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ABSTRACT

An analytical model of a blister type specimen for evaluating adhes-

ive bond strength is developed. Plate theory with shear deformation is

used to model the deformation of the plate and elastic deformation of the

adhesive layer is taken into account. It is shown that the inclusion of

the elastic deformation of the adhesive layer can have a significant in-

fluence in the energy balance calculations of fracture mechanics.

INTRODUCTION

The increasing use of adhesives in the development of high strength

composite materials and in the joining of structural components has brought

about the need for standard methods of testing the strength properties of

adhesives. One such test proposed for use under a variety of environmen-

tal conditions involves a blister specimen subjected to pressure loading

[1], [2]. This test employs a circular plate, usually of uniform thick-

ness, bonded through a concentric annular adhesive layer to a flat sup-

porting surface. During testing, the plate is loaded by means of fluid
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pressure applied to the unbonded concentric center portion of the plate.

Figure 1 shows a sketch of a circular plate blister specimen of radius b

bonded over the annular area a< x< b to the rigid supporting surface.

After a test to initial debonding or to failure, the specific adhesive

fracture energy ya of the bond is calculated by means of an energy balance,

which relates ya to the pressure loading at initiation of debonding and

the elastic and geometric properties of the specimen.

The curves given in [2] for determining ya are calculated by either

plate theory or the finite element method. In these calculations it is

assumed that the adhesive layer is so thin that the plate may be consid-

ered to be bonded rigidly to the support neglecting the compliance of the

adhesive layer. Such an assumption is reasonable when the elastic modu-

lus of the plate has the same order of magnitude as that of the adhesive

and the thickness of the adhesive layer is small in comparison with the

plate thickness. However, when the circular plate is metal, the adhesive

can have a much lower elastic modulus. In such a case the compliance of

the adhesive layer may no longer be neglected in the energy balance cal-

culations.

The purpose of this paper is to investigate the effect of the adhes-

ive layer compliance on the fracture mechanics of thin plate blister

specimens. Since linear plate theory is employed, the results are rr:-

stricted to small values of h/a. Also, the maximum plate deflection must

be somewhat less than the plate thickness. Because of the similarities

of analysis of circular plate bending and cylindrical bending under plane

strain conditions, both cases are treated in this paper.

1-1
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ANALYSIS

The present analysis treats the plate using equations of a plate theory

which includes deformations of bending, in-plane extension, and transverse

shear. For the one dimensional problems of cylindrical bending (plane

strain) or of axisymmetric deformation of a plate the displacement field

is described completely by means of the variables u, w, and S. The stres-

ses in the plate are related to the stress resultants and stress couples

N1 , N21 Q, Ni , and N2 through the usual formulas of plate theory, where

the in-plane normal stress varies linearly across the thickness, the

transverse shearing stress varies parabolically, and the transverse nor-

mal stress is considered to be small. The independent variable x is

shown in Figure 1. Plate theory equilibrium equations are

dNl/dx - T + cl(N2 - Nl)/x
	

(1)

'	 dQ/dx = - q - cl Q/x
	

(2)

'dM1 /dx = m + Q + cl(N2 - N 1 )/ x	(3)

where c  is equal to 0 for the plane strain case and equal to 1 for the

axisym metric case. The distributed moment m is given by

m = hT
	

(4)

where h us equal to h/2 if coupling between bending and extension is con-

sidered and is 0 if this effect is neglected. The strain displacement

equations are

E2 : c
l u/x , du/dx -- El
	

(5)
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K2 n cl s/x , do/dx - K1 	 (7)

These equations are coupled through the stress-strain relations

N  = K(el + VC 
2)
	 (8)

N2 = K(e2 + vEl )	 (9)

Y = c2 (Q + m/6)/C	 (10)

Ml = D(K1 + vK2 )	 (11)

M2 = D(K2 + wcl )	 (12)

where the plate rigidities K, C, and D are given by

K = Eh/(1 - v2 )	 (13)

.	 C - 5Gh/6 = 50 - v)K/12 	 (14)

D - Kh2/12	 (15)

and the constant c2 is to be set equal to 1 if transverse shear deforma-

tion is included or set equal to 0 if it is ignored.

