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ABSTRACT

The high accuracy of contemporary observational techniques now requires

a better physical and mathematical urderstanding of the form of the tidal poten-

tial acting on the satellite and a gradual reshaping of the computational methods

currently in use. The dependence of elastic responses and tidal lags on the

geographic position and on tidal frequency is introduced into the tidal potential

on the surface of the Earth. By making use of Dirichlet Is theorem we continue

the tidal potential from the surface of the Earth into outer space. The final

form of the disturbing tidal potential acting on the satellite is obtained in terms

of the mean elements of the satellite and in terms of the standard arguments of

the lunar theory. This form of the tidal potential is suitable for performing the

analytical integration and for computation of the tidal effects over a long interval

of time, because all agruments are linear or very nearly linear with respect to

time. We interpreted the tidal effects in the motion of the satellite as perturba-

tions in the orbital elements and as the small periodic variations in the co-

efficients of the spherical harmonics in the expansion of the geopotential. In

transforming the exterior tidal potential to a form containing the orbital elements

it was convenient to resort to the expansion in terms of the generalized spherical
C-

harmonics familiar from the theory of angular momentum in quantum mechanics.
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BASIC NOTATIONS

G - gravitational constant,

M - the mass of the Earth,

R - the radius of the Earth, considered as a sphere,

r' - position vector of the Moon relative to the center of
the Earth,

r #0 - the unit vector in the direction of r',

p',	 q',	 s ' - the equatorial components of r' o

m' - the mass of the Moon,

a' - the mean distance of the Moon from the Earth, defined
in such a manner that the constant part in the expansion
of a'/r' is equal to 1,

F, D and F - the standard arguments of Brown's lunar theory,

V, V - the geographic colatitude and the longitude of the Moon,

- the right ascension and the declination of the Moon,

- the lunar tidal disturbing fua;`±ion,

cos y' - r0 •r10,

r" - position vector	 Sun relative to the center of the
Earth,

r" = Ir"I,

rn0 - the unit vector in the direction of r" ,

p", q", s" - the equatorial components of r" 0 ,

m" - the mass of the Sun,
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a" - the mean distance of the Sun from the Earth, defined
in such a manner that the constant part in the expansion
of a" /r " is equal to 1,

<p", V " - the geographic colatitude and longitude of the Sun,

a", S" - the right ascension and the declination of the Sun,

- the solar tidal disturbing function,

cosy„ _ ro, r „o

6 - the sidereal time,

4, X - the geographic colatitude and the longitude of a point
on the P^nth surface,

r - position vector of the Satellite, relative to the center
of the Earth,

r _	 Irl,

r o - the unit vector in the direction of r ,

a, o - the right ascension and declination of the Satellite,

a, e, w, S''L, I - the elliptic elements of the instantaneous orbit of the
satellite,

f - the true anomaly of the satellite,

R - the unit vector normal to the instantaneous orbital
plane of the satellite.
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INTRODUCTION

In the present work we investigate the form of the exterior tidal potential

acting on a satellite. The tidal potential can be defined as small-periodic vari-

ations in the geopotential -caused by the formation of the tidal buldge and by

the redistribution of masses in the Earth's interior under the influence of luni-

solar tidal attraction. In other words, the tidal effects in the motion of the

satellite can be interpreted as the result of tidal periodic oscillations in the

coefficients of the spherical harmonics in the expansion of the exterior geo-

potential. Of considerable interest and importance are the long period oscil-

lations caused by the regression of the lunar node along the ecliptic. The

existence of such oscillations ,n the oblateness coefficient C20 was first

emphasized by Kozai (1965). At the present time the influence of the long period

tidal effects on the coefficients in the expansion of geopotential lies on the limit

of observability. However, with the further amelioration of the observational

techniques and extension of observations over a longer interval of time we shall

be obliged to take these effects into consideration. The variations in geopoten-

tial produce in turn small tidal perturbations in the motion of the satellite.

