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This report consists of the Ph.D. thesis of James Gary Eden

I
and represents the considerable work we have done on optical absorption

f and flashlamp pumped fluorescence studies in high pressure Cesium-

j

' Xenon mixtures.	 A thorough analysis is made of the excimer systems ,

I formed by the combination of excited Cs(72S,52D) and Xe and their

potential application to CsXe laser systems.	 The modeling of such

laser systems forms the basis of our continuing research in order to

obtain an optically pumped rare gas-alkali vapor excimer laser.
f

The appendix referred to in thereport has already been

reported to NASA in the Semi-Annual Progress Report dated 1 November
s-

1974 and so is not repeated here.
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I.	 INTRODUCTION

Currently, there is considerable interest in developing

r high efficiency, energetic lasers for such diverse applications ask
f

laser induced thermonuclear fusion, isotope separation and optical

-power transmission.	 In particular, due to the continuing need for a

plentiful, inexpensive energy source, thermonuclear fusion constitutes

1

ff
perhaps the most attractive application for such lasers.	 However,

.
the criteria demanded of these lasers are stringent: 	 1)	 output

powers of ti 10 13 - 1015 watts on nanosecond time scales, 2)	 effi-

c envies \, 30% and 3)	 operating frequencies in the- visible portion

of the spectrum.	 Unfortunately, lasers supplying these qualifications 	 =	 j

do notresentl	 exist.	 For instance	 both the	 and COP	 Y	 ^	 CO,)	 1 	 lasers,
1 -

while exhibiting excellent efficiencies, operate at infrared wave-

rlengths (L 5 - 10u) and do not presently produce sufficient energies

to offi.cientl y initiate the thermonuclear reaction.}

n For severed years, a new class of diatomic molecules that

ae a

promises- to yield lasers with the desired properties ha:- been rider

extensive ihiveAL.igati.on.	 These molecules are charhcLer!,:ed by a

repulsive f,rOunLl	 sLate	 anal	 iL	 least-	 one bound c:,,c:i1,-cd	 I('VQ.1

(cf. .	 l- F,.	 1) .	 Transitions ill such v^cak) y bound	 are

Possibl e 	 frol,l	 t hls boLind	 sta Lt	 t{1	 tiu1).-;	 gUoitL	 d1	 :;1 :' ki'Llohl
i

Of	 then	 e^olcu.10	 occur:;	 ill 'u 	 10	
13	

.; ^ C	 (l	 vihrcit i0n1, ► j	 11el'10d).	 CIOZ11-'1y,

thou,	 the	 repul:;ive	 i l-ouu:i	 La:lit"	faci.l i tchLc;:	 ut,t;lilihi;:	 stinu;i:iLod

AL pAGORI	 QUAL
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u
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emission from these molecules since only small excited molecular

state densities are necessary to obtain-a population inversion..	 The	
n

E	 magnitude of the threshold exciiiier density is, however, strongly de-

pendent on the contour of the ground state potential.

Therefore, it is conceivable that large laser energy output -:

A'L'Oi'f7Cat hi h	 uantum efficiencg	 qy (^	 ) is .attainable: in these
MOLECULAP.

molecular systems if the necessary population inversion can be =

realized.	 Also, as may be seen in Fig. 1, population inversion'

between the molecular excited and ground states is possible for

various interatomic radii which implies the passibility of obtaining

laser output that is tunable in wavelength. 	 Molecules, such as those

described above, in which stimulated emission has been obtained, are

known as excimer or dissociation lasers.
l

Dissociative lasing was first suggested by HouternlansZ

in 1960 =6 was originally observed in Xe 2 (see refs. 2-4). 	 Sub-

sequently, stiniul:ated emission has been demonstrated for several

6`	 as homonuclear molecule s,	 the Xe 0 and Kr 0 systemsother rare- g ^	 ',

7-9and for the rase gas - monolialide _molecules - (such as Kr F) .

uz 	 0SC MOICCUleS la se in	 Uie vactiulllUnfortuustel	 the majoritygrit y of	 1LI

ultraviolet (VUV) portion of 	 the spectrum whic11 is undcsir blQ for

Most intere	 tiul; applications rU(JUi ring high energy l:l:.ers—

A family of D1010CLOCS h:ri 1 l.11g:	 1)	 t1W uleclroLiic oticrgy

level configuration uecr .:;ary for dissoc.iativv "la p in- aad ?)	 enoi-),y;

level :cparaCions in	 tho. v_is'iblo >.epime are. 	 the alkali- r;lrc gay:
tL
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molecular systems. Phelps
10 has calculated Lite stimulated emissi.on

cross sections for the A2 11 -> X2 E transitions for several of those 	 t

1	 b	 ' f	 1 w 1	 1 x imer fluorescencemolecules, a so,	 y pe.r orming	 o	 eve	 e c

measurements, fledges and co-workers 	 determined the potential

energy level diagrams for the Cesium and Rubidium	 - rare gas

molecules.	 IIowever, presently little is known of 	 Z)-	 the collsional

rates responsible for the formation and destruction of the excited

alkali-rare gas molecules or 2)	 which excimer states might prove to

be the most attractive candidates for lasing:.	 It has, therefore, `.

been the purpose of this wort to investigate which excimc:r states are'

most promising and those physical mechanisms which are! crucial to

obtaining population inversions in the - alkali-rare gas molecules.

The important rate processes are shown in Fig. 2. 	 The
I

k

atomic state A	 is pumped (optically or through electronic collisions)

Directly or indirectly through cascade from higher - lying energy

levels.	 Formation of the (All)	 -excimer then proceeds by way of

three-body collisions. 	 That is:

l

*	 kf
A	 i	 21,	 >	 (All)	 1	 B + 1:E

where	 the	 third body	 is neco.-;sar y	 t:u	 :; LaU i I i z e	 Clio	 e::c.i me l-	 in a

k60LUld vlbratiotiill	 stitLe.	 l:nc>al.ecli;^	 of	 the	 nl;l t uilude	 of	 t:h^	 r,lC.	
f

is-i11portaiii.	 since	 the	 three body 	 collit ioit	 proces , :	 1111lit..;	 tlll'

number of oxcimer.s.	 formed pL't • second.	 Thus,	 thin	 l:atu	 J.,;	 eruc i:ll	 ill

t	 r
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I	 i
as-,casing Lhu viahiIity of obtaiuini , stimulated emission frum the

alkali-rare bas molecule of inCerest. (rxpertments that have been

performed Lo determine the formaLlon rate of the Ila Ar excimer are

described in the Appendix). Another excited atomic specie decay

process which seriously limits the maximum aLtainable excimer popu-

lation is atomic spontaneous radiative decay. It is surprising,

then, that the majority of present investigations of the optical

properties of the alkali-rare gas molecules have concentrated on

utilizing low-lying alkali P states to form the alkali-rare gas

excimer. Such states may be undesirable due to their short radiative

lifetimes (ti nsec). However, this cork summarizes the optical

properties of excited state!: in Cesium-Xenon mixtures that are

characterized by relatively long radiative lifetimes and, therefore,

may be much more promising as potential laser upper levels. figure 3

shows a partial energy diagram of Cesium. (Cesiuw was chosen

primarily due to its large vapor pressures at moderate temperatures).

