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1.0 SUMMARY
r

i	 This report describes work carried out on NASA Grant NSG-2050 during

^ the period May 1, 1975, to October 31, 1975. Our laser modeling activity

has involved addition of an option to the current program, COED 2, allow-

ing N2 as a second diatomic gas. This option is now operational and a

few test cases involving N2 /CO mixtures have been run. Results from these

initial test cases are summarized in this report.

In the laboratory, 3 new CW double-discharge test facility has been

constructed and tested. New features include: water-cooled removable

electrodes, O-ring construction to facilitate cleaning and design modifi-

cations, increased discharge length,-and addition of a post-discharge -

observation section. Preliminary tests with this new facility using N2

have already yielded higher power loadings than obtained in our first-

generation facility. At present, power loading is limited by the power

supply available, but a larger supply is on order and will be installed

shortly. Another test-section modification, recently made and as yet un-

tested, will permit injection of secondary gases into the cathode boundary

{
layer. The objective here will be to vary and hopefully enhance the uv

emission spectrum from the auxiliary discharge, thereby influencing the

level of photoionization in the main discharge region.

i
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2.0 LASER MODELING

2.1 Probabilities for V-V Exchange in CO-N ` and N2_N2 Systems

2.1.1 CO-N2 V-V Probabilities

Calculations of vibrational-vibrational energy exchange probabilities

in pure CO are usually based on the assumption of independent contributions

from short range and long range forces. The long range contribution is

due to multipole-multipole interactions [1], of which the dipole-dipole

term is dominant. The short range contribution arises from coulombic

repulsive forces.

For molecular systems involving N2 , which has no permanent dipole

moment, long range contributions are usually neglected in calculating V-V

exchange probabilities. In models of vibrational kinetic processes in

CO lasers, the CO-N2 V-V probabilities are typically calculated with

the short-range expression used for the pure CO calculation [2,3] with some

modification to obtain agreement with experimental data. An expression of

this type, based on the Schwartz-Slawsky-Herzfeld theory, was discussed in

an earlier progress report.* Attempts to use this expression in calcu-

lating CO-N2 probabilities, however, led to poor agreement with experi-

mental results in either the vibrational quantum number dependence or the

temperature dependence of the V V probabilities. Much better agreement

was obtained by abandoning the SSH theory and using in its place an

expression obtained by an extension of the theory of H. K. Shin [4]. The

*Supersonic CO Electric Discharge Lasers, NASA Grant NSG-2050, Semi-annual
Progress Report for the period November 1, 1974 - April 30, 1975.
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remainder of this section is a brief discussion of Shin's theory and its

extension, with comparisons with experimental data.

The theory is a semiclassical treatment, assuming harmonic oscillator

wave functions and a three-dimensional classical collision trajectory.

The overall interaction potential is assumed to be the sum of four atom-

atom interaction potentials, which are represented by '_Morse functions.

The interaction thus includes both attractive and repulsive terms. The

molecules are assumed to be rotationless. A result is obtained only for

the vibrational transitions involving the ground level and the first

excited level, i.e., in the case of N 2 and CO, for the processes

N2 (v=1) + CO(v=0) * N2 (v=0) + CO(v-1) .

For the forward -process, Shin's result may be expressed in the form

(CO-N ) _	 2	 1/2 	 4(DX)1/7 	 16D 2
P(CO2

	(1.79x10 ) i k^T 	 exp I:i3
 T + ^rkT 	g + 2 g + UT I	 (1)

1,0
	 371 kT

In this expression 6 - WN - NCO is the difference in vibrational
2

frequencies of the two molecules, D is the well depth of the atom-atom

interaction potentials, and g is a factor which arises in the particular

formulation of the overall interaction potential. For the system of N2

and CO, Shin's value for g is 0.712. The quantity X in equation (1)

is related to the difference in vibrational frequencies, as

1/2	 2/3
X—[( 2 )	 moakTI

where V is the reduced mass for the collision system and a is the range

parameter in the interaction potentials. Shin's expression for the transi-

tion probability, equation (1), yields values which are in good agreement

(2)
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with experimental data at both low and high temperatures [5].