The thin adhesive layer has an elastic modulus smaller than

that of the plate; therefore, it is reasonable to ignore the in-plane

stress components in the adhesive layer when computing equilibrium of the

plate and adhesive layer together. Hence, the adhesive layer is treated

as a distributed spring or elastic foundation which transmits normal and

shear stresses between the plate and the rigid support. Accordingly,
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the surface loads on the bonded portion of the plate are related to the

plate displacements by means of the expressions

}
q = o = kNw	 (16)

f

for the normal component and

T = kSO + ;0)

for the shear components.

portion of the plate are

q -p

and

T=0

(17)

The corresponding surface loads on the unbonded	 )

(18)
a

+^	 1

(19)

respectively.

The elastic foundation rigidity constants are

k  = B0/ho
	 (20)

for the normal stress and

ks = Go/ho
	 (21)

for the shear' stress. The elastic constant B o is equal to Eo if the nor-

mal stress is assumed to be uniaxial, is equal to E
0
 /0 - vo) if one in-

plane stress and one in-plane strain vanish, and is equal to (1 - v0)E0/

(1 + vo)(1 - 2vo ) if both in-plane strains are assumed to be zero.

If coupling of bending and extension is neglected (; a 0) and trans-

verse shear deformation is ignored (c2' 0), the governing equations of
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the plane strain problem reduce to

._ Willi . 
p/D (22)

for the unbonded portion of the plate and to

W 	 - w/t4 (23)

s.

F	 '

in the bonded portion.	 Here, primes denote differentiation with respect

to x.	 The length t, which characterizes the stiffness ratio of the plate

to the elastic foundation, is given by

t = (D/kN ) (24)

r

The general solutions of (22) and (25) are

w=Al+A2x

23	 4+ Aix	 + A4 	 + px /24D (25)
F

and

W = A5eax cosax + A6eax sinax

+ A7e-ax cosax + A8e-ax sinax (26)

respectively, where the quantities A i are arbitrary constants and

1

a

The constants A i are found from boundary conditions

B=0	 Q=0	 atx=0

=0	 ,	 Q = 0	 ,	 atx=b
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and matching conditions of w, S. M l , and Q at x - a. If (b - a)/,t t 3,

as would be the case for many practical blister test specimens, the con-

stants A5 and A6 become negligible and the boundary conditions at x - b

have negligible influence on the solution.

&I
Once the solution for w(x) has been found, one can evalua • - the max-

imum normal stress in the adhesive layer using

'max - kNw(a)	 (27)

Following through the calculations one obtains the expression

F •. 1

a
Max

/p = (a2/3t2 )wl	(28)

where

wl - (1 + 3,7 .t/a + 3t2/a2 )/(1 + M/a)

Q.'*	 I

For the axisymmetric problem the system of equations reduces to

X
-1 

{x(x-1 (xw')	 p/D
	

(29)

for  < x<a and to

x"1{x[x-l(xw')']'}' _W/t,

	

(30)

for a < x < b when h - 0 and c  - 0.

The general solutions of (29) and (30) are [3]

w = Bl x2log x + B210g x

	

+ B3x2 + B4 + px4/64D
	

(31)
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and

	

W- 	w - B5 ber(x/L) ; B6 bei(x/l)

+ B7 ker(x/t) + B8 kei(x/t)
	

(32)

respectively, where ber, bei, ker, and kei are zero order Kelvin functions.

The boundary conditions that B and Q vanish at x - 0 require that

Bl 0 and B2 - 0. The other constants are found from the boundary con-

ditions

	

..	 Ml -0 , Q-0 atx - b

and matching conditions of w, B, Ml , and Q at x - a. If (b - a)/L > 30

the constants 6 5 and B6 may be set equal to zero, and the plate may be

'Created as infinite; hence, the length b will not appear in the solution.