In the past, investigators have looked almost exclusively at the

Cs-rare gas excimers formed by perturbing the Cs ( G2 P11 '3j^) states
^2

wi Lh a ground state rare gay; ;Coin. These atomic states are con-

ne(A'e l to ground by fast radiative transitions at 3521. and 8944 R

wli i ch liuiiL the waximum excimer don.sity atLainable due to depletion

of the excited alkali atomic specles. However, note that the

C:. ('/ S and 5 2 D) -+ ground atomic Lransit.ions (shown by dashed line::)

at	 normal I)' iL)Ihid('Cn .lac Lo v.iol ;iLi vi u1 qu;iutum-nu Ch. III ic:jl

^ - .
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selection rules. Observations to be described later de munstratt; that

the addition of high pressure Xenon to the Cesium permits these

transitions to occur. The lifetimes of these "quasi-forbidden"

transition: are considerably longer than for the normal P-S tran-

sitions and so better energy storage and populatiou inversiun con-

ditions may well be possible in such systems.

Although several observations of absorption and emission

on "forbidden" rare gas - perturbed alkali transitions have been

reported, 
12-15 

only recently have alkali S -> S transition, been seen

in fluorescence. Upon exciting the Cs X ( 7 2 P) level with an argon---on

laser, Tam et al l observed intens( , [C::(72S)Xe] molecular emission.

In this paper, extensive measurements of the (CL-;[7 2[7 S]Xe)

and (Cs 
2

[S n]Xe) molecular absorption spectra in high pressure

Cesium-Xenon mixtures are reported for the first time. In addition,

flashlamp-pumped fluorescence profiles for these long lived

(i > 1 wsec) molecular states are presented. In particular, the

t,
(Cs [7 

2 
S]Xe) molecule is found to be attractive as a potential dis-

sociation laser due to its lar,-e dissociation energy ant' stimulated

emission crow-section, (i ti 10 -1 cm` ) . As a resul t, iow threshold

population donsitie:; h,ivt • been calculated for this sysLrm. Section

111 discu:aO:; tho experiw:nt:0 apparatus; it( i l i: •.t•,l to moa:;ury tho

Cs-Xe absol))Liun and enit.n .-'ion sprt-Lia. Typicat data run:; ;1nd their

interpretat inn in tormr; of a pus;: ;ihly C:;Se	 :;c.iut. ►' l:u r M*v 11rt•-

sunt0d Ill 	 IV.	 !'mol ly, SevI ion V stwn:utrizu:; thy: result:. and

su6};CSts pou::iblt • jlre;l:. for further work.
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II. EXPERVIENTAL APPARATUS AND TYPICAL DATA

The experimental apparatus used to obtain the CsXe absorption

and fluorescence data is shown schematically in Fig. 4. The pyrex

absorption tubes were nominally 15.7 cm long and 2.5 cm o.d. and

incorporated fused windows situated normal to the tube's axis.

These tubes were chemically cleaned, evacuated to % 5 ' 10
-6
 Torr

and heated under vacuum to insure that the walls were adequately

outgassed. Subsequently, they were filled with doubly distilled

Cesium and research grade Xenon (99.995% purity) and then sealed off.

High Xenon pressures in the absorption vessels were attained by

filling the vacuum system manifold with Xenon and irul:ediatel.y con-

densing the gas into the tube using liquid nitrogen. The tube fill.

pressure could then be computed using the ideal gas law, knowing the

ratio of the manifold to absorption tube volume. uncertainty in

this ratio is responsible for an estimated 20 error in pressure

determination.

The Cs-Xe filled vessels were then placed at the center of

a highly polished double elliptical cavity. This cavity was con-

structed so that the center of the cavity coincided with one of the

focii of each of OW two ell	 At Oo other fu( • u:: Of each

ellipse was mounted a high intensity (ti 1.5 `54 out.hut!l;:mp) w.Itrr-

cooled 1111CM7 XCIWII fla::htulIe.
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The electrical circuitry responsible for delivering a fast

risetinlc, high voltage pulse to the flasittubes is shown in Fig. 5.

This system was comprised of two separate components: 1) Cite high

voltage pulse and 2) simmer circuit. The sirmier circuit's sole

function was to maintain a low-level (ti 25 ma) DC arc in Lite flash-

tubes. Such all 	 reduce:: the voltage necessary to fire Lite lamps

and enhances flasltlamp radiative output repentability. 17 An 800

nsec rise tirue, 5 usec I'VEM, 15 kV, ti 600 amp electrical. pulse was

generated in the pulse circuitry by discharging a .1 of capacitor

through an EG&G sparkgap. The triggered output of an k;CF:G TH-11A

pulse unit was employed to activate the sparlcgap. Finally, the

8020 vacuum diode prevented the 600 Amp pulse from entering the

simmer circuitry.

Tile Tektronix 514 storage oscilloscope (operated in the

single sheep mode) served the dual purpose of triggering the EG&G

Thl-1]11 u,tit and of observing the CsXe fluorescence wavef.or ►r. The

use of the storage capabilities of Lite scope to display the6c wave-

forms made it possible to record rite fluorescence peak an ►pl i tude

(arbitrary uni t:) as a function of wavelenl;tll.

For absorption mca::urrl,u nt:,, a stand;u-d tunl;::ten ribbon

Limp was a .ed as tho broad bond source. Af Le r col 1 i ll'a l i - 1 , Lho

111,11) 1-;l:IilL1on wa:: wochonical iy choppcd boloi-t- cuts I illy. th'.. td,:;orpt ioll

t ulw.	 Thy: re: :tl I tiitl; CsXe :Ib:,t 1 r1,t i ► it .; lic k. L I - t 11!1 1..I;: d i s; lit 'r::u(l by' a

II,•.ith LU-700 taunochrumotor .u ► d dotot-t<<1 by an 1,CA 031034 p: ► oto-

ORIGINAL PAGE M
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111u.1 Liplier. Actual data was obtained by scanning the tnonochrontator

and rc • curdLng the synchronous output of a PAR III:-S lock - in

auhlifter utilizing a strip-chart recorder. (Thc wavelength resolu-

tion of the detection system, including the effect of Lite electronics,

is shown in Fib;. Q . in this way, spectrally resolved absorption and

fluorescence profiles were generated for the Cs7,e energy levels of

interest. A typical set of nbsorption data for the 6 2 S - 52D

transitions in Cs-Xe mixtures is shown in Fig. G. Data sets similar

to this for various Xenon and Cesium densities were converted to

absorption coefficients using; the equation:

i	 Tow(X)	 -i
F1 II	 I CM

l_	 Iin(X)

where L is the absorption tube length (15.7 cm). The repeatability

of this absorption data is displayed in Fib. 7. The absorption

coefficient, for fixed Xenon and Cesium densities, is plotted versus

wavelength for three superimposed data runs. Fluctuations in the

data are < 25% for all wavelengths. Also, due to careful calibration

of the monochrowator a,;ainst known aLomi.r transitions in the specLral

regions of itlt('resL, uuccrLaLnLy in the detection wavelength is

+ 1 R.

