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PREFACE

This report consists of four chapters, as noted in the Table of
Contents following. Chapters 1 and 2 were the primary responsibility of
Dr. Yoshiaki Ohkami, who was a NASA International University Fellow and |
Postgraduate Research Engineer at UCLA for two years, on leave from the
National Aerospace Laboratory of Japan., Chapter 3 was the responsibility
of Robert Skelton; this material represents a preliminary statement of the
topic of his doctéral dissertation in the Dynamic Systems Control Field.
Chapter 4413 the work of Joseph Canavin, who is beginning his doctoral re-
éearch in the field of Dynamics. This chapter includes a development which
is required for a projecfed digital computer simulation of the Large Space

Telescope Satellite.
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Chapter 1. Eigenvalues and Eigenvectors for Hybrid Coordinate
Equations of Motion for Flexible Spacecraft

ABSTRACT. Literal characterizations are déveloped for the eigenvalues and
eigenvectors of a system of linear time~invariant equations which describes
the attitude motion of flexible spacecraft in terms of ﬁybrid coordinates.,

The eigenproblem is shown to reduce to that of a symmetric and positive
definite matrix of lower dimension. Both analyfical and minimax characteri-
zation methods prove to be useful in locélizing the eigenvalues for the zero
damping case. A perturbation method is employed to investigate the effects of
modal damping. The resulting eigenvectors generate a canonical form, based

on which the controllability is examined.
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1. INTRODUCTION

One of the most commonly accepted procedures for the description of the
attitude dynamics and control of flexible spacecraft is a hybrid coordinate
formulation, iﬁ which the attitude variables of a é:imary body are discrete
coordinates while the displacements of elastic appendages relative to the
primary body are characterized by distributed or modal coordinates. Since
the formulation has been established and the linearized variational equations
are at hand,[1] it concerns us greatly to examine the system behavior based
on this representation., In this examination the eigenproblems play a key role
for many reasons, Firstly, the eigenvalues or eigenvectors represeﬁt essential
features of the system such‘as stability, steady state response and so on,
Moreover, in application of existing control theory, whether it be modern
control theory or classical, eigenvalues and eigenvectors are useful in
canonical transformation, pole location and so on, Secondly, knowiedge of |
eigenproperties of the system affords a sound basis for the truncation
procedure which is essential to system simulation or control system design.;

However, such systems are usually multivariable systems with an extremely
high dimension, so that numerical calculation of the eigenvalues or eigen-
vectors is not an easy task, Hence, it 1s desirable to characterize them in
some closed form,

The purpose of this paper is to characterize the eigenvalues and eigen-
vectors of the system in literal expressions, by utilizing peculiar properties
of the system parameter matrices as they have been previously established.Il]’IZJ

The eigenvalues are localized in terms of inertial matrices and modal param-

eters, and a procedure for calculation of .the eigenvectors is proposed in some



special cases of practical interest. The effects of truncation and damping
are also examined. |

A canonical form of the system state equations is derived, and
controllability criteria are discussed and compared with the previous

results,[3]

In the hybrid coordinate representation, the vehicle translational

equations take the form[1]

I%0 - 8Tn = T ' S (1a)

and the appendage deformation equatioh;{ﬁé§ gélwriftén[lli[3]

N+ 2Lon + o%n - 60 = ¢°LT | (1b)
where T is the 3 x 1 matrix representiﬁg the exteénal to;qUe vector about the
Qéhicie mass center c, gor an orthonormal vector basis in the priﬁary body b,
I* is the 3 x 3 inertfa matrix of the total vehicle for c, 6 is the 3 x 1
matrix‘of 1-2-3 inertig}‘attitgge aqgigs of b, gnd_ﬂ% estgblishes the location
and type of the attifué;Acontrol actuators.[3] Here n is the N x. 1 matrix
representing the modal coordinates, where N represents the number of appendage
modes; ¢ is an N x 6n matrix whose columns ¢j represent the’mode shapes of
those appéndage vibrations with nonzero natural frequencies oj’ which could
occur independently of each other if the primary body were translationally free
but constrained dgainst rotation; U is an N x N diagonal matrix whose elements

- A A LR B e T LA AT Lai. oLlat

are cj arranged in non—&ecreasing order; and { is also an N x N diagonal
matrix Qhose elements Cj represent the modal damping associated with ﬁodal
frequencies Gj, for 3 =1, ..., N. The N x 3 matrix § is established by ¢
and the geometry and mass distribution characteristics of the appendéges, as
in Eq. (278) of‘[l]. It should be noted that ¢ is normalized with resﬁect to

the generalized inertia matrix, as in Eq. (213) of [1], and that with this

normalization § has the dimension of square root of inertia.



For convenience -in later discussions, we define the following matrices:

v A ()%
ADS (IR

(1) %1

u

>

and
D é 2zo

With the definitions of Eqs. (2), Eqs. (1) become

Y - ATn =u

n+Dn + o’n - Ay = ¢T£; (I*);‘u._j

where

with Ol < 0'2 S eee SO'N.

Furthermore, it is convenient to decompose A into submatrices

>esep>>
N =

N

where the 1 x 3 matrix Aj is defined by

Ad

e

(a3, o, a1, 9-1,2, ...,

and the scalar quantities Ajk G=1,2,..., N; k =1,2,3)

are dimensionless and [1]

Poinee fe
h
0<A k< 1

t Since I* is symmetric and positive definite by nature, (I*)%'is always
feasible with the following interpreﬁation: there exists an orthogonal

matrix R such that RI*RT = DI where DI‘is a diagonal matrix with positive

(28)+
(2v)
(2¢)

(24d)

(3a)
(3b)

(4a)

(4b)

(4c)

TD T D_.% T,D
elements, and (DI)% is defined. This permits I* = R* "IR = R (CI)® RR( I)%R,

so that (1%)% = TR

.



In what follows, the 3 X 3 matrix ATA plays an important role so that some of
its properties are stated: if we interpret § in terms of primitive definitions,

then we obtain the physical interpretation[2]

656 = 1% - 1°

where I0 is the inertia matrix of the primary body referred to its own mass

" center, From Eq. (2b),

o

AT e anTaa® anT | | (4d)

Obviously, the matrix (I*-I ) is- symmetric and positive definite and hence A A
is positive definite. Furthermore, if we consider the matrix

[ T . R A

Uy -4 Tp = (I*)-%I (1*)“% (4e)
it 1s also positive definite. Therefore, the eigenvalues of ATA are greater
than zero and less than unit§;‘ptovided that there exist at least three

independent rows in A (see Appendix A).

In terms of the (2N ¥+ 6):x 1 state variable

<

ne
Je I e

Eqs. (3) may be written as

X = AX + Bu (5)
where Tb U3 0 0
2
0 0 -A Mlo -A MlD ’ u
A= 0 0 0 UN (6a)
0 0 -M 02 -M.D
1 1
L -
0
: B
and B = 2 (6b)
0 .
B4 )



with B, 2, + 4T 6T 2 (am* (6c)
B, &M, + M 6T 92(1*)% | (6d)
8 o - aaH | (6e)
and ! i
u, & @w, - 2™ (6£)

The noted properties of ATA guarantee the honsiggularity of (U3'~ ATA), 80

L SR, 1 S SR R T

that M2 is always feasible. Since 'UN - AAT|V= |U3‘- ATAl, Ml 1s also
- : - Viiitei. ot

- il S L S L
feasible. Moreover, Ml and MZ are both symmetric and positive definite, as

O

shown in Appendix A.
2;~_REDUCTION OF EIGENPROBLEM
Let x be a generic eigenvector of A corresponding to a generic eigenvalue

X; then the problem is to find A and x which satisfy

- Al x=0 - : @)

with the characteristic equation

|x Al =0 (8)

Usnee ™

By the determinant partitioning formula [6], Eq. (8) may be written from Eq."

(6a) as | G
AU3 -U3 AUN Uy .
. 2 =0 (9)
0 AU, M,0° AUy + MDD
From the first detérminant of Eq. (9)
A8 =0 . (10) -

and we have A = 0 with multiplicity 6.



The second determinant of Eq. (9) is further decomposed into

2 -1 :
| Aug |« [Auy + M,D - M,0” (Al -yl =0
or

2 2
|AUN+AM11)+M10|=0 . N (11)

$
L}

If we also decompose the eigenvector x as

[
[

. .
. N .

]
i
el
(M

- | (12)

"®oM
S W

where X13%y,Xq and‘xa are 3x1, 3x1, le,.and Nx1 matrices associated réspec-

. tively with v,¥,n and ﬁ,4thén'Eq, (7) becomes

v

AU3 -U3 X 0 0 Xg
+ T 2 T . = 0 (13)
0 AU} L= |AMo 4D %,
~and
Ay Y *3
2 =0 (14)
Mlo XUN+ulD xa

This decomposition indicates a procedure for obtaining the eigenvectors:

since Eq. (14) does not include x, or X,, We can first solve Eq. (14) for X,

1
and Xys and then substitute the solution’ into Eq. (13) to produce %) and Xpe

For the solution A = 0 of Eq. (10), the determinant of Eq, (14) becomes

0 U
2

Mlo . MlD

= 0" Juo®| 40

and hence there exists only the trivial solution for X3y Xy i.e.,



)0 | (15)

Substituting Eqs. (10) and (15) into Eq. (13) yields

L o
b i

0 -U3 Xy
0 0 X, =0
implying X = arbitrary, Xy = 0. oot

A ‘ st
We may introduce three independent and orthogonal 6x1 matriceb C(l)

¥ t

(2)

» C , and
¢ defined by

1)

C( - Ce1TiY(16a)

cooroo

coocoro

1

The six eigenvectors corréépondfhg'to A=0 aLe'nhll ekcéﬁt for the upper 6x1

partitions, which are C(l), C(Z), C(3), and three linear combinations of these

&

matrices. We see that the number of indépenéent eigenvéﬁtors’é;réesponding

to A=0 is less than the multiplicity 6 of A = O, s& the matrix A is not similar
to a diagonal matrix but to a nondiagonal Jordan form. We can find such a
transformation matrix if we construct the generalized eigenvectoré; which are

null except for upper 6x1 partitions given by (among many)

P, P 0 P AT g era e

g(l)’= . g(z) = and g(3) = (16b)

orocoOo o
—oO 00O

OO~ OO

For the nonzero eigenvalues determined by Eq. (11), we have from Egs. (13)
and (14)

2 2 -
(M,07 + MM D + AUY) %, =0 (17a)



x, = Ax3 (17b)

1 T 2
—X(A Mlox

»
]

T
3 +4MDx) (17¢)

X, ' (174)

e
1
>

~

Equations (17) indicate that Xg is the only vector to be solved as tﬁe eigen-
Qector, and that other vectors are all determined by matrix or scalar multi-
plication§ and additioﬁs.

Thus, the eigenvalue and eigenvector problem of A reduces to Eq. (17a),
" in which XA is in the second order form. Eq. (14) is also a reduced form which

may be written in a standard form of eigenvalue problems as

()m2N - A)Y=0 (18)
where
|
0 | U
A b _-_{._N.. (19a)
21
-M,0 E-MlD
and '
A X,
Y = [ ] (19b)
. A

In order to localize the eigenvalues and characterize the eigenvectors,

we will take the following procedures:

We first assume that £ = 0 (so D = 0) and in the second order form of

Eq. (17a) we define

e

p= -2 (20)

to which corresponds the eigenvector Y. Then Eq. (17a) becomes
(uu, - M Oz)w =0 (21)
N 1

for which the noted properties of M1 will be fully utilized.

10




After obtaining the results for D = 0, we will return to the first order

form of Eq. (14) and treat D as a small perturbation.

3. CHARACTERIZATION OF EIGENVALUES

3.1 Analytical Method

Since Ml is nonsingular, we may define the characteristic polynomial,

f(u), for Eq. (21) by /
A -1 2
g = M| [wyg - My0% : (22a)
or, in view of Eq. (6e),

f(p) = |pUN -a?:=yAAT| (22b)

If we rewrite f(u) as

\

£(1) -1

I

2 -1
| lol uy, - Mo?| o7

-1
|7} [ugg - oMo

S

then we recognize that u is the eigenvalue of an NXN real, symmetric, and

1% Thus, we have[4] the following fact.

positive definite matrix oM
Fact 1. All the roots of f(u) = 0 are real, and positive, i.e., all the
eigegvalues of‘Mlo2 are real and positive, and hence, by Egqs. (10) and (20),
all the nonzero eigenvalues of .# are imaginary. In addition, the eigenvalue
problem is well-conditioned (a small change in the elements of GMlo does not
cause any abrupt change in the eigenvalues).

In what follows we attempt to characterize the eigenvalues further mainly
based upon a particular structure of £(u) (Eq. (22b)), in which uUN - 02 is
diagonal and AAT is of rank 3,

In order to do so, we first tentatively assume that for the root of
f(w =0, (uUN - 02) is nonéingular, i.e., ;

luuy - o%| # 0 . (23)

11



Under this assumption, we may rewrite Eq. (22) using the determinant identity[6]

as

£ = |uuy - % -+ gw . . (24a)
where _ _
gw 2 |uy - w" qug -odTAl S )
Sinée in this case the ‘roots of f(u) = 0 are identical to those of g(u)=0,
we will treat g(u) rather than f(u) because the former is related to a 3x3
matrix while the latter is to an NXN.Qatrix.
The cases in which Eq. (23) is violated will Se discussed in such a way
as to establish undef what conditions the systeﬁ eigenvélue becomes. '
identical to oi for some L. A sufficient condition is stated ﬁelow for this

to hold.

Fact 2. If Az = 0, then f(oi) = 0. This means that the natural frequency,
02, of an appendage vibration mode with Az = 0 is also that of a system vibra-

tion mode.

Proof. If we rewrite Eq. (22b) as

u _02 —]JAlAlT e e e = 2e - - - AlA T.
11 N |-
I ogar N 2 %, 8T A % NT
f£Qu) = ~y AAT - = = -0, —uATA Nl -u'A A
[} N
1 - : ~ |
A oo u -ofq —u ANANT

and expand about the\l-th.rOW‘wiIh.Az = 0, we have

~.
2 1,1T 1 NT
M l—uAA\—-———-. —uAlA
=7 2 | \\\ l
£ = (uoy) : ~. !
= ~ I
T —MANAIT ______ \U‘0§ -1 AyANT

12

'



so that

£0p =0 .

It is noted that f(ci) = 0 does not necessariiy imply Al = 0. In fact, if
oj's and Aj's satisfy a certain equality, then it haépgns ﬁhat f(oi) = 0 for
nonzero Ag as will be shown 1éter.
| in order to evaluate the roots of Eq. (24b), we define

A .
a4, = —E 3=1,2,...,8 (25)
T .

and, with this definition, we have

d, (W
u, 037t = d, (W) (26)
e 200,
\dN(u)
and -
T
al a; (W) al
2 AN
l g(“) = U3 - A \\ A
. ~ .
: S :
AN &an | La"
. N '
= |u - X q.qalTal
3T 0%
- E ad AJ d, (u)] ' @7

where Gg is the Kronecker delta defined as

1 ifa=28

(o}
GB )
0 if o # B

—

13, -

.



and the quantity in the brackets

[u, - v e u, - o2~ some

!

The function g(n) is easily

intefest. . Since dj(u) = 0 for u

g(0) = [ug} =1,
and since

lim d.(w) =1,

i

lim g =|u,

oo ‘
Consequently ¢

0 < lim g(u) <
Tagad

"in view of the noted property of

Considering the properties of g(u) of Egs.

characterize the roots of g(M)

bound when Y approaches to 0§ for any j =

indicates the (a,B) element of

properties of dj(u) are given in Appendix B,

evalugted for some particular values of

=0’

- ATA|

1

Eq. (4e).

(28)

(29)

(30)

(28) and (30), we will further

= 0 based on the fact that it grows without

1,2,...,N.

As proven in Appendix C, g(u) is expressed by

N
g =1-2): G (1) dy ()
where
2'_
G(u)-AA -z d(u)K
j=1
e y X g e it
| - P Bt S |

14

(31)

(32)



with

and

where

A

K§ = (') (a'29)T (33)

A 2
L§k = %A”(Ajzk> f (34)

S

A 0 b3 &
Bl o - (35)

i
-Az Al 0

We recognize the following properties of K& and L?k’ noting that by. the

h|

assumption in Eq. (23) and Fact 2 following Eq. (24b) we have excluded the

case Az =

(1)

(i1)

(iii)

(iv) |

(v)

0 for all X%.

kY 20

;20 (36)

with the equality when A@Zﬂ = 0, implying that two vectors have

the same direqtfbﬁ}~~1fﬁ
3
2

k¥ =
3
. -~
Li 2 0

@a3n

' T
with the equality when Al(AjZk) = 0. This takes place if any two
of Aj, Ak and Az have the same direction or if one of these ‘three

is perpendicular to the cross-product of the others. Hence

then tl =0, (38)

L _
If K{ =0, Jk

A
Li = by = Lax (39)

From the expression of'Eq. (31) with the definition of Eq. (32) and the

noted properties of Eqs. (36)-(39) we have the following fact:



Fact 3. All the roots of g(u) = 0 are greater than Oi .

Proof. Consider the value of g(u) for 0°'< u < Oi. Then, by the definition

of Eq. (25)
dz(u) = -__H——E <0 for £ = 1,2,...,N (40a)
) M- 62 :
and hence
Gg'(u) 2z 0 tor 2’ = 1,2’00-’N - (40b)

Equations (40) guarantee that

g(w) 21 for 0 < p < oi

so that there exist no roots of g(i) = 0 in the range 0 < u < oi . On the

other hand, from Fact 1, there exists no negative root of g(u) = 0. ‘Therefore,
all the roots of g(u) = 0 are greater than Gi.

One can interpret the Facts 1 and 3 in terms of the eigehvalues, A, of A
as follows. If the roots of é(u).= 0 are denoted by uj, j=1,2,...,N and

arranged in non~decreasing order, then the Fact 3 indicates that
olsu s S eSS
15 M s My s oSy

In view of Eq. (20), this implies that for any eigenvalue A of A,

2 2 2
cl<-)\ or A <-<J1

meaning A is purely imaginary and IAI > 01. Thus, if we denote the eigen§a1ues

of A by Aj’ j=1,2,...,2N, then we may arrange them as

Aj = i/ﬁ; j = 1,2,...,N
and . (41)
Aj =-i¢hj_N = Aj—N j = N+1,...,2N

Although Eq. (31) was useful in proving the Fact 3, it is not appropriate for

further localization of the eigenvalues utilizing the noted properties of

16



dj(u), because the GQ(U) in Eq. (32) contains dj(u) (j € 2. To avoid this

difficulty, we may expand the products dj(u).dk(u) in Gz(h) and collect all

the terms including dz(u) in Eq. (31) to obtain (see Appendix C)

N
g = 1- 2 P, dg(w) (42)
2=1
where
. N
A g 4T L
By = AL - ; 45y K
j=1
i#
d L (43)
+ 2 32 % Lk
1<j<k<N
.k # 2 :
and
52 - .
= 2y . %
djg = 4,00 72 (44)
R 3
with
'djz >0 if j < (45a)
dg <O AE 3> 8 } (45b)

Consider the case when U approaches to Ui.' Then, dz(u) grows without

bound, so we have

1lim g(w) = - lim P,d, (1)
wo;to u—*o;:tO La

+ o if.P2>0
= (46)
+ o if . Py

17



Immediately from the properties of g(u) of Eqs. (28), (30) and (46) follows

Fact 4, as illustrated in Fig. 1.

Fact 4. If PQ >0 for = 2,3,...,N, then the roots of g(i) = 0 are separated

by the 0§'s as follows

2 2 2
01<pl<02<u2<.,,<o'N<pN (47)

glu) )
1{‘=f4”//; l ’; : :

1 | 1

= ; —t T l

Ug-ata) 1 | up /| 13 | | BN _

| I | | | I #
| I | | |
| ‘ H I I
o% a% a% oﬁ

Figure 1. - glu) Versus y When Pg>0,2=23. ., N.

It is evident that P, > 0 because d,, <0 for j = 2,3,...,N. However,

1 41
Py (2 2 2) 1is not necessarily of a definite sign; the sign of Pz,depends on
the relations betwéen the 0?'5 and the A's. Loosely speaking, Py tends to
be negative if A and A2 are uncoupled or moderately coupled (meaning K& and

3

possibly Lz are nonzero) and if the two adjacent frequencies Uj and 02 are

jk
very close (meaning dj£ is very large). In'such a situation it is unlikely
that there exists a root of g(u) = 0 between those frequencies. This is

shown by the following example.

