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PREFACE

This report consists of four chapters, as noted in the Table of

Contents following. Chapters 1 and 2 were the primary responsibility of

Dr. Yoshlakl Ohkami, who was a NASA International University Fellow and

Postgraduate Research Engineer at UCLA for two years, on leave from the

National Aerospace Laboratory of Japan. Chapter 3 was the responsibility

of Robert Skelton; this material represents a preliminary statement of the

topic of his doctoral dissertation in the Dynamic Systems Control Field.

Chapter A is the work of Joseph Canavin, who Is beginning his doctoral re-

search in the field of Dynamics. This chapter includes a development which

is required for a projected digital computer simulation of the Large Space

Telescope Satellite.
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Chapter 1. Eigenvalues and Eigenvectors for Eybrld Coordinate

Equations of Motion for Flexible Spacecraft

ABSTRACT. Literal characterizations are developed for the eigenvalues and

eigenvectors of a system of linear time-invariant equations which describes

the attitude motion of flexible spacecraft in terms of hybrid coordinates.

The eigenproblem is shown to reduce to that of a symmetric, and positive

definite matrix of lower dimension. Both analytical and minimax characteri-

zation methods prove to be useful in localizing the eigenvalues for the zero

damping case. A perturbation method is employed to Investigate the effects of

modal damping. The resulting eigenvectors generate a canonical form, based

on which the controllability is examined.
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1. INTRODUCTION

One of the most commonly accepted procedures for the description of the

attitude dynamics and control of flexible spacecraft Is a hybrid coordinate

formulation, in which the attitude variables of a primary body are discrete

coordinates while the displacements of elastic appendages relative to the

primary body are characterized by distributed or modal coordinates. Since

the formulation has been established and the linearized variatlonal equations

are at hand,[l] it concerns us greatly to examine the system behavior based

on this representation. In this examination the eigenproblems play a key role

for many reasons. Firstly, the eigenvalues or eigenvectors represent essential

features of the system such as stability, steady state response and so on.

Moreover, in application of existing control theory, whether it be modern

control theory or classical, eigenvalues and eigenvectors are useful in

canonical transformation, pole location and so on. Secondly, knowledge of :

elgenproperties of the system affords a sound basis for the truncation

procedure which is essential to system simulation or control system design.

However, such systems are usually multivariable systems with an extremely

high dimension, so that numerical calculation of the eigenvalues or eigen-

vectors is not an easy task. Hence, it is desirable to characterize them in

some closed form.

The purpose of this paper is to characterize the eigenvalues and eigen-

vectors of the system in literal expressions, by utilizing peculiar properties

of the system parameter matrices as they have been previously established.

The eigenvalues are localized in terms of inertial matrices and modal param-

eters, and a procedure for calculation of .the eigenvectors is proposed in some



special cases of practical Interest. The effects of truncation and damping

are also examined.

A canonical form of the system state equations is derived, and

controllability criteria are discussed and compared with the previous

results.[3]

••••' In the hybrid coordinate representation, the vehicle translational

equations take the form[l]

1*6 - 6Tn = T (la)

and the appendage deformation equations1may be written [1J ,[3]

2 " T
n + 2£on + on - 69 = <)> !£ T (lb)

where T is the 3x1 matrix representing the external torque vector about the

•• i .
vehicle mass center c, for an orthonormal vector basis in the primary body b,

I* is the 3x3 inertia matrix of the total vehicle for c, 8 is the 3x1

matrix'of 1-2-3 inertial attitude angles of b, and <£ establishes the location

and type of the attitude control actuators.[3] Here n is the N x. 1 matrix

representing the modal coordinates, where N represents the number of appendage

modes; <j> is an N x 6n matrix whose columns <f> represent the mode shapes of

those appendage vibrations with nonzero natural frequencies a., which could

occur independently of each other if the primary body were translationally free

but constrained against rotation; O is an N x N diagonal matrix whose elements

are O arranged in non-decreasing order; and £ is also an N x N diagonal

matrix whose elements £. represent the modal damping associated with modal

frequencies a., for j = 1, ..., N. The N x 3 matrix 6 is established by <J>

and the geometry and mass distribution characteristics of the appendages, as

in Eq. (278) of [1], It should be noted that (j> is normalized with respect to

the generalized inertia matrix, as in Eq. (213) of [1], and that with this

normalization 6 has the dimension of square root of inertia.



For convenience in later discussions, we define the following matrices:

and

y A (I*K9

A A 6

u A

D A

With the definitions of Eqs. C2) , Eqs. Cl) become
" rj>"

Y — A f) = u

n + on + 0n - Ay -
where

with a., s a_ .,.

Furthermore, it is convenient to decompose A into submatrices

.1

AN

where the 1x3 matrix A^ is defined by

Aj A [ Ajlf A
J
2, A

J
3 ] , j = 1, 2 N

and the scalar quantities AJk (j = 1,2,..., N; k = 1,2,3)

are dimensionless and [1]

0 < Ajk < 1

(2a)

<2b)

<2c)

(2d)

(3a)

(3b)

(4a)

(4b) /

(Ac)

t Since I* is symmetric and positive definite by nature, (I*) is always

feasible with the following interpretation: there exists an orthogonal

T D Dmatrix R such that RI*R = I where I is a diagonal matrix with positive

elements, and ̂ I)*5 is defined. This permits I* = RT °IR = RT(°I) RRT(DI) Tl,

so that (I*)*4 = R



In what follows, the 3x3 matrix A A plays an Important role so that some of

its properties are stated: if we interpret 6 in terms of primitive definitions,

then we obtain the physical interpretation.! 2]

/T* _. T06 6 « I* - I
0

where I is the inertia matrix of the primary body referred to its own mass

center. From Eq. (2b),

ATA = (I*)"Js(I*-I°) (4d)

0 TObviously, the matrix (I*-I ) is; symmetric and positive definite and hence A A

is positive definite. Furthermore, if we consider the matrix
' : ' ' ' '

- ATA
i n

(4e)

it is also positive definite. Therefore, the eigenvalues of A A are greater
* • i

than zero and less than unity, provided that there exist at least three

independent rows in A (see Appendix A).

In terms of the (2N + 6)=x 1 state variable

Y'

t
n

Eqs. (3) may be written as

X = AX + Bu (5)

where

and

0 U3 0

0 0 -A1

0

B.

0 -Ĥ o

N (6a)

(6b)



with B2 = M2 + AT Mj^ <f>T &c

AM

(6c)

(6d)

(6e)

and

(U3 - (6f)

T - T
The noted properties of A A guarantee the nonsingularity of (U, - A A), so

that M, Is always feasible. Since (uj,"- AAT|'= |u_ - ATAJ, M. is also '

feasible. Moreover, M.. and M- are both symmetric and positive definite, as

' - t

shown in Appendix A.

2. REDUCTION OF EIGENPRQBLEM

Let x be a generic eigenvector of A corresponding to a generic eigenvalue

X; then the problem is to find X and x which satisfy • ,

- A] x = 0 (7)

with the characteristic equation

lXU2N+6-Al -° (8)

By the determinant partitioning formula [6], Eq. (8) may be written from Eq.

(6a) as
I C-

xu. -u,
3 3

o xu3

XU -UN N

M.02 Xtt, + M,D1 N 1

(9)

From the first determinant of Eq. (9)

X6 = 0

and we have X = 0 with multiplicity 6.

(10)



The second determinant of Eq. (9) is further decomposed into

| X U N | - | X U N -i- M^ - M1o
2(XuM)"1(-u;T)| = o

or

|X 2 U N + XM^ + MjC (11)

If we also decompose the eigenvector x as

x.

_ X 4 J

(12)

where x,,x2,x_ and x, are 3><1, 3*1, Nxi, and Nxl matrices associated respec-

.. ,tively with Ytt.H and n, then Eq. (7) becomes

-u3

xu 2 T
A t

(13)

and

'4 J

(14)

This decomposition indicates a procedure for obtaining the eigenvectors:

since Eq. (14) does not include x. or x?, we can first solve Eq. (14) for x,

and x,, and then substitute the solution' into Eq. (13) to produce x.. and x2.

For the solution X ** 0 of Eq. (10), the determinant of Eq. (14) becomes

M 0 . M D

and hence there exists only the trivial solution for x_, x,, i.e.,



(15)

Substituting Eqs. (10) and (15) into Eq. (13) yields

0

0

-U,

= 0

implying 0.x = arbitrary, x»

We may introduce three independent and orthogonal 6*1 matrice's C

C defined by

/i\
, and

• 1 "
0
0
0
0

.0.

;
• t !. " *

(2)r._,
»

" o. •
i

.. o, ,
0
0

. o .

.(3),
, 'C • =

' i

" 0."
0
1
0
0

.'o .

The six eigenvectors corresponding to X = 0 are null except for the upper

partitions, which are C , C , C , and three linear combinations of these

matrices. We see that the number of independent eigenvectors corresponding

to X=0 is less than the multiplicity 6 of X = 0, so the matrix A is not similar

to a diagonal matrix but to a nondiagonal Jordan form. We can find such a

transformation matrix if we construct the generalized eigenvectors, which are

null except for upper 6*1 partitions given by (among many)

(16b)

For the nonzero eigenvalues determined by E.q. Q.1) , we have from Eqs. (13)

and (14)

(MO2 + XMD + X2i x = 0 (17a)

" d '
0
0
i
0

. 0 .

e ; • ,-,- , -,..,!.

(2)
g =

r<n
0

-0
0
1

. 0 .

and g<3> -

' 0 "
0
0
0
0

. 1 .



V — —• V1 X 2

(17b)

(17c)

(17d)

Equations (17) indicate that x_ is the only vector to be solved as the eigen-

vector, and that other vectors are all determined by matrix or scalar multi-

plications and additions.

Thus, the eigenvalue and eigenvector problem of A reduces to Eq. (17a),

in which A is in the second order form. Eq. (14) is also a reduced form which

may be written in a standard form of eigenvalue problems as

Y - 0

where

0

-M,a2
1

"
UN.

-M D

(18)

(19a)

and

A xi
C19b)

In order to localize the eigenvalues and characterize the eigenvectors,

we will take the following procedures:

We first assume that £ = 0 (so D = 0) and in the second order form of

Eq. (17a) we define

(20)
A o

y = -A2

to which corresponds the eigenvector 4>. Then Eq. (17a) becomes

(yUN - M^a )\\> =0

for which the noted properties of M will be fully utilized.

10

(21)



After obtaining the results for D = 0, we will return to the first order

form of Eq. (14) and treat D as a small perturbation.

3. CHARACTERIZATION OF EIGENVALUES

3.1 Analytical Method

Since M is nonsingular, we may define the characteristic polynomial,

f(y), for Eq. (21) by /

f(u) = I M " 1 ! ) - M0
2| (22a)

or, in view of Eq. (6e) ,

f(y) = |yU --02 ŷMT| (22b)

If we rewrite f (y) as

f(u) = In'1] |o| |yUN -Ml0-2| la"1]

= In'1) |yUN - oMjal

then we~~recognize that y is the eigenvalue of an N*N real, symmetric, and

positive definite matrix (JM a. Thus, we have [4] the following fact.

Fact 1. All the roots of f(y) = 0 are real, and positive, i.e., all the
2

eigenvalues of Ma are real and positive, and hence, by Eqs. (10) and (20),

all the nonzero eigenvalues of j&. are imaginary. In addition, the eigenvalue

problem is well-conditioned (a small change in the elements of aM a does not

cause any abrupt change in the eigenvalues) .

In what follows we attempt to characterize the eigenvalues further mainly
2

based upon a particular structure of f(y) (Eq. (22b)), in which yU - a is

Tdiagonal and AA is of rank 3.

In order to do so, we first tentatively assume that for the root of
2

= 0, (yUN - 0 ) is nonsingular, i.e., :

|yUN - 0
2| * 0 . (23)

11



Under this assumption, we may rewrite Eq. (22) using the determinant identity[6]

as

f(u) =. |uUN - a
2 1 • g(u)

where

- |U - yAT

(24a)

(24b)

Since in this case the roots of f(y) = 0 are identical to those of g(y)=0,

we will treat g(y) rather than f(y) because the former is related to a 3*3

matrix while the latter is to an NXN matrix.

The cases in which Eq. (23) is violated will be discussed in such a way

as to establish under what conditions the system eigenvalue becomes

2
identical to a. for some £.. A sufficient condition is stated below for this

to hold.

a 2
Fact 2. If A =0, then £(<?,,) = 0. This means that the natural frequency,

ap, of an appendage vibration mode with A = 0 is also that of a system vibra-

tion mode. .

Proof. If we rewrite Eq. (22b) as

2 A!AIT A^NT
—iiA A — — — — — — — — — — — — —y A A "

£ XN> * Y'A A ^U -0. -y A A -y*A A
* >. i

* A- y A A v 2 I .N.NTy -<?„ -y A A
N

and expand about the. A-th row with A = 0, we have

y

fCy) = CuroJ)

2 .1A1T-yA A N

i
i

XNA1T-yA A

.l.NT-. -yA,A
i
i

2 I .N.NT•y-0N -y A A

12



so that

f(oj) - 0 .

2 £It is noted that ffap) = 0 does not necessarily imply A =0. In fact, if

1 2a.'s and AJls satisfy a certain equality, then it happens that f(o0) = 0 forJ • x
£

nonzero A as will be shown later.

In order to evaluate the roots of Eq. (24b), we define

A y 4 - 1 0,(y) (25)

and, with this definition, we have

dN(y)J

(26)

and

g(y) U ~

ANA

N

- £ d.(y)AjTAj

N

where &„ is the Kronecker delta defined as„

if a = B

if a ̂  3

C27)

13,



and the quantity in the brackets indicates the (a,3) element of

T 2 —1
[U_ - y A (y UN - a ) A]. Some properties of d (y) are given in Appendix B.

The function g(y) is easily evaluated for some particular values of

interest. Since d (y) = 0 for y = 0,

g(0) = |U3| = 1, (28)

and since

lira d..(y) = 1,

(29)

lira g(y) = |U3 - A A|

Consequently /

0 < lim g(y) < 1 (30)

in view of the noted property of Eq. (4e).

Considering the properties of g(y) of Eqs. (28) and (30), we will further

characterize the roots of g(y) = 0 based on the fact that it grows without

2
bound when y approaches to a for any j = 1,2,...,N.

As proven in Appendix C, g(y) is expressed by

N

g(y) - 1 - £ G (y) d.(y) (31)
A-l x -

where

G (y) - A~A~ - 2- d (y) K*
£ j=l J J

+ 23 d (y)<L (y)L^ (32)
!Sj<kSJi-l J * JK

14



with

and

where

(33)

(34)

# £

0

4
.-4

-Aj

3

0

4

4"2

-4
0

(35)

We recognize the following properties of K. and L., , noting that by.the
j JK-

assumption in Eq. (23) and Fact 2 following Eq. (24b) we have excluded the

A*_ 0 for all £.

(i) K* 2 0 . (36)

!r«\
with the equality when A A = 0, implying that two vectors have

the same direction;

(ii) C37)

(iii)

with the equality when A 0. This takes place if any two

1 k aof A , A and A have the same direction or if one of these three

is perpendicular to the cross-product of the others. Hence

(iv) If K* = 0, then lA = 0.
J J

(38)

(39)

From the expression of Eq. (31) with the definition of Eq. (32) and the

noted properties of Eqs. (36)-(39) we have the following fact:

15



2
Fact 3. All the roots of g(y) = 0 are greater than a.. .

2
Proof. Consider the value of g(y) for 0 < y < a.. Then, by the definition

of Eq. (25)

d£(y) = ^—j <0 for i» 1,2 N (40a)

and hence
GA(U) 2 0 ior £ = 1,2 N (40b)

Equations (40) guarantee that

2
g(y) fc 1 for 0 < y. < o.

2
so that there exist no roots of g(y) = 0 in the range 0 < y < a. . On the

other hand, from Fact 1, there exists no negative root of g(y) = 0. Therefore,
2

all the roots of g(y) = 0 are greater than a .

One can interpret the Facts 1 and 3 in terms of the eigenvalues, A, of A

as follows. If the roots of g(y) .= 0 are denoted by y , j = 1,2,...,N and

arranged in non-decreasing order, then the Fact 3 indicates that

a'sŷ ŷ ...̂ .

