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Abstract
 

Calculations are reported for the ionic structure factor and x-ray scat­

tering cross section of sodium (at T=00K and 900K) and lithium (both isotopes
 

it T=00 K) within the harmonic approximation. An evaluation of the appropriate
 

lisplacement- displacement correlation function by the special point method
 

ircumvents the need for a multiphonon expansion. In the case of sodium, the
 

3tructure in the one-phonon scattering is straightforwardly accounted for, and
 

in approximate expansion is obtained for all multiphonon scattering. By treat­

ing core and conduction electrons on an equal footing it is shown that informa­

tion on the conduction electron system is present in the forward scattering
 

zomponent. In lithium the one-phonon cross section at sfill angles aids in
 

Lhe determination of the effective electron-ion interaction.
 



I INTRODUCTION
 

For some years x-ray thermal diffuse scattering (TDS) has been used as a
 

1-4 
probe of lattice dynamics in simple materials. Although information on the
 

phonon frequencies and polarizations (and also the extent of anharmonicity) is
 

A4,5 .. 6
 
contained in the TDS, it is generally hard to extract. The cross section
 

for the scattering of x rays intimately involves the static structure factor
 

of the ions, Sion (k). 7 The purpose of this paper is to present calculations
 

of (i) Siong(k); and (ii) the x-ray scattering cross section for Na and Li in
 

the harmonic approximation and in their ground states. The significant features
 

of the calculation are the use of a special point technique
8 '9 in the compu­

tation of the equal time displacement-displacement correlation function UiU
 

(which enters into S ion. (k) ) and the separation of the scattering cross sec­

tion into contributions from core and valence electrons. In particular, the
 
S4
 

special point technique enables us to avoid the customary expansion of the
 

inelastic part of S ion"(k) into terms involving the-scattering of a definite
 

number of phonons. We determine the "one-phonon" term explicitly, but we can
 

also calculate all higher order processes without recourse to expansion. Fur­

ther, our treatment of the contribution of the valence electrons to the cross
 

section shows that x-ray scattering should yield information, in light metals,
 

on the effective electron-ion interaction, as we demonstrate for the partic­

ular case of Li.
 

Section II contains a derivation of the x-ray scattering cross section
 

dG/dO in a model of a simple metal which distinguishes between bound and con­

duction electrons. In Sec. III we outline the calculation of S ion (k) using
 

the special point technique (discussed in detail in the Appendix), and -compare
 

it with the other non-expansion techniques in the literature. Section IV pre­

sents numerical results for S ion (k) and do/dO for Na (at two temperatures)
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and for both isotopes of Li. We draw particular attention to the secondary
 

maxima associated with the one-phonon term as observed in certain crystallo­

graphic directions. These maxima have special importance in the determination
 

of the electron-ion interaction, of Li, and also give information about specific
 

portions of the phonon spectrum directly.
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II. THEORY
 

The differential cross section for scattering of a photon from a solid of N
 

ions in volume V (at T = 00K) is proportional to the space-time Fourier transform
 

of the Van Hove correlation function G(r,t):
 

2e
 

d 2o rdrf dt G(r,t)exp[ik-rd~dw V f e - iwt], (2.1)
 

where C is a constant,10-12 

G(r,t) = Jdx <(x,0)(x + r,t)> (2.2) 

and
 

k = kto - 01= W -f f*f; (2.3)
 

We are considering the cross section per unit volume for scattering a photon
 

of momentum uk i and energy fri into a solid angle d 
with energy loss between
 

urn and h( + di). The quantities hkf and U f are respectively the momentum and
 

energy of the scattered photon. In Eq. (2.2) 
r(r,t) is the total electron number
 

density operator and the brackets 
 > refer to a ground state average. Introducing
 

spatial Fourier transforms,
 

doC Cf -'Wt \
 
ddm v __dt e n(-kO)n(k,t) , (2.4)
 

-where f(k) is the Fourier transform of fi(r).
 

We separate i(r) into contributions from core 
and valence electrons, and we
 

treat the core electrons as if they were rigidly attached to the ions. Any core
 

excitations or distortions of the ions are therefore neglected; should these occur
 

they must be calculated separately. In practical terms this means 
that in comparing
 

experiment and theory the Compton scattering from the core electrons must first be
 



subtracted from the data. In addition we invoke the adiabatic approximation, so thal
 

the conduction electrons (ce) are always in a ground state appropriate to an in­

stantaneous ion configuration (ion). By virtue of the rigid ion approximation we
 

may write:
 

fi(k,t) = reik'Ri (t) f(k) + fce(k,t). (2.5)
 

Here f(k) is the Fourier transform of the average core electron density about a
 

nucleus at the origin, and R.(t) refers to the instantaneous position of the ion
 

labelled i. From Eqs. (2.4), (2.5) and the adiabatic approximation, we then find:
 

d2a V c(Z.:e'-ik-.(O) ik.R.(t) > 2
dd = - dte-it( e- - f(k

ETdw ijio 

i k -R i (+ <Z e- O) f(-k)fce(kt)> ce>ion 
i 

+ "iE e -ik'Ri(t)1(t) f k f ee(ee(k ' 0>c ° ioion 

+ ;: dt e-i't (cte(-k,O) fce(k,t)> ce,ion. (2.6) 

We suppose that the interaction between conduction electrons and ions can be
 

represented by a weak pseudopotential with Fourier transform V(k), (as is the case
 

for many simple metals). The density response may then be calculated to linear
 

order in v(k):
 

< > ik' R*(t)K fce (k t),ce = xl(k) v(k) E e ~ -i , (2.7)
i 

with
 

Xl(k) = 4 (kO) 1) . (2.8) 
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C(k,O) being the static dielectric function of the uniform interacting electron
 

13
 
gas. Equations (2.6), (2.7) and (2.8) now give:
 

i t
d2a V d k-(i(0)-Rj(Q)
 

dd V = dtijj F. )Rt12 io (-( + 2f(k)X l (k)v(k))
 

O )f
+ c(-c ic e (t)> ce,ion. (2.9)
 

In a typical x-ray experiment all the radiation emerging at a given angle
 

is initially measured.1 4 All possible energy transfers (on the scale of typical
 

electron and phonon energies) to are therefore included, and we pass from the cross­

section for energy loss rit (d2o/ddw) to the total angular cross section (do/dQ):
 

do do C ion(If( 12 + 2f' kk 
d- d d--2 k-.eIelk- ~I \x 1 ~vk~ 

+ (c(-k) te(k))ce,ion (2.10) 

Note that the last term is usually considered part of the Compton scattering, and
 

is therefore generally subtracted from the primary data.1 6 What will become appareni
 

in Sec. IV, is that the value of the last term in Eq. (2.10) (the valence electron
 

correlation function) should be readily obtainable from x-ray measurements. The
 

theoretical results we present are therefore best compared to data from which
 

only the ionic Compton scattering has been subtracted.
 

