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PREFACE

Work is reported covering an investigation of atmospheric effects

on pattern classifier or pattern recognition performance, and land

resource mapping. 5-192 Skylab multispectral scanner and supporting

aircraft data were examined from 8 March 1973 - 30 August 1975.

The work was performed in the Infrared and Optics Division of the

Environmental Research Institute of Michigan under the direction of

Richard R. Legault. The principal investigator was Frederick J. Thomson.

Significant technical contributions were made by David Zuk, Frank Carioti

and Janice Tone (field work); Frank Sadowski, Tom Austin, Daniel Rice

and Harvey Wagner (computer processing); and Dr. Harry Smedes (USGS)

and Jon Ranson (Colorado State University) (Cripple Creek Study).
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MACHINE PROCESSING OF 5-192 AND SUPPORTING AIRCRAFT DATA —
STUDIES OF ATMOSPHERIC EFFECTS, AGRICULTURAL CLASSIFICATION,

AND LAND RESOURCE MAPPING

1

INTRODUCTION

This is the final report on contract NAS9-13272 dealing with a

sturdy of changes in pattern recognition performance caused by variations

in atmospheric state over the area of interest. As a secondary goal,

we assessed the utility of 5-192 data for mapping terrain types in the

Cripple Creek, Colorado area. The work was conducted in the Infrared

and Optics Division by Frank Sadowski and Thomas Austin, under the

direction of Fred Thomson. The NASA technical monitor was

Larry B. York.

1,1 STATEMENT OF THE PROBLEM

To be cost--effective, earth resources surveys using satellite or

aircraft multispectral data must be done over large areas. If pattern

recognition techniques are used as an information extraction tool to

provide the user the information he wants from the multispectral data,

those techniques too must be effective over large areas.

The use of pattern recognition techniques involves the assumption

that the spectral radiance signatures of objects or classes to be

recognized are sufficiently unique that these classes can be separated

by the pattern classifier or recognizer. Further, training sets are

required, either to teach the recognizer what the classes to be

recognized look like or to evaluate which spectral clusters correspond

i'
	 to which objects to be recognized. Because time taken to train the

recognizer cannot be spent processing data, we would prefer to train

as infrequently as possible.

In operations, we must retrain whenever the conditions of objects

change materially (e.g., vegetation phenologic state) or when the

9
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conditions of measurement change (e.g. solar illumination, atmospheric

state, or sensor performance). Preprocessing techniques can partially

compensate for changes in measurement conditions and allow an extension

of the area over which a given set of training set signatures will

yield good results.

But utilization of preprocessing techniques may also slow the

processing of data, especially when parameters for the preprocessing

algorithms must be estimated from the data. Hence the question

arises — How often, or under what conditions does pattern recognition

performance suffer so much that preprocessing must be performed (or

existing preprocessing al'ered) to retain good accuracy? That is the

question addressed by the first phase of this work.

The second phase of this work addresses the utility of 5-192 to

map terrain features in the Cripple Creek, Colorado area. The ability

to map these terrain features accurately and periodically is of value

to Federal, State, and Regional resource managers in their managit':'lent

of the area. Since 5-192 provided a wider selection of spectral bands

than did ERTS, a comparison of the utility of 5--192 and of FRTS data

would reveal the improvement in performance through use of more nearly

optimum spectral bands.

1.2 SUMMARY OF APPROACH

The approach to assessment of changes in pattern recognition

performance caused by variations in atmospheric state was to simulate

changes in performance caused by variations in atmospheric optical

depth and in terrain base elevation. Then the realism of the simulation

was checked by classifying 5-192 data collected under known atmospheric

conditions and comparing results with those of the model. Three cases

were simulated with the model. In the first case, the effects of

varying atmospheric visibility at 2,000 ft elevation were assessed

In the second and third cases, the effects of varying base elevation

10
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under particular atmospheric states was assessed. A clear atmosphere --

high elevation case (40km visibility and 6,000 - 14,000 ft elevation

range) and a hazy atmosphere — low elevation case (10km visibility and

2,000 - 6,000 ft elevation) were simulated.

Basically, reflectance signatures of common midwestern crops were

calcul..red from aircraft multispectral data using procedures further

described in section 2.3. Then the different atmospheric states and

base elevations were simulated, and path radiance, path transmission,

and solar and diffuse irradiances calculated using a model developed by

Robert Turner [1]. The reflectance signatures were converted to radiance

signatures at each of the atmospheric states. A computer program

simulating the ERIM linear classifier was written. It was trained on

radiance signature sets collected under base atmospheric conditions,

then it classified samples taken from the radiance signatures generated

for other atmospheric conditions. In this way confusion matrices of

performance were generated for several different cases.

The approach to the Cripple Creek study was to prepare a recognition

map of terrain features using S-192 data and training sets selected by

Dr. Harry Smedes of the U. S. Geological Survey, Denver, Colorado and

Jon Ranson, a Colorado State University graduate student assisting

Dr. Smedes. From an analysis of training set signature statistics,

seven optimum S-192 bands were selected for final mapping. The final

map accuracy was assessed and results were compared with a similar effort

using ERTS-1 data [10].

1.3 SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

A simulation study of the effects of atmosphere on the performance

of pattern recognition devices was performed. Also, computer assisted

land resource mapping was performed on an agricultural scene in Michigan

and a natural vegetation scene near Cripple Creek, Colorado S--192 and
i

,;upporti.ng aircraft data were used for the Michigan study, while only

11
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S-192 data were used for the Colorado study. As a result of these

studies, the following conclusions were made:

1) Simulation studies provided an accurate measure of

the effects of changes in atmospheric visibility

and of base elevation on the classification of

agricultural crops. This technique could provide

additional useful information if used with atmospheric

models of proven validity (such as Turner's) with

accurate levels of sensor noise, and with realistic

crop or other signature reflectance statistics derived

from low and medium altitude aircraft data.

2) in simulation tests of crop recognition accuracy using

simulated ERTS bands (which were narrower than the

actual ERTS bands) and four "optimum" S-192 bands,

with accurate simulations of ERTS and S-192 sensor

noise, the four narrowed ERTS bands provided nearly

the same performance under training conditions of

atmospheric visibility and provided 65% training

set recognition accuracy or better over a wider

range of visibilities than the four "optimum" bands.

3) Seven optimum channel simulated crop classification

performance was marginally better than the four optimum

band performance with S-192 noise conditions at the

training condition, and performance was more extendable

over visibility variations than the four channel results.

4) Under conditions of no sensor noise — with variations

in signals caused only by terrain variations — the crop

classification results were extendable over larger ranges

of visibility and base altitude with the narrowed

ERTS bands than with the four or seven optimum bands.

This occurred because the ERTS bands were located in a

12
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spectral region where atmospheric effects were

reasonably small, while both the seven and four

optimum bands included bands in the blue-green

portion of the spectrum. In using data from

newer spacecraft sensors (with generally higher

signal to noise ratios than either ERTS or 5-192)

for agriculture surveys one should consider band

selection (both number and placement) in the light

of the extension of signatures over a range of

atmospheric conditions rather than solely on the

performance in separating training set signatures.

The ability to preprocess data is also an important

consideration, and the results presented shed some

light on how well preprocessing must be performed.

5) Using 5-192 data collected in August 1973 over the

Michigan Agricultural Pest Site near Lansing, corn,

woods, bare soil, and soybeans were mapped with

71.1, 81.4, 85.7, and 50.0% accuracy respectively.