l:uutain}; tliu ab::orpLi.ot: tube. fcmperatttre (mcasvred u:;ing Lhrumcl-
al1imc • 1 Lhc T1110CLAII)10S) , Lite Ce:: i um (I ell Li ty was iu l e rru(l t roth the v.ipor
pre ::::urt curves.
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III . EXPERIMI r"I'AL RESULTS AND DISCUSSION

A. Ahsorptlon and Fluorescence Spectra Of The cCs[5 U XLcj hlolecule

Figures 8-10 display the Cesium density dependence of the

absorption coefficient for the Xenon-perturbed Cs(62S	
2

5 U) tran-

sitions. These measurements were conducted for three constant Xenon

densities in the range [Xc] ti 3-5 . 10 19 cm 3 (1--2 atmospheres at

room temperature). An unusual feature of these absorption profiles is

a "shoulder" situated to the blue side of both the 6849 and 6895 2

lines, the ousel of which is very sudden and is roughly independent

of Cesium density. (This feature is particularly noticeable at the

lower Xenon densities). The energy separation between the shoulder

and atomic line center for both of these transitions is about 25 -

30 crn t . Thus, this observed blue shoulder may be interpreted as

due to transitions of weakly bound ground state CsXe molecules to

the 5 2 D Cesium atomic states. ?fiat ic:

3'r`

CsXe + Iiv	 Cs	 4- Xc

Absorpt ion clioracteristics simllat' to Ho l :;t • ob:;, • rvt • d hcra have • bccn

recently reported Iur' th.' 11vtorouuclear rare ga, ; ouwlec• ulc.-; (--;u. • h .^:.

18
XeAr) b y Ficom:ui and cu-workt•r:;.	 It 1t, iutk • resI iu, •, tit; tt they l ► ,ive

iutel , prott • d tilt']I'	 t:; Iii tlit• ::amm • way o.; hrv., ;crated hurv.	 TIii -:
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is also consistent with the work of fledges, Drunuuoud and Gallagher 11

who have experimentally determined the binding of the CsXe molecule

to be < 100 cm-1 . Therefore, these molecular -+ excited atomic

transitions originate at the lowest vibrational states of the woakly

bound CsXe molecule. This accounts for the rapid onset of absorption

as the 6549 R transition is approached from the blue side.

At low Xenon densities, absorption at the forbidden atomic

lines grows rapidly with increasing Cesium pressure and eventually

dominates the spectra. however, the emergence of the so-called

"forbidden" red satellite becomes obvious at the higher Xenon

densities. Such satellites have been reperteJ for several alkali-

rare gas mixtures 
12-15 

but, to our knowledge, this is the first

report of such satellites on the 6 
2 
S -> 5 2D absorptive transitions'

in CsXe. These satellites are analogous to those fouud previously

for allowed S -► P transitions of the rare gas perturbed alkali.,; ly

and peak 'L 4 - 5 X to the red side of the forbidden atomic trau-

sitions. Although there is debate as to the origin of these

satellites, it is goncr;:lly Lhou^;ht that tluvy arise when the eliergy

difference between thy' upper and lowicr molecal:lr hoLontial cul-Vt•::

iS itldCI)entlutlt of radiu`. [i.e., 
dr 

{V U (i:) - V 1 (^W •- U1. 10 	' I'll	 i:•

cundi.l..iun leads to a slitgulari.ty in tilt I .Iuttlt :.:unct'	 {t^'t it ull

which i:. ::uh:a'yuottl ly :,nuu o tht- d by DoppleI' v  IA.-t't::. 	 AI lho hi

Xenon dt`il lilt`:: 1 nVt`::til 1.at ed ill l.11t "a' expl-'1 IIL • ott; , t ilt . rt•tl Satel IItt•:3

are tho mo:;t con::piruuu:: Co:Ilut'ea OI Lilt' ::jibe tra.

-ORIGINAL PAGE IS
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Xenon pressure dependent absorption spectra fur LILL

6 2 S	 5`D lines are shown in Fig. 11 for a fixed Cs density. A

broad molecular continuum associated with the forbidden atomic

transitions emerges at higher Xenon densities, extending 200 -

300 R to the red side of the forbidden atomic transition. This

spectral feature is associated with transitions to [C::ael and is

the most important feature of these spectra relative to possible

laser applications.

Atomic line absorption on the "forbid(Jen" 6 2 S -• 5`D

transitions in the presence of Xenon is coll.isionally induced. ,20,2

Ordinarily, the 2 S -). 2D electric yuadrapole transition probability

is insignificant. However, collisions of ground state Cesium arid

Xenon atoms cause the overlap integral of the ground and excited

state wave functions (i.e., electric dipole moment) to assume a nun-

zero value. Thus, optical transitions between the Cesium 6 2 S and

5 21) states become allowed and are characterized by a transition

prollabil i ty A which i s directly prohort icnial to the Xenon density.

That is,

ko

vhory 1,	 i:; tilt! culli::Iunally in(ncud emission	 ill
u

cm 3 -;u r -1 , A is the G"S	 5 Z 1) tr;nl::J l i-n I 1 1-obal,i J i ty In ::vC	 4111d
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(Xe] is the Xenon density expressed in cm 3.

the experimental absorption data, the absorp

to obtain ari expression for the atomic sport,

That is:

2

87r 9L	 L 91

may be rewritten as

a 8.r
A = --- —^ g ^_- L\

'	 [C s,	 v

where g
L, U 

are the degeneracies of the groun

states, respectively, and the ah ccrpt,- on lin

to the inverse of the lineshape's half -width

relation (5) becomes:

It	 , f? l - S C C	 = -- 	 _C	 )
0L 	^/
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Figure 12 depicts the linear variation of a versus Xenon

density ([Cs] ti 10 17 cm-3 ),as derived from E: ig.11,for the 6849 R

transition.	 The slope of this line is associated with the col-

lision induced emission coefficient which (front 	 (6)) was deter-

mined to be k 	 3 . 10-17 cm  - sec-1 , (5 2 D
5/2	

6 2 S 1 / 2 ), where AA

was estimated from the low [Xe] absorption spectra to be approximately

20 R. Setting [Xe] = 5 x 10 19 cn 3 , collisional lifetimes on the

order of 0.7 msec are obtained for this state. Clearly, then, loss

of the 5 2D excited state population due to collisionally induced

radiative transitions to ground is negligible when compared to

radiative losses to the 62 P levels (T ti nsec). 22 A similar analysis

for the Cs(5 2 D 3/2	62 5 1/2 ) transition was not carried out since the

absorption coefficient at 6895 R shown in Fig. 11 includes a con-

tribution due to the red wing of the 6849 R line. This additional

absorption causes the 6895 R absorption coefficient to deviate

significantly front linearity at the higher Xenon pressures. Also,

applying the absorption equation to far red wing absorption, the'

spontaneous radiative lifetime, T, for the (Cs[5_D]he) exciiner wits

determined to be in the microsecond regime.