In view of Eq. (20) , this implies that for any eigenvalue A of A,

2 „ ,2 ,2 ̂  2a, < -A or A < -01

meaning A is purely imaginary and |A| > a . Thus, if we denote the eigenvalues

of A by A., j = 1,2 2N, then we may arrange them as

and
A.. =-i*̂ ~̂ = A* j = N+1.....2N

(41)

Although Eq. (31) was useful in proving the Fact 3, it is not appropriate for

further localization of the eigenvalues utilizing the noted properties of

16



d. (y), because the G0(y) in Eq. (32) contains d (y) (j < A) . To avoid this
j * • J

difficulty, we may expand the products d (y) d, (y) in G-,(y) and collect all

the terms including d.(y) in Eq. (31) to obtain (see Appendix C)

N

g(y) - 1 - L PO d.,(y) (42)
£=1 * *

where

A 9

1 <. j < k « N

and

a2

with

dj£ > 0 if j < i (45a)

djA < 0 if j > £ (45b)

2
Consider the case when y approaches to a.. Then, dn(y) grows without

bound, so we have

lim g(y) = - lira podj>Cu)
2±0 *

if P. > 0
* (46)

if . P < 0

17



Immediately from the properties of g(y) of Eqs. (28), (30) and (46) follows

Fact 4, as illustrated in Fig. 1.

Fact 4. If P^ > 0 for I = 2,3 N, then the roots of g(p) = 0 are separated
2

by the a.'s as follows

2 . ^2
J, < y.. < 00J. J. /

... < (47)

Figure 1. g(/j) Versus ju When Pg > 0, fi = 2,3..., N.

It is evident that ?^ > 0 because d ̂  < 0 for j = 2,3,...,N. However,

P{ (£ 22) is not necessarily of a definite sign; the sign of P« depends on
2 4

the relations between the a.'s and the As. Loosely speaking, P0 tends to
J *

j o A
be negative if A and A are uncoupled or moderately coupled (meaning K and

£
possibly L., are nonzero) and if the two adjacent frequencies 0. and a0 areJK J *

very close (meaning d 0 is very large). In such a situation it is unlikely
J*

that there exists a root of g(y) = 0 between those frequencies. This is

shown by the following example.

If we rewrite P. by

C48)

18



wkere

N
D+ A .fc.JlT V* X,
P = A A - Z- d K.

-Jk (49a)

and
A-l

Pi - E d K - £ dUdkAL1k ' (49b)

<N J* "* Jlc

then for A ?< 0

> 0 and P~ * 0

in view of Eqs. (45). (See Fig. Cl of Appendix C.)

Assume that a is so close to a - as to satisfy

: A

r+1 r
i

and d I - » |d , | for any j ^ k. Then, we may approximate d . by -Mr • r< J» j K ' i^ri ̂  r

and, neglecting terms not containing M, we have

N

Pl« Uf,, - £ L* , d_ I M (50a)

P *^

and

'z L^
j-i

<50d)

19



From Eqs. (37) and (39) and Eqs. (50),

r+1 r

r+1 r

implying that

P .. « -Pr+1 r

2 2Hence, for a^ < y <

gty; » J. - j-

\ '

and

A dg'(y) = d g(y) ~
i

If we denote the root of g'(y)

y = 0 0 ,

and the local extremal of g(y)

20
,. x -. , • rg(ym) ~ i - a

If P > 0, then PI+I < 0 and

g(yffl) < 0 (see Fi£

If P < 0, then P , > 0 and

-02 /

2
°r

( -a2)2 (y-
r

" -02 " y-02 J r

\y~ r r+1 /

2
ar+l

Vi)2
Pr

= 0 by y , then afLi
m o ' '

is given by

p
0 r 'r

• i

2a).

c

f 9<M)l
7

i g(p )

/ ^V/ \ (a)

•f <*i

v^ V
1 (b)

Figure 2. Roots Not Separated.

g(y ) > 0 (see Fig 2b)
m

2 ^2
In any case, no root exists between 0 < y <

20



.In what follows, we will investigate some special cases in which some

12 Nlidentifiable sets of the P. are positive. Suppose that A ,A ,...,A have

the same direction and they are orthogonal to the others, which necessarily

lie in the plane normal to any A , (j = 1,2,...,N ). Then, the system

1 Nl X

eigenvalues associated with A ,...,A are independent of the others and in

addition

implying

* = 0, Ljk = ° forj,k,£=l

P PT

A A > 0 for 4=1,2,...,N .

Therefore, Fact 4 always applies to this group of modes. For the remaining

(N-N,) modes lA = 0 but in general K^ 0 for &,j C{N +1, N +2,...,N> .
•JL J K- J J- J-

Furthermore, if the remaining modes are classified into two other groups,

i.e., A ... A and A ...A , which groups are also orthogonal, then

the problem is decomposed into three single axis problems, each of which can
o o-r

be treated independently with P« = A A > 0.

3.2 Eigenvalue Localization by the Minimax Theorem

2Taking advantage of the noted properties of the matrices MI and a ,

another localization of the eigenvalues of Eq. (21) will be accomplished by

utilizing a result based on the minimax method [4] as stated below.

Theorem; If A,B,C are symmetric matrices with the eigenvalues a.,3. and y.,

respectively, which are arranged in non-increasing order, and

if A,B and C are related by

C = A + B,

then for any s = l,2,...,Nf ./ . .



This means that if we add B to A, all of the eigenvalues of A are changed by

an amount which lies between the smallest and greatest of the eigenvalues of

B.

In order to apply this theorem, the characteristic equation of Eq. (21)

is rewritten without changing the eigenvalues as follows.

Since [M"1] j 0 and |o| i 0,

|yUN -M^
2! - 0

is equivalent to

or

la'1 M'1 HuUfl - M1a
2Hcfi|-='Cr

- UN| = o (51)

If we define V by

(52)

then we may rewrite Eq. (51) in terms of V as

(53)

— 1 —1 —1in which the matrix a M a is also symmetric and positive definite.

If we partition the matrices A and a into submatrices by writing

and

- f- -1-!
L A -

(54)

(55)
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where

then

so

and

Writing

where

and

a = and A
•a.N

AAT =

*1, IT A A

A A

-1 T
M = U - AA

IT A '"T1T A A1

1 - A'A" i -A"A
. I _

-A AIT

f^d - A1A1T)a-1

-o
*—1 * IT —1. JL A A -^A —. •*-

A a
-lL

>1<

, n A . ,(l - A A )a

0

--1C-.1T -1-a AA a

/S^fT. ^ -I

- MT)a

.-a.. A A a

we denote the eigenvalues of O~ w7 cr~ , S) and ^ by V , v' and u > . ,1 J j J
respectively. Note that the matrices 2> and & are also symmetric.

(56)

(57)

(58)

(59)

(60)
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The eigenvalues, V1, of 2) are the roots of

i.e.,

or

|V'UN- a1) =0

_ 1

V - C^-IVII , -a"1*

Obviously, one of the eigenvalues of 31 t to be called V* , is given by

t „-!/•! A^-A^Nvi = i ^ ^
1 - (61)

The eigenvalues of 9 are the roots of

(62)

or

0)

- .-o AA a-1 0)U,N-l

For the nonzero to the determinant identity [6] applies to yield

o) -

which reduces to

2 -1.1?T'>-2AA1T -a) - an A A a AA a, = 0 (63)

It turns out that there exist only two nonzero roots of Eq. (62), and these

are equal in magnitude and opposite in sign. If we denote the positive root



of Eq. (63) by u^, then the eigenvalues of JT are arranged in non-increasing

order as

<*>]_, ,0..... 0,,, - ̂

(N-2) zeros

where

i /
M =

IT
C64)

As stated previously, the matrices 2) and &" are. both symmetric so

that we may apply the minimax theorem to the matrices of Eq. (58) to find

Vl ""

From Eqs. (61) and (64),

v i ± u l

Vl S Vl

•
AA

IT1T

1 - ) AA
IT11

On the other hand, if the definition of V (Eq. (52)) is substituted into

Eq. (65), we have

where

"1-

1 A^11 j. Wf '"-M AA1 T1 - A A + V A A ( a . . a ) A A 1 A A N - . .1 - A A - V A A.(a,a ) A A

(66)
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We could apply the mlnimax theorem to the other roots of a~Hl~ a~ to

produce a similar result to Eq. (65). However, the eigenvalues of 2> other

than v' are not immediately feasible in view of the equations immediately

preceding Eq. (61) . For those roots of <3> which are expected to give the

bounds of V (s=2,...,N), we can reformulate the eigenvalue problem ofs

Eq. (53) as follows.

Let Vp be an elementary matrix [6] which interchanges the j-th row

(column) of an arbitrary square matrix A with the k-th row (column) if A is

pre-multiplied (post-multiplied) by V, . Specifically, V, takes the form

u
rn~
Lu_

••i-
L •"•_

1

'\-i-l '

1
L _ - _|

.

i-

•T -

o

_ _ _
_ _ _ -

-

UN-k

j-th

k-th
(67)

Note that

j-th k-th

(68a)

UN

(68b)

If we define V by

= v1 v2 v3V2 V3 V4 •" (69)
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then from Eqs. (68) ,

Of

^ O O • • • * n
I /-IT
j • • • v 0 /
} ™

v2 v1
• • • * o * o

= UN

and similarly

V*T

N (70b)

•JlPremultiplying Eq. (53) by V arid postmultiplying by_V_yields_

|vvVT - A'1 M'1 a'1 /T| = 0

From Eqs. (70), we may write

|vuN - (vWT ~ VT) cvo

By the noted properties of V:J composing V , it follows that
1C • ' ' '

and

-1 I7a i o
B —f —| mm ^ «

0 ! (a )'

1 A A1 - A A
u

N-r A

where

'2.

'a*.

(71)
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I I

and

,£+1 (72)

By these definitions, we may reformulate the eigenvalue problem of Eq. (53)

as

where

K- = o

(1-A A

0

*Q —1 -^0 ̂ OT —1
/ _.A*\ -1« A^'A™J'/'— \ •*•(a ) A A (â )

for £ = 2,3,...,N.

0 _1
)

^
(â )

. - .A A (a

Following the procedures taken for V.., we have similar results for

(73)

(74)

(75)

where

(76)

A . .
- A A )o C77)
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and

and

"£
1 - A A +YA A (O(fo,)~ A A

2

* & (79)
n , A • v / . - -
1 - A A -WA A (a. /a.) A A

for I = 2,3, . . . ,N .

Thus, we have obtained a range in which y« (£=2,3, * . . ,N) exists, and the range

a *zis easily evaluated by computing the scalar quantity consisting of A , A and

*ia as defined by Eqs. (71) and (72). The ranges given by Eq. (79) may be very

useful for localization of the y if the quantity in the square root is sos

small that we may write

°*
V ~ ~ • (80)

0 1
Strict equality holds if A is orthogonal to any AJ ( j ̂  £) so that

AA A

In general, however, the quantity is not necessarily small because some

—2 "I,) can be very large. In fact, (a /a.,)*i —2 "I —2elements of the matrix (a /a,) can be very large. In fact, (a /a.,) takes

the form

29



—9

2 2

' 2,_2

"

in which the first (£-1) elements are equal to or greater than unity in view

of the ordering of Eq. (4a).

3.3 Multiplicity of Eigenvalues

We will first examine the case when a.'s are all distinct. From Eqs.

(24a) !and (42), y

N i,1 N N

f(y) = Jj[ t(y-am) - y £ PO fj (y-o ) (81)
1=1 m=l m

,
i m=l

N

because |yUN - a | = J/ (p-0 ). Although Eq. (42) is derived under the
m=l 2

assumption (see Eq. (23)) that |yUN - O | + 0, Eq. (81) is not so restricted

(the restriction can be removed by the continuity argument), and holds for any

real value of y for the\distinct 0j case.

We may rewrite f (y)| as

N

f(.U> = (y-a )
o

N

fl
m=l
rn^s

/J
m=l

Itfs

S S m=l

(y-am)

(82)

which indicates that

-^ =0
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if and only if P =0. We have noted that P.. > 0 if A iO, so that

cannot be the eigenvalue, of M.O unless A =0. However, even if A

can be zero for £=2, ... . ,N, so that aff(4=2 ..... N) can be the eigenvalue! of

Moreover, if P = 0, we mays

f(y) - p E P*
m/s

m=l

in which a is one of the roots ofs

N

i-y L

if

H
1-0. 0.

m̂ Jl.s

This means that if P =0 and if Eq. (83) holds, y = ag is a repeated eigen-

value of with multiplicity 2 (at least) .

Consider next the case when a is repeated with /multiplicity /2, /i.e.,

0 = a ., assuming that all others are distinct. Then, Eq. (31) may be
' S ST! / / I

written as

4-1

I I
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N

g(y) = + K {d (y)} -s s (y)}2 L*s s

and subsequently

fClO
m=l

where f(a ) =0, or
S

N

77 (P-O )
• ^ • TO
m=l

Ks+1

N

- £
£=s+2

It follows that

) = 0 ,

if and only if

N

£=s+2 S'S+1

2
This means that if O is repeated with multiplicity 2 and if Eq. (85)

S
2

holds, then a is one of the eigenvalues with multiplicity at least unity.
S

2
If the multiplicity of a is three, i.e., a

Ss

are all distinct, then as previously

N
f(y) - - _ _

m=l

. ..
S S »"J.

= a ,0 and others

f(y) (86)

a ± am s

where

f(y) = 0 for y = a , and hence

f(a2) =0
S

s+l
if and only if L = 0.
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2 2
If the multiplicity, r , of 0 is greater than three, then a is one of

S 8 S ,
2

the eigenvalues of M 0 , with multiplicity r -3 (at least).
.L S

The results obtained in Section 3.3 are summarized as follows: ';

If 0 's are all distinct and P 's of Eq. (43) are all positive for

2
£=1,2,...,N, then the system eigenvalues of Ma are all distinct as stated

!
in Fact 4. !

2 !

If 00's are all distinct but P =0 for some s, then 0 is the eigenvalue
Xr S S / '

2 'of M O with multiplicity at least unity. • '
2

If 0 's are repeated with multiplicity 2, then 0 is an eigenvalue ofs s ,
2

M.0 if Eq. (85) holds. Otherwise, it is not so.

2If 0 's are repeated with multiplicity 3, then 0 is an eigenvalue ofs s
2

M 0 if Eq. (86) holds. Otherwise, it is not so.
2

If 0 's are repeated with multiplicity r for r > 3, then 0 is ans s s s
2

eigenvalue of M10 with multiplicity at least (r -3).
JL - S
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4. EIGENVECTORS

Consider the eigenvector problem of Eq. (21) premultiplied by M~

(yM^1 - O2)ij) = 0 . (87)

—1 T ' 0
Since K. (= V - AA ) is symmetric and positive definite and so iav a , the

results in [1] and [4] apply directly to this problem to yield:

1 2 NFact 5. There exist N independent eigenvectors to be called ty ,ip , . . . , ijj
,

regardless of multiplicity of the eigenvalues. Furthermore, we may choose a

i I k . — 1
set of i/r's such that ijr and i|» are orthogonal with respect to M. , i.e.,

^ \T = 0 for j ^ k .

i l k 2I whereby i|r and ty are also orthogonal with respect to a , i.e.

= 0 for j ^ k

If we normalize tjr by

= 1, j = 1,2 ..... N,

ithen

. j - 1,2

(88a)

(88b)

These relations are conveniently expressed in matrix form: if we define N*N
i

2
matrices ¥ and A by

(89a)

and

(89b)

then

T -1
V M 1

1
(90a)
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and

-A2 (90b)

and

M^2* = -YA2 (90c)

In what follows, it will be shown that the particular structure of M~

simplifies the eigenvector calculations.
r\

Assume again, as in Eq. (23), that |y.,U - a | ̂  0 for y . Then, from

Eq. (87) with Eq. (6e),

y

so that

(y 1^ - a2)t|P - y MV = 0

or

(91)

It is noted that A i|r is a 3><1 matrix so that if we define X

X j = yV , (92a)

asthen we may write ijr

^ = (y l^ - oV^X1 (92b)

s'
/

Subsequently, the eigenproblem of Eq. (87) becomes

0 -

y^x^ - y2MT (y..UN - a2)"^

y..A{U3 - y..AT (y - O2)"1A}X
3
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On the-other hand, the characteristic equation of reduced form (Eq. (24b))

assures that the determinant of the matrix in the braces is zero for y , and

hence there exists a non-trivial solution for x determined by

.T,tu3- - 0 (93)

in which only two elements of X are to be solved. The normalization con-

dition of Eq. (88a) with Eq. (92b) substituted yields

IT T 2—1
XJTAT(yjUN - a2) \UN

2 — 1 1
^ - a*) V =

or in view of Eq. (93) ,

.T - a2)"' -2 3 X 3 - ! (94)

•' ' 1Thus, we can determine X (j " 1,2,...,N) corresponding to p. by Eqs. (93)

and (94) provided that |u.U - cr | ^0, and then the (jP's can be calculated

from Eq. (92b) .
f\ •

Next , we will show that even if | y . U - a | = 0 , the ijr ' s can be

determined in a similar manner.
f\ f\

. (j 4 s) ; then ll^Ujj - a

case, we may rewrite Eq. (87) (simply by changing the rows) as

Suppose that y, = a and R j a* (j ̂  s); then |u,_U., - o*| = 0. In this
K. S K. J

*• ±.