If we rewrite Pz by

g~ By A (48)

18



where

A
+ A!LA!LT_ 2 d 2

\ P, =
\\2 j=2+1 1% j
Y 4,4 ,% L T 4.4 ,b (49
+ Bttt 329Kty a)
and

- A 3

P =Z X 4,4, , (49b)
2 jR,j 11 <ok 324k

then folr Ag' #0

+ -
P2>0 and PQ’!O

in view of Eqs. (45). (See Fig. Cl of Appendix C.)

Assume that o is s0 close to © as to satisfy

r+l
2
A Ortl
Wedeen™ 7 _ 270
r+l
;
I >> X . R
and dr,rf-l Idjkl for any j # k. Then, we may approximate dr+1,r by -M
' and, néglecting terms not containing M, we have
+ . r r
prm | KD, jzr:+2 L 4 | 8 (50a)
r-
E e L (500)
and
r-1
r+1 :
2 Lj r dj,r+1 M (50¢)
J':
N
SARIED DI S W I (50d)
r J=ﬁ2 ’J J’

19



From Bqs. (37) and -(39) and Eqs. (50),

implying that

Pr+lz-Pr .

2 2
Hence, for Or <uc< °r+1 s

WP WP ‘
g = 1 - S+ = el - - —5— ),
H=o_ w0, p-o =0
and
2 2
A 4 N Tl
g'(w = s = — - P
du ( _02)2 (u—02 )2 r
; ' ! L™ r+l
1 '1‘ )
If we denote the root of g'(u) = 0 by Moo then gr2+1
A - 0?
' TQM
" 9%rt1 ? -
_ : 3 9lupy,) g
and the local extremal of g(i) is given by
(a
20‘r )
gu)=x1- ———— P_ . _
m OI‘+1 Gr r 0'?" ,
' <0 -
If Pr > 0, then Pﬁ_1 and ali)
(u) <0 (seeF 25).
g m ig & /1»“
1fP_<0, then P, > 0 and \ g/ (b)

Figﬁre 2. Roots Not Separated.
glu ) > 0 (see Fig 2b)
. N . . 2 2
In any case, no root exists between Or < U< Or-!-l'

\
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.In what follows, we will investigate some special cases in which some
N

identifiable sets of the Pl are positive, Suppose that'Al,A sees syl l'Have

the same direction and they are orthogonai to the others, which necessarily
lie in the plane normal to any Aj, (3= 1,2,...,N1). Then, the system

: N
eigenvalues associated with Al,...,A 1 are independent of the others and in

addition

K§ =0, L?k =0 for j,k,2.=1,...,N1
implying

P, = A% > 0 for £=1,2,... N, .

Therefore, Fact 4 always applies to this group of modes. For the remaining

(N-Nl) modes Ll = 0 but in general K> # 0 for ,j €IN1+1, Nl+2,...,N} .

jk B
Furthermore, if the remaining modes are classified into two other groups,
Nl+l N1+N2 N1+N2+l

i.es, AT ... A and A .«.A”, which groups are also orthogonal, then

the problem is decomposed into three single axis problems, each of which can

be treated independently with Pz AQAQT > 0.

3.2 Eigenvalue Localization by the Minimax Theorem

Taking advantage of the noted properties of the matrices Ml and 02,
another localization of the eigenvalues of Eq. (21) will be accomplished by

utiliziﬁg a result based on the minimax method [4] as stated below.

Theorem: If A,B,C are symmetric matrices with the eigenvalues dﬁ’sj and Yj’
respectively, which are arranged in non-increasing order, and

if A,B and C are related by

C=A+B,

then for any s = 1,2,...,N I J1o

Ty '
o+ ”‘/,/,sia'
s /'BN/S' YS )

+
. . /’ ,/ // // /



This means that if we add B to A, all of the eigenvalues of A are changed by
an amount which lies between the smallest and greatest of the eigenvalues of
B. |

In order to apply this theorem, the character;stic equation of Eq. (21)
is rewritten without changing the eigenvalues as follows.

Since |M | # 0 and |o| # O,

| ,
[woy - m0%] =0

is equivalent to . , /’//,,,,,//”’////////

-1 -1 o
lo MT | M0 | | |/- _
or -
| wo 1M11° -1 -yl =0 (51)
If we define \Y by. ‘
A
v = % (52)
then we may rewrite Eq. (51) in terms of v as
o-lm'l'lc-ll =0 | | (53)
in which the matrix o 1Mllo -1 is also symmetric and positive definite. |

If we partition the matrices A and 0 into submatrices by writiﬁg

Y i 0
o= [-l-:-‘,\‘-‘] : 6
o ! ¢ '

1 ' ,
2. (55)
A _

and

>
]
t
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where

02 AZ
g = . and A= |3 R (56)
.U L]
N AN
1
then
|
|
. AlAlT ; AIET
Y e
A Al 1A AT
80 -
-1 T
Ml =0 A?
1 - 4t} —alat
= ] = e = = - ' ——————
~ 1T T
-A A :hN_l AA
and
. !
1o 011(1 _ A1Al'r)011 E‘."Il ALRT -1
i R e R (57)
e Mo) 10 (Uy_y — 447
: |
: ! ;
Writing | ;
|
! t
0-1M1107-1 - ol gt (58)
g :
where
¢ o ! 7
, / o7t - atalTyoTt! 0
/ A 1 1!
e e b (59)
' . -1 AT -1
' | -
L ? : 0 "(Uy_; - 8A)o ]
and ‘ / ' | 3
1 ~
1 A 0 i "'O'llAlgr -1
F = |mmmm - - - - ;‘ ______ - ’ (60)
A1 1T -1
. P X L | 0 |

1

we denote the eigenvalues of O-IMIlG-l, Dl and ! by vy v3 and W;

. . 1 1 .
respectively. Note that the matrices D and F = are also symmetric.

N

23



The eigenvalues, \):;, of @1 ‘are the roots of

1

X - =
[ijN D | o
i.e., :
1
- 3 ’
v - ota - alathet 0
———————————— —:—-——-—————-——-:0
' 1 _AAT ~=1
0 vUNla(UNlAA)o
or
S DU T | A N ! _ AR AL
V' -0 (1 - ATAT)o) [ |v Uy = O (UN_l MY | =0
Obviously, one of the eigenvaiues of '91, to be called \)i, is given by
1,1T
v! = 0‘1(1 - AlAlT)g"l = _1-48A" (61)
1 1 1 2
o
1
The eigenvalues of 5’1 are the roots of
A 1 ) _
IwUN - F|=0 (62)
or |
] -1. 17T~
w ) -ollAlATo 1
————————— :— -_- e Em . - - - =
A~1~ 1T =1
-0 “AA _01 : wiy_1
For the nonzero w the determinant identity [6] applies to yield
-1,17T2-1 -1a=14, 1T =1; _
|wUN_l| |o - o] A A" (wly_) 0 AATe | = 0
which reduces to
w? - oI,lAlzT o 2antT .11 =0 (63)

It turns out that there exist only two nonzero roots of Eq. (62), and these

are equal in magnitude and opposite in sign. If we denote the positive root

24



of Eq. (63) by W), then the eigenvalues of 871 are arrangedbin.non-increasing

order as
Wy s 0,¢e.0, 0, - wl
(N-2) zeros
where
o, === ValaTo 2anlT (64)
1 01 .

As stated previously, the matrices 91 and .?'1 are both symmetric so

that we may apply the minimax theorem to the matrices of Eq. (58) to find

' - ot r
V] =@ sV, S v1+ W) (65)

‘From Eqs. (61) and (64),

, 1 - At Vals's2 AalT
v, t w = +
1 1 oi , o,
el 4 A
1- ol s \/Allfr(olo L® AT

2
%

On the other hand, if the definition of v (Eq. (52)) is substituted into

Eq. (65), we have

Uy U
1-l'w suls l-u’lw
W @ 1%
where . é 1
= [
1 v]
o o | :
S s
1~ alalT 4 \fAlﬁT(olc?' 1y2 ApIT 1 - atalT ~ValiT e 6 1y2 FpIT

(66)
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We could apply the minimax theorem to the other roots of O-IMIIO-I to
produce a similar result to Eq. (65). However, the eigenvalues of - @1 other
than vi are not immediately feasible in view of the equations immediately
preceding Eq. (61). For those roots of QDI which are expected to give the
bounds of vs (s=2,...,N), we can reformulate the eigenvalue problem of
Eq. (53) as follows.

Let Va be an elementary matrix [6] whiéh interchanées the j-th row
(column) of an arbitrary équare matrix A with the k-th row (column) if A is

pre-multiplied (post-multiplied) by Vj. Specifically, v takes the form

k k
T ] o 7
Eli o
-— o - -— ks e e e e e e I—_--
. [ N IR S D B D
v, = L v o
R RS U g (67
-'-Fl-:'""ig':"" + k-th
|
[
b 1 Uy
Lo L
b I
" ] i ! -
4 +
j-th k~th
Note that
T _ ol
V) v | (68a)
3v2 _ vdy v T o vy Ty =
(V) (V) (W) (V) (V) = U
|V1j<|2=1 (68b)
, 2
1f we define V' by
A1 2 .3 -1 :
ol Vo V3 Vg ... vﬁ R (69)
26
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then from Eqs. (68),

AT - (v; vg vi'l)(vé Vg v‘,%'l)T
= V% v§ vﬁ 1(vﬁ'l)T vg V;
= UN — ] -
and similarly B | )
V'Q'TV2=UN ~ e i/’/

Premultiplying Eq. (53) by Vg aﬁd‘pd§£ﬁﬁiti§i§ing by_Y%E_yielgs_

[T et le oL v < 0

From Eqs. (70), we may write

vy - oV VT e [ <0

By the noted properties of Vﬂ‘compos@ng VR, it follows that
-1 i

- g .
Vgo 1 VlT I e _:—A_o:l- E
0 () |
and
ST o 1 - AT 0 ’
AR I s Fo
0 | Uy_q- A™A |
where
— =
01o
2.
~y A °.
02 = Og-1
241 .
ON—

27
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and

~y A -1
2 A
A" = 1 (72)
A
R

By these definitions, we may reformulate the eigenvalue problem of Eq. (53)

‘as

v, - ¢ 2% + Y] =0 (73)
where
RPN l
oo | otaatathet 0 |
[2) R [P VU - g e = - s e e e et e - - - - (74)
C 0 | @y, - 28 EeH |
oo =0 n i )
i LS / : ' ; -
¢ A 0 : —oglA'Q'AQ'T (02,) -1 |
Fi=l--mmme - - : ----- - m e == (75)
_(02)-1 ’A\Q'AQ'T(UR)-l : 0 .
‘\ for £ = 2,3,...,N.
Following the procedures taken for \)l, we have similar results for
vg(s= 2,3,...,N): }
[} ' ’
vz-wzs vzsv2+m2 (76)
where
£,4T
vy = oyt - sttt LA » (77
£ 2 L 2
oy ,
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and

A T = -
wg = OL-\/AQ’AR‘T(OR’) -2 pk, AT (78)
1
and
2
0
< ul
2 £T+\/A£ zT(O%bz)-Z KQAzT
2
< . . (79)
1 - A% \/Al R,T(O Jop)~2A =278, 4T

for £ = 2,3,...,N .

Thus, we have obtained a range in which U£(2=2,3,5..,N) exists, and the range
is easily evaluated by computing the scalar quantity consisting of Az, 82 and
32 as defined by Eqs. (715 and (72). The ranges given by Eq. (79) may be very
useful for localization of the Uy if the quantity in the square root is so

small that we ‘may write

(0]

—_— . ‘ (80)
L T

G

~
~

o

Strict equality holds if Al is orthogonal to any Aj(j # 2) so that

AY AT g .

In general, however, the quantity is not necessarily small because some
elements of the matrix ((IJ\'Q'/O‘Q)-2 can be very large. In fact, (8’2'/02')-2 takes

the form

29



s

S Ml S

L -
in which the first (£-1) elements are equal to or greater than unity in view

of the ordering of Eq. (4a).

3.3 Multiplicity of Eigenvalues

We will first examine the case when G,'s are all distinct, From Eqgs.

(24a) -’Tnd (42), i

i

, A N | N N
) f(u) = m_l_ 11 (u—o) - n 2231 Po m_l_ 11 (y-om) (81)
' m#j ‘

: N
because IuUN - 62| = n (u-di). Although Eq. (42) is derived under the
assumption (see Eq. (;;i) that |uUN - 02|1* 0, Eq. (81) is not so restricted
(the restriction can be remo?ed by the continuity argument), and holds for any
real value of p for the\distinct Oj case.

\

We may rewrite f(u)| as

|

. . N N N
[ O£ = (u—oz) :‘H (u—o:l) - u}: P, H (u2)
m=1 =1 * =1 o
m¥s ... i#s  m#l,s
N .
2 2 2
=0 PS g (as - om) (82)
m#s

which indicates that

2, _
f(cs) =0



i |
T 1, | 2
if and only if Ps = 0. We have notéed that P1 >0 if A” 40, so that dl
cannot be the eigenvalue,offﬁicz unless Al = 0. However, even if A2 # 0, Pl
"can be zero for £=2,...,N, so that oi(2=2,...,N) can be th? eigenvalueppf'Mloz.
Moreover, 1if Ps = 0, we may writg/////// ;}
/ N 2' |
£(W) = (u=02) H(u—c)-uEPH o3}
) // m=1 o {
/// 4 Za‘s m#l,s '
(u—O) ”(u-o) 1-p 2 -
m=l =1 - 2
ss PO
in which 02 is one of the roots of
P
l-u 2 '—-_22_=0 : | .« Voo v T
u=0,
%#s
if
. / N
P,Q, .
E - 0. | (83)
- g o
#s %

/
This means that if PS = 0 and if Eq. (83) holds, u = Og 18 4 repeated eigen-

/

value of M102 with multiplicity 2 (at least).

Consider next the case when Og is repeated with multiplicity/Z, i.e.,

Oy = Og4q» 3Ssuning that all others are distinct. Then, Eq. (31) mﬁy be

/

/

written as ;
/

N -1 !
gluy) =1 - 2 d, (W) Ay,Az 2 d.(u)Kf".L
2‘.— j= J : J

+ X d(u)d(u)L ',
1sj<kseil J /




s+l

g(p) = {d_u )Y , 2 {d w ¥ +1d2(u) + g(w
. 2—s+2
and subsequently
INI 2 [{ 2 s+l % X {d (u)}zd (u)]+ £
f(p = (u=o70) [4d (W) K - s,s+l| 8 L
: m=1 n & }‘ s f=s+2 V
- A 2 B
where f(Us) = 0, or
N N
s =[] aod & - X 2 sl (84)
m=1 8 L=st2 5% ' :
wfs ;8+1
It follows that
. f(o )
1 1 l
if and only if
K 2 Ly g GO0 = | (85)

2-s+2
This means that if oi is repeated with multiplicity 2 and if Eq. (85)
holds, then 02 is one of the.eigénvalues with multiplicity at least unity.
] A 2 _ _
If the multiplicity of Og is three, i.e., Os = Og41 = Tge2 and others

are all distinct, then as previously

+2 2
£Qn) = H (o) « 152+ £ (86)
m:_- ’
m# ]
where
f(p) =0 for p = 02, and hence
2
f(os) =0
. . s+l _
if and only if Ls,s+1 = 0.
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If the multiplicity, L of 02 is greater than three, then 0: is one of
the eigenvalues of Mldz, with multiplicity rs—3 (at least). '
The results obtained in Section 3.3 are summarized as follows: B

"1f 0,'s are all distinct and Pz's of Eq. (43) are all positive fér

L
2=1,2,...,N, then the system eigenvalues of M102 are all distinct as stated
|
in Fact 4, %

If 02'8 are all distinct but PS = 0 for some s, then 02 is the g{genvalue
of M102 with multiplicity at least unity,

If Os's are repeated with multiplicity 2, then 02 is an eigenvalge of
M102 if Eq. (85) holds. Otherwise, it is not so.

I1f Us's are repeated with multiplicity 3, then dz is an eigenvalue of
Mloz-if Eq. (86) holds. Otherwise, it is not so.

If os's are repeated with multiplicity L for I, > 3, then 02 is an

eigenvalue of Mlo2 with multiplicity at least (rs-3). .

33
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4. EIGENVECTORS

Consider the eigenvector problem of Eq. (21) premultiplied"by M{I

~1 2
(HMl ~0)Y=0. (87)
. -1 T ) S
+ Since M1 (= U - AAT) is symmetric and positive definite and so is 02, the

results in [1] and [4] apply directly to this problem to yield:

Fact 5. There exist N independent eigenvectors to be called wl,wz,...,wN

}

regardless of multiplicity of the eigenvalues, Furthermore, we may choose a'

set of wj 's such that wj and w are orthogonal with respect to M -1

1°? i.e.,
Wil - for § # k .

i ¢A k : 2
 whereby and Y are also orthogonal with respect to 0”7, i.e.

Wlo?y¥ =0 forj #k
If we normalize wj by

VAR A I VR TS I O (88a)
\;then

Wis? g3 = by § = 1,2,000,N (88b)

These felations are conveniently expressed in matrix form: if we define NXN

ma;fices ¥ and Az by

A 1 .2 N
= N’ ,‘P :“'sw ] (893)
and
A it —u
A2 = Z, (89b)
My
‘then
T.-1l, _
¥y Ml Yy = UN (90a)
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and

Yoy a 72 ' (90b)
and
o’y = —yn? |  (900)
-1

In what follows, it will be shown that the particular structure of Ml

simplifies the eigenvector calculations,
Assume again, as in Eq. (23), that IujUN - OZI # 0 for uj. Then, from

Eq. (87) with Eq. (6e),
2
by - 88Dy - oy =0
so that
2, 3 T
Uu -0 - u, AA =0
(w0 = 099 -y v
or
j 2,-1,,T
= U, -0 AA
v o= Gy - 09 v (91)
It is noted that Aij is a 3x1 matrix so that if we define xj by

x3 &ty (92a)

3

then we may write ¢j as
N 2.-1, j
Vo= Gty - 007X (92b)

Subsequently, the eigenproblem of Eq. (87) becomes

0

20§ T
(ujUN-cr)wJ -ujAA\vj

j 2, T 2,-1,
- us U. -
uijJ ujAA (uJ N~ 90 TAX

T 2.-1,4.3
A{U, - A .U, -0 A
WALy - AT (iU ) Al
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On the ‘other hand, the characteristic equation of reduced form (Eq. (24b))

‘assures that the determinant of the matrix in the braces is zero for uj, and

]

hence there exists a non-trividl solution for x~ determined:by

w, - w8 - o7k = 0 (93)

U3 = 4N

in which only two elements of XJ are to be solved. The normalization con~

dition of Eq. (88a) with Eq. (92b) substituted yields

JT,T 2=, T -1,
X A(ujUN o) (UN AA)(UJ.UN o) "By 1

or in view of Eq. (93),
A(ujUN-o) A-—-U3x =1 (94)
: u ‘
]

Thhs;'we can determine xJ(j = 1,2,...,N) corresponding to uj by Eqs. (93)

and (94) provided that | UZI # 0, and then the wg's can be calculated

Uj N
from Eq. (92b)
; 2 P
Next, we will show that even if lujUN -0 | = 0, the 8 can be

determined in a similar manner.