They can be clearly detected by the modern observational techniques (Newton,

1968), (Smith et al., 1973). The high accuracy of contemporary techniques now

requires a better physical and mathematical understanding of the phenomena and

a gradual reshaping of the computational methods currently in use. The programs

currently in use permit one to determine the average elastic properties of the
i

Earth from the magnitude of the tidal effects in the motion of satellites.
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By adjusting numerical values of parameters of the Earth's elastic response

and of the tidal lags one can achieve a satisfactory representation of the satel-

lites motior It was found, however, that the numerical values of the mean

elastic parameters, as determined from the motion of satellites, are different

for different orbital inclinations (Smith et al., 1973), (Douglas et al., 1974). This

clearly indicates the existence of lateral inhomogeneities and, possibly, asym-

metry in the Earth's internal structure and of their influence on the tidal pertur--

bations of a satellite. Until the problem of the influence of lateral inhomogenei -

ties on the tidal oscillations is resolved, we are forced to use the information

available on the Earth's surface, the parameters of the elastic response (Love

coefficients) and tidal lags, and by making use of Dirichlet's theorem continue

the tidal potential analytically from the surface of the Earth into outer space.

Thus, for the present any further refinement in the theory of tidal per-

turbations in the motion of satellites is tied, to considerable extent, to the

measurements on a global scale of tides or tidal elastic responses on the sur-

face of the Earth, directly or by remote sensing. In other words, the dependetw((

of elastic responses and tidal lags or. the geographic position and on tidal fre-

quency shall be introduced into the tidal potential.

Original Love elastic parameters (Love, 1909) are the numerical coefficients

attached to Legendre polynomials in the expansion of the tidal potential. Thus.

Love formulation assumes that the elastic responses are the same for all tidal

2



1

^	 I

i

constituents associated with a given Legendre polynomial, irrespectively of the

tidal argument. Kaula (1969) and Balmino (1973) assumed that Love coefficients

depend on geographic position and are sufficiently smooth functions on the Earth

surface so that they can be expanded into a series of spherical harmonics.

Balmino assumed in addition a dependence of Love coefficients on the tidal fre-

quency. This last assumption is in conformity with the results by Alterman et al.

(1959). In the present exposition we follow Balmino and assume the dependence

of Love numbers on the geographic position as well as on the tidal frequency.

We found it convenient to use complex "Love numbers," because they carry the

combined influence of elastic responses and lags on the motion of the satellite.

It is necessary to remark that the introduction of Love coefficients pre-

supposes the absence of non -linearities, i.e. the absence of noticeable (in the

motion of a satellite) interactions between the tidal constituents ( Kaula, 1969).

Only the influence of long period tidal effects can be detected in the elements

of artificial satellites. As a consequence the form of the exterior tidal potential

can be greatly simplified, because all terms which involve the sidereal time or

the mean anomaly of the satellite can be omitted from the expansion. This means

also that the ,poRp1e.&Love coefficients can be averaged along the parallels. The

remaining dependence of the averaged Love numbers on latitude will produce

the primary and the secondary tidal effects in the motion of the satellite. The

secondary effects are of the same form and magnitude as some primary ones

(Musen and Felsentreger, 1973).
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Care must be taken against oversimplification of the theory and computa-

tions by neglecting essential secondary effects or by confusing them with pri-

mary ones. In transforming the tidal potential to a form containing the orbital

elements it is convenient to resort to expansion in terms of spacial and surface

generalized spherical harmonics. These harmonics are familiar from the theory

of angular momentum in quantum-mechanics (Edmonds, 1960) (Rose, 1957),

(Vilenki-:, 1965). They also can be profitably applied in the theory of motion of

celestial bodies and in theoretical seismology (Burridge, 1969), (Phinney and

Burridge, 197:3), (Smith, 1974).

The F-coefficients in Kaula's (1969) elegant expansion of the tidal potential

are intimately related to the generalized associated Legendre functions which are

being used in the present work.

N»merou , recursive relations between the generalized spherical functions

and their derivatives greatly facilitate the process of expansion of the tidal

potential. Using the recursive formulas and an analytic programming language

one can obtain a purely analytic expansion by computer or, by substituting the

numerical value of the inclination (and of the eccentricity) at the very outset,

one can obtain a semi-analytical expansion of the tidal perturbations, in the :,,rm

of periodic series with purely numerical coefficients.

The first option gives the solution in a most general form. The second one

requires less computing time and makes the programming work easier.