•

~LL A A
Tc

-u. ASA1T

11 . . . . -a A V1 -y AV1 ~

• • •

2 • N NT N ST
* u ^ Q • • i j A t i ^l-i A A

* * lc N Ic k.

-y,' A A -y, A A

" *1

:
k

\l)
N

k
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With the definitions of Eq. (71) and (72) , we may write

1

"V
where i|r is the (N-l)xl matrix. Hence

and

I

. 7k ^ ASAST ,kA A i p + A A i p

Assuming that A ^ 0, we have from Eq. (95b) ,

Jk

ASAST

(95a)

(95b)

(96a)

Substituting Eq. (96a) into Eq. (95a) provides

,STAS
= 0

in which IvulJ , - (o ) | £ 0, so that we can follow the procedures established

above, simply changing the dimension of the matrices to (N-l). It immediately

:kfollows that ij> is generated by

?k •2Wxk (96b)
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I I

where x is obtained by solving

ASTAS

TsTsrA A

rs
X - 0 (97a)

or
i

! I,

kT̂ ST

with the normalization condition

-ASAST j

0

UN-I ~ " " i
1 - ASAST

= 1 (97b)

1

- A"A +

=1

! L ~T I'
Thus, 'ifi * i

and

(97c)

P, is determined by Eqs. C97a) and

•(97c), and then ^ is calculated by (96b) and ip by (96a) , so that ijr is

obtained. Once again, the eigenvector calculation of an (N-l)xl matrix has

been reduced to simply that of 3x1 matrix.
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5. TRUNCATION EFFECT

In this section, the eigenvalues are examined for a truncated system of

equations represented by

and

where

and

-T u
- A n = 0

a =

(98a)

(98b)

(99)

(100)

where N is the dimension of the truncated system and

or usually

N < N

N « N

When such a truncation is exercised, it is required (or sometimes pre-

sumed) that the nonzero eigenvalues of Eqs. (98) , to be called A!,A'...A'- ,

should be a good approximation of the first 2N smallest modulus eigenvalues

* * *
of the original system, namely A ,A2 Arr and A^A,, ... Arj , as of Eqs. (3)

or Eq. (8).
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If we define y' by

yj £ - (X-)2

then the problem is to compare y and y' where y' is a root of
J J J

(101)

and

(Ujj -

(102)

(103)

For convenience of later discussions, we also define "K, F and M. for the

part of the system to be deleted by truncation:

uA"

(104)

and

where

= A
a =

N

N

N = N - N

-i

(105)

(106)

(107)

The notation y! will be used also for the roots of

|yU - M. a2| = 0
N -1

with

j = N + 1, N + 2,. . . ,N.

(108)
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With these definitions, we may write

and

(109)

A

A
(110)

In what follows, we will examine the reciprocals of the roots defined by

as in Eq. (53), which satisfy

(111)

for

and

for

|v'u- - 0 MI a |=0

vj = 1,2 N

Iv'u - a If a
I 5=3 1

N

V.' = N + 1, N + 2,.,

= 0

,N.

(112)

(113)

..-ISince JL is partitioned as

M-1
UN

0

u-
N -

-A

0

U
N .

AAT

T
A U

=;

• A L

=;

= - ^

' A

=2

A '
-
=1 -i
i

-T"A^

S

I-
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the matrix cr MI a is decomposed and rewritten as

= a +

where

and

a

-

-a

EL a ! 0
_ 1 i

0 | (T 'M (T

0 -a A 5 CT

V 71--1 'A A a , 0

(114)

(115)

It is recognized that the eigenvalues of 2> are v!, which are determined by

Eqs. (112) and (113), because

VUN - vus - 5
_-l_-l_-l . .

a I • I vu= - a Ma
N

(116)

From Eq. (115), if A T = 0 then 0 and

.

and hence

- f — —In other words, if AJ A = 0 for j = 1,2 N and k = N + 1 N, then the

eigenvalues of the truncated system together with those of the deleted system

are identical to the eigenvalues of the original system.

If A A ^0, then the matrix & usually causes a discrepancy between V
j

and v!. In order to examine this influence, first consider the eigenvalues

of S> , to be called u.. The u. are the roots of



U)

or from Eq. (115)

-1 T

_ - = =
-o A A a

-0 A A a

For nonzero u>, the determinant identity [6] applies to yield

(117)

u>U - a °S A a (wife)" a A
N

or

or

U= - a Ma A A a
N

2 _T_-2_ =x=r-2=
a)-U - (A a A) (A a A )

(118)

= 0

It turns out from Eq. (118) that there exist at most six nonzero eigen-

values of $f . Moreover, since 3F is symmetric all the eigenvalues are real,

so that if we call the roots of Eq. (118) ± 0)°, ± u)°, ± a£ with 03° 2 OJ° 2

U)» Z 0, then the oj. 's are given in non-increasing order by

u>°, 0)°, co°, 0, 0 ..... 0 -u>°, -u°, -o)°, ,

(N-6) zeros

From the fact that the matrix a M7 a is a sum of two matrices, 2> and

- & , which are both symmetric, we may apply the Wielandt-Hof fman theorem [4],

[8] stating that if V. and v! and u). are arranged in non-increasing (or non-
J J J

decreasing) order, then
N

j
2

Jj
(119)
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Noting that

£ a.2 = 2 £ ceo?)2

I j-1 J J"l J
I

I = 2 tr(STo~ A)

and recalling the definitions of Eqs. (52) and (111), we see that Eq. (119)
/'

immediately implies that

N 2 .

r--M S2 tr(ST a" ftdfo'^K) (120)

Eq. (120) gives a bound of errors which could take place if we approximated

1|i. by u'. If the relative errors are small, i.e.,

|e0/yj| << 1

where, ,. , .

.then

Therefore,

(_i..i)1. E^)2

j-l\yj yj / j=l \ y£ / \yJl

4
and if we neglect 0(£j), then

2 tr.(SV2S)(2TT a ).(-4\ t
l \yZ/ \M

Each term in the summation of the left hand side is positive so that for any A
i



or

e

"MJ

T *? T 9

i tr.(S a~ A)(A a" A )

a A) (T (T A) £=1,2,...,N (121)

. Equation (121) gives a bound for the relative errors, and if the dimen-

sionless quantity of the right-hand side of Eq. (121) is sufficiently small,

judging from some practical point of view, then we may employ y1. as a satis-

factory approximation of y., permitting the truncation to be acceptable.

This condition, however, is a sufficient one in that even if the quantity in

question is not small enough this does not necessarily imply that the y! are

unacceptable. This is because the error limits of Eq. (121) are overestimated

due to the neglect of the positive terms in the left-hand side of Eq. (121).

Equation (120) also implies that

N Of i i \2 jr _-2 _ j __£=
-± - -~ } * 2 tr. (S a A) (A a A ) (122)

The requirement that the quantity of the right hand side of Eq. (122) is

practically small- is also a sufficient condition in the sense stated above.

The minimax theorem as applied to the matrices 0" . Ml a" , 3D and y

produces the following result. Since the eigenvalues of a K. a and 21 are

V and v' , respectively, and the maximum and minimum eigenvalues of & are

o . o ,)1 and -o)1 , we have

(123)
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or

"i"
(124)

Equation (124) affords an explicit error bound for y' at the cost of solving

the eigenvalue problem of 9 , which is a 3X3 symmetric matrix.
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» YA U2N 1

0 V
-U a 0

f . 0 0
_ _ _ _ — _ _

L o -MID.
V
I

*3

>.

6. DAMPING EFFECT

This section considers the effect of damping, represented by D a 2£O in

Eq. (14), on the system eigenvalues and eigenvectors. Rewriting Eq. (14) as

"0 (125)

we treat the second matrix including D as a small perturbation to the first

matrix in the parentheses, whose eigenvalues and eigenvectors have been

characterized to some extent in the previous sections. We employ the pertur-

bation method established for diagonalizable matrices in [7]. Define

UN

Let e be the maximum damping ratio of the appendage vibration mode, i.e.,

e = max C.
j J

(126)

and define p. by

j = 1,2,....H

then

0 < p, S 1 .

By nature of the damping ratio, £j is a small positive number Ctypically

0.001 < T, < 0.01) and so is e, i.e.,

0 < e « 1 .
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Defining

« A.
P "

PI*
(127)

we may rewrite the perturbation matrix as

e P

where

[-0.....0.1
L 0 .-aMjpa J

C128)

For e = 0 (unperturbed system), the previous results indicate that the
' *•'•••* ,' "'' ,

eigenvalues of ut/ are given by

j

to which correspond the eigenvectors

j = N+l 2N

,. j = 1,2,...,2N.

From the orthogonality of ijr together with, the normalization condition of

Eq. (87), the Y^'s are orthogonal with respect to H\ defined by

n'"l
(129)

2 1
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In fact,

YkTK'

0
1

if k ¥ j
if k - J (130)

In the presence of nonzero e, we write the eigenvector as corres-

ponding to the eigenvalue1 X (e) and hence the eigenvalue problem becomes
" ' '

X (e) ! Yd(e) -- 0, (131)

where

e P C132)

For a sufficiently small e, we may assume that

2A. (e)

YJ(e) = Y

A + a e +••• (133)

(134)

Since {Y , Y ,...,Y } form a complete set of eigenvectors, any vector in the

2N-dimensional space can be expressed by a linear combination of Y s, so
i

that we may write

2N

k-1

g,

*"

i - 1,2,... (135)

Substituting Eq. (135) into Eq. (134) yields
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2N

Y j(e) = YJ + e E
k=l

Y + e

2N
2 t

k=l

j

Yk +.,

(1 + ecj + e2 C^ +...) Y

+ (e c + e C +...) Y +.

(e

If we normalize the coefficient of Y- to unity,

...) Y

-'

N

or

Y j(e) = YJ ek t, K...+ I E ek t IY-
k-1.

2N

k=l

2N 2N
j(e) = Yd + e E t.Y ( e ) + e E t +...

(136)

(137)

Substituting Eqs. (133) and (137) into Eq. (131) yields

(a/ + EP) <YJ + e E t.0Y£ + e2 E k08 YA H

A.+ a,e +. j+ e E t,nYA + e2 E t00YJl +...

Equating the coefficient of e in the left hand side to zero produces

E t^Y* + PYj = X. E t, Y + a. Y (138)
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In view of the unperturbed relations

we have

£ ^ -*t Y
U

and Eq. (138) becomes

PY (139)

Determination of a, -

Premultiplying both sides of Eq. (139) by Y^ K! and considering the

orthonormality of Eq. (130), we have

K* P

From Eqs. (128) and (129),

K' P 2 Ml

0
•

0_ _ _ -

0

0

a^1 -
0

]_

xj

0-

0

o ,

-2M1po

Hence

ih

X \jr
j

T
0 0

Xj

" i3

. ^~ J

_ (140)
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and

Therefore,

(141)

(142)

Since i|rDijr is real and positive, the perturbed eigenvalue X.(e) has a negative

real part* Moreover, the eigenfrequency |A. | is. not perturbed to within the

first order of e.

Determination of t-. ' '• • ' ' . ' • ' • ' . . "

Premultiplying both sides of Eq. (139) by Y 1C with k j< j, we have
»

PY Yk » 0.,

in which

and

kT lrY K; YK - i
K

V y 1 OV ̂  ^ *k "
[ v k j

T

° -t" \

.

^ J

Subsequently,

\

k .- 1,2 2N; k

52



or

^~\ \-*i " '
k = 1,2 2N

Therefore, the coefficient of e in Yf(e) of Eq. (147) becomes

.and

+

It should be noted that Eq. (143) is valid only when X. and \ are apart
; „ .. K J

for k ± j so that tiv is sufficiently small.IK.
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7. CANONICAL TRANSFORMATION AND CONTROLLABILITY EVALUATION

This section discusses how to construct a transformation which carries

the system equations (Eqs. (5)) into a canonical form, and provides inter-

pretations of system controllability in terms of the transformed equations.

We consider the transformation

= T Z (144)

where T is a (2N+6)*(2N+6) matrix and Z is a (2N+6)xi matrix,representing the

system vibration modes. The matrix T is conveniently partitioned into the

submatrices

11 -V .1
T22j "

(145)

where T u, , T21 and ate 6x6, 6x2N, 2Nx6 and 2NX2N matrices,

respectively, and the eigenvectors and generalized eigenvectors corresponding

to A=0 may be assigned to the first six columns, and the eigenvectors cor-

responding to the nonzero eigenvalues to the remaining 2N columns. Then,

from Eqs. (15) and (16), we may write

_ (1) (1) (2) (2) (3) (3).
~ ^ ' 8 ' ' 8 ' » 8 J

' 1 0 0 0 0 0 '
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0

. 0 0 0 0 0 " 1 .

(146)
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and

Ti (147)

In view of the identity (not the transformation)

~Y1

Y3

Y!

Y2
•

= T
11

>~

Y2

Y2

Y3

-Y3-

we may well write the variables of Z corresponding to X = 0 as the three 2x1

partitions

'j
j = 1,2,3 (148)

A 5
and the two NX! partitions Z and Z , so that

(149)

4 5 '
where Z and Z represent the contribution of appendage vibration modes of

number 2N with nonzero frequencies.

7 2
For the nonzero eigenvalues which are determined by |M1a + X UM| = 0,

we have from Eq. (41)

and j - 1,2 N
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We know that i|r satisfying Eq. (21) is the eigenvector (of x_) corresponding

to X. and A.^, for the zero damping case. In view of Eqs. (17) with D = 0,

we may write the eigenvectors of the system corresponding to the A. in terms

of A. , \\r and the parameter matrices as

j 1 .!„
Xl = ' 72 A Ml

Xj

1 I T
xJ = - ji A*M

fc A , .1 .

for
f ; >

J - 1,2,...,N

If we define A and A by

A,

A = and A

then Eqs. (150) are expressed in matrix form ((2N+6)x2N)

(150a)

(150b)

(150c)

(150d)

(151)

- i
2£
1

1
x2

x
X3
1

X4

2
X,1

x2

2
X3

2
X4

N
1
N

X2

N
X3

NX4

N+l
x,1
N+l_

X2 ~

N+l
X3 '

N+l
X4

2N
1
2N

- -x2

- -x2N

_ _ 2N

T 2 — 2 T 2 *— 2. X __ ^P ... • A> » J. __ fc yj • fc

^»y\ jl O IJl ***V ^1 O 1 7Y
1 1

T 2 — 1 T 2 *— 1-A Ml0 ¥ ^a ¥

¥ ¥
*

_

(152)
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The upper and lower submatrices of Eq. (152) are identified as !,_ and T2_ of

Eq. (145), respectively, i.e.,

and

T 2-2
MO VA

-A
T 2—1 (153)

L22
r. JL J. A .I
|_ M ! WA* J

(ISA)

Thus, we have established the transformation matrix, T, whose submatrices are

given by Eqs. (146), (147), (153) and (154).

Since JT | =1^0, and |T | ̂ 0 by Fact 5, and since T71 = 0,21

T = T
II1 L22' (155)

T is also nonsingular and

-1
~ T T ~
iri2122

where

-1

'1

22

1 0 0 0 0 01
0 0 0 1 0 0

(156)

0
0 0
0 0

0

1 0 0 0 0
0 0 1 0
1 0. 0 0

. 0 0 0 0 0 1

(157)

and

-i JL r T"1 [ A'V1
22" 2 L" r1 ! A*11?1 . (158)

Next, we will show that the transformation of Eq. (144) transforms Eq. (5)

into a canonical form
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-1 -J_
Z « T AT Z + T flu

where
_J_ !j).|_q_J

A'9_.

