL	 WORDS

• MAX WORD LENGTH	 BITS	 • NO. OF COMPUTATIONS PER SECOND 	 MAX
• BULK Maim SIZE	 WORDS • COMPUTER FUNC -i 10,CS:	 __

OgP O MA • 2) 4174	 • RT = real time; DUMP = data dumped to ground whirin one day.
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B. REQUIREMENTS DATA FOR NON-MOSC PAYLOADS
Tabular summaries of the 53 payloads included in the July 1974 SSPDA that
were not considered for further analysis by the study team are herewith
presented. This information is provided so that the applicable payload
characteristics and requirements are available should a particular payload
be included in a MOSC flight as a piggyback candidate. Complete informa-
tion is not available on all payloads. Because these payloads are not
primary MOSC candidates, the information has been presented only in
English units.

GENERAL REQUIREMENTS
Sheets BI- 1 and -2 contain the general mission requirements for each payload;
identification of codes used on these sheets is as follows, reading the 1$ col-
umns from left to right:

1. ,:,j.ywoad identification number and name per SSPDA, July 1974.

2. Identifies the type of sheets that are included in the July 1974 SSPDA.
The Level A sheets are the two-page summaries of the payload charac-
teristics and requirements, while the Level B sheets contain the more
detailed information on the payload.

3. Identifies the number of SSPDA flights planned during the MOSC era.

4-7. These columns identify the type of payload. These types are
module (M), pallet (P), module and pallet (M+P) and carry-on (C-O).
It should be recognized that this identifies where major hardware items
are located. Some payloads (i. e. , AS-05-S) require a limited amount
of controls in a pressurized area, such as at the Orbiter payload
specialists station.

8. This column identifies the total number of manhours of orbital operations
that are desired by the payload during the MOSC c-ra.

9-17. These columns indicate apogee, perigee and inclination for each
payload. The desired value is for optimum operation, the minimum
and maximum values are those which can provide acceptable results.
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GENERAL REQUIREMENTS (SHEET BI- 1)

b^S^
t-d

C9

A

g

PAYLOAD
15SPiM

i1s7f
file8n
l9?Yt

-PAY[0, D	 TYPE Y;T;
HA p^^2

APOGEE (N- Al;) PERIGEE (,V.Mi) 1.VCu.3.or/o4/6W-&. Ldu

Siret[ rAtuf u ,r PKWD tit A/ Es Mar Ml" Xf,.-eV A1/MAX
AS-05-S	 —	 Vary Wide Field Galactic Camera A 8 0 Q /3 5, 100 1 16L / 3 S' 1,70 4, 2— 2.04- A N)/ A vy !E/`

^TAS-oG -S	 —	 Calibration of Astranwmlcal Fluxes
A Z P .112- 162- +3s 2 16 16 13S 216 RN p /0y i^zll

A3-07-S	 —	 Cometary Simulation A 2 P 2 oq 16 Z. 108 Z 7D 167- /0 d 270 2P- 5 O to y
AS-UV-S	 —	 30m Ut Interferometer I P /s6 1J00 !SO -VL,O qDD /S-O y 00 "q /V O !p	 ET

AS-I1-5	 —	 Pulnrintetrlc Experiment' A I f 7,p '3S /D0 /6 z 135' /ov 162- q Ny o l lo^	 +Er
:\5-1-5	 —	 M1irtcorukd Simulation A Z P 1s^y loo	 9s- lo g So its ^ss 3s~	 zs ss	 'Fri
AS-14-5	 —	 1. wit UncooledDITelescope A 0 P 0 2 /6	 100 3 yo Z!6 /00	 1 3y0 gN Y 'Zd' !0^/	 E^'
AS-18-S	 —	 1.5 km fit ]nter[cromctcr A 1^ 0 6 1̂ 216	 loo 270 Z16 . /00	 . Z7D 3o	 0 Te90
AS-20-S	 —	 2.5m Cryogenically cooled M Telescope .9 P 216	 /1, 2. 1 3qo Z16 I /6 Z	 3 y0 Z 8-S	 O 1 o v E rR

AS-4 1-S	 —	 Schwartzschild Camera C'4 2-16+OtY 3 y 216'/08	 3'1D q N	 O s 9 Fr2
AS-42-S	 —	 F.Ut VV Electronographic Schmidt Camera /Spectrograph A 0 I	 P C-0 0 216	 /of 13 1Jo 2-16	 /U?	 3°10 4A y/	 0	 -5- 7 	F rit
AS-43-S	 —	 UCU Mack Brant Payload 	 _ A

a

P C'O S— vqN Y 	 r 6 3y0 I Aly 	IF 	 ' 30 1 v y AA	 ,4,vy SET,
AS-44-S	 —	 XUV C• uucentl• ator/De lector

A P C-o O 16z	 lo? 1 2.7o /cz	 IvR	 2749
r

ZF.,	 o	 i toy
AS-45-S	 —	 I'roporitou:d Counter Array A f ! T

p
C-0 9 !6 7.	 E'g 3 Y 0 /6.2-	 8 6	 3 VO A w	 O	 i=: /oY

AS-•iG-S	 —	 WiscunsLtj UV Phulometry Experiment A 0
a

P t:-v p ID8 '	 86 216 1 of	 e;	 alE c	 o	 Ivs(
AS-47-S	 —	 ALLtched Far Ill Spectrometer p P C-0 Q laq	 fDa 4f11 ipi	 ! 0p	 A v Z	 !g.

AS-4d-5	 —	 Arks/Shuttle UV Telescope
J^ 0 P C•0 d ) 3;, 	13YO 1 35— 	 ^ 1	 34o 4 ,) y	 C,	 O'^

AS-40 -S	 —	 First UCB Black UrantPayload A O P t:0 0 AN y	 8(.	 270 q A, y	 e6	 270 aN Y ANq( 14ftl t=	
.P-

AS-SO-S	 —	 Curnbined UV /XUV Measurements SAS-04-S, 10 -5) 3 I" (I6 -F 2.q9	 13S-  I Z 59 ZYP	 1 3S- 	 2.S- ? 2 e- S	 0	 110 1/ It TWi
AS-51 -S	 —	 Cumbined 1.11 Payload JAS-01-S, 15-S) A Z P 31 2- 1 14	 16 L 2 7 D Z 16	 16 2 	 2 7c, Z P. S`	 0	 1 1 o y	 f^',x
AS-6 t -5	 —	 All:-che ! F.tr Ct Photometer (Wide FUV) A tJ

7
` C-0 0 1 3-5'- /f N I$ )	 : ! 3 -	 i.q N y 1 d'	 D	 ! /n y	 ^^ rl

AS-G°--S	 —	 Cunmic Llackground Anisotropy P C• O td? 	 i t7 9 2 )6 216 2 1'- j 	 /0 wT7
Ill: -11 -s	 —	 X-rny An;ular Structure A P 26e 12.0	 10P l Z,?	 ' I 2 	 l DaP	 12 E 2 8 2 e	 3 r ' E %/Z

—	 lUgh Inclination CoS, tic flay Survey
q 3

P

P

1/ 7

2 0?

3P

r ?-0	 ice

120 	 1 0 00	 1 1

120	 ID?

/ 2 t

2 Y

12 d'

 /ZO ^ l cd	 I2e

12	 1	 ! 4^f	 12 j,

120 ;,^^s	 1:

qS-	 2-e-, ; 5-s i er
2 e. S	 2. C	 3 V	 ' d '12

2:.,	 13	 I S-s	 F TiZ

I11-:-IJ-S	 —	 X-r:^y /G:unm.t nay i .diet A
\tai ta• tic Srworonleter A a

k11:- 1a-5	 —	 14;th l:ncrgy G.unni:t -Itay Survey A 1 ^ lO r20 1 +UP /3Z 120	 !	 r.•b' /32 ..̂ f. s ' /s'	 2±'.S E Tiv



GENERAL REQUIREMENTS (SHEET BI-Z)

0
4"^
b8 ^q

L^

PA YLO
/OA

Nff
F1.9#4
1110

P,+ Y^gD	 rvo ^
Psulr	 ,, • HAK't O"DroT.^,

y
dGcEAP	 A/. M'1 FrkJLs <3 M\ 1 ^^	 T/0NNI CLINA ^i.^0 (A

f/ 725

1 6 74 1

Ar364ii MIM LESAft

1 2-0 ! 0,P 13 2

DESneE)f

ZS- S

M/N

1 Z f

M

60
111:-17-S	 —	 high Ener6y Cosmic nay Study P of f ZO l oe 1 132-
IIi:-18-S	 —	 Gamma-ray Photometric Studies A P ^P 1 x 0 / 08 1 3 2- 1 2- 0 / O P ) 3 Z 1 9 / r ZB.S E T

I IE-2O-S	 —, I Ilgh Itesolutlon X- ray Telt acape P ^^ ] Z O l OF 13 Z 12,0 10,P 13 7- 'Z 2 / S ZP.S E T/

HE " 03 -11	 —	 ExtendlYl X-ray Survey Revisit P 6 200 /?0 7-10 200 190 2 l0 1 _Z d' Z6, 30 57
So-ll -s 	—	 s.,htr Fine Pointing Payload A 13 1 F 206 Z03 189 216 203 189 2/6 56 S6 90 15-2

su L-s	 —	 ATMSpacclai. R Q
1 P O Z3L Z/(, 2` .F 232- Z/6 2 q ZP•S 2e-5 .5 -^ ET,¢

SP-01 -S 	-	 SPA No. 1 - nlological ("tanned) (a+C) R B 0 a Ati i A N ! N 4,:^ ANY AX/ AN ANY AV 3 E>

