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ABSTRACT

The purpose of this investigation was to try to develop

a technique for the remote sensing of water resources.by in-

ferring river discharges from power spectral analyses of river

meander patterns. We used ERTS-1 data to help determine whether

a correlation between river meander power spectra and river

discharge frequency exists. in the course of this study we

developed techniques for analysing remote sensing imagery of

river channel patterns; we discovered an important new re-

lationship between the discharge spectra of rivers and the

time dependence of their flood recessions, which is important

to hydrologic modeling of streatu flow; and, within the un-

certainty imposed by the data we were able to analyze, we

showed that only a rough correlation exists between the meander

power spectra and the discharge spectra of rivers, and that

other variables must also influence this relationship pre-

venting a simple inversion of the meander spectrum to obtain

a discharge spectrum.
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1. Introduction

1.1 Background

A large number of correlations between some average

meander wavelength and some characteristic discharge have

been proposed [see for example Jefferson, 1902; Inglis, 1949;

Leopold and Wolman, 1957; Dury, 1965; Carlsfon, 1965; Schumm,

19711. These correlations clearly suggested that there was

a relationship between meander wavelength and discharge bUt

they failed to agree on its quantitative form_ Some of this

disagreement results from the oversimplification inherent in

using a single meander wavelength and a single discharge to

characterize the river rather than using the complete spectra

of wavelengths and discharges.

Speight (1965, 1967) :--apreciated that the entire oscilla-

tory pattern of a river must be important in characterizing

n

i

III

its meandering and presented power spectra of the auto--correla-

Lions of the directions of flow measured at equally spaced

points on the talwegs of several Australasian rivers. These

meander power spectra showed structure which we interpreted

as an indication that several characteristic length scales may

be required to quantitatively describe a meander pattern_ The

idea of using a spectral analysis of the reach of a river as

the basis of a correlation rather than' a subjective estimate

•.,f an assumed single length scale is a necessary generaliza-

tion in describing the connection , between a river's mnand r
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pattern and its discharge.	 However, he retained the idea

that a single discharge could be correlated with the multi--

ple length scales.	 Just as there is an essential difficulty E.

in attempting to characterize a meander pattern by a single

length scale, there is a fundamental problem in trying to

choose the dominant discharge, i.e. that discharge most

a effective in establishing the system of meanders. 	 We in-

vestigated the possibility that the further generalti.zation

of the correlation to include the time-behavior of the dis-

charge might bring an order to the relationship between the

total meander pattern and the complete record of the discharge_

This more general correlation should be sufficiently reliable

to quantitatively assess a river's flowrate from a spectrum

of its meanders, thus making the knowledge.of a region's

_ water resources accessible from aerial or satellite imagery

of the area.

1.2	 Outline of Study

n

Our	 betweenstudy of a possible correlation 	 the

stream meander power spectrum and the stream discharge fre-

quency distribution required the accomplishment of the

` following tasks:

k 1.	 Selection of appropriate rivers.

2.	 Collection of suitable photographic covE,age.

4

3.	 Collection of historical streamflow data.

4.	 Digitization of streamflow data.
r_

5.	 Digitization of 'stream meander patterns.

P
^{
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6.	 Matching of'individually digitized portions of

t` meander patterns to obtain a continuous record_

7.	 Construction of stream discharge frequency dis-

tribution from discharge data. i
8.	 Construction of power spectra of local river

meander directions. r
9_	 Determination of relationship betweeri meander 1

r';	 I power spectra and discharge frequency distributions.

.-` The completion of the first eight tasks for the Feather

River in California and a number of other rivers throughout

iLI
the United States, established general procedures for generat--

ing the stream discharge probability density functions and

meander	 forpower spectra	 all rivers.

From these analyses we have shown that a rough irelation--
s ship appears to exist between the discharge spectra and meander

nspectra of most of the rivers studied.	 From the data for this I

study we were not able, • howevcr, to determine a aualitative

^ relationship suitable for uniquely determining . the discharge
I

'I	 .

spectrum of a river from remote sensing imagery of its meander'

===-^^^ pattern.	 But such a relationship may yet be realizable from

a broader data base.

I_3	 Data Acquisition

Prior to attempting to obtain the imagery and !f	 "

hydrologic data required for. our study, we first had to'
develop selection criteria for defining rivers suitable

0.

Ir

I 



for study, These were

1. Uniformity of geology_

2. Length of reach with minimum spatial variation in

discharge along the course_

3. Length of reach with minimum seasonal variation_ in

discharge.

4. Resolvability of .river on ERTS--1 imagery and/or

availability of historical photographic coverage.