Also, if a/.t >> 1, some simplification is achieved by using one term

asymptotic formulas for the Kelvin functions. It is expected that these

conditions will be satisfied for many practical blister test specimens.

Calculations of the maximum normal stress in the adhesive layer show

that its value is given by

c
max

/p - (82/U2)w2
	

(33)

where

w2 - [f3 - 4(t/a)fl + 8(.t/a) 2f2 1/1f2 - 2(L/a)f4J

fl - ker2 (a/l) + ke12(a/L)
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f2 - ker(a/.t) kei' (a/.t) - kei (a/L)ker' (a/.t)

f3 - ker(a/l)ker' (a/t) + kei (a/.t)kei' (a/.t)

f4 - ker' 2 (a/.t) + kei'2(a/l)

(b - a)/Z > 3

For cases where coupling of extension and bending effects is included

and transverse shear deformation is considered, numerical solutions to the

governing system of differential equations and boundary conditions may be

obtained by means of any one of the numerical integration techniques which

have been applied successfully to the analysis of shells of revolution.

Results reported later in this paper were obtained by using a multi-

segment numerical integration technique [4] to calculate the plate dis-

placements, stress results, stress couples, and elastic foundation reac-

tions at discrete x values.

CALCULATION OF M/ M

Bennett, Devries, and Williams [1] have proposed the adhesive frac-

ture criteria

3U/ 3A - Ya
	

(34)

for a blister test specimen under pressure loading. Here U is the total

strain energy in the elastic system and A is the debonded area, which is

equal to the length a for a plane specimen of unit width and equal to

vat for the circular specimen. The parameter Ya is the specific adhes-

ive fracture energy, representing the energy required to debond a unit

area.
9



For a linearly elastic system the strain energy U may be computed

from values of the pressure loading and the displacements of the pressur-

ized portion of the plate according to

a
2U - 

fo 
pw dx	 (35)

for the plane problem and

a
2U - 2ff 

fo 
pw x dx	 (36)

for the axisymmetric problem. The displacement w must be found by solving

a boundary value problem. In [1], classical plate theory for thin speci-

mens and a finite element method for thicker specimens are used to calcu-

late 3U/8A for a plate bonded rigidly to a rigid support; i.e. the com-

pliance of the adhesive layer is neglected. Using deflection expressions

of classical plate theory the valu+!s of MUM turn out to be

MUM - p2a4/18D	 (37)

for the plane specimen and [1]

eU/aA - p2a4/1280	 (38)

for the circular plate. In order to apply the fracture criterion (34) to

specimens with compliant adhesive it is necessary to calculate eU/eA for

the plate on elastic foundation model.

Although the evaluation of integrals (35) and (36) for U and the diff-

erentiation with respect to A could in principle be carried out numerically

for the plate on an elastic adhesive layer, a much simpler method for com-

puting ell/eA for this case does exist. Its derivation is given in the

Appendix.
10
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Closed form expressions for 2U/8A may be obtained from (28) and (33)

together with (A-8) of the Appendix (z - 0). The results are

3U/8A - (wl + U242 ) 2p264/18D	 (39)

for the plane strain case and

2U/8A - (w2 + 8,t2/a2 ) 2p2
a4 /128D	 (40)

for the axisymmetric case. Here wl and w2 are functicns of t/a defined

previously in (28) and (33).

RESULTS AND DISCUSSION

Results of calculations of 
omax/p 

using (28) and (33) are given in

Figure 2. The effect of the adhesive layer compliance on the calculated

value of c
max

/p is indicated by the dependence on the dimensionless para-

meter t/a. For small values of .t/a the values of o
max

/p reduce to

o
max

/p a (a/0 2/n	 (41)

where n - 8 for the axisymmetric case and n - 3 for the plane strain case.