4
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We propose, as in our previous work (Musen and Estes, 1972), to discard the

expansion of the tidal potential in terms of the elements of the Moon, equatorial

or ecliptical. In particular, the equatorial elements of the Moon are net linear with

respect to time and therefore are not quite suitable for the integration in analyti-

cal or semi-analytical form, nor for the investigation of the tidal effects over a

long interval of time. We propose instead a Doodson (1922) type expansion of

the tidal potential in terms of the standard arguments of the lut.ar theory

with purely numerical coefficients. In Doodson type expansion all arguments

are very nearly linear with respect to time. This facilitates integration of dif-

ferential equations for the variation of eleme .ts and the search for the critical

terms with low frequencies. In performing this expansion we can make use of

the developments of the lunar rectangular coordinates directly available from

Brown's lunar theory (with some modern corrections). All necessary programs

to produce the semi-analytical expansions of the tidal potential and of the tidal

perturbations in the elements of the satellites were prepared by R. Estes.

(Musen and Ester, 1972).

TIDAL DISTURBING POTENTIAL

We start from the standard expansion on the surface of the Earth of the

lunar

m	 ^

0' = Gm'	 R	 P (cos y')	 (1)
n Z r
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and solar
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Q* = Gm'	 R P(cos 	 (2)

.2

tidal disturbing functions, respectively, with the Love elastic coefficients and

tidal lags temporarily omitted. Introducing normalized surface harmonics

	

-(;r-+
	 PZ(cos 0) exp ( imh),	 (9)

with the normalization

	

4^r J Y'em (^, k) Y k (^, X ) dS = 2t1 t 1 St J bmk'	 (5)

dS = sinqbd,4dX,

over the unit sphere, and making use of the addition theorem:

m•+t

	

P, (cos Y') _	 Y^m(^', x') Ytm(O, x)	 (6)
m n _'^

and with

?' = a' - B,	 (7)

we obtain

m	 ^

Q 8 = Gm'	
^	

exp(imO) Y,^X M 9	 (8)

. 2 0	 m . -'t

where we set:

+i

Ti . = ^' 	 Yi 
m(O' , a ' )	 (9)
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and a similar expression:

.,e
fr = Gm"	 R ^ 1 	 exp(imo) Y,fm((P, ^) C m ,	 (10)

n s a	 ^ n -^

T^ m = CEN J	 Yi .((P OL	 (11)

for the solar tidal disturbing function. The expressions (9) and (10) depend on

the equatorial coordinates of the Moon and Sun, respectively. The lunar and

solar theories currently in use give the expansions of coordinates, rectangular

or polar, of both bodies in form of trigonometric series with the standard argu-

ments ,t , V, F, D and F, and purely numerical coefficients. The accuracy of

the expansions is more than sufficient for the computation of tidal effects in the

motion of the satellite.

The arguments ^, , V, F, D and r are very nearly linear with respect to

time and their use facilitates the integration of the differential equations for

variation of elements and the long time prediction of tidal effects in the motion

of a satellite (Alusen and Estes, 1972). To facilitate the programming and the

expansion into periodic series, we can express the "lunar" spherical functions

Yt	 a') in Maxwelliart form as polynomials in the equatorial components
F

p' , q' , s' of the unit vector r' 0 directed toward the Moon from the center of the

Earth. We have:

7



iY'tm(0" a') c 
7^ r

(^m) i (p' + iq')"

W- 0/2)
1 k	 (Z e - 2k)	 s,^ -m- 2k	 12(-) k!(t-k)^ (^ -m - Zk)!	 ( )

k•0

for m ? 0. We can use (4) to obtain the expansion for m < 0. Expansions of

p', q', s', a' /r' and then of Ti , can be obtained easily from Browns series

(1919) of the lunar coordinates and parallax (with modern corrections) using

existing computer programs (Musen and Estes, 1972).

The resulting expansion of Tx m 
is the sum of the expressions of the form

T̂ mv = N e mv 
exp(iv • t).	 (13)

T' '	 Ttmv'
v

where
v = ( ]1 - ] 2' j 3 . j4 ' l 5 )

is a vector with integral components and

t = (^, V, F. D. )

and N t,, are the numerical coefficients. It is convenient at this point to intro-

duce Love coefficients and their dependence on geographic position and frequency.