: 2 2 2y
Suppose that M = 9 and M # cj (3 # s); then ]ukUN 0“] = 0. 1In this
i case, we may rewrite Eq. (87) (simply by changing the rows) as
2 1 lT 1,NT | 1,ST — —~ .k —
B W -0y - A A e . . ukA A : ukA A wl
: : b :
* N 1T .. 2°  NNT | N,ST K
- ATATT, L., M ~ Oy = ukA A : ukA A wN
R e e 1 - —— - --- =0 ,
. .S, NT S,ST k
L_ _ukASAlT. e & o o o o _ukA A : _“kA A e L lps _
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With the definitions of Eq. (71) and (72), we may write

~g s~T | ~S ST ~k
- - |
ukUN 1 (07) ukA A : ukA A Y
—————————————— :— - e = e o = - - - - =
S4ST 2S5,8T k
i '“kA A : -ukA A ws
where &k is the (N-1)Xxl1 matrix. Hence
g, 2 *S28T, 7k ~5,8T k
(U4 -.(o )T = W ATATTY YT - u AT g = 0 (95a)
and ‘
ASAST Gk & ASAST wk 0 : (95b)
Assuming that AS 40, wg‘have from Eq. (95b), Ve
k A A ~k
Ve =~ 51 .V . . , (96a)
A°A

Substituting Eq. (96a) into Eq. (95a) provides

: ST,S .
A 2 As A ) -
T R Cr IR AR T ol R
A A : ’
in which lukuN-l - (os)2| # 0, so that we can follow fhe procedures established
above, simply changing the dimension of the matrices to (N-1). It immediately
follows that @k is generated by

1~k

(ukUNl-(G)) AX

S (96b)
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where!

e

X 1s obtained by solving
‘ S ST,S -1
, ; A A ST ~S k
, Uy = W \Ys - AsAsr a (“kul'(")) A x" =0 (97a)
i — T
wi?h the normaligation condition -
. ‘ i
iA AQ A ! N
k ~kT '! k UN-l ASAST { -0 wk - R
W Byl f-==----- I==<s5 -5~ =1 (97b)
1 0 i 1 - A"A 1

or
I -1
X KT4AST ~s, 2 ~S4ST
o \ X A (T‘UN—l (o)) Ug.y = 4747 +
| 1y '
' ! ! .
[ ; _ AS,ST ~an 2\-1
| l | e + 1 - gTAz ASASTASAST (Pkuﬁ-l- ) ) XSXF=1
‘. (47477) .
-'.¥K \ ‘~ (97¢)
Lo . ’
Thuq,wi% oy  and IukUN 1 (cs)zl #0, xk'is determined by Eqs. (97a) and
b e
(97c), and then w is calculated by (96b) and ¢ by (96a), so that wk is

obﬁained. Once again, the eigenvector calculation of an (N-1)Xx1 matrix has

been reduced to simply that of 3X1 matrix.
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5. TRUNCATION EFFECT

In this section, the eigenvalues are examined for a truncated system of

equations represented by

T 2
Y-A" n=0 (98a)
and
b -2 — e -
n+on-Ay=0 (98b)
where
FAl
=1 (99)
| Y]
and :
[9;
) g=| % (100)
i % |

where N is the dimension of the truncated system and

21

<N

or usually
N << N
When such a truncation is exercised, it is .required (or sometimes pre-
sumed) that the nonzero eigenvalues of Eqs. (98), to be called’ki,ké... éﬁ R
should be a good approximation of the first 2N smallest modulus eigenvalues
. . . * % %
of the original system, namely Al,kz,...,kﬁ and Al,A oo Aﬁ , as of Eqs. (3)

or Eq. (8).
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If we define uj by

A 2 .
' o\
M ( j) (101)
then the problem is to compare uj and uj where u} is a root of
[z - 52| = 0 (102)
SR .
and
- -1 -1
M, = (Ug - 4A) . (103)

For convenience of later discussions, we also define K; ﬁ'and=§1 for the

part of the system to be deleted by truncation:

[ \N+1
Y
A= . (104)
| ¥
(°ﬁ+1
= A T
g = . (105)
On
and _
= Af -1
H) =<u_= - ZEI) (106)
. N -
where
—3 A -
N=N-N - Q107
The notation n; will be used also for the roots of
wy_ - % 5% =0 | (108)
N

with
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With these definitions, we may write

1

N
o ' 0

g=|=-==-=-=- (109)
o.; g

and

A = _ 4 (110)

I

In what follows, we will examine the reciprocals of the roots defined by
A

vj' = -L - (111)
¥

as in Eq. (53), which satisfy

. —1.-1--1
viug -0 M6 =0 (112)
for
vi = 1,2,...,N
and
=1 =1 =1
V-0 M o | =0 (113)
N
for ,
= - ‘ /
\)j'=N+l,N+2,...,N. 4
s jr
Since L . s
ince M1 is partitioned as o
e
[ i A
-1 Uﬁ : 0 A A T
L R e Rl L B
0 g U_ A A
. i N -
- — - =L
v- KT | -E3 ]
= _Ii:_..-] ______
=T | = =
| 83 iy_-Z3 |
N
= ' I o =
Mll o o 1-A2T
= ___|_.___ + ____l____ 3
o |u7 I O
_ i1 !
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o']‘MIlo'l = D+ F

where
[ -1.-1 _-1 | ]
A o M o i— 0
D=|---=---frmm === 114
0 | 0 M, ©
| 1
and '
_ | -
-1 -1
A 's 3% 3
y=__-9___|_-éf_°___ (115)
=l- _T_-1
-0 AAo ' 0 ]

|
It is recognized that the eigenvalues of @ are \)3, which are determined by
Eqs. (112) and (113), because
—~1_-1_-1 ' =111 (116)

Clvug - B = v -0 Mo |- |\)Uﬁ-c Moo |

From Eq. (115), if A T -=0then & =0 and

and hence

In other words, if A A¥T = 0 for j = 1,2,...,8 and k = N + 1,...,N, then the
‘eigenval.ues of the truncated system together with those of the deleted system
are identical to the eigenvalues of the original system.

1f A XI # 0, then the matrix & usual;ly causes a discrepancy between vj

and v!. In order to examine this influence, first consider the eigenvalues

of & , to be called wJ.. The wJ. are the roots of
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lwu, - F|l=0

N
or from Eq. (115)
w Uﬁ i 0 AAgo
--------- le e === =0 " (117)
=="l = =T —-1 l
- AA { wl_,
I N

For nonzero W, the determinant identity [6] applies to yield

=1 ~T_-1 -1-—1_ =1
wy_-o KA (wUﬁ) 10 ATTO'rO
N
or
=-1ﬂ _-2" =T=-l
w2U=,-c AKTO AAo |=0
N

or ) (118?

2 T -2 T2 :
w~U3—(A0 Ao A)‘ =0

It turns out from Eq. (118) that there exist at most six nonzero eigen-
values of & . Moreover, since & is symmetric all the eigenvalues are real, .

so that if we call the roots of Eq. (118) # wi, + wg, + wg with wi 2 wg >
O

w, 2 0, then the wj's are given in non-increasing order by

(o} (o]

(o]
3 ~Wy, —W

w‘i, wg, wo, 0, 0,...,0 - 2 s 1

S ——

(N-6) zeros

From the fact that the matrix G_Ileo_l is a sum of two matrices, @ and

-$ , which are both symmetric, we may apply the Wielandt-Hoffman theorem [4],
(8] stating that if vj and \)Jf and wj ‘are arranged in non-increasing (or non-
decreasing) order, then

N N :
E(vj NI PED ) w§ (119)
j=1 J i=1
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Noting that

™
8N

X
2 X (W2

j=1
2 hHE TS,

2 tr(Z?a

and recalling the definitions of Eqs. (52) and (111), we see that Eq. (119)

immediately implies that

z

2 T =2 _  _
— - =) s2txr(@ © A)(KT? A)
jnl uj .- .

1 1 2=

My

(120)

Eq. (120) gives a bound of errors which could take place if we approximated

i b
where |

then

Therefore,

If the relative errors are small i.e.,

*
|ez/“zl <«<1
Al
€2=u2'112 ’
1.1 __ 1 1 _1:5%, .2
T I A A

2 2/€,\2
T(2-2) -Z(2)(E) +oeh

and if we neglect O(E:), then

N 2 - _
2( )(u) <2 tr.A5 HE 5T,
-1 3
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Each term in the summation of the left hand side is positive so that for any %
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2/7€ 2 _ -
<_}) (_%) str.(B G A)(KTo 273‘)
My Mo
or -
E
u < “2,V2 tr.(E G A)(YKT L=1,2,...,N (121)
L

Equation (121) gives a bound for the relative errors, and if the dimen-
sionless duantity of the right-hand side of Eq. (121) is sufficiently small,
judging from some practical point of view, then we may employ ﬂ!'as a satis-
factory approximation of uj, permitting the truncatlon to be acceptable. |
This conditlon however, is a sufficient one in that even if the quantity in
question is not small enough this does not necessarily imply that the uj are
unacceptable. This is because the error limits of Eq. (121) are overestimated
due to the neglect of the positive terms in the left-hand side of Eq. (121).

Equation (120) also implies that

N

2 : T _-2 — Qo
Y (u—l-i%)'szcr. G g K)(TTOZT\‘) ‘(122)
=1 \ % ' -

The requirement that the quantity of the right hand side of Eq. (122) is

practically small' is also a Sufflcient condition in the sense stated above,

The minimax theorem as applled to the matrices C. lMllo 1, D and F

produces the following result. Since the eigenvalues of 0 MIlo—l and @ are

vj and v;, respectively, and the maximum and minimum eéigenvalues of &F are
o

wy and —wl, we have

\)3 - wcl’ < \)J_st! + wi ‘ - (123)
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or

L!j < uj (124)
$ p, S ————
1+ u3 w‘])_ I g ugm‘l’ -

Equation (124) affords an explicit error bound for u:i at the cost of solving

* the eigenvalue problem of & , which is ‘a 3x3 symmétric matrix.
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~6. ‘DAMPING EFFECT

This section considers the éffect of damping, represented by D = 270 in

Eq. (14), on the system eigenvalues and eigenvectors. Rewriting Eq. (14) as

i
| oy o o
AU, = - - - —y- N + [.g . 3 20 (125)
2N S !
2 1 )
} !
|
we treat the second matrix including D as a émall perturbation to the first
matrix in the parentheses, whosg eigenvalues and eigenveééors'have been
characterized to some extent in the previous sectionms. "We employ the pertur;

~

bation method established for diagonalizable matrices in [7]{ Define

|
|
|
2
|
1

Let € be the maximum damping ratio of the appendage vibration mode, i.e.,

€ = max g (126)
and define pj by
AL, |
pj =—g' ’ J=12,...,N ‘

_then

0<p, S1 . ' \ \ '

\ \
By nature of the damping ratio, cj is a small positive number (typically

0.001. < g, < 0.01) and so is €, i.e.,

3

0 <eg <1l, .
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Defining -

I R R (127)

(128)

"
0>

ST
(o ¥ o]
.

N

=

[

ho TN =)
Q

—t

For € = 0 (unperturbed system), the previous results indicate that the

[ERRT

eigenvalues of o are given by

_ T P e T
COE Aj = , 1 ) '
R -N 3 = N+1,...,2N

to which correspond the eigenvectors

' ¢J%ﬁ

e |--- 3= 1,2,000,2N

I . =, ij -

From the orthogonality of ¢J together with.the normalization condition of

Eq. (87), the Yj's are orthogonal with respect to K; defined by

|
I
1yl
N S L AL I
gr = |- 21 _ - (129)
3 1 -1
0 ,—le
: 2X



In fact,

I AR
: 1 .~1] .
% SR P |
Y Kj L R B Rl e I B
AV 0 ,r;;i M, kj wj
] J :
, b
A
_ 1) kT -1 "k ), KT, -1
_Jo 1f k¢ - .
1 if k=23 . o S (139)

In the presence of nonzero €, we write the eigenvector as Yj(e) corres-

ponding to the eigenvalue A,(€) and hence the eigenvalue problem becomes

) , 3
A(©) U, /l, A e =0, §-1,2,....m (131)
l
where f 4 -
Jd(e) bl + P A oo . o (132)

For a sufficiently émell €; we -may assume that
2 R s :;
A (g) = Aj + o€ + azs +oee R " (133)
v (e) =Yj+egjl+e£j2 T | o (134)
1 2 N 4i‘ i“ ‘
Since {Y, yeee,Y '} form a complete set of eigenvectors, any vector in the

2N—dimensional space can be expressed by a linear combination of Yj's, 80
\ A
that we may write : ‘
N e L

ghe B oo v L =1,2,... L @3s)

Substituting Eq. (135) into Eq. (134) yields
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Yj(e) = + € 2 +*£2 2 C%k e S
k=1 - k=1

J 3
(1+ t»:cJ + e CZJ +...) ¥

+ (€ CJ + € Cgl +...) Yl +...

3. 3 N
+(eC +e CZN+...)Y

I1f we normalize the coefficient of Y:l to unity,

3 3 k . z ’N
Y'(e) = Y’ .+ € t Y+... e t
--<k=1 | kl. kel &
2N | - -
Be £ (T &,
2=1 \k=1 ,
243
or

Yj(e) ==Yj + € 2 tu 2 2 t, Y teee
2=1 2=1
243 SR 7

Substituting Eqs. (133) and (137) into Eq. (131) yields

(A + €P) %Yj +¢€ p> tuY“'& 2 Y tu.YRf +...
243 243

e T o2 o2
3T % z hy 12 ° 22

Equating the coefficient of € in the left hand side to zero produces

ot e Pardon T vrta v
vy L j.%‘j. 1% 1
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(137)

= 0

(138)



In view of the unperturbed relations

At @120,

2
we have
w Lot e Doyt
23 243
and Eq, (138) becomes
pd v Loy -ae v e ayd | (139)

Determination of o

1
Premultiplying both sides of Eq. (139) by YjTK3 and considering the

orthonormality of Eq. (130), we have
1T J_
UK PY =

From Eqs. (128) and (129),

r : - |
%len 0 0.l o
Ry P = et - - - -
b1 =1 J
. 0 |——2“M1 0 I-ZMIDO'
12\ o
= . J -
0 | - 0
= -.._...} ______
0  |-—op0
i AZ
& i 3 _
Hence
) .
T R ;
@ = |-¥- |-0-a-0___ Y
1 Ay 0 | -— po A s
J i )\2 J -
' -
3
= 3T ooy o)
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and

ale = (—w’T ) c €
= -—;- W 220y ¢!
N LN o o sy
Therefore, | - | -
A @ = T%@fn@/ (142)

Since wJDMJ is real and positive, the perturbed eigenvalue lj(e) has a negative
real part., Moreover, the eigénfrequency.]AjI isghdt-perturbed to within the
first order of €. ‘ '

=

~'Determinacion of tlk

Premultiplying both sides of Eq. (139) by e Kk with k # j, we have

kT

kai PYj + (Ak -A )t K'k:kaf q; y
in'wﬁich
e SR LR
and .
T
-k | 3
KT 3 ] ' ¥
Y K!' PY' = |- - < i e  eadadia & -+ -
e Ak"’k : f"él_p" _)‘j."’j
DN
A\
=-—1)wkrpowj
(=
Subsequently,

k=1,2,.00,2N; Kk #j Co
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or

A R
M 1 KT: 3.
t . Vv poy
kA A - xj
kK =1,2,...,2N B

Therefore, the coefficient of € in Yj(e) of Eq. (147) becomes

A
z: t Y f: ('41)"—‘lf"» WRT00¢JxYk .
ALV AW i n RS

“

and, L S S T
A s . ¢ - i
Tk VA Ry T -
+iy ( )—L— WKToyd ¢* iy (143)
+3 k# Ak A - Aj O S A SR S

It should be noted that Eq. (143) is wvalid only when Xk and kj are apart
for k # j so that t

I 18 sufficiently small, . °
- X
. . 3 *
P
/ / N /{
i !
B R i \‘
53 A :
. z |
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7. CANONICAL TRANSFORMATION AND CONTROLLABILITY EVALUATION

This section discusses how to construct a transformation which carries
the system equations (Eqs. (5)) into a canonical form, and provides inter-
pretations of system controllability ‘in terms of the transformed equations.

We consider the transformation

X = =Tz - O (144)

Je 3 =e =

where T is a (2N+6)x(2N+6) matrix and 2 is a (2N+6)X1 matrix representing the

system vibration modes. The matrix T is conveniently partitioned into the

submatrices -

_11 _TLZ_] o (145)
22 - S

3

0
r——1' .
=i o3

=

[

whe;e Tll, le, T21 and T22- are 6x6, _6x2N,-2NX6 and 2N%X2N matrices,
respéctively, and the eigenvectors and generalized‘eigenvectors cbrresponding
to )X=0 may be assigned to the first six columns,'and the eigenvectors cor-
responding to the nonzero eigenvalues to the reﬁaihing 2N columns. Then,

from Eqs. (15) and (16), we may write

(3)’ g(B)]

1 1 2 2
1= e, gD, (@, @
100 0 0 0
001000
o oo o010
*lo 1 00 0 0 (146)
000100
0000 01
/
-
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and

Tyy = 0 . ' o (147)

In view of the identity (not the transformation)

e —

Y, 0
Y2 ;1

Y3 s

Y Bt Y, ’
Ty Y3

Y, | v,

we may well write the variables of Z corresponding to A = 0 as the three 2x1

partitions
zd < | ; j=1,2,3 | (148)

and the two NX1 partitions 24 and Z;, so that

(149)

N

|
NNNNN
TS WN

‘
!
!

where Z4 and ZS represent the contribution of appendage vibration modes of

number 2N with nonzero frequencies.

For the nonzero eigenvalues which are determined by IMloz + Az UNI =0,

we have from Eq. (41)

A, =1 /q, ~
h| h]
and . 3= 1,2,004,N
*
A= A= = A
w3 ¥
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We know that wj satisfying Eq. (21) is the eigenvector (of x3) corresponding

to }‘j and A

for the zero damping caée. In view of Eqs. (17) with D = 0,

we may write the eigenvectors .of the system corresponding to the lj in terms

of A

j’
j__ 1,1, 23
X3 12 A Mlo ]
3
= - =L ATy . o%yd
x% AAulow
h|
3=V
xi N Ajwj
for j=1,2,...,N .
2
*
If we define A and A by
[ ]
M
A=) M
| )
_ then Egs. (150) are expressed
12 SN N
S T | 1 X
1.2 N N
X * 2 | %2 X,
________ e = - - - = -
L2 N : L
"3 73 3.1°3 3
1 .2 N LN
X4 %4 %1 % 4
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-———— e — ——— —— - —

-

(150a)

(150b)
(150c)

(1504)

(151)

(152)



and‘T of

" The uppef and lower submatrices of Eq. (152) are identified as le 22
Eq. (145), respectively,“i.e.; | V o
[ 2.2 ) 1 2 2
-0 M, 0" YA | -0TM0¥A ‘ o
T, =| = === =~ - === =3~ s (153)
12 1 ATy o?unt 1 -aTMo?un™t!
. 1 | 1.
and
i l
Y b4
T,, =|--'=d--%2 o | (154)
22 | oy owt ] ,

Thus, we have established the transformation matrix, T, whose submatrices are
!

given by Eqs. (146), (147), (153) and (154).

Since ITlll =1+ 0, and szzl # 0 by Fact 5, and since T,, =0,
Tl = [T« 11yl . | (155)
T is also nonsingular and
-1 .0 - -1
L SERTIE e I . |
T'l = -1 _:- 111222 o (156)
o | T} " '
} 22
where
100000
1T 0 0°0 10 O :
Tll = Tll =10 1 0 0 0 O (157)
' 0000 10
000 1 0.0 0
0 000 01
and
-1 -1,-1 ' A : '
=% [-i1t i\*:f'-i]' . - (458
YO0 A Y : .

Next, we will show that the transformation of Eq. (144) transforms Eq. (5)

into a canonical form
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Z =1 laT 2 + T 'Bu
where :
Jfglo !
SCREAT I
Tl = | 04200 i et (159)
0 :-_A_},.Q_ --
]
| 0 :A
with

2
J = : : ' : (160)
0 0 S

Equation (159) is derived as follows: Partitioning A into submatrices as

!
A= -All—: flz -
‘ |
0 ‘AZZ
where
| o ) o
_].91% oo 1 o
A R = A =]--0 -0
1 ol o 12 T, 2|
] .
- t -
0 i U3
and USRI DR -
22|77 57
-] |
L Mlo | 0 .J
yields
S RS . ! -
1.
I e ortorl | ERR LV I T
== |
o} T, L0 1Ay, o |1y,
ST | A
_ | Tt Tt T f111 12
i -1 ' \
L O v TRy JLO Ty
-1 b -1, . -1, . - -1
I RV T PR R Tl e P TR PP T2 b0
| -1
|0 Ta2%22%22
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cool1 oo

OO rHI OOO

OOl OO

—— —— ——— ——— -

OOOlI OO

OO0l OO0 O
L - |

| S |

o O~

o ~ Ol o

e ___
o " o

—_J

1

(>N RNel [« Ny
[N =Nl oo No)

OOoOolHOo O

—ooclooo
—_

r
ocooclo~dO
OO ~IOOO
R =i l=X=Ne]

]

™
! gl 1
! x <
1 < _—
< +
3 3« 2
| 2w. ”2
— 5
1 = -
1 T,
=) o B et
DA
A,
| o =L
°. % <
| - | + 1+
a1 =2
) .1_. Zw. _20
ol —
_W_l 01_ =
T "
< < [} ol
N > 1
~ y
1_._ ..ﬂ .A .*A
D) D T ]
1 J 1 J
| il 3]
i I
o~
(]
2]
(2]
o~
P
~ o~
I N
(2]

.
But Mloz‘il = —‘PAZ and A+ A =0, so

£

-1
T22822T92
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= o
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U
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<!
N >
= '« Y%
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—— 1,
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] .
L I :
AT, =] o0 gy L
12722 1 ¢ 51 YA | ogpY
- v )
i A Mlcr ' o . i
o lv
= - - 9- - - -{; - - _0_ -
T 2 ' T 2
-a'Moty | -8ty
_ o ) .
1 -a"Mo%un % ) -aTw o?en™2 Ao
T12752422%22 = ‘Tl§°1|'“'§"*"" o e
12 -ahwotent | -aTw o®e™t 0 !A
i _ ] L.
[ T, 2..-11 T. 2 1]
I Dt UG Bl e
| | -aTwoty | ey
Hence ‘
' ~r ToIAl T =0
"11 12 ¥ 815795 = T15T558,,T),
and Eq. (§59) is proven.