0 JA*

(159)

with

nLo oj
(160)

Equation (159) is derived as follows: Partitioning A into submatrices as

22

where

A u = - : r f -

and

0

AX-« fc
M_u

' 0
_ — — —
-M.^2

0

0 _

U3 1

0

yields

' T'1

11

0

T11A1]

0

T11A1]
0

^T "^T T A 1 A T i T
11 12 22 , Hll | *12 xll | 12

T~ 0 1 A Q T
22 J L 22 J L ' 22 _1 _i -i -i ~\ r i i

'T A — T "T1 T A TIT
L | 11 12 11 12 22^2 1lli 12

! T~ A 0' 1 T
1 X22 22 J L 22 .

\ *

T T A T + T A T . . T " T 1 T A T
.11 11 11 12 11 12 22 11 12 22 22 22

T~ A T
22 22 22 /

58



T A T —iiAirn

-i o olo o o'
0 0 OJl 0 0
0 1 OiO 0 0

0 0 OJO 1 0
0 0 1[0 0 0

.0 0 OJO 0 1.

r il 0 0-
0 0 1 0

0 0 1

. 0 0 -

'1 0 OJO 0 0-

0 0 1(0 0 0
0 0 OiO 1 0

0 1 OJO 0 0
0 0 0|1 0 0

.0 0 OiO 0 1.

|l 0 0
0 10 0 0

[ 0 1 0
0 0 0

0 ( 0 0 1
10 0 0.

"o iJo olo o"
0 OJO O'O 0
TrffjTriTcfo"
0 0_[0 O'.O 0

~6~~OiD 0~'"0~T"
_0 0|'o O'O 0.

"l G
0 0
0 0
0 1
0 0

.0 o

=

ojo o o"
llO 0 0
OJO 1 0
OIO 0 0

1

0,1 0 0
0|0 0 1.

^ 1 1
J '0 ' 0

"o" TJ~ To;OTO~TJ;

T A T
22A22 22

-A~ Wo2¥ + A 1-y + A
_ _ _ ^ _ _ .

+ A U*~V1M1o
21' + A*

But M2* - -M2 and A + A* = 0, so

t-iA T . LAJ o.] .
22 22 22 i A*

L J

r ° ;u3 "> - - -i- -' L o 10 .

T 2 —2
-A

T

-ATMa2M-]
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A12T22 =
*._o. _ k _ 0 _ _] r
_-A\a2 "o" J I

1
_ 2 _ _ l - _ _ °
T 2 I T :—AM o T —AM o

T12T22A22T22 =

ss

T 2 -2 1
-A M 0 Wl Z j

—A M_ O- iA 1
*• 1

T 2 -1 i—A M cj M'A i
T. 1

. m V' I

*f Vj
-

7 .
T

T 2 *-2 "
-A Ma ¥A

T 2 *— 1
^ti M O iiii

m O A 1 '

^A M fT TA
1

.-A'V2* [ -AT
Mla

2<F

r i
A I 0
rt 1 A*|_ 0 j A

Hence

AT — T T~ A T
12X22 ^2^2 22X22

and Eq. (159) is proven.
• i :

Next, we will express T~TB of Eq. (158) in an explicit form.

r _i i _i _i i
Tll J"T11T12T22

I." i ^ J

™
0

B2
0

"B7".

T-I [4-1 - T:!T T-1 F-^-l12T22(B4J

^M^^^I^-j^Hv. ** ~*. L x |x, i J ^ ^ ^ J

A't ^
where A = A + <J> ^? (I )
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T T
12 22

! -ATM a24-A*-2 -1

_1
2

9 ^ * "
+ A

ATM10
24'(A~2 + A*"2)

,,-1 M.A
1 c

But A~3 + A*"3 = 0 and A~2 + A*~2 = 2A"2

and with lLa2V = -M2, this becomes

Hence

T T112i222 L" VJ = LAT(^A2) A-2J ]

1 2 2 2

But

Hence

B2 ~
- A

- A A ) M 2 = U

r -iin^rVc _
with
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Thus, we have obtained a canonical form:

~ •!
Z

z2

- .-3c
Z

A
. "*

Z

.5
_Z _

~*

"" 1 1 1

J i ° i ° !
o ij~>"b i o

•.,.-• 'LJiLT :iy--: " ''*""" • •
0 |0 1 J i- -

t A | 0
0 }— "I--*"

] 0 | A

- ,-
Z

z2"
3

Z
•

z4

-z
5

-•

r TT r~2-i i
. ' '11' 'I y J

L 3 J

I FjI-L-Hi A
- 'LA*'1] lc-

u (161)

We can examine the controllability, of the system described by Eq. (5),-^

based upon the canonical transformation of Eq. (161).

1 2 3It is obvious that the modes Z ,,Z ,and Z are all controllable by the

input u in such a fashion that Z^ is controllable by u. for j=l,2,3 independent

of 'each other. In other words zero frequency modes are controllable by u

independently, where u is "normalized" by the definition of Eq. (2c). (Note

/I '. •, '. ' 'that the physical implementation of torquers T does not necessarily apply

' ; ' - l \ ' -! . " ' - - . ' . - - ' - 'independently1 to each of three! attitude directions.)

For nonzero frequency modes, it will suffice to.examine the cohtroll-

• A! I ' •: • 5 :
ability of |Z , because it implies that of Z and vice .versa as seen from

. \

Eq. (161). From Eq. (161),

(162)

With the normalization of Eq. (91) ,
'

so that Eq. (162) becomes

Z4 = A Z4 + -| A"1 1i'TAc u (163)
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,-1Since A is diagonal, we may evaluate the controllability of each mode

rowbased on the presence or absence of nonzero values in the corresponding

nditiohs,of the matrix f A , and thereby establish the system controllability con

, ' • ' ' '
after noting the multiplicity of the \i*s comprising the nonzero elements of

A. '

It should be noted that the controllability arguments stated

A 5
referred to Z (or Z ) but not to r\. Subsequently, justification

! Ubased upon the controllability properties is also referred to Z ,

|VTA |1 s c1
0 then Z is uncontrollable and "truncatable" when it

unobservable. However, this does not necessarily.imply.that Ty is truncatable
(8

above are

for truncation

e.g.,

s also

or uncontrollable in view of the transformation of Eq. (156).

At this point, Eq. (162) is to be compared with Eq. (57) of

says

v = a M-v +" A -u

If we transform v into w by

"1M

then Eq. (164) becomes

M 1 w

or

w)

w +

A u
c

But from Eq. (91) ,

and from Eq. (93)

2 2
¥ - - A

[3], which

(165)
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so

w = -A2 w + ¥TAc u (166)

By comparing Eq. (165) with Eq. (163), we recognize that the mode controll-

ability conditions are identical, both being determined by the corresponding

Trow of ¥ A .. In addition, the system controllability conditions are identical,

2
. because the multiplicity of the elements in -A is the same as that of A.

Although Eq. (164) was derived in [3] by rank calculations without

utilizing any knowledge about the system eigenvalues or eigenvectors, it

turns out that the implications of both approaches are identical as far as

controllability is concerned.

In either way, the canonical form of Eq. (162) or (163) with TTA specified

will be required for further arguments. It should be noted that uncontroll-

ability of w. (or Z ) does not necessarily imply that of any particular1 .• S S .

element of v (e.g. v ) because of the transform relation of Eq. (165).
• • " * *' S .

4However, in some special cases, the controllability condition for Z
• • — S

(or w ) does coincide with that of n (or v ), and hence truncation of n is
S i S S S

justified from the controllability point of view. For example, this is the

' s 'case when T\ = 0 for j 7 a, permitting
1 N

Vg _ w = ̂  ^ Wj = ̂  ws

in which v is affected only by w and vice-versa,s s
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8. CONCLUSION j

j
The eigenvalue and eigenvector problem associated with the original

system of dimension (2N+6) reduces to that of a symmetric and positive definite

matrix of dimension N with the zero damping assumption (Eq. (21)). The results

from the analytical method show that the lowest eigenfrequency of the system

vibration modes is always equal to or greater than the lowest of the appendage

vibration frequencies (Fact 3). In some special cases, including the case

when the system is decomposable into three single axis subsystems, the system

eigenvalues separate the appendage frequencies at least in a weak sense (Eq.

(47) of Fact 4). The results from the minimax characterization localize the

eigenvalues as given by Eq. (79). This procedure requires ;only simple calcu-

lations of modal matrices. • '

The multiplicity of the eigenvalues is dependent on the inertial properties

and modal parameters in a somewhat complicated manner. It is suggested that

careful examination should be made of the quantities involved, such as P.'s,

K* and L* (Eqs. (83)-(86)).
j j K. j

If the appendage natural frequencies 0..,...,0N are distinct, then expres-

sions for reduced system eigenvalues y..,...,iJ» are always available as follows:

(a) If A* = 0, then p0 =0^; (b) If A* <t 0 but P. = 0, then \ig = 0*; (c) If
! X X . . X ' X X

XA ^ 0 and P0 > 0, then the bounds in Eq. (66) apply and.in addition, from
I

Eq. (47) , ' ": '

o
(d) If A ^0 and P0 < 0, then the bounds in Eq. (66) apply. Finally, if the

A/
I

appendage natural frequencies are not distinct then, in addition to the

bounds in Eq. (65), further restricted results are available in Sec. 3.3.
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The orthogonal properties of the eigenvectors are presented with

normalization conditions employed (Eqs. C90)). The (Nxl) eigenvectors are

generated by a 3^1 matrix (Eqs. (92b) and (93)), that reduces the calculations

greatly.

Sufficient condition for acceptability of truncation is given by

Eqs. (120)-(122) as a result of the Wielandt-Hoffman theorem. This evaluation

is made by the calculation of the trace of a 3x3 matrix (Eq. (120)). An

explicit error bound is derived in terms of the eigenvalues of the 3x3 matrix

(Eq. (124)).

The effect of modal damping is examined by a perturbation method applied

to the first order form of the eigenvalue problem. The result assures that

the system eigenvalues have negative real parts and that it does not affect

the eigeiiifrequency to within the first order of maximum modal damping (Eq.

(42)). The eigenvectors can be significantly changed as shown in Eq. .(143).

Based on the eigenvectors of the reduced system, a matrix is constructed

that transforms the original system equation into the Jordan canonical form,

which is useful for the system controllability evaluation. The results are

compared with those of [3] and physical interpretations are given.

Although \ the exact eigenvalues and eigenvectors are available only by

numerical 'calculation, the characterizations established in this paper will
i

be useful in thi'at they afford some insight into the eigenvalue localization

i
and eigenvector properties. These procedures are recommended especially for

preliminary analysis, because the requirements for calculations are not

burdensome — nothing more than algebraic manipulations of matrices such as
j

additions and multiplications.
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Eigenvalue and eigenvector sensitivity analysis Is left for further

research. This is particularly important for the eigenvector characteriza-

tion, because it may be greatly affected by a small change in the parameters

(ill-conditioned), even though the eigenvalues of the system are always well

conditioned. It is speculated that a perturbation method similar to that

employed in the damping effect examination will be useful for sensitivity

analysis, if we can define an appropriate perturbation matrix.

Since the quantities which give the bounds for the system eigenvalues or

truncation error are considered to be the Euclidean norm of 3x1 matrices,

further evaluation of these quantities may be possible by virtue of norm

characterization (perhaps by linear programming). .
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APPENDIX A. SOME PROPERTIES OF ATA AND M

T
1. All the eigenvalues of A A lie between zero and unity.

Proof. From Eq. (4d), .

with

I* - 1° - I* - ̂ B q~q" (Al)

where I. is the inertia matrix of the appendage about the total vehicle mass

center c, and q is a matrix representation of the vector from c to the pri-

mary body mass center, and«^L is the primary body mass.

In Eq. (Al) , I. and '-«/#B qq" are both symmetric and positive definite

and hence I - I is symmetric and positive definite. Therefore, A A is

T
positive definite and the eigenvalues a. of A A are positive. In addition,

U, — A A = (I ) I (I )

is also positive definite, so that the eigenvalues of (U_ - A A), (1-d )'s,

are positive. Thus,

0 < a < 1 . (A2)

2. The matrix JL is positive definite.

Proof. Let 6 be the eigenvalues of M. . Then, 0. &, are the roots of

= 0
W JL '

or

- AAT) -UN| = 0
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or

£-1
B

_
Let Y * a— » then

P

T T
meaning Y is the eigenvalue of AA . But the eigenvalues of AA are identical

T
to those of A A except for (N-3) zero eigenvalues [4], so that

Y, = a, (j=l,2,3)

and

Y, - 0 (j=4,5 N)
I • i. J

with'

0 *

It follows that

6, -TT7- J-l.2.3
J

and

3. =1 j=4,5,...,N

implying that 3. are all positive, j » 1,...,N.
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APPENDIX B. PROPERTIES OF d (y) = -=-y

Assume that the O. are all distinct, i.e.,

for

Then,

and

where

i 4 j

di(y)dj(y)

d1(y)dj(y)dk(y) + dkjdljdj(y)

A 2
±j

(Bl)

(B2)

(B3)

with

d±j> 0 if j > i

if j < i
CB4)

Proof. Under the assumption, we can expand the product of d.(Vi) and d.

in the partial fraction as follows.
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(p) 2 2y-a

y a,. y o4

y-o

a10

Using (Bl),

1 d d]Cll)dk(lO

But V±k + dudik •
°? 4

o2

7 2 2 2 2

2 2 2 2

2 2 2

Thus, we have (B2).
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APPENDIX C. DERIVATION OF g(y) , G.(VI) AND P£

(Eqs. (31), (32) AND (A3))

Associated with the definition of g(y) (Eq. (27)), we define gn(y) by

£
A

(ci)

where the quantity in the square brackets indicates the (a,B) element of the

3x3 matrix with ct,0 = 1,2,3̂  Note that

g(y)

and

g0(y)

CC2)

(C3)

£, SL
If we define 3*3 matrices Q and R by

and

then

and

g«,(y) = |Q I

(C4)

(C5)c

(C6)

(C7)

For the determinant of a sum (or difference) of two 3*3 matrices, the follow-

ing identity holds.

3

+ S_
t j , k=l

CC8)

where q r , are the (j ,k) elements of the matrices Q , R , respectively,
Jk JK
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and Q.fc and R fc are the (j ,k) minor of Q and R , respectively. (The super-

scripts on q.,,r . ,Q ,R , are deleted for simplicity of notation.)
J K J K J K J K . j ;

I AT ANoting that R = d.(y)A A , whose rank is at most unity, we have

R = 0 and R. (C9)

From Eqs. (C6)-(C9),

|Q

3

j ,k=l

But |Q

and

so that
3

£ (-̂
j ,k=l

Defining (with the superscript on Q , restored)

3

we obtain a recursive formula for gj(u) as

(CIO)

(CIO1)

(Cll)

(C12)

From Eq. (C12) together withNote that G0(}j) does not contain d (p) ( j 2 A).
* • j

Eqs. (C2) and (C3) , we have

N •

g(y) - 1 - £ G (y) d.(y) .

In what follows, Gj(y) of Eq. (Cll) will be expressed more explicitly.

(C13)
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. For simplicity of notation, define 2J., by
JK

4-1

with

(C14)

(CIS)

then from Eq. (C4),

Q*-

and

1-[<*-£*}
a&jj

Direct expansion of the determinants of the minors [ • ] - produces

(i-£22)(i-E33)-(£23)
+ «?* ,

23

'31

(C16)

The terms of the right-hand side of Eq. (16) are conveniently classified as

(C17)

where G?, G,,(y) and G.(y) are the collections of the zero-th, 1-st and 2-nd

order terms in d.(v) (or Q ), respectively.
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Obviously,

G j f - (A~) '+ (Ap' +

A AA A

12
31

.From Eq. (Cl)

£-1
J-l

'«,-!

