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This report, '

the Guidance and Controls Section and the Scientific Programming ?

Section of Martin Marietta Aerospace, Denver Divigion, under Contract ;

NAS8-30808. This volume contains the philosophy and the mathematical %

basis of the non-linear programming algorithm underlying the develop- {

ment of the COEBRA program. Volume 1I is the User's Manual for the ;

i3

COEBRA program. The purpose of the contract was to convert the COEBRA g

program from the CDC 6400/6500 digital computer system to the UNIVAC g

i3

1108 at the George C, Marshall Space Flight Center and to provide a manual g

and instruction on the use of the program. This contract was performed ;

from September 1974 to August 1975, and was administered by the National a

Aeronautics and Space Administrationm, George C. Marshall Space Flight i

Center, Huntsville, Alabama, under the direction of Mr. D. K. Mowery, %

Dynamics and Control Division, Aeroastrodynamics Laboratory. ;
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CHAPTER 1

THE DESIGN PROBLEM

1,1 Introduction

The detailed design of the autopilot for a large elastic booster is ;

at best a tedious procedure. The function of the autopilot is to insure

e MR

satisfactory flight from liftoff to orbital entry or touchdown, depending on

RIS

the specific mission involved. In general, the autopilot works in conjunction

3o s T

with, but independent of, the booster guidance system, It is primarily a
stability controller functioning to stabilize the vehicle in order that (1)
the vehicle response to guidance commands is not compromised, (2) trajectory
dispersions resulting from both internal and external disturbances be minimal,
(3) structural integrity of the vehicle be maintained.

Typically, the autopilot designer is provided with a mission preofile
including nominal trajectory data and vehicle/payload dynamics. A critical
element of the trajectory data will include specific flight conditions that must
be met at specified points along the trajectory. These points are usually points
at which a change in autopilot parameters, filter pains and/or compensation time
constants is required, or at which either critical vehicle dynamics are encountere

or trajectory maneuvers are scheduled to occur. They are identified in this

volume as trajectory events or trajectory time points.

The control conditions to be met at these eritical trajectory points
can be specified in terms of stability criteria based on an open loop frequency

response analysis or a closed loop time response and are often specified as a

mixture of both.

s

The common stability "performance measures' are defined in either the

real frequency domain or in the time domain and are derived from the basic

properties of the governing differential equations or the transfer functions i




(Laplace transforms of the input-output differential equations) for the

system under consideration.

1.2 Analysis in the Frequency Domain

Without going into great detail, it is assumed that the reader las

FRrp s i RN 5 T e e v Ed e Gt

covered the ground before, recall that the general solution of a linear

differential equation(s) can be written as an exponential function or a

linear combination of exponential functioas with exponents 7it. The M can z

be real, complex, or imaginary, depending on the nature of the specific equation(s)
being solved., If the real part of any one or more of the i is positive, the ;
system governed by the differential equation is said to be unstable. Ii the é
real part of any one or more of the A1 is identically zero, the system is said :
to be oscillatory. If the real part of all the M are negative, the system is g
said to be stable. ;
The numerical values of the Ai are derived from the characteristic é
equation of the system, and are the poles of the system transfer function, We
are thus led to a consideration of the lo:ation of the system poles and a
characterization thereof that will yield the greatest amount of informatiomn
regarding the overall system behavior. The hyquist stability criteria provides é
such a characterization and is typically used in the analysis of space vehicle
autopilots, i

Let us consider a simple control system as a preliminary. Figure i-1

™ exhibits such a system. In this system we relate Gy to the control elements, G2

i
to the controlled system or "plant,'" H to the fecdback elements, and K1 and K, %
to the forward and feedback path gains. To simplify what follows, we let :

G = G1 G2 and the closed loop transfer function becomes )

K, 66 1-1

R 1+ Kl K2 G(s)} H (s)

R T I o o B P




where G(s) and H(s) are the transfer functions relating output to input

derived from the Laplace transform of the governing differential equation.

)
s
-
3]

Figure 1-1 Typical Control System

In the application of Nyquist criteria, we treat the complex variable

s = c+j » as a pure imaginary, or =0 and examine the characteristic equation

1+K G(s) H(s) =0 . . +« =+ & « & & &« o & + 1-2

1 %
Rather than treat the real frequency behavior of the closed loop system, we

treat the open loop function, Kl K2 G H, relative to the complex quantity,
-1=1e", The Nyquist criteria states that, if in the complex frequency

domain, we map

F(S) = Kl K?_ G(S) H(S) " ° . . ° ° ° . o . . . . 1-3

as s traverses the contour of Figure 1-2a in the s-plane the mapping of F(s) does
not encircle or pass through the -1 point in the F(s) plane, none of the roots
of F(s) lie in the right half s-plane or along the imaginary axis of this plane.
Thus, in the time domain, the real part of all the i are all less than zero and
the system is stable.

Typically, along the contour T2 of Figure 2a, the quantity F(s) vanishes
and we are left only with F(s) mapped as s traverses F3, r, and Fl, usually in

that order. We further observe the generally F(jo) for positivew is the mirror

S e T
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image of F(-jo) and thus we need only map F(jw) for o220, the real frequency
domain, Thus, we can actually observe not only the absolute stability but
algo the relative stability through examination of the teal frequency response,

Consider F(jw) = Re (K;KZGH) + 3 Im (KlKZGH) e s e n e e e 1-4

The relative stability can be exhibited by the gain margin,

MK =

kkcu| ! -1 e e e e e e e e e e e e 1-5%

172

Wor

where @, is that frequency for which the argument of F(jeo) or the phase angle

of K1K2GH is m radians or 180 degrees, and the phase margin

M¢,=]W“ arg F(jw)‘ radians . .« & 4 o o+ s s 4 e e 1-6a

Yo

= ilBO - arg F(jw)lm dEErees o + + s+ o s s+ e & 1-6b
c

where as the crossover frequency, is that frequency at wiich |F(jm)| =1,
Additional useful information regarding cquivalent damping and the lofation of
. , . . fas]* ™
the least stable poles of F(jwo) are discussed in the open literature.
Figure 1-3 illustrates these margins in the conventiunal manner.

The advantage of the use of the Nyquist diagram in the real frequency
domain in the design of elastic booster autopilots lies in the fact that the
rigid body, aerodynamic and flexible body bending mode frequency responses are
relatively well separated and thus lend themselves to definitions of separate

gain and phase margins, as shown in Figure 1-4, an unfolded Nyquist diagram with

frequency as a running parameter and magnitude and phase as coordinates,

*Gain margin is defined as the gain increase required to drive the system into
*instability or K |F(ju%)| =1land K'= 1/ [FQg) | -
Thus, in a vector sense, the margin is given by 1-5.

*#%T{gures in brackets refer to references in the Bibliography.
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Figure 1-3 Definition of MK and Mg in texms of Nyquist plot

1.3 Anaiysis in the Time Domain

In the time domain the performance measures are usually defined in
terms of the system response to a step function input. The generally accepted
performance or stability measures, based on a closed loop system, are the rise
time, Tr’ settling time, Ts’ time to peak value, Tp’ time delay, Td, percent
overshoot and steady-state error. The rise time is commonly defined as the
time required for the system to go from 0,1 to 0.9 of the final value. The
time to peak, TP, ig the time to reach the first peak of overshoot and represents
one half cycle of the frequency of the damped oscillation typical of systems,
The settling time, Ts’ represents the longest exponential decay of the system
and is defined as the time required for the system to settle within a band 0.95
to 1,05 of the desired final value, The delay time, Td’ is the time required for
the system to reach 0.5 ot the final value, The overshoot is the amount the first
half cycle of the damped oscillation exceeds the desired final value and the

steady state error is the difference between the finmal value of the system
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response and the desired value (typically 1). Figure 1-5 illustrates these
parameters,

It is of interest to note that many high order systems can be approxi-
mated by an equivalent second order system, In any case, the time response
is governed by what are known as dominant poles, To better appreciate what
is meant by a dominant pole, consider a closed loop system functicn of the

general form

K 7;’;',(5"+z§‘wc5+wf)1zf5*?3') 127

P 2 2
5 :7'-(5 +ZE s+ W, )ﬁ (5-;-’%_]
= 3:1

C(s)=

where 21 +—n1§§?l+-2 p + 7, or simply there is an excess of poles over zeros,
This enables us to form a partial fraction expansion of C(s) in elementary

terms of the form

7 il ) - 3/
=2, T (f«ﬁ*ﬁx wz‘f—z 5%2’ -2
oy [ pay 5+a.;Ku)KS"f’ Ko gzl %

This, in turns, inverts to:

- r z 2 2 A - w,T
” “ L (1+ € wk)v"(‘?«f@k“z""ﬁ}wwk)]@ w
=§a(-t/4/f7+_/j [K ~
C.(f) ;_;; 4 g w;(z(/'—;;:)

cos(W 1= g7t tan e S L )
2 %t TRl - gk
T he

5:1
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Observe now the coefficients of t in both the exponeniial and cosine terms.

These are derived from or are identical with the system poles with a step

¢ T e b

function, &4 (t), input, Those terms of equation 1-9 that give rise to the H
significant portions of c(t) stem from the dominant poles. That is, those i

terms dominate the performance of the system in the time domain., Their locations

are clearly functions of the system parameters and are closely related to the

. . . . . . . 46 ,
gain margin, phase margin, rise time, settling time, etc.[ ] The importance of

these poles is discussed further in Appendix B in conjunction with examples.

P e e et e

1.4 The Autopilot Problem

The foregoing indicates that the design of a control system is a relatively
straight-forward engineering problem. However, when the numerous inputs and/or
disturbances, multiple loops and/or multiple controi effectors, or a combination
of these are included, as in a typical flight vehicle autopilot. the problem becomes
both increasingly difficult and tedious, with results somewhat less than
immediately visible, A typical auntopilot may have as many as 6 distinct feedback
paths with up to 50 constants that must be established in a reliable and economical
manner. A mechanization of the iterative design procedure becomes highly
advantageous.

Consider a typical autopilot that is to be both gain and phase stabilized.
The vehicle flight plan is designed to minimize aerodynamic loading. The vehicle
is launched vertically to eliminate or minimize (lateral stabilizing load require-
ments)on the autopilot., Shortly after lift-off the vehicle is rotated (pitched
over) to assume a zero-lift (zero angle of attack) flight conditiom. The pitch

rate is then maintained at the flight path turn rate to obtaim a.zero angle of

attack.

The autopilot designer is supplied with this nominal trajectory as well

as nominal vehicle dynamics including rigid body, bending mode, and fuel slosh

10
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already been established, the usual case today, the first step is to
initialize the parameters used within this standard configuration. The initial §

gains for compensation are derived from the thrust to inertia plot for the

specific vehicle, based on a gain margin of about 6 db. The initial time

constants are derived from the structural bending mode frequencies.
Figure 1-6 illustrates the commonly accepted configuration used. The nominal :
trajectory and vehicle dynamics (mass and inertia properties) are generally

available as the results of a computer run and thus can be provided as a deck

of punched cards, magnetic tape or other computer compatible format. Using

3 v e ey s

these data, and the standard configuration with the initial gain and time

g i

| { 3
| L | | | | | | ,
: | ! | | 1 |
characteristics, Assuming that a standard autopilot configuration has 5
constants, the frequency response is plotted. A standard computer routine %
|
|

based on a block diagram input format according to the block diagram of Figure 1-7

is used where each block represents an elemeptary transfer function of the

general form

7 2
m7§'(5+2})7f(5?'+2;r&);r5+wk)

x

st it it

T(s)= 5 :
— k=1 1—-10 f%

- 2 11
5;7{(51&2;)7?(514;;#&%5*“)/4) :

= Azl

It is to be noted here that T(s) of equation 1-10 is identically the form

of G(s) H(s) of the total open loop function of equation 1-3 where for the
elementary blocks, m, 1, i, n, q and v are of lower magnitude than for the
total open loop fumction. The resulting frequency response is typical of that
of Figure 1-4. The response curve is examined for gain and phase margins. The
designer then selects new gain constants and/or time constants and repeats the
computer run until a satisfactory response satisfying all gain and phase margin

constraints is obtained.

12
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1.5 A Simple Example

As an example, we treat the system of Figure 1-8 with a specification

that the velocity constant, Kv’ be 100, the crossover frequency, wc;alo rad/sec,

the gain margin, Mk;alo db and the phase margin, Mq,;245°. A further constraint

is that the system be a unity feedback configuration.

160
s (s+8) (s +20)

b

Figure 1-8 Plant of Example

Recall that the velocity constant, Kv’ is defined as the ratio of input

t il
rate, R , to the steady state error, E, and it can be shown that }
3

i

¥

K = lim s %%5% = lim s G(s) g)
V. 80 s s 0 4

Plotting the conventiomal Bode diagram and the commonly used gain-phase diagram

as in Figures 1-9 and 1-10, we observe that the 3rd order plant, in a unity

feedback configuration is unstable, The gain crossover frequency, o ., is about

22 radians per second, at which frequency the gain, K, is 1 and the phase is

approximately 210 degrees. The Nyquist diagram, of which Figure 1-

a small segment, has the general shape shown in Figure 1-11.

The system is clearly unstable and series compensation in the forward

loop is indicated. After some consideratinn, a lag-lead compensation network

N
ks is arrived at, resulting in the following configuration (Figure 1-12). g

1
|
|
1
|
:
|
10 represents Y

(s +L)(s 45) 160 ;

*+ 100, .
%,. . (s+0.1) (s¥50) “1s(s+8) (5+20) :

Figure 1~12 Compensated System
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| |
Table 1-1 Computation Worksheet - Uncompensated System
w w/8 <o/8 w/20 { <w/20 <o $ T |F(J‘w)]
Degrees Degrees Degrees | db
1 0.125 7.15 | 0,05 2.9 90 100 40
1.5 0.188 9.95 } 0.075 4.3 920 104 37
2 0.25 14 0.1 5.7 20 110 33.5
[ 0.5 26,6 0.2 11.3 90 128 27
8 1 45 0.4 21.8 90 157 17
10 1,25 51.35 | 0.5 26.6 90 168 15
15 1,875 61.3 0.75 36.9 90 188 8
20 2.5 68.2 1.0 45 90 203 -2
25 3.13 72.3 1.25 51.35 g0 214 -3
30 3.75 74,7 1.5 56.3 90 221 -7
40 5.0 78.7 2.0 63.5 90 232 ~13
80 10,0 84.29 | 4.0 76.0 90 250 -30
100 12.5 84 .4 5.0 78.7 90 253 -40
Note: Standard paper and pencil computational aids of Appendix 1

used freely.
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Figures 1-13 and 1-14 show the Bode and Gain-Phase (Nyquist) plots
for the compensated system, The phase margin is about 540 and the gain
margin is about 15 db, Clearly, the advantage of a computerized solution
to this simple system is doubtful., However, the number of parameters,
feedback loops and variables in the autopilot problem evidences this advantage
to a marked degree. Recall also that only the starting point and a usable end
point were demonstrated for this simple example, Furthermore, we observe that
the solution is not optimal in that the gain margin exceeds requirements by
about 5 db and the phase margin is about 9o more than required,

We are thus led to develop a computer program that will not only
produce the system frequency response in an efficient manner but also will
enable an automatic search for near optimum gains and time constants based
on a gain margin and/or phase margin constraint or alternatively, the time

response and its related performance measures.