5. Availability of continuous historical, hydrologic data.

Using these criteria we selected sixteen rivers which

sampled a wide range of discharge rates and a broad geographical.

distribution.



TABLE 1

LIST OF RIVERS STUDIED

Median
River imagery Hydrologic Station Q Length of Reach

ft. 3/sec (ft.)

Mississippi River -1 7/0320,2890 350,000 4.lx1O6
Sacramento River ERTS-1 11/3780,3890,3895 81000 6.0x105

r Feather River ERTS-1 & Aerial. 11/4070 3,000 1,2x105
Manistee River Aerial. 4/1235,1240,1260 200 -- 1000 5.0x105
Chippewa River Aerial 5/3565 1,000 1.8x105
Ontonagon River Aerial 4/0400 900 7.5x105

Flambeau River Aerial 5/3585 800 1.3x105

Muskegon River Aerial 4/1215 700 1.2x105

Manistique River Aerial 4/0495,0550 400 - GOD ?.G.%105
Homochitto River Aerial 7/2910,	 2925,	 2945 400 2.6x105

Red River Aerial 5/0540 300 3.9x105

Had Raver Aerial 4/0270 250 1.3x105

White River Aerial 4/0275 200 1.1x105t
:. Boise Brule River Aerial 4/0255 150 1.3x105

Rifle River Aerial 4/1395,1405,1420 80 -	 200 1.7x1.05
Jump River Aerial 5/3615,3620 70 - 140 51.8x10

F

6	 -

t

!
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1.3.1 ERTS-1 Imagery and Aerial Photography

Of these sixteen rivers (see Tablt ) only three-

were of sufficient size that their meander patterns were

clearly resolvable in the SR imagery from ERTS-1_ These

were.the Feather and Sacramento Rivers in California, and the
ki

Mississippi River from Tennessee to Neva Orleans. These rivers
I- ,.

%,

	

	 also had largest mean discharges (see Table 1). Fourteen

other ravers, which were needed to broaden the .range of dis=

charges but were not resolvable in the ERTS-1 imagerv, had

to be studied using aerial photography. Table I Lists all of

these rivers giving the type of imagery used the hydrologic

stations from which discharge data was available, the median

discharge and the total length of the reach of river studied.

where a range of discharges is listed, corresponding to

values at different stations, shorter reaches associated with

each station were analyzed. We have obtained aerial photo-

graphs (both infrared and panchromatic) of rivers from the

Agricultural Stabilization and Conservaticn Service of the

U.S. Department of Agriculture, Department of Water Resources

of the California State Resources Agency, the Toyagraphical

t

	

	 Division of the U.S. Gaological. Survey, and the Cartographic

and Audiovisual Records Division of the National Archives and

Records Service. Infrared satellite imagery from ERTS-1 has

been provided by the NASA Data Processing Facility at GoddardL

Space Flight Center.
r1^ {
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1.3.2 Hydrologic Data

The streamflow data for all of the rivers used

in this study consisted of daily discharge measurements

from gauging stations operated by the U.S_ Geologic Survey'.

This data was obtained in machine measurable format from the

Water Resources k`ivision of the U.S. Department of the

interior. The discharge records for some of these rivers,

such as the Sacramento, encompass as much as seventy five

year, of continuous measurement.

2. Accomplishments

As a basis for this study we have developed a fully auto--

mated system for obtaining both the discharge and meander

wavelength spectra. Discharge spectra (probability of dis-

charge per unit discharge vs. discharge) are constructed from

historical records of daily stream discharge. Generation of

meander power spectra involves three elements: digitization

by photoelectric optical tracking of stream banks on each

frame of photographic or television imagery; collation and

snatching of successive fames into a single data record for

each stream.; and a Fourier transform analysis of the data.

This system has been developed to facilitate the analysis of

the large number o	 r required to assure the statisticalg	 f rivers q ed	 ass	 ca

reliability of the corre.`.ati.on.

From the imagery of a selected river reach, we determine

i

ssi
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the positions of the curve with respect to a cartesian coordinate

system.. This description of the river's course is transformed

to a (8,$) representation, where B measures the angle that

the curve makes with a reference direction as a function of

distance travelled along the curve s. The (O,$) description

is preferred since the meander pattern of a river may be

represented by a multivalued function of position in a cartesian.

representation. The meander power spectrum which we calculate

is the power spectral density of 0(s).