The low performance on soybeans is attributed to

sparse crop cover as a result of extremely late

planting in the 1973 growing season.

b) In Cripple Creek, Colorado land resource mapping,

six optimum bands were chosen from the thirteen

available 5-192 bands. The bands selected were

narrowed versions of the four ERTS bands plus two

bands in the 1.5 - 2.35 um region of the spectrum.

The thermal band was not selected even though the

data were collected near midday, probably because

of the relatively high 2.3°K noise equivalent

temperature (NET) in the thermal band.

l3
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2

ASSESSMENT OF ATMOSPHERIC EFFECTS ON PATTERN
RECOGNITION PERFORMANCE

This section contains a discussion of the portion of this project

dealing with the assessment of effects of variation in atmospheric

optical depth and of variation in terrain elevation on the performance

of a pattern recognition algorithm. The basic ration?_e for such a

study has been presented in section 1.1. This section focuses on

procedures, analysis of results, and discussion of implications of

those results.

2.1 APPROACH

The approach to this effort has already been summarized in section

1.2. In this section, the approach is documented in more detail.

Figure 1 schematically details the approach.

	

First, we generated reflectance signatures of various midwestern 	
I

crops to use in further simulation studies. These were generated from 	
I

aircraft multispectral scanner data collected at the same time as the

Skylab SL-3 overflight of the Michigan test site on 3 August 1973.

Data from the ERIM M-7 scanner were smoothed to simula t e 80m resolution,

and in the process, reduce digitized sensor noise to negligible

proportions. Then the data were calibrated to reflectance by use of

reflectance panel and secondary reflectance standards. Finally

reflectance signatures for the common crops in the scene were generated.

See Section 2.2. Wavelengths of the M7 scanner channels are given in [6].

	

The atmospheric model of Robert Turner was used to generate path 	 ;d

radiance and transmission and total irradiance for a variety of

atmospheric visibility and base elevation conditions. Calculations

were made for the renters of the ERIM M--7 scanner bands. A 2,000 ft

elevation study of variations of atmospheric parameters with variations 	 j
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in visibility was performed. Also, two base elevation variation studies

were performed. For 10km visibility the base elevation was varied from

2,000 - 6,000 ft while for 40km visibility the base elevation was varied

from 6,000 - 14,000 ft. See Section 2.3.

After calculating atmospheric parameters for a variety of atmospheric

and base elevation conditions, these data were used to calculate crop

radiance signatures for the crops whose reflectance signatures had been

previously calculated. The radiance signatures, simulations of what a

sensor would see under these atmospheric conditions, were used in a

model simulacing the pattern recognition device. We used the model to

calculate the performance of the pattern recognition device, assuming

it had been trained on signatures collected under one atmospheric

condition. Confusion matrices were generated showing performance as a

function of atmospheric state and base elevation. Since these results

were generated using data generated from training sets only, we refer

to these results as "training set" results. To simulate effects of

sensor noise on classification, two simulations were run. The first

was run on noise-free data and the second was run on data in which the

effects of sensor noise had been included. See Section 2.4.

5-192 data from the Michigan Test Site area were classified, using

nearly the same categories as for the simulation study. Atmospheric

measurements made at the time of Skylab overpass were used to determine

the atmospheric state. Results of evaluating the Skylab map accuracy

were compared with model results to determine model validity. See

Section 2.6.

Last, analysis of the results was done to assess the range of

variation in base elevation and atmospheric state over which good

pattern recognition performance could be retained. See Section 2,5.

2.2 ,AIRCRAFT DATA PROCESSING

The purpose of processing aircraft data collected in support of

the Skylab overpass was to derive directional reflectance signatures

16
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for use in the model described in Section 2.4. For this purpose, data

collected at 1,000 and 10,000 ft over the Michigan Test Site were used.

The data were collected on 5 August 1973 at 0830-1130 EDT.

The starting point for analysis was 10,000 ft data already digitized

and converted to 7094 computer compatible format and 1,000 ft data

digitized and scaled but not yet converted to ERIM 7094 format. See

Figure 2 for a flow of aircraft data processing operations.

2.2.1 1,000 FT DATA PROCESSING

Data were first converted to 7094 format to facilitate further

processing. Then, using graymaps already generated for CDC 1604 computer

processing steps (on another project), the locations of each of the

gray reflectance panels and of the secondary standards were found.

Signatures for each of the panels and for the standard fields were

extracted using the STAT program. The next step was a calibration of

each channel of data in terms of reflectance, using panels signatures

and panel reflectance values from report 101700--10-X [3). As shown in

Figure 3 the panel means (in integers) were plotted versus the panel

reflectances and a best fit regression line determined for the data.

Two constants, an additive constant a and a multiplicative constant b

were determined such that:

reflectance = a + b (integer value)
	

(l)

These constants were determined so es to minimize the mean square error

of the fit of the line relating panel signals to reflectance.

Once'the constants a and b were chosen for each spectral channel,

the reflectances of each of the secondary standard fields (used to

calibrate 10,000 ft data) were determined through an application of

equation 1.

'	 2.2.2 10,000 FT DATA PROCESSING

The processing of the 10,000 ft data began with a smoothing of the

basic data to 80m resolution. The data were digitized with 14.4m

17
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3
'	 7

resolution along the scan line and 12.19m resolution along the flight

line. To smooth to a square 80m element required a smoothing operation

of 6 x 7 across the scan line and along the flight line respectively.

After the data were smoothed to about 80m (the actual figures are 	 j

86.4 x 85.3m), the same secondary standard fields located on the 1,000 ft

data were found on a 1 x 1 graymap of a red band and the signatures
3

obtained. Then a calibration of the data was performed by determining

constants a and b relating digital counts to reflectance in exactly

the same way as was done for the reflectance panel data in the 1,000 ft

data set. Separate a and b values were obtained for each spectral

channel.

The next step was the extraction of signatures from large fields

for the crop types bare soil, trees, corn, soybeans, oats, pasture,

stubble, dense green, and water. Large field data were used so that	 +

the same fields can be located on Skylab data. Multiple samples of

each category of crop were selected and signatures extracted from the

combined area.

During the combining step, the results were scaled to reflectance

by imposing the scaling coefficients (the b values previously determined)

in the combining operation. Later revised mean value cards (representing

the difference between the scaled mean and the constant a) were punched

and inserted in the signature deck.