In terms of given dimensions and elastic constants of the plate and ad-

hesive layer the ratio .t/a is

.t/a - [E/(1 - v2 )Bo ]4[h3ho/12x4 p
	

(42)

where the first factor indicates the influence of material properties and

the second indicates the influence of geometry. From (41) and (42) one

can see that omax/p becomes singular as ho -o-0, the order of the singular-

ity being given by
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of the differential equations were obtained for aluminum plate-epoxy ad-

hesive test specimens. Figure 4 shows typical curves for the stress dis-

tribution in the adhesive layer. Results of other cases are summarized

in Table 1. In Table 1 the values enclosed in parantheses are based on

the closed form solutions. Numerical analysis for cases with no coupling

of bending and extension and without plate shear deformation show that

the numerical analysis method produces results within one half percent of

.1	 the closed form solutions. It appears that for specimens in the range

included in Table 1 the clo:ld form solutions for the ratio 
omax/p 

are

about 10% too high.	 the inclusion of these second order effects

appears to make negligible change in the calculated values of aU/aA, even

for a ratio h/a as high as 0.25. This does not mean that the results of

the closed form solutions are to be considered accurate for thick plates.

For thick plates the hypothesis of plane sections, assumed in all the

theories employed in this paper, may not be satisfied with sufficient

accuracy. In fact, finite element solutions of [1] indicates that con-

siderable deviations from this hypothesis exist for plates with rigid

adhesive. Calculations show that the ratio Tmax/6max lies in the range

0.20 - 0.25 for all specimens reported in Table 1.

Consider now how th,: material properties of the plate and adhesive

layer entar into the parameter t/a. From (42) it is seen that the material

factor is [E/(1 - v2)Bo ]4, where the elastic constant B o for the adhesive

layer depends on the Young's modulus, the Poisson's ratio, and an assump-

tion regarding the in-plane stress or strain components within the layer.

Of the possible in-plane stress or strain conditions to be assumed, it

would seem that the assumption of no in-plane strain would be most

13



appropriate where a low modulus adhesive is used together with a high mod-

ulus plate and support. In such a case, the normal strain in the adhesive

layer is much larger than the in-plane components. Of course, this assump-

tion is not valid right at the edge of the bond region where one of the

stress conditions might be more appropriate; however, at distances on the

order of ho away from the edge, it is expected that in-plane constraint

of the adhesive layer is achieved within reasonable accuracy.

For the case of in-plane constraint of the adhesive, the material

factor of the t/a ratio becomes

[E/(1 - v2 )B0
P - k(E/Eo)k

where

k = [(1 + vo )(1 - 2vo )/(1 - v2 )(1 - vo)]1

The factor k is not very sensitive to Poisson's ratio v of the plate;

•	 however it becomes quite sensitive to Poisson's ratio v o of the adhesive

for values of vo close to 0.5 as can be seen in Table 2.

Since the material factor appraoches zero for an incompressible ad-

hesive, t/a also approaches zero. For the case t/a - 0, the maximum

normal stress amax in the adhesive layer becomes singular with the dis-

tributed reaction of the elastic foundation model of the adhesive layer

becoming a concentrated line load at the edge. However, since there is

no constraint of the shear deformation of the adhesive layer, this layer

continues to behave as a distributed shear spring with finite values

for Tmax.
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CONCLUSIONS

A structural mechanics approach has been used to investigate the in-

fluence of the elasticity of the adhesive layer on the fracture mechanics

parameters of a blister test specimen. It has been demonstrated that in

some practical cases the effect of adhesive layer elasticity cannot be

r,,	 neglected. A parameter which serves to indicate the importance of ad-

hesive layer compliance in practical calculations has been successfully

identified and is presented in terms of the product of a material factor

and a geometry factor.

While the efforts of this paper have concentrated on the blister

test specimen under uniform pressure loading, the methods of analysis

Presented can also be applied in the case of a blister specimen subjected

to displacement loading.