2.1 Digitization

The digitization of river meander patterns from

aerial imagery is most accurately and economically accomplished

through photoelectric optical scanning. We have developed a

program for digitizing river meanders, using commercially

available machines employing this technique. An important

condition on the digitization procedure is that data points

be located at equal increments of distance along the meander

curve. This condition follows from the fact that local meander

direction, 8, is a function of distance along the meander and

the algorithm used for constructing the power spectrum

requires that we know this quantity at equal increments of

distance.

The essence of the digitization procedure is as follows

k
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measuring the optical density profile along the scan (line AG

in Fig. 1)_ The river bank, i.e., the point digitized, is
ti

defined as the location of the point of maximum gradient in

the density profile (point 1). The second point is determined

by an iterative process starting with a scan (line CD) parallel

to the initial scan but displaced by a distance, s, from point

^	 1. The first estimate of this point (2') is determined in the

same manner as above. The distance between points 1 and 21

is then calc=ulated and if it is not equal to the required

spacing, s, plus or minus some small 6, another scan (line EF)

is made alone a line perpendicular to that line connecting

points l and 2 1 at a distance s from point 1. Point 2" is

then determined along this scan. If the distance between it

and point 1 is still not within s A, the iterative process

is repeated until convergence is obtained_ Once point 2 is

located, the search for point 3 begins along a scan line (GH)

 to the line connectingperpendicular	 g points 1 and 2 at a distance

s from point 2. In this manner the machine proceeds along the

meander curve digitizing points at equal distance increments

along the curve_

[ I

	

	As is generally,the case,

sists of a number of overlappii

► 1	
procedure is repeated for each

► 1	 frames must then be matched to

recor.i of the meander pattern.

the imagery of the river con-

ig frames, thus this digitization

frame. The data for adjacent

give a continuous digitized

Because of the large overlap

I^	

between frames (roughly one-third of the data on the end of

TNT 	
t

7 777



i
each frame overlaps with the data on the beginning of the

next frame) the data sets can be uniquely matched for con--

!_	 gruency in the overlap region_ We have developed a computer

program which finds the appropriate coordinate transformation,

i^i.e., includes bath translation and rotation of one frame with

respect to the other. This is accomplished by considering a

length of river roughly half the length of the overlap region

on one frame and effectively sliding this portion of the data

along the overlap portion of the adjacent frame s finding that

transformation within the overlap region which minimizes the

sum of the squares of the distances between matched points.

Once the appropriate coordinate transformation is determined

i,aIl of the data points on the second frame are transformed.

The process is then repe?ted to match successive frames

until the entire record is transformed into a single coordinate

system..

For purposes of comparison a computer generated plot of the

digitized meander pattern of a section of the Feather River

is shown as a slightly displaced overlay in Figure 2 together

with the infrared photograph from which the pattern was derived.

As can be seen this technique provides an accurate reproduction

of the meander pattern. A sample of the final product of this

digitization and matching procedure is shown in Figure 3 for

a 23 mile reach of the Feather River below the dredge tailings

at grovill.e to the Southern Pacific Railroad bridge north of

-a

^I

11I

x

u
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Yuba City_ A topographic map of this reach of river is shown

in Figure 4.

2.2 River Meander Power Spectra

2.2.1 Technique

'	 The digitization and matching procedures

.	 described above produce a set of data points (S,Y coordinates)
f..

which are equally spaced along the course of the river. A

power spectral analysis of the river cannot be made directly

from the X versus Y data since the river may double back upon

itself making  a double valued function of Y. An equivalentg	 q

Id
representation of the river, which is single valued and thus

amenable to power spectral analysis is its local direction,

0, as a function of the distance, s, along the river's course.

The power spectral density (deg 2/100 ft.) for the direction

0 is computed using standard techniques for determining theP	 g	 q

autocorrel.ation function, smoothing, and taking the Fourier

transform (e.g., J.S. Bendatand A.G. Piersol, Measurement and

Analysis of Random Data, John Wiley, 1966).

These spectra are calculated as a function of wave

number (per 10 3 ft.). The range of wave number is limited at

the high end (short wavelength) by the interval between data

points and at the low end (long wavelength) by the length of

the reach Fourier analyzed and the number of degrees of

freedom. The maximum wave number is given by -the Nyquist
ii

criterion to be N'/2t where N is the number of ,Iata points

El
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and Z is the length of the reach. The minimum wave number

at which spectral information is obtained is W2tm where m

is the number of spectral estimates, or alternatively n/4t

where n = 2N/m is the number of degrees of freedom, a measure

of the uncertainty in the power spectral density. The

analyses are all for 6 or more degrees of freedom which gives

us 80/ or more confidence that the spectral value lies within

2.8 and 0.5 times the computed estimate.

