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Abstract

Calculations are reported for the ionic structure factor and x-ray scat-
tering cross section of sodium (at T=0°K and 90°K) and lithium (both isotopes
1t T=0°K) within the harmonic approximation. An evaluation of the appropriate
lisplacement- displacement correlation function by the special point method
rircumvents the need for a multiphonon expansion, In the case of sodium, the
structure in the one-phonon scattering is straightforwardly accounted for, and
an approximate expansion is obtained for 21l multiphonon scattering. By treat-
ing core and conduction electrons on an equal footing it ig shown that informa-
tion on the conduction electron system is present in the Tforward scattering
omponent., In lithium the one-phonon cross section at sitgall angles aids in

the determination of the effective electron-ion interaction.



I INTRODUCTION

For some years x-ray thermal diffuse scattering (TDS) has been used as a
probe of lattice dynamics in simple materials}_% Although information on the
phonon frequencies and polarizations (and also the extent of anharmonicity) is
contained in the TDS",4’5 it is generally hard fo extract? The cross section
for the scattering of x rays intimately involves the static structure factor
of the ions, Sion(E} 7 The purpose of this paper is to present calculations
of (i) Sjon &); and (ii) the x-ray scattering cross section for Na and Li in
the harmonic approximation and in their ground states. The significant features

8,9

of the calculation are the use of a special point technique in the compu-

tation of the equal time displacement-displacement correlation fuﬂction(éii E’j >
(which enters into 8 ion‘(E) ) and the separation of the scattering cross sec-
tion into contributions from core and valence electrons., Im particular, the
special point technique enables us to avoid the customary expansion4 of the
inelastic part of S ionm Q? into terms involving the "scattering of a definite
number of phonons, We determine the "one~-phonon"” term explicitly, but we can
also calculate all higher order processes without recourse to expansion. Fur-
ther, our treatment of the contribution of the valence electrons to the cross
section shows that x-ray scattering should yield information, in light metals,
on the effective electron-ion interaction, as we demonstrate for the partic-
ular case of Li.

Section II contains a derivation of the x-ray scattering cross section
do/dg} in a model of a simple metal which distingufshes between bound and con-
duction electrons. In Sec. III we outline the calculation of S j.,p Qi) using
the special point technique (discussed in detail in the Appendix), and .compare
it with the other non-expansion technigues in the literature. Section IV pre-

sents numerical results for 84, (k) and dc/d{Y for Na (at two temperatures)
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and for both isotopes of Li., We draw particular attention to the secondary
maxima associated with the one-phonon term as observed in certain crystallo-
graphic directions. These maxima have special importance in the determination
of the electron-ion interaction of Li, and also give information about specific

o

portions of the phonon spectrum directly.



IT. THEORY

The differential cross section for scattering of a photon from a solid of N
ions in volume V (at T = 0°K) is proportional to the space—time Fourier transform

of the Van Hove correlation function Ge(r,t):
] L

2

gﬂgw =% deIJ_:dt G (x.t)exp[ik-y - iwe], (2.1)
where C is a c:oms'tasu'lt,10"12
G (x,t) = IdBX (ﬁ(:;c,o)ﬁ(:_g + ;,t)>, . (2.2)
and
k=l - ks w=w - (2.3)

We are considering the cross section per unit volume for scattering a photon

of momentum ﬁki and energy hwi into a solid angle dQ with energy loss between

Tw and fi(w + dw). The gquantities hkf and ﬁmf are respectively the momentum and
energy of the scattéred photon. In Eg. (2.2) fi(r,t) is the total electron number
density operator and the brackets<.>refer to a ground state average. Introducing

spatial Fourier transforms,

dzo

dfdw

—imt

o
=) dte <ﬁ(-15,0)ﬁ(15,t)> , (2.4)
-where fi(k) is the Fourier transform of #(r).

We separate ﬁ(z) into contributions from core and valence electrons, and we
treat the core electrons as if they were rigidly attached to the ions. Any core
excitations or distortions of the ions are therefore neglected; should these occur
they must be calculated separately. In practical terms this means that in comparing

experiment and theory the Compton scattering from the core electrons must first be



subtracted from the data. In addition we invoke the adiabatic approximation, so thaf
the conduction electrons (ce) are always in a ground state appropriate to an in-
stantaneous' ion configuration (iom). By virtue of the rigid ion approximation we

may write:

ik-R (t)

a(k,t) = Te fF(kY + 8 (k,t). (2.5)
K ) v ce X

Here f(k) is the Fourier transform of the averagé core electron density about a
nucleus at the origin, and RiCt) refers to the instantaneous position of the ion

labelled i. From Egs. (2.4), (2.5) and the adiabatic approximation, we then find:

2 J" @ . .
d% ¥ _ -lwt, ¢ .. ~ik*R,(0) _ikeRsi(t) 2
dnde | C . dte (<iZj.e i e J > . [£ (k)

# e EO 109 (100 ) o Vi

RCER L CICNCIUN SIS

i

® —-iwt /. ~
+ J._mdt e <nce(—15,0) nce(lf,t)> ce,ion . (2.6)

We suppose that the interaction between conduction electrons and ions can be
represented by a weak pseudopotential with Fourier transform ¥(k), (as is the case
for many simple metals). The density response may then be calculated to linear

order in v(g):
<ﬁce(1f’t) >ce = x (B vk :,E_ HeRilE), (2.7)

with

2
k 1
X (&) = 4“32(6(5’0) - 1) . (2.8)



-6 -
G(E,O)being the static dielectric function of the uniform interacting electron

gas.13 Equations (2.6), (2.7) and (2.8) now give:

;

2 o i .
i T [ﬁ;ze"lg (Bi(o)-gj(t)%>ion(]f(§)|2 + 2£000) xg (v ()
HRGNG TINE t)> ce,i‘mj- (2.9)

In a typical x-ray experiment all the radiation emerging at a given angle
is initially measured.l4 All possible energy transfers (on the scale of typical
electron and phonon energies) huy are therefore included, and we pass from the cross-

section for energy loss fw (dzd/dﬂdw) to the total angular cross section (do/dQ):

£ 1P + 268G % (v ()

0 dodn

2 .
do E dw S5 212 [<Z e 1k (Bi_}}j)> i
v 13 ion

* <ﬁce(_1f) ﬁce(lf)> ce,ion [. (2.10)
Note that the last term is usually considered part of the Compton gcattering, and
is .therefore generally subtracted from the primary dai:a.16 What will become appareni
in Sec. IV, is that the value of the last term in Eq. (2.10) {the valence electron
correlation function) should be readily obtainable from x-ray measurements. The
theoretical results we present are therefore best compared to data from which
only the ionic Compton scattering has been subtracted.