, - •*• ^

j=l
l-l

E AjAj d,

,001

E (A^)2 d.(u) + E (A^)2d
j=l J • j-1 , J

(CIS)

^ d^y)

= - E

d j(y)

80



If we define K* by

CC19)

then it is also written as

(C20)

where

0 -A^ A^

A^O -4

L-AJ2 Al °

(C2I)

It is recognized that

(C22)

n-^j ' '-
with the equality when A AJ = 0, implying that the two row matrices have the

same direction, i.e., with some scalar a.,

Aj = a A*

We also recognize that

With K, thus defined, we may write G.(u) as

ij(u) = - 2 d Cy)Kj
j=l J J

(C23)

CC24)
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G2(y) = (A*)

S 2

*1
2

~21~31 ~ -13 .̂1

By the Lagrange's identity [8],

(C25)

d (y)d

and similarly,

(
SL-1

zz - 44 (-s 4

.IJ

We have similar relations for the other terms in Eq. CC25) so that
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G2(y) = L d (y)d (y)

- A2Ai>
* A2A1> ' Al(A

d.(y)d,(y)
A J

)
A2(A3A1 - AiA3} + A3(A1A2 * A2Ai}

£

If we designate the square of the quantity in the braces by L.. , then we may

write

G2(y) = E d (Wd (y)L* (C26)
0_1 5- J -"-J

where

L* = (AVA31)2 : CC27)
i •*

Since A^CA^1) - - A^C^A^) = - Â ftV1) , we have

LJj-LJi-Lij CC28)

It is obvious that

L^ > 0 CC29)

o ~j_ -tf £ i
with the equality when A (A A ) =0, which takes place if the two of A ,A

and AJ have the same direction "or if the third vector is perpendicular to the

SL a.cross-product of two vectors. Hence, if K = 0 then L.. = 0 (not vice versa).
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Substituting Eqs. (CIS), (C24) and (C26) into Eq. (C17) , we have

A-l

G.(y) - AVT - £ K d (y) + E I* d (y)d,(y) (C30)
* J ' * J •

with the definitions of K* in Eq. (C19) and of 1% in Eq. (C27) .
J , ^-J

In what follows an alternative form of g(fO is derived for the distinct

eigenvalue case. That is, it is shown that if the a's are all distinct,

then g(y) can be expressed in the form of

N - • • - . - -

g(y) - 1 - E P»d.(y) (C31)

. . . .
where P0 is a constant expressed in terms of d. ., L. . and K previously

* ij ij j

defined. .

We start with collecting terms containing d.(y) in Eq. (C30) rewritten as

1 - g(y) - ,G1(y)d1(y) +...+ Vl
(y)d*-

+ GA(y)d£(y) +...+ GN(y)dN(y)

Since G. (y),... and G. .(y), do not contain d.(y) by definition, we are con-
X ^

cerned only with the terms typified by G (y) 4 (y) with k 2 I

By Eq. (€17) with I replaced by k,

Gk(y)dk(y) - Gkdfc(y) H

where

Gk k̂̂ y) - A A dfc(y)

and in view of Eq. (Bl),
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k-1

E dk(y)d.j(y)Kk

. . .. 5 .

- - dk(y> E d kK
k - E d d (y)Kk .k j=1 Jfc J ,.j=1. fcj .J . 1 - . . - J - ,*.-• .

t ^ * ' - < - , . ' - . ; • » ; ' • i • ' ( . . ^ . . - • • > - • - j
and^in view of Eq. (B2)

, • • - ' • • . - . . " . . ' : • • ' - " • ' . . : > • •;,-: '

)d (y) = E d (y)d (y)d, (y) L^
• 1 J , , . , -.

^ + d d d ( y )
•

+ d ,d d (U) + d d d ( y ) J .Lk

I<i<j<k-l( J X J J J ) 1J

For k=£, the coefficient of -d.'Qj) is given by

. . . . . H - l , . . . . , ;

For k > A, the coefficient of d- y)v is

£-1 - .-»»• ". '
2 ^t^U ' k -£*!.... .N

Summing the coefficients of all terms for k > i,



£-1

VT - E d K* + £
j-1 J* J lsKJS

N , k-1

£

Changing the dummy indices for summation into i,j with i < j is possible, and

utilizing the identities (Eqs. (C23) and (C28))

_X» _ X _ 1 • . »»** »«.1LiJ -LJ1-"L*J .^ KJ = KJ
we may rewrite the double summations in Eq. (C32) as follows:

N . N N

N k-1

E E

which corresponds to the region (2) in Fig. Gl Implying that in view of Eq.

(B4) each term is positive and so is the summation.
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Moreover
N i-I

1=1

which corresponds to the region (sYin Fig. Cl, implying that this summation

is negative. Finally

£-1 '

I .^ j£ j

N

E A v*1 + ya. pK-. + £^i
j=£+l J* J

(C33)

We can now identify which term is positive or negative, so if we decompose

PA into

P = P — P~ (clti)0 L 0 Q V̂ *-̂ "/

where P. and P» are the collection of terms which are positive and negative,

respectively, then

Pn = A A - y, d.0K. + X, d. »d,nL.,,

d L? (C35a)
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and
N

+ E <* oK* -
j=A+l 3* J

E d-d,.!* (C35b)

In a more compact but less informative form, P« may be rewritten as

. . - N

P. = AVT - E d K* + E d4,d,pL?4 (C36)
j=1 J* J

Fig. Cl illustrates the implication of the summation in Eq. (C36).
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Chapter 2. Determination of Poles and Zeros of Transfer Functions

for Flexible Spacecraft Attitude Control

ABSTRACT. A method is presented for determining the poles and zeros of the

transfer function describing the attitude dynamics of a flexible spacecraft

characterized by hybrid coordinate equations. It is shown that the problem

reduces to that of finding the eigenvalues of matrices which are constructed

by simple manipulations of the inertia and modal parameter matrices. Particu-

lar emphasis is put on the determination of the zeros, which depend also oh

the sensor and/or actuator location. The established procedure will be useful

for numerical determination on the digital computer.
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INTRODUCTION

The system discussed in Chapter 1 is a multi-variable linear constant

coefficient system with three inputs and three outputs and a large number

of states. Such a system is sometimes conveniently described by a "transfer

function matrix," in which the determination of the poles and zeros is of

primary importance in designing a conventional compensator by the classical

approach or an optimal controller by modern techniques.

The determination of the poles of the system is relatively simple from

a computational point of view, because it is just a calculation of the system

eigenvalues, for which computer algorithms and/or programs are well established

(see also Chapter 1 for eigenvalue characterization).

The calculation of the zeros, however, is not an easy task even numeri-

cally, and even the definition of the "zeros" is not unique. We will first

survey some of the recent papers dealing with this problem, and thereby

demonstrate the difficulty of the zero determination problem.

For the purpose of this survey, we start with a more general description

of the system (after Laplace transformation of Eq. (5) in Chapter 1 with

X(0) = 0)

sX(s) = AX(s) + B u(s)

with the observation equation (a)

y(s) = C X(s)

whose transfer function matrix (sometimes called "frequency response" [1]) is

given by [1],[2]

The Laplace transform of a variable, say X(t), is written as X(s), and when
the distinction between X(t) and X(s) is clear from the context the arguments
may be omitted.
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so that
G(s) = C (sUN _

y(s) = G(s) uCs)
(b)

Definition 1; The zeros of the transfer function are those of the individual

entries in G(s) which give the relationship between the r-th input u and the

j-th output y..

This form of G(s) (sometimes called the first form) arid the definition

that follows seem to be standard. Rosenbrock, [3],[4] however, insists that

the following form (called the second form) is more general.

Consider the system

J(s) X(s) = K(s) u(s)

y(s) = L(s) X(s) + M(s) u(s)

where in particular we may have, as in Eq. (a),

J(s) = s U - A, K(s) = B, L(s) = C, and M(s)n

(c)

and define the system matrix in polynomial form by

P(s)
r •
L~-L(s)~ i~ M(s)~ ~

which has Smith normal form [4] (uniquely determined)

0

N(s)

Definition 2: The zeros of the system are the zeros of the polynomial e (s)

taken all together.

The formulation by Rosenbrock (Eq. (c)) is certainly more general than

Eq. (a) since the former permits the case when |T(s)| =0 while the latter

does not. Usually, the zeros are not identical for the two definitions,'

except for the single-input, single-output case.
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In the problem under consideration, |l(s)| 2 0 so that it is not neces-

sary to take the form of Eq. (c).

In the case where the number of inputs equals the number of outputs,

as in the present problem, we may consider the determinant of G(s), since

it is square. In this case, the zeros of this determinant are identical to

the zeros of the definition 2, because the elementary operations used in

forming the Smith normal form do not produce excess zeros and the determinant

remains unchanged except for a scalar multiplier.

Brockett [2] has presented a way of zero determination by deriving the

"inverse equation" whose poles include the zeros of the original system;

hence the problem reduces to the eigenvalue problem. However, his results

are limited to the single-input, single-output case, and, as pointed out by

Davison [5], the formulation of the matrix representing the inverse system

is computationally difficult, because the prescription for forming the matrix

relies on logic statements such as a = 0 if d = 0 and a = l i f d ^ 0 ,

and because of the finite word length of the digital computer, a subjective

—8 ~20judgment must always be made to determine if d = 10 or d = 10 may be

taken to equal zero. Also the system must be controllable and observable.

In addition this approach supplies excess roots at the origin which must be

sorted out by judgment.

Davison [5] has proposed a computational method and computer algorithm

for zero calculation, which also reduces it to eigenvalue calculation of a

matrix formed by Cramer's method. Although this method also supplies excess

roots, it is always possible by repeating some steps of the calculation to

determine which roots should be rejected. The advantage of this method lies

in the fact that this approach can reduce the inaccuracy due to word length
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limitation and*round-off error of the computer. On the other hand, this

method has a disadvantage for large-scale systems because it requires the

solution of an eigenproblem of higher dimension than truly necessary, and

hence the number of excess zeros can be very large. In addition repetition

of some calculation steps is not desirable. Kropholler and Neale [6] have

discussed a similar method.

The method proposed by Guidorzi and Terragni [7] operates only on a

subsystem of minimal dimension completely describing the dynamical behavior

between the input and output of interest. The zeros are finally determined

as the roots of a polynomial of the minimal dimension (no excess zeros are

.produced). Although some of the difficulties in Davisori's method are over-
i

come,\ the Guidorzi-Terragni approach requires the number of independent

vectors, which may be dependent on subjective judgment, and the calculation

of the zeros of a polynomial can be less accurate than that of eigenvalue

.calculation for some problems.

Yokoyama [8] has discussed a method of obtaining transfer functions by

transformation to a phase variable canonical form. He has overcome the
i

difficulty in the inversion of (sU - A) in Eq. (b), but the calculation of

the canonical form is another burdensome task, so that his method does not

seem to be appropriate for the present problem.

' In this paper, we will show that the zero determination problem reduces

to eigenvalue calculations of a matrix. The construction of the matrix is

discussed in detail for the cases when the sensors and/or the actuators are

mounted on the primary body. The method presented here does not require any

repetition of calculation steps or any subjective judgment, unlike most of

the alternative methods noted.
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We will consider primarily the zero determination problem in the sense

of Definition 1. We will also discuss the zeros of the determinant of the

G(s) which is related to Definition 2. . ,

DERIVATION OF TRANSFER FUNCTION

As in Eqs. (1) of Chapter 1, we start-with describing the system in

terms of hybrid coordinates as

1*9 - 6Tfi = T Cla)

fj + Dfj + O2n - 69 = &* T Clb)

with the observation equation [9] . .

where

y - 6 + 3Tn Clc)

" - <J>T 5?c C2a)

and

5" - <|>T S C2b)

establish the actuator and sensor locations, repsectively, and all other

matrices are defined as previously.

For convenience of later discussion, we partition the matrices 6, SB*

and SB* aso

and

6 = [a1 a2 a3] , C3a)

?' = [b1 b2 b3] (3b)
c

" = [c1 c2 c3] (3c)o

where a, b and c (j=l,2,3) are NX! matrices.
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Laplace transformation of Eqs. (1) with the zero initial state (i.e.

8=0, 6=0, n=0 and n = 0) yields

s2 1*8 - s26Tn » T

+ sD + a2)n - s268 = 5"N c

y = 9

(4a)

(4b)

(4c)

Define the N*N matrix Q(s) by

Q(s) = s2(s2UN + sD + a2)"1 ,

then from Eq. (4b)

(5)

n = Q(s)68 + -± Q(s) & T (6a)

and from Eq. (4a) with Eq. (6a) substituted

S2I*8 - s26TQ(s)66 = T + 6T Q(s) t& T

or

or

s2(I*- 6TQ(s)6)8 = JU3
( T )U, + 6TQ(s) JZ?'

I

8 = -\ I* - 6TQ(s)6r1 U3 + 6TQ(s) a^ (6b)

From Eqs. (6a) and (6b),

1-1 I.Q(s)6 I - 6^(8)6] |U3 + fi'QCs)

Substituting Eqs. (6b) and (6c) into Eq. (4c) yields

T / I * T II, + ̂ '^(8)6 i - 5^(8)6r1
3 0 ) ( , )

U, + 6Q(s ) &' + £"
J C I O

(6c)

(7)
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Thus, we may define the transfer function G(s) from the control input T to

the sensor output, excluding the poles at the origin, by

A 1 T
) <= U, + <Z?' :* - 6TQ(s)6G(s

and denote the a-6 element of G(s) by Gg(s), i.e.,

(8a)

G(s)

G12(s) G13(s)

G32(s)

(8b)

Hence, the purpose is to establish a procedure to determine the poles and

zeros of G 0(s).Op

We will examine the following cases:

(1) .2" = .2" = 0
c o

meaning that the actuators and the sensors are attached to the

primary body and

(2) .2" = 0 and & 1 0c o .

meaning that the actuators are on the primary body and the sensors

on the sub-body characterized by ,2" and

(3) £" 4 0 and £ = 0
c o

meaning that the actuators are on the sub-body characterized by

SB and the sensors on the primary body.

The reason for omitting the general case when 3P j 0 and 5" ^ 0 may

may be justified by the possibility that we may consider either of these sub-

bodies as the primary body.
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INVERSION OF (I* - 6TQ(s)6)

Let F(s) « [F Q(a)] be the adjoint matrix of (X* - 6
TQ(s)6) . Thenup

(I* - 6TQ(s)6)"1 F(s)
r* X.T11 - 6^(8)6]

(9)

* TSince, with the definitions of Eqs. (3), I - 6" Q(s)6 takes the form

I* - 6TQ(s)<5

_ IT- I ' _ IT- 2 ' IT- 3I11 - a Qa I19 - a Qa I... - a Qa
T

X 2T 1 J-L 2TA 2 _1J 2T. 3I _ - a Qa I, - a Qa I - a Qa
*4T '1 *^T ^ VT ^

Then the o-3 element, F «(s) , of PCs) is expressed by

108 - o.B - 1,2,3 CM)

where

,11

X12A

22 33

23

r!2 r23

ClD

and

_21 _12T _31 _ .J.3T 32 _ 23T
1 m! , I*. "••!-. t ^ ^

and

_i A 2 3, T
2 A 1 3, r3 A6 = la a ] f o = [a a ] , o = l

A 1 2
a a J C12)

Therefore, we have obtained the inverse

U* - 6TQCs)5)~1 ,
V"*-l

r -
C13)
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* T
It is noted that since I - 6 ,Q(s)<5 is symmetric, the inverse is also

symmetric, implying

V8) = V8) • '" .
This is confirmed for example by considering the case of OF!, 3-2 as follows

F12(s)
I23 -

- *2V ;23 -
I33 - 6

3TQ63

= - F21

DETERMINATION OF POLES AND ZEROS

(1) In the case of £' = .2" = 0, from Eq. (8a) ,

G(s) = (I* - 6TQ(s)6)~1 Cl4a)

so that, with Eq. (13), the transfer function, G R(s) , from the 3-th input to

the a-th output becomes

-
|l-6TQ(s)6|

In what follows, it will be shown that the determinants in Eq. (14b)

reduce to characteristic equations of (2N*2N) matrices. This reduction comes

from the observation that the poles of the transfer function must be the

eigenvalues of the matrix A in Eq. (1) or its equivalent form.

ioi



Consider the eigenvalues of the matrix of reduced form (Eq. (19a) of

Chapter 1)

-r
(15)

where

(UN - 6(1
-1 T ~

The eigenvalues, a, of u/ are the roots. of

flU2N .-

But

-y
sUN-»-

- I8U
NHSU

N + Mi

+ sD + a

|M1|-|s2UN -I- sD + a2 - s2 6CI*)""16T|

+ sD + a2 | - |uN - Q(s)6Cl*)"16T|

(16)

(17)

Hence

(18)
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Similarly, if we define the 2NX2N matrix o/ by

• oB A| ° N
(19)

where

(20)

then the numerator of Eq. (14b) is written

stJ2N- (21)

Substituting Eqs. (18) and (21) into Eq. (14), we obtain

G (a)
°* 'l

(22)

Noting that

..|i.|u3-

and similarly

we have

.
06 |I*-6T6|

(23)
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Thus, the poles and the zeros are the eigenvalues of the matrices

(Eq. (15)) and ji °* (Eq. (19)), respectively. The matrix is con-

structed by the definitions of Eqs. (11), (12) and (19), but since it contains

the inversion of (I ) and (UN - 5

case when

Eq. (23) is restricted to the

(24)

and

(25)

However, Eqs. (24) and (25) always hold for the case of a = (3, implying that

the poles and zeros are always calculated by Eq. (23) if we consider the

transfer functions from the o-th input to the o-th output ((*=!,2,3) which are

usually of primary importance. This comes from the symmetry and positive

* * —i
definiteness of the matrices I and U - 6(1 ) 6, which guarantee that every

principal minor of these matrices is also symmetric and positive definite (by

ctfi *
Sylvester's theorem) with the recognition that I is the ot$ minor of I and

ft

"̂(Î)'1 6 | is related to the ag minor of U - (I*)~16T6.

