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FOREWORD

This study was performed under Contract NAS8-30849 for

`	 the George C. Marshall Space Flight Center of the National Aero-

	

`'	 nautics and Space Administration under the direction of James R.
r"

Turner, the Contracting Officer's Representative. The final.

	

'' o	 report consists of two volumes:
,E

E"-

	

4	 Volume I - Executive Summary,

Volume II - Technical and Cost Analysis.

	

g	 Additional documentation in the form of working papers

and drawings have been provided to Mr. Turner. Inquiries regard-
7P

ing this material may be addressed to the following individuals:
^a

James R. Turner, COR/TOSS Study
NASA Marshall Space Flight Center
Attention: PD--24
Huntsville, Alabama 35812
Telephone: (205) 453-4165

	

^a	
Dr. Gary D. Gordon
Communications Satellite Corporation
COMSAT Laboratories
Clarksburg, Maryland 20734
Telephone: (301) 428-4517

Supporting information was

	

W	 pp	 g	 prepared under a parallel

study, Integrated Oribtai Servicing Study for Low--Cost Payload

Programs, Contract NAS8--30820. Inquiries regarding this naterial

may be addressed to Mr. Turner, or

a	 Wilfred L. DeRocher, Jr., TOSS Study
Martin Marietta Corporation
Denver Division
P.O. Box 179, Mail No. 0402
Denver, Colorado 80201
Telephone: (303) 979-7000, Ext. 3085
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I. INTRO?DUCTION

,f

A c-3mparison has been made of the following modes of main-

taining a satellite system:

Ll
a. expendable mode in which failed satellites are replaced,

b. on-orbit servicing where a satellite can be fixed by un-

manned module exchange in space, and

C. ground refurbishment in which the satellite is brought

back to ground for repairs.

It was concluded that on-orbit maintenance is the most

cost--effective mode and that it is technically feasible. It can

be used to repair failed satellites, to improve reliability of

operating satellites, and to update equipment. On-orbit servicing

can increase program flexibility and satellite reliability, life-

time, and availability. Analysis, design, fabrication of engineering

II
	 test units should continue as well as the evaluation of on-orbit

L	 servicers. Servicing of spacecraft in low orbit can begin in some

programs as soon as the shuttle is available. Widespread acceptance

of orbital servicing in geostationary orbit will probably not occur

until much later.

The significant conclusions and results reached by Martin

Marietta and COMSAT in two companion studies are summarized at the

beginning of Section V of this report. Each conclusion is dis-

cussed and supporting rationale presented either in Section V of

this report or in Section V of the Martin Marietta report, I which-

ever is appropriate.
The opinions and conclusions in this report were generated

in the course of this study. They should not be construed as offi-

cial COMSAT policy. COMSAT has made no commitment about on-orbit

servicing.

1
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II.	 STUDY OBJECTIVES

This study was done in parallel with a study' performed

by Martin Marietta (NAS8-30820). Close coordination was maintained

between the studies, and the results of the two studies complement

each other. The significant conclusions and results of bath studies

are presented in Section V.
NASA's fundamental objective for both studies was to

provide the basis for the selection of a cost-effective, STS-
supported rrbital maintenance system. This maintenance concept/cost

determination includes every operational, STS, and payload impact

which is affected by each maintenance concept. Many steadies have

already been made of on-orbit servicing. The objective in these

studies was not to be limited to a particular orbit, spacecraft

program, or maintenance mode. Rather, the objective was to include

the entire spectrum of spacecraft programs and maintenance modes.

COMSAT, as a commercial user of satellites, is in a unique

position to provide an evaluation of on-orbit servicing. COMSAT's

experience with communications satellites was used to make a special

evaluation of the servicing of these satellites. In addition, COMSAT

analyzed a servicing system from a user's viewpoint, identifying

design criteria for the service unit and spacecraft that are required

or desirable.

t 
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i	 III.
	 RELATIONSHIP TO OTHER NASA EFFORTS

t	 A key input to the study was the spacecraft description
.0

defined by the Shuttle Systems Payload Data (SSPD) 1974 document.2

This document provided the number of spacecraft, the weights, and

the scheduled launch dates. A study of this document, from a main-

tenance viewpoint, indicated three separate classes. One group of

spacecraft, such as those launched into planetary orbit, was not

suitable for maintenance for obvious reasons. The other two groups

are those that can be reached by the manned orbiter and those that

require the use of an upper stage to attain their operating orbits.

Several maintenance methods exist in the low-orbit group that is

within reach since extravehicular activity and the shuttle remote

manipulator system are available.
In the group beyond the reach of the manned shuttle, the

largest potential users of an orbital maintenance system are com-

munications satellites in geostationary orbit. They have an extra

attraction in that the orbits are quite similar, and servicing of

a number of satellites can be done without excessive fuel required

to go from one to another. In addition to the communications satel-

lites, there are some earth observation satellites in the same orbit

that have similar requirements.

Table 1 lists the weight, desired time in orbit, and aver-

age number of satellites from the 1974 SSPD data for communications

and navigation satellites. The weight reflects the user's orienta-

tion towards either Delta or Atlas-Centaur weight launching

capabilities and may not represent optimum use of the STS capabil-

ities. The average number of satellites was not usually listed

directly, but was obtained from the launch schedule and the pre-

dicted lifetimes listed. For comparison, an independent estimate

of the number of satellites was derived from other sources and is

^	 also listed in Table 1. Although the distribution is somewhat
(^ li
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different, both estimates are of about 40 communications satel-

lites operating in geostationary orbit throughout the next decade.

This excludes U.S. military satellites, which adds significantly

to the expected total in orbit.

Table 1. Communications/Navigation Satellites

1974 SSPD Data

IndependentDesired
Satellite Time in Average Estimate

Weight Orbit Number
(kg) (yr) 185-190

International Communi-
cations Satellites 1,472 10 14 9

DOMSAT "A" 261 7 4
10

DOMSAT "B" 1,472 10+ 71^

Disaster Warning 583 5 1l^ 2

Traffic Management 29B 5 3 7

Foreign Communications 308 7 3 i2

DOMSAT "C" 868 7 4 3

Communications R&D -- -- 0 2

Weighted Average 1,050 7

Totals 37 4.5

For reaching geostationary orbit, a full capability tug,

30 ft long and capable of deploying 7900 lb, was assumed. It could

also retrieve 3400 lb, or make a round trip with 2070 lb of payload.

The specified maximum on-orbit stay time of 6 days for the tug is a

definite constraint if servicing of several satellites is desired.
It was assumed that this tug would be available in 1982, which

reduced the study period from 13 years (1578-1991) to 9 years

(1982-1991) .

4
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IV.	 METHOD OF APPROACH AND PRINCIPAL ASSUMPTIONS

Although there were two studies with the same objective

proceeding at the same time, there was no attempt, nor desire, to

duplicate effort. COMSAT's approach was to

a. provide information and assistance to Martin Marietta

as desired,

b. review the work being done on both studies for complete-

ness, and

c. perform tasks that complemented the other study.

Studies done by Martin Marietta covered the entire SSPD traffic

model; COMSAT reviewed the whole picture, but used its expertise

with communications satellites as a check point.