The last term in Eq. (2.10) is difficult to calculate for interacting electrons

in the presence of the ions. For purposes of illustration we use the free—electron

va]_uel3 217 :

Neseaf) = <nce(-lf)na:e(lf)>ce,free ,
% 1 kS
S, (k) = (_"41<f T 163 0 <k < Zkey . (2.11)

=1, k > Zkf_
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Here Ng is the number of electrons, and k; the Fermi wave vector. Setting
(for-a monovalent gystem) the number of electrons Ng equal to the number of

iong N, Eg.s (2.10) and (2.11) give. us the final result:

W= e

y o 2
B T s = Sienl® (@ |7+ 2E@N WD) + S0, (2.12)

where we have set
1 -ike (Ry — 53)> .
S;onE) = N(Ej € jon Tor k# 0. ‘ (2.13)

It should be clear that except for the elements of lowest atomic number

(e.g. Li), Se(}f,) makes a small contribution to W for all but the smallest wave

vectors k < 2kf.



IiI CALCULATION OF IONIC STRUCTURE FACTOR

We now proceed to a calculation of Sion(k) in a model in which the solid
is treated as a harmonic crystal., Letting R; = Ei + R wvhere Xi is the

ST e s pa .th | .
equilibrium position of the i ion and Ei its displacenment,

;-edlkfx 3 </—1k (u - Edi} . (3.1)
ij

Here, zij = E& - Xj’ and the average is to be taken over the states appro-

priate to a harmonic crystal. With the definitions

<(u - O uj)é} jon = )‘a,B X; — X3 . (3.2)
and
R= gy By g,
we have the resu1t4’19:

<“1}5 (g ‘.LJ)> ton = o Phkghop®s Ky (3.3)

where

s 3
~
Kie
p

|

n B% 1 .
- ;53 B&'N—qz (1-cosq X, )e (qJ)eE(qJ) ——qj—)— coth [3Ry (q3) 1,

(3.4)

oW
I

1/k,T,

1

and M is the mass of an ion., In Eq.(3.4)u)(2;) and‘g(g;) are the frequency
and peolarization vector of the normal mode of wave vector q and polarization

index j, (j=1,2,3). The ¢ sum extends over the entire first Brillouin =zone.

Using the translational symmetry of the lattice, Egs. (3.1)-(3.4) yield:

0 = T iKE o Takphap(Xi) | (3.5)
10n~ i



Next we separate A (X ) as follows:

aB Tt
Ka8(§;) = haB(O) - ﬁ13(§ﬁ)’ (3.6)
with
h i . 1 1 .
Adﬂ(§i) = :.ea(ﬂg)es(ﬂg) e coth [zﬁhw(gp)] cos (g}%;)- (3.7)
qJ ~
Note that
hs Gy’ = @m ujB> ion. (3.8)

_We see therefore that QIB(E) is the displacement-displacement correlation func—
tion for two iomns separated (on average) by X. Clearly AdB(O) is the dis-

placement-displacement autocorrelation function. For a cubic system,

<uia“i§> ion - Pag 3 B0 Y (3.9)
so that
A =5 22 5 1 _ cotnpgwinl =6 1 . (3.10)
af af 3 MN g5 w(ad) ~ af
. . o . 4 -2W
This defines A , which is closely related to the Debye-Waller factor e :
ow = Ik kA . (0) = 3xA° . (3.11)
o B oB
Substituting Egs. (3.6)-(3.11) into Eq.(3.5), we find:
~ike¥W. - — .
5, () = e K% okkpllypg(0) Aep Z2)1
1Lon -~ i
SikeX,  -BCAC 4Bk koAge(X,)
= Te Anl e ® e Fprastls) (3.12)
i

To proceed from this point the usual approach is to expand the last

exponential in a power series in A _(X.). The leading (i.e. constant) term

(I,B ~L

]
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gives the elastic (Bragg) scattering peaks, the second gives the one-phénon
scattering, the third the two-phonon scattering, and so forth. Beyond the one-
phonon contribution each term is increasingly laborious to evaluate, We can

avoid this expansion, however, by writing Sion(k) as follows:

2 2
—Flce 4 o =3 e N, —& o
s. () = 3K JEAT gm0 AT myokh o)
1 i ~

o B oB

ion ~

2

+ ue (X131
i a8 ap~t

= (3.13)
- So(lf) + Sl(l.f,) * SM(E)'
Hefe SO(E) gives the elastic scattering,

2
L o .
i.e. S (k) = Ne 2k A (3.14)

the K being the vectors of the reciprocal lattice. The one-phonon scattering

term Slck) is eagily seen to be:

5,0 = e 3 po h S e 93937 e [q(0)4]

e gl coth[%hﬁm[q(k)jl],
J ~

1
wig (k) J
{3.15)
where q(k) is the vector k reduced by an appropriate K to the first Brillouin
~ o~ ~

zone (i.e., q(k) = k ~ K), Finally the remainder SM(k) will be calculated by

direct computation of AaB(Zi), so that all higher order phonon terms are auto-

matically taken into account. The reason for adopting this procedure is to

Fy
assure convergence in the sum over i in SM(kJ. This will be clarified in what

follows.