SP-0_-S	 —	 SPA No. Y - furnace. ( Manned) ( F+C) A O MH 0 Awy ANy QN ANY 4 NV AA, 4 Aly 4NY .9N £/
SP-W-S	 —	 SPA No. 3 - Levitation @tanned) ( L+C) A Q 1j+P O ANY AN 4 !Ny A N AN Y 41VY pN q N AN

SP-12-S	 —	 SPA No. 12 - Automated rurnace ( FP+CP) A O P O ANY RN ,ON3 N q N^/ AN ,Q A/ AN AN E jnp

SP- 13-S	 —	 SPA No. 13 - Automated Levitation (LP+CP) O P Q .4 NY 9 Vy 4N1 A I AN AN AN ^N AN
tr

SP-21-S	 —	 SPA No. '.1 - %thi num Dinlogicel (6+C) A TaD M rq D ANY A w'y ^ N3 AA' .4,V ,1/y N A N
SP-22 _S	 —	 SPA No. 22 - \liNmum furnace (Manned) (r+C)

11 7-,6 0 A -1 '1 NY AN3 .q •v 11,V 9.Y j N ,/ AN AN
T

SP-23-S	 —	 SPA No. 23 - Minimum General (G+C) f1 M rg D l ,// A v / ,1 h .QA/ AN ANt AJV/ AN r lv !T ^
SPA N.. 24 - Minimum Levitation ( Afnluted) ( L+C)

19D M T73D A H I 4 1VY AN A,]/+^ 4/3 AN ANY AN Art
ST-OT-S	 —	 NcnL--al Ikam Physics ( facil. No. 4) } 100 ARIA loo 3S1 VAR14 I00 3S/ Z8•S p p r

ST-04-S	 —	 ContrelW Contamination Release A O P 0 AV y 4 1V AN AN 4hN AN AAl AN A+v Ems,''

ST-11-5	 —	 t.asurInformation/nataTranamlaelan 0 M}P 0 ZOO 100 300 ZOO 100 300 Ze-S O 90
6t

ST-L?-ti	 —	 F:nlryTcchnolcgy ft? C-0 0 AN A AN ,4N ,qN AIV qA, /IN A'N £T

ST-i3-S	 —	 Wake Shield Investigation A TQD 713 D TB D 77^D 716D T A t13D -Mr, 713D MD
CN-05-S	 —	 a.aser Communication Experimentation 13 1`14 1 7 IS-0 100 2S6 /jo 100 2s (. SO 30 90 ^ 7.
CIv-OT-s	 —	 Large liefiector Deployment A 9 !SO ADO 2 s6 J S D /00 Z S0 SS O

7q^

CH-08-S 	—	 Open •traveling Wave Tube
A

y
3
^t

f^fP s ANy q N Ivy AA AN ANA/ AN ANy' .4 y

{rj

3̂ i
(_..-11-S	 —	 Stars L Pads Experimentation A fU MEP r(jp f DO ,tN AN /Oa ANy A:N^y Aly AN A•3 T
CN.12-S	 —	 Inter ferometric Navigation ASu rvelllmce Techniques A/f 3 Nip ^b ZOO A ,SO 2 S O 2.00 ISO 2 ^_0 S.S O 90 c` w
Clq-13-S	 —	 Shuttle Navigation Via Geasynchronous Satellite R Ei J 700 1 S0 Z SD 20 0 /SO 21z 6S 0 9'0

Erb



18. This column identifies the most acceptable launch sites due to
inclination requirements. ETR is the Kennedy Space Center, WTR is
the Vandenberg launch site.

WEIGHT, POWER, VOLUME, CREW AND HAZARDS DATA
Sheets BII-1 and. -2 compile the weight, power, volume and crew require-
ments for each payload along with the potential hazards, in event of equip-
ment failure, that could result in injury to personnel or cause damage to
other equipment. Identification of the codes used on these sheets is as
follows, reading the 24 columns from left to right:

1. Payload identification number per SSPDA, July 1974.

2. This is the launch weight for the payload for a 7-day flight.
Includes equipment and consumables.

3. This is the payload weight after a 7-day flight.

4. This column indicates the weight of consumables fcr a 7-day flight.

5-6. These columns indicate the basic power requirements for each payload.
The average power level is that required wi._l a operating on orbit. The
peak power is the highest occasional short-duraiion peaks that occur
during operation.

7. This column indicates the energy required for a 7-day flight.

8. This column indicates the pallet length required by the unpressurized
equipment.

9. This column identifies the volume of payload equipment to be installed
in a pressurized area, not including access space.

10. This column indicates the volume of pressurized area required to store
the data recorded on orbit to be returned to Earth. The value is deter-
mined by applying volume factors to the various types of data require-

ments specified in the SSPDA.
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WEIGHT, POWER, VOLUME, CREW, HAZARDS (SHEET BII- 1)
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WEIGHT, POWER, VOLUME, CREW, HAZARDS (SHEET BII-2)
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11. The volumes for other consumables (contained in a pressurized area)

are indicated in this column.

12. This column indicates the total volume required in a pressurized area.

13. This column identifies the volume of payload equipment to be installed

in an unpressurized area.

14. The volume for consumables (contained in an unpressurized area)

required to support the payload is included in this column.

15. This column indicates the total volume required in an unpressurized

area.

lb. The crew size for a 7-day flight is shown. A "1/2" in this column

indicates that the payload requires only part-time support.

17, 18. These columns indicate the number of manhours required per day

and for a 7-day flight.

19 -22. These columns identify potential hazards from the payload that, in

the event of failure, could cause injury to people or damage to other

equipment.

23-24. These columns identify potential hazards that could affect satisfactory

operation of the payload.

ENVIRONMENT AND VIEWING REQUIREMENTS

Sheets BIII-1 and -2 compile the environmental and viewing requirements

for each payload. Identification of the codes used on these sheets is as

follows, reading the 24 columns from left to right:

1. Payload 'identification number per SSPDA, July 1974.

2, 3. The cleanliness (class) requirements for the pressurized unpressurize3

equipment are identified in these columns.
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ENVIRONMENTAL AND VIEWING (SHEET BIII- 1)
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--_.

AA1N
pN _.

NONE
11%11F>:401"o

1s	 OvAO

Ifto • ;.v D•Lr 1/'c NO !e -n3
CN- 13-8	 - _

loop_ 104 S O jCO 393 Soo 70 /110

-

2870: Z6 90

I

Atb1NL I NOwE MoNE . 3vNE 1^1C 3.s



ENVIRONMENTAL AND VIEWING (SHEET BIII-2)
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4-7. The maximum and minimum temperatures for the payload pressurized
and unpressurized equipment is provided in these columns. These
temperatures are at the payload-Spacelab/Orbiter interface.

8. This column identifies the maximum allowable relative humidity.

9. This column indicates the allowable overall acoustic levels (0 db=20 ITT /m2).

10-12. These columns indicate the maximum allowable radiation rates and
total allowable radiation that the payload equipment can tolerate. The
use of "E" refers to exponent (i. e. , 1E-03 is 1x10-3).

13. Intentionally blank.

14-17. These columns identify specific viewing orientation requirements
and any special constraints that should be satisfied for payload operation.

18. Pointing accuracy required of the gimbal mount/platform is indicated
in this column.

19. This column indicates the pointing stability required of the gimbal
mount/platform.

20. The maximum duration in hours per operation that the pointing system
must maintain the required values is identified in this column.

21. This column identifies the maximum allowable angular velocity, or jitter
rate, of the payload line of sight.

22. This column indicates the field of view of the payload equipment (such
as an antenna, telescope, or detector).

23. A "yes" in this column indicates that a special gimbal mount or pointing
platform is required in order to obtain satisfactory data. A "no" indi-
cates that the basic Spacelab/Orbiter pointing accuracies are acceptable.

24. This column identifies the translational acceleration limits of each
payload, while operating. The use of "E" refers to exponent
(i. e. , 1E-03 is 1x10' 3 ).	 A -48



C. REQUIREMENTS SUMMARY FOR MOSC PAYLOAD COMBINATIONS
Tabular summaries of the 19 payload combinations to be considered further
by the study team are presented here.

Sheets CI-1 through -3 contain the most significant characteristics for these
combinations. Other characteristics can be determined by referring to the
individual payload summaries. Identification of the codes used on these
sheets is as follows, reading the 25 cclumns from left to right:

1. Identifies MOSC payload combination by number.

2. This column identifies the payload combinations. The types of payloads
are indicated and the individual payloads in the combination are listed by
number per SSPDA, July 1974.

3. This column indicates the desired total numbers of orbital manhours
that are desired for the combinations. These are determined by addition
of the manhours of the individual payloads as specified in the SSPDA.
Where a payload is included in more than one combination, the individual
manhours are split among the combinations to provide sufficient time
in each combination for gathering data.

4. This column identifies the crew size required to support the combinations.

5-8. These columns indicate the launch weight for the combinations for 7-,
30-, 60-, and 90-day flights. These values are obtained by addition of
the individual payload :weights. The first value in the columns, for each
combination, is in English units and the sec-ond value is in the International
System of units.
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MOSC PAYLOAD COMBINATIONS (SHEET CI- 1)
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9. This column contains the pressurized equipment volume for each
combination. The values in the English and International System of Units
are as in Columns 5-8.

10-13. These columns contain the pressurized volume for the total combina-
tion. This value is based on a retention of 0. 05 percent of the data
indicated in the SSPDA. The values in the English and International
System of Units are as in Columns 5-8.

14. This column contains the unpressurized equipment volume for each
combination. The values in the English and International System of
Units are as in Columns 5-8.

15-18, These columns contain the unpressurized equipment volume for the.
total combination. The values in the English and International S;rstem of
Units are as in Columns 5-8.

19-22. These columns indicate the energy requirements for the combinations
for 7-, 30-, 60-, and 90-day flights.