Models of CO vibrational kinetics require a method of estimating the

probabilities for single-quantum vibrational energy exchange involving

any vibrational level. A simple means of extending Shin's result to the

general V-V exchange reaction,

CO(v=r-1) + N2 (v=s) F CO(v=r) + N2(v=s-1)

is to assume harmonic oscillator scaling of the V-V probabilities, i.e.,

Pr-lr=rsP01	 (3)

	

s,s-1	 1,0

Equation (3) which follows from an assumption that the interaction -

Hamiltonian is indepndent of the initial states, is exact to second order

in P0,1

1,0

A further modification is to introduce anharmonicity effects by

replacing 'hw in equation (1) with the actual energy nonresonance, (AEI*,,

and to correct the vibrational frequencies with anharmonicity factors:

(CO)
'CO - W0 f l - rdCO I

(NDf

	

ew 0	
l
i - sdN 	(s)

2	 `	 2

These substitutions are ad hoc, and they are justified only by the better

agreement with experimental data which is obtained.

*Note, however, that if this substitution is made in the pre-exponential
term in equation (1), the probability for an exactly resonant V-V sxchange
would be zero. Although there :e no exact resonances for purely vibra-
tional transitions in CO and N2, this perhaps academic difficulty is avoided
by not making the substitution in the pre-exponential term.

(4)
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A comparison of the probabilities calculated by the above method

with the room-temperature data of Hancock and Smith [7] shows good agree-

ment, although the calculated probabilities are generally larger by about

a factor of two. Better agreement is obtained if the constant in the pre-

exponential is chosen to fit the room-temperature data for P (CO-N2) .

1,0

The final expression for the probability for the single -quantum V-V reaction

CO(v=r-1) + N2 (v=s) -+ CO(v=r) + N2(v=s-1)

is then

s?r-1,r ) 
_ (3.52x10 7) 

( 1- d	 G(X:T) exp
^2kT	 (6)

s,s-1
l	 CO ,[1-sdN 

2 ]

The function G(X;T) in this expression is defined as

1/2

G(X ' T) - (kIr)	 1/3 exp 1 1(-3X + 4	 g 
+ 16D 

g2/^	
(7)

JAE1	 3n

where

X = 1 (2,) 1/2 a nh kT I AEIi2/3
	 (8)

and the energy nonresonance is given by

AE _ \E(N2)_
 E (N2

))

 - (E(CO) - E(CO)1	
(9)

Equation (6) is the expression used to calculate the probabilities for CO-N2

V-V exchange in COED2. Following Shin, the values for the potential para-

meters used in these calculations are

5



r

a-0.2R

D - 1.385 x 10-14 ergs .

Figures 1 and 2 are a comparison of the available low-temperature data

[6-10] with the probabilities calculated from equation (6). Also plotted

in these figures are the probabilities which would be obtained from the

short-range SSH expression, with the constant in the pre-exponential

chosen to match the room-temperature data for PUCi-N2)'.

1,0

2.1.2 N2-N2 V-V Probabilities

A similar approach is taken to calculate the probabilities for V-V

exchange in pure N2 . Shin's approach leads to a value of zero for exact

resonance, so that in this case the process

N2 (v=0) + N 2 (v=2) -► 2N2 (v=1)

is used as a basic process to which the vibrational quantum number scaling

is applied. The calculation of the probability for this reference V-V

process is the same as Shin's development for CO and N,., although an addi-

tional factor of r'2 appza- s in the evaluation of the scattering matrix

element due to the choice of initial states. The extension to the general

single-quantum V-V process,

N2 (v=r-1) + N
2 

(V=S) -* N2 (v=r ) + N
2 

(V=S-1) ,

is made in exactly the same fashion as for the CO-N 2 probabilities.