Our method of calculation of ARB(Ei) and AO makes use of special points
9
]

to evaluate the integral of Eq.(3.7). By

in the first Brillouin zone
calculating the integrand at these relatively few special points, one obtains a

good approximation to the entire integral. This procedure differs markedly
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from ordinary numerical integration in that (as shown in the Appendix) one

is effectively using an expansion of .the integrand in symmetrized plane waves.
Iin connection with this method we draw attention to the behavior of AEB(EP
‘for large Ef At large E’the dominant contribution to the integral in Eq.(3.7)

comes from small g, and it can be shown20 that at T=0°g,
r~r

) 1
Lim g ~3 . : (3.16)

Xt 00

Thus to ensure convergence in SM(k) it is necesgsary to make the separation

indicated in Eq.(3.13).

The method may be compared with the non-expansion calculations of Sion(k)
P

by (1) Lome;?l who calculates the ionic structure factor directly using the
22
results of a computer experiment; (2) Semenovskaya and Umanskidi, who cal-

culate 41 (X) in closed form for a model sinuscidal phonon dispersion law; and

B
(3) Reid and‘Smith,z3 who calculate the multi-phonon scattering SM(k) for
crystals whose sizes range between 100 and 1000 unit cells. Their. evaluation

of Qx (¥) is acheived by summing over only those q corresponding to the normal

B
modes of such a finite crystal. By separately calculating the gﬁ() prortion
of the integral in Eg.(3.7), they find that a crystal of 500 unit cells gives
essentially the same SM(E) as an infinite crystal, for ﬁff? belonging to the
set of normal modes of the finite crystal.

The method of Reid and Smith appears to be the most acecurate and practical,
but has the disadvantages that one can calculate SB(E? at relatively few points,

and that the matrices Aa (X) for a real crystal are inaccessible. We are able

B
to circumvent these limitations by directly calculating the correlation matrices
%IB(X). {These are of considerable interest, of course,in a wide range of prob-
lems.)

We illustrate, the method by its application to Na and Ii. 1In both cases the

phonon spectrum was calculated from a force-constant model designed to f£it the
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experimental data. The corresponding Sion(k) has been calculated for Na at
two temperatures (0°K, 90°K) and for both isotopes of Li (at T=0°K).
In the case of Na the force constants were those that f£it the data at
24 . 25
T=80°K . A simple estimate (supported by some theoretical results ) in-

dicates that the change in phonon frequencies between 0°K and 90°K is everywhere

less than the experimental error. Hence the only effect of temperature we

: 26
allow is through the hyperbolic cotangent function in Eg.{(3.7) To simplify
the calculation we use the T=0°K value of Qasqgi) for Xi#O in the 80°K cal-
culation, but use the T=90°K value of AaB(O)-27 LThe 20°x

resultsare therefore meant to be indicative of the effects of temperature, but

they are only approximate. We use the value of Ty determined from the 5°k

lattice constant measuremen‘t,28 i.e. v, = 3.931 aaun. ( Ty is defined by

Eﬂ(r aj = Y, whete a, is the Bohr radius.)
3 s Ng

7
The force constants for Li were similarly taken tc he those which f£it the
. . .29
experimental phonon dispersion measured at T = 98°K.The values of rs was also deduce
from the lattice constant?s in this case at 78°Kk (rs = 3.248 a.uw.). To cal-

o
we hav t T=0°K, obtai
culate Sion(E) ave se In order to tain Sl(E), A, and AaB(ﬁi)

6.
for 'Li, we have assumed that both substances are truly harmonic. This gives:

L
—2
woeMT,

L
A (X)) M 2 Tor all X
0'« s ~?

B (3.17)

-3
and S, (k) =M °.



IV RESULTS

In this section we present numerical results for both Sion(k) and the
x-ray scattering cross sections for Na and Li. The structure factor calcula-
tions were carried out as described above, As regards the cross sections, we

give two sets of results. One corresponds to the theory outlined: in Sec.ITI:

do
dfl

1

v
W = R 3(5)( If(’li)‘z + 28 () % (1) ‘-’(Ii)) + 8, &), (4.1)

while the other corresponds to the more commonly used expression:

do Vv 1 2
W, = (d_n 5 ?nﬁ)a N EN R (4.2)

Here fa(E) is the Fourier transform of the average electron density of an
assumed neutral atom, and we write (and shall continue to do so) S(E) in place
of Sion(E?' Both the ionic (Na+, Li+) and the atomic (Na, Li} form factors
were -taken from Ref. 30. The Geldart and Voskglmodified form of the Hubbard
dielectric function S(E) was used, as well as an empty-core pseudopotential
to represent the effective electron-ion interaction.32 Figures 1-7 show

S(E} for Na, and Figs. 8-10 show S(E) for both isotopes of Li. Numerical
results are listed in Tables I-IV. We present both cross sections W and Wa
for Na (at T = 0°K) in ~ Figs. 12-15, and in Figs. 16-18 we show W for Li
(at T = 0°%K) with two choices of the core radius appearing in the empty

core pseudopotential,

The most noticeable feature of the structure factor plots is the sizeable
structure between the Bragg peaks along all directions except the [100] and
[110] directions (for a bece lattice). These maxima are a direct consequence
of the beh;vior of the one-phonon term.33 Their occurrence is completely
general, and has been noted for quite some time.34 For the sake of simplicity,

however, we can most easily explain them in terms of a (polarization-independent)

- 13 -
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Debye model. Here (at T = 0°K),

“32A° ‘h 2 1

510 = e M WD)

(4.3)

where w(g) = cq is independent of polarization and ¢ is the approximate speed
of sound. We have plotfed in 7Fig. 1l lines along which the function.
1/c‘g&§)| has constant value for a (001) plane of the reciprocal lattice of

a bce crystal. In any direction {(except [100] .and [1101), and as a consequence
of periodicity alone, the one-phonon term displays secondary maxima as one
passes over the ridges of the function shown. .Replacing Eq. (4.3) with