The last term in Eq. (2.10) is difficult to calculate for interacting electrons
 

in the presence of the ions. For purposes of illustration we use the free-electron
 

1 3,1
7:
value
 

NeS e(k) =(i (-k)6i (k)N

ee i~\ce ce - >/ce,free 

e 16 f3 , 0 < k < 2kf; (2.11)
 

= 1, k ! 2k 

http:measured.14
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Here Ne is the number of electrons, and kf the Fermi wave vector. Setting
 

(for-a monovalent system) the number of electrons Ne equal to the number of
 

ions N, Eq.s (2.10) and (2.11) give.us the final result:
 

I dV . V . 1 = Sn (k) (If(k) 1 + 2f(ky-4(k)v(k)) + S(k), (2.12)
dO N 2--C ion +e( 

where we have set 

l(k) e-i.'(i ion for k 0 (2.13)Sion( I N ion 

It should be clear that except for the elements of lowest atomic number
 

(e.g. Li), Se(k) makes a small contribution to W for all but the smallest wave
 

vectors k < 2kf.
 



III CALCULATION OF IONIC STRUCTURE FACTOR
 

We now proceed to a calculation of S. (k) in a model in which the solid
 
ionI
 

is treated as a harmonic crystal. Letting Ri = Xi + -' where X. is the
 

*th
 
equilibrium position of the a ion and u: its displacement,
 

S ion ii .(k)e= I /ik*(u--
SinN)= 1(e-ij .Xj \e- 10n (3.1) 

Here, Xij = X. - X., and the average is to be taken over the states appro­
,a ,j
 

priate to a harmonic crystal. With the definitions
 

<(ui - u ) (ii - u ) ion X (X1i - ) (3.2) 

and
 

u= Ul, u, u3) 

we have the result
4'19
 

<eik(. - ±01= e- kCX (Xi - (3. 

e- ine-;Z'j(3.3) 

where
 

h BZ 
X (X - X.) = 7 (l-cosqox .)e (qj)e (qj) 1 coth[hu(qj)],ai3 qj 
 ~ j 

(3.4)
 
= 1/kBT, 

and M is the mass of an ion. In Eq. (3.4)W (qj) and e(qj) are the frequency 

and polarization vector of the normal mode of wave vector q and polarization 

index j, (j=1,2,3). The q sum extends over the entire first Brillouin zone. 

Using the translational symmetry of the lattice, Eqs. (3.1)-(3.4) yield: 

(3.5)
-kkoXa(Xi)
S=oen-ikX. 

-8
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Next we separate X (X) as follows: 

X (Xi) = A (0) - A (X (3.6) 

with 
h 

A (xi) - E e (qj)e (qj) - coth [2t (qj)] cos (q.-). (3.7) 

Note that/
 
OA( ) = 2 uM(uj ion. (3.8) 

We see therefore that A (X) is the displacement-displacement correlation func­

tion for two ions separated (on average) by X. Clearly A (0) is the dis­

placement-displacement autocorrelation function. For a cubic system, 

<tiaulo ion a 3 iu,2 (3.9) 

so that 

A0A (0) h E I coth[ fhv(qj)] M6 . (3.10)
3 MN qj W(qj) 

o 4 -2W 
This defines A , which is closely related to the Debye-Waller factor e 

2W = kk AOLO (0) = k . (3.11) 

Substituting Eqs. (3.6)-(3.11) into Eq.(3.5), we find: 

Sion(k) = S eikE e-kk[Aa (O) A-&(xi)]
i 

-ik'X- -Lk 2 A'o + kkM . (3.12) 

S e eee(
 

To proceed from this point the usual approach is to expand the last 

exponential in a power series in A (X.). The leading (i.e. constant) term 

http:3.6)-(3.11
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gives the elastic (Bragg) scattering peaks, the second gives the one-phonon
 

scattering, the third the two-phonon scattering, and so forth. Beyond the one­

phonon contribution each term is increasingly laborious to evaluate. We can
 

avoid this expansion, however, 	by writing SiionI
(k) as follows:
 

Sio~k ikX. 1e-k 2 Ao -ikX i k 2 Ao 

S XeZ e + re Xi e [k k A (Xi)]
ion­

- 2 

iik e k A e2kakpla( xi) --1 -- A~i()e--X 

(3.13)

So + S (k) +S (k).-

Here S (k) gives the elastic scattering,

0 , 

k A 6k,K 	 (3.14)i.e. SoW = Ne ­
0i3.14) 

the K being the vectors of the 	reciprocal lattice. The one-phonon scattering
 

term S (.k) is easily seen to be: 

(k) = e- k2 Ao h k Sj e [q(k)j] e5 [q(k)j] w[qk)jJ 

2M ak 
1 coth k ] 

(3.15)
 

where q(k) is the vector k reduced by an appropriate K to the first Brillouin
 

Finally the remainder S (k) will be calculated by
zone (i.e., q(k) = k - K). 


are auto­direct computation of Act(Xi), 	so that all higher order phonon terms 


The reason for adopting this procedure is to
matically taken into account. 


This will be clarified in what
assure convergence in the sum over i in S (k). 


follows.
 

Our method of calculation of AM(RQ)and A0 makes use of special points
 

8 '9 
to evaluate the integral of Eq.(3.7). By
in the first Brillouin zone
 

a
calculating the integrandat these relatively few special points, one obtains 


good approximation to the entire integral. This procedure differs markedly
 



from ordinary numerical integration in that (as shown in the Appendix) one
 

is effectively using an expansion of.the integrand in symmetrized plane waves.
 

In connection with this method we draw attention to the behavior of M
 

for large X., At large X the dominant contribution to the integral in Eq.(3.7)
 

comes from small q, and it can be shown2 0 that at T-00R,
 

l m 1 (3.16)
 

Thus to ensure convergence in SM(k) it is necessary to make the separation
 

indicated in Eq.(3.13).
 

The method may be compared with the non-expansion calculations of S. (k)

ion 

by (1) Lome; who calculates the ionic structure factor directly using the 

results of a computer experiment; (2) Semenovskaya and Umanskii, 2 who cal­

culate A (X) in closed form for a model sinusoidal phonon dispersion law; and 

(3) Reid and' Smitb 2 3 who calculate the multi-phonon scattering S (k) for
 

crystals whose sizes range between 100 and 1000 unit cells. Their.evaluation 

of A (X) is acheived by summing over only those q corresponding to the normal 

modes of such a finite crystal. By separately calculating the q-0 portion 

of the integral in Eq.(3.7), they find that a crystal of 500 unit cells gives 

essentially the same S (k) as an infinite crystal, for q(k) belonging to the
 

set of normal modes of the finite crystal.
 

The method of Reid and Smith appears to be th6 most accurate and practical,
 

but has the disadvantages that one can calculate SM(k) at relatively few points,
 

and that the matrices A (X) for a real crystal are inaccessible. We are able
 

to circumvent these limitations by directly calculating the correlation matrices
 

A CX). (These are of considerable interest,of course,in a wide range of prob­

lems.)
 

We illustrate,the method by its application to Na and Li. In both cases the
 

phonon spectrum was calculated from a force-constant model designed to fit the
 

http:Eq.(3.13
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experimental data. The corresponding Sn (k) has been calculated for Na at
 
ion I
 

two temperatures (00K, 900 K) and for both isotopes of Li (at T=0K).
 