The results of the aircraft data processing, the reflectance

signatures, are shown in Table 1. Shown there are mean values and

standard deviations for the nine crop types previously mei,tioned. In 	
4

interpreting these results, one should remember that these signatures

represent the appearance of crops at 80m resolution. Also, at the 'i
extreme values of smoothing used on the original aircraft data, the

standard deviations shown represent the variation in the reflectance

of the training sets; the sensor noise also present on the analog tape

recorded data was reduced to negligible proportions by the extensive
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TABLE 1

REFLECTANCE MEANS AND STANDARD DEVIATIONS
FOR MICHIGAN AGRICULTURE CROPS - 5 AUGUST 1973

(standard deviations in parentheses)

.41	 .48 .46 - .49 _48 - .52 .50 - .54	 .52 - .57 .55 - .60 .58 --	 .64 .62 - .70 .67 - .94 1.0 - 1.4 1.5 - 1.8

Class 1 2 3 4 5 6 7 8 9 19 11

Dense Corn 2.65 3.07 2.91 4.17 5.62 5.31 4.39 3.45 30.47 37.02 14.54
(.276) (.264) (.237) (.297) (.502) (.471) (.313) (.225) (3.36) (2.85) (1.18)

[floods 1.68 1.65 1.52 2.37 3.55 3.02 2.20 1.56 25.06 33.24 11.51
(.737) (.674) (.575) (.614) (.739) (.804) (.757) (.609) (.368) (.416) (.244)

Bare Soil 10.41 11.30 10.59 12.27 13.20 15.63 15.74 15.63 20.05 29.65 33.82
(3.58) (3.97) (3.60) (3.58) (3.75) (4.34) (4.52) (4.29) (7.78) (9.44) (6.90)

N
Sparse Corn 3.63 3.96 3.73 5.51 7.58 7.29 5.80 4.53 29.12 36.39 18.90

(.753) (.902) (.765) (.755) (.891) (1.04) (1.19) (1.12) (3.36) (4.5D) (3.00)

Stubble 4.45 5.44 5.22 7.17 9.26 10.00 9.76 8.81 24.50 37.60 30.96
(.429) (.572) (.592) (.607) (.544) (.793) (1.18) (1.31) (2.34) (3.91) (4.17)

111pe Oats 2.67 3.56 3.51 4.90 6.26 7.01 7.54 7.23 14.86 21.66 15.35
(.486) (.456) (.371) (.538) (.823) (.805) (•577) (.528) (3.03) (3.07) (.924)

Soybeans 5.08 5.46 4.94 6.73 9.12 8.94 7.49 6.08 3.99 48.16 29.94

(.953) (1.25) (1.16) (1.32) (1.24) (1.63) (.198) (2.13) (5.52) (5.06) (3.19)

Dense Green 2.87 3.07 2.78 4.45 6.73 5.92 4.03 2.70 41.36 48.08 20.56
(.340) (.296', (.298) (.516) (.700) (.801) (.654) (.502) (3.03) (4.06) (2.62)

Pasture 3.68 4.16 3.84 5.57 7.51 7.60 6.69 5.54 23.06 34.41 20.16

(.136) (.111) (.203) (.240) (.510) (.333) (.549) (.858) (7.11) (5.79) (2.19)

a

t

i`
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The reflectances of materials show y. in Table l are in qualitative

agreement with reflectance spectra in the Earth Resources Spectral

Information System (ERSIS) and with plant canopy reflectance calculations

made by Suits [4]. The calculations of reflectance are thus felt to

be accurate.

2.3 TURNER MODEL CALCULATIONS

To determine the effects of changing atmosphere optical thickness
•1

and of varying base altitude on ground irradiance, atmospheric trans-

mission, and path radiance, calculations were made using R. Turner's

radiative transfer model. The model calculates these radiometric

quantities and others given inputs of solar elevation and azimuth,

view angles, atmospheric state, and background albedo. Atmospheric

state is specificed as an optical thickness at various wavelengths

for which the calculations are to be made.

For the model calculations, the view angle considered was nadir,

corresponding to the satellite case. The wavelengths used were the

center wavelengths of the ERIN M-7 scanner channels, as shown in 	
;i

Table 1. The solar elevation angle was that for the Michigan data

(5 August 1973 at 1130 EDT). A green vegetation albedo was assumed for

the background. We assumed various atmospheric optical depths at

constant base altitude, then varied the base altitude at two of the

atmospheric optical depths. Table 2 presents the base altitude cases

considered for the atmospheric states presented in the table. The

intent of these cases was to cover reasonable situations. Thus the

3-160km sea level case for atmospheric visibility spans almost the

entire range of reasonable remote sensing situations. The altitude

variations are for an east coast US area (Case 1) and a Rocky Mountains

area (Case 2).

The atmospheric state input to the Turner model for the cases

shown in Table 2 is straightforward -- one needs only to specify the

22
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ATMOSPHERIC STATES CONSIDERED
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horizontal visual range and the model will make the calculation of

atmospheric optical depth at any specifies wavelength. For cases

shown in Table 3, some modified form of input was required. We simulated

the effects of varying base elevation on atmospheric parameters, assuming

a constant atmospheric state. Because less air is contained in paths

to base elevations above sea level than in paths to sea level, the

atmospheric optical depth will be less, even though the horizontal

visibility at sea level is unchanged. Thus optical depths for base

elevations greater than sea level need to be modified over the sea
level case.

For the purpose of these computations, we calculated the Rayleigh

optical depth as a direct function of the absolute atmospheric pressure

at the altitude in question. Thus, to obtain the Rayleigh optical

depth for a base elevation other than sea level, the sea level optical

depth is modified by:

T = T	
Ph	

(2)
h	 o	 1013

where

T  = atmospheric Rayleigh optical depth at base elevation h

T = atmospheric Rayleigh optical depth at sea level

Ph = absolute pressure at elevation h in millibars

The aerosol term was calculated for varying altitudes by reference

to the Elterman Standard atmosphere [2]. This standard atmospheric
profile is the one used in the Turner model when atmospheric visibilities

are used to characterize ti£ atmospheric state. Then the total optical
depth was calculated as the sum of the aerosol term, the Rayleigh term,

and a term representing ozone absorption.

24
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TABLE 3

	

r-.
	 BASE ALTITUDE CONDITIONS FOR 'TURNER

i
	

MODEL CALCULATIONS

Case 1 — lOkm '3rizontal visibility

Sub Case	 Base Elevation (ft)

A	 0*

B	 2000

C	 4000

D	 6000

E	 8000

Case 2 — 4+Okm horizontal visibility

Sub Case	 Base Elevation (ft)

A	 0*

B	 6000

C	 8000

	

F'

	 D	 1.0000

	

is
	 E	 12000

1

	

c
	

*represents cases shown in Table 2

3a
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2.3.1 DISCUSSION OF RESULTS

After the optical depths had been calculated for each case, the

Turner model was exercised on the IBM 370 computer. Results of the

calculations are shown in Figures 4 and 5. Figure 4 shows the reflectance

signature multiplicative term, LT- and the additive term Lp as a function

of visibility from 3 to 160km visibility. Curves for 0.52 and 0.66 Um

are shown to illustrate the different behavior of these terms for

different wavelengths. As can be seen from Figure 4, the multiplicative

term increases as visibility increases. This occurs because the path

transmission from ground to satellite increases as the visibility

increases. The total irradiance remains nearly constant. In Figure 4,

the path radiance decreases as the atmospheric visibility increases.

This occurs because there is less scattering at high atmospheric

visibility than at low visibilities.

Figure 5 shows the variations of signature multiplicative and

additive terms with base altitude at an atmospheric visibility of 1Okm.

Again, the curves for 0.52 and 0.66 pm are shown. Referring to

Figure 5, as base altitude increases, the horizontal visibility

increases. The horizontal visibility increases because there is less

scattering at elevations above ground level. Thus the multiplicative

term increases with base altitude both because irradiance increases and

because path transmission increases. Referring to Figure 5, the path

radiance term decreases as base elevation increases because of reduced

scattering.

Because the multiplicative term increases with increasing visibility

or base altitude and the additive term decreases, the signature means

for various classes may either increase, decrease, or remain nearly

constant, depending on the reflectance in a particular band. Low

reflectance class means will decrease with increasing visibility or

base altitude because of the dominance of the additive term. The

converse is true of high reflectance classes because of the dominance

of the multiplicative term,	 26

°j
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2.3.2 SIGNATURE TRANSFORMATION

Reflectance signatures calculated from aircraft data were trans-

formcd, using the Turner model calculations previously discussed, to

create radiance signatures under various atmospheric visibility and

base altitude conditions. Radiance signatures are Extracted from sensor

data.