Eg. (3.15) introduces three frequencies (one for each polarization j) at

every point, each weipghted by the factor [E:g(jg(g))}2. For example, Fig. 11
would indiecate two secondary maxima between the‘points37(l,0,0) and (3,1,0),
whereas Fig. 7 shows only one. The value of the one-phonon term at the point
along [31C] marked P on Figure 11 is determined by the phonons at the point

i = (%,%,0) in the first Brillouin zome. At (%,%,0) Na has an anomalously

low transverse frequency.24 Furthermore, since g is nearly perpendicular to
the [310] direction, the factor § [gﬂjﬁ)'532 will select ocut the fransverse
frequencies. The resulting single, large, maximum swamps any other effects,

Thus we see that any particularly low phonon frequency will cause a sequence

of one-phonon maxima along the appropriate direction. This property of the

one~phonon scattering has been widely used to étudy soft modes,38 but the
discussion is often set in real space., In terms of identifying the maximum
with a particular vibrational mode we see that it is advantageous to treat
the problem in reciprocal space.

The comparison of W and Wa for Na in Figs. 12-14 shows that at large
E the only significant difference is a shift arising from the term Se(g)

in W, which is a constant for k > 2k However, at small k Fig. 15 shows

£
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that the presence of Se(z) in W contributeg to a difference in shape hetween
W and Wa. The small § portion of the x-ray .cross section (with only ionic
Compton scattering subtracted out) thus gives us information about the conduction
electrons.39 Note also that for Na the presence of the pseudopotential v(h) inw
seems to make little difference in the final cross section. This is not so
for elements of very low atomic number. For example, in Figs. 16 and 17
we plot W for 7Li gt low values of k, for two choices of the core radius ap-
pearing in the empty-core pseudopotential.40 The maximum percentage difference
is slight..in_both cases, but in Fig. 17 the actual shape of thé one-phonon
maximum is noticeably altexed. 1In fact, the differences between pseudopotentials
will always be most noticeable in low E one—phonon maxima. In order for V(E)
to have any influence in Eg. (4.1), we need to have k < 2kf {otherwise Xl is
exceedingly small) and S(E) to be not too small. Figure 18 emphasizes this
point: Here we plot W - Se(Ep, so we subtract Eii the Compton scattering.
What remains shows a marked dependence on the pseudopotential,

"We should discuss the relative composition of the TDS (i.e. of S(E?).
Figure 1 shows the contribution of the one-phonon term, and we see that at
large E the many-phonon terms become quite important. From Egs. (3.11) and

(3.13)41:

-3 3
5, = o Pl O Fakpho® g 0]

+ 55 i E -Elglkglag @) [e%kakBAaB ) - ékakBAaB(x,i):l . (4.9

From the Appendix we also note that for Na, TrAuBQ&i) < < Tr[\(1 (0).{(for i # 0¥,

B
Typically at least 90% of SM(E) in Na comes from the first term in Eq. (4.4),

i.e.;

-3y kg Ay (0D
- A
SM(E) 1l - e 20BNB 1+ zkakBAﬁB(o)]' (4.5)
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In Eg. (4.5) we have confirmed a well known approximation.36
In spite of the fact that the §d sum in SM(E) converges roughly as
Zi 1/ki4, we have found it adequate to take only 9 shells (136 vectors)
in the sum, (Taking only 7 shells changes S(R) for Na by considerably less

than 1%, for example.) This can be understood by neoting that

. TrAaB(r&) < < TlanB(;gl) < < Tr)\a ), ’ (4.6)

B

where Xi and EQ are typical vectors in the first and ninth shells. The point

is. that the asymptotic limit of Aa (&i) (e lﬁxﬁé) is only reached at large

8
Ei where the struciure factor is almost independent of the contribution of
the remaining shells. In addition, the E& sum actually converges more quickly

than Zj l/X_i4 since the term e-%goi& in Eg. (4.4) introduces {(except for k = E)

considerable self-cancellation.



V DISCUSSION

The extension of our method of calculation of the ionic structure factor
to systems without cubic symmetry and to systems with a basis is completely
straightforwaxrd. (Special points have been found9 for systems of hexagonal
symmetry, and they can be generated for systems of any symmetry.) The

occurrence of one-phonon maxima is equally general. The ability to calculate

the Ad (§&) by a procedure which avoids a difficult three-~dimensional numerical

B
integration should prove valuable in a variety of contexts, ineluding, for
example, the self-consistent harmonic theory of phonons19 and the computation
of static lattice Green's functions.42

Much of the theory of x-ray scattering from simple metals presented in
Section II can be extended to liquid metals. ZEgelstaff, March and McGill44
have defived a formula for the x-ray cross section in liguid metals that is
identical 1o .Eg. {2.8), except that they do not make the adiabatic approximation
in the terms involving the correlation of conduction electrons with the ions.
Making that approximation, and introducing the pseudopotential V(E), we con-
clude that Eq. (2.12) is ag valid for liquid metals as it is for crystals.

Finally, our calculation has neglected possible anharmonic effects. Those
anharmonic terms which are retained in the self-consistent phonon theoryl9 are
in a sense taken into account here. The formalism we have presented is not altered
by using the self-consistent theory, but the frequencies are changed from
their harmonic values. In the case of sodium, this change is sma11.25 Other
anharmonic effects are not taken into account. For examnple, the intérference
between one- and two-phonon scattering can cause a noticeable change7’45 in
8; on(¥?+  As shown by Glyde,7 however, it amounts to .only a small shift in

the one-phonon scattering for Na at high temperatures. Since both the an-

harmonic frequency shiffs and the inverse phonon lifetimes become quite

- 17 -
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25 . R \ .
small at low temperatures, the size of this contribution should decrease
correspondingly. Interference effects, as well as other effects due to an-
harmonicity, may of course be of somewhat greater importance in the case of

lithium,



APPENDIX

We briefly review the special point method, 8,9 which was designed for
the integration of quantities varying slowly -over the first Brillouin zone (BZ).
Here, by a slight modification, we use it to evaluate the integral of oscillating
-functions (see Eq. (3.7) ).