The final result for the N 2-N2 V-V probability is expressed by

PrNl
,r
2) _ (3.47x10	

`9)
1-r 6

 
N ]j1-s6N 

G(X,T) eXp
1 kT^	

(10)

s,s-1	 2	 2
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The definitions of the terms in this equation are the same as in

equation (6) for the CO-N2 case. The constant g has a value of 0.731

for N2-N2 , and the values used for the potential parameters are

a-0.21

D- 1.263x10 14 ergs .

Calculated probabilities for the V-V excitation of ground-level N2

are plotted in Figure 3. The value calculated by Berend and Benson [11]

for P (N2-N2) at T - 300 K is also shown on this plot. Their calcu-

2,1

lation is based on a rigorous two-dimensional classical model, which

^	 4

E	 i

6	

{

f

includes the effects of molecular rotation and anharmonicity.

2.2 Calculations of CO/N2 Laser Kinetics Using COED2

With the inclusion of N 2 in the model of CO vibrational kinetics,

COED2 has become a useful tool in studying the relative importance of

direct electron pumping and CO-CO and CO-N 2 V-V transfer processes in

shaping the CO vibrational distribution in fast -flow continuous electric

discharge systems. Several cal( .lations have been made for mixtc-es of

N2 and CO to assess the effects of the relative N2/CO concentrations on

the CO vibrational kinetics and small-signal gain. These calculations

assume that the discharge parameters, n  and T  , are not affected by

changes in the relative concentrations of the two molecular species and

thus isolate, perhaps artificially, the vibrational kinetics from the

overall discharge kinetics. Such predictions are useful, however, in that

they can help identify phenomena in the vibrational energy transfer pro-

cesses which could be used to help meet particular objectives in a laser

a
E	 ^

f	 '
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design, e . g. high gain in certain vibrational bands, changes in the delay

time to maximum gain, etc.

Calculations for two mixtures of CO and N 2 are discussed in this

section. The geometry and flow conditions for these calculations corres-

pond to the small supersonic double -discharge system at Stanford. The

flow channel in this system has a two-dimensional nozzle with an area ratio

of 17 .4. The total length of the test section is 30 cm, including the

20-cm discharge section and a 10-cm section downstream of the discharge.

The sidewalls of the test section diverge uniformly to allow for boundary

layer growth, with entrance and exit widths of 1.9 cm and 2 .86 cm, respec-

tively. The top and bottom walls of the discharge channel are formed by

the flushed-mounted main discharge electrodes, which have a constant

separation of 1.2 cm. Continuous supersonic flow in the test section is

maintained by a diffuser and pump system with a volumetric capacity of 94

liters/sec.

For the calculations reported here stagnation conditions of 300 R

and 4 . 06 atm were assumed. The calculated temperature and pressure in the

test section for these conditions are approximately 65 K and 14 torn. The

pressure calculation, which reflects boundary layer corrections to the one-

dimensional isentropic flow equations, compares favorably with measured

static pressures in the test section. Gas heating effects due to the

discharge are included in the calculations.

Discharge conditions were assumed on the basis of an average current

density of 10 mA /cm2 and an estimated E/N of 2 x 10-16 V • cm  for the

main discharge. Solucions of the electron Boltzmann equation by Morgan

and Fisher [ 12] and Nighan [13] were usel to estimate the electron drift

11
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velocity and average electron energy. The discharge parameters used in

the calculations, based on these considerations, were n  = 2 x 10
10

 cm 3

and T^ = 7000 K. If nearly all of the discharge energy is assumed to go

into vibrational excitation, these values of electron number density and

temperature lead to an energy loading S 1072 eV /molecule. This energy

loading is consistent with the discharge performance attained in initial

supersonic experiments with . . Pen.

Stagnation and discharge conaitions for the two calculations are

summarized in Table 1.

Table 1. Discharge and stagnation conditions
used in the calculations.