Next, we will express T lB of Eq. (158) in an explicit form,

Lo )
1 ! -1, -1 ——

_ It B
e I e R ?:2_22 S I P
0 T —_—

r 22 L B,

L =1 [0 -1, <-1[_0
1 [52] T11T12T22 [34
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But A-3 + A*-3,= 0 and A-2 + A

- T30,

% [. .34—] T [

and with MIGZW = -WAZ, this becomes

Hence

But

Hence

-1
T12T25

_ L )
-ATMIUZWA 2 :-ATMlozwA* 2
- . F N 1
L-ATM olyp~1 I-ATM o2yp ™1
1 1
AT o2yn™3 + ™3
T ! 2,,.=2 , k=2 w-lMlA'
A M0 YN+ A9 -+ ¢
Y
0 -
v iM A
ATMloz‘ifA'z} 1c
.
0 ] o1
- .- | = M A =
[ 84 [AT(WAZ)AfZ] 1l c [

0
-1
B, )" T12T22

T
B, - A MlAc

n

:

0

4]= [ B, ATM;AC]

-1

-1
A
[-A;_-]-] ) Yy MlAC

0 -

T .
é M'.‘lAc

!

T, T _* T T %
M2+AM1¢ QC—AMI(A+¢ Qc)

T
M, - A MlA

T
M2 - A AM2

T . -—
(Uy - 80N, = U
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Thus, we have obtained a .canonical form:. .- - e

~T O -
Z_V L, J lolo ' FZ:A B o :
i2 ___t ZZ T T o
| Leriio o o |-
el i - 'l' - ':‘Aﬂ'f - —tt}|---- f3- -=-=]u (161)
, 1AL O 4 -1
2 o Forewep |z L1 A Dy hia
T N R R0 R I ] e
i L R B N Iy .

We can examine the pontrollability”of_the system descrihed by Eq. (5),~

based upon the canonical traneformation of eq (161)
It is obvious that the modes Zl 22 and Z3 are all controllable by the
input u in such a. fashion that Zj is controllable by uj for 3=1,2,3 independent

of'each other. In other words zero frequency modes are controllable by u

i

independently, where u iS' ‘normalized" by the definition of Eq. (2c) (Note

/
that the physical implementation of torquers T does not necessarily apply

‘ A -
independent%y\to\each of threeyattitqde directions.)
B A N ! S .
For nonzerq frequency modes, it will suffice to.examine the controll-
o » ,

ability oflzki because it implies that of z° and vice versa as seen from

Eq. (161);'AFroﬁ‘Eq. (161),

YOMAuW .- o (162)
: w’; M, =V

AR WA % At ‘PTAC u ' | (163)
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N
%
NI,
-1 : !
Since A ~ is diagonal, we may evaluate the controllability of each mode

based on the presence or absence of nonzero values in the corresponding oW

of the gatrix-w Ac, and thereby establish the systemecontrollabglity coniitions,
7 . - N Lt -l
{

after noting the multiplicity of the Aj's comprising the noﬁzerb elemente of
. N I " .

, i !

A. _ : S f A 1

It should be noted that the controllability arguments staéed above are

referred to 24 (or ZS) but not to n. Subsequently, justification for truncation

| | l |
based upon the controllability properties is also referred to Za, e.g8., Aif

||@§Ac|| 0 then Z4 1s uncontrollable. and * truncatabled vhen if 8 als

uﬁobservable. However, this does not necessarily imply that q[ L_truneatabie

i

or uncontrdliable in view of the transformation of Eq.‘(156).'

At this point, Eq. (162) is to be compared with Eq. (57) of|[3], which

says
o
v = oMy +A o | " el
v=_0 Mlv‘+ U A 4 S (164)"
. ' . ‘ ; | :
If we transform v into w by - : b : ,
veMlVw : . | ! - es)
- :
then Eq. (164) becomes .
o 2 ~1 - o f
Ml Yw=g0 Ml(_M.l Y w) +~Acu ; |
or . : . C e . : '7!‘,..,
* -1 2 Vo -1 ot
w=Y Mlc Yw+V¥ MlAcu .o
But from Eq. (91), o i Z
-1 _
v = ¥

and from Eq. (93) : ‘
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80

we=-Aw+ ‘PTAC u (166)

By comparing Eq. (165) with Eq. (163), we recognize that the mode controll-
ability conditions are identical, .both being determined by the corresponding

row of W Ac" In addition, the system controllability conditions are identical,

-because the multiplicity of the elements in -A? is the same as that of A.

Although Eq. (164) was derived in [3] by rank calculations without
utilizing any knowledge'about the system eigenvalues or eigenvectors, it

turns out that the implications of both approaches are identical as far as

} controllability is concerned

: In _either way, the canonical form of Eq. - (162) or (163) with YT A specified
will be regqired for further arguments, It should.be noted that uncontroll-
abiiity ofydé (or Z:) does not necessarily imply”that-of anp particular
eiement of'v,ke.g.'ys) because of the transform relation of Eq. (165). |

'Hoqeyer, in some special cases, the controllability condition for Z:

(or w ) does coincide with that of ng (or v ), and hence truncation of ng is
justified fro; the controllability point of view, -For example, this is the

case when ?s 0 for j ¥ s, permitting
|

v WST w = 2: dl w: w
o 3= '

in which \A is affected only by vy and vice-versa.
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8. CONCLUSION i

The eigenvalue and eigenvector problem associated with the original
system of dimensisn'(2N+6) reduces to that of slsymmetric and positive'aefinite
matrix of dimenslon N with the zero damping assumption (Eq. (215) The results
from ‘the analytical method show that the lowest eigenfrequency of the system
vibration modes is always equal to or greater than the lowesé of the appendage
vibration frequencies (Fact 3). In some speclal cases, including the case
when the system is detomposable into three single axis subsystems, the system
eigenvalues separate the appendage frequencies at least ‘in a weak sense (Eq.

(47) of Fact 4), The results from the minimax characteriaation localize thei

eigenvalues as given by Eq. (79). This:procedure requiressbniy simple calcu-

lations of modal matrices. 4 CT f

S

The multiplicity of the eigenvalues is dependent on the inertial properties
and modal parameters in a somewhat complicated'manner. It is suggested that’

careful examination should pe made of the'qnantities invoived, such as'Pz's
. .

K, and L Eqs. (83 86

: 1 (Bas. (89)-(86)).

If the appendage natural frequencies ol,...,ON are distinct, then expres—
sions for reduced system eigenvaluesul,...,uN are always avallable as follows:
_ , , ) , :

(a) If Az = 0, then My = Oi; (b) If Az #0 but Pl = 0, then My = Gi; (c) If

Az # 0 and P, > 0, then the bounds in Eq. (66) apply and in addition, from

|
Eq. (47) ' : ' ;
2 .

. 2 [ ] 2 .
Oy SHy <0 <My < Oy <W

%

|
(d) 1if Az # 0 and Pﬁ < 0, then the bounds in Eq. (66) apply. Finally, if the

appendage natural frequencies are not distinct then, in addition to the

bounds in Eq. (65), further restricted results are available in Sec. 3.3.
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The orthogonal properties of the eigenvectors are presented with
normalization conditions employed (Egs. (90)). The (Nx1) eigenvectors are
generated by a 3x1 matrix (Egs. (22b) and (93)), that reduces the calculations
greatly. '

Sufficient condition for acceptability of truncation is given by
Eqs. (120)-(122) as a result of the Wielandt-Hoffman theorem. This evaluation
is made by the calcﬁlation of-the trace of a 3x3 matrix (Eq. (120)). An
expli%it error bound is derived in terms of the eigenvalues of the 3%X3 matrix
(Eq. (124)).

‘The effect of modal damping is examined by a perturbation method applied
to the first order form of the eigenvalue problem. Ihe result assures that
the’éystem eigenvalues have negative real parts and that it does not affect
the eigeéfréguency to within the first order of maximum modal damping (Eq.
(42)). fhe eigenvectors can be sighificantly changed as showﬁ in Eq. .(143).

Based on the eigenvectors Qf the reduced system, a matrix is constructed
' thatvtransforms ;;e original system equation into the Jordan canonical form,
which is useful for tﬁe system controllability evaluation. The results are
compared with those of [3] and physical interpretations are given.

Althgugh\the exact eigenvalues and eigenvectors are available only by
numericaly%alchlation, the characterizations established in this paﬁer will

. i
be useful in that they afford some irsight into the eigenvalue localization

{ .
and eigenvector properties. These procedures are recommended especially for

/ ;
preliminary analysis, because the requirements for calculations are not

burdensome — nothing more than algebraic manipulations of matrices such as

additions and multiplications. s

66



Eigenvalue and eigenvector sehsitivity’analysis-is left for further
research, This is particularly important for the eigenvector characteriz§—
tion, because it may be great;y\gffected_by a small change in the parameters
(111-conditioned), eveﬁ tHOugh tﬂ; eigenvalues of the syé;em are always well
'conditioned. It 1is speculatéd that a perturbation method similar-to that
employed in the damping effect examination will be useful for sensitivity
analysis, if we can define an appropriate perturbation matrix.

Since the quantities which give the bounds for the system eigenvalues or
truncation errof are considered to be the Euclidean norm of 3x1 matrices, |

further evaluation of these quantities may be possible by virtue of norm

characterization (perhaps by linear programming).
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APPENDIX A. SOME PROPERTIES OF A'A AND M,

1. All the eigenvalues of ATA lie between zero and unity.

Proof. From Eq. (4d),

- * % .-1/2
A:A - (I*) 1/2(1 -1% (1 1/
with
* o * ~—~ .
I -1 = IA - ‘AVB qq (Al)
* . . }
where I, is the inertia matrix of the appendage about the total vehicle mass

A

center c, and q is a matrix representation of the vector from ¢ to the pri-
mary body mass center, and‘AZB is the primary body mass.
* /
In Eq. (Al), IA and<b¢AVB q9q are both symmetric and positive definite

*
and hence I - 1° is symmetric and positive definite. Therefore, ATA is

/
/

positive definite and the eigenvalues dj of ATA are positive, In addition,

U3 _ ATA - (I*)—l/Z Io(I*)-1/2

is also positive definite, so that the eigenvalues of (U3 - ATA), (1—03)'3,

are positive. Thus,

0 < 05.< 1 e : , | (A2)

2. The matrix M1 is positive definite.

Proof. Let B, be the eigenvalues of Mgl. Then, B8 ,...,BN are the roots of

3 1
|8 ug -M)| =0

or

T
[B u Uy - 247) -y | =0

3



. A gl
tee v 8L | then

T
[y uy - 487| =0
‘meaning Y is the eigenvalue of AAT. But the eigenvalues of AAT are identical

to those of ATA except for (N-3) zero eigenvalues [4], so that

Yy o= oy (jfl,?,3)

and

: ' = 0 ( i—-4 ’S’QQQ,N)
\ ' i j :

0= Yj <1 (i=1,2,...,N) .

It follows that

and

B = l j=4’5,u..,N

implying that B, are all positive, J = 1,...,N.

3
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APPENDIX B. PROPERTIES OF d, (i) = —}‘—7
w0y

Assume that the 0, are all distinct, {i.e.,

2 2,2 2.2 2
(cxi - oj)(oj - cwk)(c.rk - 01) #0
for A
143¢#ké1
Then,
di(u)dj(u) = djidi(u) + dijdj(u) (Bl)__
and
di(u) d_,j (u)dk(u) = djidkidi(u) + dkjdijdj (w + dikdjkdk(m (B2)
where
. , 02
2 4 :
4y = 403 = —?-'1_—02- (B3)
3 i
With ’ 4
d1j> 0 if 3> 1 A
(B4)
dij< Q if j <41
Proof. Under the assumption, we can expand the product of di(u) and dj(u)

in the partial fraction as followé.
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d, (Wd, (W = - —_— -

u-oi :u—oj
i o2
G S L S
- 02 2\ o2 __02
3 \"1 ” 3
o’ ot
' '2_12- a, (w +—-2—J—2- d, (W
et . Lo ) . -0 .
- 13 957% v

= ji i(u) +d d (w)

Uéing (B1),

.4, (W) d, (W d, (W {d di(u) +dy 54y w1} d
dyyd; (04 () + dijdj(u?dk(u) v
dyy {dkid'i(u) dp k(u)} +d {dkjdj (u) + djkdk(u)}

But djidik ijdjk= | A
' 2 -2 2 2
_ oy oy . cj O
2 2 2 2 2 2 2 2
oi-o.j 0,04 oj-ci crk-oj _
2 2 2 2 2 2
) % oy . °_-'| ok . 0%
02—0'2 02_02 02_02 02-02 02
kK i 13 j 1L K j k
2 - 2, 2 2, 2,2 2
) %k 04 (00 j)_ -0y (ok-oi)_
2 2 2 2 2 2
0,=0y A (qi-oj)(ck-cj)
2 ., 2 2.2
- pk (01 _1)°k
2 2 2 2 2 2
ok-oi (o;-0 j)(cxk—c,v )
= 49y

- Thus, we haveA (B2).
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APPENDIX C. DERIVATION OF g(u), 2(u) AND PE

(Eqs. (31), (32) AND (43))
Associated with the definition of g(u) (Eq. (27)), we define BQ(U) by

[ Z AJAj dj(u)]

(c1)

gz(“) =

where the quantity in the squ&re brackets indicates the (&,B) element of the

3x3 matrix with a,8 = 1,2,3, Note that

gy(W = 8w | ()

and

g (W) = 1. ) . E (c3)

If we define 3x3 matriées Qz and RL by

2
A o
te el -X e | S (e
and
g A
R” = AchB | : N (cs),
then ‘ ‘ L
2 ' '
g (w = |Q7] o (c6)
and
Qz - Qz—l - & : 7

For the determinant of a sum (or difference) of two 3%3 matrices, the follow-

ing identity holds.

. 3
-1 % ~1 j+k
- R = R + -1 -r, . Cc8
Q47 - 1 e B ot lrg ] orleg b @
wh : ISP Lo S, .
ere qjk’ rjk are the (j,k) elements of the matrices Q ,» R, respectively,
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and ij and Rjk are the (j,k) minor of szl_and Rg, respectively. (The super~

scripts on qjk’rjk’ij’Rjk are deleted for'simg}icity of notation.)

Noting that Rl = dl(u)A'Q'TA2 whose rank is at most unity, we have

. _ ' _
[R"]= 0 and' lekl =0 , (c9)

From Eqs. (C6)~(C9),

g ) = ||
: qu—l 2[
- MY 4k ,
la 3§=1 ML (cio)
But IQz'll =g, (W -
and
Tk = dz(u) j
so that
. 3 : ,
g (W = g, ;W) = ji%i (- 1)j+k 2AlejkI dg (W) - (c10Y)

Defining (with the Superscéipt on‘ij restored)
+k, £
G(u) 2 <1)jk “IQ Yo, ()
§,k=1 .

we obtain a recursive formula for gl(u) as

go (W) = gy 1 - G (W dy(W) - (a12)

Note that Gz(u) does not contain dj(u)(j 2 Q). From Eq. (C12) together with .

Eqé. (C2) and (C3), we have
N : . ;
g = 1- 2 G(W) d,(w) . (c13)
’ =1

In what follows, Gz(u) of Eq. (C1l1) will be expressed more explicitly.

4
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For simplicity of notation, define E:jk b
A -1 o
' i, i
Ejk - 12=:1 Bih 4G | (C14)
with . :
DINEPIN S (c15)
then from Eq. (C4),
2~1 _ }0
and ‘
3
i ek 8 ]
Gy () j% 1) A‘kl [ Z el ‘ :

Direct expansion of the determinants of the minors [ - ]&B produces

)]
- Z)6-5,)-(5,)
=)

o (c16)
+ ZAiAg-[ 12 (1 ‘233) + }:13 223
l
+ 20507 { 23(l - 211) + 2y, 2315
+ 2838 {):31( -2, )*’2 }:2{

The terms of the right-hand side of Eq. (16) are conveniently classified as
0.1 2. |
Gy () = Gy + G (W) + Gy (W) (c17)

where Gg, Gé(u) and Gﬁ(u) are the collections of the zefo—th, l-st and 2-nd

order terms in dj(u) (or 2:&3.)’ respectively.
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Obviously,
0 2.2 2,2 L.2
A

- a"'T | ‘ | (c18)

1, 2,2 2.2 o :

2.2 NE
-4y Z1_1 + X, )+ L,

2 SN
+ 2884 :23 t A gy
From Eq. (C1) : )
S o C(2-1 -1 }
1 2.20% 3.2 312,
arw = ~-H2\E o a,w + L dhHa,mw
2 1 {’1' 2 9 ig-l 37 5y
-1 ’ -1
_pin2 12 . N2, s
;) jz=:1 (@~ 4, + 3§1 (4)%d jo_n} )
- : h,-]. 2,-;1 } _
2,2 3\ 2 : z 3,2
~0Hh2{Y whHramwm + X odhiamw
3 j:l' 1 ] . 'jﬂl ;2‘ k|
o 2_1 SR e uy R
£.% I3
+ ZAlAZ El AlAZ dj (11), HE SR
-1
RN i3
+ 20002 El a3l 4,
-1
PN YT
+ 2A3A1 El A3Al dj(u)
2-1 ‘
. 2092 . B2 R de2
- - 3§a 450 ) (A7 + (48° ¢ gty

-

+ (aish? + @ph? + lad? -

2,2,3,F _ opR %4543
2A1A2A1A2 2A2A3A2A3

~ {28 8,32 2,3 232.13_“2
--X R -‘(AlAz - A0 + §A2A3 — 85000+ (A0] ~ A7)

~.
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If we define K§ by

LA g ’ | .
< = @l - a Aj) + @ AJ A Aj) + (o Aj A’l“Ag)2 (c19)

then it is also written as

T

K = o et ®H _: L (€20)
where 0 .A% A% | o . | |
S o - - S (el
o ‘Ai .t .
It is recognized that ‘

with the equality when Azﬁj = 0, implying that the two row matrices have the

same direction, i.e., with some scalar aj,

A = 0

We also recognize that

2 _ 3 B
Ky =% | . (c23)
2 . 4V . 1 . . <
With Kj thus defined, we may write GQ(U) as
G = Z 4 (u)l( IR - (c24)

j=1
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ACENCYE ;2222:;3 'é'(223>2
+ (Ajzl) ? ’233}:1'1 ;(231)2
+ y° 4211222' '(212)2
+ 24,8, 2:13,2:23 - XL,
+ 20,4, Z212:31’-2—:13211 .
* 2A3A1v ) 2N0DYED 299 2 | (c23)

By the Lagrange's identity [8],
> (z' F AL apreellT AT vl
' 2. . 32, 3.3
- = 3) 24, (w zmu.m*-{z AAd(u)}
2;‘-53 23 P | }{j=l k2t R —_ gsj

= % il - a2y (wa
1i<j=p-1 23 32 OLAC

"and similarly,

Z--132:23 - -2—;12233
2-1 -1 g-1 /el |
=(§1 ada dj(u) (jg,l adnd dj(_u)> -(2 alad m)(z: (A';)zdj(u))

j=1 J=1

N > t 3% IUPE % RO S INRRY S
,. Eigsz_lc%zsl A780) (583 = K301 d; (0, G0

We have similar relations for the other terms in Eq. (C€25) so that
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|
2 Pf a2 1.4 1,42
G = L d.(wd,m |@aniaiad - alady
L lsi<jee-1 9 ,_ | A A R a
2.2,.4,5  ,1.4.2 2:2,,1,3 _ ,1,5,2
+ (A2) (A3Al - A1A3) + (A3) (A1A2 ‘ A2A1)

Road0 3 _ adsdy o pRoalsd _ adnd
+2A1(A2A3 A3A2) AZ(A3A1 A1A3)_

L0t 3 a3y . aRoalad _ adnd
+2A2(A3A1 A1A3) A3(A1A2 AzAl)

L,,4,3 1,3y o AR alad _ ALl |
+205(808p = B8]+ By (A03 - A3
- T a e, skalsl - atad)

lsi<yse-1 L3 (1T23 T3

2
0,3 A, PRI
+ 85(8547 - 4143) + Aj(Ay8; - A4

If we designate the square of the quantity in the braces by Lij’ then we may

write
2 L
Coan = X 4 (Wd, (WL | (C26)
. 1si<i=t-1 + 1 i
where _
ij = @I | (c27)
Since AZ(ZiAjT)'= ;'Az(KjAjT) = - Ai(ngjT), we have
Lot * - (C28)

Piy = Lys = By
It is obvious that
3

Lij 20 (c29)

with the equality when Az(KiAjT) = 0, which takes place if the two of AR,Ai
and A have the same direction or if the third vector is perpendicular to the
L

-cross-product of two vectors. Hence, if Kz = 0 then Lij = 0 (not vice versa).

k|
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Substituting Eqs. (C18), (C24) qnd.(C26) into Eq. (Cl17), we have

-1 | .
w=sT-Traw+ X b oawam C30
% g 3 1siqgse-r BO1T 30 (@0

with the definitions of K? in Eq. (C19) and of ij

In what follows an alternative form of g(p) is derived for the distinct

in Eq. (C27).

eigenvalue case. That 1s, it is shown that if the o

‘j‘s are all distinct,

then g(u) can be expressed iﬁ the form of -
g(u) =1 -E Pod, (W) ' Co . » (C31)

1. and x* previously

where Pz is a constant expreased in terms of dij’ 14 24 Ky

defined.