In the case of Na the force constants were those that fit the data at
 

T=0K24 .25
T=900 K2 . A simple estimate (supported by some theoretical results ) in­

dicates that the change in phonon frequencies between 00 K and 90'K is everywhere 

less than the experimental error. Hence the only effect of temperature we 

26
 
allow is through the hyperbolic cotangent function in Eq.(3.7). To simplify 

the calculation we use the T= 0 °K value of A (X.) for X.;#O in the 90'K cal­

culation, but use the T=90 0K value of A (0).27 The 900K 

resultsare therefore meant to be indicative of the effects of temperature, but 

they are only approximate. We use the value of rS determined from the 5
0 K 

lattice constant measurement2 8 i.e. rs = 3.931 a.u. ( rs is defined by 

3 V , where a o is the Bohr radius.)
 

The force constants for 7Li were similarly taken to be those which fit the 

29 
experimental phonon dispersion measured at T = 980K.The values of r

5 -was also deduce 

fromtheattie costan28

cconstant) in this case at 780 K (rS = 3.248 a.u.). To cal­

°
 culate S.o(10 we have set T=0K. In order to obtain Sl(k), A , and A X)

ion 11a ezi 

for 6Li, we have assumed that both substances are truly harmonic. This gives: 

W 

A() M for all X (3.17) 

-
and S1( M
 



IV RESULTS
 

In this section we present numerical results for both Sion(k) and the
 

x-ray scattering cross sections for Na and Li. The structure factor calcula­

tions were carried out as described above. As regards the cross sections, we
 

give two sets of results. One corresponds to the theory outlined in Sec.Ir:
 

da v 1 frk\1)( 
IV- d- " I If--k) + 2f(k) X ( ( + Se (4.1) 

while the 6ther corresponds to the more commonly used expression:
 

Wa(do a = S(k) (k)1 (4.2) 

Here f (k) is the Fourier transform of the average electron density of an
 

aI
 

assumed neutral atom, and we write (and shall continue to do so) S(k) in place
 

of S.o(k). Both the ionic (Na+ , Li+ ) and the atomic (Na, Li) form factors
ofSion
 

31
 
were taken from.Ref. 30. The Geldart and Vosko modified form of the Hubbard
 

dielectric function e(k) was used, as well as an empty-core pseudopotential
 

to represent the effective electron-ion interaction.3 2 Figures 1-7 show
 

S(k) for Na, and Figs, 8-10 show S(k) for both isotopes of Li. Numerical
 

results are listed in Tables I-IV. We present both cross sections W and W
a 

for Na (at T = 00K) in Figs-. 12-15, and in Figs. 16-18 we show W for Li
 

(at T = 00K) with two choices of the core radius appearing in the empty
 

core pseudopotential.
 

The most noticeable feature of the structure factor plots is the sizeable
 

structure between the Bragg peaks along all directions except the [100] and
 

[110] directions (for a bcc lattice). These maxima are a direct consequence
 

of the behavior of the one-phonon term.3 3 Their occurrence is completely
 

general, and has been noted for quite some time.3 4  For the sake of simplicity,
 

however, we can most easily explain them in terms of a (polarization-independent)
 

- 13 ­

http:interaction.32
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Debye model. Here (at T = 0°K),
 

-1
2Ae h 2S (k) = -2Lk 2M Ik(43W((k)) (4.3) 

where w(q) = cq is independent of polarization and c is the approximate speed 

of sound. We have plotted in Fig. 11 lines along which the function 

1/clm(k)I has constant value for a (001) plane of the reciprocal lattice of 

a bcc crystal. In any direction (except [100].and [110]), and as a consequence 

of periodicity alone, the one-phonon term displays secondary maxima as one 

passes over the ridges of the function shown. Replacing Eq. (4.3) with 

Eq. (3.15) introduces three frequencies (one for each polarization j) at 

every point, each weighted by the factor [ke(jg(k))] 2 . For example, Fig. 11 
N37
 

would indicate two secondary maxima between the points37(1,0,0) and (3,1,0), 

whereas Fig. 7 shows only one. The value of the one-phonon term at the point 

along [310] marked P on Figure 11 is determined by the phonons at the point 

- (1, ,0) in the first Brillonin zone. At (J, ,0) Na has an anomalously 

24 
low transverse frequency. Furthermore, since p,is nearly perpendicular to 

the [310] direction, the factor 2 [e(jq).k]2 will select out the transverse 

frequencies. The resulting single, large, maximum swamps any other effects. 

Thus we see that any particularly low phonon frequency will cause a sequence 

of one-phonon maxima along the appropriate direction. This property of the 

one-phonon scattering has been widely used to study soft modes 8 but the 

discussion is often set in real space. In terms of identifying the maximum 

with a particular vibrational mode we see that it is advantageous to treat 

the problem in reciprocal space. 

The comparison of W and Waa for Na in Figs. 12-14 shows that at large 

k the only significant difference is a shift arising from the term S (k) 
I e
 

in IV, which is a constant for k > 2k. However, at small k Fig, 15 shows
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that the presence of S (k) in W contributes to a difference in shape between
 
e , 

W and W . The small k portion of the x-ray cross section (with only ionic 

Compton scattering subtracted out) thus gives us information about the conduction
 

39
 
electrons. Note also that for Na the presence of the pseudopotential v(k) in W
 

seems to make little difference in the final cross section. This is not so
 

for elements of very low atomic number. For example, in Figs. 16 and 17
 

we plot I for 7Li at low values of k, for two choices of the core radius ap­

pearing in the empty-core pseudopotential.4 0 The maximum percentage difference
 

is sliht..in:.both cases, but in Fig. 17 the actual shape of the one-phonon
 

maximum is noticeably altered. In fact, the differences between pseudopotentials
 

will always be most noticeable in low k one-phonon maxima. In order for v(k)
 

to have any influence in Eq. (4.1), we need to'have k < 2kf (otherwise X1 is
 

exceedingly small) and S() to be not too small. Figure 18 emphasizes this
 

point: Here we plot W - Se(k), so we subtract all the Compton scattering.
 

What remains shows a marked dependence on the pseudopotential.
 

'We should discuss the relative composition of the TDS (i.e. of S(k)). 

Figure 1 shows the contribution of the one-phonon term, and we see that at 

large k the many-phonon terms become quite important. From Eqs. (3.11) and 

(3.13)41
 

S M(k) = e- 2kakpP(O)[e k-Iak(0) pAU(0)] 

L[e OkM'l 1 - k k A (0)4) 
+ 0 e - i $1' t e- &ketkC(0.)[eM~ktB%4 ) - 1 - k~Ak~x,)]. (4.4) 

From the Appendix we also note that for Na, Trta %i) < < Tr (0).(for ± 0>. 

Typically at least 90% of S (k) in Na comes from the first term ,in Eq. (4.4), 

i.e.; 

S M(I) P 1 - e- Aap(0 ) [1 + 12k k A (0)]. (4.5)
Mr.I 0a 

http:sliht..in
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3 6
 
In Eq. (4.5) we have confirmed a well known approximation.