Po ,	 stagnation pressure	 4.06 atm

To , stagnation temperature	 300 K

n  , electron number density	 2 x 1010 cm-3

T  , electron temperature 	 7000 K

2.2.1 Case 1, N 2 :CO = 90:10

The first calculation is for a mixture of 90% N2 , 10% CO. Results

for the CO vibrational distribution and the maximum line-center gain

coefficients are plotted in Figures 4 and 5. Distance on these graphs is

defined from the beginning of the 20 -cm discharge section. A temperature

increase in the flow direction of approximately 3K is predicted due to gas

heating effects. The calculated vibrational energy densities at the end

of the discharge region are 2.5 x 10 -2 eV/molecule for CG and 5.4 x 10-3

eV/molecule for N2 .

12
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The variation of the vibrational distribution and maximum gain
s

coefficients with distance along the flow indicate that the CO-CO V-V

processes dominate the vibrational energy transfer for this calculation.

1
These effects are seen in the increase in gain of the higher-lying laser 	 j

I	 transitions at the expense of the gain on the lower transitions, repre-

senting an upward flow of vibrational energy. The net vibrational energy

transfer in the interspecies V-V processes is from N 2 to CO, due to the

smaller spacing of the CO vibrational energy levels. Most of this trans-

ferred energy is pumped into the low-lying CO levels, since the energy

spacings for the lower levels are more nearly resonant with the N 2 energy

spacings. This process is slow due to the smail excited-level N2 popul-

ations, and the transferred energy is quickly redistributed in CO by the

faster CO-CO V-V processes. Although the probabilities for neat=resonant

V-V transfer in CO-CO and CO-N 2 are of similar magnitudes, the rates of

transfer are also dependent on populations of vibrational levels which

participate in the near-resonant transitions. For CO-CO collisions, these

levels are adjacent and are rapidly populated through a "ladder"-climbing

process, whereas fnr CO-N2 c :,llisions the near-resonant exchanges involve
i

weakly-populated high-lying levels in N2.

Total inversions are predicted at intermediate locations in the dis-

charge for the 4 -Y 3 and 5 -),-4 transitions. These inversions lead to

significant gain for R-branch transitions. The P-branch and R-branch gain

for the 4 -* 3 vibrational band is plotted in Figure 6, for a distance of

5.5 cm into the discharge.



- J It

Figure 6. P-branch and R-branch gain coefficients at line center for
the v - 4 -► v - 3 vibrational band. The distance from the
beginning of the discharge is 5.5 cm.

16



E
t

2.2.2 Case 2, N2 :CO - 98:2

The second calculation is for a mixture of 98% N2 and 2% CO. The

change in CO partial pressure from Case 1 causes a reduction by a factor

of 5 in the CO-CO V-V transfer rate. This effect is evident in the

calculated CO vibrational distribution, Figure 7, where the increase in

population for the highest levels is slower than in the first calculation:

The most striking difference in the calculated-distributions for the two

cases, however, is in the energy content, or average vibrational energy

per CO molecule. At the end of the discharge, the vibrational energy

densities for Case 2 are 5.8 x 10-2 eV/molecule for CO and 6.3 x 10-3

eV/molecule for N2 . In the 10-cm section downstream of the discharge,

the CO vibrational energy-Increases to 7.7 x 10 -2 eV/molecule due to V-V

transfer from N2.

The higher vibrational energies in Case 2 are due to a greater energy

storage capacity of the gas mixture. V V transfer out of N2 in CO-N2

collisions, per molecule of N2 , is decreased due to the factor of 5 reduc-

tion in the CO concentration. At the same time, the rate of V-V energy

transfer from N2 into CO, per molecule of CO, is actually increased due to

the slight increase in N 2 concentration. The result of these two effects

is a higher CO vibrational energy, on a per-molecule basis.

The maximum gain curves for Case 2 are plotted in Figure 8. The over-

all magnitudes of the small-signal gain are generally lower than in Case 1,

due primarily to the decreased CO concentration which results in lower

population difference densities. The high gain for low-lying transitions

in the early stages of the calculation is due to direct electron pumping.

The increase in gain for these transitions farther downstream, particularly

17
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beyond the discharge region, reflects the energy transfer from N 2 into the

low-tying levels. This effect is of potential interest, because it may

produce high gain for the low-lying .ransitions in a region downstream of

the discharge, where the optical quality of the medium is perhaps improved.