(2) In the case of .2" = 0 and & 1 0, from Eq. (8a)

G(s) {I - 6Q(s)6} (26)

By partitioning of Eqs. (3a) and (3c) ,

Q(s)[a1 a2 a3]

IT 1 IT 2 IT- 31 + c Qa c Qa c QaJ

2T 1 2T 2 2T 3
c Qa 1 + c Qa c QaJ

. c
2T. 3 . . 3T. 3c Qa 1 + c Qa .

(27)
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Carrying out the matrix multiplication in Eq. (26) with Eq. (9) substituted

yields

0^ «-i «r vlt + ' Qa 's' • (28>

where 5 denotes the Kronecker delta defined by
cry -

6
ay

1 if a =

0 if a ?*

We record G 0(s) for a, 3 = I f2,3 as follows, deleting the factors
dtp

\I* - 6TQ6| and (-

IT 1 IT 2 IT 1
Qa } Fll + Qa F21 + P Qa F31

IT i IT 2 IT 3
^^a1) F12 + C^Qa^ F22 + c^Qa^ Y^

IT 1 IT 2 IT "i
^1 ^ J

c3TQa
2 FZI + (1 + c3TQa3)

c3TQa2 F> (1 + c^Qa3)

VT 1
Qa1

Note! Fog = V

It is easy to verify that Eq. (28) may be rewritten
I •

^nff*!
' M"5 I. (29)

<*' ' ' ' IT - 6TQ6|

where I is the 3x3 matrix formed by replacing the & column of I with the
\

3xl matrix
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and 6*

Jal
5a2
Sa3.

is the N*3 matrix formed by replacing the 3-th column of 6 with

We record all the I°* and 6°* in the following.

£"-

£21

31

o i23 i33

23
23

23

"

32

l13 ° I33

i13 o i33

l13

11 12

12 T22
LI13 Z23

22

L23 A

(30)

£11 , 1 2 3,6 = [-c a a ]

612 = [a1 -c1 a3]

613 = [a1 a2 -c1]

621 = [-c2 a2 a3]

622 = fa1 -c2 a3]

623 = [a1 a2 -c2]

631 - [-c3 a2 a3]

632 - [a1 -c3 a3]

633 = [a1 a2 -c3]

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)

(31g)

(31h)

Eq. (29) is confirmed for a specific combination of indices below:

If o = 3 = 1, then
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(-1)'

,o i

a2V

a3V

23

-a1TQa2

IT .,

2T

3t
Qf-^.a'.a3]

- a3TQa3

IT

ZC6
Y=l

,
i i

IT
C

1TQa

which is identical to Eq. (28) with a = 3 = 1.

Recognizing the similarity of Eq. (29) to Eq. (14), we may rewrite (as

in Eqs. (21) and (23))

11 — 6 Q 6 I

so that

IS U2N -
(32)

where

and

u

= C U N -

'D j

(33)

(34)
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Thus, we have reduced the zero determination problem to the eigenvalue

problem of the matrix «j^ defined by Eq. (34) . „ As previously, the construc-

tion of the matrices I and 6 is straightforward, but since «W contains

the inversions .of I0* and (UN, - 6
ae(Iae)~16T), Eq. (32) is restricted to the

case when

ll08!* ° . ',. ... (35)

and ... • , . " < . . • - • • . . . -,. - • ..-.. • . - . • .•

In view of Eqs. (30),

so that Eq. (35) always' holds for a' = 3'. However, Eq. (36) is not neces-

sarily guaranteed even for a = 3, as opposed to the previous case (Eq. (25))

because 6 contains the sensor location parameter .(-ĉ  as seen from Eq. (31) .

It is worth noting that (l̂  - 6a (̂laS'')~l&T \ in Eq. (36) gives the

9W f̂vft
coefficient of the highest order term in s, namely s- , and |l | gives the

constant term in the numerator polynomial. Therefore, if Eq. (36) is violated,

then the number of the zeros is less than 2N. In -addition if

|uN - â rVHî l <9 . ,

then there exists at least one zero in the right half plane.

(3) In the case 5" j 0 and 9P - 0, in parallel with the preceding case,

Eq. (8a) becomes

G(s) = {I* - 6TQ(s)6}~1 '{U .+ 6TQ(s)} (37)
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If we transpose G(s), then

GT(s) = (U3 +̂
TQ(s)6}{l* - 6TQ(s)6} (38)

(Note that Q (s) = Q(s) since it is diagonal.)

We recognize that Eq. (38) is identical to Eq. (.26) if .2" is replaced

by ,5?'. Therefore, we may treat this case simply by changing c with b and

noting that Gag(s) of Eq. (37) is given by
 Gga(

8) of Eq- (26). All the

results in case (2) immediately apply to this case.

ZEROS OF DETERMINANT OF G(s)

The zeros of JG(s)| are related to those of definition 2 as mentioned

previously, and they are easily determined for the cases (1), (2) and (3).

If £?' = <£* =0, then from Eqs. (14a) and (18) with Eq. (16)

|I - 6 Q(s)6|

|s2U + sD + a2|
—r̂ -r̂ —-*- : 09)

so that the zeros of |G(s)| satisfy

|s2UN 4- sD + a
2| = 0 (40)

Therefore,

3j= aj(-S *
If <£* = 0 and £" j 0, then from Eq. (26)

|U + £
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In parallel with the derivation of Eq. (18)

>; 6| | s U N + (42)

where

.o A

L -M°02 ' -M°D

(43)

with

M° A (U - 6
-1

(44)

Substituting Eqs. (18) and (42) into Eq. (41) yields

|G(s)
II* -6T6| sU2N -

(45)

Thus, the zeros are determined by

|sUN - u/°| =0 (46)

which are the eigenvalues of «j^ .

If ̂  = 0 and & J 0, then from Eq. (37)

|GC.)|-
6TQ(s)

(47)

which reduces (as in the previous case) to

C48)
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where

c2. -MO j -MCD

with

MC ̂  (UN - Wf (50)

Thus, the zeros of JG(s)| are the eigenvalues of «jsT determined by

lsU2N " <̂ C| = ° (51)

The zeros determined by Eq-. (40) , Eq. (46) or Eq. (51) do not correspond

to the zeros of any particular transfer function, G 0(s), which are determined
dp

by Eq. (23) or Eq. (32).

It is pointed out by Brockett [1] that the zeros of |G(s)| play a funda-

mental role in least-square optimization theory and they are important in

determining if a "plant" can be decoupled by state variable feedback.

CONCLUSION '

First we discussed briefly the two different definitions of the zeros

of the transfer function matrix for linear time-invariant systems, to which

the attitude control system of flexible spacecraft under consideration belongs.

The transfer function matrix is obtained for the model of three inputs

and three outputs (Eq.(8a)). Based on this representation, it is shown tha"t

the zero determination problem reduces to the eigenvalue problem of the

matrices defined by Eqs. (19) or (34) for the cases when the sensors and/or

the actuators are on the primary body. These matrices are formed by inter-

changing the columns or rows of the system matrix «-«/ (Eq. (15)) with those

of the sensor or actuator location matrix. They are always feasible for the
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transfer function from the j-th input to the j-th output (j=l,2,3) in the

primary body instrumentation case. However, for the other cases, the pro-
' •' • '' • • . : - -' . . '̂"" ' • " • • > . • ' '

cedure is restricted by the assumption of Eqs. (35) aild (36). The results

above stated are related to the zeros of Definition 1, and they will be use-

ful for designing a controller by means of classical techniques, such as the

root locus method.

. A method for determining the zeros of.the determinant of the transfer

function matrix is also presented (Eqs. (40), (46) and (51)), and the zeros

thus determined are related to Definition 2. They are useful for designing

an optimal controller by modern control theory.

.,:Although no algorithm has been shown, the procedures may be implemented

on the digital computer, without any repetition of calculation steps or

any subjective judgment.
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APPENDIX A. EXAMPLE OF TRANSFER FUNCTION DETERMINATION

' Consider the single axis rotational motion of a spacecraft with a single

appendage mode as shown in Fig. Al.

Fig. Al. Model of Example

The mode shape is assumed to be given by a function of £, i.e.,

From Eqs. (la), (Ib) and (Ic), with scalar variables and parameters,

where

16 - 6xn = T
2n + 2?an + a ri

y = e + -2?'
Tno

- 69 = 0

L

-» (L L

CA1)

(A2)

(A3)

(A4)
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Tand .we introduce the symbol c to represent .2" , as given by ,

(A5)

Then, the transfer function G(s) from T to y (with the poles at the origin)

is given by .

where

G(s)
|sU2 -

|sU2 -

I

-M,a -M,D

-M

(A6)

(A7)

(A8)

with

and

+ <Sc)—1

CA9)

(A10)

Since

and

then

- 6|«|sU2 -

+ 6b sU2 -

Ds + a}

= (1 + 6c)s2 + Ds + a2 ,

! . Cl + 6c)s2 + Ds + a2— • -
' Is (I -x6 /I)s + Ds + a

which is also derived by direct calculations.
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If we further assume that <K£) takes the form

2

where Si is a scalar constant, then by Eq. CA5)
. ... • .- : ' ' - . - "V. . . <• ,"-• *• ... jjnu'.. 'it i

*f (K)
and

[4H]
where 4> is determined by the normalization condition and becomes in this case

'° ̂
Hence, the highest order coefficient of the numerator of Eq. (All) is given

by

Now, we confirm that the poles are not affected by the sensor location,
, ' ? ; ' . * • '

while the zeros are significantly affected in view of the equation

-«(€„>). ,. s2 + Ds + 02 = 0s

with

We observe that as £ increases from zero to the maximum attainable value, L,
S .

a changes continuously from unity to some negative value. Fig. A2 illustrates

the dependency of the zeros of G(s) on the sensor location parameter a.
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1.18-

—»

Figure A2. Zero Dependency on Sensor Location Parameter a,
for a = 1.0 and D = 0.1.
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Chapter 3. Accommodating Model Error in Linear

Systems Control

ABSTRACT. This study-is-'motivated by the need for a control design procedure

which gives to the controlled system three basic properties: a) insensitivity

to modeling errors (such as from truncated modes and uncertain external

disturbances); b) simplicity of controller (of small order); and c) guaranteed

value of the performance measure of the actual system. This status report

sketches some progress on the first two goals but does not touch on the third.

(Actually, property a) is desirable only'because it might not be possible to

mathematically insure property c.)

Alterations are made to linear regulator and observer theory to accommodate

modeling errors. The results (some of which are yet unproven) show that a

"model error vector," which evolves from an "error system," can be added to

a reduced system model, estimated by an observer, and used by the control law

to render the system less sensitive to uncertain magnitudes and phase relations

of truncated modes and external disturbance effects. A procedure is outlined

to give the observer a "model learning" quality. Two parameters of the error

system, an "observation window" T, and the dimension of the error system, d,

are related to parameters of the control problem. By choosing the optimal

cost as a Liapunov function, the "observation window" (T) of the observer is

related to the minimum eigenvalue of the closed loop system. Necessary con-

ditions are given for the solution of T and d. In a rather novel turn of

events we find that instead of the usual pattern of "given a model, apply the

control theories" we are using given control theories to help construct a more

appropriate model of the system.
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I. INTRODUCTION

The theory available for analyzing and controlling linear systems is

quite extensive for LINEAR QUADRATIC problems provided the model (a set of

ordinary differential equations) is perfectly accurate. Even if the model is

in error, one can analyze the effects of these errors post facto. There is

not, however, a well developed theory which allows one to consider the effects

of model error during' the control design.

The exact problem which we would like to solve is the following: Find a

control policy u (t) of minimal complexity which guarantees the performance,

V°. Mathematically, we say it this way:

THE MINIMAL CONTROLLER PROBLEM;

Find the control policy, u° = «̂ (z°,A-' ,8̂  ,CJ ,M̂  ,t) ,, which though based

upon the model, j&.\t °f the physical system, ^, i

x^ - A-* xj + B-*u° , x-^ = n. - vector (STATE)

y^ = C-' x^ y^ = k - vector (OUTPUT)

z^ = M-' x^ z-' = i - vector (MEASUREMENT)

u = m - vector (CONTROL)

Physical system, with actual inputs u , and measure-
ments z ,

* o
and output quantities, y

satisfies the performance requirement

00

V3 = J ('I |y°| | + | |u°Ccl,z0) | |jdt < V° (specified number)

for minimum n., for all expected conditions (disturbance and control

inputs and parameter variations).

In this paper, the word "output" is defined to be the vector of variables
which we wish to control, (y). The vector z represents those quantities
actually measured.
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Even this mathematical statement of the designer's goal has some vagueness

that must be interpreted. The implication is that the selection of those

variables which are to be controlled (identification of u°); selection of

parameters (A-*, B , (r , M ,t); and even the dimension of the model d. must

all be determined as part of this "minimal controller problem." Efforts to

separate the problem into two separate problems (a "modeling problem" and a

"control problem") usually yields controllers which either

(a) suffer from modeling errors, causing performance requirements to

be violated —

or, i

(b) satisfy performance requirements at a cost of high controller

complexity. /

The conditions which cause (a) are sometimes not discovered before "flight."

The condition (b) often prevents use of modern control theory in an applica-

tion. Determination of "expected" disturbances and selection of the

"requirement,"' V°, can be difficult decisions in the evaluation of a control

law.

Presently the "minimal controller problem" can only be solved by trial

and error. Because we cannot solve this problem and guarantee the cost

mathematically, we sometimes seek certain precautionary measures by

1. "worst case" designs (a deterministic approach of using conservative

conditions in design to add reliability to "flights." This can

cost us in controller complexity).

2. Sensitivity approaches (making the system less sensitive to some

uncertain parameter or disturbances adds some confidence to the

solution).
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3. Stochastic approaches (offer good performance "on the average."

A particular experiment might violate requirements) .

In this paper the' minimal controller problem (MCP) is not solved, but we

are guided by the MCP objective to suggest a procedure which allows certain

parameters and dimensions of the modeling problem (MP) to be related to

parameters of the control problem (CP) . The procedure offers to the con-

trolled system (in lieu of a MCP solution) 'a certain type of model error

"forgiveness." To date, however, the cost, VJ , is not guaranteed a priori.

In section II the modeling problem (MP) is divided into a two phase task:

a part of the model is determined without regard to the control problem (CP) ;

a second part of the model is presented in structure but the dimension and

certain parameters are left to be determined in the CP. Section III presents

an observer for estimating all the states of the finally selected model.

Special cases of this observer are discussed which produce the Luenberger

observer, the Disturbance Absorbing Controller and a Model Learning Observer.

Finally, in section IV, necessary conditions are given for the selection of

the control parameters by viewing the optimal cost as a Liapunov function.

Some concluding remarks appear in section V.

II. THE MODELING PROBLEM

.• Let us label

this model •£&,.