We start with collecting terms containing dz(u) in Eq. (C30) rewritten as
1-g(w =6 (u)d (w) +... 2.-1(”)"9,-1(“)
+ c,L(u) dg (M) +--“-'l; Ge0de )

Since G (u),... and G (u) do not contain dz(u) by definition, we are con-
cerned only with the terms typified by G, (u)dk(u) with k22

By Eq. (C17) with % replaced by k

G (wa G = dek(u) + Gk(u) dk(u) + Gk(u) dk(u)

where

0 k, kT
G 4, (w) = A"A™"d, (W)

and in view of Eq. (Bl),
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k-1

k.- e
-%i 4, (0 d, (kg

8.

G (W d, (W)

¥
H

k=1

o I
;Ei 143k 4G + dkjdj(u)‘ 3

[}

k-1 .. k=l - . - L

-4 (Lb 4 }EZ d (u)K
= jk ) J S I

. o . . o RN R .
~ . P .- . : - i ! Lot 2T

and“in view of Eq. (B2) -

2 ' o ik
Ge () (W) 151£§£k—1 4,004, ) Ly,

k3

7
Mgmﬂﬂﬂ@ﬁ%%%wﬂw A

L - “ Y
[ Y PO

Ist<gsk-d. U IEEL

Lk
iJ

P>

, d, 0 '
T<i<j<k-1 )

For k=L, the coefficient:dfvdz(u)'iéﬂgivén By'“ ‘
911 v . P

2 ‘ IS A
Z d > 4,4 LY., k=t

For k > %, the coefficient of dz Wis
kel T

4+ L jzdusz S ? gy

i= ={+1 )

+ i}:.: dgdlhy 5 k= LN

Summing the coefficients of all terms for k = &,
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L-1

; L
2" El 3L .‘l quéz-l 12558713
- -
Lk
k}z;d d‘d'x ¥ j.§|.1 djzdkzl‘u * 2 4y el 12 (c32) -

Changing the dummy indices for summation into i,j with i < j is possible, and
utilizing the identities (Eqs. (C23) and (C28))

A i
LiJ Lji sz .and Kj K2

we may rewrite the double summations in Eq. (C32) as follows:

N
T ) = - 2: d, Kl = 2:
Kogel R Pory s o e} L 3
and N k-1

L X ‘ij delLl;,j

k=2+1 j=f+1

2<j <ksN

. ok

- X dygdealyy . .

= ¥ q,,4.,1d
pyen TR

8
= 2 d,d L
PP Un L &

which corresponds to the regi.on @ in Fig. €1 implying that in view of Eq.

(B4) each term is positive and so is the summation.
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Moreover
N 2-1 :
z X dizdul‘lfz
k=0+1 1=1
k
d..d L
1<1<i<ksy v KTiL

= Y d.,d,. 1t

1<1<g<I<N i 38713

which corresponds to the region <:) in Fig. Ci, implying that this summation

is negative. Finally

-1
P, = TN RK’.L + 2 d.d 21,’“.
L j=1 1 1 i<jsg 43413
1}
2: d 2: d,,L
j=+1 jz j - 2<i<jsN iz_j% i3
+ Y 4.t (c33)
1i<i<jey X34 |

We can now identify which term is positive or negative, so if we decompose

Pl into

Py =Py - Pz' : (c34)

where P; and P; are the collection of terms which are positive and negative,

respectively, then

l -
+ z L
P I: > d.,4.,L-.
L ) z j 1<i<i<h i §27°1j
+ 2: dild.zL%. (C35a)
2<i<j<N & 1
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and

N
- ) ]
Pp=+ X d K- D 4,9, Ly, (C35b)

jegrr I 1g<acyen

In a more compact but less informative form, Pl may be rewritten as

N
‘ £,4T R L .
P, = AA" - d, K + 3, d,,d,,L (C36)
2 jo1 2 eiGen VA ~
j#L i,j#2

Fig. Cl illustrates the implication of the summation in Eq. (C36).
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Chapter 2. Determination of Poles and Zeros of Transfer Functions

for Flexible_SpacecraftiAttitude_Control
ABSTRACT. A method is presented for determining the poles and zeros of the
transfer function describing the attitude dynamics of a flexible spacecrafﬁ
characterized by hybrid coordinate equations, It is shown that the problem
reduces to that of finding the eigenvalues of matrices which are constructed
by simple manipulations of the %nertia’and’modal parameter matrices. Particu—
lar emphasis 1is put on-the aégermination of the zeros, which depend also on

the sensor and/or actuator location. The established procedure will be useful

for numerical determination on the digital computer.
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INTRODUCTION

The system discussed in Chapter 1 is a multi-variable linear constant
coefficient system with three inputs and three outputs and a large number
of states. Such a system is sometimes conveniently described by a “transfer
function matrix," in yhich the determination of the poles and zeroé is of
primary importance in designing a conventional compeﬁéator by the classical
approach or an optimal controller by modgrn techniQues.

The deterﬁination of the poles of the system is relatively simple from
a computational point of view, because it is just a calculation of the system
eigenvalues, for which computer algorithms and/or programs are well established
(see also Chapter 1 for eigenvalue characterizétion).

The calculation of the zeros, however, is not an easy task even numeri-
cally, and even the definition of the "zeros" is not unique; We will fifst
survey some of the recent papers dealing with this problem, and thereby
demonstrate the difficulty of the‘zero determination problem,

For the pufpose of this survey, we start with a more general description
of the system (after Laplace transformation* of Eq. (5) in Chapter 1 with

N
X(0) = 0)
sX(s) = AX(s) + B u(s)
with the observation equation , (a)

y(s) = C X(s)

whose transfer function matrix (sometimes called "frequency response" [1]) is

given by [1],[2]

*
The Laplace transform of a variable, say X(t), is written as X(s), and when
the distinction between X(t) and X(s) is clear from the context the arguments
may be omitted.
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o chan “6(s) = C (sUy - &) 1

(b)
- y(s) = G(8) u(s)

Definition 1: The zeros of the transfer function are those of the individual

entries in G(s) which give the relationship'betweeﬁ Fhe'r-th input u. and the
j-th output yJ. | ' '

This fqrm of:G(s) (sometimes called the first form) and the definition
that follows seem to be standard. Rosembrock, [3],[4] however, insists that
the following form (calléd the second form) is more general;

Consider the system

J(s) X(8) = K(s) u(s)
()

y(8) = L(s) X(s) + M(s) u(s)
where in particular we may have, as in Eq. (a),

J(s) =8 U - A, K(s) =B, L(s) =C, and M(s) = 0
and define the system matrix in polynomial form by

| (®)_! K()

= |- 30 _ K(s)_ _

B(®) [-L(.s) F H(s) ]

which has Smith normal form [4] (uniquely determined)

diag(ej(s)) ‘0

N(s) =
0 JO

Definition 2: The zeros of the system are the zercs of the polynomial ej(s)

taken all together.
The formulation by Rosenbrock (Eq. (c)) 1is certainly more general than
Eq. (a) since the former permits the case when |T(s)] =0 while the latter

does not. Usually, the zeros are not identical for the two definitions,

except for the single-input, single-output case.
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In the problem under coﬁsiderétion, IT(s)I # 0 so that it is n6t>neceé-
sary to take the form of Eq. (c). |

In the case where the number of inputs equéls the number of oﬁﬁpués;A
as in the present probiém, we may cénsider‘the déterminant of G(Sj,rsince:
it is square. In this case, the zeios of this determinant are identical to
the zeros of the definition 2, because the elementary operations used in
forming the Smith normal form do not produce excess zeros and the qe;g:ginaptuﬁ
remains unchanged except for a scalar muitiplier. » | .

Brockett [2] has presented a way oflzéro detgrmination by dériQing ghe
"inverse equation" whose poles include the zeros of the:originai.sysfgm;
hence the problem reduces to.the eigenvalue pfobleﬁ. However, his éésuits
are limited to the single-input, single-output caée; and, as pointed out by
Davison [5], the formulation of the matrix representing the inverse systeﬁ
is computationally difficult ‘because the prescription for forming the matrix
relies on logic statements such as o =0 ifd=0andoa=11if d ¢ 0,
and.becauae of the finite Qord 1ehgfh of the digitalAéomputer, a subjecﬁive

-8 or d =.10'.20 may be

judgment must always be made to determine if d = 10
taken to equal zero. Also the system must be controllable and observable.
In addition this approach éupplies_excess roots at the origin which must be
sorted out by judgment. |

Davison [5] has proposéd a compugational method and éomputef glgofithm
for zero calculaﬁion; which also reduces it to eigenvalue calculatipn of a
matrix formed by Cramer's method. Although this method also supplies excess
roots, it is always possible by repeating some steps of the calculation to

determine which roots should be rejected. The advantage of this method lies

in the fact that this approach can reduce the inaccuracy due to word length

95



limitation and?round-off error of the computer. On the -other hand, this
méthod has a disadvantage for large-scale systems because it requires the
solution of -an eigenproblem of higher dimension than truly necesshfy, and
hence the number of excess zeros can be very lafge. In ad&ition repetition
of sdme calculation steps is not desirable. Kropholler and Neale [6] have
discussed a similar method. .. |

The method proposed b& Guidorzi ;nd Terragni [7] opergtéé only on a
‘ sﬁbsystem of minimal dimension completely describing the dynamical behavior
éétween the input and outbut of interest. The zeroé are finally determined
as the roots of a polynomial of the minimalldimension‘(no'excegslzeros are
;pfoduéed). Although some of the difficulties in Davison's method are over-
come,fthk Guidorzi—Terragni approach requires the number of independent
vectors, whicil may.be dependent on subj‘ecfive judgment, and the calculation
of tﬁe zeros of a polynomial can be less accurate than that of giéenvalue.‘
;- ealculation for some problemg.

Yokoyama [8] has discussed a method of obtaining transfer functions by
transf?rmaﬁion to.Q pﬁase variable canonical form. He has overcome'the
difficélty in the inversion of (sﬁ - A) in Eq. (b),‘but the calculation of
the caﬁoﬁical form is another burdensome task, so that his method does not
seeﬁ té be appropriéte for the present problem.

In thié paper, we will show that the zero determination ptbblem reduces
to eigénvalue calculations of a matrix. The construction of the mgtrii is
discussed in detail for the cases when the sensors and/or the actuators ére
mounted on the primary body. The method presented here does not require any

repetition of calculation steps or any subjective judgment, unlike most of

the alternative methods noted.
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We will -consider primarily the zero determination problem in the sense
of Definition 1. We will also discuss the zeros of the determinant of the

G(s) which is related to Definition 2.
DERIVATION OF TRANSFER FUNCTION

As in Eqs. (1) of Chapter 1, we start-with des'cribihg the system in
terms of hybrid coordinates as

Ié-6ﬁ=T - (1a)

i+ D+ o%n - 68 = 2T | Caw

with the observation equation [9]

vy =0+ z’fn | - Qe
where

2.2 d 2, - - (2a)
and |

Q; - ¢T £, | ‘ : - (2b)

establish the actuator and sensor locations, repsectively, and all other
matrices are defined as previously.
For convenience of later discussion, we partition the matrices §, Q":

and #' as
o

&= [a1 a2 a3] » _ (3a)

2! - it b2 b3 o (3b)
and

Z; = Cal s B ‘ : (3e)

where aj, b"j and o (j=1,2,3) are NX1 matrices.
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Laplace transformation of Eqs. (1) with the zero 1n1tiai state (i.e.

8=0, 8=0, n=0 and n = 0) yields
s2 10 - 6% = T
(szvN + sD + 02)n - 3266 = SféT
T
= \
y =606+ .Qon

Define the NXN matrix Q(s) by

Q(s) = sz(sZUﬁ + gD + 02)-1 ,'
then from Eq. (4b)

L n = Q(s)é6 +-—% Q(s) 2T
| 8

! |k
and Eéom Eq. (4a) with Eq. (6a) substituted

6210 - a25Tq(s)66 = T + 6T Q(s) 21

or

s2(1* - 6Tq(s)6)6 = { U, + §1(s) 2! %r

or .
6 = :I* - GTQ(S)G;-I

ol

3

o

]

From Eqs. (6a) and (6b),

l

N|H

n-=
s

+ Q(S)S?é] T

Substituting Eqs. (6b) and (6¢) into Eq. (4c) Yields'

3

=1 [
2
S

A

| l
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[Q(s)-étI* - GTQ(s)Gz—l 'U + GTQ(s) SZ’::

U+ Z(‘)TQ(S)S; gr* - 5Tq(s)

T [ BRS 'T L
. 1U3 + 6 Q(S) gc$ + go Q(S) QCJT

(4a)
(4b)

(4c)

(5)

'~(6a).

(6b)

(6¢)

(7



Thus, we may define the transfer function G(s) from the control input T to

the sensor output, excluding the poles at the origin, by

I |-1

A ' )
G(s) = =U3-+ QQFQ(S)G‘ I* - GTQ(s)G’ %U3 + GTQ(S)(QZ;
+ Z")TQ(S) e (8a)
and denote the a;B element of G(s) by GaB(s)’ i.e.,

, G,1(8) G 5(s) G 4(s) )
G(s) = | 6 ()  Gyp(8)  Gyole) ~ (8b)
G31(8)  G3(s)  Gy3(s)

Hence, the purpose is to establish a procedure to determine the poies and
- zeros of GGB(S)'
We will examine the following cases:
| - L.
(1) Z’c Qo 0
meaning that the actuators and the sensors are attached to the
primary body and
\ =
(2) .Qc Oand.g"')#ov |
meaning that the actuators are on the primary body and the sensors

on the sub-body characterized by Qc" and

1
(3) .Qc # 0 and Zo (o]
meaning that the actuators are on the sub-body characterized by

Z’c and the sensors on the primary body.

The reason for omittiﬁg the general case when ff": # 0 and Qz, # 0 may
- may be justified by the possibility that we may consider either of these sub-

bodies as the primary body.
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INVERSION OF (I" ~ §:Q(s)8)

Let P(8) = [Faa(s)] be the adjoint‘mat:ix of (I* - GTQ(B)G). Then

)

¥ - "6

100

* -
at - sl Tt - - FeL
‘ - T - 87a(s) 6|
-Since, with the definifions of Eqs. (3), GTQ(s)G takes the form
| - alal 1 - alTea? 1. - alTged
* T L 91 120 r g 13 ap 3
I -8Q()6=|1I,,-a Qa I,., - a Qa I.. - a Qa
12 ] 22 ; 23
- I, - a3TQa1 I,.,- a'3TQa2 I..- a3TQa3
. 13 23 ' 33 .
Then the a~8 element, FGB(B)’ of F(8) is expressed by
Fa(® = (LB - T a8 -1,2,3 o)
whére
— » -1 r h - b
(118 %22 T23 228101 his 3341 2
. ’ . 4 .
f123 I334 LT13 T3 IR ETR T
alt, I Alr, 1 alr; :
112 a 12 ‘13 , I13 8 12 13 , 123 a 11 13 (11)
[T23 T33] [ T22 Tp3] T2 T3 |
and
121 - IlZT , 1:3l - Il3T , 132 - 123']:
and ,
i A 2 A 3A
5 = [a?ad, 5 =[ata’l, ¥ = [at e’ (12)
Theféforé, we have obtained the inverse
: af BT =0
* R ' ; - .
@ - 6Tt = | o8 AT § Q)8 | a3)



A . . A
It is noted that since I - G?Q(s)é is symmetric, the inverse is also

symmetric, implying

FaB(S) = FBa(s)

This is confirmed for example by considering the case of o=1, B=2 as follows

1, - 67Tst 1, - 63Tqst
' ‘vFlz(s) - 1, - 6%Te? 1, - 6%
1y, - 57Tqs* L, - 5253
= - I, ‘_-63TQ61 _ 133 - 63TQ63
=-F,

DETERMINATION OF POLES AND ZEROS
(1) 1In the case of‘SZé = ﬁ?év= 0, from Eq. (8a),
. * : - . o
6s) = (1" - sT(s)8) ™! | (14a)

so that, with Eq. (13), the transfer function, GaB(s),.from the B-th iﬁput to

the a~th output becomes

~-QT -
N g(s)a"‘[. |
|1* - §Tq(s) 6]

Ggle) = (-1 (14b)
In what follows, it will be shown that the determinants in Eq. (14b)
reduce to characteristic equations of (2NX2N) métriées. This reductipn comes

from the observation that the poles of the transfer function must be the

eigenvalues of the matrix A in Eq. (1) or its equivalent form.
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Consider the eigenvalues of the matrix of reduced form (Eq. (19a) Bf

Chapter 1)

A where _
S . % -1q -1
M, = (U - 81" 6D

The eigenvalues, s, of o are the roots.of
_ISUZN;—‘JI' = :0_

Bu._t'

;7|3U2N ;.ﬁfl
_ %% 'UN e
?‘1"2 suN'+ MD |
= lSUNI .SU‘N +MD + M1°2(5VN3—1UN| o
é.lMll;IsZle-+vsD,+ 02|'
- |M1|;|32(UN — o™ L6Ty + ap + o2
= |uy|+|s%u + o0 + oF = &% 5277
- |m, |+ |s%u, + D + dzi'|Uﬁ - )6 tT|
= j_Mlj-lszuN + 80 + 0%+ |71 1" - 6Tq(e) s

Hence
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II* - GTQ(s)aj - mﬂ.-l"lszun + 8D +'02|’A111*] |sU2N -] (18)



Similarly, if we define the 2NX2N matrix .‘,GB b

daﬁﬁ[_-'g__

2,

qm

N
—--

:lz.l

RS

o

!

where

_1 -
w8 & [ -3 (1“3) BTJ
then the numerator of Eq. (145) is written N
|I°“3 o 3

. -1 B y _1
= [ l]szUN + 8D + q2| |.I°‘§| |sU

Substituting Eqs. (18) and (21) -into Eq (14) , We obtain

e |M°‘B| |s UN+D+O 2| IIO‘BI |sU
aB(S) i (-. |M |-1|s U +sDi0 I- -IsU
1 N 2N
Noting that |
-1, %, * : * =1.T,
ey 7Yt = 1Y) g - s 7T
= III* “|uy - (I*)"léTGI'
= |1* - 6%
and similarly
- -BI-
e I b A I
vwe‘.have V -
' ' -BT
GaB(S) = (-l) % T . -
‘ 17 - 878 lsuy = 2 |

103

(19)

- (20)

(21)

(22)

(23) -



Thus, the poles and the zeros are the eigenvalues of the matrices J¢‘~-
(Eq. (15)) and J‘Oﬂ (Eq. (19)), respectively. The matrix .ﬁ[aB is con-
structed by the definitions of Eqs. (11), (12) and (19), but aince it contains
the inversion of (IaB) and (U -8 (IaB) -1 B) Eq. (23) is restricted to the
case when
11%8] ¢ 0 | | (24)
and ' )

|UN - EOL(IGB)_1 3B| $0 | | (25)