19
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Table IT - Computation Worksheet - Compensated System

W (7 (i)
W |“oa 9 8 | @, “r20| o ; Wiso| g, |“I1 | 65 “Is | 8, | db
eé deg deg deg deg deg- |de

0.1 1 45 |g,0125 0.7 (0,005} -~ 0,002} -- c.1 5.7 | 0.02] 1.2 |128 60
0.2 2 63.5(0.025| 1.4 |{0.0L | 0.6 {0.004| -- 0.2 i11.3 | 0,04 2.4 |l42 [48.5
0.4 4 76 10,05 | 2.9 |0.02 1.2 |0.008| 0,5 | 0.4 | 21.8} 0,08| 4.4 144 [36.5
0.6 6 80.6|0.075| 4.3 (0,03 1.8 |0.012( 0.7 | 0.6 | 31 0.12| 6.9 |140 30
0.8 8 82.,9|0.1 5.7 |0.04 | 2.4 |0.016] 0.9 } 0.8 38.7( 0.16| 9.1 {134 |26

1 10 | 84.3}0,125| 7.2 |0.05 2.9 (0,02 1.2 1 45 0,20} 11.3]129 |23.5

2 20 | 87.2(0.25 14 0.1 5.7 |0.04 i 2.4 2 63.5| 0.4 | 21.8y114 |17

T

4 40 | 88.6(0.5 26.6|0.2 11,3 ]0.08 L4l 4 76 0,8 | 38.7]106 11.5

8 80 | 89.0|1.0 45 0.4 21.8(0.16 | 8.8 8 82,9 1.6 | 58.0{114 6
10 100 | 89.4]1.25 | 51.4{0.5 26.6/0,20 | 11.3 10 84,3 2,0 | 63,5{121 2
20 | 200 90 [2.5 68.211.0 45 0.4 |21.8 1 20 87.2| 4.0} 76. 1152 -7
40 400 1 90 :5 78.7/ 2.0 63.5/0.8 [38.7 § 40 88.6| 8.0 | 82,9189 13
80 800 | 90 |10 B4 4,0 76 1.0 58.0f 80 89.2| 16.0| 86.4}223 32
100 |1000 | 90 |12.5 | 84.5/5.0 78.7/ 2.0 63.5] 100 89.4 20,0{ 87,1230 {37
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CHAPTER 2

THE DESIGN ALGORITHMS

2.1 Linear Programming

With gain and phase margins, or any other performance measure, as
the autopilot design criteria, the selection of filter time constants and
gain factors can be realized through the use of the linear programming
technique. With this thought in mind, we examine briefly the linear pro-
gramming approach before we apply it directly to the autopilot problem.

We treat the linear programming technique in two dimensions in order
to clarify the approach, Linear programming addresses the solution of a set
of m linear equations in n unknowns subject to constraints on the unknowns and

a minimizing functional. Consider

Ax:B a . . . ° - o - . . . - - [ » . L] ° -2"]-

where 4 is an m x n coefficient matrix, X an n vector of unknowns and B is an

"

n vector of constants, We impose the following constraints:

A g P e ATt

Xj?oo, j=l, z,o.c,ﬂ 3 . . - . . o a . . 2"'2

and

"
1]

It
2 Cj j minimum . a - o ° Q - - ] . . [ a » 2' 3
j=1

The details of the linear programming method are set forth in the open literature

and will not be treated fully here; rather, an example will serve our purposes,

- Given the set of inequalities:

-xq + 3%, £ 10

é
F:
:
:
.
:

®. + X, =6

* L] . @ L] - - - . 3 - a 2-4
5 Ky = Xy =2
L x, + 3%, 26

;
!
i
|
i
!

23

b el g P S




s mu AAFL

A
1
E
&
{
£

g AN

5L e 22

N 4

with Xy and X, non=-negative, minimize the function -xy - 2x2. First we alter

our minimal function constraint to maximize the functicn x1+ 2x2. The first

step is to bound the required solution. This is done by changing all the in-
equalities to equalities and plotting each equation of the set 2-4, recognizing
that the equalities represent either upper or lower bounds on the inequalities.

The region below the lines -xy + 3x2 = 10 and x, + Xy = 6 contain admissable

1

values of X; & %,. The entire first quadrant satisfies the requirement that

Xy and X, be non-negative. The region above the lines x, - x, =2 and x, + 3x2 =

1 2

may contain admissable values, Thus, the region bounded by these lines contains
an admissable value of both x; and X, &s indicated in Figure 2-1. Overplotting
the function to be maximized we write

=(‘ -
xl + 2x2 Constant . . . . « & ¢ 4 4 4 e u e . 2-5

and plot a series of lines overlaying the region of admissable solution to

obtain the admissable solution to the set 2-4 that maximizes the function Xy +2x2

Inspection of figure 2-2 indicates that the macimum admissable vaiue of X + 2x2

1= 2, Xy = 4.

This simple two-dimensional (two variable) problem is almost trivial,

is 10, from which we see the desired solution to the set 2-4 is x

However, as the dimension n increases, the simple 2-space geometry can ne longer
be used. The concept, for an n-dimensional space, is still the same. Using a
notational scheme that is not dimensionally limited and compacts the statement
of the linear programming probtlem, we write: Determine the column vector X, a

solution of

T

§=§ . * - » . . . . a » . N . . » * a 2"'5
which maximizes

Y = X e v e e s e e e e e e e e e e 2-6

g?
where ¥ 2 0 v e e e e e e e e e e e e e e e 2-7

We denote 2-6, where QT is the transpose of the column vector C, the uvbjective
function and 2-5 the constraints. The non-negative property, 2-7, is fundamental

to the linear programming algorithm.
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2.2 Linear Programming and the Autopilot Problem

How do we apply this procedure to the autopilot problem? We consider
the gain margir, phase margin, rise time, settling time, maximum overshoot, etc.

as performance measures or objective functions, and constra.n their values to

an acccptable range. These acceptable values usually will err on the conserva-

tive side in order that unforeéseen parameter variaztions will not allow excursions

outside of "safe'" values for the performance measures.

e o SVl P R

In the frequency domain, it is a relatively simple matter to identify

the frequencies at which the performance measures are obtained, For example, a

gain margin exists at those frequencies for which the phase of the system is 180

15 AL s e et

degrees, and a phase margin exists at frequencies for which the gain is zero

decibels (See Figure 1-4),. The frequencies at which pertinent performance measures

are found are generally well separated, and in sequential order with increasing
frequency, e.abling a simple search routine to identify each measure in sequence.

In the time domain, a similar search technique permits identification of
rise time, settling time, overshoot and the maximum deviation from final value,¥
We thus treat these performance measures here in a general way to

illustrate the design tochnique that has evolved into the COEBRA design algcrithms.

Let the vector X represent that set of autopilot parameters whose values:

1) Determine directly or indirectly the valuc of one or more

performance measures,

2) Can be varied in order to achieve an 'optimum'" performance measure

in some reasonable sense,

7 o 3) Can be changed, periodically, during £light to maintain satisfactory

vehicle stability.

3 P RV 5 2pte o R i

TR T

N

g - . . > a
* Due to structural reasonances, it is possible to have a time response in which
the maximum excursion and the first half cycle overshoct are not coincident

e $9 BREIR L

in time.,
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Thus we identify each performance measure as a function of this parameter

set, assign a nominal value to them, and use these values to initialize an

[T AP

autopilot design. A frequency response or time response is then calculated

and the set of performance measures examined. Assuming that a specific

R L

performance measure specification is not made, a single element of the parameter

R

vector is changed and the frequency response Or time response is repeated. The
method of finite difference is then utilized to approximate the partial derivative
of the performunce measures with respect to this parameter to implement the

performance measure constraint equation

n
(55 )ame= s

oXj

s N ey £y

f
Mi(i(o*A_Z):Mso‘x"j -
J= . Y}

L:.J'JZ) - )

2-8%

where Mi is the i-th performance measure, Eo the initial value of the parameter

vector, Mis the specified performance measure minimum and ij = xj - xjo'

Rewriting 2~8 with the substitution for AX]

2% 2-9

"

2. Z M. X,
(SML).X;'BM;S'“Mio(Xo-)_!- (-ax" o do

Z_ 3= 1

421 °

L.:f,Z_J....m

it is possible to invoke more than one mission fiight condition (trajectory
time event) in evaluating the specific performance measures, Mi’ under con-
sideration.

A fundamental restriction on this design algorithm is that the user

must specify: 1) the autopilot configuration within the limits identified by

%#2-8 is actually a truncated Taylor series expansion of the performance ]
measure, M,, about its initial value for each interation cycle. i
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the block diagram of Figure 1-7 or in a particular matrix format (see
Appendix D); 2) the number of gains and filter time constants (elements of
the vector E) which are to be treated as variables and; 3) those autopilot
parameters which are to be treated as constants for each iteration cycle.
The algorithm then operates on an individual element of the vector X under the 3
constraint

X X.é.x 3 j=1’ 2, o e o,n - - - - - - - . - 2-10

< .
31 3 jn
where the individual xj may include several different £light conditions
(trajectory times or vehicle states) or any one or more xj may remain constant 5

over several flight conditions or trajectory time events.

2.3 The Objective Function

We now formulate the objective or cest function in such a way that as
the performance measures improve for one flight condition, the trend is for
them to improve for all flight conditions, and at the same time each structural
bending mode resonance will be forced to ocecur in the neighborhood of zero
degrees phase, This is done by forcing the partial derivatives in the constraint

equation to increase. In the format of equation 2-6, we thus write

= 2 EE w0 W, G0 5@ 2.y 210
0Xs
where: :

1) é:is the summation over all autopilot variables

2) %:is the summation over all flight conditions (trajectory time

points or vehicle states).

3) ;:is the summation over all performance measures at all flight
i

conditions.

4) W, (i, t) refers to a weighting factor. For each performance measure, it Is

simply a ratio of the desired measure over the actual measure.

Hence, if a performance measure requirement is not met, Wl (i, t)
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4) (Continued) :

will be greater than unity. It becomes less than unity when a

SUENPRITPIES

margin exceeds its desired objective, It is noted at this time

that in the expression for Yi» i also indexes the phase angle at

which each structural bending mode reasonates, For these values

of i, the partial derivative indicates the rate of change of
each modal peak phase with respect to each autopilot variable,

and wl (i, t) is written so that the algorithm will attempt to

force each mode to resonate near zero degrees phase, wl (i, t),
will be large for modes that resonate near 180 degreces, and zero
for modes that resonate at zero degrees, For some arbitrary angle
like 90 degrees, wl (i, t) can equal unity.

5) Wz (i, t) refers to a weighting factor that might be selected bw
the user, This would give the user the capability to eliminate
certain performance measures from the optimization process or to
emphasize other measures,*

6) S5(i) refers to a scale factor. It serves to scale the margins and
modal peak phases so that phase margins and gain margins can be
optimized together. For example, it might be desired to equate a
five degree increase in the rigid-body phase margin with a one
decibel {12,2%) increase in the rigid body gain margin. Similarly,

. in the time domain, a correlation between rise time and overshoot
may require scaling.

In summary, ¥y is a "weighted" linear combination of the "positive"

changes in each performance measure, Note that this linear combination can

*Wl (i,t) and wz (i,t) arc initially preprogrammed, After an initial run of

TOEBRA, the user can, at hig discretion, input new values for these weighting
functions,
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Incorporate performance mecasures from all of the vehicle states (flight
conditions) that are being designed together. The design algorithm will

maximize y; {and hence seek to maximize all stability margins and/or time

domain performance measures, and seek to force all modes to resonate near

zero degrees phase) in the npresence of the constraint matrix which includes
constraints on each individual margin and each autopilot variable at each

time point. The advantage of this algorithm lies in the fact that the constreint

equations can specify the minimum requirements for each performance measure while

the cost function seeks to maximize the performance measure,

2,4 Load Belief Cost Function

Structural bending moment loads on a launch vehicle are largely duc to
axial acceleration, acrodynamic loading, and control device deflections [Harris,
15]. Obviously, the booster autopilot can do little to affect axial acceleration,
and therefore the main objective of a so-called load relief autopilot is to
reduce aerodynamic loading due to angle of attack and to keep control device
deflections to a minimum.

Hence, for this design algorithm, when the objective is to maximize
structural bending moment load relief capability, the cost function is comprised
of the response of the angle of attack () and the control deflections (8) due to
the wind dorcing function (By). When the cost function is maximized, the peak
values of B and § are minimized.

A separate transient response routine is used to calculate the peak
value of angle of attack (ﬁﬁ) and control deflection (SP) due to ﬁw. As with
stability margins, the method of finite differences is used to compute-the
first partial derivatives of ﬁp and sp with respect to the autopilot variables.
The cost function is then formed from the first order terms of the Taylor Series

expansions of;;p and 3p about their nominal values.




As with the stability margin cost function, the lodd relief cost
function (yz) is a weighted linear combination of the variable portion of

the first order terms in the Taylor Series, or i

(t) a5 (t)

22 22 |y x [ )ew ox [S2—)[|rx !

o j ) q

:

2-12 1

In the above expressiont %
1

(1) z:refers to the summation over all the autopilot variables; #

(2) %:refers to the summation over all the vehicle states; ﬁ

(3) wl (t) and Wz (t) refer to weighting factors that may be a
specified by the user. ;

When maximizing load relief capability, the design algorithm will :
maximize the negative of Yo in the presence of the constraint equations on the ?

minimum allowed gain/phase stability margins and on the allowed ranges of the
individual autopilot variables, Note that multiple time point design is handled
just as it is when maximizing other performance measures. Some final notes on
the load relief cost function are now listed.