Three types of signature transformation were employed. first,

signature mean values were converted from reflectance to radiance by

the formula:

L = .1P + Lp	(3)

where

L = signature radiance mean [mw/cm2-ster-pm)

E = total downward irradiance from Turner model [mw/cm2 -ster-um]

T = path transmission from ground to sensor

p = signature reflectance mean value

L
P
 = path radiance calculated by Turner model [mw/cm2-ster-pm)

All variables in equation 3 were functions of wavelength, and the

calculation was carried out for each of the scanner bands, using

Turner model values calculated at the center wavelength of the bands.

The covariance terms of the reflectance signatures were trans-

formed by the formula:

E E T T
V	

p	
m n m n	 4)

mn	 mn	 W2

where

Vmn = the covariance between the radiance in spectral bands m & n

pmn - the covariance between the reflectance in spectral bands m & n

E = total irradiance in band m
m

m
= path transmission in band m

29
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The noise of the sensor was introduced by the formula:

Uk2k = Vk
k + N2	 (5)

where

Dkk the transformed variance of channel K

Vkk = the radiance variance of channel K, calculated from

equation 4

N2 = the mean square sensor noise as deduced from performance

reports

The simulation of scanner noise assumes that the scanner noise is

uncorrected with variations in signature radiance.

2.4 SIGNATURE 'MODIFICATION MODEL DEVELOPMENT AND EXERCISE

2.4.1 MODEL DEVELOPMENT

As stated in the introduction to Section 2, the approach taken to

study of atmospheric effects on pattern recognition devices was

modelling. Computer software for the 7044 computer was developed to

read a signature deck and generate a sample of specified size from

that distribution. Then the samples are classified, using the ERIM

linear classifier [5] trained by signatures entered to the model. The

model generates a confusion matrix, a display showing how points from

the sample distributions were classified by the trained classifier.

2.4.2 MODEL EXERCISE

After the model had been developed and debugged, it was exercised

using reflectance signature data from aircraft data analysis trans-

formed by multiplicative and additive terms as previously discussed.

'three broad cases of atmospheric effects were considered — ERTS-1

effects (4 channels), 5-192 effects (best 7 channels), and S-192

(best 4 channels). For each case the effects of change of atmospheric

visibility from 3 to 160km (training on data with 10km visibility) were

30



assessed. Two cases of variation in performance with base elevation

changes were assessed --- a variation from 2,000 to 8,000 ft (training on

2,000 ft base elevation signatures) and a variation from 6,000 to

14,000 ft (training on 8,000 ft data). The 2,000 to 8,000 ft test was

conducted at lOkm visibility (simulating east coast cases) and the

6,000 to 14,000 ft test was conducted at 40km visibility (simulating

west coast cases). These cases are summarized in Table 4.

Finally, for each set of wavelengths and visibility or base

elevation conditions two cases were computed — one with sensor noise

(ERTS or S-192 as appropriate) and one without. Results will be

discussed in Section 2.5.

2.5 ANALYSIS OF SIMULATION MODEL RESULTS

As a result of the simulation model calculations, results were

generated for four optimum bands, the four ERTS bands, and seven

"	 optimum bands. Cases with and without sensor noise were generated to

compare the intrinsic separability of the classes with the actual

separability under ERTS and S-192 conditions.

2.5.1 FOUR OPTIMUM BAND RESULTS

The four optimum channels, selected on the basis of the separation

of the reflectance signatures, were 0.48 - 0.52, 0.55 -- 0.60, 	 "I

0.62 -- 0.70, and 1.5 - 1.8 pm.

Figures 6 and 7 show results of the simulation of classifier

accuracy versus visibility for noise free and noisy cases respectively.

Referring to Figure 6, the probability of correct classification is 	 !

shown as the solid line. The distance between the solid and dashed 	
i

line shows the probability of misclassification. The difference 	 j

between the dashed line and the horizontal line at 1.0 represents the	
'l

amount not classified. For these plots, a five class recognition

problem was assumed. The classes were corn, woods, soil, soybeans,

and other; these classes represent those which one would typically

classify in satellite data collected over Michigan in August.
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TABLE 4

CASES CONSIDERED FOR
CLASSIFICATION MODEL EXERCISE

Case 1 -- Effects of Atmospheric Optical Thickness

a. Select 4 bands closest to ERTS

b. Train on 10km data

c. Classify 3, 6, 10, 20, 40, 160km data

Case 2 — Effects of Base Altitude--1

a. Select 4 bands closest to ERTS response

b. Train on 2,000 ft data

c. Classify 2000, 4000, and 6000 cases

Case 3 -- Effects of Base Altitude

a. Select 4 bands closest to ERTS response:

b. Train on 8,000 ft data

c. Classify 6000, 8000, 10000, and 12000 ft data

32
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Referring to Figure 6, the average probability of correct classi-

fication at the training condition at lOkm data is 0.942 for the five

classes. The probability of correct classification decreases as

conditions vary from the training condition. For small changes from the

training condition, the major effect is to assign samples to the

"not classified" category, rather than to classify.

Comparing Figure 6 to Figure 7, we see that when sensor noise

effects are also simulated, the performance degrades from 0.942 to

0.719 probability of correct classification at the training condition.

But for the "noisy" case, the reduction in performance as conditions

c	 different from the training case are simulated is less severe than for

the "noise-free" case because the decision regions for each class are

larger. This occurs because each signature has larger variance in each

channel as a result of the added sensor noise. The range of visibilities

over which the performance is degraded less than 5% from that at the

training condition is from 8.97km to 13.91cm. Later, these numbers will

be compared with similar numbers for the 7 optimum channel case.

Figures 8 and 9 show variations in performance as base elevation

is varied from 2,000 to 6,000 ft. Training was done on the 2,000 ft

signatures. Qualitatively, the same comments made for variations of

visibility apply to the variation of altitude. At lOkm visibility, a

variation of base elevation from 2,000 to 2,390 ft causes a degradation

of performance of 5% over the training condition.

Figures 10 and 11 show similar curves for variations of altitude

from 6,000 to 14,000 ft at 40km atmospheric visibility. in this case,

performance is nearly constant over the range of altitudes. Slightly

better performance is obtained away from the training condition

because of improvement in the recognition of the "corn" and "other"

classes. Improved recognition results because these classes were

composites of two and four separate training sets respectively. As
t

altitude varied, the recognition accuracy of each of the subclasses
r
F
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i
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and the misrecognitions of one subclass as another varied in such a

way as to make the overall accuracy inprove slightly for conditions

different from the training condition. This would not have occurred

if these had been single training sets for corn and other.

2.5.2 FOUR CHANNEL ERTS RESULTS

Figures 12 and 13 show the noise-free and the noisy simulations

of recognition accuracy for four bands simulating the ERTS-MSS

response. These bands were 0.52 - 0.57, 0.62 - 0.70, 0.67 - 0.94,

and 1.0-1.4 pm. The wide bandwidth ERTS--MSS channels were only

partially simulated by the narrower M--7 scanner spectral bands. An

attempt was made to select M-7 bands close to the ERTS-MSS bands.