23-25. Intentionally blank.

The combination C-19, Space Manufacturing, is described by the preliminary
SSPDA Level A data sheets.
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• DIGITAL
RATE (MAX), b/s
DURATION, hr/opn

hr/day

TOTAL, MI/day

Mb/mission
• ANALOG

BANDWIDTH (MAX), MVz
DURATION, hr/opn

hr/day
TOTAL OURATION,hr/msn

• TV	 COLOR,frr/day
BLACK & WHITE, Irr/day

__ l	 _^- I I I _J.^
SORTIE PAYLOAD DATA SHEET	

SP-X5—S
LEVEL A	 PAYLOAD N0,

PAYLOAD NAME	
SPACE PRODUCTION FACILITY	 g

_PAYLOAD MODEL CODE NU.

OPERATING	 I NON OPERATING

PRESS I UNPRESS I 1PRESS I UNPRESS
+ PHYSICAL CHARACTERISTICS OF P/L 	 WEIGHT, kg

+TOTAL P / L AT LAUNCH, kg	 3,200

• PRESSURIZED EQUIP., kg 1,800
•UNPRESSURIZED EQUIP., kg _1.400
• CONSUNIABLES AT LAUNCH, kg 500
• EXPENDED CONSUMABLES & EQUIP. 	 (1) 500No  RETUHNED TO-EARTH, kg
• EST. PALLET LENGTH, m
• PRESSUfIZED EQUIP, VOL, m 3 II

+ ENVIRON IEN A	 MGDF

REO'MTS IN-FLIGHT LOCAT,O 1

*TEMP LIMIT, 'K MAX
MIN

• HUMIDITY %
• CLEANLINESS CLASS
•ACOUSTIC LIMIT, dB OVERALL
•ACCELERATION LIMIT,g
	

10—

•RADIATION RATE LIMIT, S/Ity-s

REQUIREMENTS ON SHU' TLE/SPACELAB
• PAYLOAD PERSONNEL	

+ POINTING (SHUTTLE/SPACELAB),
•ESTIMATED NUMBER OF PIL PERSONNEL	 2	 * ACCURACY, arc sec
• TOTAL P/L PERSONNEL TIME, hr/day 	 TBO	

DURATION, hr/opn max
• TOTAL P/L PERSONNEL TIIAE, hr/mission	 (2) 1,100	

REPETITION RATE, epn/day
• P/L PERSONNEL OPERATION 1 SHIFT E3 2 SHIFTS	 TOTAL POINTING TIME, hr/mission
• NO. OF PLANNED EVA	 l	 • STABILITY, arc sec
• AVERAGE DURATION OF EVA, lu DURATION, hr/opn max
• CONTINGENCY EVA	 YES® NO q 	 • STACILITY RATE, arescc /sac

+ PAYLOAD POWER — IN FLIGHT	 • VIEWING CONSTRAINTS
DC (W)	 AC (W)	

.OR[ENTATION	
SOLAR INERTIAL

• AVERAGE POWER	 5000
• PEAK POWER	 000
• ASCENT/DESCENT PWR

PEAK POWER DURATION, hr 	 TBD

TOTAL ENERGY, kWhr	 20,000

AC FREQUENCY 60liz® 400 liz []OTHER q

+ DATA/COMMUNICAT'ONS—ON ORBIT
• IS USE OF TD RS ASSUMED?	 YES F] NOE]
• VOICE — UP	 YES[] NOa	 — DOWN YES[] NO®
• PHOTO FILM STORAGE WEIGHT, kg	 —

+ POTENTIAL HAZARDS (CIiECK)
® NIGii i1 RE 1ZSU;;C BOTTLES	 0 TOXIC GASES

C pYfiui Ezii.mcs	 q CRYOGENICS
C OTHEr;

+CONSMENTS (1) Facility equipment can be
left in orbit.

2 Active period.
Total Mission 10 ' ears

+ COMPUTER SUPPORT REQ'O	 YES[] NBC] • RAPID ACCESSMEMORY SIZE	 WORDS
o MAX WORD LENGTH	 BITS	 • NO. OF COiiPUTATIONS PiR SECOND 	 MAX
• BULK MEMORY SIZE 	 WORDS o COMPUTER FUNC -i IONS:

gSPO(LA-2) 4174	 " RT = real time, DUMP = data dumped to ground whh6i one day.

ORIGINAL PAGE IS
OF POOR QUAIITY	 A•54

+ SUPPORT/IYTEG. EQUIP, RE010 (NOT PROVIDED BY P/L)
*SPECIAL GIMBAL MOUNT/ POINTING PLATFORM? YES q NO[]

TYPE	 EST. WEIGHT, kg

QTY	 TYPE/SIZE

• AIRLOCK

• 6001,11
• VIEEbWPORT
• OTHER

+TIME CRITICAL	
IME^TION

DURA-

ACCESS ON 	 PURPOSE

GROUND	 I (HR) HR

• BEFORE LAUNCh
• AFTER LAUNCH



	

F L y
,	 SORTIE: PAYLOAD DATA SHEET	 PAYLOAD NO. SP

-X5—S

LEVEL A

	

^ 3F	 SPACE PRODUCTION FACILITY

	

^^ e+ 	PAYLOAD NAME

DEVELOPMENT AGENCY NASA

PREPARATION DATE Dec .11 ,197 )VIEVISION DATE _ ft-5-75	 LTR B

PURPOSE	
MANUFACTURE PRODUCTS IN SPACE

DISCIPLI NE PA YLO AD TYPEPOODE

q ASTRONOMY

q HIGH-ENERGY
ASTROPHYSICS

q SOLAR PHYSICS

q ATMOSPHEWC &

SPACF PHYSICS

q 	 EARTH OBSERVATIONS

q 	 EARTH & OCEA'i PHYSICS

SPACE PROCESSING

q 	 LIFE SCIENCES

q 	 SPACETECHNOLOGY

q 	 COMM/NAV.

Li	 OTHER ( SPECIFY)

DESIRED
q MODULE	 ^^^'	 q PALLET	 TIME

ON-ORBIT CO	 ON-ORBIT
q 	 CO NTROL

^' IAODUI E/PALLET	 q GROUND CONTROL
90 (3)	 PAYS

q CARRY-ON

ND. Of MISSIONS PER YEAR (3)

CY 79 80 81 1	 82 83 84 85 86 87 68 89 90 91

SORTIE 1 1

OPERATIONAL- ORBIT, CHARACTERISTICS

ALTITUDE, APOGEE, km

ALTITUDE, PERIGEE, km

INCLINATION, deg

DESIRED	 MINIMUM

ANY	 _

ANY

ANY

MAXIMUM

MAJOR INSTRUMENTS/EQUIPMENT

NAME OESCRIPTION MEASUREMENT OBJECTIVE/FUNC T ION

Engraver/

Microscope SP-X1-S

Furnace SP-X2-S

Separation Col. SP-X3-S

Solar Furnace SP-Xu-S

Control Console

SPECIAL REQUIREMENTS/ASSUMPTIONS

Discussions with IvISFC, MDAC and GE personnel, Novei
REFERENCE DOCUMENTS

SSPO I LA. 1) 4114	 A-55



Appendix B
SKYLAB H CREW ACTIVITIES ANALYSIS

In order to establish guidelines for the allocation of crew time during an
extended duration flight, the "as-flown" Skylab Flight Plan was examined.
The daily time allocations for each of the three crewmen provided an
empirical data base from which allocation factors could be analytically
derived. As a first step in this analysis, each of the 60 days of the second
mission ,:aas examined and the time spent by each crewman summarized.
The individual activity tithes extracted from the "as-flown" timeline are
the 15 listed in Table B-1. The data extracted, and converted to a com-
puterized file scheme, are shown in Table B-2. In this table the first
column represents the mission day, the leading digit l representing Com-
mander Bean, the leading digit 2 representing Science Pilot Garriott, and
the leading digit 3 representing Pilot Lousma. The next 15 columns, as
shown in Table B-2 and as separated by commas, correspond on a one--
to-one basis to the activities listed in Table B-1.

Table B-1
SKYLAB CREW ACTIVITIES

1. Sleep 8. Personal hygiene

2. Eating (includes food 9. Personal training
preparation), pre-
and postsleep periods 10. Housekeeping and equipment

transfer
3. Apollo telescope mount 11. Rest and relaxationoperation

12. Student experiments and
4. Earth resources package TV operation

operation 13. Extravehicular activities
5. Corollary experiments (EVA)

operation 14. Launch and recovery
operations

6. Medical experiments operation 15. Station. activation/
7. Maintenance and operations deactivation

EMI QTING PAGT BLWK NOT FILMED'-'
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Table B -2

SKYLAB II CREW ACTIVITIES

UNITS SHOWN ARE ACTIVITY DURATION IN HOURS
101-ti ► 2':9rOrilr it, itlir ;r. lip Srr ;Jr.)r sr9.1r4
1U2-8r4/OFIt0#3' ► tlr 'It 'irlr2rJf3Fit10
103-9.5r5.4rOr0 ► cir0 ► 4.3r..ir0r1.5 ► Ot0rOrJr3
1J4^dr6.CirOr 0Jr' one .2r.8r3r4.8r0 ► ilrOr.7
105-br6rUr 1r1.5r2.^:r2.1",r.3r0r2.4r Or) r,irlr3

IU6-8r6:2rOr.J r 4.1rOrJ 0 - be .5ryi,1PI POP Orbr,l
107-8r6.1r0r3.6r4.:^ ► OrUr.5r1.3r0rOrarlrJrO
I08-tir5.6r0r2.5# lobe 2.2r0r.5rIr2.7 ► 0r11r.1 POP 