The near red wing ab:;orptiun c:ooff iCivaL of tilt' 6549 :u1c1

6895 R forbidden lines vari.o.; approximately linearly wi Lh Lhc • i rkl-

duct: of the Ces kint and Xwum d(nisi tion a:; shown in Figs. 13-15 for

several Xenon pry:: r ;urr:;. 11cre Lhe absol-I,Liun caul 1 ivient ;;pact ra,

iio:malized Lo hoLh ((::;] and [X:-J • , uverlap for 6000 'y \ ti 6950.
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This behavior is typical of unbound molecular absorption. 
23 

however,

at the highest Cesium and Xenon densities studied (cf. Fig. 15),

the far red wing absorption deviates signific,%iLly from linearity.

This suggests that these far wing transitions are occurring between

the (CsXe) excited molecular

of the ground state. This coi

where an energy diagram for a

The CsXe ground state density

by:

state and a strongly repulsive portion

lclusion is best illustrated by Fig. 1.6

typical ground molecular state is shown.

at an interatomic radius, R., is given

2	 /1
LCsXc] ( R o ) ^^ n vR o ciR [C s ] [;(e) i:x^) 	 }	 (^)

Therefore, any temperature rise in the system will initiate a

significant increase in [CsXe] at R  through the Boltzmann factor

and by directly affecting the [Cs] term. Note also that [CsXe] ti

[Xc]; hence, the deviation of a/[Cs][Xe] from linearity is more

pronounc-A at the higher X4tton densities. Finally, since. Ole

absorption coefficient is directly proportional. to [C::Xe], we con-

clude that large change:; in	
a	

for inc t-vatiin}; Cc• ::iuw deii-
[c:,] [XvI

sitics rcflec• t the fact that a rapidly ,;rowin,; nuu:luo r of C::\. nu>i^cnl^•:;

are avall.ablo aL R to tutdergo	 tr:u ► :cition::.	 he i. ►tfer Irom
u

the prccodin t; 	 that th,•::u I.ir whit; optical. trau:•itioiis

originate at : ► ::tront;ly r^ pul::Iv, porti^n ul l.h. • Z ;r0und ::late .

ORIGINAL PAGE 13
OF POOR QUALM
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The spectrally-resolved flashlamp-pumped fluurescence and

absorption spectra for (Cs[5 2D]Xe) molecules is shown in Fig. 17

([XL, ] ', 5 '10 19 cm 3 ,
 [CS) .), 10 17 cm 3). Clearly, peak molecular

emission does not coincide in wavelength with maximum absorption.

There are several interrelated e yplanations for this phenomenon.

First, at the Cesium densities employed i_n this experiment, the

gaseous medium is not optically thin; hence radiation trapping in

the near wing of the atomic lines is significant. Also, as men-

tioued previously, due to the repulsive ground state, absorption

occurs primarily at large interatomic radii compared to the exciilter

emission. To estimate the contribution of these effects to the

emission profile, we utilize the arguments of Phelps 
10 

to calculate

the excimer fluorescence profile using previously given absorption

data and the theoretical CsXe potential energy curves of Pascale

and Vandeplanque.
24
 From Phelps' semi-classical analysis, the

emission spectrum I(\) may be obtained from they known absorption

spectrum, a(,i), by the relation: 10

h 	 NU	 A V,,I I i\v,_I	
(6)

t_
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whi^re t^ aiid N  are the upper and lower state population densities,

respectively, and :,VU , ;V i and a are defined by the equations:

AVU ( R o ) = V
U 

((n-- VU (R 0 ) ,

(9)

AV L (R o ) = V L (R 0 ) - V  ( 0D ) = VL(fD^G)

and

V (R o ) - 
V (R

O ) = he

Once, I(A) has been calculated from a(^.) using the

potential energy curves, we must account for the effect of trapping

of the fluorescence (cf. Fig. 18). The spectrum I(X) (given by

Eq. (8)) is emitted from the differential tube length dx and is

located a distance x from the end of the absorption tube. Tlierefore,

the actual fluorescence spectrum emerging, frow the tube is given by.

L

x=0

where L	 al,!:url L ioll t tiho Iviij ,,t It	 15.7 cm.	 L(Ill.il ioau: (ti) alld (IU)
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have been evaluated usInl; absorption data given previously and the

results are displayed in Fig. 19. Also shown are the experimentally

measured 6 S	 5 2D absor p tion and emission s pectra (fcsl	 1017 cin- 3,

-3
[Xej -, 5 . 10 

19 
cm ). It is clear that altlIou ,;h the emission spectrum

1'(a) is S1ii;lILly shifted to the red of peat: absorption, the theo-

retical and experimental fluorescence maxima do not coincide. 11,is

may be explained through careful scrutiny of the absorption and

emission processes (see Fig. 20).

The molecular absorption coefficient is proportional to

the product of the ground (lower) state density and the quantum-

mechanical matrix element describing the overlap of the lower and

upper energy state wavefunctions. This roatr.ix element is defined by:

<[ J ► 	 I L>	 =	 ^ t,,
U I t 
	

tIj	
::	

OU` /t if/ 	
dr	 (11)

where:

4)
L 

is the loner state wavefunctiun,

411) is the upper state• wavefunction,

V is Clte dipole ui0meut of the transition

.111d	 dT is a differential element of real space.

Hance, %.,c can roughly express the absorption coefficient u(X) as:

(121)

M. . .
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where again E - E = he . Obviously, the ntaLri.x element varies

depending on the upper and lower states of interest. Secondly,

please note that since the wavefuncLion product is integrated over

real space, then the magnitudc of this matrix element is inherently

linked to the volume of real space occupied by the upper state

vibrational level. where the absorptive transition terminates (which,

incidentally, is proportional to the density of states available to

a CsXe molecule absorbing a photon) . Also, the absorption rx--asure-

ments in thesee experiments were conducted under quasi-continuous

conditions, insuring that the molecular and atomic ground state pop-

ulations were in equilibrium. Ile concludo, then, from Eq. (12)

that absorption under these conditions favors high lying vibrational

levels of the upper molecular state, i.e., the largest number of

available states for the transitions. Hence, the majority of the

absorption occurs at wavelengths in close proximity to, and to the

red side of, the atomic line.