The general integral to be evaluated is:

BZ 9)
1 e 3
ng W =Gms 5z €% 20, (-1

where £(g) is assumed to be invariant under the operations of the erystal
point group, and Qc is the primitive cell volume. (If <£(g) is not symmetric,

it can, of course, be easily symmetrized.) One expands £(g) in symmetrized

plane waves Am(g):

@) =1+ mgl fmAm(g), (4.2)
with i . . . o ) )
B =%, S 3 ‘ (4.3)
and
£ = s I s 2 A (. (A.4)
m BZ

Xjm refers to all lattice vectors X with the same 1ength.Xm that are related

by point group operations. Nm is the number of vectors in this mth shell,

and the sum in FEg. (A.2) is ordered so that those shells with lowest Km come

First.

A set {gi} of special points is defined as a set of n points in the BZ

with associated weights ai which satisfy:

n .
igl aiAm(gi) =0 form=1, ..., N, (A.9)

- 10 -
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n .
Zoa, = 1. (4.6)

Using Egs. (A.5) and (A.6) in Eg. (A.2):

. _ 12 n
To = a21 Og 2@y — 35 O

o iZ (@) fgq + -0 - . (A.7)

iAN+1 ~

Since fo is the desired integral, Eg. (A.7) gives an approximation to the
integral consisting of an evaluation of f(gq) at a (small) set of points.

Not all coefficients

The first neglected term can be shown to be + fN+1'

fm for m > N have been neglected, as Eg. (A.5) is always satisfied for an
infinite number of shells, The index of the first shell for which Eg. (A.5)
iz not satisfied is N+l. With increasing number of points n in the set, both
the number and the magn@tude of the neglected terms become smaller,

At T = 0°K , Trﬁa (0) = q? lﬂn(jg) is a smooth ‘function, and we may

~

B
apply the special point method. Although the expansion coefficients fm

decrease slowly with increasiﬁg m for large m, they are much smaller than
TrﬁlB(O) itself. Thus we expect increasing the number of special points n
to have a small effect on TrAaB(O). IFrom Table A-T we see the convergence
is more rapid for T = 0°K than for T = S0°K.

The calculation of AGB(§i)’ X4 # 0 is more troublesome, and we illus-

trate by examining the Trace of this matrix. Symmetrizing the integral of

AaB(Ei):
BZ 1
TTA(IB(i{Ji) o ; mﬁ Ay . (A.8)

Applying the special point method to this integral means neglecting some of the
coefficients Tﬁ whose form is (we are at T= 0%):

I, < BS e AAL (A.9)
moog w@g iMoo
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Now AiAm ig itself a sum of symmetrized plane waves:

Ai(g)Am(g) = ? aj(i,m)Aj(g}, (A.10)

where the first j for which a_.(i,m)#0 is that for which X. lX - X, |
J ~] hm.. ~

From Eq.s (A.8)-(A.10) it is clear that the Tﬁ for large m will be much less
than Trﬁxs(§i) only if the %ﬁ themselves decerease rapidly with increasing m.

This, however, is not the case, for just as in Eq.(3.16),

B#

1 1
Lim z — A, () ~ - . A.l1l1
X.~e g WO 1@~ 52 (A-1D)
l fatd

The origin of this behavior is the x behavior of

1
q w (g

as g~ &0,43

To circumvent this difficulty one must find a matrix M

aB

B(jﬂ): and which Ieads

(q) whose behavior

at the origin is the same as that of z

3 w(jg) o I

. 3 .
to an integral I d g %mﬁ(q) cos(g*X) which can be evaluated analytically.
BZ ot ~ oAy

Then we write:

i
h 1 ; . .
Acr,B(Xi) =uN ok l_(§ oG e, (%) eB(Jg)) - MaB(sL):I cos(q‘X,)

fengvs)

rl

Y

BZ
L M
qg a

=

5 B(g) cos(g-X.)s (a.12)

and compute the first integral by the special point metind. Since the integrand
has no troublesome % behavior, its expansion coefficients f; should then
decrease rapidly, and the number of special points then needed for an accurate

determination of Aa (Xi) should be (and is in fact) correspondingly small.

B

To simplify the calculation, we have actually only treated the Trace

of AaB(zi) in the above fashion, subtracting off a function M(q) whose
1 1
i i imatel f =3 — . =0
behavior as q - 0 is approximately that o 3 § W(Jﬂ) {As q s

1 1 - ; .
bY b e i i of direction. h imat
B alg where d(q) is a function We have approximated

J


http:Eq.(3.16
http:A.8)-(A.10

d(q) with (? dﬂq E—%Ej-)_l, where the cj(a) are the three speeds of sound.)
j -

Tables A-T and A-II show the elements of A(I. (}_g-), for ;\{:1 in the first shells

B

(T = 0°K), TrAu (Xi), and ﬁl {(0) for T = Q0°K and T = 90°K. Three different

B B
(bce) special point sets were used, with n = 8, 40, and 240, Although one

can only expect Trhbs(xi) to converge well, the individual matrix elements

also show good convergence.
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FIGURE CAPTIONS

Fig. 1 Structure factor s(k) and the one-phomon contribution Sl(E) for Na at
?=0°K along [100]. For all the structure facter and cross section plots,

the ordinate is in absolute units.

Fig. 2 Structure. factor S(k) for Na at T=0°K and T=90°K along [100].

Fig. 3 Structure factor.S(k) for Na at T=0°K and T=90°K along [110].