Several assumptions were made in the two studies. Only

unmanned spacecraft were included, that is, spacecraft that operate

without the presence of man. Also, for spacecraft beyond the reach

of the orbiter, unmanned maintenance was assumed; this could be

remotely controlled from the orbiter, but more likely would be con-

trolled from the ground. Module exchange was the only type of

maintenance seriously studied since this promises to be the most

cost effective. Other types of servicing, such as inspection with

a TV camera, moving spacecraft to a different orbit, use of a manip-

ulator, aid in deployment of solar arrays or antennas, etc., are

possible and may be done in some cases, but their use would not

change the total picture.

In comparing an expendable system of satellites with

on-orbit servicing or ground refurbishing, the number of launches

was usually held constant; that is, a failure was assumed to occur

after a neri^d of years, and the satellite was either replaced with

a new one (expendable mode), replaced with a ground spare and the

old one taken to the ground (ground refurbishment), or fixed in

r
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space (on-orbit servicing). 	 While the simplest approach was to 1

keep the number of launches constant, one of the potential bene-

fits of on-orbit servicing was missing. 	 One alternative studied
briefly was to perform on-orbit servicing more frequently to im-

prove satellite reliability and decrease the cost of each servicing

since more servicin s are done and the servicing is less u rgent.g	 g	 g .s

The results of this alternate study showed that while total program

costs increased, the benefits justified this small increase.

It was also assumed that additional launches were for

the purpose of replacement, and that the same function could be

performed by on-orbit servicing.	 In some cases it is impossible

to tell from the SSPD data whether a different spacecraft is being ;

launched or whether a duplicate replacement is planned. 	 As will ^.

be discussed later, the ratio of the program life (how long before

the satellite is obsolete) to the satellite lifetime (how long be- 1',
.-F

fore the satellite fails) has a critical effect on the usefulness

of on-orbit maintenance.
The requirements for building a serviceable satellite

were studied, but it was assumed that equal amounts of redundancy

would be used compared to an expendable satellite. 	 While this

assumption is made on most servicing studies, it is not clear that i

an optimum has been chosen. 	 While some redundancy will be desired 71
on a serviceable satellite, there are some subsystems where redun-

dancy could be eliminated. 	 As an example, north-south stationkeeping

thrusters are often redundant, yet they are used only a few times a

year and could be replaced by a servicer within that time. 	 Hence, 'f
redundancy of a north-south thruster is probably not justified for

a serviceable communications satellite.

All spacecraft have been assumed to be body stabilized;

many satellites are now body stabilized and more are expected.

While servicing of spinning satellites is technically feasible,

the additional complexity and cost does not make it attractive. a

6



An additional assumption is that the attitude control is operational

when servicing occurs.	 This is a reasonable assumption for most

satellite fai l ures will not affect the attitude control system.

Furthermore, if the attitude control system has failed, it may be

possible to control the attitude through an alternate mode for a

limited time.	 Many attitude control systems have different sensors

that can be used, and a thruster system can also be used if momentum

wheels have failed.	 The assumption that the satellite attitude is

fixed and known (even though it may be in a backup stabilization mode)

simplified the docking operation and should be made.

For purposes of communications satellite design, a configu-

ration was assumed based on satellites to be launched in the next

few years.	 Even though these satellites are not cand i dates for on-

orbit servicing, technical details are better known. 	 A request for

proposals has recently been issued by INTELSAT for an INTELSAT V

launch in late 1979.	 It is obvious that this is definitely not a

candidate for on-orbit servicing and, in fact, will probably not be

modularized, the first step toward an on-orbit serviceable design.

Early definition studies on INTELSAT VI, the next genera-

tion of commercial international communications satellites, have 'j

been started.	 Current planning, based on requirements predicted J

by international communications traffic forecasts, calls for a

Ell!
first launch in 1986. 	 Based on previous time scales, the request

for proposals for INTELS*AT'VI will be issued around 1982. 	 Hence,

this may be a candidate for on-orbit servicing, but only if a repre-

sentative on-orbit demonstration is carried out before the RFP is

issued, probably in 1981 or 1982. 	 Delaying this demonstration until

the mid-1980's will probably preclude even INTELSAT VI from being a
2

candidate for on-orbit servicing.

21
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BhSELINE APPROACH TO ON-ORBIT SERVICING

As an introduction to the study, a brief review will be

given of how an on-orbit servicing might be done on a spacecraft.

A satellite provides information by means of its func-

tioning and its telemetry. A decision to do a maintenance function

(either replacement or repair) is based on the satellite's expected

performance in the near future and the cost of the maintenance 	 J

function. Decisions may also be affected by availability of modules,

spare satellites, and/or transportation.

Once the decision is made, the servicer and module are put

in the shuttle/tug and taken to geostationary orbit. Orbit tracking

places the tug with the servicer within less than a kilometer of the

spacecraft. Acquisition of the spacecraft is then accomplished by

means of radio waves or light, and a closer approach is made. Most

studies assume that rendezvous and docking will be done by tech-

niques already developed and proven.

After docking, a pivoting arm servicer removes a module

from the spacecraft and replaces it with a new module from the

stowage rack. The old module is stored in the stowage rack which

may or may not be returned to ground. Several modules may be

replaced; while the servicing may have been initiated by one module,

the exchange of other: , modules may be desirable. During this pro-
f

cedure, the attitude control of the spacecraft has probably been

turned off, and the tug maintains attitude control.

After module exchange, some checking may be done through L..
the spacecraft telemetry. Additional checking would be done after

the tug/servicer have undocked, but while they are still in the 	 i

vicinity of the spacecraft. The tug may then go on to service

another spacecraft or return to low orbit.	 it
LA

lI	 J

t

(

J



L

9

m

I	 .1	 I	 I	 I:	 I	 I

u
V.	 BASIC DATA GENERATED AND SIGNIFICANT RESULTS

u	
The significant conclusions and results reached in the two

u	.integrated orbital servicing studies are presented below with the

major conclusions shown in italics. Many secondary results and

supporting conclusions are given in the rest of this section and

in the Technical Volume. The following significant conclusions

and results were generated by the principal parties in the Martin

Marietta and COMSAT studies. These conclusions, where COMSAT has

L performed a significant part of the work, are discussed and their

supporting rationale are presented in the remainder of this section.

1. Top--Level Conclusions

a. on-orbit maintenance is the most cost-effective mode.

b. Spacecraft can be designed to be serviceable with accept-

able design, weight, volume, and cost effects.

c. The module exchange form of servicing is applicable to

repairing failed satellites, improving reliability of

operating satellites, and updating equipment.

d. Analysis, design, --ngineering test unit fabrication, and

evaluation of on-orbit servicers should continue.

e. On-orbit servicing can increase program flexibility and

satellite reliability, lifetime, and availability.

f. Ground refurbishment is not cost effective for most geo-

synchronous satellites.