Because the wide spectral bandwidth was not perfectly simulated, the

ERTS results to be discussed in this section should be viewed with

caution. Figures 12 and 13 show the same qualitative behavior as

Figures 6 and 7. As we move avay from the training conditions, the

average probability of co.rreet classification monotonically decreases

and the average probability of misclassification increases. The

performance at the training condition for ERTS and four optimum bands

was nearly the same, under noise-free conditions, 0.938 and 0.942

probability of correct classification, respectively. But when sensor

noise was simulated the performance of the ERTS was 0.817 while the

performance of the four optimum S-192 bands was only 0.719. This

is a consequence of the relatively lower noise levels in ERTS as

opposed to S-192 data.

The behavior of performance or visibility is varied away from the

training condition is similar for the ERTS and four optimum channel

cases. Visibility variations from 8.97km to 13.9km produced 5%

degradations in the performance of the classifier for four optimum

channels. The corresponding numbers for the ERTS case are 9.44 - 12.7km.

The slightly larger range of acceptable performance of the four optimum

channels is bought at the expense of lower performance at the training

condition.
40
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Figures 14 and 15 show the variation in performance with four

simulated ERTS bands as the altitude is varied from 2,000 to 6,000 ft

at a visibility of lOkm. These curves are comparable to Figures

8 and 9 for the four optimum channels. Again, the qualitative behavior

of average probability of correct classification as conditions are

varied away from the training condition is similar for ERTS and four

optimum channel cases. For the four optimum band case, an altitude

variation from 2,000 to 2,390 ft caused a 5% decrease in performance.

An altitude change from 2,000 to 2,760 ft would cause a 5% decrease

in the performance using the four ERTS bands. One reason why a greater

altitude variations are possible with ERTS than with the four optimum

bands might he that the ERTS bands are confined to the green, red,

and near-infrared portion of the spectrum, while the four optimum bands

include one band in the blue-green where path radiance is a large

fraction of the observed signal and where variations with altitude are

large. Further, most vegetation has low reflectance in the blue-green

g.

	

	 as a consequence of chlorophyll absorption. Hence path radiance

changes will lead to large changes in signature mean values for

vegetation classes.
}

Figures 16 and 17 show the variation in performance as altitude is

varied from 6,000 to 14,000 ft at a visibility of 40km. Compare these
t

figures with Figures 10 and 11 for the four optimum bands. As with the

four optimum band case less than 5% performance degradation is observed

over most of the range. Again the performance increases, then decreases

as we increase altitude from 8,000 to 14, 000 ft. The reason for this

behavior was discussed in Section 2.5.1.

For the noise-fret case for four optimum channels the performance

decreased smoothly as elevation was increased from 8,000 to 14, 000 ft.

.	 This behavior is noticed to a much smaller degree in the ERTS data.
t

Again the difference is probably caused by the blue-green band being

one of the four optimum bands, but not one of the four bands used to
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simulate ERTS. For this band changes in atmospheric effects (primarily

path radiance for dark vegetation targets) will be relatively larger

for a given terrain elevation or visibility change than for the green

or red bands of ERTS.

Comparing the simulated performance of the four simulated ERTS

bands with that of the four optimum bands, the ERTS bands show better

performance at the training condition than the four optimum bands

primarily because of lower noise levels simulated for the ERTS sensor.

Performance degradations with visibility changes are similar for the

two four band sets. Changes with elevation differences are slightly

smaller for ERTS bands than for the four optimum bands, the latter set

with a blue-green band.

2.5.3 SEVEN OPTIMUM BAND RESULTS

Figures 18 and 19 show the classifier performance in noise-free

and noisy cases for seven optimum channels. In this case, the seven

channels were 0.48 -- 0.52, 0.50 - 0.54, 0.55 - 0.60, 0.62 - 0.70,

0.67 - 0.94, 1.0 - 1.4, and 1.5 - 1.8 pm, and the noise simulated was

for the 5-192 sensor. Comparing the performance of the seven channels

with that of the four optimum or four ERTS simulated channels, the

performance at the training condition is slightly better (0.881 average

probability of correct classification versus 0.719 and 0.817 respectively

for the noisy cases and 0.988 average probability of correct classifi-

cation versus 0.942 and 0.938 respectively for the noise-free cases).

For the noise--free case, the degradation in performance as conditions

are varied from the training condition is more drastic for the seven

channel case than for either of the four channel cases. This mc.kes

sense intuitively because the decision regions associated with each

signature are proportionally larger for seven channels than for four

channels, but the additional three channels (.50 - .54, .67 - .94, and

1.0 -- 1.4 um) have larger variations in atmospheric effects with
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changing visibility than the optimum four. Hence a given visibility

change will induce a greater change in performance for seven channels

than for four.

For the noisy case, the degradation in performance as visibility

i.
decreases is also more severe for the seven channel case than for

either of the four channel cases. But as visibility improves from
t

	

	
the training condition of lOkm, the seven channel results are less

drastically affected than the four optimum channel results, until we

reach the limiting case of 160km visibility.

As we saw with the four channel results, the major effect in the

noise--free case is for correct classification probability to decrease
r.

	

	
and the not classified category to increase. For the noisy case, the

probability of correct classification decreases and the misclassifi-

cation increases.

If we accept a 5% decrease in classifier performance, then the

range of visibilities over which we can operate with the seven

optimum channels is 9.8km to 10.58km with the noise-free data and

9.74km to 13.3km for the case with sensor noise included. These ranges

are narrower than for the 4 optimum or the 4 ERTS channels. This

implies that the performance is more sensitive to atmospheric

visibility variations when seven channels are used than when four

channels are used.
E

A more realistic comparison of performance between the three

cases is to specify a certain level of performance of all classifiers

and then calculate the range of conditions over which the classifiers

can deliver that performance. If we somewhat arbitrarily select 65%

accuracy on the training sets, then the range of visibilities over

which we can obtain this performance is as shown in Table 5.

Table 5 contains much interesting information about the variation

in classifier performance with visibility. First, for the noise-free

case, note that the four ERTS bands have the widest range of applicability.
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TABLE 5

RANGE OF VISIBILITIES OVER 14HICH
65% TRAINING SET ACCURACY CAN BE ACHIEVED

(Training at lOkm Visibility)
(2000 ft base elevation)

Upper Visibility	 Lower Visibility
Case	 Limit (km)	 Limit (km)

4 OPT tnoise free)	 16.9	 8.74

4 ERTS (noise free)	 19.8	 8.44

7 OPT (noise free)	 13.9	 8.63

4 OPT (sensor noise)	 14.6	 8.79

4 ERTS (sensor noise)	 19.02	 8.13

7 OPT (sensor noise) 	 36.4	 8.76
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This occurs because the performance at the training condition is good

and the performance does not degrade too rapidly with changes in

visibility because the four bands used to simulate ERTS are far enough

into the red to avoid most of the major changes in atmospheric effects

with visibility, which occur in the blue. By comparison, the range of

the four optimum bands is smaller than the four ERTS bands for the

noise-free case. Better performance at the training condition is

offset by greater variation in performance away from the training

condition because the four optimum bands contain a blue-green band

more sensitive to atmospheric effects than the ERTS bands. Thus

while the four bands are optimum for separating the classes at the

training condition, they may not necessarily be optimum for signature

extension over visibility changes. The seven optimum channel noise-

-	 free results show greater sensitivity to atmospheric visibility

changes than the four optimum channel results. Here too, the increased

performance at the training condition is offset by greater sensitivity

to atmospheric effects which change with visibility. Thus the number

of channels used for classification under conditions where signatures

must be extended over visibility variations must be selected with

signature extendability, as well as classifier performance on the

training sets, in mind.