Some shortcomings of the present structural mechanics approach are

its inability to determine an upper limit of the ratio h/a for which the

results are valid and its inability to determine details of the stress

distribution at points near the edge of the bond region. For this reason

a theory of elasticity study of a blister test specimen with a compliant

adhesive layer would be desirable. With these limitations in view, it is

hoped that the results presented here will prove useful in the process of

standardization of blister specimens for adhesive fracture testing.
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NOMENCLATURE

a	 inner dimension (see Figure 1)

A	 debonded area

b	 outer dimension (see Figure 1)

Bo	elastic constant for adhesive layer

cl ,c2	constants equal to 0 or 1

C	 transverse shear stiffness of plate

D	 bending stiffness of plate

E	 Young's modulus of plate material

Eo 	 Young's modulus of adhesive layer

Go	modulus of rigidity of adhesive layer

h	 plate thickness

ho	thickness of adhesive layer

h	 half thickness of plate or zero

k 
	 adhesive layer transverse normal stiffness

ks	adhesive layer shear stiffness

K	 extensional stiffness of plate

C	 characteristic length

m	 moment of surface loading on plate

Ml ,M2	plate bending moment components

N19N2	 plate membrane stress resultants

p	 applied normal pressure

q	 normal surface loading on plate

Q	 transverse shear resultant in plate

u	 in-plane displacement at middle surface of plate

18



NOMENCLATURE (continued)

U	 total strain energy

w	 transverse displacement of plate

x	 coordinate (radius in axisymmetric problems)

'	 S	 rotation of normal in plate

Y	 transverse shear strain in plate

Ya	 specific adhesive fracture energy

si ,s2	membrane strain components in plate

K19K2	 curvature change components in plate

V	 Poisson's ratio of plate material

vo	Poisson's ratio of adhesive layer

T	 shearing stress in adhesive layer

c	 normal stress in adhesive layer

wl tw2	
function of t/a

19
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APPENDIX

Consider two configurations of the blister specimen subjected to the

same value of applied pressure p. In configuration I with total strain

energy U  the adhesive layer acts as a continuous spring over the coordin-

ate range i< x< b. In configuration II with total strain energy UII , the

adhesive layer 1s debonded over the range a< x< a + lea and acts as a con-

tinuous spring over the range a+ M <x <b. Let AA be new area of debond-

ing in passing from configuration I to configuration II. The derivative

2U/3A is then given by

3U/3A - lim (UII - UI)/&A
M+0

(A-1)

Let Uo be the elastic strain energy stored in the circular plate plus the

strain energy stored in the continuous spring over the range a+ Aa < x< b.

The total elastic strain energy is then given by 	 .

U = Uo + (Q2/2kN + T2/2ks )eA	 (A-2) .

where the last term represents the elastic strain energy of the portion of

the adhesive layer in the range a< x <a + ha. Noting that (Q,T) have

known values (aT
max

) in configuration I and values (-p,0) in config-

uration II one can write

UII-UI=UII-U0I

+ (p2/2kN - Q
max

2
/2kN - T

MAx
2/2ks )AA	 (A-3)

The strain energy Uo is a function of the loads acting on the structure

20
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onsisting of the entire circular plate and the portion of the adhesive

ayer in the range a + Aa <x<  b. Thus,

Uo - Uo(p,FN,Fs)

here FN and Fs are the normal and tangential components, respectively,

of the force transmitted to the structure at x - a + e. These force com-

ponents are given by

FN - -a AA

Fs - -t AA

since they are carried to the structure through the portion of the adhesive

layer which debonds in passing from configuration I to configuration II.

Since the pressure p remains constant during debonding, the change in Uo

may be expressed as

UII - 
UI - ( 8Uo/8FN )AFN	+ .(BUo/8Fs )AFs	(A-4)

where the partial derivatives may be evaluated in configuration I. The

force increment components in passing from configuration I to configura-

tion II are

AFN - (a	 ; p)AA

(A-5)

AFs - Tmax AA

Now combining (A-1) through (A-5) and taking the limit AA-#O results in

•	 21



aW 3A - (omax + p)2/2kN + T max 2/2ks
(A-8)

MUM - (UP/3%)(°max + p) + (aUo/aFs)Tmax

+ p2/2kN - Qmax
2
/2kN - Tm&x2/2ks
	

(A-6)

According to Castigliano's second theorem, the partial derivatives HP/aFN

and au°/aFs are equal to the plate displacement components at the point of

application of FN and Fs . In turn, these displacement components may be

expressed in terms of omax and TM&x through the adhesive layer compliance

relationships. Thus,

WPM  - Qmax/kN

3&/aFs
 - Tmax/kS

	 (A-7)

'Finally,, substituting (A-7) into (A-6) produces the required expression

for BUM.