However, Eqs. (24) and (25) alwaps hold for the case of o = B, implying that
the pcles and zeros are always calculated by Eq; (23).if we coneider the
transfer functions from the a~th input torthe o~th output (a:1,2;3) whichvare
usually of primary importance. This comes from the symmetry and'positive
definiteness of the matrices I and UN - G(I*)-IG, which guarantee that erery

principal minor of these matrices is also symmetric and positive definite (by

aB

v *
Sylvester's'theorem) with the recognition that I is the of minor of I and

- -1 =B L L
|UN - GQ(IQB) 1 ) | is related to the af minor of U3 - (1*) 16T6

(2) In the case ofé?é = Q,and}ﬁ?é 4 b, from Eq. (8a)
B T . R * T -1 .
6(s) = {uy + £:70(s)6} {1 - 87°Q(s) 8} (26)

By partitioning of Eqs. (3a) and (3¢),

U3 + S?QTQ(S)G

[3
2 1T
1+ lTgal 1T, Qa3 |
Tl 14 2o (Hoad - 27
Tal 2023 1+ 3Tad ~



Carrying out the matrix multiplication 1n'Eq. (26) with Eq. (9) substituted

é yields
_1)a+8> 3 of ‘ _ :
6 = —rr— T (6, + <Tear ) N CL)

1% - 6Tes| v=1

where éuy denotes the Kronecker delta defined by

1 ifa=y

o

5§ =
oY 0 if a# vy

We record GaB(S) for a,8 = 1,2,3 as follows, deleting the factors

I1* - 6Tqs| and (-1)%*®

a-+ clTQal) F,, + (:]'TQa2 F,, + A,clTQa3..F

G 11

11t 21 31

i 1T, 1 . AT 2 1T, 3
G12. (1+c¢c Qa)F12+lea- Fyo + ¢Qa F32

(1 + c:-I'TQal) F, . + c]'TQa2 F +. t.‘.lTQa3 F

13° 13 23 33

G (CZTQalFll + (1 + c2Tqa?) Py, + ?Tead 7

21° 31

CZTQal F.. + (1+ CZTQaZ) F22 + c'zrl,:Qa3 F

¢ 12

224 32

2T 1 ' 2T . 2 2T 3
G23. ¢ " "Qa F13+(1+c Qa)F23+c Qa F33

1 G,,: ¢:3TQa1 F . + -c3TQa2 F

3T 3
31 11 gt (1 +¢Qan) Fyy

3r. 1 . T . 2 - 3T. 3
¢ Qa F12+c Qa‘F22+(l+c Qa”)

x}

Gqy° 32
3T

3-I'c QazF 3Tha3

T 1
Gyyt € Qa F) g3+ (L ©Qa°) Fyy

-Note: F ., =PF
It is easy to verify that Eq. (28) may be rewritten /

org 11 - §To8%|

(29)
11" - 6Ts|

Ga.B(s) = (+1)

. )
where iuﬂ is the 3x3 matrix formed by replacing the Bth column of I with the

\
1

3x1 matrix
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A

and §

(<%

of

6al

6a2

6&3

is the Nx3 matrix formed by replacing the B-th column of § with

We record all the 1L

it

1?t -

231

| 0

§

612

313

621

622
623

632

211

sa8
I.. I.. ]
12 L13 R
1. I. 2 .
22 3| L
I3 I3z-
L2 I3 Cng
I. I %% =
22 23 |
I3 I3z -
I, I 13 -
22 123 |
I3 I3
-/
- el a? a3
= [al -cl a?]
TS B N
= [-62 a? a3].
e SO S
T B I
= [-c3 a2 a3]
T SR B §
sl 82

Eq. (29) is confirmed

If a=8=1, then

for a specific combination of indices below:
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I12
13

-

I
I
LIy3

I
I

12
~1i3

1

and 603 in the following.

113.1
L2

Iy3-
. “
I3
I3

I35
I13W

Iyg
I3

A23

233

~13 _

)
ey
I3

12
22
23

12

23

(30)

(31a)
(31b)
(31¢)
-(31d)
(31e)
(31£)
(31g)
(31h)

(314i)

!
4
|



iT

o |[F Tz Tas “ar 1.2 3
G,.(s) *|* = (-D" |lo 1., I -]a Q[-¢,a",a”)
11 22 23 ;
0 I I a3T
23 "334
1+atfge 1), - aTea® 1, - a'Toa’
~ Mol 1 - 2Tl 1L - a2Tgal
= a 22 Q | 23 a a
T, 1 3T, 2 3T, 3
a~ Qe 123 - a Qa 133 - a _Qa
1T, 1 2T, 1 3t 1
= (1+ a Qc)F11+a Qc F12+a Qc F13
_ 1T, 1T 1T, 2 1T, 3
-(§+c Qa™) By, + ¢ Qa” Fy + ¢ Qa” Fy
: 1T, v :
= 2, +cqaNr.
y=1 ly . vl
which is identical to Eq. (28) with a =8 = 1,

Recognizing the similarity of Eq. (29)

in Eqs. (21) and (23))

lde - 6Tq ga8|

to Eq. (14), we may rewrite (as

= |1;°‘B|"1|szuN +sp+ 02|t '|£q6|'|5U2N - o |

so that R R N

G o(s) = (1B |1°‘i o R Lk (32)

oB 17 - 8T8 |suy - |

where

B Ay goBges,Hr T (33)
and .

jasér__f__j__?N_- (34)
‘ L _quOZ ! _noBy
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Thus, we have reduced the zero determination preﬁlem eo-the eigenvalue
problem of the matrix quﬂ defined by Eq. (34).. As previously, the construc-
tion of the matrices fGB and gdB is streightfbrward but since JZGB contains ,
the inversione of Ic‘8 and (U - GGB(IGB) 6 ), Eq. (32) is restricted to the

case when

I1°"3I~r‘o T _ S

1y, N T TN ' . -

and
o, - §%81%8) 16| 4 0 (36)
In view of Eqs. (30),

1] = 1%

so that Eq. (35) always: holds for o' = B} .However; Eq.  (36) 1s not neces-
sarily guaranteed even for o = 8, as opposed to the previous case (Eq. (25))
because SGB contains the sensor location pafametei (—cq) as seen from Eq. (31).
It is worth noting that IUﬁ daB(IaB) 16 I in Eq. (36) gives the
coefficient of the highest order term- in S, namely SZN,Jand |Ia8| gives the

constant term in the numerator polynomial. Therefore, if Eq. (36) is violated,

then the number of the zeros is less than 2N. In-addition . if -

IUN - gaB(i:GB)—léTI.Ii\asl < 9

then there exists at least one zero in the right half plane.

w »; . . )
(3) In the case Sfé 40 andézz = 0, in parallel with the preceding case,

Eq. (8a) becomes

6(s) = (1" -6 Q(s)é} {U +67q(s) Q'} (37
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If we transpose G(s), then

-1 :
el (s) ='{U3-+s?;TQ(s)6}{1* - 6%q(s)6} (38)-

{(Note that QT(s) = Q(s) since it is diagonal.)

We recognize that Eq. (38) is identical to Eq. (26) if 3?: ishréplaéed”'
by 5?;. Therefore, we may treat this case simply byfchanging ca with bd;aﬂd
noting that GaB(S) of Eq. (37) is given by GBa(S) of Eq. (26). All the

results in case (2) immediaiely apply to this case;
ZEROS OF DETERMINANT OF G(s)

The zeros of |G(s)| are related to those of definition 2 as mentioned
previously, and they are easily determined for the cases (1), (2) and (3).

If S?é = S?; =0, then froﬁ Eqs. (l4a) and (18) with Eq. (16) PR

1
|I* - GTQ(S)GI

) |G(s)|

IsZUﬁ + 8D+ 02| . . _
- : _ : : (39)
. =1.Ty . %
|UN-6('I‘*) §7117] sty = ] -

so that the zeros of |G(s)| satisfy
ISZUN +sD+oi]=0 B (40)

Therefore,

§, =0 (—Cj iVl - C? ) 3= 1;...,N'

3 3

If j?é = 0 and 5?; # 0, then frop Eq. (26)

T
U, + £'Q(s)8
l 3 0 ' l (41)

l6(s) | =
I1* ~ sTa(e) 8|
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In parallel with the derivation of Eq. (18)
T
1
|, +2! ()8 ]
T . .2 2 o
=|%+azglws%+sn+orh%N-d|

- T 2 2. o|
= luy + 27 8] |’y + D + 0%| s, - w2 |

: T
LN Y -0_ 3.
o 2 ; °p ’

-1
o4 - T
M Uy -6 27

where

with

Substituting Eqs. (18) and (42) into Eq. (41) yields

T .
lu, + 2!°5] |su,y = #°]

le(s) | = —

* T .
[T” -8 _5] [sUyy = A |.

Thus, the zeros are determined by

IsUN -,aiol =0

which are the eigenvalues of A°,

1f S?; = 0 and .Qi # 0, then from Eq. (37)

B T V N
Uy + §°Q(s) 2

[6es) |=
I1* - §Tq(s) 6]

which reduces (as in the preﬁious case) to

lu, + 67 21 |sUy - €

|6Cs) |=
it* - sTs]  |sv
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(43)

(44)

(45)

(46)

47

48) -



where

o | u
|
e e | (49)
L -M0° | -MD :
with
c A 1T -1 ' '
M S (U - Z15) ‘ - (50)

 Thus, the zeros of |G(s)| are the eigenvalues of A determined by
su,, - L] =0 (51)
2N : 4

The zeros determined by Eq. (40), Ed; (46) or Eq. (51) do not‘correspond
to the zeros of any particular transfgr function, Gaﬁ(s),jwhicﬁ'ére detefﬁined
by Eq. (23) or Eq. (32). _

It is pointed out by Brockett [1] that theizeros of |G(s)l play a funda-
mental role in least-square optimizationAtheOty and they are important in

determining if a "plant" can be decoupled by state variable feedback.
CONCLUSION

First we discussed briefly the two diffgrent‘aefinitions of the zeros
of ;he transfer function matrix fbrylinear time-invariant systems, to which
the attitude control system of fiexible spacecraft uﬁder consideration belongs.

The transfer function matrix is obtained for the model of three inputs
and three outputs (Eq.(Ba)). Basga on this representétién, it is shown that
the zero determination problem reduces to the eigenvalue problem of the
matrices defined by Egs. (19).or (34) for the cases when the sensors and/or
the actuators are on the primary body. These matrices are formed by inter-
changing the columns or rows of the system matrix & (Eq. (15)) with tﬁose

of the sensor or actuator location matrix. They are always feasible for the
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transfer function from the j-th input;to'tﬁe-j—th output (3=1,2,3) in the
primary body instrumentation case, However for the other cases, the pro-
'cedure is restricted by the assumption of Eqs. (35) and (36) The resnlts
fsooyevstatedrare related to the:aeros of”Definition:lf_and theyrwill»be use—
ful for designing a controller by means ofAclassioal techniqnes,vsuch as the
root locus method. ” ﬁ S |
s A method for determining the zeros of . the determinant of the transfer.
function matrix is also presented (Eqs. (40), (46) and (51)), and the zeros
thus determined are related to Definition 2 _ They are useful for designing .
an optimal controller by modern control theory. - 7

Although no algorithm has been shown, ‘the procedures may be implemented

on the. digital computer,,without any repetition of calculation steps or

any subjectivenjudgment._
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APPENDIX A. EXAMPLE OF TRANSFER FUNCTION DETERMINATION

Consider the single axis rotational motion of a spacecraft with a single

appendage mode as shown in Fig. Al.

e

Fig. Al. Model of Example

The mode shape is assumed to be given by a function of g, f.e., ¢(E).

From Eqs. (la), (1b) and (lc), with scalar variables and parameters,

16 ~ 6n = T. . (A1)
;{+2;on.+02n-6é'=0 (A2)
. v 'I\
where / -
L ‘ N
s--f [e@@rpe N a6)
0 . .
T \



and .we introduce the symbgl»p to rep;epent»&?;?,‘as given by .

cézf-’g—guogg T W
S

=

Then, the transfer function G(s) from T to y (with the po‘ies at the origin)

is given by - _
|1 - 8¢c|- |sU27’4— A 11| L o »
G(s) = 3 ° Sl . (A6)
|t - 6% |eu, - | s
where_
. '|~ i 9
A== -0-2—.1- .- - - - (A7)
40" |--uD -'
L 1! .
F S i
~ | : ) . )
anf_ o _f | | C we
| atle? ) —tlp . | / : ,
with
M= (1 - s?/pt PR . (a9)
and .
vl asrsr o 0T | (A10)
Since

[T - 62|°|8U2 -A| = 1{(1-6%/1)s% + Ds + 0’} - .

. and - -
|1+ 6b|*|sU, - A = (1 + 6c)s? + Ds + 0,
. . iy
then _
B (1 + Gc)sf;"2 + Ds + 62
G(s) = 7 > 5 (A11)
T Is© (@ =-8°/T)s° + Ds + 0 -
e
which 1is also derived by direct Icalcqlations.
/ . B
o . / v
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&

If we further assume that ¢(§) taKes the form - o -

$(8) =+ 08’

where £ 18 a scalar constant, then by Eq. (AS5) i
- . N : R M EIRE IS ATN § (%O S A 1 0 ST N S

- and’

[«
I

- —ls (4] L] S
ol ¢, [3 *%

. where ¢° 1s determined by the normalization condition and becomes in this case

Hence, the highest order coefficient of the numerator of Eq. (All) is given

by

1+ 6b = 1-5(%17*'%)(&—;)

Now, we confirm that the poles are not affected by the sensor location,

while the zeros are significantly affected in view of the equation

(14- “(.55)) 62 + Ds + gz =0

with

13
=1 - 4 ,1) s

We observe that as Es increases from zero to the maximum attainable value, L,
o changes continuously from unity to some negative value. Fig. A2 illustrates

the dependency of the zeros of G(s) on the sensor location parameter d.
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Figure A2. Zero Dependency on Sensor Location Parameter o,
' foro=1.0and D=.0.1.
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Chapter 3. Accommodating Model Error in Linear

Systems Control

ABSTRACT., This studyiisfﬁbtf;ated'5§.Eﬂénaéé&Aédf ;‘éﬁntrol design procedure
which gives to the contfolled system three basic p;operties: ;) insensitivity
to modeling errors (such as from truncatéd modes and uncertain external
disturbances) ; b) simplicity of controller (&f small order); and c) guaranteed
value‘of the éerformance measure of the actual system. Thié status report
sketches some progress on the first two goals but does not touch on the third.
(Actually, property a) is desirablé énly:because it might not be possible to
mathematically insure property c.)

Alterations are made to linear regulator and observer theory to accommodate

modeling errors. The results (some of. which are yet unproven) show that a

"model error vector," which evolves from an "error system,'" can be added to

a reduced system model, estimated by an observer,,énd used by the control law
to render the system less sensitive to uncertain magnitudes and phaée relations
of truncated modes and external disturbance effects. A procedure is outlined
to give the observer a "modél,learning" quality. Two pérameters of the error
gystem, an "observation window".T, and the dimension of the error system, d,
aré related to parame;ers of the control problem. By choosing the optimal
cost as a Liapunov function, the "observation window" (T) of the observer is
related to the minimum éigenvalue of the closed loop system. Necessary con-
ditions are given for the solution of T and d. In a rather novel turn of
events we find that instead of the usuallpattern of "given a model, apply the

control theories" we are using given control theories to help construct a more

appropriate model of the system.
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I. INTRODUCTION

The theory available for analyzing and controlling linear systems is
quite extensive for LINEAR QUADRATIC proBlems provided the model (é set of
ordinary differential equations) is perfectly accurate. Even if the model is
in error, one can analyze the effects of these errors post facto. There is
not, however, a well developed theory which allows one to consider the effects
of model error during the control design.

The exact problem which we would like to solve is the followiﬁg: Find a
control policy uo(t) gf minimal compléxity which guarantees the performance,

v°. Mathematically, we say it this way:

THE MINIMAL CONTROLLER PROBLEM:

Find the control policy, u® = Sr(zo,Aj,Bj,Cj,Mj,t), which though based
upon the model,‘gé, of the physical systdm,‘gg, | |

, ij—ijj+Bju°,j=n.
d ]y

I )75

X vector (STATE)
j i_ ]

C xj y k - vector (OUTPUT)

M X z vector (MEASUREMENT)

)

W=n - vector (CONTROL)

Physical system, with actual inputs uo, and measure-
zi - ments z ,
(e}
- : % o
and output quantities, y

satisfies the performance requirement
(o] i N }
v = J/.('lyollq + Iluo(gds,io)ll)dt < V° (specified number)
o

for minimum nj, for all expected conditions (disturbance and control

inputs and parameter variations).

*

In this paper, the word "output" is defined to be the vector of variables
which we wish to control, (y). The vector z represents those quantities
actually measured.
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Even this mathematical statement of the designer's goal has some vaguenesé
that must be interpreted. The implication is that the selection of those
variables which are to be controlled (identification of uo); seiection of
parameters (A;, Bj, Cj, Mj,t); ;nd even the dimension of the modeila% must
all be determined as part of this "minimal controller problem." Efforts to
separate the problem into two separate problems (a "modeliﬁg problem" a#d a
"contrql proﬁleﬁ") usuélly yields controllers thch either |

(a) suffer from modeling efrors, causing pefformahce requirements to

be violated T T~
-or, - ‘ :

(b) satisfy performance requirements at a cost of high controller

complexity. {

The conditions which cause (a) are sometimes not‘discovergd before "flight."
The condition (b) often prevents use of modern control theory in an applica-
tion. Determination of "expected" disturbances and selection of the
"requirement," V°, can be difficult decisions in the evaluation of a control
law.

Presently the "minimal controller problem" can only be solved by trial
and error. Because we cannot solve this problem and guarantee the cost
mathematically, we sometimes seek certain prgcau;ionary measures by

‘1. "worst case' designs (a deterministic approach of using conservative

conditions in design to add reliabiiity to "flights." This can
cost us in controller complexity).

2, Senéitivity approaches (making the system less sensitive to some

uncertain parameter or disturbances adds some confidence to the

solution).
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3. Stochastic approaches (offer good performance "on the average."

A particular experiment might violate requirements).

In this paper the minimal controller problem (MCP) is not gglvéa, but we
are guided by the MCP objective to suggest a procedure which.allows certain .
parameters and diﬁensions of the modeling problem (MP) to be related to
paraméters of the control problem (CP). The procedure offefs to ;he con—
trolled system (in lieu of a MCP solution)‘ifc;rtain type of -model error
"forgiveness.'" To daﬁe, howéVe;, the cost, Vj, is not guaranteed a priori.

In section iI the modeling problem (MP) is divided into a two.phase task:
a part of the model is determined without regard to the cont¥ol problem (CP);
a second part of the model is presented in structure but the dimensiop and
certain parameters are left to be determined in the CP. Section III presents
an observer for estimating all the states of the finally selected modei.
Special cases of this observer are discussed which produce the Luenberger
observer, the Disturbance Absorbing Controller and a Model Learniﬁg Qbserver;
Finally, in section‘IV, necessary conditions are given for the.selection of

the control parameters by viewing the optimal cost as a Liapunov function,

Some concluding remarks appear in section V.
II. THE MODELING PROBLEM

Suppose we are given some model of a physical system, ‘5%,, Let us label

this model Adg.

i3 = A3x3 + B3uo x3 = n, vector
3 33 3 3
Id; y~ = Cx y~ = k vector (2.1)
3 33 3
z7 = M'x ' 2z~ = £ vector
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For the moment we disregard the means used to obtain 243. We consider 443
* ’ .
to be the actually realized model and we wish to assess the errors which

‘‘accompany '443 relative to a better model, le.

. )'{1 = Alxl + Bluo + Wl, xl = m, vector
111 1t

Adl y =Cx ¥y~ = k vector 2.2)
zl = Mlxl zl = { vector

!