J
10Q-8r5.1)rUr4.2rprtlrlr.3r.6rOrJ ► ;ir5rLlr,7
110 -7.2r4.Hr0PU p :Ir:lr 1r I  lr IFU ► 1r12r0r
11'•^8.5r7.IrOrarrr4.9r.1r.irJrl.7rJr'r.5rJr7
112^8r6.7r2.Lr2,6r1.f,r0r.7r.3r1r.9rOrUrOr'.^r 1
113-br4. ilr0r3.5r.7rIr1.5r.5 ► 1r2.?r0POr UPI r0
114-8r7.brl.2rOrOr'rl.Ir.3r1r4.8 ► Or.lr,lrlr7
115-Tr7.5r1.2r!"r.6r.4rOrltr.5r1r.8rOrUrOrJril
116-8.7r3.2r2.804.6r1.7r1,7rDr.3rlrOPOr'Jrlr1rJ
117-8r l.lr.9r,6r4.2r^.: r0r.5r.5rOrur.lr ^r!) ► ^^
118 -beb.9r6.9 ► .4r.3r0 ► 7r.5r1rde31" ! r'1r ir'1
114^dr5.`^r3,7r.5 ► 4.3 ► OrOr.5rlr..`irOrUrJr^rJ
i20-8 ► 4.br2.1.r0 ► 4.6r2.4 ► Or.3r.'3 ► 1.4rOrJrQrJrO
121-dr3.1 ► 1.2r0r7.3r1.2rOr.6r?.rOrJrlrJr•Jr0
i22-8.6r6.2r4.6rOr.3rOr.5rOrOr1.8r2+Or7r0r 4 	-
123-tiro.7r3rOr4.7r3rir.6rlr2rOrOr l ► ^r0
124-dr3r2.2r0 ► .3 ► 1.8r1).3r.4rOrOrlr.7r3 ► Jr7
125-8r5.4r2.5fOr4.6r2.2rOr.3r1r0r,)rJ ► "POrI
126 - 8r2. ^rw ► prl ► l.dr3.^r.5 ► 1rOr0r.9rOrOrJ
127-b.5r3.4r2.8rUr1.1 ► Or2.2r.3r1r2.5rOr0r2.?-rOrO
128- dr3.5rI.2rOr^7rOr.8rOrlr,lr^lr,lrlD.5+Or0
124 -8r4.d ► 3.4r0r2.1r1.GrOr.3r1r2.1r.5r.2rOrDrO
130-9.7r4.4r2.3 ► 0r2.5r3rOr.3r1+3.8r09Or p o 0 t
131-7.8r2.9r3.8rOr5.9+1.6rOr.3r1t.7rOrJrOr:i ► rf
132-8 ► 3.4r5.2r0r2.3r2.2tOr.3r.8 ► .6iOr1.2rOrUrO
13.i-8r2.9r3.4r0-r7r;1r0r.6r1r.3t00.8r0 ► U00
134^Sri.4rOr^r6.7r3,1r.3r.t,rl.Ort)r,Irlr']
135-8r2.6r2.2 ► Or4r3.5r1.$ ► .9; IF OrIt.)r-1rF7t"1
136-8r3.:^r1.3r3.^r^r2.G ► Or,l ► irr2.5rJr,lr ^r ^r1
1J7-yr2.Grl.2r4.3r?.4 ► Or:1r.3rUri.5r1.7rOr)r(1rO
138 -9.4r3.7r3. r2.1r1.8r2.7r0r.6r1r.4rOrOrOr0r0

j	 Ian-7.8r3.3r1.1r3.9r3r2.1rOr.6r1r.5rOr.7 ► OrOril
140-8 ► 3.3ra.80, t.6r2.2rU•.OF.5r2r00ftr'irlr.l
141-8t4.3r3.url.Cr1.lr2.8rOr.6rlr.S p Gt JtU p OP O
142-8r5.3 p b.'">r1.8r.UPOrlr.6r1tor ]ror (It .tt0
143-d ► 3r4.lrlr2.3r'.1r3r.6r.5r2.1rOr.4rOs'7 ► 0
144^7 ► 3.4r2r1.9r OP OrIP.300r1.3r5.6#I*5rO+Or')
145-dr3.1r3r3.4r1.7r2.7rOr.61lr.,r0 ► DrOr'',loll
146^erg.7r1.5r4.2r^.1 ► 2.9r0 ► .6r1r.5i0r.5 ► 0 ► 7r0
147-8r2.4rL.1r5r4.1rQr3r.3r1ri.;rOrtrO ► irJ
148 - tir2.4r1.3r 3. ^r4,6r2.3rOr.3r1r.8 ► 3rOr;Sr^rO
149-8. 6 ► 2,9r4.2r1.9r1.2rI. BeOF.6rI.4il.4/Or OrItIPI'
150-Sr3.9 ► 2.2r3.6r.crr 2.8 ► Or.4rlrlr0 ► .5rDr0 ► J
15i^6.ar`^r2.' ► 3.4r1.3r1.:^r0r.3r1.7r0 ► .7r1.8ri^rOrU
152-6.8 ► 2.7r3.1r3.6rU ► 5.8r0r'1rltlr8r3r'1rOrI
153 -8r2.4r3.1 ► 1.3r0 ► 5.?rOr.9r1r.9r0r1rlrJ ► il
154-7.5r3.5r2,1r3r2r1.dr1.4r1.1r1r:6rOr3tOFJIP-O
155^8r2.4r1.1 r)..5 ► 1.1r2r4.8r.6r2r.^^Dr.300r)r;l'
156.8r3.5r3.3 ► Dr1rOrUririrl.2rJr.3r6.7rD+J
157 -8t 4.6tOrU ► .8r1.8r1r.6+1r2 ► 0 ► O ► 4.2rOrt1
158^8r4.rJrOrOr3,6r0r2.lr .6rOr4r6r3 ► 3rU ► 1r;6
lby `8r4.2rOPnPOr7r2rUr:1r.)rOr it ir:i ► 9.8
160 - Urlr Or3r.)rJrJ ► :1r'^•'1rur0 ► O ► 7.8 ► 2.5'

,THE ABOVE LISTING IS FOR THE COMMANDER OF SKYLAB 11 AL BEAN
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Table B-Z {Cont)

r.R28

ZU ^ 8 r r U r UP UP UP 0TO`r^II ,r-Ti ITi U-r $.Z^- --
202-8r3.5r1.B ► OrOrUrUrOrOrOrO9UrOrDrlO.7
203-9.5e5.6rOr6rUr2.3r.5r.ZrD ► 1.5rUrOrO ► Or4.

-204 -8i -6.8 ► 0 ► di.61.8i0r1rOr4.2r.3rOr0r2.3r0
205 -Brb. y r0 :Or 0 ► 8.2 ► 0 ► .900 too OFOrOIOF0

	

206^br7.6r1rOrU ► 4.7
lSr	

_r_0 ► .5rOrY.7^r1rOrOrO'r0
r6.6i3.u p 6 ► 1 r6r15r0r1.29.8r.6rOFOr0'

208-8 ► 5.2r.9r2 ► 0r4.5r0r;3rOr2.5r0r.6rOrOrO'
2U9-tsr5.4r1.5r2.2r.8r.3r0 ► .3r.5r1.2rO POP 3.8r
2f0-7.1 ► 4.590rOr0r.2rOrOr.6rOrOrOr11.6r0 ► U

211-8.5r4.6r6.1 ► Or2.8rUrOr.S ► Jr.3r.6r0r.6rOr
212-br5r3.1r1.7rOr4rOr.5t.7rlrOrOrO+OFO
'^^^FSr$i^.8 ► 0r.J ► .2r.8 ► .5r.4i0rOrOrOrOi(^''
214^Br7.2 ► 1.BrOrUr.5r1.3 ► .3r1r3.4rOr.8 ► DiOrO
215-7r5 . y r 3.5r2 . 3r.4r.2 ► Or. 5r1r1.4r0 ►2.B90F0
216-8.7r4.5r0 ► 3.3r1r3.6rOr.5rlr.6 ► O ► liOrOrO
217^8 ► 6.2r4.790rOr2.2rOr.6r.5 ► .6r0rl.2iUrOrU
218-8r5.8r2.2r1.6 ► 2.7rOr.5 ► 1rOrOr2.2rOr099rU
219-Br5.8r5:9i0i0r2.4r0r.5 ► 1r.4r0r09Di0r3
220-Br4.998.ArOrOr.7rUr.6rlrOrOrOrOrD ► 0
221^8r4.5r6.9r0r.3 ► 1.7rOr.5r1i.6r Or. 5rOFOr0'
22.^_-8.8r5r4.5r0r.3 ► .2r0r Or1r.6.3.3r.31OFOr0'
223^br4.6 ► 6.3r6r1.2r1.7rUr.6rlr.3 ► Or.3rDFC,#U
224^894.6r9rOrOr.2r0r.6r1r.F,r0rOr0r0r,