Fig. & Structure factor SéEQ for Na at T=0°K and T=90°K along [110]. Note the
expanded vertical scale. -

Fig. 5 Structure factor S(k) for Na at T=0°K and T=90°K along [111].

Fig. 6 Structure factor S(k) for Na at T=0°K and T=90°K along [211].

Fig. 7 Structure factor S(E) for Na at T=0°K and T=90°K along [310].

Fig. 8 Structure facter S(k) for 6Li and 7Li at T=0°K along [100].

Fig. 9 Structure factor S(E) for 6Li and 7Li at T=0°K along [110].

Fig.10 ~Structure factor S(k) for éii and 7Li at T=0°K along {111].

Fig.ll Lines of equal walue of the function 1/c|gﬁh)] in a (001) plane of the
lattice rveciprocal to the bee lattice. R is the point %?(0,0,0), P then

3 1

point Eg 95’ 5 0), and 8 is the point Eg (3, 1, 0), where a is the lattice

constant. The numbers 1.00,0.50,0.33, and 0.25 indicate the relative value of the
function.

Fig.12 Cross sections W(E) and Wa(E) for ¥a at T=0°K along [100].

Fig.1l3 Cross sections W(E) and Wa(E) for Na at T=0°X along [110].

Fig.l4 Cross sectioms W(k) and W_(k) for Na at T=0°K along [111].

Fig.15 Cross sections W(k) and Wa(k) for Na at T=0°K along [100]. Note the ex-

panded vertical and horizontal scales, and the position of k=2kf.

- 26 -
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Fig.16 Cross section W(k) for 7Li at T=0°K along [110]‘for two different walues
of the core radius, 3:'C=1.06 and rc=2.00. Note the .expanded horizontal
scale,

Fig.17 Cross section W(k) for 7Li at T=0°K along [111l] for two different values
of the core radius, rc=1.06 and rc=2.00. Note the expanded vertical and
horizontal scales.

Fig.18 Cross section with all Compton scattering subtracted, W(E)-Se(k), for
7Li att T=0°K along [111], for two different values of the core radins,

rd=1.06 and rc=2.00. Note the expanded vertical and horizontal scales.
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Structure factor of Sodium at T=0°K along [100].

S(k) vs. Q, where
Rw ﬁr

J j ﬁ@

0 S(k) 3] 5 (k)
3,600 2,326=01 5,250 3,39E°01
3,650 2,58Ex01 S300 3,951E=01
3,700  2,92E=01 Be350 3,05F«0}
1,750 3,41E=01 5,400 3,81F=01
3,800 4,14€-C1 G450 3,99E~0%
3,850 5,30E=01 5,500 4,20E=01
3.900  7,826=01 5,550 4,44E~01
1,950 1,528 Do 5,600 4, 7SE=01
3,970 2,51E G0 5,550 B5,14E~04
3,980 3,756 0077 75,700 5,66E-01
3,998 3,71E 01 5,750 6,38E=01
da002 3,726 0f 5,800 T7.,45E=01
4,020 3,80E 00 5,850 9,23E~0f
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4,500 3,04E=0] 6,150 9, 6H9E=01
4,550 2,97E=01 64200 B, 01E=01
4,600 2,93E=01 64250 T,08E=01
Be650  2,89E=01 4,300 p,u2E=01
4,700 2,87E=01 6+350 6,00E=01
4,750 2.,86E=0{ 6,400 5, ,70E«01
4,800 2,86E«01 6450 B H4gE=01
4,850 2,87E=01 ©e5N0 S, 34E=01
8,900 2,B9E=01 6:550 H,23Ee0]
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5,050 3,03E=0} 6,950 5,085g=01
5100 3:105'01 6970 5,”75"01
5,150 3,18E=0t 64980 5,08E=01
5,200 3,28E=04 6,998 S,10E"01



TABLE II. Structure factor of Sodium at T=0°Kalong [110]. S(k) vs. Q, where
1= g (1,1,0).
N S (k) a §(k) 9 S(k) B §(k)
0,085 1,92E=04 0,975 2 8tE=0t 1,800 1,27E=04 2,62% 1, T4E=01
0,050 3,86FE«04 0,985 4, 76E=01 1,825 1 ,45Ea01 2¢650 1,82E<01
0,075 5,83E=04 0,990 7,21FE=n1 1,850 {,69E=01 24675 1,91E=01
0,100 7.,84En0y 0,399 7,32F 00 1,875 2,03E«0f 2,700 2,03E=01
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0,175 | 43Ew03 1,015 5 04E=ng 1,950 5,n0%E=0¢ 2.775 2,54E~01%
0,200 1,67E=03 1,025 3,09E~01 1,975 1,026 Q0 2,800 2,80E=04
0,22% 1,92E~03 1,050 1,63Ex01 1,985 1,706 00 2,825 3,14E=01
0,250 2,18Em03 1,075 4, 1GE=01 1,990 2,56E 00 2.850 .3.59F=04
0,275 2.46E=03 1,100 49 _{4fedp 1,999 2.56E 0t 2875 G,21F=01
0300 2,76Ee03  1,12% T.76E=02 2,001 2,56E 04 2.900 5 {uE~0}
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0,515 6,70£=03 1,450 5 _28g=02 =~ 2,275 "1,56E=01 3,100 5, 6BE=01
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0,550 7,72Ee(3 1,48% 5,48F=02 2:325 (. u4BE=01 3,160 4,80E=01
0,575 8,56E=-03 1490 5,51F=02 2,350 1,45E=04 3,175 3,79F~01
0,600 9,50E=03 1,099 S _S7E=02 2,375 { H4E=DY 3,200 3,508=01
0,625 1,06Ex02 1,501 5, 59F<02 2,400 {,4UF01 3,225 3,27€=01
0,650 1,18E=02 1,510 S,65E=~02 2,425 1, UUE=01 3,250 3,108=01
0675 1,33E-02 1,515 5,69E702 2,450 {,48E=01 3,275 2,98E=~01
0,700 1,50E=02 1,525 5,78E=02 R.UT5  1,47E=01 2,200 2,8BE~D]
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0:925 8,61E=02 1,750 1,02€=01 24575 1,61E=01 3,490 2,70E=0t
0:950 1,3%5E=01 1,775 1,13E=0} 2,600 {,67E=0} 2,499 2,75E=01
AGE
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TABLE