Comparing the cases where sensor noise was also simulated, the

four ERTS bands still have a larger range of permitted visibility

variations for a performance of 65% than the four optimum bands. The

lower visibility limit is slightly lower for the noisy ERTS case than

for the noise-free case because the performance under noisy conditions

falls off more slowly with decreasing visibility than under noise--free

conditions. The four optimum band case has the most restricted operating

range under conditions where S-192 sensor noise was simulated. The

{
•	 seven optimum band case has the widest range of operation under these

noisy conditions, mainly because of the slow degradation of performance

with increasing visibility.

i
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Figures 20 and 21 show the variation of classifier performance

for seven optimum bands, with and without sensor noise respectively,

as base elevation is varied from 2,000 - 6,000 ft for a visibility

of lOkm. For both cases, the performance decreases as we move away

from the 2,000 fL training altitude. The effect is more drastic for

the noise-free case than for the noisy case. As we move away from the

training altitude, the major effect in the noise-free case is a

reduction of correct classification and an increase in not classified.

Under S--192 noise conditions a more gradual decrease in correct

classification occurs and an increase in misclassi.fi.ed. Similar effects

were noted when visibility was varied away from the training conditions.

Table 6 summarizes the range of altitudes over which 65% or better

average correct classification can be achieved for the various cases.

The same qualitative comments apply to this table as to the previous

table where visibility ranges were tabulated. For the noise-free case,

the four ERTS bands show the largest altitude range for "acceptable"

performance. The four optimum bands show a reduced altitude range

because of the blue-green band being one of the four optimum. The

seven band case shows the smallest altitude range. For the noisy case,

the seven band case shows the largest altitude range and the four

optimum band case the least altitude range. The four ERTS band case

is intermediate.

Figures 22 and 23 show the variation in classifier performance

with base altitude changes at 40km visibility for seven optimum bands

for noise free and noisy cases respectively. As with the two

four channel cases there is a decrease in correct classification and an

increase in misclassification as we move away from the 8,000 ft training

altitude. But for the seven channel case the degradation in performance

is more drastic for the noise-free case than for the noisy case, in

contrast to the fuur channel results.

J
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TABLE 6

p

RANGE OF BASE ALTITUDES OVER WHICH
65% TRAINING SET ACCURACY CAN BE ACHIEVED
(10km Visibility, Training at 2,000 ft)

Case

4 OPT (noise free)

4 ERTS (noise free)

A	
7 OPT (noise free)

4 OPT (sensor noise)

4 ERTS (sensor noise)

7 OPT (sensor noise)

Upper Altitude
Limit (kft)

3.08

4.52

2.72

2.67

5.21

6.0*

Lower Altitude
Limit (kft)

2.0

2.0

2.0

2.0

2.0

2.0

*performance not degraded to 65% at 6.Okft
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drawn from the simulation study.

FW MERLY WILLOW RUN

Using the 65% or greater correct classification criterion,

acceptable performance is obtained over the entire range of altitudes

for all cases except the seven channel noisy case, where the specified

performance can be obtained only from 6,000 to 12,000 ft.

2.5.4 MODEL VERIFICATION WITH ACTUAL SKYLAB PROCESSED RESULTS

In an effort to verify that the model results (particularly those

results where sensor noise was simulated) were accurate, we processed

actual 5-192 data collected over the Michigan Test Site on 5 August 1973.

The details of processing are discussed in Sections 2.3 and 2.6. The training

sets selected from the S-192 data were the same as those selected from

the aircraft data from which the reflectance signatures were obtained.

Training and test set performance were evaluated. These results are more

fully discussed in Section 2.6. However, Table 7 presents a comparison

of training set accuracies from the simulated 5-192 data and the actual

5-192 data. The 2,000 ft base elevation and lOkm visibility conditions

are reasonably close approximations to the actual conditions at the

Michigan Test Site during the Skylab overpass [3]. As can be seen from

Table 7, the agreement between the two results is good, particularly

when the 90% confidence intervals of the estimate from the actual data

are considered. These confidence intervals are important because of the

relatively small number of points (435) used for the evaluation of actual

5-192 data. All simulated results fall within the 90% confidence intervals

of the actual results, except corn, soybeans, and the average. Differences

may be attributed to the slight difference in the actual and simulated

spectral bandwidths, the slight difference between the simulated

conditions and the actual conditions, and to minor variations in actual

5-192 sensor noise from that tabulated in reference 4. The fact that

signatures are not really gaussian, but were assumed so for the

simulation is also a factor which must be considered. But on the

whole, the agreement between simulated and actual seven optimum band

5-192 results is good, lending credibility to the conclusions to be
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TABLE 7

COMPARISON OF SIMULATED 5-192 AND
ACTUAL 5-192 TRAINING SET CLASSIFICATION

9

ACCURACY RESULTS FOR 2,000 ft BASE
ALTITUDE AND lOkm VISIBILITY

Class Simulated Accuracy	 5-192 Accuracy*

i ' Corn 83.4	 73.8 + 8.1

is

t< Woods 91.1	 78.6 + 3.7_

Soil 90.7	 90.5 + 11.3

Soybeans 86.0	 68.1 + 17.0

{ Other 89.6	 90.0 +
I

7.2

f

Average 88.2	 80.2 + 4.8

i

.I

*mean value + 90% confidence interval
1

r

I

t

-

1

i
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2.5.5 CONCLUSIONS FROM THE SIMULATION STUDY

Conclusions reached from the simulation study are reported in

this section. When reading these conclusions, the reader should be

aware that this is but one study, using one set of data of one

agricultural scene. The conclusions drawn are supported by the

results of the experiment. Generalization to a broader agricultural

mapping problem should bE .'one with care, and with due regard for other

studies relating to this general problem (e.g., reference 6).

Under training conditions, and noise-free conditions, the seven

optimum channels perform better than the four optimum and four simulated

ERTS bands (0.988 versus 0.942 and 0.938 average probability of correct

classification). But the seven optimum channel results are more

sensitive to changes in atmospheric visibility (Table 5) or base

elevation (Table 6). When 5-192 or ERTS sensor noise is simulated

this behavior is not as dramatic.

Classification using the four narrow aircraft data bands to

simulate ERTS bands is less affected, in either noisy or noise-free

state, by changes in atmospheric or base elevation conditions than

classification using the four optimum bands. This is probably because

a blue-green band is one of the four optimum bands, and variations in

atmospheric effects in this band are larger than for the simulated

ERTS bands.

The performance using narrow wavelength bands to simulate ERTS,

and four optimum channels, are nearly the same under noise--free

conditions (0.9+2 versus 0.938 average probability of correct

classification). Under conditions of sensor noise, the four simulated

ERTS bands show better performance than the four optimum bands, probably

because the noise levels from the ERTS sensor are generally lower than

from the 5-192 sensor.

The seven channel results with sensor noise agree well with actual

performance on the same fields from the 5--192 processing. Small

62



L
ERIM

FORMERLY WILLOW RUN LABGRATORIES.7HE UNIV ERSIYY OF MICHIGAN

differences in performance may be attributed to slight mismatch of

simulation study bands and actual S-192 bands, to slight differences

between simulated and actual atmospheric conditions, and to lack of

strictly gaussian training set statistics. The good agreement between

simulated and actual results verifies that the noise conditions used

for S-192 were representative of the noise in the data.