In contrast, emission measurements were carried out over

shorL time scenes (i.e., non-equilibrium conditions). Of parLicular

significance are vibrational-translational.(V-'I') co.11.islons which

deactivate v:ibrot ien:tlly excited (Cs%e) 1110l.ecnles. That i:;:

'.,'E	 ;(

[ C SXc (v )^	 -l' Xe -- [CsX0 (V )

where v	 v	 The V-T	 iv.ttitlii 1'rItr nt:ty be t-:,tim:tted lr'om l:nOwn

:V6



V- 1' energy exchangc probabilities
25,26

 for lighter molecules such

as N2 and CO. For [Xe] 'v 10 20 cm-3 , the estimated V-T de-excitation

rate is ti 2 • 10
7
 sec-1 , yielding vibrational lifetitue'; of	 50 -

100 nsec, which is expected to he a generous upper limiL for (CsXe)

Clearly, these li.fetiines are small compared to the spontaneous

radiative lifetine of the exr_imer (ti ysec). 11crefore, a vibrationally

excited (CsXe) molecule that is newly formed by the optical pump

will rapidly undergo vibrational de-excitation collisions, causing

the excited molecular population to be concentrated in loaf vibrational

number quanntu ►n states. As a result, the bulk of the excited molecular

emission takes place from low-lying vibrational, statos to Around and

thus is representative of the dirtribution of occupied states within

x
the (CsXe) molecular well.

In summary, then, the equilibriulu absorption process

emphasizes transitions fro g ► ground to high-lying (CsXe) vibrational

states, requiring Lhe absorpLion of near yi-Lig. photons; whereris,
is

since the V-T de-excitation lifetime is short compared Lo the (C::Xe)
X

SUILe's i;ponLancous l.ifoLiwe, thon newly-formed (CsXe) nloIeCuloS

tend to vibrationally collapse to low lving vibrational level,, and

subsrqu,^lttly radiate, vielding for Ma ins, phoronr . Under 0:0 cull(litious

of our exper-hiiont, Lho rCtUre, one Would c%pect the eliliosioll 5pl'CL I'M11

to bc• rcl.ati.vely 11arrow and displaccd to w: ► v% • lcnZ;tlt:; t.o th,.! r. • d of

peak absorption.

s

a
x
i
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Figures 21 and 22 display these (CsXc) 5 D omission

2tiity. Note that for

pressure u ►odifies Lite

of the molecular well

the Cesium density for

the emission spcctru► , ►

profiles as a function of Cesium and Xenon di

a fixed Cesium densiLy, increasing Lite Xenon

spectrum shape markedly due to equilibration

(cf. Fig. 21). Yet, as expected, increasing

constant Xenon pressure has little effect on

Shope.

B. Spectra For The ^2s(7 2 XE_^_ Molecular State

The absorption and relative emission profiles for the

(Cs[7 2 S]Xe) * molecular state are shown in Fig. 23. In this case,

dominant absorption occurs at '%, 5723 R, over 300 X from the atomic

transition at: 5395 R. This point, in conjunction with the fact that

the far wing absorption closely follows Lite measured fluorescence,

indicates that we are observing transitions connecting; the bottom of

the (Cslc^) molecular well with ground. In contrast to Cite 5 2D states,

the 7 2 S excimer far wing; absorption profiles do not change signifi-

cantly with varying Cesium Livnsi.Ly (i.e., Lempc:r:tLure) as shown in

Fig. 24. ldhoii these spvetra are norwali,:ed to Lite CetAum density,

they overlap wLthin ' ti 20::;, as shown in I'ii;. '25.	 ('1'hi:: error bcnroivos

not ievable only at low CCSiu111 duttsitios and	 due to the dif-

ficulty in accurately mcasuriu;; small chall'i"os I.n pulcenta};c

absorption) . It is for this reason that wv were un.thit .. to meastitV

5723 X ahsorp' Lott at Xenon den:; i t i e:: lowerr than 5 ' 10	 cm .

ORIGINAL PAGE IS
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Therefore, normalization of these profile:: to the Cesium

density sut;f;etits LI ► at the 5723 R - centered molecular band termituttes

on a portion of the ground state that i:: not strongly repulsive.

Combining the conclusions implied by the data of Figs. 24 and 25, the

(C:,X(') molecular well depth is approximately 1062 cm	 132 eV.

Fluorescence data, similar to that previously shown for the

(Cs[5 2 I)Ixc^ state, is displayed in Figs. 26 and 27. Once again,

varying the Xenon pressure affects the amplitude and shape of the

emission profile in a greater way than does varying the Cesium density.

)C

C. Discussion of (Cs[7 S1Xe) Data

Due to its large molecular well depth and long radiative

k
lifetime, the [Cs(7 S)Xe] - ground excilaer band is attractive as a

prospective candidate for dissociation lasing. In the discussion

to fol.lo ►:, , parameters that are essential to determining the feasibility

of lasing in CsXe are evaluated. Given the experimental data and

conclusions presented above, the collisional and radiative rates

-`	 2
that are critical in de-populating the Cs (7 

2 
S) and (Cs[7 S]Xe)

states have been estiuu ► ted and are shown in Fig. 28. The processes

considered arc: 1)	 tl ► ree-body (CaXe *) e>:cimer foriikition 11,27

[Cs (7 2 S) + Xe 
.1 

(Gs[7 2 S)Xc)^ + Xe]; 2) aloWic transitions to

low .lying P state::; 3) collisionall.y - induced atomic fluorescenec

c ► nkl 4) excimer spontaneous radi: ► Lion to Cie molecular ground stale.

Thc	 excimor form.iti.on rate shown i:: that dote: mined for
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RbXe by Carrington and Gallagher to be k i = 8.2 . 10-32 cm6 - sec-1.

From earlier investigations 28 and our studies of this process in

NaAr (see Appendix), it has been shown that three-body molecular

formation rates vary only slightly among the heavier molecules, such

as Xe 2 and RbXe; therefore, our choice of the RbXe value does not

significantly affect the validity of our conclusion::. So, using

Carrington and Gallagher's rate, the three body formation frequency

is found to be ti 2 . 10 8 sec-1 for [Xe] ,, 5 ' 10 19 cm-3 (ti 2 atm.

at room temperature).

Secondly, although radiative transitions

allowed between thte (;s (7 S) state and ground, the

metastable since it is optically connected to the

through the 1.47 and 1.3611 lines. To estimate the

are nnrmally not

level is not

k 2
P) levels

radiative life-

times for these atomic transitions, note than the spontaneous

radiation probability for any allotted optical transition is given

b y: 
29

2

64 7r 4 Vn r^	 Irim(^^ I ^^ I m	 (14)
3h

wh g rc v 11111 iS Llic f rt • ,jLI,:L 'y of	 Olt' t i .iu:. i t i,+n .roll - tl ;, it	 I:: Lit,

(luarttum u:g chanical matriX cicmg ut di::c u::r.cd earlier. Thcrt•forr.,

:ts::uiuinti; the ucitrix element to ht: r,ui);hly	 for S - P ling::,

ORIGLs; AL PAGE V

OF POUR QUALITY

i

Li
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A nm ^'	 n m
	 (15)

We may now apply this wavelength dcpeudencc to the known transition

probability of the Cs(32 S I 	 6 2 r i) 7009 X litic which is given by Corliss
Z	 Z

and Bozman 30 as 2.2 '10 7 so	 Hence:Bence:

3

A I.3s _
	

2.2 x 
10	

1.361
[ _ 	— 4 X 10 scc .

f
Similarly,	 (16)

3

A l 47	 2. 2 x 107 [ 76 —]— 3 x 10 See l .
f.l

Therefore, ATOTAL ti 7 • 10 6 sCc -1 as shown on Fig. 28.