In spite of the fact that the X sum in S (k) converges roughly as
 

Ei 1/ki , we have found it adequate to take only 9 shells (136 vectors)
 

in the sum. (Taking only 7 shells changes S(k) for Na by considerably less
 

than 1%, for example.) This can be understood by noting that
 

TrAaBC (X9) < < TrAao(y,) < < TrAM (0), (4.6) 

where X and X are typical vectors in the first and ninth shells. The point
 

2
is- that the asymptotic limit of Aa O) (a 1A -i ) is only reached at large 

where the structure factor is almost independent of the contribution of
 

the remaining shells. In addition, the X. sum actually converges more quickly
 

than Zi I/X. since the term e- in Eq. (4.4) introduces (except for k = K)
 

considerable self-cancellation.
 



V DISCUSSION
 

The extension of our method of calculation of the ionic structure factor
 

to systems without cubic symmetry and to systems with a basis is completely
 

straightforward. (Special points have been found9 for systems of hexagonal
 

symmetry, and they can be generated for systems of any symmetry.) The
 

occurrence of one-phonon maxima is equally general. The ability to calculate
 

the A (X ) by a procedure which avoids a difficult three-dimensional numerical
 

integration should prove valuable in a variety of contexts, including, for
 

example, the self-consistent harmonic theory of phonons1 9 and the computation
 

of static lattice Green's functions.
4 2
 

Much of the theory of x-ray scattering from simple metals presented in
 

Section II can be extended to liquid metals. Egelstaff, March and McGill
4 4
 

have derived a formula for the x-ray cross section in liquid metals that is
 

identichl .to Eq.. (2.6), except that they do not make the adiabatic approximation
 

in the terms involving the correlation of conduction electrons with the ions.
 

Making that approximation, and introducing the pseudopotential v(k), we con­

dlude that Eq. (2.12) is as valid for liquid metals as it is for crystals.
 

Finally, our calculation has neglected possible anharmonic effects. Those
 

19
 
anharmonic terms which are retained in the self-consistent phonon theory are
 

in a sense taken into account here. The formalism we have presented is not altered
 

by using the self-consistent theory, but the frequencies are changed from
 

their harmonic values. In the case of sodium, this change is small.2 5 Other
 

anharmonic effects are not taken into account. For example, the interference
 

4 5 
between one- and two-phonon scattering can cause a noticeable change7 , in
 

Sion(k). As shown by Glyde, 7 however, it amounts to only a small shift in
 

the one-phonon scattering for Na at high temperatures. Since both the an­

harmonic frequency shifts and the inverse phonon lifetimes become quite
 

- 17 ­

http:small.25
http:functions.42
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small at low temperatures, the size of this contribution should decrease
 

correspondingly. Interference effects, as well as other effects due to an­

harmonicity, may of course be of somewhat greater importance in the case of
 

lithium.
 



APPENDIX
 

We briefly review the special point method, 8,9 which was designed for
 

the integration of quantities varying slowly over the first Brillouin zone (Z). 

Here, by a slight modification, we use it to evaluate the integral of oscillating 

-functions (see Eq. (3.7) ). 

The general integral to be evaluated is:
 

I BZ 3c 

f d3 q f(Q), (A.1) 
N q.(2r) ' HBZ 

where f(p) is assumed to be invariant under the operations of the crystal
 

point group, and is the primitive cell volume. (If f(Q is not symmetric,
 

it can, of course, be easily symmetrized.) One expands f(j) in symmetrized
 

plane waves Am
 

0 


f(fl) = f + M fmAM(q), (A.2) 

with
 

A ( Es e % (A.3) 
m ; 

and
 

1 Q d3q f(%) A (g). (A.4)
m Nm TI~7JZ 

X;m refers-to all lattice vectors 7 with the same length X that are related
 

th
 

by point group operations. Nm is the number of vectors in this m shell,
 

and the sum in Eq. (A.2) is ordered so that those shells with lowest X come
 

first.
 

A set {qj of special points is defined as a set of n points in the Hz
 

with associated weights a. which satisfy:
 

n
 
i a A (q-) = 0 for m = 1, ... , N, (A.5)
 

- 19 
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n 

=
ai 1. (A.6)
 

Using Eqs. (A.5) and (A.6) in Eq. (A.2):
 

n n 
f =l a. f(q) - iEl CAN+ (q ) f N+l + " (A.7) 

Since f is the desired integral, Eq. (A.7) gives an approximation to the
o 

integral consisting of an evaluation of f(q) at a (small) set of points. 

The first neglected term can be shown to be + f N+l. Not all coefficients 

f for m > N have been neglected, as Eq. (A.5) is always satisfied for anm 

infinite number of shells. The index of the first shell for which Eq. (A.5)
 

is not satisfied is N+l. With increasing number of points n in the set, both
 

the number and the magnitude of the neglected terms become smaller.
 

At T = 0°K , TrA (0) - Z l/w(jq) is a smobth function, and we may 

apply the special point method. Although the expansion coefficients f 
m 

decrease slowly with increasing m for large m, they are much smaller than
 

TrA0(0) itself. Thus we expect increasing the number of special points n
 

to have a small effect on TrA (0). From Table A-I we see the convergence
 

is more rapid for T = 00K than for T = 900K. 

The calculation of A (X ), xi # 0 is more troublesome, and we illus­

trate by examining the Trace of this matrix. Symmetrizing the integral of 

A (XW: 

1 
TrA (Xi) (Jq) Ai " (A.8) 

Applying the special point method to this integral means neglecting some of the
 

coefficients T whose form is (we are at T= OK):
 
m 

Y= B33 (JFI AiAm (A.9) 
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Now A.A is itself a sum of symmetrized plane waves:

I m
 

A.(q)A (q) = S a.(i,m)A.(q), (A.10)
-m M jI 

where the first j for which a.(i,m)$0 is that for which X. = Ixm- X.i 

From Eq.s (A.8)-(A.10) it is clear that the T for large m will be much less 

than TrA (X.) only if the f themselves decrease rapidly with increasing m. 

This, however, is not the case, for just as in Eq.(3.16), 

HZ 1 1 
Lim E Ai (q )  2(A.1ii) 

x.- q w(J) x i 

The origin of this behavior is the 1 behavior of 1 asq ,
 
q W(JO) 

To circumvent this difficulty one must find a matrix M (q) whose behavior
 

at the origin is the same as that of e (jq)e (jq

j we(jq), and which leads 

to an integral dq (q) cos(q.X)
3 which can be evaluated analytically.
 
BZ N
 

Then we write:
 

Aa(Xi)= 
BZ- h-7e (a)e M( x 

-

h 
K j ejg)e(J - CL~)a 

hEBZ
 
(A.12)
+ -K qS M (q) cos(cp.)M a5­

and compute the first integral by the special point melod. Since the integrand
 

has no troublesome - behavior, its expansion coefficients T should then 
q m 

decrease rapidly, and the number of special points then needed for an accurate 

determination of A c(X ) should be (and is in fact) correspondingly small. 