The implications for use of ERTS and S--192 like sensors for

agricultural surveys relate to the range of atmospheric variability

over which acceptable performance can be achieved. At atmospheric

conditions equivalent to horizontal visibilities of about lOkm,

adequate performance (65% correct classification or better) can be

obtained over atmospheric state variations corresponding to visibility

variations of + 3 - 4km. If greater variations are found, data

preprocessing corrections will have to be made to assume adequate

performance. Although training at other than lOkm visibility

conditions was not performed, it is expected that as the visibility

improves, the range of visibilities over which adequate performance

can be obtained will increase.

The implication for the use of future spacecraft sensors, with

improved signal--to-noise ratio is contained in a comparison of noisy

versus noise-free results. The noise-free results (as would be

generated with a sensor with no noise) show better performance at the

`

	

	 training condition but greater sensitivity to changes in atmospheric

condition or base elevation than the noisy results. As better sensors
F

are constructed, there should be more concern about selecting a set of

bands and a number of bands to use for classification. The bands

selected and the number of bands can only be partially specified by

results of optimum channel studies and training set results generated

}
under a limited set of atmospheric conditions. Due consideration must

also be given to the range of atmospheric conditions over which surveys

will operate. For example, in the present study, seven optimum channels
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(noise-free) gave better performance at the training condition than

four optimum channels, but the seven channel results were more sensitive

to changes in atmospheric visibility than the four channel results.

Which set would perform better in practice would depend on the user's

definition of acceptable performance, but for 65% accuracy or better,

the four channel results showed a wider range of visibilities than the

seven channel results.

2.6 S-192 DATA HANDLING

The purpose of processing the S-192 data was to generate a

recognition map comparable to the aircraft data recognition map and to

evaluate its accuracy for comparison with the aircraft data and with

the model calculations. The data used were SL-3 S-192 data collected

over the Williamston, Michigan Test Site on 5 August 1973 at about

1100 EDT.

Referring to Figure 24, the first step in processing was to

convert the S-192 data into 7094 computer format through the use of an

IBM 360 conversion program. Then a reconnaissance g:aymap of the

1.5 - 1.8 um band (every 10th line and point) was made to edit the area

to that of the test site.

Next a 1 x 1 gray scale optimized map of the 1.55 - 1.75 um band

was prepared to select *_raining sets, and the same training sets selected

for aircraft data analysis were located. Then signatures were extracted

for these fields from the S-192 data. As before, at least two samples

of each of seven agricultural classes were selected, and the samples

of each class combined to form the signature for that class.

A recognition map was prepared, using the optimum seven bands

as selected from the analysis of aircraft data (6]. The bands used 	 r

are shown in Table 8. When the recognition map had been prepared, its

accuracy was evaluated on both the training set and the test set. The

test set selected was different from the one used for the aircraft data
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TABLE 8

SEVEN OPTIMUM BANDS USED
FOR S-192 COMPUTER MAPPING OF

MICHIGAN AGRICULTURE

	

0.46	 0.51 pm

	

0.52	 0.56 pm

	

0.56	 0.61 pm

	

0.62	 0.67 pm

	

0.78	 0.88 pm

	0.98	 1.08 pm

	

1.55	 1.75 pm
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evaluation [6] because it was impossible to find some of the small

fields of the aircraft test set on the S-192 data.
E

2.6.1	 TRAINING AND TEST SET LOCATION

Both training and test sets were difficult to find on the S-192k,

data graymap.	 This was caused by two factors - the resolution of the

data and its radiometric quality, and the fact that conical scrn data

is
were used.	 (Scan line straightened data was originally requested, but

was not used because other investigators had found mis-registration

between the various channels of data in the scan-line straightened

data	 I7].)

To accurately locate both training and test sets, we first prepared

a grid overlay to the graymap showing all section lines. 	 This grid

was prepared by a two--step procedure.	 First, control points were

located in both S--192 and aerial photographic data. 	 Then section	 -

corners were measured from the aerial photography, using the same

coordinate system as for the control points. 	 A regression equation

related the coordinates of the section corners in the photography to

r the line and point numbers on the S-192 data. 	 The regression equation

was developed from the control points.

The resultant section grid was only approximate, because of

residual errors in the regression equations relating aerial photograph

coordinates to S-192 data coordinates.	 Nevertheless, the grid was

adequate for location of the training sets. 	 A detailed comparison of

the field pattern within a particular section grid and the pattern on
1.

the aerial photography allowed us to locate specific training and test	 I

f
i

fields which had been annotated on the photography. t

2.6.2	 EVALUATION OF MAP ACCURACY --- TRAINING SETSF:
The evaluation of map accuracy was done on both training and test

sets.	 For training set accuracy assessment, 	 the actual classification	 4#.'.:

within the training areas was counted. 	 Initially, recognition as nine
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separate categories were assessed. The recognition results were later

aggregated to the five classes at interest in crop mapping surveys:

corn, woods, soil, soybeans, and other. Some of the results of the

analysis have already been presented in Table 7. Table 9 presents a

confusion matrix of training set results showing not only percentage

correct classification but how the various misclassifications are

apportioned. In Table 9, the ground classes are shown across the top

of the table, while the classifier classes are shown down the left hand

side. For example, 73.8% of corn points were called corn by the classifier.

The classifier called 10.6% of the corn woods, 10.0% soybeans, and 5.6%

other. The numbers in parentheses show the standard deviation of the

estimate of classification accuracy, computed assuming a binomial distribution.

Referring to Table 9, we see that corn is misclassified as woods,

soybeans and other. The corn-woods misclassification, and corn-other

misclassifications have been seen by other investigators using satellite

and aircraft data [8,9]. The misclassification of corn as soybeans

apparently occurs in sparsely vegetated areas of corn (drowned spots or

field edges) more representative of soybeans than corn.

There is some confusion of bare soil with other, primarily stubble

and pasture. There may be some vegetation growing in the bare soil

fields used for training, and this would account for these misclassi-

fications.

There is misclassification of woods as corn and soybeans. The

woods corn misclassification has been mentioned before. Some sparse

woods may be classified as soybeans.

The soybeans are confused with every other category except woods.

This probably occurs because the soybeans had variable percentage cover

of the ground at the time of overflight. Ordinarily this would not

have occurred at this point in the growing season but 1973 was a very

late year for crops as heavy spring rains delayed planting. Thus the

soybeans were at a stage of development more typical of mid-July than
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TABLE 9

CONjfUSION MATRIX FOR AGRICULTURAL CLASSIFICATION
WITH SEVEN S-192 CHANNELS — MICHIGAN TEST SITE 8/5/73

Training Set Results

Corn Soil	 Woods	 Soybeans Other.

Corn 73.8 0	 14.3	 6.4 3.6
(3.27)

Soil. 0 90.5
0	 2.1 1.8

(4.52)

ON	 Woods
.0

10.6 78.6
0	 0 0(5.48)

s
Soybeans 10.0

0	 7.1	 68.1 4.6
(6.8)

Other 5.6 9.5	 0	 21.3
0

,f

(2.88)

`	 Not
0 0	 0	 2.1 0

E	 Classified

I

b

Percentages of correct and mis-classification are shown.	 Numbers in parentheses
are the standard deviations of the estimates.
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early August. Very dense cover soybeans were misclassified as corn,

"normal" cover areas were called soybeans, while sparse cover areas

were called soil, other, and not classified. This kind of result was

also seen in the test results. It is attributed to the delayed

development of the soybean crop at the time of overflight in the summer

of 1973.