2.2.2 Characteristics of Spectra

The meander spectra which we have calculated

for the various rivers described above are all rather simple,

broad spectra having significant power over a wave number

range of more than a decade. All of these spectra are shown

in Appendix I. Three examples are also shown in Figuure 5,

together with scaled traces of the meander patterns which have

been spectrally analyzed. The Error bar on each spectrum

indicates the 80/ confidence interval for the power spectral

d 't d t	 d f	 tr numb	 f de e s of freedomensi y e ermine rom a	 er o	 gr e

(Blackman and Tuk"ey, 1958) .

At intermediate wave numbers each of these spectra have 	 1

an apparent power--law dependence of the spectral density on

wave number, as shown by the dashed lane preliminary fit to
f

the spectral estimates. The exponent of the power law is 	 i

given by the indicated slope which is probably accurate to
i

within f 20%. At lower wave numbers the spectrum flattens,

i	 J
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suggesting a broad peak at a power density two to three

orders of magnitude above the noise level. The wave numbers

at which the power law dependences break to flatter dependences

o.n the Ontonagon, Homochitto and White Rivers, correspond to

wave lengths of 5x10 3 , 10'4 and 2.5x10 3 ft., respectively and

..

reflect recognizable scales in the meander patterns of each

river shoran in the figure. At high wave numbers the power

law dependence is truncated at the relatively constant level

Ii	 of the noise which extends up to the Nyquist limit on the
li	

wave nurcber_ Though there are small scale fluctuations about

i	 L
the general spectral structure outlined above, they are not

j	 significant within even the 80j 'confidence interval.

 U

	

	
Some streams, however, do show more complex structure as

can be seen in Fig. 6. Clearly the off--set structure shown

in the spectrum of the Manistee River is significant within

the 80/ confidence interval. There is also a suggestion of

similar structure in the spectra of the Bad and Bois Brule

!	 Rivers though not at the same level of confidence.

Thus the spectra which we have investigated so far can

be described by one or more linear power law segments of

differing slopes and magnitude which break at characteristic

wave numbers.

We have investigated the stationarity of meander power

spectra by constructing spectra for a series of subreaches of

the Manistee River to study the variation of its spectrum
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along the course of the stream. 	 Figure 7 shows spectra for

four such consecutive subreaches, each of length 7.3x10 4 ft.

at the downstream end of the larger reach of the Manistee River

shown in Figure 6. 	 Each subreach may be recognized in the

larger reach of the Me-nistee River by the traces of their

meander patter"-,-	 As can be seen in Figure 7 the spectra of

the four subreaches are quite similar; the siopes and magni-

tudes of the power-law segments of the spectra and the wave

numbers of breaks in the spectra at 10 	 and 5x10
-1
 are the

same in all four spectra to well within the 80% confidence

interval.	 Thus these characteristic features of the power

spectrum of the Manistee River are stationary over a length

of at least 60 miles along its course. 	 We have also con-

structed the power spectrum of a 7.3x10 4 ft. subreach of the

Manistee River located beyond the upstream end of the reach

shown in Figure 6. 	 This spectrum has only a single power

law dependent segment, breaking at a wave number of 1 and

differing significantly from those shown in Figure 7. 	 This

difference is not surprising, however, in view of the fact

that the median discharge in this upper subreach also differs

by a factor of 5 from that in the lower subreaches.

In comparing our meander power spectra with those of

earlier investigators (Speight, 1965, 19671 Toebes and Chang,

1967) we note first that they used linear scales to plot the

power spectral density estimates. 	 Thus they did not observe
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the power law segments of meander spectra identified in this

paper, 5peight (1965, 1967) appears to have placed an unwarranted
.j

credence in the physical significance of a great many "spectral

peaks", nearly all of which we would classify as random fluctua-

tions on the power law portions of the spectra. In tact none

of Speight's "peaks" were resolvable on the basis of the

number of degrees of freedom which he used in his spectral

analysis, but he attributed significance to them on the basis
i.^

of some stationarity over the reach. On the other hand,
1

Toebes and 2hange (1967) have gone to the opposite extreme in

suggesting that meander spectra are inherently nonstationary,

reflecting only a randomness in the meander patterns. Neither

of these investigators analyzed a large enough number of

meander power spectra to justify their respective views.

r. ^ Based on the rivers which we have studied so far (examples

of which have been presented here) we believe that there is

significant structure in a meander power spectrum, namely the

slopes and magnitudes of the power law segments and the wave

numbers at which breaks in these segments occur. It is these

characteristic parameters of the meander spectra which we will

attempt to correlate with such characteristics of the discharge
^i

spectra as the modal discharge and the exponent of the flood

recession.