The phenomenon of delayed low-level gain enhancement due to V-V pumping by

N2 has also been observed in the CO laser kinetics calculations of Fisher

[14].

i
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3.0 LABORATORY STUDIES OF DOUBLE DISCHARGE

Experimental work during this six month period has continued to focus

on the concept of the CW double discharge. In order to better conduct

tests aimed at elucidating the discharge mechanism and increasing the

electrical power loading, we have constructed a second-generation experi-

mental facility. Although our available pump capacity limits the super-

sonic channel to the same cross-sectional dimensions employed in our first

facility, the new facility has several improved design features and much

greater flexibility. The basic design was described in our previous

progress report. During the past six months -he system has been assembled

and tested for gasdynamic and electrical performance.

In summary, our experimental findings are as follows:

1. The cathode material was found to be an important factor in

discharge performance, with copper performing better than

aluminum.

2. Water cooling of the electrodes and improved mounting of pins

has enabled operation at considerably higher pin currents

than possible with the original test section.

3. The maximum electrical power loading (before arcing) was found

to scale with the total pin current. At pre s ent we are power

supply limited and cannot determine the ximum power loading

achievable with total pin currents larger than 300 mA. We

regard this effort to determine the dependence of maximum power

loading with pin current to be a critical element of our study,

and we are hopeful that the power loadings required for lasing

can be achieved by operating with increased pin currents.

21



4. Preliminary tests with individually variable ballast resistors

In the pin circuitry have confirmed that control of the indi-

vidual pin currents can be used to improve discharge uniformity.

i
Discharge uniformity and electrical power loading are of course

both important in a practical device.

Recently we have ordered a new power supply to extend our operating

range to higher power loadings. In-the meantime, we have also made a

major modification to the test section to allow injection of foreign

gases into the cathode and anode boundary layers. This modification is

motivated by our recognition of the role of photoionization in stabilizing

the main discharge. Varying the gas in the vicinity of the cathode, where

the photoionizing photons are created, should enable variation of the

emission spectrum and hence of the volume ionization level in the core

flow. At present, we are initiating tests to check the gasdynamic per-

formance with injection. Subsequently, when the new.power supply is

installed, electrical tests will be conducted.

22
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4.0 RESEARCH PL AN FOR NOlWGER 1, 1975, TO APRIL 30, 1976.

During the forthcoming six-month period we plan to work on the

following problems:

A. Laser Modeling

1. Parameter studies of system performance as a function of

key variables such as gas composition, temperature, pressure,

power loading and kinetics coefficients.

2. Addition of an option to include an optical cavity, if needed.

3. Development of a physical model for double discharge.

B. Laboratory Studies

1. Work to improve system performance, particularly the discharge

uniformity and the power loading of the gas. Ideas include:

a.- Individual variable ballasting of pins in auxiliary

discharge.

b. Segmentation of anode for axial control of E/N in the

main discharge.

c. Studies at increased pin and main discharge currents,

made possible with a new power supply.

d. Electrode modifications, including rounding downstream

edges of cathode and anode and masking anode sides to

reduce breakdown through the warm sidewall boundary

layers.

e. Injection of gases into the cathode boundary layer,

to stimulate W emission or provide better heat dis-

sipation.

f. Variation in number, location and s +ze of pins.

23



2. Mork to improve understanding of double discharge:

a. Investigate the role of photoionization

b. Imvestigate the role of electrode materials and their

characteristics such as work function, cathode voltage

drop and material cleanliness and purity.

c. Develop physical model of double discharge.

During the forthcoming year, we anticipate that our NASA-sponsored

research will benefit from funding recently received from the National

Science Foundation. These funds will allow us to improve and enlarge our

experimental facilities for studies of discharges in supersonic flows.

The overlap between the NASA- and NSF-sponsored research should benefit

both programs, and in particular the increased size of our next test

section, once installed, will enable more practical experiments than

presently possible.

i
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