225-8r3.7r6.1r0i1.8r2.`J109.6r.5 ► .6rDr.2rDrO ►
226-b ► 4.692.3 ► OrOr595r0 ► .6rlr1.Ur1 ► GrOrJ
2 7-8.5r4 ► 1r0rOr5.4t3r.5r.5r.3rOr3.8rO ► 1rO
228-8p 3.4 p 1.irOr.2r-<tor0v +r.6rOr10.be0 POP I
2._9-8r4.6r3..`>9Ur.br4rOr.691r1.8rOrOr ' t o Ur',
230-9.7r4.5 ► 3rar2.1r.yr0 ► Ur1.ir1.7r.5r3.5rOr
231-8r2.2r5.2rOr6.IrOrar.3r1rOr'r1.2r0 ► 0 ► ^
232^894.Sr2.2tOro/4.7r`Jr.6r1r.9rOr2.3 ► 3r0 ► O
233-7.8r3.4r5.4r1.:)90r3.1rOr.6r.791.3r0r.4r0
234-br3.5r7.9r.3r. CPO ► •1r.6r1r.3rOr1.6rOrlrU
235-8r3.8P2.brOp6r2.lrOr.5POP!rOPUrle0pit
236^8r3.3r4.6rl.8r1r1.brOr.6 ► 1r.& p Url.br0r09
237^9 ► 2r3.3r2.3r2r. 2rUr.6 ► 1r2 ► 1.6rUr:IPOP,)
238-794.3r4.6rOr3.1r3.5rOr.6r.5r.4rOr•Jr,-l ► 0r+
239-7.be 3.2 ► 8.7r2rOr.2rOr.br11.8101Or•7rUrI
240^8r4.5r5r.3r1r1.1rOF.6r1r.6rOr1.99OF3r'.,
241-8r4.3r1.2r1.3r3.7r2.7rUr.6r]rl.2rOrar3r:l
242^8r4.2 ► 3r1r2.8r2.1rOF.6r1r1.'weOr0F0,)pJ
243-8r3.5r3.2r1.1r2r3.2r0r.6rltl.4 ► OrOr3r3rg
24«-6.794.8r3.2r1.4r2.8rC-Or.4r1r:.5r1.6 ► .6r
245^7.B ► 3.4r5.Br1.290r3.4 ► Or.9r.7 ► .brOPOFUra
246^8r2.9r4.7r2.5rOr2.4rOr.3r1r2.2#0#OrUr)r-1
247-893rl).8r3r.3r1.890r.9rOrl.2rOrOrOr`J ► 3

248-894.1rbr2.7 ► Or1.8r7 ► .brl ► .4rOr.4rOrOrO
249-7.8r3.2r1.39.3r3.2r4.290r.9r1.1 ► 1.3rOr.7
2`^O-Br2.9r2 ► ^rJ ► 5.7 ► Or.6r.5r2.3r0 ► 0 ► Jr^ ► ,^
251^6.596.1r2rl.Sr.6r0 ► Or.Jr.6 ► Or4r2.2 ► OrArD
252-6.8r4.3r3r2.2 ► 1.2 ► 4.1rOr.6r1r.890rpoOrpo
253^8r1.6r4.89.90.394.99D/0r.5r2.5rOr.59D1i1 ►
254^8 ► 2.4r6rl.8rOr1 . 8rOr.991_ r_2.1 ► OFOFOrOrJ
255-8r 2.396.3r-5 ► Dr2.7r2r1.2r. 9 ► 0r0r1.1 ► Or0r
256^8 ► 2.'^ ► 1.2r1.5r1 ► 2.7rOF.3r1r.6rOr0r4.8rOr
257-8r4.2 ► Or I r.49 +:.61Or. 3r+1r.4rJ ► ,-;r6.1rOrJ
2bS-3r4.6 ► Ur:lrar3r2r.3r.5r3. 1 rOr0r•Ir +r2.3
259^8r4.2rOrut . 'r0r2r.r,,r -it -ir'ir 1FCr9.8
260 -Or 1r0 ► ^ ► r1r2r?r4r'.r.lr :r:,r7.8r2.5

#THE ABOVE LISTING IS FOR THE SCIENCE PILOT OF SKYL
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Table B-2 (Cont)

SAP	 11:31 JAN 317175

301-e72.91Ur0r p o0 POP 0 PUP U10 ► OrUr9.1 ► 4
3U2-dP3.5rOrOFUPOfOr0rOrOr2rUrJr0r10.5
3U3i 1̂ .5r5.8 ►0r6rO ► Fir .So0,Di.7rOrOrOrUi7.5^--^
3U4-brb.br0r0r1.2rOrI be.3r.7r1.4 ► 3.5rOrOf3r.3
305-b ► b.brOr3.2r1.5r3.6rPr.6r.brOlOrOrOrOrO
3U6-8r5.9rOr2r3.8r3r p o.4rOr.9 ► Or p oU p 0 r0
3U7-8x6.7x614.3x1.3r OrOf.2r1.2r1.2r1.1r0rOrOrU
308-815.br0r 3r 2r 1.OrOr.3r1r2.2r0r.2rUPOr0
309-8 ► 5.9rOr4r.3rUr O ► . 3r.5 ► OrOr3r5rO70
310-7.1x4.5rOr0r7rurUr fir .6 0P O ► Ur11.8pOF0
311-8.5r6.9r.8r.6r0r 4.9r0r.7r.7 ► .?POPOrOrOPU
312-8x7 ► 0x2.8r013.4rOf. 5rIr1.3ror0r]tJra
313-60.br0r3.L)r.5 ► 1.2r.7r.4r1.1r3.1rOF Oro I'll r3
314-8x6.1 ► 1.1 ► 1r3.3r0r0r.31113.2POr0rOrOrJ
315- 7r6.2r2 .1 ► 5/I.7r0rI r. 371 r.7r0 ► n ► 0 ► Dr0
316-8.7x3.272.8x4.1r1.7r1.Tr0 ► .5r.7r.brOrOrJrOPO
317-br5.3r3.6rU ► 4.4rOr1r.5 ► 1r.7rUr0 ► 0rUrO
318-U15.312.6rOr1.2r2.6rOr.3r.5r1.5rOrUP0P3P'I
319-8x5.8r1.5r0 ► 4.6 ► 2.1r1r.5r .it Or UP I) r0rJrO
32Q-874.6x2.2rU ► 4.8r2._`rOr.6r1.1r.7FOP0 ► Jrirf)
321-8x3.5x3.1r0 ► J17.5rOf.6 ► lr.3rOr:1 ► UIjr3
321':-8.2r4.2r4rOr1.1 2r Or Jrurilr3.7 ► 2.7r0 ► Or It J
323 -br3.4r.5.2rOr4.2r1.7r1.be .7 ► 1r.3rOrU0P Or 
324-be3..ir3.'jr.5r2.601. Or 1.9r.6r1r.6tOr.4rOr0r1
325-8r4r5.1r0r4.6r Or0r.be1.2r.5rOrJr:)r9rJ
326-br3.8r3.2rOr3.6P).B ► 01.6r.5r.tir01OrUPJr7

i	 327-8.5r2.8 ► 1.?r Or0 ► 2.2 POP .5r1r2.B ► OrJr4.8rOrOr
328-8x2.9rOrItUr.3rUr.3l.5rOrIr'.1r12rOr0
329 8x3.9x2.1r0 ► 1.! ► 5.6r Or.br.8r1.9rOrIaitnr.:
3:50 9.70r4.3rOr1.9rOrJr.271r3.27.7r3 ► J ► 0 ► iO

I	 331 Br3.LSr2rOr3._)r 3r Or. 6 ► 1r2.3rOr0 p i p If
3.:2 Bra.Jr5.1rOr2.9r-'.1rUr.4r1r.5rOPOr.6 ► Or'
33,-8x4.Ir2. Ir U ► 5.br2.9 0t .6rOr.3rOr.5rOr3r.]
3:5 41 3x4. -I t 3.4x0 ► 2.8 ► 2.9rOr.6r1r1F Do , Or'I oil; '.i
335-8r3.1r6.7rOr.8r2.2r Or.brlrl.6 ► OrIPOP It
336-6.3 ► 4.2r7r2.8r.4rUpJr.6rlr1.ItOr.6r0P00
317-9 ► 2.9r2.:'_ ► 3.9r2.3r0 POP .brlil.5r.brO POP )FI
3:58-6.4x3.5r4r2r2.br.3rOr..6r1r1.4rOF0P'Ir0
3.i9-7. y r3r1.1r3.Ur3.2r2 p O3f.6rlr.7 ► OF.600#0
340-8x3.9x1.7rOrJ.9r2.2rOr.6 p If2.7rUr )a g e •1F3
341-8r4.5r6.5r1.8r.4rOrOr.9r1.1r.8 ► OrJrOr%r'-
342-8x4.5x1.2r I. Or 1.1r?.8r.br. fit 1 .Ir3.1POP.3rOrIF3
34:5-8r a.6r4.3rOr3 PO. 7rOr.4r1 ► 0rur Ir0vOr0
341,-7x3.4x6.2r1.9r2r.8rOr.5rIt1.2POr3POPOr)
345-8x3.8x1.5r3.4 ► OP5.2 ► Or.9r.6r.6r0 ► ltOr710
34b-Br3.3 ► 2.2x4.4 ► 1.9 ► .7r0r.6rOr2.9rUPOF30#J

j	 347-8r 2r 1x6.2_r.3r2.3r0•.6rIr2.OpOFIr{1rr.Ir,'
348-Ur3.4r1 ► S.5PJ. 7r 2.7r.4r.3'rl -Or Lit It tie 30

i	 349-br2.brur1.9r2.2r. ti p Or.6rlr!.2r0P ti p J P .r•'
i	 350-8r2.5r4.6 ► 3.5r0r2.6rlr.6elr.2rOr ti p i ► 7rJ

3bl-6x5.tir3r3.6r1.7r0 ► Or.3 ► lr.4 ► 2.SrOr7rU.0
3524.8rc.be3r;).7x2.1r2.7rOr.Jr1.be1.3rOr3r'rrJr11
553-6r3.7x2.2rl.;>r2.3r4.7r0r.6 ► 1rOrIv0rUrJr.1
3b4-8r3.4 ► Or3.4 ► 1.4r4.5r1r.b ► 1r.IrOPOPOr0r•1
355-80.6r2.371.6x3.`Jr0r1.br.9r1.5/.8rUp0r0r01i
356-8r3.5rOr2r1.2rOrOr.5 r.:ar1.2r Up. 3r6.8 ► O ► 0
3 57 -8 ► 4.5rOr2rOr2.li01.3rItI. !POP 0r5rUp0
35U - £3f3.3r0r0r9P2.3i2v.3rOr6.6rOi LIP Ir0F1.5"
359-Br4.2rOr Ur Up0r2r.3r.JrOrJrJrUr;7r9
360-Ur 1x0 ► O ► OrOr2rOr Or? rJr•:IPOr7.8r2:5-