To simplify the calculation, we have actually only treated the Trace 

of A (Xi in the above fashion, subtracting off a function M(q) whose) 
1o 1 I 

behavior as q -0 
-dw 

is approximately that of 3 
3o wt(jq) 

(As q - 0, 

S ----
JUY3dd(q)qI 

where d(4) is a function of direction. We have approximated 

http:Eq.(3.16
http:A.8)-(A.10
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d(j) with dfl where the c are the three speeds of sound.)
 

Tables A-I and A-I show the elements of A CX) for Xi in the first shells
, 


'
 (T = 00 K) , TrA (X ), and A (0) for T = 00K and T = 90'K. Three different 

(bce) special point sets were used, with n = 8, 40, and 240. Although one 

can only expect TrA (X ) to converge well, the individual matrix elements 

also show good convergence. 
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FIGURE CAPTIONS
 

Fig. 1 Structure factor s(k) and the one-phonon contribution S (k) for Na at 

T=0°K along [100]. For all the structure factor and cross section plots,
 

the ordinate is in absolute units.
 

Fig. 2 Structure. factor S(k) for Na at T=0OK and T=900K along [100]. 

Fig. 3 Structure factorS(k) for Na at T=00 K and T=90°K along [110].
 

Fig. 4 Structure factor S(k) for Na at T=0K and T=900 K along [110]. Note the
 

expanded vertical scale.
 

Fig. 5 Structure factor S(k) for Na at T=0K and T=900K along [Il]. 

Fig. 6 Structure factor S(k) for Na at T=001K and T=900K along [211].
 

Fig. 7 Structure factor S(k) for Na at T=0°K and T=900K along [310].
 

Fig. 8 Structure factor S(k) for 6Li and 7Li at T=0°K along [00]. 
Fig. 9 Structure factor S(k) for 6Li and 7Li at T=0K along [100]. 

6" 7
Fig.10 Structure factor S(k) for 6Li and Li at T=00 K along [110].
 

Fig.11 Lines of equal value of the function I/clq(k)j in a (001) plane of the
 

lattice reciprocal to the bee lattice. R is the point -(0,0,0), P then
 
a 

point T (T,y, 0), and S is the point _ (3, 1, 0), where a is the lattice 
a 22a
 

constant. The numbers 1.00,0.50,0.33, and 0.25 indicate the relative value of the
 

function.
 

Fig.12 Cross sections W(k) and W (k) for Na at T=0°K along [100]. 
Fig.l3 Cross sections W(k) and WI(k) for Na at T=0 0 K along [110]. 

Fig.14 Cross sections W(k) and W (k) for Na at T=0K along [110].
 

Fig.15 Cross sections W(k) and W (k) for Na at T=01K along [100]. Note the ex­

panded vertical and horizontal scales, and the position of k=2kf.
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Fig.16 Cross section W(k) for 7Li at T=00K along [110] for two different values
 

of the core radius, re=.06 and r =2.00. Note the expanded horizontal
 

scale.
 

Fig.17 Cross section W(O) for 7Li at T=0cK along [111] for two different values
 

of the core radius, r =1.06 and r =2.00. Note the expanded vertical and
 
e c 

horizontal scales.
 

Fig.18 Cross section with all Compton scattering subtracted, W( )-Se (k), for
 

7Li at T=00K along [111], for two different values of the core radius,
 

rc=1.06 and r =2.00. Note the expanded vertical and horizontal scales.
 



TABLE I. Structure factor of Sodium at T=00 K along [100]. S(k) vs. Q, where
 

t(1,0,0).
 

0 (k) 3(k) 0 s(k) 0 (k) 
0,050 3,34E0o4 1,950 4,71E-01 3,6on 2.32E-01 5,250 3,39E01 
0,100 6,75E.04 1,970 7,9E-01 3,650 2,58E.01 5,300 3.51E-01 
0,15) 1,03EW03 11,90 1,20E O0 3.700 2,92E-01 5,350 3,b5E-01 
0,200 1041E.03 1,998 1,22E 01 3,750 3,A1E-01 ;,400 3,61E-01 
0,250 1,bIE-03 2.002 1,22E 01 3,800 zIVI1E0-01 5,450 3.99E-01 
0,300 2,25E03 2,020 1,2LIE 00 3,850 5,3bE-oI 5,5o 4,2oE-01 
0,350 
0,00 

2,72E-03 
3,24E-03 

R,030 
2,050 

8 :39E-01 
5,I6E-01 

3,900 
3t950 

7,82E-01 
1,5aE 00 

5,550 
5,6o0 

",aE-01 
4,7 5F-01 

0V1150 3,81IE03 2,100 2.75F-01 3.970 2,51E 00 5,550 5.14E-01 
0,500 4042E.03 2,150 1,97E-0C 3,980 3,75E '00 700' 5,bE-0 

0,550 5,O6E-03 2,200 1,59E-01 3,998 3,71E 01 5,750 6.38E01 
0,600 5p78E-03 2,250 1,37FE201 /1,002 3,72F 01 5,800 7.45E'01 
09650 6052E-o3 2,300 1,24F-01 1,020 3,80E 00 5,850 9,23E-01 
0,700 7,31E-03 2,350 1,16E-0l 1,030 2,56E 00 5,QoO t,28E 00 
0,750 8,14E-.03 2,00 1,i1E-0 _1,050 i57E 00.. 5,v50 2,P31E 00 
0,O00 9.03E-03 2,450 1,07E-01 1,100 8040E01 5,976 3,76, 00­
0,850 
0,o900 

9,98E-03 
~1O.10E2 

2,500 
-2 550. 

t,05E-01 
1.0I4E01 

11,150 
,a,200 

6,OOE-01 
a,84E-01 

5980 
5,998 

5o52E n0 
5.33F 0 

°0,950 1,22E-02 2.600 1 0 E-(Ot 1,250 al7E-01 62002 5,33E 01 
0,970 I2bE-02 2,650 1,04E-01 t1,360 3,7Ja-01 6,n20 5,5E 00 
0o980 1,29Ec02 2,7o0 1,0uE201 £,350 3,4EO . 6,030 3,77E 00 
0,998 1,34E-02 2.750 1,05E-01 4200' 3'27E-010"'6,050 2.36E 00 
1,002 1,35E-02 2,8no 1,06E-01 11050 3,130E01 6,100 1,312 00 
1,020 1,40E-02 2,850 1,OBE-0l 4,500 3.04E-01 6,150 9 ,69E-01 
1,030 1,3E-02 2,900 l,10EO01 4,550 2,97EoO 6,200 8,01E-01 
1#050 1948E-02 2,950 1,13E-01 4600 2,93E-01 6,250 7,04F-01 
t,100 1,b6E.02 2,970 1,14E-01. 1650 2089E-01 - . O3006,42F-01 
1,150 1,82E-02 20980 1,15E-01 4,700 2,87E"01 6,350 6,OO.E'01 
1,200 2,02Em02 2998 1,ibE-01 ,750 2,86E-01 6v400 5,70E-01 
1,250 2,25E-02 3,002 t,16E-01 4,800 2,8b2-01 6,460 5,UE01 
j,300 2,50EV02 3,020 I,t8-ol 4.850 2.87E-01 6,500 5,34F-01 
I,350 2e79E-02 3,030 1.18Eo01 4,900 2,89En01 6,550 5,23E-01 
1,400 3911P-02 3,050 1,20E-01 14950 292E-0 6,600 5,15E'01 
1,150 3048E02 3,100 1,25E-01 4,970 2,q E.01 6,650 5,09E-01 
19500 3,91EV02 3,150 1,31E-01 IE980 2,95E-01 6,700 5,05E-01 
1.550 4,43E-02 3,200 1,37F-01 U,9Q8 2,97E-01 6,750 5,02E-01 
11600 5.07E-02 3,250 1,44E-01 5,002 ,97E-01 6,800 5,00E-01 
I1650 5,89E202 3,300 1,52E-01 5,020 2.99E-01 6,850 5,01E-01 
1,700 b6q8E-02 3,350 1,61E-01 59030 3,OOErO 6,900 5,02E"01 
1,750 8,53Ew02 3,400 1.71E-01 5,050 3,03E-01 6,950 5,05E-01 
19800 1,09E.01 3,450 1183E-01 5,300 3,10E-01 6,970 5,07E-01 
1.850 1,48E.01 3,500 1,96E-01 5,150 3,18E-01 6980 5,08E-01 
19900 2,28E-01 3,550 212E-01 5,200 3,28E-01 6,9q8 5.IOE'01 
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TABLE I. Structure factor of Sodium at T=O0 Kalong [110]. S(k) vs. Q, where
 