The model ‘Jl is //'the most general description of JO which we write ( dl
i B
‘might be used, for example to evaluate performance predictions and controller .

desiéns v“rhichv are based upon simpler models). The model 4, may not have ﬁro-
1 N - ) c.
ceeded dilrect;ly' from a prior system description such as'dl. However, there
i

"exists a transformation on J, such that d3 is a truncation of the trans-

formed 4. To illustrate this point of view imagine the transformation,

xl = T X which has the trahsforﬁéd system description di )
; (/.3 3 3! 3 |
' X A A12 X . B 1 .
. = + | B u + W
\ X/ 1821 22| \% 2 é,
1 .
t
d, 4 ' el (x3) 2.3
‘ Xe : ‘
t
P BT e, 1t [
A\ )
!
where . : .
- . 3' i _ 3 /
A X -1,1 AT A -1 ’—81
* = x ’ T AT =1, Ao > T =6 : ’
. t . . . 21 22 L 2
! . o (2.4)
B3
L B | clr = 1?1, or-nd, u)
2 _ 't t

*
Suppose, for instance, that the parameters actually used in a controller
design or implementation are (A3,B3,C3,M3).
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] . R
Thus x3 is the n3—vector which satisfies

Qt 1
3 = a3 +B3C +evw (2.5)

where the vector e'(t) can:-be considered a "model error vector" of the model
,5{3 (compare (2.5) and (2.1)). The vector e'(t) evolves from the "error

system'"

o 3! 1
oY +A21x + 82W

1 . (2.6)

xt A22xt +.B

.e'(t) A, .x_ + 61 W

127t

which is coupled with and is an integral paft of the system description, ,¢{ ’
but which is neglected in the system description, 4!;. Equation (2.6) clearly
focuses the fact that for any model of a physical system there is\associgted
witﬁ this‘model an error vector tha; can be considered as a cqmbination of
external disturbances and truncated states of a more accurate model. ?Further—
more, such an e'(t) exists which compensates for any parameter errors in

3 .33

(A3,B ,C™,M") relative to some intermediate, n3—dimensional, model which the

designer may have intended to implement. The convérse of this statement is

not true, however. That is, there is no set of parameters (A3,B3,C3,M3) which
can necessarily compensate for the effects of truncated states and external
disturbances (e'(t)) which have been-neglected in the model. The effects of
such persistently acting "disturbances" can cause instability in the control
problem or instability of Luenberger Obsefvers in the observation problem.

In stochastic descriptions of a system, e'(t) represents correlated disturbances
which have been'ignored. It has been shown by Fitzgerald [1], Price [2] and

others [3]-[5], that the Kalman filter can diverge when such correlated

"disturbances'" are either neglected or modeled as white. Moreover, even
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adaptive techniques (which update parameters of the assumed white noise
statistics) may fail in such cases for reasons stated above.-ThuS,A"structural"
errors in modeling’seem much more critical than so called "parameter errors."
it is the purpose of this section to propose a model error.yector, e(t),
which is an approximation to the vecﬁof e'(t), and which when added to model
15{3 can effectively compensate for modeling errors arising from,
- truncatedAstafes (regérded as "internal disturbances'")

- external disturbances.(which also includes effects of "weak" non-

linearities)

- parameter changes

The vector e(t) is considered to evolve from a much simpler "error system"
than described by the (n1 - n3)th order system (2.6). The error vector e

which is added to‘¢£3 thusly,

3 =a33 el +e

g3 = ¢33 | | (2.7)

z3 M3x3

is considered to evolve from the error system

d -vector

Y = Dy Y
(2.8)

e = Py P n3Xd,mhtrix

ﬁow y(t) is a small dimensional vector which repfesents ; "compression'" of
information in_xt,w1 and retains only impogtant effects of large dimensional
vectoré xt(t) and Wl(t)., Thus, yv(t) is aqjartificial vector whose space should
not be presumed completely controllable bqgause external disturbances Wl are
not controllable (by definition of the word "external," Wl(t) is not causally

related to x3(t) or uo(t)). As an approximation, we write the error system
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(2.8) unforced by u®. The truncated states may well appear in the measure-
ments since Mt in (2.3)Awould not be zero, in general, We thefefore allow
the artificial variables y(t) to influence the modeled measurement vector,

zz(t) (via mat rix MY)’ in the proposed model struétgre..tlz. A

% A P:I x [B]‘ o
. + . u
Y [o pl\Yy 0] o
2 . A C
J2< y = [C,0][x s C =,c3 : (2.9)
A
22 = [M, MY] x\Y, M= M3
o\
wheéere
X A X3 2 A 3 . 3
= = x s A = A s B = B (2.10)

and the superscript 3 is dropped now that discussion on the hierarchy of
models is completed. For our purposes we assume in‘dlz (which has the error
system augmentéd to model 445) that A,B,C,M are given and we musf find the
error system parameters P’D’MY which are appropriate.for a given problem., The
reader may well wonder at this point why.we wouldn't simply incorporate the '
knowledge of iﬁportant disturbance éffécts in the basic'mddeifte&dction"
decisions which yield 443 so that 4‘3 is a completely adequate model for con-—
trol'design. However, we do not'usually know what distﬁrbénceweffects

(external and internal) are important to keep in the model prior to controller

design. Performance evaluations tell the control designer, in a trial and

error fashion, what disturbance effects must fall within the spectrum of con-

trol authority (i.e. what disturbance effects must be actively controlled).

Also, parameter uncertainties (whether constant or due to in—flight changes)

127.



and variations in the disturbance environment cannot ..allways be reliably pre-
‘dicted. This perplexity causes the designer to seek a conservative (i.e.
"worst case") design with deterministic procedures or to seék st’ati‘éij‘iéal-
pfoéedures whiéh, in essence, can promise good performance 6n1y on the average
(a partiéﬁ]_.ar \experiment might behave quité poorly).

_it is for these sevér;al reasons that e(t).*_cannot' be sﬁécifi—ed prior to

" ".control system design. We therefore set ourselves the task of constructing an

énali'ticai model dz 4in two steps:

. ‘ g

I. Controller independent model reduction decisions, ‘dl -+ 4. )
/i II. Controller dependent model decisions 'd3 + JZ
i .

i L .
Figure 1 1llustrates the sequence of events in the modeling problem.

Iy
L ?
S - £\, PHYSICAL SYSTEM-

\ . EEREN . -
NN 'CONSERVATIVE
MODEL

MODEL | | COARSE
"FIDELITY. " MODEL

' REDUCTION

CONTROL DESIGN
MODEL

STEP I

m—— ——
(TAKEN DURING
CONTROL DESIGN)

STEP!
(TAKEN BEFORE
CONTROL DESIGN)

.
.
.
.
.
.
.
.
.
.

ﬁigure 1. " Modeling Process.

- \
*The vector e(t) has the nature of a "correlated" disturbance in the stochastic
view of the problem and "persistently acting' disturbances in the deter-

ministic view.
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Specifying a Structure for P, D

e

Since Y(t) is to be selected so that the approximate error system (2.8)
represents the important effects of the actual error system (2.6), we could

select the parameters of (2.8) so that -
b T
(e) - e(t)|] ., .dt .
.[He() e(8) 140 (2.11)

is a minimum, where T is the time interval over which good error system infor-

!

4

mation is needed by the controller and g(t) is a weighting scalar. Now, if
we view this intermediate task as a curve fitting problem in which the vari-
ables Yi(t) are a set of known functions, then the set of coefficients of

bl

those functions which will minimize (2.11) is

-
i

T ’ T 1.
P = fg(t) e'(0)Y (t)dt fg(t)y(t)y(c)Tdc e (2.12)
o o
One possible.disadvantage of:least'squares methods in modeling problems is
that the solution whiéh minimizes (2.11), s;bject to g(t) = 1, can permit '
large instantaneous deviations between e! and e, This s not a fau}ﬁ.of
least squares theory bﬁt can result from pobr-judgement in decidinF;what
to take the least squares of. A wiser"choice of the integrand of;(2.11)
might include rate terms (é'(t) - e(t)) as well. Another opti;n, Yhich wé.
pursue here, is to minimize the magimum deviation between e' and e; a result.

which can be obtained simply by chéosing an appropriate time weighting g(t)

and interval T. The result is that (2.12) takes on the form

1
T
P=% f——lLle'(") ogs |
-1

102
) 1/2 0 (2.13)
J = 1
0 1] dxa
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where a change of variable has been made for convenience

“ t'=—;- (0 +1)
g(0) = (1 - gB)~1/2

H -— 1 . ' .
Yi(o) = cos(i cos "0) , o (2.14)
The functions"Yi(o):are églled Chebyshev ﬁolynomials of the first kind of

degree 1. To obtdin the matrix D, we may differentiate (2.14) and rearrange

the form to yield

| LY =Dy ' | (2.15)
where '
r “
0 0 0 0
2 0 0 0 )
p-1]lo 8000 : (2.16)
- "le6 0120 0
016 016 0
: . co dxd
L -

Now the matrices P and D are determined to within two parameters; the “obéerva-
tion window," T, and d, the dimension of the Y vector. A nontrivial task in
the computation of P.is the determination of e', the error vector we desiré to
approximate. It may be too difficﬁlt to compute e' exactly, by solving (2.6).
Also the question of what cpnditions to impose upon “‘_to obtain e' might be
in doubt. Because an observer wili be used in section IIT to continually
~update an estimate of y(t), we will find that the system will be forgiving of
cértain kinds of errors (uncertainties) in our selection of e'(t). Specific-
ally, magnitudes and phase relationships ofvthe various modes that comprise

e' need not be known to guarantee proper convergence of the error system.
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This notion is made more specific in section IV. For the present, we assume
that some reésonable facsimile of e' is obtained for use in (2.13). We con-
clude this section by noting that (2.9) is the form of the "control design"
model wﬁere the parameter matrices (A,B,C,M) are specified at this point and
'specification of the parameters of the error system P(t,d), D(t,d) and MY

must await solution of the control problem in sections IIIL and IV,
III. OBSERVER DESIGN

In this section we are committed to the design of an observef to con-
~tinuélly estimate x(t) and y(t), as defined by (2.9). While constructing such
an observer we will again, as ;n the modeling problem.of the last section, refer
to a better model AJ; to interpret cgrtain observation errors.

Suppose x2(t) is defined as the vector which satisfies model

iz = A2 x2 + B2 u® X = n vector

2 y2 = Cz-x2 y = k vector (3.1)
2 2 :
z- = X = § vector

where

B
Bz =[ ] ) Cz'= {C,0]

AP
0D 0

N (3.2)

X
[M’MY] s X2 = (Y) , (n+d)-vector

MZ

Now 22 = ﬁzxz represents the best combination of xi(t) thch correéponds to

the actual measurement reco;d zo(t). The actual measurement zo(t) does not
satisfy (3.1), however, because of ﬁodel errors. In order to write an equality
relating the state of the model, xz(t), and the actual measurement record,

o .
z (t), we must include an error term, €,
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(>4

2°(t) = szz +e = € =2° - szz _ (3.3)

z

where €, is a result of the kind of error e'(t) shown in (2.5). 1Indeed, 1if

' AJ; is considered to be a model of evaluation quality* then we can write from
(2.3),

‘ -
2lee) = mx® + M, x, = z°(t) O (3.4)

then from (3.3) and (3.4)
e, ®M xt—MYy B | " | (3.5

bearing in mind that (3.5) is an approximation and (3.3) is the definition of

€, Furthermore, the approximation (3.5) 1is good only if e'(t) is small in (2.5)

v 3.

so that x~ = x7.

_ We define an (m+d - L) vector, £(t), by

E(t) = T x2 4 (3.8

where the (m+d 2) x (m+d) matrix I' is to be defined momentarily. Now, if

we augment (3.6) with the actual measurement relation (3.3) we have

G-I e

Assuming M? is of maximal rank we can choose I' so that the inverse rela-

tion of (3.7) exists,

ZaLE+ L,%- ) < _ o (3.8)

*If system tests are not economical, then performance evaluations are usually
conducted with computer simulations, Here we assume that model is of
sufficient fidelity to warrant the confidence of performance decisions made
from it. By this we mean that z (t) is sufficiently close to z°9(t) to write

z2l(t) = 29(t).
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where

AT 711 o .
[L,L,] = 2| ‘ N ' (3.9)

r [CRTIS L ) R )
Thus, for later reference we have the relations, from (3.9),

LT + LZMZ =1

1]
-

m, . =1 ML (3.10)

2

rL, . =0 MZLl

]
(o]

By differentiating (3.6) and using (3.1), (3.8) we can construct a differential

equation from which £ is considered to evolve.
€=T AL E+T A2L2(z‘_’ - ) + T B2’ . (3.11)

Equation (3.11) together with (3.8) form an "observer"; a linear dynamical
system whose output (relation (3.8)) yield x2 (if estimation isvperfegt aﬁd

;2 otherwise) and whose inputs are the real measurements zoﬁt) and the real
controls uo(t), (see (3.11)). Of course €z(t) must be available if the esti-
mate.of x2 is to be perfect. Actually equations (3.11), (3.8) offér a'strﬁc;;

ture from which a number of different "observers'" can be‘diécﬁssed.

CASE I: The perfect observer

Equations (3.11), (3.8) and Figure 2 describe a perfect state observer,

2

;2- , if xz(to) and ez(t) are known. (If xz(to) is known, then E(to) =

= x

sz(to) and €, = z° - M2x2 are available, as required.) Of course, xz(t;) is

usually not available, else we have no need for the observer at all.
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u®(t) ~ ' z°(t)

"CONTROL | 82

LAW
22 . %1[.1 + =
- : ra?p,}

ra2 L,

PERFECT OBSERVER
(REQUIRES ¢, (1), X(t,) )

ﬁigure 2, Perfeép Observer. o
(Reguires €, (t), xz(to)). -

CASE 2: The Luenberger Observer

If we presume that our model is,perfect, then'ez = 0 and (3.11), (3.8)

reduce to the Luenberger observer for the system 442

CASE 3: . A Model Learning Observer

Given the model gtructufe of (3.1), (3.2), the observer could "learn"
the gg;recf_matrix'MY which would make the "measurement residual," g=z°- ;2,
approach zero.. In Figure 3, gz is used as an erroxr signal to correct MY, whigh
appears'within the gains Ll’LZ' The physical interpretation of this scheme is
Athé following: For a given character of the error system specified by (2.95,
this observer will "learn" how fhe error variable y(t) propagates to the

measurements, 'z'2=Mx + MYY’ by finding the matrix MY which will make the model

predictions compatible with the measurements, i.e. wx? > 2° 1f an algorithm

+
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can be found which will converge on the correct MY then the observer could be
called a "model learning" observer, in the sense that it learns how the error
vector e = Py influences the measurements. 'The matrices P, D characterize the

the error vector e(t). For Chebyshev polynomial approximation the” matrices

P, D are given by (2.13), (2.16).

CONTROL } »| re? ,0

.»-QZ Lq f A2 L,le
1 , 2
+
X 7
\\ - /
. \\ A L1 //
LY /
~N ~ /
\ ~N
L2 \\ \1 I/
& _ _ _ ] CHANGE M,

Figure 3. A Model Learning Observer.

CASE 4: The Disturbance Absorbing Controller

If we assume the model is perfect (that is, e(t) = e'(t) in (2.11), such
that Ez(t) = 0) and that the error vector Y is totally composed of external
disturbance effects which cannot be measured (that is MY = 0), then the céq—
trol structure of Figure 2 reduces to the so—called Disturbance Absorbing
Controller whose structure was proposed in (6) and which is developed

extensively in (7)-(9).
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Qne final note is of Interest on these observers. Since €, is défined
to be Ez = 2% - szz it is perhaps tempting to construct the appfoximation to
éz, namely gz =29 - M2;2. Lf one implements gz(t) this way then the observer
becomes completely disconnected from the measurements zo(t), (see Figure 2).
A similgr circumstance occurs in Kalman filtering when the plant noise is small
or‘zero. Then the Kalman gain can become zero, essentially diséoﬁnecting the
filter from the measurements., Of course, instabilify is assured in both cases
since the model which the observer/filter has "learned” contains error and its
predicéions eventually diverge from the real system. Thus,Athe requirements
stated in case.l for the perfect observer can not be met and the attempt as
'outlined in case 1 wiil guarantee instability becauée it will not be causally
related to the measurements, |

The observers described in this section, in conjunction with the model
given in (321), (3.2), can be interpreted as performing the'fbllowing service
for the control system: The observer has within it a model of'the uncor-
rected system ¢¢3. When measurement records do not correspond to this model
the difference is curve fitted with a set of Chebyshev polynomials. It should
be mentioned that the estimates of Yi(t) are not themselves Chebyshev polyQ‘
nomials., But over any time interval, (t-T,t), the observer provides Yo» (or
equivalently, y(t), since Y = eDtYo), those initial conditions which correspond
ta a best fit of a set of Chebyshev polynomials of degree d over the interval
(t-1,t), to the actual error veétor (MAX[e'-PeDtYO] is minimized over (t-T,t)
by the choice of Yo produced by the obéerver). For these observers to bé
sfab}e (convergent on x2) the matrix I'AL1 must be a stability matrix and
(3.10) must be satisfied. The error analysis is incomplete, but the first

observation is that if &(t) is the (perfect) observer state which produces
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xz(t) (via (3.8) and (3.11) with &o = in) and if E£(t) is the state of the
physically realizable observer which produces ;z(t) (via (3.8) with €, = 0 in

(3.11) and Eo arbitrary), then the observer error
A A
A= g(t) - &(t) (3.12)
obeys the differential equation -

A = FAleA - Ta% €, (3.13)

2 /

It is the purpose of the model learning observer to keep Ez small by an
appropriate choice (perhaps iterative) of MY. Noting that €, is not zero for
any finite dimensional linear model of a physical dynamical system this -is an
important step in an attempt for better controllers. Luenberger observer and -
Kalman filter techniques assume €, = 0 (or white) and for that reason stability
of observer or estimator canmnot be assured in general. It is the purpose of T
to make (3.13) séable and to make (3.7) invertible. This is possible under

certain observability conditions that will be detailed in further work.

IV. THE CONTROL PROBLEM

The model and observer are characterized by the parameters (A,B,C,M,MY,F,
P(t,d), D(1t,d)). The control law to be utilized is the linear form, W = ze.
Therefore, the parameters that remain to be determined in this section are

T, d, I' and G, assuming that MY is determined in section III.

Selection of T, d:

Suppose V(xz,t) is a Liapunov function for.zl , Equation (3.1), with the
control
W = ¢ x° ' (4.1)

"information window'" over

Then, by our previous interpretation of T as an
which good information is needed by the controller, we define T to be a mini-

mum time constant of the system in the following sense
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A 2 .
- v= oy | X8 (4.2)
| - x.z(t) V&,

Now 1if V(xz,t) is a quadratic form

vad,0) = x0T x4 (4.3)
12,0 =—x2(0)T A %3t (4.4)

T T 4
Then we utilize the fact that the ratio = x° ?lexz  x% 1s bounded above

and below by
T

: 20 5.2 S |
-1 X _Px < [ -1 ] :
AMIN['/V g’] =T, TS ApxlV 2 (4.5)
x° Nx )
to obtain
T = Ay [./r’-l.é] : -  (4.6)

Since the matrices 4 and & are functions of P(T,d) and D(T,d), we could

find the best T by minimizing (4.6). That is

MIN [ MIN ’—Y—z 4.7
T xz(t) -V

yields T.‘ Rather than solving this problem directly, we will establish an

= ()

xz(t)

upper bound on
t

and minimize the upper bound. From matrix algebra (10) we can write
-1 -1 -1 +1/2
Man A PT S Ayt 1 Ay [ 21 = A

1/2

-]l (4.8)
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where

C nt+d 1/2
i 2
il =| T gﬁ}

Li,5=1
. . [ n+d 2 1/2
Ha™=| T )iy

If we choose V(xz,t) to be the optimal cost functional

-

A T T
V(x?,t) = o7yl + R Oy
t

and u° to be the corresponding optimal control
w°(2) = K 152" K x (t)

where K satisfies the degenerate Riccati equation

- - _ - T
0=-xka?-a%2 R+xB* % k-¢2 Q ¢?

- T - T
then # = K, G = -Rle K, H = P

(4.9)

(4.10)

(4.11)

(4,12)

2T
QC + KB R 1B K, (the observer is con—

sidered berfect for the present purpose, xZ: x ). Tf we minimize the upper

bound as specified by (4.8) we have the following necessary conditions for T.

-1 2
IV el

; . 12 1/2] Y,
= | 2l e 2]

4. 1/2 1/2
ety AL L

9T

Equation (4.13) is quite difficult to solve and we must show that A

To obtain H ¥ ||l/2, HJV‘ll'll/z

product (11) solution of

~L(1,d)D(t,d) + [KBR BT - AT] L(1,d) = K P(T,d)
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(4.13)

"l exists.

in a form explicit in T requires a Kronecker

(4.14)



for L and of
. -F(1,d)D(t,d) - D' (t,d)F = LIBR-IBTL # PT(t,d)L + LYR(T,d)  (4.15)

fd;'F, qhere.L and F are partitioned parts of K in (4.12),

R L(T,d) T f
T S 1= . . S L (4.16)
L (t,d) F(t,d)
Therefore - - : '~ ;
T el izl_zf 2, T (4.17)

wﬁé?e’li are colums of the matrix i

4\ .\‘-__ ]:-.[F]n [9/1'22,0-02d] ’ . ‘ . - ‘ . . :_ (4.18)

Fufﬁhef;wbrk is required to determine if-f can be solved from (4.l3)'ahd;:
whether it is unique. ' N -

"uAssuming that-the hérm'o} P is 5 éoﬁvex function of d, yélwili'selécﬁ d

- to éaﬁiéfy '

L d-l - S
T T
£ 2 o X e

(4.19)
d g=1 T 17 S

oo

for small o m .01, This ih eéffect forces a minimum degree of observability of

“"error system" modes (i.e. so that the at? (and final) mode 6f the error system

is say;"IZ'hs‘obSerﬁéblé"in'the'output~as~al} other modes of the error,systeh).