0
fl



2. Maintenance Concepts

a. The on-orbit servicer maintenance concept is recommended.

b. The on-orbit servicer, extravehicular activity, and shuttle

remote manipulator system are all technically feasible.

c. Only the on-orbit servicer is applicable to both tug- and

orbiter-based missions

d. Remote control of module exchange with an on-orbit servicer

is technically feasible.

ii

3. On-Orbit Servicers

a. The pivoting arm on-orbit servicer was selected and a pre-

liminary design was prepared.

b. On-orbit servicer concepts exist that will permit a broad

range of spacecraft design alternatives.

c. On-orbit servicing is compatible with standardized modules

or spacecraft, but does not require them to be effective.

d. Side- and bottom-mounting forms of space replace-able unit	 LI

interface mechanisms are useful and have been designed.	
it
;j

4. Economics Evaluations

a. Use of on-orbit servicing over the twelve nears covered by

s.^	 the 1974 SSPD and the October 1973 PayZoad Model results

in savings greater than

® nine billion dollars over the expendable mode, and

four billion dollars over the ground-refurbishab-Ze mode.

b. The life cycle costs of the on-orbit servicer represent

approximatel.y.one percent of the overall savings, and

1
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HUI j

c. Cost sensitivity analyses showed that wide variations in =i
`f

cost data, especially mission model size and fraction of

spacecraft replaced, affect specific savings but do not

change the major study conclusions. }

d. A long-life free-flying servicer at geostationary orbit is

potentially cost effective. r

e. Specific launch cost reimbursement policies can be an

important factor in which form of servicing is adopted

for individual spacecraft programs.

f. Expendable satellites are cost effective where satellite

lifetime meets program lifetime requirements.

z

5. Development implications

a. A single development of an on--orbit servicer maintenance

issystem is compatible with many spacecraft programs and

recommended.
j b. Orbital maintenance does not have any significant impact j

on the space transportation system. 3

c. On-orbit maintenance with the pivoting arm servicer is

compatible with a variety of delivery vehicles such as the

orbiter, full capability tug, tree-flying servicer, solar

electric propulsion system, earth orbital teleoperator

system, and some forms of the interim upper stage.

tl

6. User Acceptance

HUI
a. Users need guarantees that servicing will be available and

assurances that it will be cost effective.

,.$ b. A deeper understanding of the orbital servicing cost

► structure is required before initiating drastic changes ^	 ^{

11
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in conventional satellite construction and operations

methods.

C. Scheduling delays of several months are tolerable for

many servicing requirements..

d. Development of the on-orbit servicer should include early

in--space demonstrations of module exchange along with

rendezvous and docking.

e. Building, fl7ing, and servicing a serviceable satellite

is needed to obtain widespread acceptance of orbital

servicing.	 }

PRIMARY CONCLUSIONS

Ia. On-orbit maintenance is the most cost-effective mode.

This is the most important conclusion of the two studies.

Various assumptions and qualifications are given throughout the

two reports.	 On-orbit maintenance is more cost effective for large

spacecraft than for small ones and for low orbits than for high

orbits.

lb.	 Spacecraft can be designed to be serviceable with accept-
able design, weight, volume, and cost effective,

Studies that have focused on individual projects have

designed serviceable spacecraft. 4 ' 5 	Part of this study consisted

of the design of a serviceable satellite suitable for international

communications. 	 Some of the details are presented here. f
The serviceable communications satellite is a modularized

design based on 48 travelling wave tubes (TWTs), divided yap into

eight modules with six TWTs per module. 	 Travelling wave tubes

which have 6-W RF outputs with a heat dissipation of 14.8 W and a

maximum allowable collector temperature of 45 °C have been considered.

J^
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The radiator requirement of this module then sized the face of

the module, which looks either north or south (perpendicular to

the orbit plane) for a geosynchronous orbit.

A new type of travelling wave tube is a dual collector

unit. This type of tube with a 5-W RF output, for example,

would have 9 W of heat dissipation with a maximum allowable

collector temperature of 75°C. This combination of higher effi-

ciency and higher allowable radiator temperature would allow for

a smaller module.

Gather modules which have size problems are the attitude

control module and the stationkeeping or hydrazine module. An

attitude control module with an externally gimbaled momentum

wheel is a large unit. For a mid-1980's satellite, however,

the technology can easily be extrapolated to skewed reaction

wheels, an internally gimbaled momentum wheel., or a much higher

speed momentum wheel using magnetic suspension and a fiber--

reinforced rotor. Any of these developments will result in

a much smaller wheel or wheels which will allow for a smaller

attitude control module.

The four stataionkeeping modules each contain about

105 lb of hydrazine to support a full 7-year mission (AV 1300

ft/s) of attitude control and stationkeeping. Due to very high

hydrazine weight penalties (300 lb for INTELSAT IV and 400 lb

for INTELSAT IV-A), associated primarily with north-south sta-

tionkeeping of communications satellites, both bipropellants

and electrically augmented hydrazine systems are being seriously

considered. Either of these would raise the specific impulse

from 220 to 300 s which would reduce the amount of propellant

required, thus resulting in smaller tank requirements.

13f
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i
The trend in all these areas seems to be toward smaller,

lighter components. In addition, INTELSAT V will have approxi-

mately one-quarter of its transponders operating in the 11- and

14-GHz band, which should also result in small components. The

mid-1980 time frame should also allow time for the nickel-

hydrogen batteries to replace the nickel-cadmium batteries,

resulting in energy storage capacities of 18 Whr/lb rather than

the current 6 Whr/lb.

On the basis of these trends, the module size has been
t

chosen as 16 x 24 x 36 in. to allow for latch and attach mechan-

isms and to permit the overall structure to fit comfortably into

the shuttle cargo bay. This configuration is reflected in the f

model of an advanced modularized communications satellite shown

in Figure 1. The module weights are given in Table 2, and the

weight of the entire spacecraft is shown in Table 3. A model of 	 -'

this satellite was built and photographed by Martin Marietta.

The weight penalty for a modularized satellite as opposed	 t;

to an expendable, non-modularized satellite such as INTELSAT IV-A

or INTELSAT V is estimated to be between 20 and 30 percent. Even

if the weight of many components is reduced as a result of advanced

technology, the penalty expressed in percentage form should still

be about the same. An exact comparison is difficult because INTEL-

SAT V, the expendable baseline case, will have only 27 operating

transponders (plus spares) a factor which has an effect on the power

supply weight. The important conclusion is that the weight penalty

associated with an exchangeable module-type design is estimated at

20 to 30 percent rather than a factor of 2 or 3, as concluded by
some early studies.

T "^
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Modularized Penalty:

2711 - 2100 = 29 nercent

I	 I	 I_	 I	 I	 I	 __ J

Table 2. Modularized Spacecraft Module Weights
Present Technology

Module
Component
Weight
(lb)

Structure,
Harness,
Connectors

(lb)

Latch/
Attach

Mechanisms
(lb)

Total
Weight
(lb)

No. of
Modules
(lb)

System
Total
(lb)

TWT 60 12 14 86 8 688

Receiver 66 13 14 93 1 93

Attitude Control 60 12 14 86 2 172

Battery and T&C 75 14 14 103 2 206

Battery and Converter 60 12 14 86 2 172

Propulsion 120 21 14 155 4 620

1951

Table 3. Modularized Spacecraft Weight

Modules	 1951

Structure and Harness	 325

Temperature Control	 60

Solar Array	 125

Antenna, Feeds	 250

Total	 2711	 lb
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The details of the relationshi p between the latch/attach
machanism and heat transfer have not been worked out. To minimize

temperature gradients within the module, the electronic components

should be mounted on the inside surface of the module radiator plate.