R
0,050
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III. Structure factor of Sodium at T=0°K along [111]. S(k) vs. Q,

where k = %? Q(1,1,1).
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3ﬂ11F~01
3, 15E=01
I, 1BE=0D]
3,25E-01
3,.,51E=04
3.9u5a01
4, 60g~01
S UBE=DY
b, ,29F=0]
6,33E=01
S, 7T1E~0}
S,O&E-Oi
U,bSEan
4, 40E=01
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3,600
3.650
3,700
3,750
3800
1,850
3,700
3,950
3.97¢0
3,980
3,998
d.002
4,020
4,030
4,050
100
4,150
G4,200
4,250
4,300
A,350
A, 400
d,u50
4,500
4,550
4,600
44650
de700
4,750
4,800
4,850
4,900
4,950
4,970
4,980
4,995
G,002
5,020
5030
5,060
5,100
5.150
5,200

S(r)y
h,531E=01
foa36E=0t}
hy5REnD]
HeHlEmiy
50325“01
b, AUE~D]
R,03€~0
1,30 00
§.9%E 00
2.15%E 99
D 4dE 01
2.UlE 0Of
2.76E 00
{95E 00
1e%32€ 00
B Ul1E=0]
§,79Ew01
b, DLE=OY

5 T0FE~0]

§,58E=0]
SQSQE”Ol
SQ?EE“DI
boD1E=01
6,UBERDY
7:.15E=01
Re01E=0]}
ReB3F=0]
B.97E=01
B,4%dEm0Y
7,55E~01
b YGE=01
6ebbE“01
e SHE=OY
HeB3E=D
haB3E=01
6,35Em01
LoBbE=0]
boB9E=0
6o 62E=U1
b,bQE“OI
‘,'l.g qu'Oi
7:42E=01
R, 10E=D]

.
5,250
5;300
5,550
Leti0i0
Be 50
5500
5,550
R 600
H5y650

o700

5780
~ h,800
Re 850
5.900
5,950
5:970
5:980
5998

6,002

Ho 020
6,030
6080
6100
6,150

6,200

60250
69300
£:350
6,400
6,450
6500
641550
6r600
H1H50
6,700
6,750
6,800
6,850
62900
6,950
6,970

S(k}
B I3E-01
F,03F=01
9, 62F=01
3,03E=04
B,40E=0)
7,94E=01
7, 05F=01
7,52E=01
TaH4E=T1
Teb6k=01
7.88E=04
8,28E=01
B,96E=01
1,26 09
1,33F 00
1,716 00
2,188 00
1,476 01

.47 017

2,16E 00
1,69E 00
1,32E 00
1,03E 00
9,206701

‘5|bbE"01'

B, U1E=DY
8,32E=01
8.32F=01
8,81E"01
B, b1F=01

P ETED R

Qo 35F=0]
Q,B2F=01
1.2 Q0
1,038 00
9.89g~01
9, U5E=01
9,12E=01
B,91E=«0}
8,838=04
8,63E=01
B,83E~01
8,80E=01"



TABLE IV.

W
0,050
0100
0130
0,200
04,250
0,300
0,3‘50
0,400
0,450
0,500
0,559
0,600
Nge650
0,700
0,750
0,800
0,850
0,900
0,950
0,970
*0,980
0,998
1,002

1,020°

1!030
1,080
12100
1,150
1,200
1.250
1,300
1,350
1,400
1,450
14500
12550
1,600
1,650
{1,700
1750
14800
{,850
1;900

where E,= %g Q(1,1,1).

5(k)
1,026=03
2.07TE=03
3:20E=03
u,ubEnOS
5u91Evﬁ3
7.68E=0%
9,94Ew0 4
1.30E=02
1, 73502
2;38Eu02
ZeU3ERQE
5,188;02
7.70E=02
q'g 1 ?E"‘Oa
8o UlE=02
7.“76902
He96E=D2
6,B5ER02
T.OQE‘?OE
Te28E=02
7e39E=(2
7 ,63E=02
T69E=02
799"’E’=Oa
83185“02
Bab1E=02
1401E~01
1,24E=01
leﬁlEW01
2e19Em0]
2387E”01
2:98E=01
2e55E=01
218601
{o98E=0]
1e90E=01
1.921E=01
EQOEEnOl
agaaEnul
2o52E=01
2.,02E=01
3.,87€=01
SQSBEQQI

(3
1,950
1,970
1,980
Lovgs
2,002
2,020
2,030

2,050

2,100
2,150
2,200
2,230
2e300
2,350
2,400
2q 450
2,500
2,250
€oh00
236590
2,700
2,730
2,800
24850
2,900
2,950
2,970
2,980

2.9a8

3,002
3,020
5,030
3,on0
3,100
3,180
3,200
3,250
3,500
3,3%0
3,400
3,450
3,500
3,550

s(k?
1,028 00
t,63E 00
2,398 Q0
2,248 01
2,28€ 01
R HUZE 00
1,68E 00
1, 08¢ 00
6,33E=01
4,34g=01
4,14E=01
3,82E=01
S, T0E=04
3,72E=0}
3 BHEmOY
4,16E=01
4 6bE=0
S,QﬂEaﬂi
6,56E=01
7,84E=01

8,14E»0]

7,1BE=01
6 2HE=0]
S BUEa0]
5,32E=01
S, 23E=01
S,Q4E=01
5, 26Fw0}
5,29E=01
5,30E=04
5,35E=01
5,39E=01
5, 48E=0{
5. 82E=01
6,38E=0}
T,2uE=01
B, U1E=0}
9 ,55Em01
Q. D2E=n]
8,58E=0%
7.75E=01
7,19E=01
6,88E-01
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€]
3,600
3,650
3,700
3,750
3,800
3,850
3,900
3,960
3,970
3,980
3,998
4,002
4,020
4,030
0,050
4olon
4,159
4,200
4,250
{4300
4,350
4,400
4,850
4,800
4,550
Heb00
4,630
dgton
4,750
4,800
4 B0
4,900
4,950
44970
4,980
8,998
5,002
5,020
5.030
G050
85,100
5150
5,200

Structure factor of Lithium-7 at T=0% along [111].