To evaluate the collision-induced atonic fluorescence

lifetime at high Xenon densities, the absorption egvatien in con-

junction with the Cs(6 2 S	 725) experimental absorption data sho%,m

earlier yields T5395
	

1 msuc (at (Cs] \, 1.5 . 10 17 CHI 3,

[Xc] ,%, 5 . 10 19 crt 3 ), which clearly is: neg)igihle with rt • s:pert tt)

the other des.t.ruction rates of intrre^l. (11ore, the atomic and

molecular spectra 1'h11iI w0l .L determined I rom F il;. 274 to Do ' 60 X) .

Sii i )ar1y, t	 ^: I. foun,l to lie X• 2 i,vec.



Finally, Fig. 28 also displays the c::t

emission cross-sectiun for the boUnd-free (Cs(7
2

excimur transition. From Eq. (4):

Thcn,

2
g U-a (^)	

8^ O L	
NL

:	 0-SE N L

a(A)
CTSE	

N L

where N=	 Lground state Cs?:e density at R and V ,(I: 	 - V)	 ( I,	 -

	

)	 1".
L	 o	 o	

L .0 

At this point, it might be added that the calculation of the stimulated

emission coefficient strongly depends on the shape of thv Csl',•.

potential energy level curves. Although the repulsive grot.nd state

diagram has been utuasured zccurate.ly by crossed-haam 31 and fluurr::c•^,^^c^,ll

experiments, only theoretical prediction:: are available for thk • bound

excited molecular state:c. The uppCr state shOW11 in Nib;. 28 is a

modificatiuu of the theorct . iCal Curve cunyMutc1l bY PilSl':1 1.V and

V.uuleplanquc.	 For rea son:. stated earlier, we:	 1) dvelik , t :,0d the

potential %,Y'► i LO '%- 1062 cut 1 (they pledletcd a yell dcpUi of

OF pG^' PAGE LS
R QUAD,
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ti 400 cm -1) and 2) shifted the potential minimum from 4.2 L,u 4.5 R,

where the ground state is only slightly repulsive (see page ?.l; this

modification is necessary to comply with the experimental results of

Fig. 25) . Using this value of R	 and setting Alt = 0.5 ^,,, F.q. (7)
min

can be solved to determine the utolecular ground state density to be

15	 -3-17	 2
[CSXC] '\' 10	 cm . Therefore, aSG % 10	 cm , which is of the

same order of magnitude as cross-sections evaluated for other promislag

lasers. 10 It is expected that the ground state density found above

is a lower limit and so the actual value of 
"SE 

is possibly smaller

than the value given.

Incidentally, it is interesting to note that the 5723

excimer continuum results from E -► E transitions of the excited

molecule. To our knowledge, all of the dissociation lasers observed

to date, including Xe2 2 , Xe 
020'21 

and Xe F9 , have lased solely on

E -E transition:.. This is perhaps significant since, as mentioned

earlier, prevIous investigators have concentrated on utilizing the

low lying l' stales to forn, the alkali-rare gas excimer state

(=> 11 - E transitions) .

Given the (C::[7 2 
SIX(-) * e:.cimer absorpt iou l.incwidth anul

T 	 radiative lifetime presentcd ahk)Ve, one cru ► readily dC'LcVmin(' Lito

populaLion inver::ion	 to obtain !ruing from Lhi:; moict.ult•.

lilt! Fair, equation may by expl-Vs.:ed a:::

2

N	 N	
qu )
	

X	 1	
9(1/ )	 ( j "')

Sporl

ORIGINAL PAGE IS
OF POOR QUALI'T'Y

L
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whe re

NU,L are the mulecular excited and ground state population

densities, respectively,

9U,L are the molecular excited and ground c;tatc degeneracies,

res1wet ively,

and

g(v) is the absorption l.ineshape.

Again, approxi ,^L:ting the lineshape as the inverse of its linewidtli,

Eq. (1S) may be rewritten as:

8 %; c
N u —	 ^ = y	 ^2- `span	 v	 (l))

0

where

f'U
g^

4v = 6.41 . 10 12 sec-1 (-60

0
= 5.723 . 10 -5 cm,

and

spoil
2.2 • 10 -6 sic.

'lliu-, the 5723	 exciner tr;IWJ Lion will Have a 1 ,,aiu of 1 °,"/m for a

po p uil atiuu inv,^rr; i-uu „f 10 1 ; rm-3 . Toc t.iwal^- tlu excilvd alomic

and molecular den:;ities nove-s.;al'y to produce this inversion, the

((,s(1`SJXV)	 I'lolecular-atoolir :;y:;te"n way b e n;ode• .le'd a:; :;huwu ill

^t
Fig. 2 1).	 llL:re, t.ho (C:;^72sjx,.) 	 tilt) lecular %,cll	 repro;;enl:-J by a

J
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single level, separated from the Cs * (7 2S) state by AE '- .132 eV.

Note that the excited atomic-molecular staters are coupled by exc i mer

destruction and formation collisions. In the analysis to follow,

these rates are assumed to follow from thermodynamic equilibrium

considerations. This is surely true as one approaches threshold.

Utilizing this simple model, the algebraic equations describing the

interrelation of the various partJcic densities may be expressed

as follows. Given the ground state densities [Cs] and [Xc], then

from Eq. (7), the CsXe ground str.te molecular population at a

specified interatomic radius R
0 
and radial interval 0, is given by:

where	 AL =IVL (R	 - VL (-)I ki-

and	 T = gas tLmpc-raturc.

Substituting R
0
 = 4.5 R, AR = 0.5 9 (the values chosen earlier to

calculate o) and lcT (600 0 K) . .05 eV into Eq. (7), the result is:

-22	 -3I cSxC'1 = 1.2 7 X 10	 [c,]	 x

Second] y, tilt, molecular vXCi Lvd and )-,found :ctntv dell:: i t i el'; al"'

relatcd thrOui;h E(i. (19) :

13	 - 3
IC s X el - [C XC1 ti 10 crT)	 ('^)

6A
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This relation yells the threshold inversion necessary to obtal-n

lasing.	 The differential equation describing the time rate of

change of the excimer population, [CsXe]	 is given by:

d [CsXe] * ^ _,	 ^-
--	 ---- _	 -	 F2 d (CsXe, + R f [Cs, Tniol CsXe] (22)

d 

wl ► ere 
ltci 

quid R  are expressed in sec -1 and stimulated emission losses

are assured to be negligible. The steady-state solution of Eq. (22)

is:

P, d

where -u-1CULE , 4.5 ' 10 6 sec-1 « Rd , as will be shown later.