Since the so-called "rigid-body" (as opposed te flexible-body) angle
of attack (B) and control deflection (8) are the principal factors in determining
structural bending moment loads, it is felt that only the rigid-body airframe
equations of motien [Harris, 15] need to be used in the transient response routine
that is used to calculate angle of attack and control deflection, Note also that
these rigid-body airframe equations can include planar coupling (e.g., between
the yaw and the roll planes), and hence the cost function can include control

deflections from several planes (e.g., the yaw plane control deflections (8¢) and

the roll plane control deflection: (S¢) ). ,
o
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The wind forcing function can be a series of steps and/or ramps
that approximate the commonly used synthetic wind profile [15]. The wind
forcing function can also be stochastic, and the design algorithm then
minimizes the rms values of Band §. This is done via Wiener's theorem and

the filtering property of power spectral density functions [see Appendix C],

2.5 General Flow Chart

Figure 2-3 is a general flow chart sumnarizing the main steps involved
in the algorithm, It shows the general flow from the initial autopilot for
each iteration through the following routines:
(1) The routine that generates the frequency response and finds
‘the stability margins, and the routine that generates the tranmsient
response and finds peak B and 8, rise time, settling time, overshoot,
etc,
(2) The routine that computes partial derivatives;
(3) The routines that set up the linear programming problem and solve
it; and
(4) The routines that determine whether the design is complete.
Tf the design is not complete, another major iteration is begun with
the best answer obtained in the previous iteration. 1In other words, the problem
is relinearized about the best answer of the previous major loop, and ancther
cycle through the major loop is performed, This iterative process continues
until the local optimum is found,
Note that this design process satisfies the five main elements of the
design criteria
(1) The method directly treats stability margin requirements and
objectives, and structural bending moment load reduction and/or

the time domain performance measures,
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START

INPUT VEHICLE/
TRAJECTORY
PARAMETERS

INITIAL AUTOFILOT FOR
EACH ITERATION

i

FREQUENCY RESPONSE
FOR STABILITY MARGINS
TRANSIENT REGPONSE
FOR TIME DOMAIN
PERFORMANCE

SET UP COST FUNCTIONS AND
CONSTRAINT EQUATIONS

MAXIMIZE COST FUNCTION IN
PRESENCE OF CONSTRAINTS

AUTOF1LOT GAINS AND
FILTERS

ORIGINAL: PAGE 13
OF POOR QUALITY

Figure 2-3 General Flow

Chart of the Design Algorithm
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(2) The method directly handles the user-selected autopilot

Lo

configuration,

(3) The method directly handles the multiple time point (flight

1

condition) design pr ‘em,

(4) The method is not limited by the order of the system, Note
that since this is a parameter optimization routine, the order
of the autopilot does not necessarily increase with an increase
in the order of the fixed parts of the system.

(5) The method can design either a digital autopilot or an analog

autopilot.*

2.6 Selection of Iterative Step Size

Referring now to equation 2-3 and the sample problem, equation 2-5,
we observe that to establish an optimum admissable solution, the function to
be maximized was allowed to take on successive 'constant' values, The speed with
which the algorithm converges to a solution is dependent on the magnitude of
the change in this constant value as the iterative process is carried out,

Re-casting equation 2-10, to reflect the step~change in each autopilot variable,

we obtain

B
max (L +pyt . %o xjmin} < X, K MIN ’(1 +p) Xg xjmx}
3= 1,2, ¢ o s o5 T o o s s o o s s o s e o0 o & = & e e 2-13
, where:
(1) X'm' and X, refer to the minimum and maximum values ever

-

2ilowed for Xj.

*Under this submittal, the formal digital algorithm is not included. However, if i
the bi-linear transformation is applied to the pulse transfer function, the
resulting w-plane description is directly analogous to the s-plane description
contained herein., Thus, with the w-plane equations, COEBRA can be used directly ¥

to solve the digital autopilot problem.
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(2) on refers to the initial value of Kj on each iteration, Note ;
that K‘o is the point about which the partial derivatives are :

computed, and about which the Taylor Series is expanded.

(3) P refers to the autopilot variable step-size for each iteratiom,

in are not encountered on a particular

e Bt e v e

In words, if X, . and X,
Jjm jmax

is allowed to vary no

IEY

iteration, the above constraint equation says that Xj

ot

more than about + P% from on on any iteration. Since it is desirable to

maximize the step size on each iteration, thereby getting the maximum "mileage" !

out of each set of partial derivatives, it is desirable to have a Minor lLoop that

increases the size of P until improvement in that "search direction" is no longer

possible. In other words, the Minor Loop serves to maximize the autopilot

variable step-size. In maximizin P. the Minor Loop uses two "indicators':
g % P

(1) a counter that keeps track of the number of performance measures that are

already met, and (2) a figure-of-merit that is a linear combination of their

actual values, Lf the number of "met measures"

1f the number of "met measures' does not change, the

r

increases, obviously the value i

of P can be increased. !
i

by

figure-of-merit is used to decide whether P can be further increased. In other

words, the measure counter is used to reward those steps that result in an

bt g s e e g g 4 e e

increase in the number of 'met measures," Conversely, the counter prohibits

those steps that tesult in a loss in the number of 'met measures.” TFinally,

A L B AT

| P

the figure-of-merit is used to break ties when the measure counter does not

change from one step to another,

it v s

s £t ik

The Minor Loop serves o either keep the problem linear on each major

R &

S £ e

jteration, or to take advantage of the neglected nonlinearities when they

might be helpful. 1In other words, the Minor Loop serves to keep the nonlinearities

Lt

from "hurting' the steady convergence to a local optimum,

efit of the Minor loop is that it allows the algorithm to
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converge steadily to an "“interior" optimum,

Since the solution to the linear programming problem always lies aﬁ

a vertex of the admissable region defined by the constraint equations, it is

e e Cughh e s
I

the Minor Loop that allows the algorithm to converge to a local optimum that

HRTINE

is interior to the performance measures constraint equations,

O

2,7 The Inner Loop ;

The second part of the step-size optimization routine can be illustrated :

by the following detailed expansion of a particular performance measure constraint

TY——

equation

n
M (320) + 2

io

* (X, - %, ) 2M, (i=1, ..., m
j=1 i o
2-14

A5 Pt R G

In the above expression, there are two cases for M's'
i

£m g i, LAt S

(1) 1If the particuiar perrormance measure is already met, then for

1
.
3
i
|

Ayt

the next iteration,

ot 2

Mis = SPEC(i)

e

where SPEC(i) is the minimum allowed value for the ith performance ?

:

measure 4

(2) 1If the particular performance measure is not yet met, %
3

M, =M (& * i) - X
jo =M (X)) + s1P [SPEC (1) - M (xo)]
4

Before defining the purpose of the equations for Mis’ note that in the

S g T s 4

-, second equation, (a) if STEP = 1, Mis = SPEC(i), and (b} if STEP = 0, Mis =
Mio (Xo)°

For a given value of P (autopilot variable step-size), there may not

g et 2

be a feasible solution to the linear programming problem if the present autopilot

vesniad BT

does not meet all of the performance measure constraints. In other words,

the feasible region defined by the measure constraint equations may not overlap

il S g
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the feasible rcgion defined by P. By automatically reducing the value of
STEP, the measure constraints are "loosened," until a feasible solution is
possible for a given value of P, In this way, the value of P can be increased
in a steady and rational manner, and the algorithm will pe allowed to converge

to a solution in a progressively improving manner,

2.8 Graphical Tllustration of Step-Size Optimization

Figures 2-4 through 2-9 graphically illustrate the mechanics and
the interaction of the two step-size optimization routines (the Minor Loop and
the Inner Loop).

Figure 2-4 shows a hypothetical two dimensional condition that might
exist for a rigid-body autopilot design problem. Figure 2-4 is a plot of the
attitude error gain (KD) versus the attitude rate gain (KR)n Plotted on the
figure are three nonlinear stability margin comstraint equations: {1) the aero-
dynamic gain margin; (2) the rigid-body phase margin; and, (3) the rigid-body
gain margin. Figure 2-4 also shows where the "true" local optimum condition

might be, where the objective is to maximize stability margins, and where all

three stability margins are equally weighted. Obviously, the "true' optimum
for this hypothetical case lies inside the feasible region where all three
margin requirements are satisfied. The figure also shows what might be the
"first guess' or initial condition on KD and KR.

Figure 2-5 shows what the constraints might look like when they are
linea -ize«d about the initial condition. The figure also shows the linearized
interior optimum, where again, all margins have been equally weighted, Note
that the linearized optimum is not the same as the nonlinear or "true" optimum

for this initial conditiom. Finally, Figure 2-5 shows the slope of the linearized

cost function (y) and the direction im which it increases.
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Figure 2-6 illustrates the feasible region defined by the autopilot
variable comstraint equations on KD and KR for step-size #1 (denoted Pl).

This feasible region does not overlap the feasible region defined by the
stability margin constraint equations. With the initial condition, the rigid
body phase and gain margin constraints are satisfied, but the aerodynamic gain
margin is not. Hence, the design method enters the inner loop, and relxes the
aerodynamic gain margin constraint until a feasible region exists for both the
margin constraints and the autopilot variable constraints. This relaxation is
accomplished by reducing the parameter denoted as STEFP.

When STEP is unity, no relaxation exists., When STEP is reduced to 0.8,
the aerodynamic gain margin constraint is relaxed enough so that a feasible
region exists. When STEP is 0,8, this means that an "80% improvement" is
required for the margin that is not yet satisfied, This éo-called "required
margin improvement'" becomes very important when the optimum is exterior to fie
feasible region. This is the case most of the time for launch vehicle autopilot
design.

As indicated on Figure 2-6, the optimum solution for the first step of
the minor loop éxists at Y. Comparing ¥y with the nonlihear cost function and
constraints shown on Figure 2-4, it is seen that stability at y, is better than
at the initial condition, This "improved stability" is indicated by the figure~
of-merit which, as discussed previously, is a linear combination of the stability
measures. Note that the so-called "met-measure counter' indicates that at Yi» there
are still only two margins that are satisfied., Note that the measure counter and
the figure-of-merit are formed from an actnal evaluation of the {requency response,
In other words, they are not computed from the linearized cost function and the
linearized constraint equations.

Hence, since ¥ is better than the initial condition, the design process
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advances, using the same set of partial derivatives, and hence the same
linearized cost function and margin constraint equations that were calculated
at the initial conditiomn,

As shown in Figure 2-7, the design method now increases P from Pl to PZ'
Figure 2-7 shows the feasible region defined by the autopilot variable constraint
equations for PZ' An overlap exists between the feasible regions defined by the
margin and autopilot conmstraint equations, and hence the imner loop need not be
used, For P2 the optimum solution exists at Yoo By comparing Yy with the non-
linear constraint equatioms of Figure 2-4, the margin counter indicates that
there are now three margins that are satisfied. Since improved stability has
again been achieved, P is further increased from the original initial condition.,

As shown in Figure 2-8, P is now increased to P3. For this step, overlap
also exists, and the optimum solution is at Yy By comparing Yg to the nonlinear
constraints of Figure 2-4, it is seen that the rigid-body phase margin require-
ment is no longer satisfied, The margin counter indicates that only two margins
are satisfied by Vye Hence, Yy is not as good as Yo and P must be reduced.

Figure 2-9 shows the autopilot constraint equations for P4’ where P2 4
P4¢L P30 Again, the inner loop is not needed, and the optimum solution exists
at y,. By comparing Yy, to Figure 2-4, the margin counter shows that there are
three margins that are met, But, the figure-of-merit shows that y, is better
than Yy Postulating that the differemce between P2 and P4 is less than scme
convergence criterion, the algorithm stops this so-called major iterati on at Yos
The values of KD and KR at y, become the inmitial condition for the next major
iteration, At Yor the problem is relinearized. A new set of partial derivatives
is computed, and a new cost function and new constraint equations are formed.

As the design progresses, the linearized optimum gets closer and closer to the

nonlinear or "true" optimum., It will be observed in the following that the




=y

convergence criteria can be used to terminate this iterative design process,
Table 2-1 summarizes the results of Figures2-4 through 2-9. These
figures have been used to demonstrate steady convergence to a local interior
optimum, We will next consider convergence to a local exterior optimum.
As a final note, Figures 2-4 through 2-9 demonstrate that this algorithm
does not require that the initial condition lie within the feasible region.

2.9 Convergence to an Exterior Optimum

We now illustrate how the algorithm converges to an exterior or ''con-
strained" optimum, Figure 2-10 shows a case that might exist when optimizing
load relief capability since for this phase of design, the optimum solution
almost always is exterior to the feasible region defined by the margin constraint
equations, Figure 2-10 is a hypothetical two-dimensional case where (1) the non-
linear margin constraint might represent the so~-called aerodynamic gain margin,
(2) Xl might represent the attitude error gaim, and (3) X2 might represent the
so-called load relief loop gain. Figure 2-10 also shows the nonlinear constrained
optimum,

In Figure 2-10 the initial condition -on Xl and XZ is outside the feasible
region., Figure 2-11 shows what the margin constraint and the nonlimear op:imum
might look like when the problem is linearized about the initial conditioi.

The first step of the algorithm is to ''get feasible'" and Figure 2-11 v .11 show
that in so doing, the algorithm still attempts to approach the optimum,

Referring to Figure 2-11, after a series of iteratiomns through the
minor and the inner loops, the solution is shown to exist at Yl. With the
linearized margin and cost function as shown, this is the best solution this
major iteration can achieve without violating the nonlinear margin constraint.

At V., the problem is relinearized as shown in Figure 2~12, This

].’

figure shows that any step in the direction of the gradient to the linearized
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Table 2-1 Summary of Figures 2-4 Through 2-9

Numbers of

Criterion on

Best Solution

Constraint
Fipure Minor Loop Step Size Relaxation? Solution |Margins Met Fig.-nf-Merit So Far
2-5 Initial Condition - Y 2 - I. C.
2-6 P Yes (STEP=.8) y 2 Y. SY y
1 1 o] 1
- P wh P.>P -
2-7 , where ol No Yz 3 y,
P, where P, >P No Yy 2 y
2.8 3 3-"2 3 —— 7
P
2-9 4 where P2< B,.< L No Yy 3 VoY, Yq

Y serves as initial condition for next major iteration since

2

PA-PZ satisfies convergence

criteria,
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optimum would yield an unfeasible solution, Referring to Figure 2-12, again
after a series of iterations through the minor and the inner loops, the
sclution exists at Y2' With the linearized margin and cost function as shown,
this is the best solution this major iteration can achieve without violating
the nonlinear margin comstraint. With each major iteratiom, the linearized
constrained optimum approaches the nonlinear constrained cptimum.

We have illustrated how the algorithm first "gets feasible," and then
moves along or parallel to a constraint for the casz of a constrained optimum.
Example 6 of Appendix B will dramatically demonstrate this situation.