2n 

k= -TTq (11,0).
'a
 

0,025 
M(k) 

1,92E-0a 
Q 

0,975 
S(k ) 

2,MtE'01 
Q 

1,800 
8(k) 

j,27E-0l 
0 

2,625 
s(k) 

1,74E-O1 
09050 
0,075 

3,86Eo04 
5,83k,0 

0,985 
0,990 

U,76E-01 
7,21E-01 

1,825 
1,850 

t,U5E-Ot 
1.b9E-0I 

2,650 
P,b75 

1,82E-01 
1,91E-01 

0,100 
0.125 

7,8aE-Oa 
9,91E04 

0,99q 
1,001 

7,32E 00 
7,35E O0 

1,875 
1,900 

,0o3E-01 
2,5En01 

2,700 
2%725 

2,03E-01 
2,16E-01 

09150 1i21E-3 1.010 7,49E-Oi 1,925 3,39E-01 20750 2,33E'01 
0,175 
0,200 
09225 

1943E-03 
167E"03 
1,92E-03 

1,015 
1,025 
1,050 

S,0aE-01 
3,09E-01 
1,63E-01 

1,950 
1,975 
1,985 

5,09E=0j 
1,02E 00 
1,70E 00 

2.775 
2,800 
2,825 

2,54E-01 
2,80E01 
3,14E01 

0,250 2,18E.03 1,075 1,15E-Oj 1,990 2,56E 00 2,850 -3,59E-01 
0,275 2/46EwO3 1,100 9,14E-02 1,999 2,56E 01" 2,875 4..21E01 
0,300 2,7bE-03 1.125 7,76Ea02 p,00j 2,56E" 0 2,900 5.14E-0j 
0,325 
0,350 

3,09E-03 
3,a4kR03 

1,150 
V,175 

6.8>E-02 
b,26E-02 

2,010 
2,015 

2,6OE 00 
1.,75E 00 

2,925 
2,950 

6,69E-01 
9,76E-01 

00375 
O,aO0 

3p82Ec03 
4,23E-03 

1,200 
1,225 

S,83E-02 
S,53E-02 

2,o25 
2,050 

1,O6E 00 
5,55E-01 

2,975 
20985 

1,90E 00-
3,12E 00 

0*42 uo68E-03 1,250 5,31E-O2 2,075 3,86E-01- 2,90 4.65E 00 
09a50 
0,475 

517Ev03 
572EU03 

1,275 
1,300 

5.17E-02 
5QOE02 

2,100 
2,125 

3,03E-01 
2,54E-01 " 

2q999 
3..ol 

4,60E 01 
4,66E 01 

0,485 5,95E-03 1,325 5,03E-02 2,150 2,22E-01 3,010 4,b9E 00 
0,490 60?E-03 1,3.50 5,O1E-02 2,175 1,99E-01 3,015 3.16i" 00 
0,499 6,29E.03 1,37.5 5,04E-02 20200 1,83E-()1 3,02S 1,9/a 00, 
0,501 6234Ea03 1,400 5,09E"02 2,225 1,71E-01 3,050 1,02E 00 
0.510 6957Ew03 1,425 5,17E"02 2,250 l,b3E01 3,075 7,18ER01 
00515 6,70E-03 1.450 5.28E-02 2,275-,56E-01 3,100" 5,68E-DO 
o,25 6e98Eo03 1,475 5,alE-02 2,300 i,51E-01 30125 4,9E-01 
0,550 772E-03 1.485 5.8ME-02 2,325 1,SE-Ot 39150 a.2OE-01 
0,575 8,56E-03 1.490 5,51E-02 2,350 1,45E-01 3.175 3.79F-01 
0,600 9,50Ec03 1.A99 5.57E-02 2,375 1,4E01 3,200 '3,50E=01 
05625 
0,650 

1906E.02 
1418F-02 

1,5*n 
1,510 

5159E-02 
5,65E-02 

2,100 
2v425 

1,''E01 
i,44E-01 

3,225 
3,250 

3.27E-0 1 
3,1ORo1 

0,675 
09700 

1133E-02 
s5OEw02 

1.515 
1,525 

5.69E-02 
5,78E-02 

2,450 
2,475 

t,aSEcO 
1,47F01 

3,275 
30300 

2.98F-01 
2,88E-01 

09725 
0,750 

1,70E-o2 
1,95E-02 

1,550 
1,575 

bOIE"02 
6928p'02 

2,485 
2,490 

1,48E-01 
1,aSEf-O 

3,325 
3,350 

2,81E-01 
2,76E- 01 

0,775 2,25E02 1,600 b9O-02 2,499 1,a9E-01 3,375 2,73E-01 
o8OO 2O63E"02 1,625 6,QSE-02 2,501 1,419E-01 3.400 2.71E-01 
01825 3,13E-02 1.650 7,tOEm02 2,510 1,50E-01 3aa25 270E-nl 
0,850 
0875 
0,900 

3a81E.02 
44,7bE02 
6019F-02 

1,675 
1,700 
1,725 

7,93E-02
8 .54E-02 
9,27E-02 

2,515 
2,5?s 
2,550 

151E01 
1.52E-01 
1,56E-01 

3,450 
3,475 
3.85 

2.71FE01 
2 73E-O 
2,74E-01 

0,925 8,61EO270 ,7S0 1,02E"1 2,575 1,61E-01 3,,sO 2,74E-01 
00950 1,35E-01 1,775 1.13E-01 2,bOO 1.67E-Ot 3,4q9 2,75E-01 
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TABLr III. Structure factor of Sodium at T=0°K along [111]- S(k) vs. Q,
 

where k = 21T Q(1,1,1).

a
 

0,050 
(k 

4,51E04 
0 

1,950 
8(k) 

5,63F-01 
0 

3,600 
S(k) 

q,31E-OI 5,250 
S$(k) 