This should be a fairly thick plate to diffuse the heat from the

components uniformly over the radiator surface. The latch/attach

side of the module should also be reasonably thick to take the

loads required to mate the connectors. It may be possible to inte-

gratethese two requirements into the same side of the module if

'	 the latch/attach mechanism does not overly constrain the component
mounting problems or cause excessive blockage of the radiator view

-!	 to clear space. A reasonable compromise could be to mount the

latch/attach mechanism to one of the east /west sides of the module.
In that case, the components could be mounted on both the inside

of the radiator and the latch/attach side, and the thick plate of

the latch/attach side could efficiently transfer the heat from the

components to the radiator.

Î

	

	 Figure 1 shows the layout for the modules. The higher

power dissipation modules (the transponder or TWT modules) are

located with a direct view to space through the north or south
4	 faces of the satellite. The concept envisioned is that the space-

craft structure allows the modules to "look through" the structure

Lin a north or south direction so that the module can essentially

contain its own radiator. Thus, the other five faces can probably

be designed adiabatically so that the thermal design of the modules

balances the internal power dissipation versus the net external heat
exchange from the radiator.

u
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1The propulsion modules are located in the four corners

for advantageous location of the thruster modules. Each module

is envisioned to contain one center-fed hydrazine tank with a blad-

der retention device and a thruster module of five thrusters. The

total of 20 thrusters on the spacecraft allows for full functional

redundancy for all attitude control and stationkeeping modes with

one of the four propulsion modules inoperative. With one module

failed, east-west stationkeeping will result in some small propel-

lant penalty by requiring the firing of a yaw axis thruster to

compensate for the resulting disturbance torques about the yaw

axis. Also the loss of one propulsion module will result in a

satellite center of mass shift as propellant is drawn from the other

three modules. The maximum value of this shift has been calculated

as 4 in. along the roll axis. During north-south stationkeeping,

the disturbance torque resultin g *:.rom this shift can be offset by

off-modulation techniques of the stationkeeping thrusters.

The battery modules are also located so that their radia-

tor can have direct views to cold space because battery cells should

be kept at low temperatures (-10°C) for long cycle life.

For efficient satellite configuration, some of the modules

are located so that they have no direct views to space. In this

layout these modules are the attitude control modules and a receiver

module. It should be possible to design these low-power modules to

transfer their heat load to the spacecraft structure for eventual

radiation to space. The attitude control modules contain an atti-

tude sensor and a processor as well as momentum storage devices.

Figure 1 shows an earth sensor located in each attitude control

module which must be able to look through the spacecraft bus to

have a view of the earth for attitude reference and error deter-

mination. There may also be small antennas for operation with RF
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beacons on the earth. The important requirement is that either

module must be capable of supplying the complete attitude control

function for the satellite.

E

	

	 For this satellite, the docking face for module exchange

is the anti-earth face. It should be recalled that this is a com-

munications satellite in geosynchronous orbit. One side of the

satellite always faces the earth so that the communications

^j	 antennas can be attached to this face. In addition, the satel-

lite is 3-axis stabilized so that one face always faces north

jand one side south. These are the faces used as the heat rejec-

tion radiators. Since the plane of the ecliptic is inclined at

23.5 0 to the equator, the sun can shine on the radiator surfaces

only at 66.5 1 off the radiator normal. The solar array drive

axes, which are perpendicular to these faces, are located to pass

through them. Also, there is always one face facing east, one

face facing west, and one face looking away from the earth. The

latter face, known as the anti.-earth face, has been chosen as the

docking face for several reasons:

a. there is no interference with the antenna;

b. there is no interference with the solar arrays; and

c. all modules can be reached from a single docking.

Meteorological satellites, which may also be body-

stabilized with an earth view face to mount the sensing instru-

ments, may be candidates for the same type of on-orbit servicing

configuration.

Problems addressed in the study which need further atten-

tion are those associated with connectors. Since the satellite

is a communications satellite with eight transponder modules and

one receiver module, the RV interconnections are quire complicated.

There may be as many as eight RF connectors on the receiver module

and four on each of the transponder modules. Since a number of

different frequencies may be utilized, a number of different

11
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waveguide sizes will be required and the alignment tolerances

may be quite severe, e.g., ±0.003 in. for a 14-GHz waveguide.

The connectors will be required to have low dissipative losses,

low leakage losses, and low voltage standing wave ratio (VSWR)

losses. Problems of leakage may also be quite severe. Hence,

an experimental hardware program to build such connectors and

actually measure losses and leakage when using an automated latch/

attach mechanism would be valuable. These types of connectors

would probably use alignment pins, a short length of flexible

waveguide, and RF choke couplings with crushable gaskets as shown

in Figure 2. Reproducibility of results over a number of opera-

tions would be required.

The case of multiple--pin electrical connectors also

requires hardware demonstration to show the compatibility of the

latch/attach mechanism with the alignment accuracy and forces

required.

1c. The module exchange form of servicing is applicable to
repairing failed satellites, improving reliab,ility of
operating satellites, and updating equipment.

To evaluate servicing, it is useful to look at past sub-

systemfailures and defects that have occurred on communications
f

satellites (see Table 4). While this list is not complete, and

the same failures will not occur in the future, the overall pic-
a

ture is probably applicable to future failures. The large list

of INTELSAT satellites is due to the author's more extensive

knowledge of these satellites and the large number of satellite

years represented by these satellites. In spite of the problems

listed, some of these satellites have not only fulfilled their

mission, but have continued to provide service well beyond their

design life. Early Bird is an example of a satellite that might

be used today if it could be refueled. (It might be rented to a

foreign country as a domestic satellite.)

20
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Table 4. Typical. Subsystem Failures of
Communications Satellites

Satellite	 Component Failure Type Reparable

COURIER	 Decoder Design Yes

TELSTAR	 Decoder Design Yes
Battery Random Yes

RELAY	 Pourer Conditioning Random Yes
SYNCOM	 Telemetry Random Yes

EARLY BIRD	 Fuel Depletion Wear-out Yes

NIMBUS a	Solar Array Bearings Design Difficult

ATS-5	 Attitude Control Design No

TACSAT	 Structural Bearings Design Difficult
DSCS-2	 Deployable Structures Design No

TELESAT	 Power Conditioning Random Yes

INTELSAT II 	 Battery Random Yes

Propellant Feed Design Probably
Propellant Relief Design Yes
Valves

Solar Array Degradation Design Probably

INTELSAT III	 Structural Bearings Design Difficult

Low Orbitb Random Yes
Battery Random Yes

Receiver Design Yes

Transponder Random Yes

Earth Sensor Design Yes

INTELSAT IV	 Receiver Design Yes
Thruster Design Yes

Earth Sensor Random Yes

Telemetry Beacon Random Yes

aNIMBUS is not a communications satellite, but had a problem
that may occur on future communications satellites.

bone INTELSAT III was injected into a low transfer orbit;
hydrazine propulsion was used to achieve proper orbit.
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in the column labeled "type" in Table 4, failures have

been classified in terms of reliability. A "design" failure occurs

j	 early in life; its identification indicates that the reliability

was not as high as planned. In some cases this may actually be a

i
problem associated with the original design of the part; in other

i,	 cases the original design may be satisfactory, but a problem may

have occurred in the production (quality control).
i

A "random" fa i lure may occur at any time; a single occur-

rence does not chang: the estimate of the component reliability.