Since Rd is extremely difficult to i.sclate experimentally, chemical

kinetics may be employed to estimate the ratio _ CsXe]

Me steady-state chemical reaction:

Rd

CsXc) -+- "e	 w:	 (Cs) + Xc,	 (24)

R 
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is characterized by the equilibrium constant K(T) , (1' = ga y; tewpera-

ture), that is defined by:

K (T) =

	
I C sXel	

(25)

[Csi IX e I

From statistical mechanics, Eq. (25) may be written a:,:

lcsxel
Qt Qr Q^ CSC

[CS ] [>:^^

where Q t , Qr , Qv and Q  are the translational, rotational, vibrational

and electronic partition functions for the diatomic [(.'sYcj molecule.

It can be shown 
33 

that

(26)

2 3-
h m

CSxft
Q i ^	 [	 __ -

m

I2.
 
m	 J2 it k  Cs Ne/

where	 m is the mass of the spc ci fi.ed particlo

r D;and Qe --	 e^:^ k'T l

1) I olvclll:lr dissocl.11 joa cnt^rZ',^'	 - 1.00.'	 LIJ	 lur	 Lhe

2,(c..(7IXo)
^f

eitael'.

Alal),	 l^	 :lll^l l^	 li:l^'	 ^4` api^l'l^Xila:lli'd
l

:1::2 .
1 ^V

k T_
Q r N

B
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h2
where	 B = rotational constant = — 2

	

8 I(	 1
I = moment of inertia,

and	 _ exp (— 0/2 T )

	

Qv	
I -- exp (— ©/ T )

where	 0 = 2hnk

w = (K/11) 1/2 (r is the molecular- force constant and

p is the reduced mass of the molecule).

As a result, Eq. (26) may be re-expressed as:

	

_	 e
ICsXel 	 (	 h2	 m C5xe l 2 e kT kT exp f 2T } — (27)

L	 r k T	 rnt, 
m xe /	 B	 I— x

ICS ]	
2

[Xe^	 e p 
T

^ 	 ^

From the periodic chart,

111"I 	 = 2.2 • 10-22 at
e on

and setting

rCsXe ti r
CS + rXe ti 10 R,

then I may be shown to be 1.1	 10
-36

}u - cui2.

Thus, the rotational con.-:tant B '^ 5 ' 10
-26 

joules.

Given a sar: tempo ra Lure of 6000 K,

1.66 . 105.
r

Also, since

D = 1062 cm-1 - .132 cV,

Own

	

(1	 = C ll^I`.I.
'e

10
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If	
mCsXe - n Cs + mX`,

then	 Qt = 6.65 • 10-28 cm 3.

To find Q V9 it is necessary to determine hw, where w ti u 112,
u = reduced mass of the molecule. Yardley 33 lives liw = 100 c111

- 1.

for the (NaXe) 11101 CCUle .

1	 2	 1/2

Therefore, 
hw

	

hwCsxe	 (^'NaXu-	 ^2_5.25	 10 3	 - .384.
L10-22

	

:iaXe	 uCsX^' /	 ^'^ . 2 .

}fence, hw 
CsXe 

= 38.4 cm -1 -	 = 57.5 °K•

As a result,

Q = 10.4
v

and so

QTOTAL - Q t Qv Qr Qe - 
1.46	 10

-20 cm 3.

Substituting this result into Eq. (26)	 we have:

0

	

IC 
ell	 -20	 3

-- _ --	 _ ! . 4 X 10 c m

ICS I	 IX C]

At first glance, Eq. (28) is surl ► iising since F01- [XCI 	 6.85 • 1019

Cui 3 , ti ►e vxcitcd atc-mie hopulaLion .xcocd:^ that of the etic irn r.

However, it nui::L 1w n•uirmher. • d that Lliv t r:ai::l:it i0n:il ► '^I^ n::i t	 vt"

staLeslf for Lhe excitrd Cesium state Is hul •,e. Thus, hi;,h Notion

densities are requirod for the eilew[ecll re:t.•tio , n (lief. (14)) to 0VI ► i

ORIGINAL PAGE IS
OF POOR QUALITY

(28)
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formation of the (CsX(!) excimer. One flaw of the method pre.senLed

LCsXe
above to determine	 is that E(J. (27) Lends to over-

estimate Q r and Q v for sh: ► llow molecular wells (D 	 a few kT). The

uncertainty iuLroduced by this problem is, however, expected to be

small.

Finally, the total number of Cesium atoms in this system

must be conserved.

Hence:

[ C, I + [CsXe	 + [CsXe] + [Cs	 -	 [C' ITOTAL
	 (29)

where [CF] TUTAL is the Cesium density co_-responding Lo the gas

temperature, T.

Equations (20), (21), (28) and (29) may be solved simul-

tancously for the densities [Cs], [CsXcl, [CsXe) and [Cs]

19

[CsI
	 — 10 3 { I + 6

' 85x10 1

TOTAL	 [XC	 J

	

J	
19

	

I+ 1.27 x 10[X, J t	
+ 6--- x I^' J

[XeI

-22_	 -
[CsXe] 	 1.27 x 10 [Cs] ke 1	 Cn^

(30)

(.,.I )



C, 2

13	 -3

[CsXel	 _	 [CsXe1	 + 10 ern	 (32)

acid

^	 19

C

	

6.85 x 10	
1 1 .27 x 10 2 Cm 3 [Cs] [`(e] + 16 ' c m 3 } . (33)

	

^ 

s 	 =	 X 	 l[I

If [CS] TOTAL  n' 1.5 . 10 17 cm-3 and (Xe ]	 5 • 10 19 cm 3 are sub-

stituted into Eqs. (30) - (33), the results are

17	 -3

	

[Cs] ti 1.47 - 10	 cm
^r

[CsXe] % 9.3 • 10
1.4 

cm 3,

[C: Xe]* -. 9.43 • 10 1 ` cm 3

and	 (Cs)* -. 1.29 • 10 15 Cm 3.

Chic collisional process that has not been incorporaLed into

*
the atoet.ie-molecular model is [Cs] - (Csj collisi.oual ionization.

Although the cross-socLion fur this. proco • s ,, is presumably larl•.c34

-15	 2	10	 cut ),. thi , lord (Cr:]	 density cal"ttl::ted	 this. 1.)S:.

ut.'Cl tall D;11t to be ~mall compat-ed to the atoni.0 laditltiV; dccay pro-

ccssus.	 Finally, it it; silm i l icattt tl,,tt the grumid atomic sl qtr,•

*
drnsity tttu::L be dvpIcted by ti 2% Lo obtain the rrtlui red [C::]

I^lulaLLun.
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To determine the feasibility of obtaining; stimulated

emission from the (Cs[7 `S]Xc) excimer, it is desirable to calculate.

the critical fluorescence power. This is the Power tlutt must be

delivered to the gaseous medium for the (C^-; [ 7 ` S]Xc) -- ground

molecular transition band to be optically transparent (i.e.,

absorption = gain - 0) . To calculate this power from the excited

atomic and molecular densities, we have:

P
C
 = hv o A. 0 [C ^]	 + h GI

^ n _I I Cs;: el	 (34)

where v	 are the center frequencies of the atomic and molecular
a,m

fluorescence, respectively, and A .111 are the spontaneous radiative

rates for the atomic and molecular tra-nsitions.