Because of the weighting factors in the rcost function and figure-of-merit,
situations with an exterior optimum can also exist when optimizing performance
measures,

2.10 Termination

We now discuss the two ways in which the design process can be terminated,

The first way might be referred to as self-termination, where the algorithm
finds a local optimum and can achieve no improvement over the initial autopilot
for a given iteration. The so-called measure counter and the figure-of-merit
define this “"improvement." Recall that the counter "counts' the number of "met
measures,” and the figure-of-merit is a linear combination of the actual performance
measures. The counter never allows the algorithm to lose a measure, and an

iteration is considered better if the counter inereases, The figure~of-merit
i5 used to break ties in the counter. An iteration is considered no good if
the figure-of-merit decreases. An iteration is considered better only if the
figure-of-merit increases by a certain percentage (as specified by the user).
The user may wish to ''reward" a certain performance measure only up to
a certain desired value, In other words, up to a desired value, the figure-of-

merit will include the actual value of the measure, When the measure exceeds




this desired value, the figure-of-merit will only include this desired value.
If this happens for all performance measures, the figure-of-merit will not
change at all from one iteration to the mext, and the algorithm will have

found an optimum that not only meets the requirements, but also satisfies the
desired objectives. Examples 1 and 2 of Appendix B will illustrate cases where
this happened.

The case most likely to be encountered is when not all performance
measures exceed their desired values, and the figure-of-merit improves only
slightly from one iteration to the next. The percent improvement is less than
that required by the user and the design process terminates. For this case, the

local optimum may yield a solution that satisfies all the design requirements,

in which case the problem is solved, However, if the local optimum does not
satisfy the requirements, the user must then either (1) try another initial
condition for the autopilot variables, (2) add more complexity to the autopilot,
and/or (3) relax some of the design requirements and/or alter some of the
design objectives.

The gecond way that the design may be terminated is directly by the
user, He may specify termination after a certain number of major iterations or
after a certain amount of computer time.

2.11 Overall Flow Chart

Figure 2-13 is a detailed overall flow chart of this nonlinear programming
algorithm as it is applied to the problem of launch vehicle autopilot design,
Tt shows the flow of information from the initial autopilot, all the way through
the step-size optimization routines, through the termination routine, and back
to the initial autopilot for the next major iteration,

In the block showing where the partial derivatives are calculated,

reference is made to closed-loop roots. This illustrates the possibility of

e Rt




S

Compute Partial Derivatives
START 1) Stability Margins
- Frequency Response/ 2} Closed-Loop Roots
Find Stability Margins 3) Modal Peak Phases ]
L 4) Tolerance Constraints Set Up Cost Fumcs
Initiel Auto- ) 5) £,dv .49 tion/Optimize
= pilot for each 6) Attitude rise time, :Perfgmance Mea.
Ltevation overshoob settling timey or Load Relief |
Dynamic Response/ steady-state error, I
| Find Peak £.dy ,d¢ [ peak values

Performance

[' =l 0bjectives

Set Up Comstraint

f Z Matrix
Allowable 1) Margins
% Gain and 2) Roots Simplex
. Filter s 3) Tolerances Algorithm
Ranges 4) Drift Minimum
5) Autopilot Variables

N Drift Minimum Equatiori'———“l"‘

No

Autopilot

No

Are Step Sizes
Optimum for this
Iteration?

Optimization
Completel

Figure 2-13 Overall Flow Chart of the Design Algorithm




T g™
e —

not only optimizing stability rargins, but also of optimizing locations of

at least the so-called dominaut closwd-loop roots. In addition, a tolerance
constraints routine is indicated. This routine is utilized to prevent the #
attitude error vector, the rate vectors, the accelerometer loop vector, etc,

from getting larger than the total resultant vector at all frequencies, When

the individual vectors become much larger than the resultant, vector cancellation

may result, which can lead to problems when the airframe parameter tolerances

|
1
i
i
i
}
z
|

are considered,

In the block showing the constraint matrix set up, reference is made to

the "Drift Minimua" condition, @reensite[l14]and Hoelker[17] ) which basically is

a steady-state relationship between the autcopilot gains, This steady-state

relationship results in a mix between the forces due to gravity, aerodynamics,
and control deflections, that yields a zero net force perpendicular to the ;
vehicle's velocity vector. This illustrates that it is possible not only to put

constraints on margins and root locations and on min-max values of the autopilot

i variables, but also to constrain the autopilot variables to satisfy other con-

ditions like the Drift Minimum condition.

Figure 2-13 also shows a block labeled "Simplex Algorithm." This is in

reference to Dantzig's method [9]f0r solving linear programming problems.*

The block labeled '"Performance Objectives' refers to the fact that
design ohjectives are used to form th: cost function, while design requirements

are used to form the constraint matrix.

2,12 Step-Size Optimization Flow Charts

Figure 2-14 illustrates the step-size optimization routines (namely,

the Minor Loop and the Inner Loop) and their relationship to the other routines i

shown in Figure 2-13,

; #3ee Appendix E 3
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The Inner Loop is used to relax constraints in order to yield a feasible

solution to the linear programming problem. The Minor Loop is used to

maximize the autopilot variable step-size in order to get the "maximum mileage"

out of each set of partial derivatives, and in order to allow the algorithm

to steadily converge to a local optimum, particularly to an interior optimum,
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CHAPTER 3

SUMMARY

3.1 Summary and Conclusions

As shown in the examples of Appendix B, the COEBRA program clearly
demonstrates that this algorithm successfully solves the problem of auto-
mating practical launch vehicle autopilot design and optimization. Perhaps
the primary reason for the success of this algorithm is that its approach to
design is much the same as the engineer's approach.

Via this algorithm, the COEBRA program satisfies the five basic design
requirements:

(1-a) The COEBRA program deals directly with the "optimization' of
performance measures in both the frequency domain and the time
dom in as well as to constrain the location of the rigid body
dominant roots. COEBRA imposes an inequality comstraint in
each individual performance measure and each pair of dominant
poles at all flight conditions being considered simultaneously.
With the optimum performance measure COSt function, COEBRA not
only realizes the minimum performance measure requirement, but
also seeks to "optimize'" all performance measures. With a cost
function distinect from the constraint matrix, the cost function
can be formed from the performance measure objectives, while the
constraint matrix can be formed from the performance mzasure
requirements;

{1-b) With the "optimize load reduction" cost function (formed via a

time domain traunsient response routine), COEBRA seeks to mini-

mize structural bending moment loads ( 8, 8y> and 84 due to winds)
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(2}

(3

while meeting the minimum performance measure requirements.
COEBRA can constrain the autopilot parameters to the so-called

Drift Minimum condition [14], [17] , thereby minimizing trajectory

dispersions., In fact, COEBRA can design a Drift Minimum auto-

pilot that has the maximum amount of load relief capability

and that meets the minimum stability margin requirements;

COEBRA designs with a user-selected autopilot configuratiom.
From the outset, only practical controllers are considered since
the user selects the number and types of feedback loops and the
number of gair< and filters, COEBRA optimizes the values of the
parameters within this feedback structure and constrains the
minimum and maximum allowed values on each parameter;

COEBRA handles the problem of multiple time point design by
forming the cost function and matrix of constraint equations
from performance measures and wind responses at several time
points or vehicle states for both deterministic and random forcing
functions., 1In this manner, all vehicle states are optimized
simultaneously, Autopilot parameters can be shared between the

vehicle states.

A novel feature of the COEBRA program and this design algorithm
is that multiple time points are handled by considering a

separate airframe for each time point. I+ is obvious that these
"separate airframes" can come from the same flight condition or
trajectory time point. For example, the "first airframe' can be
the nominal airfirame at time £y while the "second airframe' can

be the airframe at time tl with a tolerance on one or more of the
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vehicle parameters. In this way, COEBRA can treat both the

nominal and the toleranced airframe together to yield a

single autopilot that will handle both conditions;

(&) COEBRA can handle a very high order system (30th and greater %

with up to eight bending and slosh modes per time point).
With a user selected feedback configuration, the comp lexity i
of the autopilot does net necessarily increase with an increase
in the order of the fixed parts of the system. Parameters like
sensor and actuator dynamics are included in a very straight- A
forward manner and their inclusion only increases the required
computations;

(5) COEBRA designs analog autopilots via the S-plane frequency
response, and digital autopilots via the W-plane frequency
response,
Examples in Appendix B show that this algorithm can handle both
interior and exterior optima. The examples also show that the
initial conditions on the controller parameters need not yield
feasible solutions, i.e., solutions that meet the constraint
requirements. In fact, the examples of this appendix demonstrate
that the initial condition on the autopilot parameters need not

e, even yleld a stable system.

3.2 Projected Applications

Even though the class of problems this algorithm can handle has not been
astablished, it would appear that it can handle a large variety of engineering-

type problems.

For example, it would appear it can handle the problem of designing an i




airplane flight control system with the so-called flying qualities design
criteria[Z]. These criteria include: (1) the longitudinal plane requirements
on phugoid stability, flight path stability, and short period response; (2)
the lateral-directional flying qualities criteria on the respomnses of the
dutch-roll mode, the spiral mode and the roll mode; and (3) miscellaneous
requirements on capability to perform crosswind landings, coordinated turms,
etc, These criteria could simply be added to the flexible-body stability
margin design requirements that are already included in COEBRA.,

Another problem that this algorithm can handle is the design of a
reaction control system. This type of control system uses discrete control,
This algorithm can be used to optimize phase plane switching logic like the so-
called "near-minimum-fuel' switching logic developed by Carney and Ccnover[S].
Their phase plane logic was developed for a digital attitude control system
that requires no rate gyros.

Another problem that this algorithm can surely handle is the design
of the autopilot for an interplanetary spacecraft like the Mariner [Kopf, 22].
Tn order to handle the Mariner autopilot design problem, COEBRA uses a transient
response routine that puts requirements such as rise time, overshoot, settling time
and steady-state error on th= vehicle's attitude response due to guidance
commands .

To conclude this discussion, a paper written by Robinson[Zg] is noted.

In this paper, Robinson states that the COEBRA algorithm should prove fruitful

in the optimal control of distributed parameter systems,
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APPENDIX A

COMPUTATIONAL ATDS FOR PAPER AND PENCII, DESIGN

PRECEDING PAGE BLANK NOT FILMED




This appendix provides a few simple computational aids for a preliminary
paper and pencil design, A table of rectangular to polar coordinate trans-
formations (p A-2 to A-4 greatly facilitates the construction of the phase/
frequency plots, from which, with the corrected asymptotic gain-frequency
plots (Bode plots) obtained with the assistance of the standard frequency
response curves of pages A-5 through A-16, the gain-phase (Nyquist) diagrams
can be constructed. Representative gain phase curves for-« < w < o0 4are
shown on pages A-}7 through A-20.

For completeness, pp. A~2{ through A-24 illustrate representative root

loci for closed-loop systems.
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14 qo7 = aed 14 500 = 268
¢ & B-degrees
} Wy A 20 log A d-degrees wf A 20 log A g

! 1.55 1.840 5.296 57,1 3.1 3,26 10,264 72415
: 1,60 1.885 5.506 58.0 3.2 3435 106501 72.65
! 1.65 1.930 5.711 58.8 3.3 3,45 104756 73415
1,70 1.975 5.911 59,6 3.4 3,54 10.980 73662
1,75 24020 6.107 60+3 3.5 3,64 1l.222 74,08
1.80 2.060 6.277 61.0 3.6 374 11.457 74«50
1.85 24100 6 Ll 61.65 3.7 3.83 11.66% 74,90
1.90 20150 6 .649 62.3 3.8 3.92 11.866 75.28
1.95 2.190 6.809 62.9 3.9 4,02 12.085 75.62
2,00 2.235 6.987 6345 L,0 4,13 124319 76 .00
2405 2.280 7.159 64,05 b1 4,22 12.506 76 430
2,10 2.330 7347 6l .6 bo2 k.31 124690 76 460
2,15 2.375 74504 65,1 4,3 b b4l 12.889 76.90
2.20 2.420 7.676 65,6 44 4,51 13.08k 77220
5 2425 2.465 7.836 66.1 L.S h.61 13,27k 77.48

}
s 2.30 2.625 8,035 66.5 4.6 471 13,460 77472
2.35 2555 8.148 67,0 L, 4,81 13,643 78.00
2.40 2.600 8.299 674t 5.8 4,90 13,804 78.23
2.45 2.645 8,448 67,8 4,9 5,0 134979 78147
2,50 2.690 3,595 68.2 5.0 5.1 14,151 78 470
2.55 2.730 8.723 68.6 5.1 520 14,320 78,90
2.60 2.780 8,881 69.0 5l2 5429 14 469 79 410
2.65 24830 94036 69 .35 5.3 5,39 14,632 7930
2.70 2.875 9.173 69.7 S 5.49 14,791 7550
275 2.925 94323 70.05 5.5 5.59 14,948 79,70
2 .80 2.970 9.455 70.4 5.6 5.68 15,087 79.88
2. 85 3,010 9.571 70.7 5.7 5.78 154239 80,05
2.59 2,060 9,714 71.0 5.8 5.38 15.388 80.22
i 2.9% 34120 9.883 7143 549 5.98 154534 80.38
‘3,0 3.1€ 9,994 71.6 6.0 6.09 15.692 80:55

|1

ST L e IV b i s o i it a0 e e 4 a4 e




e A iy

5

| o 1+ P=AE J€
14 Jwt=ALEJ

T A 20 leog A ©-degrees
; AT 3 20 log A 0-degrees 9.1 9.15 1¢.084 85.73
; 6.1 6.19 15,834 80,7 9.2 Q.26 19,332 83.8

: 6.2 6.30 15. 987 80.88 9.3 9.35 19.416 83.86
: 6.3 6.39 16.110 81.0 0.4 9.45 12, £09 83.93
i 6.4 6048 16.232 8%°%§ 9.5 9.56 1S, 808 84.0

: . . 16,351 81l.

; 8:5 6.5 9.6 9.65 19.691 84.05
! 6.6 6.68 16. 496 81.39 5.7 2.74 19.771 84,11
“ 6.7 6.77 16.612 81.51 9.3 9.85 10.869 82,17
. 6.8 6.87 16,739 Bl. 64 0.9 9.97 19.€74 84,24
i 6.9 6.98 16.852  81.75 10.0 10.05 20.04 84,29
: 7.0 7.07 16.888 81.87

: 12 12.04 21,524 B4, 23
i 7.1 7.17 17.110 81,99 14 14,04 22,023 £.83
§ 7.2 7.27 17. 231 ez.1 16 16,03 24,082 86.42
: 7.3 7.38 17.361 82.2 18 18,03 25.105 8€.81
: . 7.4 7.46 17.455 82,31 50 20,02 26,021 87.16
: fy 7.5 7.56 17. 570 82,41

i 25 25.0% 27.959 87.71
? 7.6 7.€6 17.685 82,51 20 30,02 20, 542 88.69
, 7.7 7.76 17,797 82,6 = 25 30,881 88.36
; 7.8 7.86 17.908 82.7 40 20 32,041 88.58
, 7.9 7.96 18,015 82,79 45 48 73,064 88.73
. 8.0 8.06 18.127 82.88 50 50 33.979 83.85
i 8.1 8.16 18.234 82.96 00 100 40 85.4
3 8.3 8.37 18.455 83.14

i 8.4 8.45 18. 537 83.21 HOTE : 3 1o 30

§ 8.5 3.55 18.639  83.29 R Gl

[

% 8.6 8.65 18.740 83,37 1 - . :

| 8.7 8.76 16.850  83.45 20 log z = -20 log A

? 8.8 8.85 18.939 83.52

; 8.9 8.95 19. 036 83. 59

é 9.0 2.05 19.133 83,66

15.":‘- .
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APPENDIX B

SAMPLE APPLICATIONS OF COEBRA

This appendix presents some of the results obtained using the COEBRA T
program. The first two examples are classical testbook examples and the last

five demonstrate the application of COEBRA to booster autopilot design.