Usually the failure rate is assumed to be constant, and such a fail-

ure can occur at any time in the life of the satellite. A "wear-out"

is a failure that occurs late in the design life of the satellite;

it may be an actual wearing out or some other expected failure such

as fuel depletion. in a few cases the classification of failures

is arbitrary. For example, the failure rate of some components may

i	 increase with time; a failure may occur early in the life of the

satellite (random), but becomes more likely as the satellite becomes

older (wear-out).

The column entitled "reparable" in Table 4 is an estimate

of whether a failure is serviceable; this depends on the design

e	 of the serviceable satellite and the design of the servicer. Theo-

retically any failure of a serviceable satellite can be repaired in

i
space by a remote manipulator, but some repairs may not be cost

effective. The economical approach to this question assumes that

most of the subsystems are built as replaceable modules; that the

satellite retains some capability for attitude control, orbit deter-

mination, and rendezvous; and that the servicer can exchange

modules rind do little else. Even with these limitations, most of

the failures can be repaired in a serviceable satellite.

A striking feature of Table 4 is the large number of

design dailures. This makes servicing more attractive for two

reasons:

t?
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a. repairing a satellite early in its design life provides

years of additional service, and

b. often such a failure suggests servicing of similar

satellites in which failures have not yet occurred.	 -i

It should also be noted that only one wear--out failure is listed. 	 .;

At present most communications satellites have not reached the

point at which wear-out failures predominate.

In the design of a servicing system, it is useful to

know the effects of various fai l-ures and the urgency of the repair.

For each of the subsystem failures in Table 4, the effect of the

failure, the allowable repair time, and the remedial action taken

(if anv) are listed in Table 5.

The allowable repair time is subjective. Usually the

urgency is less when the satellite is first injected into orbit

because the user is not dependent on the satellite, and traffic

requirements (if any) are smaller. on the other hand, when a

communications satellite is in operation and a critical subsystem

fails, a repair is desirable immediately, preferably within min-

utes or seconds. However, there are often alternative modes of

operation which permit repairs to be delayed. Eatteries, for ex-

ample, are needed only during the eclipse season. Furthermore,

battery failures are usually preceded by about a year's warning

so that replacement can be scheduled in advance,

Note that half of the repairs in Table 2 can be delayed

for months or years. This may be surprising to those who believe

that a communications satellite should be serviced in a week or

two. However, it is a direct result of the redundancy built into

communications satellites, the fact that not all subsystems are

used continuously, and the warning of failure (or graceful degra-

dation) that often precedes actual failure.



Table 5. Consequences of Subsystem Failure

Satellite Component Effect
Repair
Time

Remedial Action

FailedAllowed Satellite Others

COURIER Decoder Lost Command Days
TELSTAR Decoder Lost Command Days --- ---

BatteryBattery Low Eclipse Power Months -- ----
RELAY Power Cond. Lost 3 Weeks Days Self-repair ---
SYNCOM Telemetry Lost Information Months --- ---
EARLY BIRD Fuel Depletion Lost Position Years --- ---

NIMBUS Solar Array Lost Power Hours --- -_-
Bearings

ATS-5 Attitude Control Lost Attitude Weeks --- ---
TACSAT Structural Lost Attitude Seconds --- ---

Bearings
DSCS-2 Deployable Lost Attitude Dayw --- ---

Structures
TELESAT Power Cond. Lost Power Days ---- ---

INTELSAT II Battery Low Eclipse Power Months --- ---
Propellant FeedPropellant Lost Position Months ---- __-
Propellant Re- Lost Tank Pressure Months ---- ----
lief Valves

Solar Array Power Degradation Years --- +Cover
Degradation

INTELSAT III Structural Lost Attitude Seconds Invert +Heaters
Bearings
Low Orbit Wrong Position Weeks Reposition ---
Battery Low Eclipse Power Months ---- ---
Receiver Lost Amplitude Weeks --- Fixed
Transponder Lost Channel Days --- ---
Earth Sensor False PIP Months Another +Test

INTELSAT IV Receiver Lost Amplitude Months ---- QC
Thruster Lost Some Life Years Another +Connect.
Earth Sensor Extra Noise Months --- ----
Telemetry Beacon Lost Redundancy Months I	 ---- ----
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As might be expected, the remedial action taken on

present "expendable" satellites is limited. Nevertheless, there

are cases in which redundant components (or an alternate mode)

can be commanded on, cases in which special commands have been

given to minimize a problem, and at least one case in which the

satellite has fixed itself. (In RELAY a crack in a transistor

case allowed moisture to leak in; once in space, the moisture

leaked out and the satellite repaired itself.)

More significantly, a number of subsystem failures have

led to specific changes on other satellites in the same program.

This is excellent proof that, if servicing were available,

changes would be desirable on satellites already launched.

Because design failures are common, and because they

are especially significant in terms of servicing missions?

Table 6 highlights the subsystem failures or anomalies in

INTELSAT satellites. This table includes several anomalies not

considered serious enough for inclusion in preceding tables. The

first column notes the number of satellites in which design fail-

ures have been observed. The next column notes the number of

satellites in which a replacement module is needed. to estimate

this figure, the severity of the problem is compared with the

estimated cost of a servicing mission. in a number of cases the

severity is not sufficient to justify a mission; yet if the sat-

ellite were to be serviced for another reason, that module would

be replaced.

On the basis of these statistics, it can be predicted

that, on the average, each new program can expect two design

failures, of which one is sufficiently serious to warrant a mod-

ule replacement. The time at which a failure has appeared in

programs to date has varied from a few hours to 4 years. On the

average a design failure appears about one year after injection

26
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Number of NumberNeeding Total Satellites
Satellite Component Failures Replace_Observed Injected Launched

ment

Ii Propellant Feed 3 3

Relief Valves 3 3 3 4

Solar Array 1 0

III Structural Bearings 5 5

Receiver l 1 5 8

Earth Sensor 5 0

IV Receiver 4 4

Thruster 1 1
7 8

Structural Bearings 2 0

Earth Sensor 1 0

TOTAL	 26 17 15 20

Table 6. Design Failures or Anomalies in
Communications Satellite Subsystems
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of the first satellite in the progran. An additional year or two

is required to identify the cause and to procure replacement modules

without the defec^..
In summary, if servicing is available, most communications	 a

satellites will use it. In the first three years of a system of

satellites, it can be expected that every satellite will require

module replacement due to design failures. During the life of a

satellite, the probability that servicing will be required to cor-

rect a random failure is somewhere between 0.5 and 1.0. If the

satellite lifetime is extended beyond present design lifetimes,

additional satellite servicing will be required to fix wear-out

failures and additional random failures.
f

ld.	 On-orbit servicing can increase program fZexibility

and satellite reliabili ty, 	 Zifetime, and availability.

In many studies of servicing it has been assumed that
V^

the satellite is untouched until it fails; at that point it is

either repaired (servicing system) or replaced (expendable mode).

if the delay in replacing the satellite is equal to the delay in

repairing it, the availability is unaffected.	 However, availabil-

ity is important to commerical communications satellite systems.