#THE ABOVE LISTING IS FOR THE PILOT OF SKY LArj II JACK LOUSMA

CR28
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Table B-3 represents for each day of the Skylab II mission the 15 crew
activities summarized for all three crewmen. This file was uses to compute
the statistical averages found in Section 3 of this volume. Other statistics
as reported in Section 3 were similarly computed from the data files exhibited
in Table B-2.

r
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Table B-3
SKYLAB II ACTIVITY SUMMARY

ACTIVITY (hr) CR28
Day 1 2 3 4 5 6 7 8 9 10	 11 12 13.14,15

1 8.0 2.9 .0 .0 .0 .0 .0 .0 .0 .0 •U .0 :0 .9:1 4.0
2 b.0 3.7 .b .0 .0 *:U .0 .0 .0 .O	 1.3 .0 .0' -,!010.4
3 9.'J 5.6 .0 .0 .0 'i8 1.8 .2 .0 '1.2 .0 •0 so -.W5.0
4 8.0 ti.7 .0 .0 .6 :3 .h .5 .`^ 2. ii 2.4 .0
5 8.0 6.5 .0 1.4 1.0 4.7' .9 .6 .2 .tt .1) .O . ] `:0 .6
6 8.0 t).() .3 .8 2.0 2 . .0 .5 .2 197 . l 00 .0 * 3 •0
7 8.0 6.5 1.9 2.6 1.9 .3 r0 .2 Is .8 .6 .2 .0 .0 00
8 E'.0 5.4 ..5 2.5 1.2 ?.8 .0 .4 .7 2.5 .0 .3 .0 .0 .0
9 8.0 5.7 .5 3.5 .4 .l 90 .3 .5 .4 .0 * 0 - 416 • .0 .0

10 7.1-4 6 -- 0 d .	 , .4 .0 .	 _ .!i ► .8 y ..0 .0
1' ts.5 6.4 2.3 .:S .9 3.. .0 .^^ .^ . Q .2 .0 .4 .0 .tl
12 u.0 6.2 1.8 2.4 .5 2.;, .2 .4 .9 1. 1 .0 • .'1 .0 .'1
13'8.0 6.1 1.9 2. 3'- .5 . 8 1.0 .5 .8 2.0 •0 .0 •o o^`.a
14 8.0 7.0 1.4 .3 1.1 .2 .8 .3 1.0'3.b .0 .2 .0 .0' .0
15 7.0 6.5 2.3 4.3 .8 .1 .0 . 1 + 1.0'1.0 .0 .6 - .0 .0".0

. 1 4 . 11 ---:4 .0 .3 .0

17 8.0 6.4 3.1 .2 .'.9 1.5 .0 .T . t' .0 0 .0 .J .0
18 6.0 6.J 3.9 .7 2.1 .`.1 .2 . ► , .t .`, .7 0 0 .0 .J .0
19- 3.0 5.7 3.7 .2 3.0 1.5 .3 .5 .8 .3 - .- 0 .0 ' . 0 ' Q `T. 9-
20 8. 0 4.7 4. : 1 .0 3.1 1.8 .0 .5 .9 .6 .0 .0 .0 •0 .0
21 8.9 3.9 3.7 .0 2.5 3.5 .0 .6 1.0 .3 .0 .5 .0 .0 .0

22 8.5 5.1 4 . i1 .0 .6 .1 .2 .0 .3 2.0'2./ .1 .0 .0 .0
23 8.0 4.2 4.2 .0 3.4 1.1 95 .6 1.0 .9-.0 .1 00 00 .0
24 8.0 3.6 4.8 .2 1.0 1.3-3,4 '.5 .7 .4' .0 .1 ".0 .0 .0
25 8.0 4:4- 7 1.6-"--;V-r.15 .9 04 ,".0 -.1 ' .0 .0 --"-.0
26 8.0 3.6 3.5- .0 1.5 3.7 1.1 ' ` .6 .8 .3' .0 ' r6'''; 0 .O .0
27 8,5 3.4 1.8 1 '.0 .4 2.5 .7"•4 .8 1. f1 .0 1.3 '2.3 .0 .0
28 8 * 0 .-) . .0 .1 .2 -	 - .i .2 .2 .0 3.5 7.5 00 .0
29 8.0 4.4 ':5.0 .J 1.2 3.7 .0 .5 .9 1.`l '' .2 .1 .0 .0- .0
30 9.7 4.0 2.2 .0 2.2 .3 .0 .2 1.0 2.9 '.4 I.2" .0 .0 .0
3f U-3 -. .0 .TS .T 4 1.0 1.^'^-.0 .4''.0 .0'':0'
32 8.0 3.7 4.2 .0 1.7 3.0 .0 .4 . y .7 i .0 1.2 -.2 0 ".d
33 7.9 3.5 3.6 .4 4.2 2.0 .0 .6 .6 . 1"i • 0 .6 ' .0

.
0.	 "1I0'

. ..3 .0 .0
35 8.0 3.2 3.8 :0 3.6 2) .6 .4-. .7 .7 .9 .0 .0 .0 .0 .0
36 7.4 3.6 4..5 2.6 1.5 1.4 .0 .4 .7 1.4 .0 .7 .0 .0 .0
37-9.u2:!j 2:2-_3Y-Z-.6 - .T3.^-T:
38 7997.9 3.8 4.0 1.4 2.6 2.2 .0 .6 .3 .7 .0 .0 .0 9 0 •0
39 7.7 392 3.6 3.3 2.1 11.. 4 .0 .6

6
1. 0

^
97 &3 * 4 .0 60 .0 

^ ^^{ x ^

41 8.0 4.4 3.8 1.6 1.7 1.8 .0 . -1 1.0 . 0 .J .7 .0 .' 1 .0
42 4.0 4.7 3.2 1.5 1.6 1.3 .5 .,) 1.,) 1.11 .7 61 .7 .0 90
43-a. -.. 7 1 V-4: CF off --5
446.9 3.9 3.8 1.7 1.6 .3 .3 .4 .7 1 6 3 2.4 .7 .0 .0 .0
45 7.9 3.4 3.4 2.7 .6 3.8 •O 9 8 .0 .6 .0 .0 .0 .0 ,O
46 8.0 .J . .LSO .0 .:) .7 1.9 .0 .2 .0 .0 .0
47 8,0 2.5 3.0 4.7 1.6 1.4 .0 .6 .7 1.6 .0 . .0 00 •0 •0
48 8.0 3•L 2.4'3.2 2 9 8 2.3 .1 .4 190 .4 90 .1 .0 .0 .0'
49 8.1 2.9 3.8 '1.4 2.2 2.2 .0 .7 1.2 1.3 ' : 0 .2 . U 90 .0'
50 8.0 3.1 2.9'3.0 .2 3.7 .3 .5 .8 1.L' .0 .2' .0 '.0 .0'
51 6.3 5. 5_2.4'2.8 1.2 .4 .0 .4 1.1 . 1 '2.4 1.3` .0 .0 .0
52 6.8 3.2 3.0 3.2 1.1 4.2 .0 .3 1.2 1 90 .t} .") .b •U .:i
53 8.0 2.7 3.4 1.2 .9 5.2 . 0 ,5 .is 1.' .0 .2 '.0 .j .D
54 7.8 3.1 2.7 2.7 1.12.7 •^j . 0 .0
558:0 :8 : i.2	 5 1.6 2.9 .9 1.5 4.3: -:0--.-5 a.0 .0
56 8.0 6.3 1.5 1.2 1.1 .9 .0 .3 .5 1.0 -".0 .2 6.1` .0 .0
57 8.0 4.4 .0 .7 .4 2.8 .3 .4 .7 192 ' .0 .0 5.1 '.0 .0

-5"F3-15: -TT.-2 -1. A 2:v - .̀4 :Z
59 6 * U 4.2 00 ..1 00 .3 2- •1 .2 . 1 •: r	 , .,1 y.5
60 .0 100 .1 .0 .i 7.8 2.:3

ORIGMAL PAGE IS	 e-6
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Appendix C

ANALYSIS OF CREW SKILLS FOR THE MOSC STUDY

In developing the data base of research and applications requirements used

in the MOSC Study, 103 potential payloads were examined. Of these, NASA

discipline specialists recommended 20 payloads based upon the scientific

and technological activities described in the Space Shu.tLle Payload Descrip-

tion Activity (SSPDA) reports. The MDAC study team recommended an

additional 26 payloads which appeared to be candidates for extended missions

on the basis of frequency and number of flights in the post-1984 time frame

as described in the NASA mission model. In the space manufacturing area,

four payloads were included as typical of those where high economic return

and substantial savings potential would be offered by a significant increase

in flight duration.

Further examination of the 50 payloads identified as candidates for MOSC

consideration revealed that two payloads (LST Revisit, AS-01-R, and Large

High-Energy Observatory Revisit, HE-11-R) were associated with revisits to

unmanned orbiting observatories. These were eliminated from further design

consideration at this stage of the study since they did not appear appropriate

in determining configuration requirements. Two other payloads were classified

as becoming operational flight support equipment by the time of the MOSC

mission periods and therefore no longer candidates for research missions.

These were the Free-Flying Teleoperator (LS-04-S) and the Integrated Real

Time Contamination Monitor (ST-08-S).