It might be noted that the derivation of (A-8) did not make use of plate

theory approximations; therefore, it is also valid when the circular

plate is modeled as an elastic continuum instead of a structural plate.
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TABLE 1. RESULTS OF NUMERICAL ANALYSIS

(E/Eo , n 22.4. v = 0.333. vo = 0.35)

Code h/a ho/a 4n D aU/8A /a s p
Amax

/p Tmax/ p t/a

P1.0 .125 .010 1.193 (1..206) 71.0 (78.8) 15.6 .071

Pt.1 .125 .010 1.222 (1.206) 72.0 (78.8) 16.8 .071

Ax.0 .125 .010 1.248 (1.271) 27.4 (30.4) 5.90 .071

Ax.1 .125 .010 1.290 (1.271) 28.2 (30.4) 6.33 .071

Pt.1 .0625 .004 1.081	 (1.097) 282.	 (324.) 76.3 .034

Pt.1 .0625 .010 1.126 (1.123) 192.	 (909.) 40.7 .042

Ax.1 .0625 .004 1.109	 (1.123) 108.	 (124.) 28.7 .034

Ax.1 .0625 .010 1.162	 (1.156) 74.0 (80.2) 15.3 .042

Pt.1 .25 .010 1.409 (1.368) 28.8 (31.0) 6.80 .119

Ax.1 1	 .25 .010 1.550 (1.482) 11.5 (12.0) 2.55 .119

Code:	 Pt. - Plane Strain Case

Ax. - Axisymmetric Case

0 n Shear Deformation of Plate Ignored

1 a Shear Deformation of Plate Included

n n 3 for plane strain case

n - 8 for axisyametric case

23
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TABLE 2. VALUES OF k. (v n 1/3)

vo .25 .3 .35 .4 .45

k .98 .96 .91 .85 .74

vo .48 .49 .499 .4999 .5

k .60 .51 .29 .16 .00
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_ J '	 LIST OF FIGURES

Figure 1. Specimen for Blister Test of Adhesive Bond.

Figure 2. nt2oxmx/a2p vs. t/a.

(a) Axisymeetric case (n • 8)

(b) Plane strain case (n n 3)

Figure 3.	 n D 8 8 /app vs. t/a.

(a) Axisymmetric case (n • 8)

(b) Plane strain case (n n 3)

Figure 4. o/p and T/p vs. x/a by numerical integration method for axi-
symmetric case. Curve (a), Bending only; Curve (b), Bending
and Extension only, Transverse Shear Deformation Neglected;
Curve (c), Bending, Extension, and Shear.
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Figure 4.

o/p and T/p vs. x/a by numerical integration method for axi-
symnetric case. Curve (a), Bending only; Curve (b), Bending

10	
and Extension only, Transverse Shear Deformation Neglc-ted;
Curve (c), Bending, Extension, and Shear.

J


	GeneralDisclaimer.pdf
	0019A03.pdf
	0019A03_.pdf
	0019A04.pdf
	0019A05.pdf
	0019A06.pdf
	0019A07.pdf
	0019A08.pdf
	0019A09.pdf
	0019A10.pdf
	0019A11.pdf
	0019A12.pdf
	0019A13.pdf
	0019A14.pdf
	0019B02.pdf
	0019B03.pdf
	0019B04.pdf
	0019B05.pdf
	0019B06.pdf
	0019B07.pdf
	0019B08.pdf
	0019B09.pdf
	0019B10.pdf
	0019B11.pdf
	0019B12.pdf
	0019B13.pdf
	0019B14.pdf
	0019C02.pdf
	0019C03.pdf
	0019C04.pdf
	0019C05.pdf