We replace ( 13) in the expansion of the tidal disturbing function by the expression

K	 (0, X) T I,
l-mv	 'Lmv

where

X) = 
k f, mv ( , 

X) expl-ict'v(41' 	 (15)

and 
k^mv , tLmv 

are the standard Love coefficients and tidal lags, respectively.
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The lunar tidal disturbing function on the surface of the Earth is the sum

of expressions of the form:

	

^?mv = Gm' t
a	

exp ( im8) Kt.,, 	 X) Yt.((P, \) Timv , 	(16)

For the sake of compactness we shall temporarily suppress the dependence on

v and write simply:

ill . = Gm' ,^
+
1 exp(imfl o m id, X ) Yt.(m, &) Tea'

a

Substituting the expansion

+m q.+P

%K,t.	
_	

K, ,PgYDq(l, 
X),

L	 l	

D 1.4 q	 P

where

_2p+lf

	

KtmPq	 411	 "^mYxnYPgdS,

Into (17), we obtain:

	

y	 +m gam+

01. = Gm' 
R+ 

exp(imH) TAT 
	 KymDgYDq

e	 1 P`0 q`-P

Making use of (4) we have:

K tmpq =(-1)q 2 
4n 

1 J- K Y p Y_ dS.	 (21)
Em 'Lm P. q

Below we make use of theorems and formulas familiar from the theory of the

representation of the rotation group and from the theory of angular momentum

9

(17)

(18)

(19)

(20)
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in o_uantum-mechanics. We found it convenient in our work to follow Vilenkin's

(1965) notation and symbolism as close as possible.

Let X , (p and p be Euler's angles defining a rotation g. The elements of

the representation of order t of g(the generalized spherical harmonics) have the

form:

tt„ (X, ^, '^) = exp [-i (mX + mp)] Pt^(co s ^),	 (22)

M, n= - ,..., +t'

where P.n	 ,(cos qb) are the gene alized associated Legendre functions. We define

the angles X and ^, in such a manner that P,
,, 

(cosO) are always real. We have

the relation:

YtM(<P, X) = tt . 0 (X' 'A -)	 (23)

with

X = X + 7T.	 (24)

From (23), (4) and making use of the Clebsch-Gord?n Rcries:

t.ikl (X, 	 `^) . t 2k 2( X 	 ^) _	 (25)

g=^2+t1 I
C (t 1 , e2 , s; J 1 , J 2 ) COI' t2 , s; ^cl , k2 ) t i1+^2 kl+k2(X,

s ° 1^2-t1 1

where the symbol C designates Clebsch-Gordan coefficients (Rose, 1957), we

derive:

s`I	 + I
Yt YP,-q (- 1)m-q	 C(t, p , s; -m, +q) C(t, p, s; 0, U) Y ,, q-m'	 (26)

5 °1 —PI

10



Substituting (26) into (21) we obtain:

Kt mvq - (- 1)m 	C(t, P, s; -m, +q) C(t, P, s; 0, 0) 2s + 1 K ^rnns, -	 (27)

where symbols 
K t,.. ; 

designate the coefficients in the expansion of the Love

coefficient 
Kt. 

into a series of spherical harmonics,

D	
2s + 1 r	 .	 (28)

	

Ktms j = 477	
J KymYsjdS,

+m j n +s

Kim = T,	 't.. j Y.	 (29)
,so j'—a

In particular we have:

K

tms0 ":
1

2

2s +	 f T /K'tm >P.(cos -P) s in OdO,	 (30)J0

where

277

< Kt 	 2^r	
Ktmdk	 (31)

is the value of 
K 'l m 

averaged along the parallel. The analytical continuation of

the tidal potential (20) into extraterrestrial space is a harmonic function and

therefore has the form:

+m y -+p

f2^ m =
Gm' ,,t+1 exp(imB) Ti. 	