Throughout this appendix the following shorthand notationm, typical of

COEBRA formatting, will be used to represent system transfer functions in

either the s-plane or the w-plane, The transfer function given by

2 o

Ee+tr 8l ¥ v S+8 )

| : Wy e

| 1

E - - e ° L] ] B"l

i 2¢ 2

5 (1-!-‘?25)(1-!-1'35)(1-1-___2_ S+SE

§ w w

5 2 2

| will be abbreviated as follows:

i K (T1, §1, wl) -
(Tz’ T3, ;-2, wz) ° ° . ° - e ° . o - . . . - -

Example 1,

§ This ecample was selected to illustrate how COEBRA can be utilized to
% solve the digital system problem., Figure B-1 iz the block diagram of the
system, together with performance measures to be achieved., The first step is

. % to convert the z-fransforms to the w-plane. Thus,

Yo G0 cl(w) = 0,13K (z + 1.31) (z + 0.054)
4 z (z-1) (2-0.368) L
‘ z = , K=3
1 -w
= 0,77 (1-w) (1-0,13%w) (1+0.8925w) s

W( +w) (1 + 2.165 W)

where K=3 is determined from the value theorem

lim GHO Gl(uT) = 1lim (Z-l) GHD Gl (Z) 1.5 » . - . . . B"i

u—o z=>1




R(s) +,~ E(s) lD(s) %’

—— e S e S —

Digital Controller

r-—— .‘-ﬁ
BE T P

Ts
GHO(B)— l-e

G1(8)=

K

C(s)

s(1+0,1¢) (1+05ss)

2-d

T = 0.5 sec,
K. aeled
y/
My > 50 degrees

M 1.3
p<

Figure B-1 Sampled Data System, Example 9-3, p. 291, Analysis and Synthesis of
Sampled Data Control Systems, B, C, Kuu, frentice-Hall, 1963.




The digital controller configuration selected was of the form

D(w) = 1 +arw
1 1w B-3

Coaventional paper and pencil design procedures, outlined in Figure B-2 yield

a D(w) as
D(W) = 1 + 50w ° ° o . ° ° a ° e a s o . . B-6
1+ 100w
and an Mpof 1.2, M of 50 degrees, }’&( of 12 db. converting Lo the z-domain
D(w) = L + 50 w
1+ 100w _ 2ol = 0.25 (fo-ggﬂﬁ) L B-7
Z'{:l Z *

and in the s domain, the compensation network corresponding to D(z) is

evaluated from
1
z Ge(s) =T,-T D(z)
s

or

-
+
—
[
.
1%
wm

Ge(s) =

=
+
i
o
w
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Figure B-3 W-Plane Block Diagram for Example #1
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Figure B-3 illustrates the w-plane problem as submitted to COEBRA.

Figure B-4 compares the results obtained from COEBRA with that obtained using

a nlassical pencil and paper approach . for the first COEBRA run, For this

ey gt

COEBRA run, both Tl and T2 were initialized with a value of 20, and hence

the initial response shown in Figure B-4 is identical to the response of the

plant only. Note that w, was 0,542 for the initial response, Figure E-4 shows
the results of the first and sixth (final) major iterations of COEBRA. The sixth
iteration was the final once since COEBRA was not "rewarded" for doing better than
the classical design. In other words, recalling the discussion on termination,
the figure~of-merit was not allowed to increase once the classical design results
were matched., The results of the fifth and sixth iterations were identical, since
it took COEBRA one iteration to decide that improvement was no longer possible or
P"permitted,"

Table B-1 summarizes the initial and final compensators, as well as the
fina). stability margins obtained from COEBRA run #l. Note that as with the
classical approach, the final answer from Run 1 was a phase-lag compensator.

Due to the circumstances of the problem, this minimum complexity (first order)
compensator had to be a phase-lag model. 1In other words, phase- lead compensation
would be ineffective.

Additional COEBRA runs were made in an attempt to 'map the hill,” or in
other words, to see what COEBRA would do with different initial compensators.

As shown in Table B-1, Runs 2, 3, and & achieved essentially the same results as
were obtained from Run 1 and the classical approach, With the initial compensator
of Fun 5, COEBRA climbed a local optimum that did not satisfy the design require-

ments, Run 5 automatically terminated after 14 major iterations when the margin

counter and the figure-of-merit essentially ceased to increase. Note that the

DA ik bt ]

final answer from Run 5 was not a phase-lag compensator, Run 6 was made with the

denominator time conmstant (T2) of Rur 5 changed to a value of 4., so that the

B-6
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Table B-1 Example #1 Summary of Results
Run [Initial Compensator Final Compensator Final Margins
T1 T2 T1 T2 Gain Phase Phase Margin
Margin {(db) Margin (deg) Frequency
Classi;
cal -- - 50. 100, 12, 50, 0.2
1 20, 20, 80.5 283, 12, 50, 0.2
2 50, 50, 60.4 212, 12, 50. 0.2
3 100. 100, 76.3 ] 268, 12, 50, 0.2
4 5. | 5, 67 .3 237. 12, 50. 0.2
i
5 2, ! 2. 1,02 0.0245 7. 30. 0.61
6 2, 4, 83. 291, 12, 50, 0.2
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initial compensator was a phase-lag compensator, Table B-1 shows that Run 6
achieved essentially the same result as obtained using the classical approach.

Since the first order phase-lag compensator is the minimum-complexity

compensator that can solve this problem, it is not difficulr to understand why

COEBRA could not converge to a final solution from every initial conditiun, 3

This points out that the difficulty of any problem is dictated more by the

degrees of freedom in the compensator than by the complexity or order of the

plant,

%

B-2 Example #2

This example, easily carried out by classical methods as shown in
Chapter 1, is included here to illustrate the use of COEBRA when the compensation
is of higher order than that of example 1, Figure B-5 shows the system in COEBRA
format. The details of the classiral approach are given in Chapter L. The
problem given to the COEBRA program was tu adjust the four compensator time
constants until the above three design requirements were satisfied.

Table B-3 compares the classical results with those obtained from the
first COEBRA run, With all the time constants in the compensator initialized
to unity, COEBRA, in six major iterations, climbed to 2 local optimum that did
not meet the design requirements. Conventional design procedures showed that
the minimum-complexity compensator that is required to solve this problem, is a
lag-lead compensator, and the final answer for the unsuccessful Run 1 is not a
lag-lead compensator, COEBRA terminated after six iterations when rhe margin
counter and the figure-of-merit ceased to improve.

COEBRA was reinitialized to the compensator shown for Run 2 in Table B-3.
As can be seen from the table, Run 2 achieved all the design objectives., It did
so with a lag-lead compensator,

Figure B-6 compares the classical results with those obtained from Rumn 2,

1 A Al R 58 g N T T IS A b 5 S et b by i L ST i e b
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Table B-2,

Example #1 Computer Time

Number of Iterations Computer

Run Maijor Minor Time (sec)
1 6 39 118

2 5 27 89

3 5 21 73

4 7 51 154

5 14 72 252

6 8 53 159

e LT T R W

Frm b b a1

el
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Plant

Compensator
(T1) (T2) {100.]
(1T3) (T4) s (1L + .1258) (1 + .058)

Figure B-5 System Block Diagram for Example #2
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Table B-3. Example #2 Summary of Results

Run Initial Compensator Final Compensator r Final Margins
T1 2 T3 T4 T1 T2 T3 T Gain Phase Phase
{ Margin Margin Margin
i (db) (deg) Freq. (rps)
g o
Classical -- - - -- 1. 20010, .02 14, 52, 12.
:
i H
;@ 1 1. 1. 1, 1. 9.91 17.86 20.9 20.9 4, 11.4 10,
i !
i 2 10, .2 |10 2 | 1.48 [1.35 74, .027 12, 57. 14.2 —
2 3 1.5 .7 1.5 .7 1,055} .718 3,02} L.41 1.7 4.6 10.
i
4 5. i 5. A .83 .82 30.6 0654 1. 53, 10.4
: ]

P Er

T




1.6

i 7
40 L "

4th Miner

30 L Iteration %

P = 6.4
lassical

20 |.

Initia® Response

)
,\‘r]’;\ 11""

ﬁ

6th Minor Iteration i3
(Final)

Classical 5
z
Fl

1 | | _ L
100 120 140 160 180 200 220 240 260 280 300

Phase (degrees)
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Since the mmerator and denominator of the initial compensator for Run 2 are
identical, the inital response shown in Figure B-6 is identical to the response
of the plant only. As can be seen, the system with a unity compensator (COEBRA's
initisi compensator) is unstable. Note that o) for the initial respomnse is 22,4
rad/sec. Figure shows the results of the fourth and sixth minor iterations
in the first major iteration of Run 2, The results of the sixth minor iteration
in the first major iteration satisfy all the design requirements, and these
results were the best COEBRA was “allowed" to achieve. As with Example #1, the
reason for this was that COEBRA was only "rewarded! up to the design requirements.
In other words, recalling the discussion on Termination, the figure-of-merit was
not allowed to increase once the classical results were matched. Run 2 ran for
two major iterations since it took COEBRA one itecation to decide that further
improvement was not allowed.

Two more COEBRA runs were made on this probiem. Their initial compensators
were chosen to "lie between' the initial compensators of Run 1-and Run 2, From
Table B-3, it is seen that the initial compensator for Run 3 was "close" to that
for Run 1, As with Run 1, Run 3 climbed a local optimum that did not yield a
feasible solution. BRun 3 went four major iterations before the counter and
figure-of-merit indicated that no further improvement was possible. The final
answer from Run 3 was not a lag-leg compensator.

Run 4 was made with an initial compensator that was "between" the
initiai compensators for Run 2 and 3. As can be seen from Table B-3, Run 4
achieved satisfactory results with a lag-lead compensator.

Since a second order lag-lead compensator is the minimum-complexity
compensator that can solve this problem, it is not difficult to understand why
COEBRA could not converge to a final solution from every initial condition., As

with Example #1, this points out again that the difficulty of any problem is

B-14
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dictated more by the order of the compensator than by the order of the plant.
In most cases, the "opiimum hill" boradens and smoothes out as the order or
complexity of the compensator increases.

Table B-4 summarizes the computer time requir.« tn make COEBRA runs 1

through 4.

B-3 Example #3

Example #3 illustrates the application of COEBRA to a single-time-point
autopilot design problem where the initial autopilot was so poor that it resulted
in a rigid-body instability, The objective of the COEBRA run was not only to
stabilize the system, but also to optimize all s*ability margins.

The airframe (or system to be controlled) included rigid-body dynamics
and eight structural bending modes. The block diagram of the airframe/autopilot
system is shoin in Fi.ure B-7. Since this is a so-called analog autcpilot, the
design is performed in the S-plane.

Figure B-7 shows the attitude loop with a gain and two filters, and
two rate loops (for bending mode stability [Harris, 15)), each with a gain and
two filters. The problem given to COEBRA was to adjust these nine autopilot
parameters until all stability margins were optimized.

Figure B-8 shows the open~-loop frequency response resulting from the
initial autopilot. This figure shows that the initial autopilot did result in
a rigid-body instability. The resonances of the eigh: riructural bending modes

are indicated by Figure B-8, which also shows that the rigid-body phase margin
frequency (wc) was 4.62 rad, per second.

Arrows around the critical point in Figure B-8 illucrtrate the required
rigid-body and first mode stability margins., It was also requived that “e be

greater than 2, rad/sec and that modes 2 through 8 be gain stabilized with their

peaks resonating below "-10" decibels.
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Table B-4., Example #2 Computer Time
Run Number of Iterations Computer
Time (sec)
Major Minor
1 6 37 148
z 2 17 63
3 4 17 81
A 3 21 83
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Figure B-9 shows the frequency response after the first major
iteration. The system is now stable, with w, = 2,07 rad/sec,

B-10 shows the frequency response that resultud from the third
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Figure
and final iteration., COEBRA self-terminated after all design requirements were

? met, and after the margin counter and figure-of-merit ceased to significantly

e

improve following the second major iteration., In other words, tne results of the g

second and third iterations were jdentical since it took COEBRA one iteration to

determine that design improvement was no longer possible. Further improvement i

would have been rewarded, but COEBRA was unable to achieve it. The margins

s,

that prohibited further improvement were and the phase margin on the "backside"

L PR T A

of the first mode.

Table B-5 summarizes the results of this example. It shows the valucs of v

all nine parameters for both the in‘tial and the final autopilots. Table B-5

shows that a satisfactory design was achieved in 493 seconds of computer time. {
The following is a discussion of how COEBRA presently treats the require-

ment on the dominant rotatiomal rigid-body closed-loop rocts, Up to the present, £

the time domain response due to guidance commands of a large aerodynamically

e

unstable flexible launch vehicle, has not been too critical, The major concern

sy

has been with stability under tolerances and with structural bending moment loads.

The main reasons for specifying dominant closed-lcop root locatious have been to

(1)keep the autopilot frequencies sufficiently separated from the guidance loop

S et L

frequencies for stability purposes, and (2) merely provide 'somewhat adequate"

response to guidance commands., Historically, it has been found that if the

rigid-body ;hase margin is greater than a certain value, then the rigid-body

rotational closed-loop roots will be sufficiently damped at a high enough frequency.
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For cxample, on launch vehicles like the one represented in this example problem,

if the phase margin is greater than 30 degrees, with a frequency greater than 2.0
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Figure B-8 Example #3, Gain-Phase Frequency Response Plct
Resulting from Initial Autopilot (wc = 4,62 rps)
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Table B-5. Example #3 Sumnary of Results

KD Tl T2 KR1 T3 T4 KR2 T5 T6
Initial Autopilot 4, 0333 .0333 1.6 a2 .8 o2 .2 o2
Final Autopilot 1.1 .018 ,018 .86 .108 .22 .108 .108 108
@ Objective: Maximum Margins
.3 Single Time Point, 27th Order System
o 3 Major Iterations and 19 Minor Iteratiomns
® Computer Time: 493 sec or 164 sec per Major Iteration

® Note: Initial Autopilot Yielded Rigid-Body Instability
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radians per second, then it is almost certain that the rotational closed-loop
roots will have a frequency greater than 1.5 radians per second and a dampiﬁg
ratio greater than 0,30. The M circles for unity feedback systems tend to
indicate they this has been°* Hence, rather than finding the actual roots,
COEBRA treats the requirement on the rotational closed-loop roots by putting
minimum allowed values on the rigid-body phase margin and its frequency (&E)o
This approach was taken in order to avoid the computer time required to f£ind the
actual closed-loop roots.