The cause of this simple power law relationship is not



1
t.^

i

n
fli

9

to river and even from station to station on the same river

-27-
i. .

it may be fundamental for the process of meander formation.

2.3 Discharge Spectra

2.3.1 Technique

The discharge spectrum or frequency distribu-

tion of a raver is the probability per unit discharge that

t	 its discharge, or flow rate, Q lies within the interval AQ at

Q. The integral of this distribution over discharge is the

flow duration curve commonly used in hydrologic steadies (see,

for example, Chow, 1964). From an historical discharge

record of length T, the frequency distribution which we calcu-

late is T.	 QQ where At is the port-'on of the time the dis-

charge lies within AQ at Q.

2.3.2 Power Law Dependence

From historical records of daily river dis-

charge, we have constructed the frequency distributions from

the fraction of time the discharge lies within a prescribed

interval per unit interval. These are all shown in Appendix I.

P. remarkable property of most of these discharge frequency

distributions is their nearly linear character on log--log plots

for values of discharge larger than the mode (Schubert and

Lingenfelter, 1974). Several examples of this are shown in

Figure 8. The daily discharge data on which each distribution

was based extends over the indicated time interval for the

particular gauging station identified by number accordincT to

the convention adopted by the U.S.G.S. (1964). The slopes

of the linear portions of these distributions vary from river
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over the range from less than -1 to -5. Flow duration

curves have previousINr been interpreted as representing a

i^

	

	 random process described, for example, by a log-normal dis-

tribution (Chow, 1964; Leopold et al., 1964)_ Our results,

however, show that such an interpretation is not appropriate

for a large number of rivers, since it is inconsistent with

the clearly linear character of the log-log frequency dis•-

tribution plots. Out .interpretation of this relationship

{
is discussed in section 2.4.

2.4 Relationship Between Discharge Spectra and River
a	 Flood Decay
a

We have shown (Schubert and Lingenfelter, 1974)

that the distribution for discharges greater than the mode

is not stochastic as previously suggested but is essentially

deterministic in nature, reflecting the decay phase of the

flood hydrograph. We have not found any previous suggestion

of a direct relationship between the form of the flog dura-

tion curve and the flood hydrograph.

if s is the slope of the log-log frequency distribution,

then

dt W Q s	(2.4.1)
Dq

jfF

integrating eq. (1) we find
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Q « ts+1	
( (2.4.2 )

`	 Since the observed values of s lie between about -1.5 and -5

the exponent s+1 would range from about -2.0 to -0.25. We

suggest that equation (2.4.2) representt she decay phase of

the flood hydrograph, where t is measured from a time t 0 near

the flood peak. The time t 0 can be uniquely determined from

any two discharge measurements Q11 Q2 at times t1 , t 2 during

the flood recession by

s+1	 s+1

t0 = It2 (?-')	 - tJ/ (Ql !	 - lI 	(2.4.3)
2	 2

The inverse pot•)-er law dependence of the discharge on time,

which we find here, differs from the superposition of sever4l

L!

	

	 decay curves, which have previously been used

(chow, 1964) to empirically fit the flood recession.

To test our suggestion that the linear nature of many

of the log-log frequency distributions represents the recension

portion of the flood hydrograph, we have compared the time

_l	 dependence of the discharge predicted by equations (2.4.2)

and (2.4.3) with the measured decay of discharge following

individual floodP eaks on the various rivers studied. We find

that the predicted decay at each station does indeed describe

the measured discharge following all flood peaks at that

RH station. ?3 typical example of 4:111- agreement between predicted

^i li
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and measured flood recession is shown in Figure 9 for the

	

.^	 Sacramento River near Red Bluff, California, in 1936. As

can be seen, the curves of the theoretical flood decay are an

	

1	
excellent fit to the data points which indicate the measured

values of the daily discharge. The theoretical curves are

' based on a value of s equal to -2.6 (see Figure 8) and

values of t0 equal to 16 January, 22 February and 4 April

for the respective floods shown in Figure 10. At this

i
station on the Sacramento River floods decay according to

the rule t-0 ' 625 , v:hich allows the recession to be determined

for as long as a month following the flood peak. From the

hydrograph of Figure 10 it can be seen that the deterministic

flood decay extends down to discharges of about 10 4 c.f.s. at

this station. Below this discharge level the flow rate

variations appear to be stochastic in nature. This also is

	

:I	 consistent with the fact that the linear relationship in the

	