Hence, a simulation study has been conducted to investigate the

effect of different modes of servicing on availability.

One method of decreasing the cost of servicing is to

service more than one satellite in a trip. 	 This requires one

satellite to be serviced at a time that may be determined by

failures on other satellites, since failures will not generally

occur simultaneously.	 The satellite with a failed module must
wait several months for module replacement.

For this simulation study, the weights taken to geo-

stationary orbit, including weights of original. satellites,

28
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replacement satellites, replacement modules, and servicer, have

been calculated. It is assumed that, if costs had been calculated,

they would increase with weight.

The communications model used is similar to the one

described in the previous section. For the reliability model, ten

subsystems were selected, with the redundancy and failure rates

shown in Table 7. The degree of redundancy and failure rates shown

are typical of those in present expendable satellites. When a fail-

ure occurs, the module is replaced; in a few cases, the module weight

is much larger than the weight of the actual component. The module

weights are lighter than those shown in the previous section, but

the differences do not affect the conclusions.

Table 7. Subsystems in Reliability Model

TTI

u

u

u

0
h

-1

1	 -

Subsystem Required Provided
Failure
Rate

(10" 9 /hr)

Module
Weight
(lb)

Transponders 35 48 3000 60

Receivers 1 4 6000 66

Attitude Control 1 2 1500 60

onboard Processor I 2 700 60

Momentum Wheel , 2 700 60

Batteries 4 4 570 75

Telemetry, Tracking and Command (TT&C) 1 2 4000 75

Power Conditioning 2 2 100 60

Tanks 4 4 400 120

Thrusters 1 2 1000 120

The reliability of the satellite has been calculated for

the random failure rates listed in the preceding table and for vari-

ous times up to 10 years. For the distribution truncated at 10 years,

the calculated average lifetime is 7.9 years. This reliability is
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compatible with some specifications that require a reliability of

^	 c

0.7 at the end of 7 years. 	 It remains a moot point as to whether

satellites can consistently achieve this reliability.

Three cases have been considered: 	 expendable, servicing
ij

done upon satellite failure ("demand"), and servicing done when a

redundant component failed.	 The latter has been labeled "scheduled"

servicing in this study, and it is assumed that the opportunity for

service comes at regular intervals. 	 For the expendable mode, down

times of 4 months, 2 months, or 1 month have been assumed. 	 This is

the total time from a satellite failure until a new satellite starts .k

operation.
In the demand servicing mode, no action is taken until

the satellite has stopped operating. 	 Upon servicing, it is assumed

that all redundant components that have failed will be replaced,

and that the satellite is equivalent to a new satellite.

In the scheduled servicing mode, servicing occurs only i

at regular intervals.	 At that time, if any redundant component has

failed, the satellite is serviced and the failed components replaced.

In actual operation, scheduling intervals would vary, and the num-

bers used in this study, 24, 12, or 6 months, would represent the

averages of the actual scheduling intervals.
i

Computer generated random numbers were used to make 200

simulated runs.	 For more accurate comparisons, correlations between

the various runs were made. 	 For example, the baseline case was a

10-yearrogram^ the calculation for a 20-year program was made byP	 Y	 p	 g

using the results for the 10-year program and extending them another

10 years.

The baseline system chosen consisted of two operating

satellites and one in-orbit spare, corresponding to the present con-
`j i

figuration for international communications over the Atlantic Ocean.

The weight penalty associated with building a serviceable satellite

(estimated as 20-30 percent) was not included. 	 The weight of the t

satellite was assumed to be 2100 pounds and that of the servicer
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for demand servicing was assumed to be 500 pounds. For scheduled

servicing, the weight of the servicer, which would be shared among

the satellites being serviced, was neglected.

The calculated availabilities and weights have been plotted

in Figure 3 for each of the nine basic cases. As might be expected,

the expendable mode shows the highest weight, The differences would

be smaller if the servicer weight for scheduled servicing and penalty

for modularization were included, but the order of increasing weights

would still be the same.
The availability for the expendable mode or demand servic-

ing is about 0.999 for a 4-month delay. It is important to note

that this availability can be achieved with scheduled servicing at

12-month intervals. in actual practice, including an occasional

"demand"'servicing and using the failure warnings provided by some

components would make it possible to achieve even higher availabili-

ties with scheduled servicing.

If the program is extended from 10 years to 20 years, the

weights launched in the expendable mode are almost doubled. But

the additional weights of modules and servicer are small, so the

total weights launched in the servicing mode do not increase

substantially. Thus increasing program life makes servicing more

attractive. The availability of the scheduled servicing mode hardly

changes, since satellites are being maintained by replacing failed

redundant components. Availabilities for the other two modes de-

crease slightly, since more failures occur in the second decade.

One conclusion from this analysis is that servicing may

be delayed for periods of a year or so without excessive avail-

ability penalties. This will depend on the degree of redundancy

that is built into the satellite; without redundancy, it is not

possible to service a satellite before failure. With servicing,

some redundancy will still be required in the satellite.

Servicing becomes more attractive if the ratio of program

life to satellite life is increased. If satellites can be built
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with an average life of 7 years, and if they become obsolete after

10 years, servicing is not particularly useful. On the other hand,

if a satellite has only a 5--year life, and does not become obsolete

for 15 years, then servicing becomes more attractive.

if.	 Ground refurbishment is not cost effective for most
geosynchronous satellites.

it is sometimes difficult to fully realize the distance

from the earth to the geosynchronous orbit. A greater velocity

change (AV) is required to place something in gt.synchronous orbit

than to completely escape from the earth's gravitational field.

For ground refurbishment the fuel needed to bring a spacecraft back

must first be taken to geostationary orbit. In terms of weight,

the shuttle can place 62,000 lb in low earth orbit, but the maximum
i

weight for a ground refurbishment mission (to take up a replacement

and bring back the old satellite) is only 2000 lb.
f
Y

A spacecraft may be returned to earth to clean up the

orbits, to diagnose past difficulties, or to refurbish the space-
;

craft. Cleaning up the orbits is commendable, but not part of

this study. While bringing back spacecraft for diagnosis appears
.

	

	 i
attractive, in most communications satellite failures it has been

possible to determine the failure mechanism from the telemetry 	 3
signals. In this study the primary reason for bringing back a

spacecraft is to fix it and return it to space, and the transporta-

tion costs for bringing back a communications satellite are more

than twice the cost of taking it up?

There are two suggested methods of refurbishing a space-

craft on the ground. The usual approach is to assume that the

spacecraft will be completely overhauled, each box opened and in-

spected, the spacecraft reassembled, and a complete environmental

test run. The transportation costs of bringing the spacecraft back

I:	 I
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and the costs of refurbishing it amount to a substantial fraction

of the initial cost of the spacecraft.

An alternative suggestion for refurbishing is to use a o
"bare bones" approach. When the spacecraft is returned, a module

is pulled off and a replacement is put on. The spacecraft is ready n
to go after a few checks to ensure that the spacecraft is indeed

working. This appears to be contrary to the present philosophy

of launching spacecraft. On the other hand there may be someg p	 r	 Y

question as to whether the reliability of a box is increased or

decreased by opening it up and inspecting it. 	 o-

Ground refurbishment is the one maintenance mode that

requires a full capability tug (or at least a tug that returns to

low orbit). This study has used the cost and schedule presently

quoted for the full capability tug.