.3 .3 3 . _3 o 3x = A x + B u x = n vector

y3 = C3x3 y3 = k vector (2.1)

z = M x z = i vector
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For the moment we disregard the means used to obtain *&••>• We consider ^L
*

to be the actually realized model and we wish to assess the errors which

'accompany relative to a better model , ><>••.•

1

.1 .1 1 . Dl o . TI1 1
x = A x + B u + W , x = m vector

y = C x y = k vector

z = MX z = A vector

(2.2)

The model 4$, is /the most general description of j& which we write ( j&

might be used, for example to evaluate performance predictions and controller •

designs which are based upon simpler models). The model j&. may not have pro-

ceeded directly from a prior system description such as <*.. However, there

exists a transformation on JO, such that -«dL is a truncation of the trans-

formed •&. To illustrate this point of view imagine the transformation,

x = T$ which has the transformed system description &\

12

22
m

>„, (,;•)
w

C2.3)

where

rV =

rVr = 12
A A
21 22 .

lC3,Ct], M1! = [M3, Mt]

(2.4)

Suppose, for instance, that the parameters actually used in a controller
design or implementation are
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3'Thus x is the n -vector which satisfies

o« •* V •} o
x = Ax + B u + e'Ct) (2.5)

where the vector e'(t) can-be considered a "model error vector" of the model

d3 (compare (2.5) and (2.1)). The vector e'(t) evolves from the "error

system"

*t - A22*t + V° + A21 *3' + S2 Wl

i , C2.6)
e'(t) - A12xfc + ^ W

x

which is coupled with and is an integral part of the system description, -id-,)

but which is neglected in the system description, <€»«• Equation (.2.6) clearly

focuses the fact that for any model of a physical system there is associated

with this model an error vector that can be considered as a combination of

external disturbances and truncated states of a more accurate model. Further-

more, such an e'(t) exists which compensates for any parameter errors in

3 3 3 3(A ,B ,C ,M ) relative to some intermediate, n~-dimensional, model which the

designer may have intended to implement. The converse of this statement is

3 33 3not true, however. That is, there is no set of parameters (A ,B ,C ,M ) which

can necessarily compensate for the effects of truncated states and external

disturbances (e'(t)) which have been neglected in the model. The effects of

such persistently acting "disturbances" can cause instability in the control

problem or instability of Luenberger Observers in the observation problem.

In stochastic descriptions of a system, e'(t) represents correlated disturbances

which have been ignored. It has been shown by Fitzgerald [1], Price [2] and

others [3]-[5], that the Kalman filter can diverge when such correlated

"disturbances" are either neglected or modeled as white. Moreover, even
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adaptive techniques (which update parameters of the assumed white noise

statistics) may fail in such cases for reasons stated above. Thus, "structural"

errors in modeling seem much more critical than so called "parameter errors."

It is the purpose of this section to propose a model error vector, e(t),

which is an approximation to the vector e'(t), and which when added to model

o can effectively compensate for modeling errors arising from,

- truncated states (regarded as "internal disturbances")

- external disturbances (which also includes effects of "weak" non-

linearities)

- parameter changes

The vector e(t) is considered to evolve from a much simpler "error system"

than described by the (n. - n.) order system (2.6). The error vector e

which is added to jgf, thusly,

.3 .3 3 . _3 o .x = A x -*-Bu +e_ _ ,

yj = CV (2.7)

3 M3 3z = M x

is considered to evolve from the error system

Y = DY Y = d -vector

e = Py P = n-xd matrix
C2.8)

Now Y(t) is a small dimensional vector which represents a "compression" of

information in x ,W and retains only important effects of large dimensional

vectors x (t) and W (t). Thus, y(t) is an_artificial vector whose space should

not be presumed completely controllable because external disturbances W are

not controllable (by definition of the word "external," W (t) is not causally

related to x (t) or u°(t)). As an approximation, we write the error system
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(2.8) unforced by u . The truncated states may well appear in the measure-

ments since M in (2.3) would not be zero, in general. We therefore allow

the artificial variables y(O to influence the modeled measurement vector,

2 ' . t
z (t) (via matrix M ), in the proposed model structure -».,•

ri-w
2

y

2

FA P!/.\
LO D ,̂)

[C, 0] /x^

V v jv/

+ rBiu°'- 1 iLoJ
A 3

C -,CJ

[M, M ] /x\ ,
3M = M

(2.9)

where

A 3 3
, A = A , B = B (2.10)

and the superscript 3 is dropped now that discussion on the hierarchy of

models is completed. For our purposes we assume inxii/, (which has the error

system augmented to model jd-J that A,B,C,M are given and we must find the

error system parameters P,D,M which are appropriate for a given problem. The

reader may well wonder at this point why we wouldn't simply incorporate the

knowledge of important disturbance effects in the basic model Deduction

decisions which yield j^f so that j&~ is a completely adequate model for con-

trol design. However, we do not usually know what disturbance effects

(external and internal) are important to keep in the model prior to controller

design. Performance evaluations tell the control designer, in a trial and

error fashion, what disturbance effects must fall within the spectrum of con-

trol authority (i.e. what disturbance effects must be actively controlled).

Also, parameter uncertainties (whether constant or due to in-flight changes)
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and variations in the disturbance environment cannot always be reliably pre-

dicted. This perplexity causes the designer to seek a conservative (i.e.

"worst case") design with deterministic procedures or to seek statistical

procedures which, in essence, can promise good performance only oil the average

(a particular Experiment might behave quite poorly).

It is for these several reasons that e(t) cannot be specified prior to

control system design. We therefore set ourselves the task of constructing an

analytical model J0,. in two steps:

I. Controller independent model reduction decisions,

!\ II. Controller dependent model decisions j&~ •*• ĵ fe
/! .

Figure 1 illustrates the sequence of events in the modeling problem.

\ PHYSICAL SYSTEM

MODEL
FIDELITY

CONSERVATIVE
MODEL

COARSE
MODEL
REDUCTION

CONTROL DESIGN
MODEL

STEP I

(TAKEN BEFORE
CONTROL DESIGN)

STEP II

(TAKEN DURING
CONTROL DESIGN)

Figure 1. Modeling Process.

\
*The vector e(t) has the nature of a "correlated" disturbance in the stochastic
view of the problem and "persistently acting" disturbances in the deter-
ministic view.
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Specifying a Structure for P, D . .
1 • ( ' . , " r

Since Y(t) is to be selected so that the approximate error system (2.8)

represents the important effects of the actual error system (2.6), we could

select the parameters of (2.8) so that -

e'(t) - e(t)||g(t)dt (2.11)

is a minimum, where T is the time interval over which good error system infor-

mation is needed by the controller and g(t) is a weighting scalar. Now, if

we view this intermediate task as a curve fitting problem in which the vari-

ables YjCO are a set of known functions, then the set of coefficients of
l • ,

those functions which will minimize (2.11) is

T

P = g(t) e'(t)Y (t)dt g(t)Y(t)Y(O dt
-1

(2.12)

One possible disadvantage of least squares methods in modeling problems is

that the solution which minimizes (2.11), subject to g(t) = 1, can permit '

large instantaneous deviatibns between e' and e. This is not a fault of

least squares theory but can result from poor judgement in deciding what

to take the least squares of. A wiser choice of the integrand of (2.11)
i '

might include rate terms (e (t) - e(t)) as well. Another option, which we

pursue here, is to minimize the maximum deviation between e' and e; a result-

which can be obtained simply by choosing an appropriate time weighting g(t)

and interval T. The result is that (2.12) takes on the form

1
!'(q)Y (q) da

-1 A-q2
J

1/2

0

(2.13)

dxd
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where a change of variable has been made for convenience

t = j (a + l)

g(a) = (l - a2)"172

cos(i cos" a) (2.14)

The functions Y.(O) are called Chebyshev polynomials of the first kind of

degree i. To obtain the matrix D, we may differentiate (2.14) and rearrange

the form to yield

(2.15)

where

0 0 0 0 0

2 00 0 0

0 8 0 0 0

6 0 12 0 0

0 16 0 16 0

•o

(2.16)

dxd

Now the matrices P and D are determined to within two parameters; the "observa-

tion window," T, and d, the dimension of the Y vector. A nontrivial task in

the computation of P is the determination of e', the error vector we desire to

approximate. It may be too difficult to compute e1 exactly, by solving (2.6).

Also the question of what conditions to impose upon A to obtain e' might be

in doubt. Because an observer will be used in section III to continually

update an estimate of Y(t), we will find that the system will be forgiving of

certain kinds of errors (uncertainties) in our selection of e'(t). Specific-

ally, magnitudes and phase relationships of the various modes that comprise

e' need not be known to guarantee proper convergence of the error system.
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This notion is made more specific in section IV. For the present, we assume

that some reasonable facsimile of e1 is obtained for use in (2.13). We con-

clude this section by noting that (2.9) is the form of the "control design"

model where the parameter matrices (A,B,C,M) are specified at this point and

specification of the parameters of the error system P(r,d), D(r,d) and M

must await solution of the control problem in sections III and IV.

III. OBSERVER DESIGN

In this section we are committed to the design of an observer to con-

tinually estimate x(t) and y(t) » as defined by (2.9). While constructing such

an observer we will again, as in the modeling problem of the last section, refer

to a better model j to interpret certain observation errors.

2
Suppose x (t) is defined as the vector which satisfies model

9 9 9 9 f\
x = A x + B u x=n vector

2
2 2 2

y = C x y = k vector (3.1)
2 2 2

z = M x z = H vector

where

A2 T 1 , B2 =[ , C2 = [C,0]
L O D J L O J

N.

LJ , (n+dMM2 = [M.M 1, x2 = I .. 1 , (n+d)-vector

(3.2)

2 2 2 2Now z = MX represents the best combination of x.(t) which corresponds to

the actual measurement record z (t). The actual measurement z (t) does not

satisfy (3.1), however, because of model errors. In order to write an equality

2
relating the state of the model, x ( t) , and the actual measurement record,

z (t) , we must include an error term, e ,
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'(t) = M2x2 + e e = z - MXz (3.3)

where e is a result of the kind of error e'(t) shown in (2.5). Indeed, if
Z

is considered to be a model of evaluation quality then we can write from

(2.3),

z (t) = MX + Mt
 x
t ~

 z°Ct) (3.4)

then from (3.3) and (3.4)

vV (3.5)

bearing in mind that (3.5) is an approximation and (3.3) is the definition of

e . Furthermore, the approximation (3.5) is good only if e'(t) is small in (2.5)
31 3

s o that x » x • . " • • • •

We define an (m+d - A) vector, 5(t) , by

?(t) = F x2 (3.6)

where the (m+d - £) x (mfd) matrix F is to be defined momentarily. Now, if

we augment (3.6) with the actual measurement relation (3.3) we have

F

M2 C.) (3.7)

Assuming M^ is of maximal rank we can choose F so that the inverse rela-

tion of (3.7) exists,

) - - (3.8)x2 = L2(z° -

If system tests are not economical, then performance evaluations are usually
conducted with computer simulations. Here we assume that model j&± is of
sufficient fidelity to warrant the confidence of performance decisions made
from it. By this we mean that ẑ -(t) is sufficiently close to z°(t) to write

z°(t).
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where

[Li»V
"A r -1

.M2.

Thus, for later reference we have the relations, from (3.9),

(3.9)

I^F + Î M2 = I

TLX _. = I M2L2 =1 (3.10)

TL2__. = 0 M2L1 = 0

By differentiating (3.6) and using (3.1), (3.8) we can construct a differential

equation from which £ is considered to evolve.

C = r A2L.? + r A2L,(z0 - e ) + r B2U° O.ii)
.L . fc Z

Equation (3.11) together with (3.8) form an "observer"; a linear dynamical
2

system whose output (relation (3.8)) yield x (if estimation is perfect and

^2 ox otherwise) and whose inputs are the real measurements z (t) and the real

controls u°(t), (see (3.11)). Of course e (t) must be available if the esti-

2 'mate of x is to be perfect. Actually equations (3.11), (3.8) offer a struc-

ture from which a number of different "observers" can be discussed.

CASE I: The perfect observer

Equations (3.11), (3.8) and Figure 2 describe a perfect state observer,

~2 2 2 2x - x , if x (t ) and e (t) are known. (If x (t ) is known, then £(t ) =o z o o
f\ f\ f\ f\ t

Fx (t ) and e = z - MX are available, as required..) Of course, x (t ) is
O Z O

usually not available, else we have no need for the observer at all.
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PERFECT OBSERVER
(REQUIRES e,(t), X2(tJ )

Figure 2. Perfect Observer.
(Requires ez(t), x

2(tQ)).

CASE 2 : The .Luenberger Observer

If we presume that our model is perfect, then e =0 and (3.11), (3.8)
2

reduce to the Luenberger observer for the system J&j-

CASE 3: A Model Learning Observer

Given the model structure of (3.1), (3.2), the observer could "learri"

^ o 2.̂ 2.the correct matrix M which would make the "measurement residual," e=z -Mx ,
/̂

approach zero. In" Figure 3, e is used as an error signal to correct M , which

appears within the gains L ,!„. The physical interpretation of this scheme is

the following: For a given character of the error system specified by (2.9) ,

this observer will "learn" how the error variable Y(t) propagates to the

. . 2
measurements, z =Mx + M y» by finding the matrix M which will make the model

predictions compatible with the measurements 2, i.e. MX -»• z . If an algorithm
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can be found which will converge on the correct M then the observer could be

called a "model learning" observer, in the sense that it learns how the error

vector e = Py influences the measurements. 'The matrices P, D characterize the

the error vector e(t). For Chebyshev polynomial approximation the'matrices

P, D are given by (2.13), (2.16).

CONTROL
LAW

•-o

M

Li

\
\ *-r/

EMH
\

^—«

^-v^-
CHANGE

Figure3. A Model Learning Observer.

CASE 4: The Disturbance Absorbing Controller

If we assume the model is perfect (that is, e(t) = e'(t) in (2.11), such

that e (t) = 0) and that the error vector y is totally composed of externalz ~ ^^^—»^^^^^^^^

disturbance effects which cannot be measured (that is M = 0) , then the con-

trol structure of Figure 2 reduces to the so-called Disturbance Absorbing

Controller whose structure was proposed in (6) and which is developed

extensively in (7)-(9).
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One final note is of interest on these observers. Since e is defined
z

to be e « z - MX it is perhaps tempting to construct the approximation to

e
Z Z Z

*• o 2*2 *
e , namely e = z - MX . If one implements e (.t) this way then the observer

becomes completely disconnected from the measurements z°(t) , (see Figure 2) .

A similar circumstance occurs in Kalman filtering when the plant noise is small

or zero. Then the Kalman gain can become zero, essentially disconnecting the

filter from the measurements. Of course, instability is assured in both cases

since the model which the observer/filter has "learned" contains error and its

predictions eventually diverge from the real system. Thus, the requirements

stated in case 1 for the perfect observer can not be met and the attempt as

outlined in case 1 will guarantee instability because it will not be causally

related to the measurements.

The observers described in this section, in conjunction with the model

given in (3.1), (3.2), can be interpreted as performing the following service

for the control system: The observer has within it a model of the uncor-

rected system *£-• When measurement records do not correspond to this model

the difference is curve fitted with a set of Chebyshev polynomials. It should

be mentioned that the estimates of y.(t) are not themselves Chebyshev poly-

nomials. But over any time interval, (t-T,t), the observer provides y > (°r

equivalently, y(t) , since Y = e Y )» those initial conditions which correspond

to a best fit of a set of Chebyshev polynomials of degree d over the interval

(t-T,t), to the actual error vector (MAX[e'-Pe y ] is minimized over (t-T,t)

by the choice of y , produced by the observer) . For these observers to be

2
stable (convergent on x ) the matrix FAL must be a stability matrix and

(3.10) must be satisfied. The error analysis is incomplete, but the first

observation is that if C(t) is the (perfect) observer state which produces
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x2(t) (via (3.8) and (3.11) with £Q = Fx
2) and if £(t) is the state of the

physically realizable observer which produces x (t) (via (3.8) with e = 0 in
Z

(3.11) and £ arbitrary), then the observer error

A
A = £(t) - 5(t) (3.12)

obeys the differential equation
i

A = FA2L1A - rA
2L2ez (3.13)

It is the purpose of the model learning observer to keep e small by an
Z

appropriate choice (perhaps iterative) of M . Noting that E is not zero for
Y z

any finite dimensional linear model of a physical dynamical system this is an

important step in an attempt for better controllers. Luenberger observer and

Kalman filter techniques assume e = 0 (or white) and for that reason stability
Z

of observer or estimator cannot be assured in general. It is the purpose of F

to make (3.13) stable and to make (3.7) invertible. This is possible under

certain observability conditions that will be detailed in further work.

IV. THE CONTROL PROBLEM

The model and observer are characterized by the parameters (A,B,C,M,M ,F,
*.r\

P(T,d), D(T,d)). The control law to be utilized is the linear form, u = Gx .

Therefore, the parameters that remain to be determined in this section are

T, d, F and G, assuming that M is determined in section III.