8, 9 3E-01 
0,100 9o31E ()4 1,970 9,24E-O1 30650 ,3bE-01 5.300 9,03E-01 
0,150 1,47E.03 1,980 1,38E 00 3,700 4,52E-01 s,350 9,62F-01 
0,200 29IIE-03 11998 1,36E 01 3,750 1j,1E-O1 5,400 9,03E-01 

0250 2,90E-03 2,002 1,36E 01 3,800 S.32Ew01 5,u50 8.40FOl 
" 09300 3R88E-03 2,020 1,4P? g0 3,850 6,24E-01 5,500 7,94E-01 
09350 5,14E"03 2,030 9 .68E-01 3,900 R,03E-01 5,550 7,65p-01 
0,400 680E-03 2,050 6,09EM03 3,950 1930E 00 5,600 7,52E-01 
0,450 9,11E03 2,100 3.'55E-01 3,970 hqSE O0 5,650 7,54E-01 

0.500 t,24E"02 21190 2,62E-01 3,980 275E 00 5,700 7,bbwOI 
0,550 1,75E"02 2.200 2,26F-01 3,998 2,144E 01 5,750 7.88E-01 
09600 2,50EE02 2,250 2,10E-01 1,002 2.44E 01 5,800 8,28E-01 
0,650 3,17E.Q2 2,300 2,05E-01 4,020 ?,76E 00 5,650 8.96E-01 
0.700 4209Eo02 2,350 2909E-0 4.030 iq E on 5,900 1,02E 00 
0,750 4,02E.02 2.400 2,20E-01 4,050 1,32E 00 5,9q0 1,33F o0 
0800 3,73E-02 29450 2.39E-01 1,v100 8,JIE-01 5,970 1,71E 00 
0,850 3a56E-02 2.500 2.71E-01 4050 6,79E-01 5080 2,18E 0 
oqQOO 3,54EnO2 2,550 3919E8 .0200 62OE1Ol 58ogS._.1,47E 00 
O950 3,67E.02 2.600 3,85E01 4,25n 5,70F-01 sOe 1,47E 01­
0,970 3977E-02 2,650 4.56F-01 b,300 5.58E-01 6:020 1,16E on 
0,980 
0,998 

3v83E.02 
3,96E-02 

2.700 
2,750 

'476Em01 
430E01 

1, S0 
t1,400 

SS9E-Ol 
5,73E­ 0 1 

6,030 
6,090 

1,69E 00 
1,32E 00 

I1002 3,99E-02 2,800 3,75E-01 /4,4O 6.01E-01 6o100 1,03E 00 
A9020 a,15E-02 2 850 3.36F:01 1eO00 6 48 E-01 6,150 _920E301 
1,030 4,25E-02 2,900 3,15E-01 4,550 7,15E-01 6,200 8,66E-01' 
1,050 4,47Eo2 2,950 3.07E-01 4,6AO 8,OIE-01 6,250 8oAIE-01 
1,100 5,2E-02 2,970 3.07E-01 1,650 8,83F-01 6,300 8,32E-01 
1,150 b,4lE-02 2,980 3,0E101 le70o 8,97E-01 6t350 8,32F-01 
1,200 8,21E-02 2 998 3,11E-01 Q750 8,32E-01 6,1400 8,41E-01 
1,250 1,08ErOl 3,00a 3,1IF-01 4,800 7,55E-01 6,450 8,b1E-01 
1,300 le3SE01 3,020 3,15E-o1 11,850 6,99E 01 6.500 "8.93f-01 
,350 

1, 00 
1942E-01 

1,30Eol 
330 
3?050 

3,18"0l 
3,25E-ni 

110O0 
4q950 

6.06E"1 
6,54E-01 

6,550 
6,600 

9,35E01 
9,62E-01 

j9450 1016Ea01 3,100 3,51E-01 4,970 6.53E01 6,650 1,02E 00 
1,500 1007E-O1 3,150 3,91E"0t 4,980 6.531-O 6,7o0 1,03E 00 
1,550 1.03E-OI 3 2o0 (4,60E-01 ,9998 6,55F-01 6,750 9,89-01 
1,600 1,OaE-01 3.2Zo 5,U8t-01 5,002 6s5bE.01 6,800 9,5E-01 
1,650 1,09E=01 3,300 6,29F-01 5,020 6,59E-01 6,850 9,12E-01 
1,700 I,ISEw01 3,350 6,33E-01 5,030 6,62E (() 6P900 8.91E-01 
1,750 1033E-01 3,40 5,71E-01 5,050 6,69E-01 6,950 8.S3E-01 
I,800 1,57E.01 3,450 5.08E-01 5,100 6.,qE-01 6,970 8,b3E-01 

1.850 2,OEO01 3,500 /J,6SE-O1 5,150 7,42E-01 6,q80 8,83E-01 
1,qOO 2,91Eol 3,550 o,40E01 5,200 A.i0E-0h 6,99J 8,84E-01" 
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TABLE IV. Structure factor of Lithium-7 at T=Ot along [ll]. S(k) vs. Q,
 

where k = Q(1, l,1). 
- a 

S (k 0 Sk) 0 S(k) 0 $(k) 

0,050 1,02Eoo3 1,%90 1,02E o 3,600 6,78E-01 5,250 !,OIF 0 

0,100 2,07E.03 1,970 1,'63E 00 3,650 6,86E.01 5,300 1,0E 00 
0,150 3,20E.03 1,980 2,39E 00 3,700 7,06r .01 5,350 *014E 00 

0,200 4,46E.03 1,998 2,28E 01 3,750 7,39E-Oi 5,40o 1,01E 00 
0,250 5,91E-f)3 2,002 2,28E 01 3,800 7,93E-01 5,050 9.86E-01 
0q300 7 9 68Ec03 2,12O 2,43E nO 3,850 8,83E0l 5,500 9,64E01 

01350 9,Q1Em03 2,030 1,68E 00 3,900 t,o4E 00 5,550 9,50E01 
0,400 1,30E-02 2,050 1.08E On 3,950 IAOE00 5,600 9,O4E-O 
09450 1,73EaO2 2,100 6,33E-01 3,970 I,83E 00 5,690 9,49E-01 
0,500 
0 55n 

2,38E.02 
3.43E-02 

2,150 
2,2n0 

1.84EOt 
£,14E-01 

3v980 
3,996 

2.36E 00 
1,65E O1 

5,700 
5,750 

q.5OE-01 
9.59Er0I " 

0,600 5,18E02 2,250 3,82E-01 4,002 1,64E 01 5,8eo 9, 73E-01 
0,650 
0,700 

7,70E=02 
9,17E-02 

2,300 
2,350 

3.7yE-O1 
3,72E'01 

Ovoa0 
4,030 

2,33E 
1,80E 

00 
00 

5,850 
5,900 

9,95E01 
1.03E 00 

0,750 8,0aE-02 2,000 3,86E-01 £,050 1,38E 00 5,950 1,08E 00 
0,800 7,47E.o0 2,50 a,16E-01 1,10n 1,05E 00 5,970 1,13E 00 

o850 t,96E=02 2 500 4,66E-01 4,150 9.19E-1 _5,980 1,2oE 00 
0,900 6,85E 02 2,550 5,44E-01 1,200 Ag5 3 E 01 5,998 2,91E 00 
0,950 7,OQE-02 2,600 6.56E-01 /1,250 8,23E-01 6,002 2,89E 00 