The remaining 46 payloads were grouped into 19 combinations based on equip-

ment commonality and operational requirements. Table C-1 summarizes the

19 payload combinations. The major operational and physical characteristics

and requirements for each payload are also listed. The variance between the

up and down payload weights is indicative of the amount of expendables

(cryogenics, disposable fluids, g p ses, etc.) utilized during the conduct of

C-1



Payload

Table C -1

MOSC PAYLOAD COMBINATIONS

Crew
Description	 Manhours

Weight
1, 000 lb

Up

(10 6 g)

Down

—

Volume:
ft3 (m3)

Cl IR Astronomy 1,454 31	 (14) 25 (11) 4,500 (135)

C2 UV Astronomy 3,845 24 (11) 14 (6) 1,100 (33)

C3 Solar Observations 4,187 15 (7) 14 (6) 1,000 (30)

C4 Space Sciences 1 2,070 17 (8) 15 (7) 2, 700 (81)

C5 Space Sciences 2 1,608 16 (7) 12 (5) 2,200 (66)

C6 AMPS/Earth Science 3,280 24 (11) 14 (6) 1,900 (57)

C7 Space Technology 884 26 (21) 17 (8) 2,300 (69)

nom,	 C8 Cloud Physics/Technology 882 15 (7) 13 (6) 2, 000 (60)

C9 Earth Science 1 851 25 (11) 24 (11) 6,100 (183)

C10 Earth Science 2 690 2C. (12) 26 (12) 6,000 (180)

C11 High-Energy Astronomy/Technology 1, 118 20 (9) 20 (9) 1,200 (36)

C12 Life Science/Materials Technology 1 8,289 100 (45) 66 (30) 13, 300 (400)

C13 Life Science/Materials Technology 2 4, 039 81 (36) 60 (27) 10,600 (318)

C14 IR/UV Astronomy 1,427 45 (20) 17 (8) 2,000 (60)

C15 UV Astronomy, Advanced 585 24 (11) 16 (7) 1,000 (30)	 T-^

C16 Cosmic Ray Lab 5,800 50 (23) 37 (17) 5, 600 (168)
I

C17 LD Life Science Lab 23,200 39 (18) 34 (15) 2,600 (78)

C18 Advanced Technology 493 8 (4) 7 (3) 1, 600 (48)

C19 Space Manufacturing 11,000 7 (3) 6 (3) 200 (6)



a flight or mission segment. The crew manhours listed represent a measure
of the relative involvement of the crew in support of the activities necessary
to perform the tasks required in the payload operation. The correlation
between the 46 original payloads and the 19 MOSC payload groups is sum-
marized in Table C-2. It should be noted, however, that all 50 of the original
payloads were considered in analyzing the crew skill requirements.

The crew skill requirements for each of the original 50 payloads were defined
in accordance with the standardized Spacelab categories (1) listed in Table C-3.

For purposes of the MOSC analysis the 23 skills in Table C-3 were reduced
to 15 by combining Nos. 1 and 21, and 17 and 18, and cmitting Nos. 6, 15,
16, 20, 22, and 23 since none of those latter skills were required by the
payloads being examined.

The assignment of skills to payloads is summarized in Table C-4. It should
be noted that only one payload (LS-10) had been identified by NASA discipline
specialists as requiring the services of a medical doctor. For this sortie
payload a medical doctor was described in the SSPDA documentation as being
required in the role of an investigator for 12 hours per day. It will also be
noted from Table C-4 that the highest demand skill was that of an electro-
mechanical technician who was . uired in 29 of the 50 payloads. This high
demand level suggests that this skill category be formally identified as a
unigr.e requirement in future selection and training.

Skill correlation matrices were then developed wherein the remaining 14 of
the 15 skills were cross correlated based on whether or not they were required
by each of the 50 payloads. This skill correlation matrix is presented in
Table C-5. The statistics computed were the "phi" correlation coefficients
for dichotomous variables (? ) The numerical entries which appear in Table C-5
represent a measure of the occasions when each pair of 15 skills are required
(or not required) together. For "phi" coefficients approach 1. 0 a particular
pair could be considered well correlated or in other words occuring most

(1) Table 4, page 19 of the ESSEX Corporation report prepared for MSFC
entitled Role of Man in Flight Experiment Payloads, Volume 1: Results,
dated August 1973.

(2) J. P. Guilford's Fundamental Statistics in Psychology and Education,
McGraw-Hill, New York, 1956, Chapter 13.
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Table C-2
PAYLOADS CONSIDERED FOR MOSC MISSIONS

Assigned to
MOS C

SSPDA No.	 Payload Description	 Combination(s)

Astronomy

AS-01-S 1.5-m Cryogenically Cooled IR Telescope C-1
AS-03-S Dcep-Sky UV Survey Telescope r`-2
AS-04-S 1-m Diffraction Limited UV Optical Telescope C-2
AS-08-S Multipurpose 0. 5-m Telescope C-2
AS-10-S Advanced XUV Telescope C-2
AS-13-S Solar Variation Photometer C-3
AS-15-S 3. 0-m Ambient Temperature IR Telescope C-1
AS-19-S Selected Area Deep Sky Survey Telescope C-11
AS-31-S Combined AS-01, 	 -03,	 -04,	 -05-S C-14
AS-54-S Combined UV Payload (AS-03-S, -04-S) C-15

High Energy Astrophysics

HE-14-S Gamma Ray Pallet C-11
HE-19-S Low Energy X-ray Telescope C-11
HE-X-S Cosmic Ray Physics Lab FPE C-16

Solar Phys ic s

SO-01-S Dedicated Solar Sortie Mission C-3

Atmospheric and Spa c e Physics

AP-06-S Atmospheric, Magnetospheric, and Plasmas C-4, C-5,
in Space (AMPS) C-6

Earth Observatio n s

EO-01-S Zero-g Cloud Physics Labozatory C-8
EO-05-S Shuttle Imaging Microwave System (SIMS) C-9, C-10
EO-06-S Scanning Spectroradiometer C-10
EO-07-S Active Optical Scatterometer C-6

Earth and Ocean Physi c s

OP-02-S Multifrequency Radar Land Imagery C-9
OP-03-S Multifrequency Dual Polarized Microwave

Radiometry C-10
OP-04-S Microwave Scatterometer C-10
OP-05-S Multispectral Scanning Imagery C-6
OP-06-S Combined Laser Experiment C-9

CA



Table C-2

PAYLOADS CONSIDERED FOR MOSC MISSIONS (Page 2 of 2)

Assigned to
MOSC

SSPDA No.	 Payload Description	 Combination(s)

Space Processing Applications

SP-04-S SPA Nu. 4 - General Purpose (Manned) (Cl+C) C-12
SP-05-S SPA No. 5 - Dedicated (Manned) (B+F+L+G4C) C-12
SP-14-S SPA No. 14 - Manned and Automated

(B+G+C+FP+LP) C-7
SP-15-S SPA No. 15 - Automated Furnace/ Levitation

(FP+LP+CP) C-13
SP-16-S SPA No.	 16 - Biological/ General (Manned)

(B+G+C) C-12
SP-19-S SPA No. 19 - Biological and Automated

(B+C+FP+LP) C-13
SP-X1-S Production of Surface Acoustic Wave

Components C-19
SP-X2-S Production of High Ductility Tungsten C-19
SP-X3-S Separation of Iso-enzymes C-19
SP-X4-S Furnace for Production of Semiconductor

Silicon Ribbon C-19

Life Sciences

LS-09-S Life Sciences Shuttle Laboratory C-12, C-13
LS-10-S Life Sciences Carry-on Laboratories C-12,	 C-13
LS-X-S Life Sciences Long Duration Laboratory C-17

Space Technology

ST-04-S Wall-less Chemistry + Molecular Beam
(Facility No.	 1) C-7

ST-05-S Superfluid He + Particle/Drop Positioning
( Facility No.	 2) C-7

ST-06-S Fluid Physics + Heat Transfer (Facility No. 	 3) C-11
S T-21-S ATL Payload No. 2 (Module + Pallet) C-8
ST-22-S ATL Payload No. 3 (Module + Pallet) C-8
ST -23 -S ATL Payload No. 5 ( Pallet Only) C-18

Communications and Navigation

CN-02-S	 Comm/Nav Shuttle Sortie Lab (4, 000 lb) 	 C-4
CN-04-S	 Terrestrial Sources of Noise and Interference 	 C-5
CN-06-S	 Communication Relay Tests	 C-5

C-5



iician

f

Table C-3
SPACELAB CREW SKILL CLASSIFICATION

1. Biological Technician
2. Biochemist
3. Medical Doctor
4. Behavioral Scientist
5. Astronomer/Astrophysicist
6. Optical Scientist
7. Electromechanical/ Optical Technician
8. Photo Technician/ Cartographer
9. Geologist

10. Meteorologist
11. Oceanographer
12. Agronomist
13. Geographer
14. Electronics Engineer
15. Mechanical Engineer
16. Thermodynamicist
17. Metallurgist
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Table C-5
SKILL CORRELATION MATRIX

now 1	 LLL^Y1:^)I^t;{4ll111:AL 'i1:Ck1H11:1,iI{
1.01)000	 .1646'! -.Ihk2'f -.09109 -.l?.1 a6 -•12626
-•00731	 -..;0.1•.1'/ •:'.1499
-.126:?6	 .U114.16 -.1:?627 -.1)'13119 -.16788

Row 2	 ASTROf)Ot1FR
.16 1167	 1.0000.1 -.7.7216 -.35044 -.8n 78'r -.15755

-•	 516 1 	 -.11'1161 - .I H.11+9 -• 1 5755
-.15753	 -.177JS -.I S y t)5 -.12729 -.OF(9c)9

Rriw 3	 OCr.1H0GRAPHFR
-•1 tit .? 'I 	-•d72Ii, 1 •1101670 -•24526 -763'16 .57FFF
-.I "l6,) i	 -.I'1i,J9 . i, f:,66 - .110?')