K'^.mpq CR/p 1 Ypq(o, ^),	 (32)

poc q--o

where 8' is the lunar parallactic factor,

R
a'

11



In application to the motion of a satellite we set in (32):

- a -0,	 (P=2 -S,

and we obtain

T,

	

em R	 em

qL+P ^9\p+1K tmPq
= o	

3P+1 
e"P [i (m - q) el `)	 YPq(P, a),

	

P	 q a P	 /

where p is the satellite's parallactic factor,

R
a

We are not interested in the tidal effects with period of one day or less. There-

fore only the terms for which m = q are of any practical importance and shall

be kept in (33). All remaining terms can be discarded and we can set:

R
_ L

'em	 n^mp'	
(34)

where

	

^^mP - iG 
	

t
+18P

+IK,emPm' Tjm (T/	
YPm (P, a ),	 (35)

and from (27) we have:

It+PI

K^	 - (-1)m	 W, P, s; -m, +m) C(t ' P, s; 0, 0) 2s + 1 K,
'.P. 	 (36)

ga	 -PI

and Ktmso is given by the combination of (30) and (31).

12

(33)



The form

	

t2^mp
rGM=	 . M J1 ,	 t+1 Kt p T ,	 1 . 

(E)"y(,P ,
Lm m ^mJ 	 pm

of (35) indicates that

Kt.6Cypm M 8' +1 Kt . 
Tj. exp(imO)

can be interpreted as perturbations in the coefficient C pm of the spherical

harmonic

	

r	
ypm(,P, )

in the expansion of the exterior geopotential.

With this interpretation the coefficients in the geopotential become chang-

ing periodic functions of time. For perturbations in the coefficient of the zonal

harmonic (R/r)p+1 Ypo we have:

bC ,^ po 
= M ^3'^+1K'topoTCo'

In particular for the perturbations in the oblateness -coefficient C yo we have:

8C^2o - M 3^^+1K^opoT^o'

An estimate of the perturbations in C20 is given by the formula:

	

,	 , 3
bC 20 = M 

^, 
3 k r='l pz(S')

13
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where k 2 0.3, the approximate value of the Love number, and (a'/r') 3 P2 (s' )

shall be expanded into a periodic series with the arguments of the lunar theory.

The terms in T' 
o 

which contain only the longitu to of the lunar ascending node

V - F + D + r' produce "very long period" effects with the periods of approxi-

mately 18, 9, ... years.

At the present time the influence of such "very long period" terms, with the

periods of the order of years, on the coefficients in the expansion of the geopoten-

tial (or on the motion of satellites) lies on the limit of observability, but with the

further improvement of the observational techniques and extension of observa-

tions over a longer interval of time the importance of these terms might increase

and we will be obliged to take them into consideration, especially in C 20 .

Application of the addition theorem

k = +'^

t mn (9 1 g2 )	 t mk( gl) tkn(92)	 (37)
k=—^

for the generalized spherical harmonics, as defined by the rotations g l and 92

respectively, probably represents the shortest way to obtain the expansion of

the tidal disturbing function (35) in terms of the angular elements of the satellite's

orbit. The transition from the frame as defined by the unit vectors (r, R x r0 , R)

to the system associated with the equator involves the rotations:

g l : X=fl+2,=I,=u+2=f	 7T

14



92: X=n,=2

9 1 92 :	 X=a+'n ,	 (P=-^-S.2

From (37) and taking (22)-(23) into account We obtain:

k - +

Ypm =	 tko (7T, 	
2 , -) exp {i L - ku + (m - k) 2])	 (38)

kw-p

.Ptm,k(Cos I).

From (22) and mAking use of relations

Ppk 0(x ) = (- 1 )k Pk 0 (x),

PPk0 (x ) _	 (p k) ' Pk (x)
(p + k)! p

We obtain after some easy transformations:

tk0 (
7T' 	 ^- (_1 )(p+k)/ 2 	 (p- J k l) !	(p + IkI - 1) !!	 fore - k
 2 	2(p- l k 1 )/2	 (p + I k I) !	 /p - IkI l	 even

l	 2

= 0,	 for p - k
odd.