ECONOMICS EVALUATIONS

4d. A tong-Life free-flying servicer at geostationary orbit
is potentiaZZy cost effective.

While initial on-orbit servicings at geostationary orbit

will probably be done with the tug (full capability or interim),

the maximum benefit can be achieved with a free flying servicer.

The argument for a free flying servicer is as follows: A drastic

change in satellite design and construction is required to build

a serviceable satellite. Once such a change has been made, this

capability, which implies many servicings (perhaps two per satel-

lite during its lifetime) should be fully exploited. The full

capability tug can stay in geostationary orbit for only six days.

A day or more may be required to move from one satellite to another

so that the full capability tug can service an average of only

three satellites.

The servicing configuration discussed here is shown in
Figure 4. It consists of a free flyingying servicer that will be taken

to geostationary orbit by the shuttle/tug. It will then move from
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satellite to satellite, replacing modules as it goes. After it

has serviced all .the satellites that need servicing around the geo-

stationary orbit, it may coast for a while or it may be called on

to service a satellite with a module that it has on board or a

module taken from another satellite. At regular intervals, per-

haps annually, it will be resupplied by the tug and sent out on

another round of servicing.

An efficient servicing method is to move from one ocean

region to another, servicing each satellite that needs service as

the servicer goes around the orbit. The actual schedule would

represent a tradeoff among the various priorities and the fuel

required to reach particular locations. in some cases the satel-

lite might change location to meet the servicer at some desired

point.

To determine the probable distribution of satellites,

the location of all the INTELSAT III and IV satellites, the desired

locations of a number of domestic satellites as filed with the FCC, and

the locations of a few other satellites were determined. Four clus-

ters were identified over the Atlantic Ocean, U.S.A., Pacific Ocean,

and Indian Ocean. While the exact locations of satellites in the

next decade will be different, the general pattern will be the same.

As an example, 10 satellites taken at specific longitudes,

are shown in Table 8, and a total mission time of four months was

selected to visit the 10 satellites. Velocities were selected to

minimize the fuel used in this tour. That is, higher velocities

were used for long jumps, and smaller velocities for short jumps;

velocities actually varied from 0.8 0 per day (for 5 0 jumps) to 3.70

per day (for 110 0 jumps). This strategy may not be optimum; for

example, it may be desirable to increvse the total mission time,

that is, the time until the last servicing, and to service some of

the earlier satellites more quickly.

The actual modules that would have to be exchanged have

been estimated from data on satellite failures as well as experience

in operating a satellite system. During a period of three years,
.	 x
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Table 8. Visiting 10 Satellites -- 4 Months Fuel
5 Percent or 200 lb of Hydrazine

i

Assumed
Longitude

(°E)

Longitude
Change
(deg)

Transit
Time
(days)

Velocity
(deg/day)

AV
(ft/s)

Atlantic Ocean
340

10 9 1.1 22
330

5 6 0.8 17
325 40 18 2.2 44

U.S. 285 15 11 1.4 27
270 10 9 1.1 22
260 5 6 0.8 17
255 75 25 3.0 60

Pacific Ocean
180 10 9 1.1 22
170 110 3€7 3.7 73

Indian Ocean
60

Total 123 days 305 ft/s,
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30 satellites would be serviced. About half of these would receive

modules with new batteries and transponders. Other modules replaced

would probably include receivers, earth sensors, momentum wheels,
	 -t

and various electronic components. This list is still preliminary,

and will .Mange as some components become more reliable. For satel-

lites that require north-south stationkeeping, it is expected that

refueling will be quite attractive. These satellites may be launched

with four or five years of fuel and refueled every three years.

If the free flying servicer exchanges modules on 30 satel-

lites, its cost per servicing becomes quite small. The estimated

5 percent for fuel per year is quite conservative. The main cost

factors then become the price of building a satellite to be ser-

viceable and the cost of building and transporting the new modules

to geostationary orbit. one added benefit is that many shuttle/tug

flights can be loaded with additional modules or fuel, so that the

loading factor for the tug should improve with a system that

includes a free flying servicer.

Once a free flying servicer is available and the cost

per servicing is low, new possibilities emerge. It then becomes

feasible to perform many servicing operations that do not justify

a separate shuttle/tug flight. In particular, satellites that are

still operating should be serviced. Servicing can then be used to

increase the reliability of an operating satellite: design failures

can be corrected, failed redundant components and wear-out items

replaced., and fuel added.

4f. ExpendahZe satellites are cost effective when satellite
lifetime meets program Zifetime requirements.

A key factor in the evaluation of servicing is the ratio

of satellite lifetime to program lifetime. Satellite lifetime is

the average time that a satellite operates until some failure destroys

its usefulness (using some predetermined definition of successful

i
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L 4d	 operation). Program lifetime is the length of time before a

satellite becomes obsolete and must be replaced by a new genera-

tion of satellites.

The li:etime of communications satellites has been of

the order of a few years. INTELSAT I (Early Bird) was designed
da	

for one year and lasted considerably longer. INTELSAT III had an

average lifetime of only two years. INTELSAT IV was designed for

a7-year lifetime, but it is too early to determine the actual

value. In the future, a 5-year lifetime can probably be achieved,
S '

but the feasibility of a 10-year life is still questionable.

The program life of communications satellites has been

fairly short. There have been four generations of internationalne
communications satellites during the course of 10 years. In the

y

	

	 future, program lifetime will be considerably longer. The launch

of the first INTELSAT V is presently planned for around 1979, which

is eight years after the first launch of INTELSAT IV. However,

since there is also an INTELSAT IV-A, it is debatable whether that

period of eight years should be equivalent to one generation or

two. Plans for INTELSAT VI are still sketchy, but a launch in

1986 is a possibility; this implies a program lifetime of seven

E!

	

	 years for INTELSAT V. Thus, at present and for the foreseeable

future, the program lifetime is not much greater than the antici-

pated satellite lifetime.f:
For most of the mission models in the SSPD document, 2 it

is difficult 34--o determine the program lifetime in the sense used

--	 above. The assumption was that, within the 13 years under study,

substantially identical spacecraft were launched. For international

communications satellites it was assumed that launches in 1980 were

the same as those in 1990.	 A 7-year lifetime was used and it was

assumed that servicing would extend the useful lifetime of this

satellite for another seven years.

For most of the geostationary orbit programs in the 1980's

a program lifetime of over 10 years is rather optimistic.	 However,

is
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for the 1990's it becomes a more realistic assumption. There is a

definite trend toward increasing program lifetimes, and it is only

a matter of time before program lifetimes of 10 years or more will

be realized.