It is recognized that the rigid-body response of a launch vehicle is
comprised of a so-called first-order drift root as well as the second~order
rotational roots [Greensite, 14, and Harris, 15]° Hence, since the rigid-body
response is third-order, the location of the rotational roots alone is not
sufficient to ensure adequate response to guidance commands, However, since
most launch vehicles are aerodynamically unstable, the instability of the vehicle
generall serves to keep the attitude gain high enough, and the flexibility of
the vehicle generally serves to keep the rate gein low enmough, so that the rota-
tional roots dominate tﬁe drift roots. In this way, the location of the rotational
roots themselves can be used to indicate response to guidance commands, For this
example problem, where the final autopilot yielded a phase margin of 38, degrees
at a frequency of 2,03 radians per second, the closed-loop rotational roots had
an effective damping ratio of 0.68 and an undamped natural frequency of 2.9
radians per second. This satisfied the design requirements, and a transient
response showed that these roots dominated the drift root which had a time

constant of 11.5 seconds,

#Nichols Chart of Appendix A
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B-4 Example #4

Example #4 illustrates the application of COEBRA to the same airframe
that was used in Example #3, but this time the initial autopilot was so poor
that it resulted in a first-mode instability. As with Example #3, the objective
of the COEBRA run was not only to stabilize the system, but also to optimize
all stability margins.

The block diagram of the airframe/autopilot system is the same as that
of Example #3, and is shown in FigureB-7 . The problem given to COEBRA was to
adjust the niue S-plane autopilot parameters until all stability margins were
optimized,

Figure B-11 shows the open-loon frequency resp nse resulting from the
initial autopilot. This figure show~ that the initial autopilot did result in
a first-mode instability, The resonances of the eight structural bending modes
are indicated in Figure B-11l, which also shows that the rigid-body phase margin
frequency (uh) was 1,17 rad. per second,

As with Example #3, the arrows around the critical point in Figure B-11
illustrate the required rigid-body and first mode stability margims., Tt was
also required that:uc be greater than 2.0 rad/sec, and that modes 2 through 8
be gain stabilized with their peak resonmating below '-10" decibels. Figure B-1l
shows that with the initial autopilot, the fourth and fifth modes exceed this
requirement,

Figure B-12 shows the frequency response after the second major iteration,
" The system is now stable, with w, = 1.3 rad/sec,

Figure B-13 shows the frequency response that resulted from the fifth
and final major iteration. COEBRA self-terminated after all design requirements
were met, and after the margin counter and figure-of-merit ceased to significantly

improve following the fourth major iteration., In other words, the results of the
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Table B-6, Example #4 Summary of Results
KD T1 T2 KR1 T3 T4 KR2 T5 T6
Initial Autopilot .6 .0333 .0333 «3 .0333 .0333 .5 .0333 .0333
Final Autopilot 1.83 093 .061 .7 ,053 .053 .32 .039 021
Q Objective: Maximize Margins
0 Single Time Point, Same 27th Order System as Example #3
o 5 Major Iterations and 2% Minor Iterations

0 Computer Jiimz:

975 sec or 193 sec per Major Iteration

o Note: Initial Autopilot Yielded First Mode Instability




i
|
t
H
i
3
3
;
:
!

e My

fourth and fifth iterations were identical since it took COEBRA one iteration
to determine that design improvement was no longer possible, Further improve-
ment would have been rewarded, but COEBRA was unable to achieve it, The
margins that prohibited further improvement were W the phase margin on

the "backside" of the first mode, and the modal peaks of the third and fifth
modes.

Table B-6 summarizes the results of this example. It shows the values
of all nine parameters for both the initial and the final autopilots. Comparing
these values with those obtained from Example #3, it is seen that COEBRA "climbed"
to a different local optimum than it did for Example #3, However, some features
of the two results are similar. For both, the attitude gain (KD) is about 1,5,
the total ratc gain (KR1 + KR2) is about unity, and KRl is greater than KR2
in order to 'center" the first mode around zero degrees,

Table B-6 shows that a satisfactory design was achieved in 975 seconds
of computer time,

B-5 Example #5

Example #5 illustrates the application of COEBRA to a three-time-point
autopilot design problem, where the objective was to optimize structural bending
moment load relief capability. COEBRA was initialized with an autopilot that
had previously been designed by engineers. The reason for this COEBRA run was
to determine if design improvement could be achieved. Design improvement was
defined as an autopilot that had more load relief capability, but still met
satisfactory stability margins.

The example deals with the max-a portion of flight where aerodynamic
loads are critical, The three vehicle states that are designed together are:
(1) the time at which the lead relief loop (the accelerometer feedback loop)

is switched in; {2) the max—E time point; and (3) the time at which the load
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relief loop is switched out, The airframe consists of rigid-body dynamics
plus three bending modes at each time point,

Figure B-14 shows the block diagram of the airframe/autopilot system,
In addition to the attitude loop and two rate loops, Figure B-14 shows the so-
called load relief loop, This is a feedback loop on a lateral body-mounted
accelerometer signal, and Harris[li]discusses how this loop is used to reduce
the angle of attack and control deflections (hence bending moment loads) in the
presence of the wind.

COEBRA. is allowed to vary the gains and filters shown ir Figure B-14,
This is a digital autopilet design problem, and hence, these gains and filters
are defined in the W-plane. Of course, when the design is complete, these gaing
and filters will be transformed to the Z-plane where they will be mechanized as
coefficients in different equatiocons.

Figure B-14 shows that, at each time point, 15 autopilot parameters can
be varied. Since this is a digital autopilot, the f-ur gains (KD, KL, KR1 and
KR?2) can be different at each of the three time points. The 11 filter network
values, though they may be varied, must have the same values at all three time
points,

Figure B-15 shows the open-loop frequency response plot that results at
the max—a time point from the engineer's final autopilot (imitial autopilot for
the GOEBRA run). This figure, as well as the frequency respomses at the other
two time points (not shown}, show that all margin requirements are satisifed,
When a six-degree-of-freedom (6 DOF) trajectory was rum using this "final”
autopilot, the load relief indicator (which is a product of the dynamic pressure

times the angle of attack and is indicated as q a) was 4908 pounds per square

foot,

Figure B-16 shows the frequency respomse plot that resulted at the max;a
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Table B-7. Example #5 Summary of Results

® Objective: Maximize Load Relief Capability

® Autopilot Stability Margins qa

COEBRA Initial Satigfactory 4908
(Engineer's Final)

COFBRA Final Satisfactory 4765

8 System Order: 2 28th Order at Each of the Three

Time Points

o 15 Autopilot Variables at Each
Time Point (4 gains can have
different values at each, 1l
filters must have same values

at each).

o 3 Major Iterations

-] Computer Time: 21,3 Minutes or 7.1 Minuters per

Iteration

i
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time point from the third and final iteration of the COEBRA rum. Stability
margin requirements ar met at this time point, as well az at the other two
time points, For this final COEBRA autoupilot, a 6 DOF trajrctory simulation
showad that q had been reduced to 4765 pounds per square foot,

Figure B-16 shows that the stability margins from COEBRA's final auto-
pilot, though satisfactory, are less than those from the engineer's final autopilot
(Figure B-15). This demonstrates the tradeoff that does exist between stability
and load relief,

The conclusion of this example is that, starting from the engineer's
final autopilot, COEBRA was able to achieve an improved design by adjusting the
values of gains and filters within an engineer's established configuration. It
is noted that t:e COEBRA improvement in load relief did not result because
the engineer was incapable, but rather because he was not required to obtain more
load reduction.,

Table B-7 summarizes the results obtained from this example. It shows
that a satisfactory result was obtained after 21.3 minutes of computer time, or
7.1 minutes per iteration.

One final note is mentioned at this time, Another COEBRA run was made
on this problem, beginning with the same initial autopilot, but with the objective
changed to maximizing stability margins instead of load rvelief capability. The
result of this second run was a design with improved stability margins, but with

reduced load relief capability. Computer t.me for this run was 2.3 minutes per
iteration,
B-6 Example #6

Example #5 demonstrated the effectivemess of the structural load relief

optimizati;n phase of COEBRA when the initial autopilot met all of the margin

requirements. Example #6 was rum to see how the load relief phase performs when
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the initial autopilot does not meet the margin requirements.

The initial autopilot for this COEBRA run was obtained as follows,.
In several booster autopilots, there is a feedback loop that is used soley for
high frequency stabilization. This loop is “washed out'" at frequencies below
the rigid-body phase margin, and serves to compensate for the load relief loop

gain at high frequencies so that the load relief loop gain can be increase. 8o

for Example #6, a previously designed autopilot case was chosen, and this "high
frequency' loop was zeroed out, This resulted in unacceptable stability margins,
The design objective for the COEBRA run was to not only return to the condiviom
where all margins are met, but also te achieve at least the same amount of load
relief that was achieved with the engineer's original autopilot that used this
high frequency feedback loop.

For example #6, three flight conditions were designed together: (1) load
relief switch-inj; (2) max-q; and (3) load relief loop switch-out, The airframe

included four bending modes at two of the time points, and three modes at the

third .

Figure B-17 is a block diagram of the airframe/autopilot system. This
is an analog autopilot design problem, and therefore the design is performed in

the S-plane. There are 14 autopilot variables, but since this is an analog

autopilot, each of these variables must have the same value at all three time

points.

% ‘ Figure B-18 is the open-loop frequency response plot that resulted from

. COEBRA's initial autopilot at the max-g flight condition, It shows that not all

margin requirements are met, This same situation exists at the other two flight !

? conditions (not showm).

The load relief indicator for the engineer's original autopilot that

used the so-called high frequency feedback loop was 4490 pounds per square foot,

S
R T iy S

Lyt

This result was obtained from a 6 DOF trajectory simulationm. COEBRA!'s first step
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was to ""get feasible,'” but in so doing, it had to give up load relief
capability, COEBRA met all margins after three iterations, but qa (from a

6 DOF gsimulation) increased to 4580 pounds per square foot, However, from

the 4th to the 8th iteration, all margin requirements remained satisfied, and qa
began decreasing, until on the 8th arnd final iteration, it had decreased to 3975
pounds per square foot. Again, this was obtained from ¢ & DOF simulation, and
this qa was 12% less than that of the original autopilot with the high frequency
feedback locop. Figure B-19 does show that all margins are met at the max E

time point with the results of the 8th and final COEBRA iteration, The same
situation existed at the other two flight times.

The following discussion refers to Section2.9 of Chapter2 on Convergence
to an Exterior Optimum, This example has dramatically demonstrated how the
COEBRA algorithm converges to a constrained optimum from an unfeasible imitial
point. The first three iterations were vequired in order to reach a feasible
solution., TIn "getting feasible,'" load relief capability was reduced, This did
not necessarily have to happen, since the algorithm does try to optimize while
"getting feasible." Once the feasible region was reached, the algorithm moved
along or parallel to the constraint boundaries until the constrained optimum
was reached, The fact that this actually occurred is known because load relief
capability steadily increased from the 4th to the 8th iteration, while several
stability margins remained "tight against" their requirements. Two of these
"tight margins" can be seen in Figure B-19, These two margins are called the
rigid-body phase margin, and the phase margin on the "backside" of the first
structural bending mode., These margins are indicated by arrows in Figure B-19.
These margins were tight after three iterations, and remained tight from the 4th
to the 8th and last iteratiom,

Table B-8 summarizes the results of Example #6. This table shows that
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Table B-8. Example #6 Summary of Results

; % . Objective: Maximize Load Relief Capability
:%
i Autopilot Stability Ma;gins qa
% Engineer's Final Satisfactory 4490
| COEBRA Initial Unsatisfactory 4490
Third Iteration Satisfactory 4580
| Eighth (Final) Satisfactory 3975
E | Iteration
|
5;% L] System Order: o 25th Order at 2 Time Points
g o 23rd Order at 1 Time Point
} i
i o 14 Autopilot Variables Which |
i Must Have Same Value at Each ;
i i
| Time Point |
2 . 8 Major Iteratiomns %
% ) Computer Time: 59,2 Minutcs or 7.4 Minutes per §
! Iteraticn é
| |
i
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the computer time for this example was 59,2 minutes, or 7.4 minutes per
iteration.
B-7 Example #7

Example #7 illustrates using COEBRA to design a load relief autopilot
in two phases: (1) the initial phase being to first meet all margin require-
ments; (2) the second phase being to optimize load relief capability. For this
example, this approach was considered essential because the "first guess' or
initial autopilot was wvery poor,

This example is taken from a recent effort to design an autopilot for a
space shuttle booster configuration, COEBRA was used to design the autopilot
for all three channels (pitch, yaw, and roll) at all the critical flight
conditions during the first two minutes of ascent. At all the flight times,
the airframe included from seven to eight structural bending modes.

The f£light condition for this example is the yaw channel during the max-g
portion of flight. Three time points were designed together: (1) load relief
switch-in; (2) max-a; and (3) load relief switch-out, The airframe included
seven modes at each of the time points, While all the results obtained from
this design effort are worth noting, this example was selected since it illus-
trates the two phased approach to load relief autonilot design.

Figure B-20 is the airframe/autopilot block diagram for this example.

Tt shows the attitude loop, a rate loop, and the load relief loop, In additiom,
it shows an attitude acceleration loop, This is the so-called high frequency
loop that was referred to in Example #6. Figure B-18 shows that there are 20
autopilot variables at each time point. The four gains can have diffe: nt
values at each time point, but the 16 filter parameters must have the same value
for all the time points,

Figures B-21, 22 and B-23 show the frequency response plots for the

B-42
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Airframe
(7 Modes)

Actuator/Engine -

Load Relief Loop

[xa]

(13, T4, T5)

Attitude Acceleration Loop

[krD]

(T6, T7, T8)

Rate Loop

[kR] (19, ¢, w)

(T10,.T11, T12, T13, T14)

Attitude Loop

Figure B-20 System Block Diagram for Example #7
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initial autopilot., The system is stable, but the initial autopilet is very
poor. The basic margin requirement is that modes 3 through 7 be gain
stabilized with a peak amplitude below "_10" decibels, Only the first and
second modes can be phase stabilized. but if they are gain stabilized, their
so-called "closest approach' distance to the ".1" point must be equivalent to
10 decibels.