It follows from (39) that (35) can be represented in turn as a sum of the

terms of the form:

15



^,	 = Gm', , t+lPp+1K	 Tp'	 +1	 40
'imp9	 R	 empmQP9 lim (

a)p

r	 ( )

exp ^i [mQ - (p - 2q) ( f + w) + (m - P + 2q)2]}. P?
®'p"2q

(Cos I),

q= 0, 1,2....p

where we sat

QPq - tP'29,o (TT, 2)'	
(41)

Using Hansen ' s notation:

X —p-1.—p+2q = ( 27 +1 exp Li ( 2q - P) f).

we re-write (40) as:

,Q_ Gm' [T ^ +'AP+'K
,mpmQ PgTI X p 1. p +2q'	

(42)

	

mP 9	 R

exp ji
 IM 	 2]il - (p - 2q) w + (m - P + 2q) }- Pp m.P-2q(Cos 

I).

From the last expression we eliminate all terms with the period equal to

the period of revolution of the satellite or less by performing the averaging

;.	 over the satellite 's instantaneous orbit. Making use of Hansen ' s formulas

(Tisserand, 1889) we obtain:

	

% nipq 
= GR,	

p+1K	 Q T'	 (43)
^mPm Pq Qm

e

exp ^i ^tniI - (p - 2q) w + (m - p + 2q) 2J 
P?. P'2q (cos I) X0P"1 ' p-2q(e).
P%, 

c

16
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where

f
2n 

(!.)XoP-I,p-2q = I	 P+Iexpi(p-2q)f•dM	 (44)
27T	 r

Cl
p - 2C lp -2q l (I - e2)-p+1/2 x

p - ql) (12)

F
C 

1 p - 2qi - p + I	 1p-2gl-p+2, 1p- 2gl +1 ; 
e2/

The hypergeometric series in the right hand side of (44) is always a polynomial

in e2.

Designating the modulus of Ntm Ktmpm Qpq by At mpq  and its argument by

a^mpq and keeping on1v the real part of the disturbing function we have:

f2^mpq _ GRi,8it+1Op+1Atmpg PE" p-2q(Cos I) • XOp-1,p-2q	 (431)

• cos[v' •r+mQ- (p - 2q ) w + (m-p+2q) 2-a^mpq]

and the dependence on v as before is not indicated explicitly. The disturbing

functions (43) are to be used in the actual computations of the tidal effects. Some

particular cases of (43 1) deserve special attention. It follows from (44) that

X;P- 1. : P = 0
	

(45)

and from (43) and (45):

Ot mp0 ^^ mpp - 0'

17



and, consequently,

1
(46)

n'.mp	 N.Pq
q01

The terms of the type

n!mtq - 2M2 	 A^m^gPt
	 (cos I)	 (47)R	 -J-2 q

XO^.-1, a-2q cos IV-T+ mfg 	2q) w + (m - t + 2q ) 2 a'em qJ

are the only terms which remain in the expansion if Love coefficients are

assumed to be constant. All other terms represent "cross-effects" be-

tween the terms of the type (47) and deviation of Love coefficients from their

mean values. For this reason the terms of the type (47) can be designated as

"primary" ones.

Among the primary terms of a special interest are the terms of the type

0 2s,  m. 2s, (m = -2s, ... , + 2s) . They do not contain the argument of the

satellite ' s perigee) and, as a consequence, they do not change the eccentricity

and the shape of the orbit. The same can be said about the terms n ^ 2. s of

a slightly more general type. Terms ft'
ODq 

do not contain the right ascension

of the satellite ' s ascending node and, as a consequence, do not change the orbital

Inclination. Finally, the terms

is

r-



Gm' 
R 

,'t+t 2.+ 1A 	 p (cos I).	 (48)
^t.0.2... - R	 R	 ',,0.2... 2.

X-2. -1, o cos (v . rat,	 )
0	 O,2.,.

Xo2.-i3O = ( 1 _ e2 )-2.+tie g (i _ s, 1 - s, 1; e2)

contain only the periodic terms associated with the motion of the Moon. In par-

titular, they carry very long period tidal effects as produced by the regression

of the lunar node along the ecliptic.