0,970 7,2IE-02 2,650 7,84E-01 4,300 8,1 Ea 1 6 020 1,19E 00 
-0,980 7,3QE-02 2,700 8,14E-01 /,350 s,13E-01 6,030 1,12E 00 
0,998 
1,002 

7,63Em02 
7,69Ec02 

2,750 
2.800 

7,18E-0i 
6,2s0t1 

1,000 
,14450 

8,23E-01 
8,4bE-01 

6,0O 
6,inO 

1.07E 00 
1.02E 00 

1,020" 7,99E=02 2,890 5,64E-01 /19,500 ,85E- 1 6,150 9,97E-01 

1,030 8,18E-02 2,90o 5,32E-ot 4,550- (,36E-01 6, 00 9.8E-01 
1,050 8,6tE-02 2,950 5,23E-01 14,600 9,9SEc00 6,250 9,77E=01 
1,100 
l,15'( 
j,20o 

1,oIE"01 
l24Eo01 
1,61E.0l 

2,970 5,24E'.Ol 
2,980 5,2bE-01 
2,908" 5,29E-01 

1,465O 
4,700 
4,750 

1,05E 00 
1,05E 00 
1,0E O0 

6,300 
6,350 
6,400 

9,75E-01 
9,7 6E­ 0 1 
9,78F-01 

1,250 2,19E-o 3.002 5,30E-01 U.800 g,52E01 6,4i0 9,84F-01 
19300 2,87E01 3,020 5,35E-01 14,50 q,16Fn01 6,500 9,91E-01 
1,350 2,98E.01 3,030 5,39E-01 4,900 8,96M-01 6,550 !oOOE 00 
1,aO0 2,55E-01 3,00 5A8E-01 1,950 8,89E-01 6,6o0 1,01E 00 
1,0450 2,16E01 3,100 562E-01 a,970 8,89E-01 6,650 1,01E 00 

1,50) j,98En01 ,150 6,38E-Oj 14,980 8,89E-01 b,TnO 1,01E )0 

1,550 iQoE-Ol 3,200 7,24E-01 ,9q8 A,91E-01 6750 1,0)1E 00 
1,600 1,91E-01 3,250 8,41E01 5,002 8,91F-01 6,800 9,9E01 
1,650 2,02F-Ot 3,300 9,55E-01 5,020 R,93E-01 6,850 9,94F-01 

1,700 2,22E.0i 3,350 9,52Eo'1 5,030 A.95E-0 1 6,900 9,9oE01 

1.750 2 52 EIOl 3,00 8,58E-01 9,00 ;1,99E-01 btS 0 9,89E-01 
1,8On 3.02E..o 3,450 7,75E-01 5,100 q,1SE-01 6,970 9,89E-01 
11850 3,87E-01 3,500 7.19EM01 5,150 9,40E-01 6,980 9,69E-01 
jqOO 5,53E"01 3,550 6,88E-01 5,200 9,73E-01 6p998 9,89F-01 

I 
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M0
TABLE A-I. = (2kf)2A (in units of 10-2). 

X(R) = (2kf) 2 . Tr A (R) (in units of 10-2). 

N is the number-of special points.
 

(Na, T=O0 K). 

N 


M0 (T=00 K) 


MO(T=900K) 


MM=1 (1, 1,1)) 

M(R=(2,0,0)) 


M(R=(2,2,0)) 


M(R=(3,1,1 )) 


M(R=(2,2,2)) 


M(R=(4,0,0)) 


M(R=(3,3,1)) 


M(R=(4,2,0)) 


M(R=(4,2,2)) 


8 


3.4367 


7.9897 


1.126 


0.538 


0.283 


0.240 


0.473 


0.174 


0.169 


0.140 


0.116 


40 240 

3.4762 3.4832 

8.5890 8.8258 

1.134 1.133 

0.541 0.540 

0.261 0.259 

0.223 0.221 

0.479 0.477 

0.167 0.164 

0.152 0.148 

0.099 0.095 

0.137 0.113 
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) 2 CR) (in units of 10-3).TABLE A-T. M ) -(2k 


apf a 0 I
 

N is the number of special points.
 

a 
(Na, T=0 K). 

N M M M M M M 
xx xy yy xz yz zz 

I[=(1,1,1) 8 
40 

3.754 
3.780 

2.610 
2.664 

3.754 
3.780 

2.610 
2.664 

2.610 
2.664 

3.754 
3.780 

240 3.778 2.666 3.778 2.666 2.666 3.778 

R (2,0,0) 8 0.822 0 2.278 0 0 2.278 

40 0.716 0 2.345 0 0 2.345 

240 0.708 0 2.345 0 0 2.345 

R=(2,2,0) 8 1.278 0.698 1.278 0 0 0.270 

40 1.2-15 0.740 1.215 0 0 0.184 

240 1.207 0:744 1.207 0 0 0.181 

R=(3,1,1) 8 0.715 0.225 0.842 0.225 0.316 0.842 

40 0.557 0.230 0.836 0.230 0.444 0.836 

240 0.541 0.233 0.832 0.233 0.448 0.832 

R=(2,2,2) 8 1.578 1.039 1.578 1.039 1.039 1.578 

40 1.598 1.133 1.598 1.133 1.133 1.598 

240 1.589 1.139 1.589 1.139 1.139 1.589 

R=(4,0,0) 8 0.581 0 0.581 0 0 0.581 

40 0.212 0 0.727 0 0 0.727 

240 0.186 0 0.730 0 0 0.730 

R=(3,3,I) 8 0.680 0.528 0.680 0.073 0.073 0.331 

40 0.668 0.458 0.668 0.120 0.120 0.188 

240 0.653 0.464 0.653 0.125 0.125 0.179 

,R=(4,2,0) 8 0.465 0.275 0.465 0 0 0.465 

40 0.356 0.167 0.400 0 0 0.234 

240 0.331 0.171 0.391 0 0 0.227 

R=(4,2,2) 8 0.388 0.304 0.388 0.304 -0 0.388 

40 0.386 0.208 0.491 0.208 0.303 0.491 

240 - 0.363 0.214 0.482 0.214 0.314 0.482 
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2.00 

1.50o-- vs arQQ(1,OO) 

Na 

1.00 -(T=0 0 K) 

0.50-Sk 

0.00
 
0.00 1.00 2.00 3.00 4.00 5.00 6.00 



2.00 
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Na 
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2.50 S (-) vs Q 

a200-66Lit 7L iLi, L 
(T= 0OK) 
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6 Li 
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7 Li 
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20.00 

15.00 -~2v 
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No 

10.00 -(T=0 0 K) 
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L 
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20.00 -w(f, wTO 

vs Q 

15.00 27rQ (1.1,0) 
Na 

10.00 (T=0 0K) 
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w0 ( 
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4.00 
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Na 
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(T = K) 

-k 2-7rQ(I,O,O)W­
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