The first COEBRA run was made to optimize stability margins. After one
iteration, all margins were met. The next COEBRA runs were made to optimize
load relief. After six more iterations, an autopilot resulted that yielded the
plots of Figure B-24, 25 and 8-26. All margin requirements are met. A 6 DOF
trajectory simulation was not made, but estimates based rm linear tramnsient
response results indicate that bending moment loads were reduced 25% from the
jnitial to the final autopilot. Computer time required to do this job was 98
minutes, or l4 minutes per iteration,

This example points to another way in which the COEBRA algorithm can be
used. By observing the progress it is able to make from iteration to iterationm,
it can be used to design a minimum-complexity autopilot. Fo£ this example, the
fact that COEBRA was able to satisfy all margin requirements in only one iteration,
tends to indicate that some of the degrees of freedom in the autopilot could
probably be eliminated.

B-8 Conclusions

The results presented in this appendix clearly demonstrate COEBRA's
.ability to successfully design autopilots for large flexible launch vehicles.
Experience with the program shows that while it generally does not save computer

time, it does save manpower and the time required to design an autopilot.
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APPENDIX C

RANDOM FORCING FUNCTIONS

In the foregoing analysis, though not explicitly stated, it bhas been
assumed that the vehicle forcing functions were deterministic in nature. For
example, the wind forcing function has been, in general, implemented by means
of a pre-programmed wind profile based on a deterministic combination of steps
and ramps. A more general characterization of the wind profile would be as a
stochastic or random process. The vehicle behavior under the influence of such
a forcing function can significantly affect the performance measures, Furthermore,
many deterministic signals have random disturbances or noise superimposed on them.

COEBRA. has incorporated in its repertoire the capability to examine the
effects of a random or noise forcing functien. The prime occurrence in our case
is that of a random wind profile, Comnsider, for example, the structural bending
moment load, 1(t), existing at a specific sensor location on the vehicle. This
load can be expressed as

1 (£) = K a(t) £ T K 8 (r) T

iii
where @« is the vehicle angle of attack and 51 is the control actuator function,
The approach adopted by COEBRA is to constrain or optimize the mean square value
of 1(t) resulting from the raﬁdom forcing function.

Once again we call upon the oren literature for a detailed exposition
of the random process problem [40’ 41, 42, 421 The fundamental mathematical
tools and the two-sided Laplace trznsform and the Fourier transform, Feollowing
the pattern of Newton, Gould & Kaiser,[éd]we make no formal distinction between
them other than that s = jw in the follaving., Let the vehicle or system function

be

1{t)

o @ ° o - ° [] - * a a . . . » - C‘2
£(t)

Hes) = ¢

4

where £(t) is the random forcing function and H(s) thus contains the control
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equations and vehicle dynamics or simply those system parameters to be

considered or optimized.

Associated with the system represented by H(s) and, of course, the

random forcing function £(t) and the system output, 1(t). The convolution

integral yields

1(t) =JF h (7) £(&-7) d7 e v o e o & e s © 8 e =

-0
Introducing the concept of correlatiomn functions,

C-3
ensembles and the

hypothesis as fundamental properties of systems subject to rando

we treat first the concept of an ensemble, To do so, we follow the influence of

. 40
Newton, Gould and Kalser[ ]to first make a subtle distinction between a random

process and a stochastic process as used herein.

only in terms of its statistical properties. For our purpose, a stochastic

process or signal is one that exhibits a degree of randomness but is not

exclusively random; i.e., perhaps a sinusoid accompanied by noise. An "ensemble"

is considered to be a set of stochastic signals, each generated by an identical

process, Viewed from the time domain point of view, the appearance of each

element of an ensemble over the same time span would be different but the

properties of the ensemble can be identified, For example, the average value

of the product of a signal at a specified timz, bl’ multiplied by the value of

the same signal at a different time, b1 + T, is known as the ensemble average

or auto correlation functien, defined by

/v'\/\,—-w
g, () E W) IEr T

. a L] . . . o C—Z“
Tf we denote the ensemble average of the stochastic signal,Wr(t) as
Vb ﬂ r'b‘"’ --—
w(t) = y»ee N
[ ° o . . - + C'S

whereﬂ{j is one element of the ensemblear(?}, and the time .verage of the function

&)
) = R T S,urfuf
mee . C-6

g i e ek

m forcing functioms,

A random process 1s one describable
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we ohserve that if

Paa Wa Ve vy i
A (t,) = A (E) j
¢
the signalaf{¢) can be considered ergodic, a usual assumption when considering i
engineering systems, Using this ergodic hypothesis we can rewxite equation C-4 %
»
as o &
e —" . / 8
- L A+ T) At ¢
(r)= () T) = L':*;Tj,\r(f) Y, i
90AW' Ling ?
i
o e ] o o ] L] C-7 %l:;
Returning now to our autopilot problem, defined by H(s), we note that g
o0 s i
— X ~ ols . ° L) a 2 L e C'B Ef_"
where?&fis the autocorrelation function of the stochastic forcing function £(t). ?
:
We now consider a frequency function related to the correlation function, ?
= 3
4 o5t
% (5):5_; %I{’Z)e AT ?
11 a - . . ° - . C“g
1
Recall now, equation C-8, multiplying both sides byffsfand integrating on ¥ from Q
— o2 L0 s0 we have ‘
o o ab -] |
-5 ST 4t
+# —
54’@!(’[}6 AT ::[6 J/fﬂm}/,{, B, éfcf(f £~ )42
— —ols ol — ol
* - . . 0 v ° L] C"]-O
Now changing the order of integration on the right of C-10 so that we
.
. integrate with respect to T first, and adjusting the argument of the
: exponential to agree with that of the corretation function, we obtain
': o 85 i
? < o -5t
T “/ (4.) def ~stretyta] 1
| ¢ [ € - -5, &) AT ;
(e gr=[hit)d e (T+ti-%2/
j%’ Y5 .
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But this is just

s)
= (S"H("S‘);.E 'F<
%ﬂ(j) H ! .F L [ o L] - o . 0-12
since
- st
H(s)= f%/f)e a
Now, since%(s) given by C~¢ is in truth the Fourier transform of fb i/ ,
we can write
= 5
g!(r) p— j.@ (}5
—JOU L ) - L . - L] C-13
The integration is along the imaginary axis of the s-plane enabling us to
write the inverse transform in terms of the real frequency(,d or
w i
o qw?
/ ye© Adw
c)=5m | B,, (1%
%IF( ) Zﬂ-f ﬂ‘g - » - - - - . C"‘lll'
—otr
letting 7 = 0, we observe
(‘?] “2_71 f@ (jw)a’bu
C-15

But this is, from C-7, simply the mean-square value of 1(t), the structural
bending moment load.

Thus, using C-12, C-15 and the knowledge of the frequency function '@,)c.f (s}
we are able to make use of a constraint on the mean-square value, as the case
arises, to assist in the design of the autopilot,

A word or two about the frequency function ,d'éﬁc {s) . Consider, for a
The

moment, that £(t) is a stochastic voltage impressed on a 1 ohm resistor,

mean-square value of f(t) then represents the average power dissipated in the

i

.
)
4
]
1
|




resistor and (ii £5 (j « ) represents the power-density spectrum of the signal £(t).
Common practice refers to any frequency function obtained through the Fourier ‘,
transform of an auto correlation function as a power-density spectrum. §
; i :
: Using the COEBRA program, we can determine, as before, the gain .
‘: , 2 .
] constants and filter parameters such that 1 (t), or a similar random response : :
function is constrained and/or minimized. In other words, with ¢ £f specified by
i the user COEBRA will compute Iz(t) and H(s) from the total dynamics.
{ :
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APPENDIX D

INPUT FORMATS

There are several fundamental restrictions on the COEBRA design
algorithm. If analysis is to be carried out in the frequency domain with
block diagram format, the autopilot configuration must meet that of
Figure 1-7 (the QD030 subroutine). Within limits simple block diagram
transformulations should lead to an equivalent structure of this form as
illustraéed in Figures D-1 and D~2. In the event that the initial confi-
guration is such that the block diagram transformations appear to be
unwieldly or tend to obscure the effects of certain autopilot parameters
an alternate procedure has been provided. This procedure is closely
related to the state variable description of a control system. However,
one should not construe, in what follows, that state variable techniques
are being applied. Referring to Figure D-1 the reader will note the
identification of input and output signals, X to the individual blocks
or transfer functions. This identification is the first step in the
formulation at the so-called matrix input description for COEBRA. Before
going any further, we observe the restrictions on the elements of the
matrix to be developed. Each element is to be limited to a second order
polynomial ratio in §. The matrix for a single flight condition can have
only one active forcing function.

If analysis is to be carried out in the time demain, the matrix
format must be used. This leads to a somewhat restrictive definition of
a flight condition, as illustrated in Figure D-3. A new COEBRA input

must be supplied for each flight condition.
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; Examining Figure D-~1 we can write the following set of equations :
i involving only second order functions in s by the introduction of slack
; variables and formatted in the matriz notation us.
i .
: AX = Be e 8 % & ®m ® ® ® + s = & & o + s 8 8 ®©® & 8 & & s e« 3 3 & & D-l
i where the vector B is comprised of a column of zeros exclusive of a single
{
i
forcing function element. The solution of this equation yields the time
response of the autopilot/vehicle system.
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D-9
In matrix notation this becomes
a,
Gy
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where
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1

Y(1 + sT )

(L + ST
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(1 + ST, (L + STpy)
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211,11

412,11

212,12

813,6

413,13

e
T1 + ST )2
(1 + STTVC)
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214,13

214,14

815,14

415,15

416,15

216,16

217,16

417,17

817,18

217,25

218,14

218,18

219,18

219,19

—_——
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+ 5+ 1

KR1

(L + STRll) (1= STRlZ)
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Kriad

(1 + STpyp;)
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820,6 ~ o2

290,20

#21,20 2 z

821,21

822,21

892,22

agp 28 = -t

‘23,28

%
?
| 23,22 ~ ‘A .
83,23 = ! 7
. _ 1 S
| 24,23 ~ T+ ST S

B9t , 24

- 1
P a
: 25,24 (1 + STAl) (1 + sxAz)

45,25 -1
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1
a = T om
26,25 7 sT,,
396,26 - -
I
827,23 1+ ST
87,27 = t
48,07 - Ky
258,28 -~ L
a = L z
29,6 5 =957
5 s+ 2 714257 S+ 1
Wy 257
49,29 = !
b, = 1

Tt should be noted that this example involves a matrix solution for a matrix
of order nxn where n is dependent on elements 313,6; a26,6’ .5129,6 which involve

the transformation T , the vehicle dynamies from input X to the individual

station sensors, in this case at stations 88, 230 and 257 for example.
A further caution must be observed. The slack variables X9,, X17A and

X are introduced since the COEBRA program was designed to handle only

23A

linear and gquadratic terms in s.
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In the frequency domain the matrix for mat is somewhat more compli-
cated but also as versatile. The format is fundamentally the same with the
vehicle dynamics shown in a more explicit fashion. The usual procedure

ig f.0 open the autopilot loop, typically at X, as shown in Figure D-4.

x5 KTVC x
2
(1 + STTVC)

6 . Vehicle

-

Figure D-4. Opening the Autopilot Loop

The individual vehicle parameters now become, one-at-a time, the system

forcing functions. The equation

Hin=

now appears as in equation D-4.

i ] T
| 2 by
In L 12, g T _ Iy
o 242 2
- - L i“ L) - Qty L] - - -— -
2 L X, 0
L | - L. — S
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Where I.. represents the coefficients of the vehicle dynamical equations,

11
the vehicle control equation coefficients for those control effectors not

Tiz
used as a forcing function and 322 the coefficients of the autopilot equa-
tions. §11 the vehicle response variable resulting from the active forcing
function, X192 the control effectors not active as a forecing functionm, %, the
autopilot variables as in equation D-2; gl is the three element vector as
coefficients of the active control effector under study. 211, the vehicle
submatrix will include 2 rigid body equations involving the lateral and
rotational motions of the vehicle and n bending modes, thus 311 is an (nt+2) x
{n+2) matrix; 312 is m x m where m is the number of control effector loops
that remain closed (in active control effectors); 222 is, at least for the
example of Figure D-~1, 29 x 29 and is dependent not only on the actual
autopilot configuration but also on the number of slack variables required,
In formatting for input to COEBRA the B vector is used to augment
the A matrix. Lf A is n x n, the column vector B is added to A as the

n + lst column as an input to COEBRA. The precise details are left to

Volume II, the COEBRA Users Manual.
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APPENDIX E

THE SIMPLEX ALGORITHM

The simplex algorithm is basically a simple procedure for solving a
linear programming problem. The basis for this appendix is derived from
references 49, and 50.

: The general linear programming problem can be stated as follows:
determine the set of n nonnegative variables, X that satisfy m linear

inequalities or equalities (the contraints). \\M‘
|

g__<_=__?_} B LM 0 -+ e« ot e e E-l

4 mxn % n m
where one and only one of the signs in the brace,_<_, = or_z holds for each ' :
individual constraint but can vary from one constraint to another within the
set of m constraints defined by E-l1. In addition, these n nonnegative varia-

bles are to extremize (maximize or minimize) a linear form (objective or

T

I - I

cost function) _ i‘
|
l

E-2. :-

Any set x which satisfies E-1 is called a solution. Any nonnegative solu-

tion set X >_9__ is called feasible (admissable) and any such set that

extremizes E-2 is called an optimum feasible {admissable) soulution.

nequalities through the introduction of slack variables.

Generally, it is easier to work with equations than inequalities
. 3, so we convert the i i
J

For example, given bi<°

P 2:1%1 +a;i2x2 +. . +alnxn g>=<E bi < P B E-3

multiplying through the inequality by -1 yields

i n
-z a, x. > =b,
in i i

. bi>0.................. E-4 ; ~

j==:
4




where multiplication by -1 has reversed the inequality., For example, 1< -2
but (-7)(-1) > (-2)(-1). It is thus simpl: to convert all constraints with

each biz 0.