Setting m = q = 0 and taking

Q oo = C ('e, 0, ^; 0, 0) _ + 1

into consideration, we have from (40)

E000
GM

 r	 M	 2t + 1	 ^o'

the terms additive to the first term GM/r in the geopotential. Theoretically, if

not taken into account over a long interval of time, they will cause spurious

small osuillations in GM, roughly one order higher than the tidal perturbations

in the oblateness coefficient C20 . In the motion of the satellite they can produce

very small perturbations with the periods approximately equal to the period of

revolution of the satellite.
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DIFFERENTIAL EQUATIONS FOR VARIATION OF ELEMENTS

Substituting

n2 mpq _ n2 a2 BPX cos W,	 (50)

where we set for brevity

B _ M J3#^ +'PPA^mPy^
	

(51)

P = P-..p_2q (cos I),	 (52)

X _ AOp-1.P-2q(e)	 (53)

W=v--r+mQ- (P-2q)w+ (m-P+2q ) Z-°''Emnq (54)

for the disturbing function ft in the differential equations

dS^.= +	 1	 aft	
(55)dt	 na2 Al 	 sin I DI,

dS I	 cos I	 an	 1	 aft	
(56)

dt	 na2 3^^ sin I aw n82	
(56)

I d^

d6w _	 cos I	 ail t e , aft	 (57)
dt	 na2 ^s in I aI nag a B 

dSe _ _ 3y ail	 (58)
dt	 na2e acw

dSM = _ 1 - e2 60 _ 2 aft	
(59)

dt	 na2e Be na as
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We obtain

+	 nj =	 B EXo cos W,	 (60)
t ^ sin I dI

dS I 1	 n	 [(p - 2q) cos I + m] BPX s in W, 61
dt ^sinI	 ( )

dSw = n - cos I	 X dP + ^ T P dX B cos W	 (62)dt	 sin I dI	 a	 de

dSen3

d t	 a	 (P - 2q) BPX sin W,	 (63)

ddSM ;-- n 
P 

I pe 2
 de + 2(p + 1) X BP cos W	 (64)

Computation of generalized associate Legendre functions P^ (cos I) and of their

derivatives with respect to I can be accomplished using numerous recursive

relations. The main relations are (Vilenkin, 1965):

[(x + n) (^ - n + I)]L'2 P1 (Cos I)	 (6:;)

+ 2— (n cos I - m) P^n(Cos I)
sin I

+ [(t - n)(^, +n + 1)] 1/2Ptn+l(Cos I)=0,

dPtn (Cos I)	 n cos I - m
_ +	 P^n (cos	 (6G) I)

dI	 sin I

+ [0- n) (t + n + 1)) 1/2 P 	 I),M,n+i
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dP
P^ (Cos I )_ _ n cos I - m P'F. (cos I)	 g

dl	 sln	 on

- [(^ + n) (^ - n + 1)] its 
P'^ "_ I (cos I).

In addition:

P^ " (Cos I) _ (- 1)^	 (t _ n)2! (' + n) 
i s in " 2 cos''" Z,

in particular

Pt. (Cos I) _ (-1)'t cos2t 2,

Pt, _t (COS I) = (-1)' sinVt 2

Pt (Cos 1) = (-1)t (^ sin I,

and

P^ _" (cos 1) _ (-lY'-" Pv_m," (cos I),

PI (cos 1) _ (-lp P^ _ " (cos I),

Pl , (cos I) = P'n.(cos I),

os I) _	 ^ + 
m) 

^ P^(cos I),P! ,o (c 

t(- cos I) _ (- 1)t_ - P " (cos I)•

(68)

(69)

(70)

(71)

(72)

(78)

(74)

(75)

(76)
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CONCLUSION

Balmino analysis (1974) points out the existence of the influence of the

lateral inhomogenetties in the structure of the Earth on the tidal perturbations

in the motion of a satellite. The same conclusion follows from the investiga-

tions by Douglas at al (1974). In our opinion, in addition to analysis of pertur-

bations of the satellite, a future planning should include the tidal observations

on the Earth surface. With them it would be easier to obtain a proper value for

the exterior tidal potential. The present theory points out the existence of sev-

eral tidal long period and "cronb effects" in the coefficients in the expansion of

geopotential and in the motion of satellites. How long can we continue without

including these effects and what are in fact the "average" elastic parameters

which are being presently used to represent the observations of satellites ?

These questions constitute topics for a future research.
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