.34 111'1	 .311917 -.11,)26 -.011909 --06235

now 4	 CHMIST
-.04109	 - - 300114 -.,4526 1.00000 -.18732 --14197

.04319	 .1',ink3 -.10371 -•i4197
-.14198	 -.111111'2 -.14197 .36314 -.oF026

Row 5	 GIOLOGIST
-•12106	 -.207t17 •76376 -.18732 I•nnoOO .75794
-.13449	 - •1?4119 .631192 -.nH4:^2
•1965)	 -.011402 -.n1;422 -.06804 -.04762

RoW 6	 AGROUOMIST
-.12626	 --15750 .57HH8 -.14197 •.75'194 1.00000
-.101 114	 -.10194 .1056'16 --06383
-.0638:1	 -.0 6314 3 -.063113 -.05157 -.03609

R4W 7	 ELECTRONICS ENGINEER
-.00"101	 -.24161 --17609 ..04319 -•13449 -.10194
1.00000	 -.10279 -.1lb98 .14077
-.10194	 -.IU194 -.10194 --08236 -•05764

Row 6	 PHYSICIST
-.240x7	 -.20101 -•17609 .17815 --13449 -.10194
-.16279	 1.00000 -.I1H911 -.10194
•1407'1	 -.10194 .140'17 -•06236 -•05764

Rrjw 9	 GEOGRAPHER
-.04780	 -.18369 .67566 --165'11 .63892 .85676
-.118911	 -.111••118 1.00000 -•0740
-.07450	 .23592 -.07430 -.06)19 -.04213

rioW 10	 BEHAVIORAL SCIENTIST
•21499	 -.15755 -.11026 -.14197 -.nR422 -.06311.3
•14077	 -.In1911 -.0'14aO I.nnnn0

-.06383	 -.0638.1 .2907H -.05157 -•03609

RI,̀W 11	 PHOTO TECHNICIAN
-•126'0.6	 -.15755 .34'.)17 --14190 .19650 -.06383
-.10194	 .14077 -.07430 -.063P3
1.00000	 .2907h -.[)63x3 -.05157 -.03609

kr,w 12	 IdEi'EOROLOGIST
•0441lh	 -.15755 .34917 -.14197 -.08422 -.06383

-.1)194	 -•10194 .1.30114 -.116383
.29XIH	 I.OJUJJ --063 H3 -.Oa157 -.03609

Ro>< 13	 BIOLOGIST
-•126	 "1	 -.157s!) -.110?6 -•14197 -.08422 -.06383
-.I0Ib4	 .14077 -.)74;,') F
-.U63h.1	 - .41•.!1'! 1	 ••1,)1)1111 •.091.57 .56545

Rfi• 14	 BIOCIIntI5°•
-.0:1319	 -• l.• 729 -.Uhr•09 .36324 -.n68n4 -.05157
- .1)HY36	 -.1)H.: " +G -.06019 -.05157
-.0a17)7	 -•1)ak 7 t -.,171 ^'! 1 .n l"lil,l -.n; Oil f1

,11,1. IS	 MED ICAL GOC'_'OR
.1671 1 	-.+i„01.1', -..),1.!35 -.ntv1,?H -.04102 -.01FAto

- .007(14	 - .a'^71111 -.,), : ?13 - .43(,09
!.'	 .ltdlb	 •i.i 2. 16 .h0•t,r16 - .11.741•• 1.1)!117,1,1
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frequently together. The matrix shows a 0. 85676 correlation coefficient
between the agronomist (row 6) and the geographer (row 9). Values near zero
represent pairings that occur randomly without a significant pattern of being
required together. For example the correlation coefficient between the elec-
tromechanical technician (row 1) and the meteorologist (row 12) is 0.04436.
Negative values represent_ skill pairs that display a pattern of excluding one par-
ticular skill when a payload requires the other. Such an example is shown by a
"phi" value of -0.35044 for both the astronomer (ro%v 2) and chemist (row 4).

The correlation matrix was factor analyzed by the principal components
solution (3) and six factors (or groups of skills) in addition to the electro-
mechanical technician were identified. The computational methods of the
principal component solution derives the characteristic equation of the corre-
lation matrix and selects the most prominent eigenvectors (in this case the
largest six) to represent the original 14 variables (rows) of the correlation
matrix. The thereby derived "factor" matrix is subjected to the Kaiser vari-
max rotation procedure (4) in order to maximize the loadings (discrimination
criteria) on the original variables rather than on the vectors. The 14 skills
(excluding the electromechanical technician) identified in Table C-5 and their
factor loadings appear in Table C-6. The interpretation of these factors
appears in Table C-7. The assignments to the MOSC combination payloads
of the combined skills specialists are indicated in Table C-8.

Since the IOC date for the MOSC Study is 1984, essentially eight years are
available prior to IOC for the selection and training of the crew members.
In this time period it is believed perfectly reasonable to cross train indi-
viduals in several related skill categories so that one appropriately cross-
trained specialist can perform the tasks that would normally require several
specialists in the conventional sense. As a starting point in implementing
this concept, the seven skill factors identified above might provide a useful
reference around which to structure the crew skill development process.

(3) BMD Computer Programs Manual, W. J. Dixon editor, UCLA, 1964.
(4) Computer Program for Varimax Rotation, Kaiser, Educational and

Psychological Measurement, Vol XIX, No. 3, 1959

w.	 2
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Table C - 6
ROTATED CREW SKILLS FACTOR MATRIX

Factors

A	 B	 C	 D	 E	 (F=:-) G

j	 Astronomer

-0.29875 -0.16893 -0.29842 -0.47245 -0.43045 0. 825 8250
E

Oceanographer

0.794700^ -0.04661 0.46697 -0.07522 -0.06035 0.06067

Chemist
-0.14917 -0. 14676 -0.15574 0.7921 0.27399 •0.03032

Geologist
0.89005 -0.04788 0.03328 -0.08773 0.05056 -0.05146

Agronomist
0.92 -0.01843 -0.17525 -0.03141 -0.01986 0.03575

Electronics Engineer

-0.11795 -0.21941 -0.09524 0.03914 -0.10071 -0.77316
Physicist

-0.12316 0.03383 -0.01953 0.00741 0.9034 0. 13869

Geographer

0.89008 -0.00803 0.04600 -0.00443 -0.12038 0.03666
Behavioral Scientist
-0.06854 0.2375 -0.05366 -0.19203 -0.06878 -0.65151

Photo Technician j
0.02948 -0.07166 0.7368 -0.14466 0.29244 0.08247

Meteorologist

0.02798 0.00032 0.82080 0.02152 -0.22812 0.02619

Biologist

-0.05758 0.8867 -0.05513 -0.10015 0.24189 -0.12236
Biochemist
-0.05358 0.03693 -0.01259 0.7$08 -0.21721 0.14365

Medical Doctor
-0.02790 0`8407 -0.01000 0.03588 -0.08187 0.07837

: This factor, which appears in the Factor Analysis solution for all 15 skills,
disappears from the computations when the Electromechanical /Optical
Technician skill is deleted from the input data.

C-10



or 	 C-7

CREW SKILLS COMBINATIONS

No. of
No. of 19 Payloads
Payload	 Equivalent Using

Combinations	 Skill Categories ESSEX
Factor	 Job Title Using Skill	 from ESSEX Report Skills

A	 Earth Sciences Geologist 5
Specialist Oceanographer 8

3	 Agronomist 3
Geographer 4

B	 Life Sciences Medical Doctor 1
Specialist 3	 Behavioral Scientist 3

Biologist 3
C	 Meteorologist/ Photo Technician 3

Photographer 4	 Meteorologist 3
D	 Materials Sciences Biochemist 2

Specialist 5	 Chemist 12
E	 Physical Sciences Electronics 7

Specialist 7	 Engineer'.
Physicist 7

F	 Engineering 19	 Electromechanical/ 29
Technician Optical Technician

G	 Astronomical 6	 A:,,tronomer/ 14
Sciences Specialist Astrophysicist

*The category of "Electronics Engineer" had no high positive loading in any
factor (see Table C-6). 	 Furthermore, as contrasted to the "Technician" who
was required by 29 payloads the "Electronics Engineer" was required by
only 7 (4 of which also required an Engineering Technician), 	 These observa-
tions did not seem to warrant the establishment of a special skill category for
the "Electronics Engineer. " In view of the hi-her degree of theoretical under-
standing of physical phenomena required by the "Electronics Engineer" as
compared to the "Engineering Technician, " it was believed desirable to com-
bine the Electronics Engineer category with that of the Physical Sciences
Specialist.
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Table C-8
MOSC PAYLOAD SKILLS REQUIREMENTS

MOSC Payload

Combined Skills Specialist Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 Cll C12 C13 C14 C15 C16 C17 C18 C19

A - Earth Sciences	 X	 X X

B - Life Sciences

C- Meteorologist/	 X	 X X XPhotographer

D - Material Sciences	 X

E- Physical Sciences	 X X X X X

n	 F- Engineering Technician X X X X X X X X X X
JN

G - Astronomical Sciences X X X



Of all the payloads where sufficiently detailed descriptive material was
available, only one required a medical doctor per se. If it should be
determined that a medical doctor is necessary, it is suggested that he be
cross trained in other related areas to maximize his overall usefulness
and effectiveness in meeting overall mission objectives. For example,
with proper training he could not only function in the medical capacity but
as a behavioral scientist and in the biological sciences as well.
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