Converting the inequality constraints into equalities we observe the
convention in ordering the constraints as follows:
1. All constraints with _<__ signs
2. All constraints with -2 signs
3, All equality constraints
Examining the type 1 constraints first we observe for the i-th constraint
n
z a >~
=1 i3] i "

Introducing a slack variable X4k > o we have

1
b4 = b, - 2 &, . X.—z o + &4 a2 & ® ® a s = & v & s =2 2 = o E-6
j=

Re-arranging E-6 we can write

118
X + = S L T T T B -
?=1 2;5 T3 T Fmk by E-7

For a type 2 constraint

n
2 ah X -—>— b . = " . a s & & = = & & & » = .« ® vy & a . . E-B
p=l  "p P

We write

z ah X - xn+h = bh « 8 s e & ® e = ¢ s a2 =+ = 3 8 & & & = E"].O




Thus, the original constraints are rewritten, with the introduction of slack

variables, as

I
; aijxj+xn+k =bio-o|-tl.--o-.o---l-o- E"lla
j=1
n
P ah,_x"xn+h_bh"'°""'°"""""' E-11b
p=1 p b
n
2&X=b...-..-....-..........-... E-llc
k=lpkk %

Tt is thus possible to recast the linear programming problem in the form
A G  J E-12a
=mxm —n ~m

X, = 0, (A =1y « « g Me v o s s s o o s s o v v o, E-I2b

max z = g?g T T T T T E-12Zc

We assume in what follows that we have a basic feasible solution at hand and
proceed to develop the algorithm to generate the "optimum' basic solution
and then treat the problem of determining the first basic solution,

Let

x = col E:XIO Xpg =+ ¢ - X 00 . . Sl ve e e E-13

be a basic feasible solution to the limear programming problem and the

gset of linearly independent basis vectors be 21, gz, . e ey Em, whence

i
E- xiogigi =£Oouuollll-o.-on.loouun- E"lll'
i=1
and
m
;xioci=zo......................... E-15
=1
E-3

T L R L A T e S e

jar—

PSR St Ll Y L s e B s L FEE el
T T T P T

i P o el sttt ae wo et P . e
B ] L' LA b R Chowenta Db il n g e e e
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Where all xio:>'o, the c, are the coefficients from E-12c¢c and z, the
corresponding value of the objective or cost function. Since the p; are

linearly independent any of the vectors By, By + * * *» P, can be written

in terms °f.21=.22 «e e ey Boe 1f we let Rj be defined by

m
p, = X X..p.»3° Ty @ v wa Do o s n o o o o o o o & o o oo
. A

and define

where the ¢, are the coefficients corresponding to the B;s we have zj -
cj:>o, evidencing a feasible solutiom.

Denoting the set Pi as
Q=E_P1: X L

we observe that 20

é _.x-o = BG - - L ) - - L - - - - . . - - - - - - - - . - - - - . -
Inverting
_ -1
=4 - é ’EO - . - - - » . - . - - . - - - - - . a - - - . - -
and
_ -1
2 B By roeeenecmem e e e e e e e

E-16

E-17

E-18

E-19

E-20

Ef21
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where

col Exlo, Xog0 ¢ o xmoj , xi°>o e e e e e e e E-22

and

X c°1Ex1j’x2j""’xmjj"'°""""" E-23
each of which is a column vector.

We group the vectors _E_{i in the form

[2: Bj: B+« -t B Py B ]
= (B Bt B gt e v e s B e o v vno oo E-24

Pre-multiplying by )5_? -1 we: obtain

é‘"ll:goz B : Bt oo oe et E]

=E§0:Imxm:xll..._}_t_n]............... E-25
Knowing the c:j we form zj - cj and examine for all j, to find z-_i - cj >o.

1f, for all j, zj - c.j > 0, we multiply E-16 by some constant @ and

subtract from E-14; similarly multiply E-17 and subtracting from E-15 we

have
m
§=1 (Kio - fojf) "Ei + G'E'j = EO . + e ® 0w . E"26
and
m
x (x. -~ Ox, )e, + Oc, = 2z =~ B(z,-¢.) .« .. E-27
1=1 io ij? i i o j j
where ch has been added to both sides of E-27. 1f, in E-26, all the
(xio - Gxij) >0 we have obtained a new feasible solution whose objec-
tive function value is, from E-27, z = 2, - 6 (zj - cj)< z,s where
%o
9=min—>0.......u.............. E-28.
o X

i ij

o o S AR e b e S b 147 S 2, 482 e mae e s e e e n e




If, in initixzlly forming 2, " C e find for some j, 2y - cj<ﬂa
we already have the minimum feasible solution.
1f the set of n vectors P,, P,s. . . » P_contains m unit vectors
=12 =2 —n

that can be regrouped to form an m x m unit vector we write E-18 as

B =[B B - Bl = Lyceees o

=m

Under this condition equation E-20 becomes

and we have an initial solution.

To start the simplex procedure, in this case, we have Xig = bi’ and
xij = aij' To obtain the zj for =0, 1, . . . n, we form the inner
product of the j-th vector with the given ¢, or

m
z, = g: C By v e e e e e ne e e s e e
i=1l
and
3 =1, 2
_ C. X..s 3= 15 2, v 0 B 4 e v e e e e e e e e e
zj Te1 L ij

It is convenient to arrange the elements of the problem in a tableau as
shown in Figure E-1.

Referring to Figure E-1 we enter the elements z, and zj - cj into
the m + lst row of their respective columns. TIf all the zj - cj<: 0, j=
1, 2 . . .n, the solution x_ = col [:xlo, Xgg? * ¢ ¢ me:] = col [_ bl’ b2’
« e s a1y bm:] is a minimum feasible solution and the corresponding cost
function is z,- If not, we compute a new feasible solution whose basis
contains m - 1 vectors of the original basis 31, 22,. . e o3 Em. An effi-
cient procedure is to select a vector gj with its zj - cjt>’o which yields

the largest decrease in the value of z. This vector, gj, should be the

E-6

E-29

E-30

E-31

E-32

E-33




L-"

c:1 Cy cl cm cm +1 cj ~::k cn
i Basis c
R lE | R ) | B+ 25 E £n
1 _]31 ¢y X0 1 o o o %75 mrHl le LN X1n
2 E, €y Xig | O 1 o o Xy mtl X3 Xote LI
1 -El 4 X0 ] © o 1 o X5 mt+l xlj LS X0
m Pm Cm Xim | © o o 1 Xqs il Xmj X4 X n
okl zo o] o o] ‘ o zm—l-l cm+1 Z., - c:j sz - ck zrl - cn
FIGURE E-1 SIMPLEX TABLEAU FOR INITIAL STEP IN COMPUTATIONAL PROCEDURE
< i e




T

one corresponding to the max 90 (zj - cj) where @  is defined by equation
3
E-28. An alternate choice, often used, is to select thatgj correspond ing

to max (zj - cj). This is the approach we take here, Thus, we let
- = - ~.
m§x (zj cj) B T G O s ee s e e e e e e e e e s

whence the vector By is to be introduced into the basis set. Computing

. i0 -
= min —— X, O & o s 2 2 % s = o s e e e e e s e s
60 ... ik > *
i ik

and the vector EX of Figure E-1 is the one to be eliminated from the basis
set. The new feasible solution has as its basis By 22, .« e gl_l, £1+1,
e o oes Bo By

Since our initial basis is []gl,_gz . e Em.] = lm

we can express all of the vectors Ej in terms of this set, or

= * . s » + . . . * + 4 & & = = & = ®
2o x1021 4 * %20‘21 + *mo Em

. + %fk 21 e -

gk K El toe. micm

Ej = Ky i) + .. .t %fj B B T T
Solving E-36b for Py we have

Y - - -
E}:_xfk@k xlkPl...xmk_E_m).............

Substitution of this value in E-36a yields

- 1 - -
By =g Byt e T Eg, [xik e T N

P P - 4 P
X 1 P) :] S i,o. '—!4-1 mo —m

E-8

E-35

E-36a

E-36b

E-36c

E-37




R N A A AN R RN RS R

e

pum Pt v e &

or

5 t g 4"
: i %
f b - Ao YR L. . E-38 ‘
1 mo X mik” “m :
a . . . . . *0
- which is equivalent to E-26 with j = k and 0 = = = 90. !
1 ﬂ.k '
The new feasible solution
1 s 1 1 1 1
1 £, = col ['_xlo, Xpgr * ¢ 0 Xpo? ¢ me:]
t x,>o0
i
is given by
'; = X - T A j-
i -0 i0 1 :
i=1
| i# 1
‘ where 1
‘ .
1 XFO .
e T xio - a—; xik’ i=1,2 . . « »Q—l, ,{ + 1, . . .m
E-40
L - Ao
By substituting E-37 into E-36c we obtain each gj not in the new basis
set as :
m
P, = % ' f
_J ij =i « & % & % & ® = 4 & ¥ s = ¥ = 2 = » @ .E-l!-l :
=l .
i#1l




where

t Xg. .
X¥,. = X,, = ‘Jil K.opa LF L 0 v v v o s o 0 s o 0 0 v 0 E-42 §
ij ij xﬂk ik i
t Xy, 2
xk. = _'E-'l . + a L] * . - - - - - . . . - . - - . . . - - . E-43 .
] ka

and %ik is denoted the pivot element.

Now

X, . . .
1] 1 J

-

gives

- C ) s *+ % @& & % & & & s w ®w & s s+ s 2 E'45

To obtain the new solution, X, the new vectors ﬁj and the corres-

L]
ponding zj - cj we transform every element in the tableau of

t . X
Figure E-1 by equation E-42 for x,. and g}. = 4 . The new cost
ij j XXy

function is

Xm + 1’0 + ® ® ® 8 # s ® ® % 4 a2 s 2 e & s = & 23 s = = E“l'l‘e

and

v’\‘g_i‘ 2. - c. = X s s & 8 8 ® %« ® w a2 ® =2 ¥ ¥ = s e+ = E-li'?
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Osnce an initial computational tableau has been constructed, the
simplex procedure calls for the successive application (i.e., an iteration)
of:

1. The testing of the zy - cj elements to determine whether a

minimum solution has been found, i.e., whether z;.l - cj
< 0 for all j.
9., The selection of the vector to be introduced into the basis

if some zj - cj :>0, i.e., selection of the vector with

maximum z. - €..
J J
3. The selection of the vector to be eliminated from the basis
to ensure feasibility of the new solution, i.e., the vector
with min ( x50/ xik) for those Xk 0, where k corres-
ponds to the vector selected in Step 2. If all Xk < o,
then the solution is unbounded.
4. The transformation of the tableau by the complete elimina-
tion procedure to obtain the new solution and associated
elements.
Each such iteration produces a new feasible solution and eventually
yields the minimal or optimum solution or reveals an unbounded one.

A simple example will serve to clarify the foregoing. We wish to

minimize the cost function

c=ctx =[0 1 -30 20 0] [x

TPy NP ST SR SRS (A

subject to the constraints.
E-11
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ei-4

d_r_'j
cy €y cl ch c +1 Cj cy e
i Basis
+ P P
L By L 2, B Py
1 1 1 t 1l
1 By & %0 1 0 X9 o Xgs M + 1 X1 5 o Xin
1 1 1 1 T
2 22 Xqp 0 1 XZ,[? o Xy T + 1 x2j o Xon
|
i T L 1 t
L) - H
y4 B, Ky %18 o xgy m + 1 37 1 X |
H
]
!
] 1 t 1 1
m P X X . 1 x , m+ 1 X . o X
m ™Mo mf mj mn
1 z - Z - 1 t
m +1 z o o] A c m+1 Z. - z - cC
0 cd em + 1 j n n
FIGURE E-2 TABLEAU FOR SECOND COMPUTATIONAL STE®
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[

|
|

oY

3 -1 0 _xlT
0 -2 &4
)
: 0 -4 0 1

x3 7
. = 12
4 10
Xg -
Xg

We select as our initial basis set the vectors Bys I, and B, since ¢;,

A and cg are all zero. The initial tableau is then that of Figure E-3.

! The initial value of the cost function, z,0 is zero. Computing the 25

we find

z = lo 1 -3 0 2 o] 7]
12 = 0
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r
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%6"%6

%57 C5

Z4"%%,

Z37C3

2979

Z17%

12

10

Basis

il

|

b) STEP 1A

c) STEP 1b

THE INITIAL TABLEAU OF THE EXAMPLE

FIGURE E-3
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b
!
:
?
: z-=E1-3oza 2 ] : 8
0 B
0 :
0 = 0
0 |
8 | :
2 i
25 = 65 = 2
z6=E1.-3029—J 0 .
0 .
N
2
0 = 0 1
0 |
0 J
: 1 1
: e ‘1*\
? g = g = 0 |
' Examining the z,-c. for a maximum we find 2g = &4 = 3 :>0, so we select
23 to enter the basis.
*i0
? Now 6 is the minimum of —— for x_., >> 0. Examining each
?. © *i3 i3
i
; x
f 20 _ 1z
i 3 0

“

23

0 =

L.oi:—s
o

31/3 0 L |

.; "3 3

~ﬁ K33 3
% noting that x,, = -1 <:0, we find @ = 3 and P,, corresponding to § ;
% the pivot element, x,4, is to be eliminated. Transforming the tableau i
£

TSI W e ety
TN &S SR A
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t

of Figure E-3 we obtain that of Figure E-4, whence Xy = col [10, 3, 1]
. .
: and 30 = -9 as seen from: '
' k Basis T
S 2, | B | B 2, | B 2. | B
1 By 0 .10 1 5/2 0 1/4 2 0
2 _23 -3 3 0 -1/2 1 1/4 0 0
3 B Q 1 0 -5/2 0 -3/4 8 1
& -9 ¢ 1/2 0 -3/4 -2 0
Jloeare el Thn T lea: w SEtan
1 X
= _ 20 _ g L2 _
%0 = %10 " %, f13 "7 7% (B 10
23
v 0 12
%0 = 5. - 3 =3
23
t .o
20 12
X = X - T . X = 10 --— .3 = 1
30 —30 Xyq 33 4
e and
1 ' o 12
! z = - == (z, - ¢) =0 - F=(3) = -9
0
| 0 xp kK 4
| E-18 oo
ot . e




‘
L In forming the set gi of the second step tableau of Figure E-4 we
; ohserve
| \ Xy ,
x,, = x,, - —=l xi3, 1 # 2 7
)
Thus %
xll 1 1
) £_22 )
x12—3— 4(-}.) =3-1/2 =352
1
B 4 -
X153 = 1 L (-1} 0
. 1
XM =0 -1/4 (-1) = 1/4
X15 = 2 -0=2
_‘ '
X6 0-0=20
ete. ‘";
' 1 1 ”
! The z, - ¢, are formed as before and the max (2. - ¢,) = z, - c, = 1/2 >0
P *io w3’
is observed. Thus o = min (}-{:—2-) = min (“5—/2, :172, _5—/2) 4,
since we require x:i_2> 0.
| §—
j
E-19 3
. - i
. b i
] 4
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2,

one to be eliminated to obtain the tableau of Figure E-5.

is now the Vector to be introduced into the basis set and 21 the

0 1 -3 0 2 0

i Basis c "

P

2 || B jE 2, 25 e
1 g, |1 4 2/5 | 1 0 /10 | 45 | o
2 2, |3 5 1/5 | 0 1 3/10 | 2/5 | 0
3 |0 11 1 0 0 2172 | 10 1
4 -1 f-15 | o 0 45 | -12/5) ¢

FIGURE E-5

11
Since the max (z

) L

linear programming problem does not contain a unit matrix, as was

assumed in the foregoing the method of artificial basis detailed in

STEP 3 IN THE COMPUTATIONAL SCHEME

, - cj) = 0 this is an optimum solution.

If the given

references |50 and 5L | is referred to and will not be detailed here.

1t is the simpleX algorithm that COEBRA utilizes, as an effi-

cient method of solving the autopilot problem.

E-20
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