Selection of T, d:

Suppose V(x ,t) is a Liapunov function for J&~t Equation (3.1), with the

control

u° = G x2 "(4.1)

Then, by our previous interpretation of T as an "information window" over

which good information is needed by the controller, we define T to be a mini-

mum time constant of the system in the following sense
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A
T = MIN

... x2(t)

VCx2,t)

-v(x2,t)
(4.2)

Now if V(x ,t) is a quadratic form

V(x2,t) = x2(t)T

VCx2,t) =-x2U)T

Then we utilize the fact that the ratio = x

and below by

2 2
/x

(4.3)

(4.4)

2
x is bounded above

to obtain

(4.6)

Since the matrices J\f and 9 are functions of P(r,d) and D(T,d), we could

find the best T by minimizing (4.6). That is

MIN
T

MIN

x2(t)

V
•

-V
(4.7)

yields T. Rather than solving this problem directly, we will establish, an

upper bound on

MIN

x2(t)(t)

and minimize the upper bound. From matrix algebra (10) we can write

, +1/2-1,

1/2 (4.8)
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where

-li

• n+d

£.i.j-i
' n+d

Li.J-1

1/2

1/2 (4.9)

If we choose V(x ,t) to be the optimal cost functional

V(x2,t) - J (y2TQ y2 + u° R u°)dt

and u to be the corresponding optimal control

(4.10)

u°(t) K x ( t ) C4.ll)

where K satisfies the degenerate Riccati equation

_ 2 ? - — 2 - 1
0 = ~K A - A K + K B R K - C Q C (4.12)

then 9 = K, G = -R~"B' K, «/?" = C" Q(T + KB'R ^ K, (the observer is con-

/^2_ 2
sidered perfect for the present purpose, x = x ). If we minimize the upper

bound as specified by (4.8) we have the following necessary conditions for T.

y- l i i l /2

af [l I-'"
l/2l 8 | j^"1

J §T~~

1/2

1/2 «, |ili ,1/2
C4.13)

Equation (4.13) is quite difficult to solve and we must show that JV exists.

1 /") 1 1 /9

To obtain || & \ \ , j\JV \\ in a form explicit in T requires a Kronecker

product (11) solution of

-L(T,d)D(T,d) + [KBR L(T,d) = K P(T,d) C4.14)
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for L and of

-F(T,d)D(T,d) - D(T,d)F * PT(t,d)L + LTP(T,d) >.15)

for F, where L and F are partitioned parts of K in (4.12),

C L(T,d)

(̂T.d) F(T,d)
(4.16)

Therefore
d

E i i (4.17)

where
\

are columns of the matrix

ft]-- , *_ f • • * A J (4.18)

Further work is required to determine if T can be solved from (4.13) and

whether it is unique.

Assuming that the norm of 9 is a convex function of d, we will select d

to satisfy

* BT „ aE
1=1

(4.19)

for small a ».01. This in effect forces a minimum degree of observability of

"error system" modes (i.e. so that the d (and final) mode of the error system

is say, 1% as observable in the output as all other modes of the error system).

Mathematical justification of this interpretation will be offered later.

Choosing a to be as large as, say .01, serves to constrain the order of the

error system. Otherwise d might- be quite large (to obtain arbitrarily small

errors in fitting e(t) to e'(t)). .
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V. CONCLUSIONS

An "error system" is augmented to a system model which is intended for

controller design. The parameters of the error system are determined in such

a way that the observer, which is used .to estimate the. states of the model and

error system, serves to fit actual model errors (the difference between real
/ , r

measurements and those predicted by the model) with Chebyshev polynomials so

that the maximum modeling error is minimized over an "observation window," T.
( /

In this view of the.operation of the observer, the system can perform, in

essence, "adaptive curve fitting" of internal and external disturbances with-

out recourse to "adaptive" .techniques. Alternately, in the mode of operation

in which the observer is adaptive, the observer could be called a "model

learning observer" in the sense' that it learns how the model errors influence

the measurements. To accomplish this an algorithm must be found for changing

" ~ • • ' ^ n* " 2
a certain matrix, M , so that the measurement residual, e = z - z , is

y . z . .

driven toward zero. This adaptive feature has not been completed, however.

Certain parameters of the error system model must be determined simul*-

taneous with control policy design. Specifically, the "observation window,"

T, associated with the error system is shown to be related to the minimum
r"

eigenvalue of the closed loop system. This relation is accomplished by

viewing the optimal cost as a Liapuhov function. The dimension of the error

system, d, is determined:.from a required degree observability of the modes of

the error system, although this feature has not been completed and only neces-
<

sary conditions are shown for T and d.

..As a special case of the observer derived herein, the Luenberger observer

is obtained. As another special case the method reduces to the Disturbance

Absorbing Controller reported in [9], [8] and [7]. The present method has
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several advantages over the Disturbance Absorbing Controllers. Most signifi-

cantly, the effects of "internal disturbance's" (truncated' modes ) are not

Ignored (i.e. they are not treated simply as external, immeasurable

disturbances). , e . • . ,
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Chapter 4. Hybrid Coordinate Method Using

Assumed Mode Shapes for Elastic Continua

ABSTRACT! The hybrid coordinate method provides equations of motion of

minimum dimension for a spacecraft with flexible appendages. Instead of

the usual finite element approach, in which mode shapes are calculated from

equations of vibration of the finite element assembly, this chapter provides

an alternative formulation using assumed mode shapes. This proves useful

for a class of simply modeled appendages for which mode shapes are provided

by an outside agency, or are otherwise known. The results are shown to be

compatible with the finite element formulation, as previously described.
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I. INTRODUCTION

The hybrid-coordinate method provides equations of motion of a space-

craft with elastic (flexible) appendages. The appendages are modeled as an

interconnected set of small rigid bodies interconnected by massless or mass-

ive elastic bodies (finite elements). From the Newton-Euler approach, the

equations of motion for each finite element and the rigid body portion of the

spacecraft are formulated. The introduction of an appropriate coordinate

transformation allows the finite element equations to be represented as

decoupled vibration equations, which involve mode shapes and modal coordinates.

Since the vibration equations have been decoupled from each other, significant

truncation of the higher order mode shapes can be accomplished. This leads

to a set of equations where rotation of the rigid body portion of the space-

craft is coupled to the vibration of the flexible appendages. These equations

are of great practical use because the truncation procedure has significantly

reduced the number of degrees of freedom of the system without substantially,

sacrificing the fidelity of the results.

The purpose of this chapter is to provide an alternative formulation

for the hybrid coordinate method using assumed mode shapes. This approach

will prove useful for simply modeled appendages. For these the mode shapes

can be determined from a continuum analysis using partial differential equa-

tion methods. The truncation procedure is accomplished at the outset by

criminating the~higfier order modes of vibration. The equations of motion

are formulated using a Lagrangian approach and the coordinate transformation

is accomplished using the assumed mode shapes. The resulting equations of

motion are then seen to be compatible with those arising from the finite

element method.

,:
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A

H

i

d'

*2

where

0

B

A

M

m

- Figure 1. System Diagram.

Center of mass of undeformed system (body fixed)

Position of 0 at rest (inertially fixed)

.. Center of mass of rigid body

Center of mass of undeformed appendage

Total System mass

Appendage mass

Appendage mass/length ^

Connection point of"appendage
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II. MODEL

The following derivation of equations of motion, uses a model comprised

of a central rigid body and a flexible cantilevered beam. Extensions to

'several -appendages of arbitrary configurations may be made from the results

of this simple model. The undeformed position of. the appendage is taken to be

constant relative to the rigid body. The transformation between the two is

Included in the derivation to facilitate the extension of the equations to

cover a driven appendage. The angular rotations are assumed to be small as

are the translational displacements. A diagram of the model is shown in Fig-

ure 1. To summarize, the assumptions used in the following derivation are:

• rigid body with cantilevered beam,

• beam rest position constant relative to base,

• small translations and rotations;

No orthogonality requirements have been placed on the assumed mode

shapes. The vibration equations are therefore coupled. Further coordinate^

transformations may be employed to decouple the vibration equations or to

achieve vehicle normal modes|f but the truncation procedure does not require
I

this as it does with the finite element procedure.

The vector bases employed in the derivation are:
1

{1} : Inertiallyj fixed basis

{b} : Basis fixed in the rigid body

c{a} : Basis fixed in appendage prior to deformation

where .

(b}' =
o -e,
e. -«,

-e, e. . o1
i i '' N

la)' = [c]ib> i
i

[c]j = constant for an undriven appendage.

( i 149
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For the undeformed system, the location of the center of mass is

defined by

/ p dm = 0

SYS - ' •>...••'.;.
where p is the generic position vector from the center of mass to the dif

ferential mass element. Evaluating this expression leads to

where the quantities are shown in Figure 1 with L being the location of the

rigid body center of mass and r. the appendage center of mass.
~A . ' T .

The dyadic of the undeformed system is defined by

D*-D° + 0°LJ RB ^AP-u

n ° = n B + (c/tf -M) (L'L U-LL)
URB ^RB

+ M
AP-u~AP-u

III. THE LAGRANGIAN OF THE SYSTEM

The kinetic energy of the system is

•| /*V • V dm + jJV • V dm .

R B A P P ' . ' . _ - . . " * ' _

where V is the inertial velocity of a generic mass element. The kinetic

energy for the rigid body yields ' ' -

i fv • V dm =-i(^-M)RB-RB + io) - (~| • w .
2i~ ~ 2V ;" " 2~ URB V

where ^4f is the system mass, M the appendage mass,, and B is the center of mass

of the rigid body with
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R. - Z - L
—B — -»

- 0) x L.

Expanding this expression and switching the reference point of the inertia: i
dyadic to the system mass center gives

I f y . V dm - -|(^-M ) Z»Z+ -| w ' Q *
J • RB
RB

.
The kinetic energy of the appendage is

where APP
— m

Z + R + r + u

o o

j •

. , u u , v

Z + u + R + r + ux / R+r \

Vector differentiation1, with respect to the rotating reference frame is denoted
o o '

by the "circle" above the vector. Here R and r are zero since they are fixed

in the frame. The "dot." denotes differentiation relative to an inertial refer-

ence frame. Expanding the expression and making use of the dyadic of the trade-

'n° \formed appendage about the system mass center ( jyields.
V

1 A 1 • • 1 nu i /*
TT/V'V'dma-yMZ'Z+Tj-u)* • a) + •=• / u • udn/y~ • z~ • z~ L-IAP-U " *J~
APP

+- Z • / u d m + Z « o ) X [[MR •*• r

APP

+ / Ju • u x (R+rjl dm

APP
;

Combining the terms for kinetic energy and eliminating terms produces
' i

i /
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i c • • r'+ -x I u»u dm + Z • I u dm

APP APP

j»- U)»Rx / u dm + u> • / (r*u) dm.

APP APP v ,

The inertia dyadic of the undeformed system about the system center of mass is

i (Ji .V(' The
1 center of mass expression eliminated the term in the kinetic energy

' 'W/T '•'•' - ' ' ' • -
/containing Z and u).

1 i \ ' - -
: \' 1' From beam theory, the strain energy of the appendage is

; \
The Lagrangian for the system is then

a?-|urz«z' + |u -[]*• y + 7/ u-u
APP

r ' i n f ' A+ Z • I u dm + (i) • R x .f u dm

APP APP

APP APP '

I ' /
1 The formation of the above has assumed that the undeformed appendage is

fixed relative to the base I w •{•}•)• T^e next step to be taken is to
/

assume small angle rotations and represent the Lagrangian in matrix form. The

following matrices are used: ' i
i .j

Z = {i}T {Z}
>

rrt '» i -'

U = {b} {6} (small rotations)
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u = {a} {u}

[)*- (b}T I* {b}

R = (b)

{r}

R

0 -

R3 0 -R,

~i\rt Ax-. U

-0 -

0 -

0-9

L-e2 6,0

[6] - [E - 9]

32u

9r*

92u,

nn II

- {a}T {u

Retaining second order terms in the Lagrangian produces

{Z} + {9}T I* {9}

jf {u}T {u} dm + {Z}[C] f {u} ',

APP APP

+ {9}T C RJ {u} dm + {6}T C

dm!

tu,} dm

APP APP

- \\ El {u"}T {u"} dr.

APP
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Distributed coordinates are introduced by the coordinate transformation

n
u(r,t) = £ $f(r) n1 (t)

where n is the number of modes used to represent the displacement. In matrix

form, the transformation is

n

! 4>2 i ...i

where [$] is a 3 x n matrix with each column corresponding to a mode shape

and (n) contains n modal coordinates.

This coordinate transformation yields the Lagrangian :

= ±^{ZK {Z} +i {0}1 I {6}

+ -|' (n}T X2 (n) + {z}T c Xj^ {fi>

*. {e>T c(RX1+x3) (n> - |{n>Tx4 (n)

where

1 dmx - /"

APP

X2
APP

X3 = / r [< t>] dm/" ? [<(>]

APP

/

u T n
El [<}> ]X [<J> ] dr

APP
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The matrices X, and X- are of dimension 3 x n while the matrices X, and iX4

are symmetric and of dimension n*n. The Lagrangian depends on1 n+6 generalized

coordinates. Six coordinates describe the translation and rotation jof the !

undeformed system and n modal coordinates describe the displacementjfrom (rest
' . • . . - . . • • ! i

of the flexible appendage relative to the rigid base. ' .' •

IV. EQUATIONS OF MOTION i I
, • . .. '- j ' I

The equations of motion for the system may now be derived from1 the {

Lagrangian in the traditional manner. The resulting n+6 equations (may be '

represented in matrix form as

«̂ {z} + x-ĵ  Cn} = o

I* {9} + (R Xj+X^fiD = {T}

x2 {ift + x4 {n> =-̂ x£'{z} +
_.--"••" •• ' i

where {Tl--iŝ the externally applied torque. The first matrix equation mayjbe

used to eliminate the translation from the vibration equations. This pro-

duces n + 3 equations of the form

i* {9} + (R xx + x3){ii} = {T}

( IT \ r**i r i T ^
A« "" 77 A, An J \r)j ' **/. ^M/ ** I -"-I •«• ~

The matrices that provide coupling between the rotation and yibratiion

in each equation may be seen to be transposes of each other. The

can be written as

equations

. i* {e} - 6T

X2 ~iT xi
where

T ~ T
A.. R. ~ "O *
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V. COMPATIBILITY WITH FINITE

ELEMENT EQUATIONS OF MOTION

The equations of motion derived from the continuum analysis are similar

in structure to those derived from the finite element analysis (Ref. 1). The

differences between the two appear in the assumptions made in the continuum

analysis:

• No orthogonality properties . .

• No differential rotation of appendage mass
* '

''• > ' elements due to deformation. ,\ ' . / ! • • • • ; . ' . •
Orthogonality properties can be applied to the continuum analysis

vibration equations by a suitable coordinate transformation. The orthogonality

properties are not needed to permit truncation as is the case in the finite

element analysis.

The equations of motion from a finite element analysis are/shown by

(287) to.(289) of Reference 1. '

1*5- J^g-T
..". ' _ _ _ , o- - ••
n + 26on/+ o.n - 6 9

The overbar indicates truncation. If the damping is eliminated and

the orthogonality condition relaxed (after truncation), the equations become

* •• —T — '-I* 0 - 6T n = T ;

M1

where ,
M

i
K = Stiff nes- matrix.
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Normally, the coordinate transformation (j> includes mode shapes with

translation and rotation of the finite elements. To agree with the continuum

analysis, no rotations of the finite elements will be allowed. The coordinate

transformation <f> will then be a 6n x N matrix represented by

where

With the above limitations, the matrix multiplication can be performed

in the finite element equations and the terms may be compared with those

from the continuum analysis.

For the augmented mass matrix, the finite element analysis results in

ij

nz
k-1 IT rKi
E £ YmV: YmV=111^~£=1 k

This. is compatible with the. result from the continuum analysis

m/

(x2-3rxixi)
APP

[V]
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iFor the 6 matrix, the finite element analysis results in

This is compatible with the result from the continuum analysis1 i . .

T•*• . r*t IN/

j -f m(r) ̂ J
16]

Thus, if the number of finite elements were increased without limit, the

finite element equations would be identical to the continuum analysis

equations. !

i
. ; • . i • •

''•'•' VI. CONCLUSION

With the foregoing results it becomes possible to accomplish a hybrid

coordinate dynamic analysis for a system with appendages defined only in

terms of modal data based on a continuum analysis. This is a necessary step

before we can simulate an LST vehicle with FRUSCA solar panels defined by the

modal data provided by HAC.
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