VI.	 STUDY LIMITATIONS

The conclusion that on--orbit servicing is attractive in

geostationary orbit is subject to several limitations. 	 The ratio

of satellite lifetime to program lifetime has just been discussed

in the last section.	 The other limitations can be discussed in

terms of the cost of servicing versus the benefits to be derived. °1

The cost of a servicing operation includes the cost of

the modules, the transportation costs, the added cost of making the

satellite serviceable, the costs of operations, and the cost of the

servicer.	 The transportation costs can be decreased if the number

of servicings per mission is more than one.	 If the probability of

servicing a satellite is low, then the added cost of modularizing A

unserviced satellites must be added to the costs of servicing a
A

satellite.	 For example, if only every third satellite is serviced,

then the costs of each service operation must include the costs of -J

modularizing three satellites. -T

It is usually assumed that a satellite to be serviced

is not carrying communications traffic; instead, the traffic may

be on an in-orbit spare or an outage may have occurred. 	 The pos-

sibility of servicing a satellite while it is operating needs

further study.	 Although there are problems involved in shutting

off power to a module and maintaining attitude control, these may •'

not be insurmountable. 	 Several minutes are required to switch

traffic to an in-orbit s are at a different Ion n " Ad= 	 while suchP	 g
an outage is tolerable, it is undesirable. Even if an outage

occurs during the shock of docking, such an outage may be preferable

to switching the traffic to a spare satellite.
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E'	 Another limitation of these studies is that there has
^a

been a tendency to compare present expendable maintenance modes

with future on-orbit servicing. It may be possible to improve the

expendable mode (e.g., by increasing satellite lifetime), and the

potential advantages of such improvements must be compared 6 with

the potential savings of on-orbit servicing.

S
ria

VII.	 IMPLICATIONS FOR RESEARCH

The development of an on-orbit servicer maintenance sys-

tem can be useful to many spacecraft programs. It can be used

with both standardized modules and with modules built for a single

program or satellite. Standardized modules will yield some cost

savings due to standardization and will also be more readily

available on the earth or in space. On the other hand, a pivot-

ing arm servicer can handle nonstandard modules, even of different

sizes, as long as there is some standardization of latch-attach

x	 mechanism and end effector.

The orbital maintenance system considered here is com-

patible with the space transportation system as presently configured.

In some respects the shuttle/tug to geostationary orbit can be used

more efficiently if the loading factor is increased by adding

modules and fuels for satellites already in orbit.

On-orbit maintenance with the pivoting arm servicer is

compatible with a variety of delivery vehicles. The baseline con-

	

°"	 figuration is the orbiter and the full capability tug. In low

	

s=	 orbit the servicing can be done with a pivoting arm servicer, or

alternatively with the shuttle remote manipulator system or extra-

vehicular activity. In geostationary orbit, servicing can be done

directly with the full capability to or a free flyingY 	P 	 Y g	 Y g servicer.

	

g'	 The free flying servicer implies a vehicle that remains in geo-

stationary orbit; this may be a vehicle built especially for the
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purpose, a solar electric propulsion system, or a modified interim

upper stage.

VIII.	 SUGGESTED ADDITIONAL EFFORT

}
6a.	 Users need guarantees that servicing mitt be available

and assurances that it wilZ be cost effective.
o	

`,

Any potential user of a service system must be assured

that the service will be available at a reasonable cost when he ^!

needs it; otherwise, he will be reluctant to incorporate service--

ability in his design. 	 To provide this assurance, there are a few
°•F

}

I possible mechanisms.	 if the service system is government-owned,
A:

a government promise to maintain and provide a service system for

a period of at least 10 years (perhaps 20 years for some users)

beyond the point at which the user decides to employ a serviceable

design is necessary.	 is the government's promise sufficient? 	 How

will future costs be determined? 	 if service is provided by a com-

mercial entity- -either the spacecraft contractor or a separate ^-

servicing company- -can the user be protected by contract in terms

of costs and future performance? s	 _^

INTELSAT's performance-type contracting would work here;

for example, an INTELSAT contract could include scheduled service

by the contractor with future service ::harges calculated by some

mutually approved equation. 	 The third possibility is a user-owned

and operated system.	 Only here does the user have complete control

and hence confidence. 	 Of course, only the larger users are likely

to have sufficient service functions to justify the ownership.

Commercial sale of surplus service capacity to smaller users becomes

a possibility. ,^

Unlike launch services, the commitment to service a space- €

craft program extends many years into the future, particularly in
d

the case of commercial communications satellites.
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6b. A deeper understanding of the orbital servicing cost
structure is required before initiating drastic changes
in conventional satellite construction and operations
methods.

The present studies have examined the traffic model and

estimated the potential cost savings. However, it must be real-

ized that project managers have greater confidence in methods

that have proven reliability. Furthermore, the actual benefits

for a program require a deeper analysis than was possible in the

present studies. Unless compelling reasons are found for ser-

vicing in a particular program, the project manager is likely to

prefer the well-proven expendable maintenance mode. A savings

of 10 or even 20 percent in a program may not be sufficient to

justify on-orbit servicing.

6c. Scheduling delays of several months are tolerable
for many servicing requirements.

To achieve the maximum benefits of servicing, it must

be used to improve the reliability of operating satellites as

well as the repair of failed satellites. Analysis of communica-

tions satellite operations indicates that the majority of servic-

ings will be done on operating satellites. The urgency of

servicing is then drastically reduced, since it depends on the

reliability of remaining equipment. The results of one study,

shown in Figure 3 on page 32, indicate that, if redundant elements

are replaced with an average delay time of 6 months, the perform-

ance of the system (availability) is better than if servicing is

delayed until the satellite fails and the satellite is serviced

with an average delay of two months. The former will require more

servicing operations, but if the cost of these operations can be

made sufficiently small, then the system performance will justify

the servicings.
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6d. Development of the on-orbit servieer should include
early in-space demonstrations of module exchange
along with rendezvous and docking.

A number of studies have already investigated the tech-

nical feasibility of unmanned module exchange and module exchange

has been demonstrated on the ground. The next step is to prove

by demonstration in space that this is feasible. This demonstra-

tion will not only be useful in proving the feasibility, but will

also indicate the ease of certain operations and perhaps some

problem areas that still need additional research.

Rendezvous and docking have been demonstrated by NASA on

numerous occasions during the past years. For servicing opera-

tions far from the orbiter, it will be necessary to show that

unmanned rendezvous and docking are also feasible. For servicing

of operating satellites it may be desirable to increase the accu-

racy of rendezvous and decrease the closing velocity at impact.

6e. Building, flying, and servicing a serviceable satellite
are needed to obtain widespread acceptance of orbital
servicing.

In spite of many studies and demonstrations, widespread

acceptance of orbital servicing will require many years. The

development will take place slowly. it will progress from low

orbit, where the mmanr_ed shuttle is available, to geostationary

orbit, where it is not. It will be first be applied to large,

expensive satellites where the benefits are dramatic and then

progress to smaller, cheaper satellites.

Project managers are hesitant to accept new methods,

particularly those involved with commercial communications satel-

lites. while some acceptance may come in the 198Y's, widespread

use of servicing the geostationary orbit will probably not be
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fully accepted until. the 1990's. The tug is not available until

the early 1980's.

A few project managers may make a decision based on a

flight demonstration of servicing. Many project managers will 	 a

wait until a number of operational programs have proven the advan-

tages of servicings in the late 1980s. After a project decision

is made, two or three years are needed to build and launch a

satellite, and additional years will be needed before servicing
occurs.
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