Ei	 loge-log frequency distribution (Figure 9) ceases at dis-

charges below about 104 c.f.s. at this station_

	

I	 Additional examples of the agreement betweenpredicted
I

power law flood decays and measured flood recessions are shown

in Figure 10 and 11 for 3 consecutive flood decays on the

Homochitto River (7/2910) and the Bad River (4/0270), re-

spectively. The power law decays are excellent fits to the

observed values of daily discharge during -he flood recessions.

values of s equal to --1.9 and --1.8 (from Figure 8) for the
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i

Homochitto and Bad Rivers, respectively, were used to con-

struct the power law decays shown in Figures 10 F-1 11. The

floods at this station on the Homochitto River decay according

to t-1.11, while on the Bad River station the recession

follows the law t-1'25.

It is noteworthy that the flood decays on the Sacramento

River (F 7.gure 9) extend from discharges of about 10 5 c.f.s.

down to 104 c.f.s., while on the Bad River (Figure 11) the

recessions extend from 10 4 c.f.s. down to below 10 3 c.f.s. and

on the Homochitto River the transients cover the discharge

range from more than 10 3 c.f.s. to below 10 2 c.f.s. The power

law flood decays are thus seen to be excellent representations

of the measured discharges for recessions which extend over

3 orders of magnitude in discharge.- Moreover these rivers are

from widely separated regions and represent widely differing

hydrologic systems. From Figure 8 it can be seen that the

Red River (5/0540) is similar to the Sacramento in that power

law flood decays range from 105 c.f.s. down to below 10 4 c.f.s.

Also from Figure 8 we note that the Manistee River (4/1260)

like the Bad River (4/0270) has power law flood decays in the

discharge range 10 4 - 103 c.f.s. and the Pine (4/1250), Thunder

Bay (4/1325) and West Branch Manistique (4/0550) Rivers, like

the Homochitto River (7/2910), have power law flood recessions

in the discharge range 10 3 - 102 c.f.s. The sump River (5/3620)

has power law transients over a two order of magnitude discharge

I

Fi

j
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Figure 9. Typical daily discharge data (circles) showing the recessions of 	 #
three floods on the Slq(samez}o River near Red Bluff in 1936. The theoretical
curves of the form t 	 are based on the s = 2.6 power law dependence of
the discharge frequency distribution on discharge at this station shown in
Fag. R. The good amt between the theoretical cuxves and data shows that
the flood recessions follow an inverse power law dependence on tim which in
turn is reflected in the power law dependence of the discharge frequency distri-
bution.
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1952.	 Individo-xl floods at this station indeed follow a power
law decay, as implied by the long term discharge frequency dis-
'tribution shoam in Figure 8.
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&lu	 range, from nearly 104 c.f.s. to below 10 2 c.f.s.

To firmly establish the validity of our suggestion that

the slope s of Long term discharge frequency distributions

reflects the short term decay of individual river floods

	

q^	 1

according to is+l we have used the power law decays with the

appropriate value of s, to fit ten sample flood recessions

at each of the gauging stations of Figure 8_ The results are
a

summarized in Table 2 whch lists, for each river in Figure 8,

the inclusive dates of the sample flood recessions, the root

mean square (rms) errors in the power law fits of the recessions,

and the average rms error of fit for the 10 cases. The flood

	

{	 recessions listed in Table 2 were selected by scanning the

available hydrologic data in the Water Supply Papers to find

the longest uninterrupted flood decays for each river. Each

recession was terminated when theflood had decayed to the

stochastic level of disch acge as indicated by the data. The

rms errors of the poorer law fits of the 90 flood recessions

listed in Table 2 are remarkably small, averaging only about

	

E	 ^

S%, a value comparable to the uncertainties in the measured

r	 daily discharges themselves. The smallness of these rms

errors clearly establishes that floods decay with an inverse

power law time dependence.

In conclusion, we have found that floods decay with an

l inverse power law dependence on time. The exponent of this

dependence varies from river to river and even from station to

c..	 r
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TABLE 2 .	 POWER LAW FITS TO RIVER FLOOD DECAYS

RIVER INCLUSIVE DATES OF FLOOD DECAYS R.'-'S	 ERRCR OF FIT	
ERROR

MANISTEE RIVER 4/1 1- 4/1 4/59,	 126•-7/30/52,	 11/21-11/24/58 1	 .7_,	 7.1::,

4/1260 4/7-4/1 0/56,	 10/8-10/11/54,	 4/1 1-4/14/58 1 .7;',	 5.2`„ 1 .	 2. 6%
s	 -	 5.0 6/5-6/8/54,	 7/14-7/18/57,	 4/22-•4/25/60 0.':;;,	 1.1°/„ 2.4-:

Q « t- ' 25 5/30-6/2/53 3.3;'

THUNDER BAY RIVER 5/23-5/30/59, 4/7- 1+11.3/59,	 4/9-4/ 26 /5 6 1 -3- 3.3°x, 5.502
NEAR HILLMAN, MICHIGAN 4/27 -519157, 3125 - 1{/'^f53,	 3123 - 3/30/ 1 8 $.7Cf, 2.4., 3.°	 44.7/

4/1325 10/18-10/26/54, ^	 ,,
4/13- 4/22/47,	 4/9-4/15/54 • 3.8d713,

o,
8.6,x, 4.0/

s	
-	 4.0 3/15-3/21/46 6. c;,

Q a

PINE RIVER 5/21-5/30/60,.7/10- 7/20/57,	 10/18-lo/26/54 6.7;_., 4.3%, 5-s^>
NEAR LEROY, MICHIGAN 6/27-7/6/54, 5/7-5/14/54,	 3/24-4/2/53 5.4n, 1971, 3.9	 4:5^

4/1250 5/4-5/16/53, 4/8-4/21/58, 4/9-4/15/59 1.9:x, 4.7%, 3.9
s- = - 3.0 11/19-1T/25/58 6.7%Q « t-O.5

-- SACRAMENTO, PEAR RED BLUFF 1/17-2/TO/36, 2/24-3/23/36,	 3/31-4/15/05 -3.c::, 2.9rll, 3.0%'

11 /378 0 2/6-2/16/07, 4/9-5/9107,	 2/27-3/13/1 0 5.2 8.0,•x, 3.2:'-	 4.7%
s	 -	 2.6 2/15-2/28/11, 3/22-4/l/32, 4/18-4/30/20 6.6°;, 6.2";, 2.7,:,.'

0 a t-0.625 2/21-3/8/26 5.5M

F

4	 ,
a

WEST BRANCH OF KANISTIQUE RIVER
NEAR MANISTIQUE, MICHIGA'°

14/0560
s = - 2.3

Q	 t-0.769

4/14-4/25/53,
5/5-5/14/4 0,

3122-4/1 5/46,

4/26-5/9/52

4/16-4/21/51,
4/21 -5/13/42,

4/ 30-5/20/54,

5/0-5/21/47

4/13-4/23/56
4/23-5/10/55

4.5! 4.1
2.7;x,3.3:',5.4;
6 ,,, 6.9
3.5:`

5.. 0

V
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TABLE 2. (continued)

RIVER INCLUSIVE DATES OF FLOOD DECAYS RMS ERROR C= 7T-1

HOMOCHIT 0 RIVER 2/16-2/29/56, 5/20-6/4/53,	 4/14-4129155 5.9%, 7. 4. 2;;

712910 217-2/14/55, 3/28-4/51 42 ,	 2127-319153 5/6%, 3.3°-, ]	 .
S	 =	 -	 1.9 2/23-3/9/55, 4/18- 4/27 /57,	 4/10 -4/20/51 5.5%, 6.7%, 3.85

Q	 t
-1 .] ] 4/24-5/4/51 7.4%

--	 - BAD RIVER 5/15-5/28156, 6/2-6/13/59,	 10131-11/8/55 4.7%, 9.9"1, 6.7%
4/0270 7/6 - 7/15/53, 6/4 - 6/13/51,	 7/6 - 7/15/51 4.4%, 5.7.3, 6.7:,^ 5.4°,

s	 =	 -	 1.8 5/11-5/23/50, 5/14-5/23/52,	 4/23-5/5/52 3.2%, 4.0%, 4.3%
Q	 t -1 .25 5/7-5118/49 4.2%

RED RIVER 7119-7/26/48, 2/21-3/2156,	 2124-317151 5.7%, 8.0;x, 8.-S

7/3370 3/1-3/9/39,	 2/7-2/15/41,	 10/3-10/10136 7.7%, 8.9%, 8.10%
7.1^

s	 - 1.7 4/4-4/14/45, 2/26-3/6/38,	 4128-5/8152 •3.47., 7.2°; , 4.8'

Q	
t-1.429 11/7-11/17141 8.2%

JUMP RIVER NEAR 7116- 815158, 5/7-5/18/58,	 5112-5/21/50 10.5%, 5.4°.), 7.9:-
SHELD n-N. WISCONSIN 6/11-6/21 /40, -11/6-11/17/34, . 11/24-12/1 5/34 5 .8%, 3.3`	 , 1 0.5% 7.3/