Mathematical justification of this intérpretation will be offered later.

S~
Choosing a to be as large as, say..0l, serves to constrain the order of: the

~

error system. Otherwise d might-be quite large (to obtain arbitrarily small

errors in fitting e(t) to e'(t)).
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V. CONCLUSIONS

An'"error system" is augmented to'a system modeI'Which is\intended'for .
controller design. The parameters of the error system'are determined‘in such
a way that the observer, which is used'to-estimate the states of the model and

error system, serves to fit actual model errors (the difference between real

-

measurements and those predicted by the model) with Chebyshev polynomials so

that the maximum modeling error is minimized over an "observation window," T.

In this view of the. operation Of'the.observer; the system can perform;.in :
essence, 'adaptive curve fitting" of internal and external disturbances with-
out recourse to "adaptive".techniques:: Alternately, in the mode of'operation
in which .the observer is adaptive;~the observer could-be called a "model
learning observer in the sense’ that it learns how the model errors influence‘
the meastrements. To accomplish this an algorithm must be found for changing
a certain matrix, My’ so that the measurement residual, s ‘=l;?‘— z2, is
driven toward zero. This adaptive feature has not been completed howevei.
Certain parameters of the error system model must be determined simul—
taneous with control policy design. Specifically, the "observation window, .
Ts associated with the error system is shown to be related to the minimum ‘
eigenvalue of the closed loop system. 'This-relation is accomplished by~
. viewing the optimal cost-as a Liapunov function. . The dimension of the error

......

_ the error system, although this feature has not been completed and only neces-
sary conditions are shown for 1 and d.
..As a special case of the observer derived herein, the Luenberger observer

is obtained As another special case the method: reduces to the Disturbance

Absorbing Controller reported in [9], [8] and [7]. The present method has
. . C . . C
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several advantages over the Disturbance Absorbing Controllers. Most signifi-
cantly, the effects of "internal disturbancés" (truncated modes ) are not
ignored (i.e. they are not treated simply as éiter‘nhl, inmeasurable

~ . g e p et - .

disturbances). . . . . ’.:‘. PR ., .. Lot ‘.' s .-

e R
AN B
~ N .
= T. .- - . . : . . ;
~ -
- ¢ e : .
. & -
O N _ < - N o~
. ~ - - .
.
)
- . .
P N
o .
. .8 . s
3 k]
A, R e
’ - s «
1 % PR
' .- -
5 .
- - te 2y .
¥ - ERE A R
s
P
- . ;
oo e e e
z I . -
f
’ . - —
’
i 3 )
4 - .
N o R B}



f1l

(2]

3]

[4)

(5]

{6l

(7]

(8l

(9]
(10)

(11]

.Fitzgerald, R. J., "Divergence of the Kalman Filter," IEEE Transactions

‘REFERENCES

e

Automatic Control Vol. AC-16, No. 6, Dec. 1971, PP.. 736-747. o
Price, C.F., "An Analysis of the Divergence Problem in the Kalman Filter,'
IEEE Transactions Automatic Control Vol. AC-13, No, 6, Dec. 1968,

pp. 699-702. , _

Griffin, R.E. and Sage, A.P., "Sensitivity Analysis of Discrete Filtefing
and Smoothing Algorithms," AIAA iournfl, Vol. 7, 1967, p. 1890.

Fujita, S. and fukao, T., "Ertor Analysis of Optimal Filtering Algorithm

for Colpréq;Noiﬁe," IEEE Transactions Automatic Control, Vol. AC-15, No.

"4, Aug. 1970, p. 452, S : LT

Huddle, J.R. and Wismer, D.A., "Degradation of Linear Filter Performance
Due to Modeling Error," IEEE Transactions Automatic Control, Vol. AC-13,
No. 4, Aug. 1968, pp. 421-423,

Skelton, R.E., "Optimal Momentum Management in Momentum Exchange Control

Systems for Orbiting Vehicles," Masters Thesis, University of Alabama,

Huntsville, 1969.

Johnson, C.D. and Skelton, R.E., "Optimal Desaturation of Momentum
Exchange Control Systems," AILAA Journal, Vol. 9, Jan. 1971, pp. 12-22.
Johnson,'C.D.,-"Accommodétions of External Disturbances in Linear
Regulators and Servomenhanism Problems," IEEE Transactions of Automatic
Control, Dec. 1971, Vol. AC-16, No. 6, p. 635.

Johnson, C.D., "Accommodation of Disturbances in Optimal Control Prnblems,"

Int. J. Control, 1972, Vol. 15, No. 2, pp. 209-231.

Gantmacher, F. R., The Theo:y of Matrices, Vol. Two, Chelsea Publishing

Co., New York N.Y., 1960
Bellman, R.,_'Kronecker Products and the Second Method of Liapunov,"

Math. Nachrichten, Vol. 20, 1959, pp. 17-19. |

143



age Interitiona*l'l'y Left Blank



Chapter- 4. ' ‘Hybrid Coordinate Method Using

Assumed Mode Shapes for Elastic Continua

ABSTRACT: The hybrid coordinate method provides equations of motion of
minimum dimension for a spacecraft with flexible appendages. Instead of

the usual finite element approach, in}which mode shapes are calculated from
equations of vibration of thé finite ele@ent assembly, this chapter provides
an alternative formulation using assumed mode shapes. This proves useful
for a class of simply modeled appendages for which mode shapes are pfovided
by an outside agency, of-are otherwise known. The results are shown.to be

compatible with the finite element formulation, as previously described.

I
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I. INTRODUCTION

The hybrid-coordinate method providés-equatibns of motion of a spaée-
cfaft with elastic (fléxible) appendages. The‘appendages.aré modeled as an
interconnected set of small rigid bodies interconnected by ﬁassléss or mass-
ive elastic bodies (finite glements). From the Newton-Euler approach, the-
equations of motion for each finite element and the rigid body portion of the
spacecraft are formulated. The introduction of an appropriate coordinéte
transformation_allows_the finiﬁe element equations to be represgented as
decoupled vibration equations, which involve mode shapes and modal coordinates.
Since the vibration equations ﬁave been'decOupied from each other, significant
truncation of the higher order mode sﬁapes cap_ﬁe accomplished, This.leads
‘to;a set of equations where rotation of the rigid body portion of the space-
craft is couﬁled'to the vibra;ion of the flexible appendéges. These equations
are df great practical use becéuse‘the truncation procedure has significantly
reduced the number of degrees of freedom_éf the system without substantial}y,
sacrificing the fidelity of the results,

The purpose of this chapter is to provide ag.alternative formulatidn
for the hybrid coordinate method using assumed mode shépes. This approach
will préve useful for simply modeled‘appendages. Fér thesé the mode shapes
caﬁ be determined from a continuum analysis using partial differential equa-
tion methods. The ﬁruncation procedure is accomplished at the outset by

- - -
~ e "

eliminating the higher order modes of vibration. The equations of motion

- -~ -

are formulated using a Lagrangian approach and the coordinate transformation
is accomplished using the assumed mode shapes. The resulting equations of

motion are then seen to be compatible with those arising from the finite

e€lement method,

] - _
, 2 '/ ://'/ I ) ) » R Vi ‘
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. Figure 1. System Diagram.

where

0 : Center of mass of undeformed systenm (body fixed)

.0z Position of 0 at rest (inertially fixed) o3 L
B:. Center of mass of rigid body
A e Center of mass of undeformed appendage /

M: Total System mass

=

Appendage mass’ .
: A » \ P
m : Appendage mass/length : Q -
Q : Connection point of“'af:pen'dage ‘
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II. MODEL

The following derivation of equations of motion.uses a model éomprised-
of a cent;ai figid_body and a flexible cantilevered beanm. Extensiéns‘td
"Qeveral-appeﬁdages of arbitrary configurations may be made from the results
Ai;f this éimple model, The undeformed position oflthg appendage i3 taken to be
constant relative to the rigid body.  The transformation'bgtween the two is
included in the derivation to facilitate the éxtension of Ehe;equations to
cover a driven Appendaée.' The angular rotations are assumed to be small as
are the translational displacements. A'diégram‘of the model is sﬁown in Fig-
uré 1. To summarize, the assumptions used in the following derivation are:
) ‘rigid body with cantilevered Beam, |
e beanm rest positioﬁ.constapt relative to base,
e small translationé and rotatiqnsa-‘t B
No orthogonality feﬁuirgﬁents have been placed on the assqmednmgde;
shapes. The vibration equations are therefore coupled.j Further coordinate-,
traﬁéformationg may be employed to &écpuple the vibration equations or to.: |
achieve vehicle normal modes, but the truncation procedure does not require
;
this as it does with the fi%ite glement»procg?yrg.

The vector bases empl%yed in the derivation are:
i } wre s

{1} : Inertiallj fixed basis

o . S
{b} : Basis fixed in the rigid body
_Q{g},; ~ Basis fiiéd'ih{appendagé prior to>défofma;ioh 
where ' .
¢
{b} = [8]{1} , ‘
: ~ ' ~ 0 _-93 92
[9]i= (E - 8) for small rotations § = 6, T =8]
. " -6, 6, .0
l ! N\ . <1
n : A .
{a} = [e]ib} . . Co
: \

[c]!= constant for an undriven appendage.

,’ ) © 1149



For the undeformed system, the location of the center of mass is

fpdm=0
SYS : - :
where p is the generic position vector from the center of mass to the dif-

defined by

'feteqtia}:meee element, Evaluating this expression leads to
-CAM M) L +'u(1_z~.|- .EA) =0
where the quantities are shown in Figure 1 with L being the location of the
rigid body center of mass and EA tne appendage center of mass,
The dyadic of the undeformed system 1s:defined35y
‘ :
0"- 0, * 0,
_RB AP~-u
0 B M MY 3
O ={  + ¥l y-L)
0 LA : _ o :
=0 +x [(5+5A)' (Btzy) L- (R+r )(rez A)]

AP—d AP-u

h s

III. THE LAGRANGIAN OF THE SYSTEM

The kinetic energy of the system is

=—fv-Vdm+—fv-Vdm :
' ) )

where V is thel}nertial velocity of a generic mass element. The kinetic

energy for the rigid Body yields a S

S AREERE I e Sk TR N

’

where 4 is the system mass, M the appendage mass,. and B is the center of mass
. .I_ . . . . .

of the rigid body with
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Expanding this expreésion and switching the reference point of the inertia ' _
: e o

dyadic to the system mass center gives
Ll voyamed(hn)zoirdo [ +o-(wa)[i @
if veyam-g(Mn)izego [ to-( e w] |
RB .

The kinetic energy of the appendage is- i .
. . | ] ’ )'A

>t yvevamedr fR R oam . .
2 - - 2J-m =m A ! '
where APP - . G / n
o
Ba=Z*R+r+u | o
o e . o] o i {
Ry=Z+3+R+1+wx(Rir).

!

the rotating referenée fraﬁe is denoted
. } ‘
e zero since they are fixed

Vector differentiation: with respect to

0 )
by the "circle" above the vector. Here R and r ar

in the frame. The "dot" denotes differentiation relative to an inertial refer-
Expanding the éxpression and making use of the dyadic of the unde-

0
)yields. .
AP=u’ ' o

ence frame,

. !/
formed appendage about the system mass center([]

J2 = - AP-u
APP .
+2Z - f_ldm’fZ"Bx[(-*’EA)J
APP
+ ['.' @ x (B+r)] do ,
APP ’ ‘ . -

f
: : . L
!
Combining the terms for kinetic energy and eliminating terms produces
o ,
L

1

-
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The inertia dyadic-of the undeformed system gbout'the éystem-centef of mass is
B gj?;AL@ﬁ?fcenter of ﬁaés exﬁression.eliminéted'thé_térm in the kinetic enefgy |
‘“ ;é;ﬁégi;ing Z and w. |
L =%\f Ffbm beam fheory,'thé stfain energy of the apﬁendage 1s-

2 2
. u= %-Jf»xn:<3—§)-.<§—§>du
'.\ \ \ ! \ APP - _ar ' or .
- j .
| The L%gﬁangiaé for the system is then
1

1 . 1 . o ) -]L .
L= ML+ 7 [] w+3 J{. usu dm
f _ APP
+gof,udni+g_)-§xfgdm
APP o APP
1 2\ . (&
+w * (rxu) dm - 3 EIL 2 ‘. 2 dr.
' . -\odr .\ or
APP APP

' Ly
‘ .
! The formation of the above has 7ésumed that the undeformed appendage is

| _ : : o .
fixed relative to the base (QBi = _A;) . The next step to be taken is to

. - ’ ) 7 .
assume small angle rotations and represent the Lagrangian in matrix form, The

following matrices are used: = i‘
| . A

I
= {1}" {2}

e

1€

= {E}T'{s} ‘ (small rotations)
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u = {g}T {u}

D*- {1_;}T . {b}
R = (b} {R}
r = {b}’ {r}
[0 -Ry R, - 0 —ry 1,
R = RS,O_Rl 3 r =l o1y 0 ry
-R2 Rl 0 -1, .31 0
[0 -6, 8,
6= 6; 0-6;
-6, 6, 0 /
(6] = [E - 8] //
2 ' i
9°u f n2 9 ) "
— =" | 2] - @ W) /
or ‘8 2 !
r
2
3 u
< 2 o
8r2
82.u3 A ’
L 8r2 J

i

Retaining second order terms in the Lagrangian produces

2 = ()" (2} + {67 1" (8

T A

+3 [ @7 @) e+ tihie) [ @) en! |
APP ’ APP !
- |

+ @ e[ @t 0" cf Flad am
APP APP

- %f EI {u"}T {u"} dr, ’

APP |
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Distributed coordinates are introduced by the coordinate transformation

-n
u(r,t) = 2 f(r) nt (©)
i=1

where n is the number of modes used to‘représent the diéplacemean In‘hétrix

form, the transformation is

fu} = 2 {¢i} nt

]

©-

[
e

nNo
L]
L]
-

3
———
3
ot

[(¢1{n}
where [¢]) 18 a 3 X n matrix with each column corresponding to a mode shape

and {n} contains n modal coordinates.

This coordinate ttansformati&n'yields the Lagrangian.:'
2 =3 M {2} (2} + 5 6)T 1" (6)
“1. « T S ST ’ oy
7 X, (Al + {2} cx) (A}
. / M T - ‘~' * ’ l T .
+ {6} c(R x,#X5) {n} - 5 {n}" X, »{r_1}
where : A '
= f 0w
. APP

x, = f 161" o) am

APP
x3=f_?[¢1du;-
APP

X, = f EL [¢ 17 [¢] dr
APP
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i
H 1 i
!

The matrices Xl and x3 are of dimension 3.x n thle the matrices xz'and:x4

are symmetric and of dimension nxn., The Lagrangian depends on n+6 generalized
Six coordinates describe the translation and rotation,of the r

N ! ' |
t

1

coordinates.
undeformed system and n modal coordinates describe the’ displacementlfrom res

!
of the flexible appendage relative to the rigid base, ’ s :
_ [
: !
|
!

{
1

-EQUATIONS OF MOTION o |

The equations of giotion for the system may now be derived froﬂ the !
; . . ;A

Lagrangian in the traditional manner.. The reéulﬁing’n+6 equationslmay be

repregented in matrix form as
| -

—

AAEY + X T} = 0
- —
1" (6} + (Rxpg)(d = (1p

X, (i} + %, {n} = ,-xT"”{'z”'} + (x'{ 'E—xg'.){'e’} - |
! 1
/'/ ' ;
Whgff/ill/is//ﬁe externally applied torque, The first matrix equation may'
This pro-
|

used to eliminate the translation from the vibration equations,

- o )

duces n + 3 equat;ons'of the form

I {8} + (R xp + X,) {0} = (1)
(x, J{ X1 1){n}+x {n} = (x] 1R-x ){5}

The matrices that provide coupling between the rotation and vibraﬁion

!
equaéions

in each equation may be seen to be transposes of each other. The‘
i
|

can be written as
*. .. e ' . :
10 {8) = 6T (i} = {T} / :
[

(% < ¥ %) ) 4%, 00 - 68)

where .
| i
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‘equations (287) tb_q289) of Reference 1.

V. COMPATIBILITY WITH FINITE -
ELEMENT EQUATIONS OF MOTION
The equations of métion derived from the continuum analysis are similar
in structure to those derived from the finite element analysis (Ref., 1), The.

differences between the two appear invthe assumptions made in the qohtinﬂum‘

. éhalysisz

e No orthogonality prOperéies

® No differential rotation of appendage mass
1{ o eleme#&B due’to defprmation; c . '
y VOrthogonaliz§ propertie§ cén-pe_appliedffo_thé cpnﬁiﬁuum‘éhai&sié
vibration equatiohs bylé_suitaﬁle coordinate ttanéfofmationg_ The'orthogonality
properties are not nééded to_petmit‘trﬁnCatiqn as is the éase in the finite

element anal&sis;

The equations of motion from_a'finiﬁe.elemeht;ahélysis>ére/shown by

in=T

+5%h =56

- .ZEO - ¥ :Eo).

»
ot
=

18-
I 7 + 285n/+ &
| ' /

T e ;q)T M(E

OE

' The bve;bar indicates truncation. If the damping is eliminated and

the orthégonality,coﬁditionjreiéXed-(after trqngation);Athe eqUa;i@ﬂsgbepqﬁe

"6-8Th-=1 f
,  ( ¢I Ml ¢Aﬁv+ &T KJ ¢.ﬁ =’3_5i . : : ”

where - iy ! ' - i
T '
M =M(E—EEoron M/./Il)
- L .
K = Stiffnes- matrix.,
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Normally, the coordinate transformation 5 includesvmode shapes with
‘translation and rotation of the finite'elementaQ_ To agree with the continuum
analysis, no rotations of the finite elements will be allowed. The coordinate

transformation ¢ will then be a 6n XiN matrix represented by
-$-[{¢ Y {¢ ]|

:where _ 4 .
®p1}|

o V .
T TT I

{67}
n
> 0 4

With the above limitations, the matrix multiplication can be performed

in the finite element equations and the terms may be compared with those

from the continuum analysis.

For the augmented mass matrix, the finite element analysis results in

This.is compatible with_the.reéult from the continuum analysis

(xz '.,lq Xy xl) - f n(r) [¢1]T ‘[@] ar

13  arp

ff m(r)“‘(r) [ ] [qﬂ] dr dr.
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iFor the § matrix, the finite element analysis results in

| | 1=1 "1

This is cOmpatible with the result from the continuum énal&sis

| jf m(r)[¢D] R+r)d

-

3
: \

Thus, if the number of finite elements were increased without limit the

1

, finite element equations would be 1dentical to the continuum analysis
M ] . )

equgttonsh

| P ~ 'VI. CONCLUSION

'With the foregoing results it beeomes possible to accomplish a hybrid
coordinate dynamie analysis for a system with appendageé defiped only in
terms of modal data based on a continuum analysis., This is a neeessary step

before we can simulate an LST vehicle with FRUSCA solar panels defined by the

modal data provided by HAC.
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NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and TECHNICAL TRANSLATIONS: Information
technical information considered important, published in a foreign language considered
complete, and a lasting contribution to existing to merit NASA distribution in English.
knowledge.

TECHNICAL NOTES: Information less broad ~ SPECIAL PUBLICATIONS: Information

in scope but nevertheless of importance as a ~ derived from or of value to NASA activities.
contribution to existing knowledge. Publications include final reports of major
TECHNICAL MEMORANDUMS: projects, monographs, data compilations,

handbooks, sourcebooks, and special

Information receiving limited distribution 0 .
bibliographies.

because. of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology .
used by NASA that may be of particular
interest in commercial and other non-aerospace

technical information generated under a NASA applications. Publications include Tech Briefs,
contract or grant and considered an important Technology Utilization Reports and
contriburion to existing knowledge. Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546