5(K)
b T8E=0Y
6'86Ew01
7,06FE=0}

7,39E=0f

7493E=01
ReB3E=01
1,04E 90
1 U0E 00
{ B3IE 00

2.36F 00

165 M}
t ,64E 01
2.33E 09
1.80E 00
1.38E 00
1,03 00
9,19Ex0Y
Rea53E=0Y
8 23Ea0Y

SﬂiaE“nl‘

Bel3E=0)
8,23E=01
B A6E=0Y
8,8%E=01
0,36E=01
9 ,95Eat]
1.05E 00
1,05E 00
1,006 00
g.52E=01
GplbK=0y
8,96E=01
A.B9E=01
R 39E=01
B,89E=0y
thlEuol
A, 91iFE=01
B,93E=01
R.35E=DY

Re99Ea0]’

g, 18E~01
9, HA0E=DY
9,73€=0}

s(k) vs. Q,

4]
5,250
34300
5.350
5,400
Se050
5500
5,550
5:600
5.6%0
5,700
5750
5.800
5¢8%0
5.900
5,950
54270
5,980
5998
GeDOE
6eN20
_65030
6,080
6100
bel50
A2 00
b.250
6300
64350
aed00
6o450
6500
6,550
heb00
6650
ha 700
6.750
6,850
HeG0N
61950
6,970
b.9810
6,998

NS

S(k)
{1,048 00
1,046 00
1,048 DO
1,00 00
9,86E~01
P ofE=D]
g, 50E=01
9, 4uE=01
g, USE=0]
9,30E=01
9, 59E=01"
9, 73g=01
7,958=01
1, 03F 00
1,088 00
1,138 00
1,208 00
2,91 00
2,898 00
1,18 00
1e12E 00
1,07 00
1.025 on
G,97E=01
g _RBU4F=01
D, 77E=04
9, 73E=01
gu7ﬁE“Ol
99785“01
g, B48=01
9, 91E=01
1,00 00
1,01E 00
1,018 00
1.,0¢0E 00
11E 00
9,99E=01
9,94F=~01
9,908=01
9, 89E=01
9,89E=01
9,89E=01
§,B9F=01



2 . . -2
TABLE A-I. M° = 5(2kg)"A° (in units of 10°°).

M(R) = H(2k,)? - Tx A ®) (in units of 1072y,

B

N is the number-of special points.

(Na, T=0%).

N = 8 40 240
1°(T=0°K) 3.4367  3.4762 3.4832
M(T=90°K) 7.9897  8.5890 8.8258
M(R=(1,1,1)) 1.126 1.134 1.133
M(R=(2,0,0)) 0.538 0.541 0.540
M(R=(2,2,0)) 0.283 0.261 0.259
M(R=(3,1,1)) 0.240 0.223 0.221
M(R=(2,2,2))  0.473  0.479 0.477
M(R=(4,0,0)) 0.174 0.167 0.164
M(R=(3,3,1)) 0.169 0.152 0.148
M(R=(4,2,0)) 0.140 0.099 0.095
M(R=(4,2,2)) 0.116 0.137 0.113
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e . o 3
¥ T _'.. —_ . = .J-_ 3 ] .
ABLE A-IX MIB(R) 2(2kf) AdB(R) (in units of 10 )

N is the number of special points.

(¥a, T=0°K).

N Mxx - Mxy Myy sz Myz Mz z

Re(1,1,1) 8 3.756 2.610 3.754 2.610 2.610 3.754
40 3.780 2.664 3.780 2.664 2.664 3.780

240 3.778  2.666  3.778 2.666 2.666 3.778

R=(2,0,0) 8 0.822 0 2.278 0 .0 2.278
L0 0.716 0 2,345 0 0  2.345

- 240  0.708 0 2.345 0 0  2.345
B=(2,2,0) 8 1.278 0.698 1.278 0 0 0.270
L0 1.215  0.740  1.215 0 0 0.18

240 1,207  0.744  1.207 0 0 0.181

/5;(3,1,1) 8§ 0.715 0.225 0.82 0.225 0.316 0.842
40 0.557 0,230 0.836 0.230 0.444  0.836

2640 0.541 0.233  0.832 0.233 0.448 0.832

RB=(2,2,2) 8 1.578 1.039 1.578 1.039 1.039 1.578
40 1.598 1.133 1.598 1.133 1.133 1.598

240 1.589 1,139 1.589 1.139 1.139 1.589

R=(4,0,0) 8 0.581 0 0.581 0.581
40  0.212 0 0.727 0.727

240  0.186 0  0.730 0.730

R=(3,3,1) 8 0.680 0.528 0.680 0.073 0.073 0.331
40 0.668 0.458 0.668 0.120 0.120 0,188

240 0,653 0.464  0.653 0.125 0.125 0.179

B=(4,2,0) 8 0.465 0.275 0.465 0 0.465
40 0.356  0.167  0.400 0.234

240  0.331  0.171 0.391 0.227

JR=(4,2,2) 8 0.388 0.304 0.388 0.304 0.388
40 0.38 0.208 0.491 0.208 0.303 0.491

240 - 0.363  0.214 0.482 0.214 0.314  0.482
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