5/3620 4125 -5/10/20, 11/13 - 11/24/19-,	 12/24 - 1/11/19 8.67, 4.8v/, 8.1%

s	 W -	 1.5 11/18-11/27/26 8.3%

Q

co

E
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a

b	 station along the same river.	 Nonetheless, despite the complex

interactions of the large number of factors which undoubtedlyJ_..

affect the flow at any point on a stream, the resultant time

dependence of flood decays can be described by a single para-

meter, which can be uniquely determined from long term records

of the discharge.	 This power law time dependence makes possible

the forecasting of river discharge with an uncertainty of about

-^	 5% for as long as a month following the flood peak.	 Finally

. we should note that an inverse power law dependence of the flow

rate on time is characteristic of diffusive and random walk

processes, suggesting a direction for future hydrologic modeling

of the flood recession.

2.5	 Relationship Between Meander Spectra and Discharge Spectra

The primary objective of this investigation was to

try to determine whether significant information on stream flow

rates could be obtained from aerial and satellite imagery of

river meander patterns based on a possible correlation between

the meander and discharge spectra of rivers. 	 Such a correla-

tion could provide the basis for a simple and inexpensive

technique for remote sensing of the water resources of large

geographizal areas, eliminating the need for much hydrologic

recording.

The test of the existence of such a correlation can be

seen in Figure 12	 where we plot the median discharge Q

^	 determined from the discharge spectra versus the characteristic
'fT

ms
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wave length X associated with the break in the meander

power spectra for the rivers studied. As can be seen there

is only a crude correlation between these two quantities,

confirming that additional factors (see e.g. Schumm, 1968)

1
also govern this relationship_ This prevents a simple

inversion of the meander power spectrum of a stream to obtain

its discharge spectrum_ The general trend of the correlation
tj	

between median discharge and the characteristic wavelength

is nonetheless qualitatively consistent with earlier studies

using less quantitative methods of analysis as can been seen
3

by comparison of the relationship determined by Carlston (1965).

f '	 3.	 Summary

rjAlt'4ough NASA no longer supports this research we

are continuing our efforts to understand the individual dis-

charge and meander spectra and their correlations. We

have been impressed with the uniformity in the slopes of

meander power spectra over the small wavelength portions of

the spectra. As a (wavelength) -'0, we have found that the

meander power spectral density estimates behave as X a , where

a has a value between 3 and 4 for all the rivers we have

investigated. The value of a appears to be independent of

discharge and other variables such as local geology, etc.

The slope of meander power spectra for short wavelengths

must, in some way, be characteristic of the fundamental

1

I

e

li

l i	 ^I

jlr

1
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meander forming processes.

In an attempt to understand the significance of the

essential) constant a, we are computing they	 p	 g	 power spectra

of artificially generated meanders to see if the slopes of

the spectra of these mathematical meanders bear any relation-

ship to the values of a determined for rivers_ in particular,

i we are testing the validity of the theory of meander formation

proposed by Langbein and Leopold (1966). The theory asserts

that meander formation is a random or stochastic phenomenon

in which the meander planform is a most probable path defined
I

by a random-walk model.. The probability p that a river

deviates by an angle d6 from its previous direction in a

	

t	 distance ds along the river is described by a distribution

which is assumed to be Gaussian

	

r	 2 ( d Olds )
dp = c e

	1	 where c is the standard deviation and c is such that fdp = 1.

The solution for the most probable path, or meander form,

between given points is the elliptic integral

i^

f	 d o

./2 (costa-cos o )

where s is the arc length along the river whose local direction
I^

8 is measured from the line joining the end points and w is the

fl
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d

maximum value taken by 8.

We have computed s(0) for various values of w and have

numerically inverted the function to obtain 8(s). A(s) is

exactly what we measure in computing the meander spectra of

rivers. We are presently computing the power spectra of 9(s)

for various W. Should the mathematical 8(5) yield spectra {

whose slopes are in agreement with the river value, then we

have found an empirical verification of the minimum variance

theory of river formation. If not, then one must question

the relevance of the model of Langbein and Leopold to actual

rivermeander format.4on.
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MISSISSIPPI RIVER
ST. 7/320 RT MEMPHIS, TENN. 1933--19 79

IN TAPE RAH 154 Fl HCOS. 1225 -1677
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MISSISSIPPI RIVER
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STATION 712925 ROSETTA, MI55. 	 1951-1969
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MHNISTIQUE BIVER
STATION 4/0565 MANISTIQUE. MICH. 1938-1969
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