Setting: h-,) a = 2.3 eV (5395 X),

by = 2.17 eV (5723 Q),
m

	

A	 ti 7.10 6 sec-1,
a

	

A	 = 4.5 - 10 5 se t•-1
M

[Cs ] X	 1.29 - 1015 cm 3

and

	

[CsYc]	 9.4 3 - 10 
14 

cw- } , thon Lhr ct'[Lical t Iu,,rc!;c live

power 1,ecumc:1' = 1.46 k^./,:u13 for ((:s]	 - 1.5 • 1u 17 cm 
3 

an,l
C	 1'o'Mi.

[Xe]	 5 - 10 19 cm -a .	 '1'ht . c)-it ical	 p.n,IC•r u.:ty ai::u I„•

defined as the power input	 to attain Iagin},

Il,nak-vc r, on. • . • St IUMI 'tt, • d cuii s:: ion 1:: in i ti.at t • d, t ham• ruunlvu.n:li,•

ORIGINAL, PAGE IS
OF POOR QUALITY
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equilibrium between the [CSXeJ and [Cti] populations i:; destroyed

and so any additional power delivered to the [C:;J - [ CSXC] yy: ;tem

will be converted to stimulated enik.lion energy. It is al:;o im-

portant to note that the value of p computed above depends oil

excinuer potential enemy curves, which have not been verified ex-

per Ditentally.

The dependence of the critical fluorescence power density

on Xenon pressure for a fixed Cesium density Is displayed in Fig- 30.

A distinct minimum of the required input energy occurs at fXe]

3 . 10 19 c_ni	 This minima is to be en_cted due to the following;

competing effects: 1) Y
c 

rises at low pressln'er, since, in this

regime, the equilibrium condition (Eq. 28) fa ,:ors the formation of

the (Cs) excited atom (rather than the exci.mer), and 2) again clinibt;

is
steeply at increasing; [ e] since. [CsXe] and hence, [CsXe] (implies

larger threshold power), varies directly with tl ►e Xenon density.

Thus, for the (Cs[7 2 SIX0 * 	( Cs[62S]Xc.) excinler contlnuuor,

laser gain is expected for soon] inversion densities. In addition,

this excinler ,Late is characterized by:	 1) a tlig;il stimulated

eJn j s—; j oth Cross-sec CA 	 ]7	 2, " •. 10	 c111 /excites; 111,11c • ule;	 2)	 a

relatively lona; radiatLvo 1  let irn( , (2 ;-svc) w; cu1;lp:lrod to the

alkali-rare 1-.as C stater; and 3)	 ext . ir,.r • • ► g,rourhd E -► E tram • ii ion:;

that are conu.um to of c 	 it)

the power input /C:111 3 th, r • c• 101 la:;h • r

of p rt • ::en t expv r i n1c1 k t :11 tochn i qua..;
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1 l a:;e r:; I vtind it) dale-	 F l Ila] l y,

l h rr:;hol d i.-; bra• l I within the
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r 2^-	 Lsl7B])
4.c.—	 cRIT:CALi

°CW` R

r-	 [CS]

;e )* SYSTE W,

FLUORESCE^!^=

VEFRSUS ^Xe!
;7	 -3

-2 x 10 cm

^	 o3

I

3.6 —

r	
o

I	 `

^	 ► 	 1	 1	 1	 ^	 ^	 1	 <	 <	 ^	 ^	 1	 ^	 ^	 1	 ^	 ^	 ^	 1	 ,	 ^	 ^ r

10	 2	 5	 10	 2	 5	 10	 5	 1c

-3
X 	 (cm.

Fig. 30. Variation of the Critical Fluorescence Power as a :.:.z:ion
of the Xenon perturber density.

C,



66

*
the C5 (7 

2 
S) - Xe( 

1
S) atomic-m"lec"i ar Sye:tem an one of the most

attractive potential dissociation laser molecules under investigation

at present.
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IV. CONCIMS IONS AND SUC(aiS'1 oris FOR 11IR'I'III:R WORT;

By measuring the absorption and emis:.i.on continua of various

sLates in the Cesium-Xenon molecule, the collisional rates critical

in populating the alkali-rare gas excimer levels have been entintated.

In contrast to previous investigations of this molecule, Cs-atomic

states that are weakly optically conitected to ground have been

studied and have been shown to form excimer levels that are attractive

as potential dissociation lasers. Due to the lon(, sponLanc^ous

radiative lifetimes of these Cesium aLoluic states, the excimer

formation rate, lcf [Xe] 2 , dominates excited atomic radiative losses

for Xenon gas densities in excess of A, 10 19 cm 3.

In particular, the (Cs[7 2 S]Xe) * excited r.tolecule appears

promising as a source of high energy laser radiation due to its

large dissociation energy, stiwulaLed emission cross-section, and

small population inversion densities.

Significant gaps in our knowledge of the physical properties

of these molecules remain, however. further investigativit into Lite

potential envrt;y profiles, dissociation enorgles -and col l i::ional dc.-

activation rat. • :. of the :11k:I1 i - rart' t •,: ►s v x c imer:: l ; nvicessary.	 Fur

2examplo, by optit-ally pul!g1 iltt; Lite 44I8 X l'::(6 2 ti 	 (i Il i/• ) Lr:In::itiull

p
wJ11I; t ho Ile —Cd V116 .\ 1 . ► ::i r lint- in lh. 	 01 ',moil , Lu,ll i t Ol"

ill)*, till • rt':•lllt lns; I l lli l f 0:4 , t"I • t • woll It) 1, rovi kit' :i di Ivct. 1:It • :I11: ; (A

7
tnt;l:,ul illy. Llu • wcI I	 dcj)t11 rl	 IIlt • (('::(V'"j1]\t•)	 11101 • cul:lr 'Hatt::.
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Also, as more information concernint; the structure of these excinuerti

becomes available, detailed modeling of potential la::er systems,

such as the one discussed here, would be desiral,le.

in order to produce lasing in these systems, fliishlamp

pumping ought to be pursued. Careful lain measurements of the

gaseous medium conducted for various lamp currents, Cesium and Xenon

densities would provide valuable insight: into the feasibility of

obtaining stimulated emission from the (Cs(7 2 S)xe) " excimer.

Finally, although not mcnLioned earlier, while measuring;

the absorption spectra of the Cr,Xe molecule, the absorption of Cs 

molecules was simultaneously :monitored. It was surprising to dis-

cover that the Cs  C band (6200-6400 R) absorption profile changed

dra., tically with increasing }xenon pressure as sho;.n in Fig;. 31.

Clearly, dominant absorption at large Xenon densities is centered

around 'L 6380 R as opposed to 6300 X for lower l)erturltcr proSSUL'cs.1.3

Studies of t1w Collis ional mechanisms r..:;ponsible. for this phenomenon

Would be valuable.
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