The other class consisted of pastures, alfalfa and hay fields,

and idle fields. While there were many misclassifications between the

four signatures used to recognize this class, the recognition of the

class as a whole was about 90%. The largest misclassification was as

soybeans. The reason for this has been discussed above.

2.6.3 EVALUATION OF MAP ACCURACY — TEST SETS

Evaluation of accuracy on training sets frequently gives an

artificially good estimate of the actual classifier performance. For

this reason, test set evaluation of classifier performance was done.

Table 10, shows the results of this evaluation for the four classes core;.

woods, soil, and soybeans. The results are presented in the same format as

Table 9. The results of Tables 9 and 10 are comparable — that is the

accuracy results are within one standard deviation of each other — for

all classes kxcept soybeans. Comparing the soybeans results, we find

larger misclassification as other and corn in the test set than in

training set results. In view of the vari hility of the soybeans at

this stage in the growing season, this result should be expected.

Also, there are relatively few soybeans fields in the test area, acid

those fields are small. Tl--^re was great difficulty in locating the

soybeans test set fields.

On the whole, the results are as good as those being reports by

other investigators [8]. They are probably representative of what can

be done with 5-192 data under these agricultural conditions. In a more

normal year, we might expect improved performance on the soybeans

category.
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CONFUSION MATRIX FOR AGRICULTURAL CLASSIFICATION
WITH SEVEN S-192 CHANNELS — MICHIGAN TEST SITE 8/5/7'

Test Set Results

Corn Soil	 Woods Soybeans

Corn 71.1
0	 11.6 14.3

(4.97)

Soil 0 55.7	 0 0
(5.04)

Woods 22.9
81.4

0 0(5.93) 0
0
3
M

Soybeans
0 7.0	 4.8

M

50.0 
(7.71)	 r

Other 6.0 9.5	 0 z35.7	 zrnma
Not 0 0	 0 0
Classified m

N

I
m

Percentages of correct and mis-classification are
G

shown.	 Numbers	 G
in parentheses are the standard deviations of the estimates.	 N
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S-192 LAND RESOURCE MAPS OF CRIPPLE CREEK AREA

As a cooperative program with Dr. Harry Smedes of the U. S.

Geological Survey, Denver, Colorado, and Mr. Jon Ranson, a Colorado

State University graduate student, we prepared land resource maps of

the Cripple Creek area of Colorado. The project was similar to one

conducted with ERTS data [10] and resulted in a seven category computer--

generated land resource map prepared using six optimum channels of

S-192 data collected on 4 August 1973 at about 1719 hrs. GMT on the

SL-3 mission.

3.1 TEST SITE DESCRIPTION

Figure 25 shows a portion of an S-190A red band (0.6 - 0.7 um)

frame with the test site outlined. Also shown is the outline of the

ERTS project test site of [10]. S-192 data were collected over this

site on various occasions, but the data from 4 August 1973 were selected

for study because the vegetation categories were differentiable at

that time, there was a minimum of snow cover, and the data were collected

reasonably close to the time of the ERTS data previously processed.

The area of Figure 25 covers a portion of south-central Colorado

centered on the town of Cripple Creek. The area, about 20 x 25 miles

in extent, extends from nearly Eleven Mile Canyon Reservoir on the

northwest to beyond Colorado Springs on the east. The western half of

the test site is mountainous terrain, while the eastern half is Great

Plains. Pikes Peak is in the upper middle of the test site. Elevations

within the test site vary from 5,000 ft for the Great Plains area to

over 14,000 ft on Pikes Peak. Cripple Creek is about 10,000 ft

elevation. The mountainous area consists of bare rock, coniferous

forest over a variety of rock substrates, and grassland meadows. The

Great Plains area consists of agriculture and rangeland. The rangeland
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FIGURE 25. S190A RED BAND (0.6 - 0.7 µ»i) P1iO1'O OF TEST AREA FOR 5192 MAPPING OF
TERRAIN FEATURES, CRIPPLE CREEK, COLORADO, AUGUST 4, 1973.
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has a sparse cover of grass. In between the mountainous terrain of the

Rocky Mountains and the Great Plains, there are exposed a set of

sedimentary rocks. These rocks were exposed when the Rocky Mountains

were uplifted.

3.2 APPROACH

The approach to this land resource mapping task was to use computer-

implemented pattern recognition processing of 5--192 digital taped data.

The flow of operations is summarized in Figure 26. We performed most

of the computer processing at ERIM on an IBM 7094 computer. Dr. Smedes

and Mr. Ranson assisted us by selecting the training sets and in

providing guidance as to the final set of classes for mapping and

display.

We began processing with scan-line straightened computer compatible

tapes of 5-192 data. The first step was the conversion of these data

to a format compatible with our 7094 software package. The format

conversion was done on an IBM 370/168 computer at the University of

Michigan. Tapes in the ERIM standard format were then histogrammed to

provide a quantiative measure of the dynamic range of data in all

spectral channels. As with other 5-192 digital tape data sets we have

examined, we found the dynamic range in each channel to be a factor of

5 to 10 less than the maximum dynamic range of the tape.

We used histograms and the imagery of the scan line straightened

data (also provided by NASA) to perform preliminary data quality

assessment and to select a channel for mapping and for eventual selection

of training sets. Examination of the imagery revealed that band 1

(0.41 -- 0.48 pm) was so noisy as to be nearly useless. All other bands,

including the thermal band (10.4 - 12.5 pm) showed adequate or good

contrast. After careful examination of the imagery and histograms,

band 11 (1.55 - 1.75 pm) was selected for mapping because it had the

largest dynamic range of any of the channels, the imagery of that band
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showed good terrain contrasts, and the relative tones of vegetation,

soil and rock, and water were similar to those in the red spectral

region, permitting easy comparison of red band photography and the

1.55 -- 1.75 um computer map.

The 1.55 - 1.75 um computer graymaps were sent to Dr. Smedes and

Mr. Ranson for selection of training sets. They sometimes selected

multiple areas to represent training sets for classes of materials

they wished to discriminate in the data. Following the selection of

training areas (see Table 11), and their designation to ERIM as sets of

line and pixel numbers in the original S-192 data, spectral signatures

were calculated. (A spectral signature is a description of the mean

values, variances, and covariances of the signals in each spectral band

for a particular material.) Copies of the signature information were

sent to Dr. Smedes and Mr. Ranson who subsequently decided to combine

the signatures of some classes whose signatures were not sufficiently

different to permit reliable discrimination.

To assist them in deciding which of their original classes should

be combined into composite classes, ERIM generated a set of pairwise

probabilities of misclassification for each signature pair. The average

pairwise probability of misclassification criterion was used to select

six optimum bands for further mapping from the thirteen available S-192

bands [11]. A 7094 computer program, STEPL, was exercised for this

selection. Two different runs of the program were made, one with all

22 terrain class signatures, and one with 14 signatures representing

the bare rock and soil classes. Results of the channel selection for

each of these cases are summarized in Table 12, with the consensus bands

shown in Table 13. These results are further discussed in the next

section. In selecting the bands for the consensus, where there was a

choice, a band which appeared high in the ordering for separating rock

types was selected, since the goal of the experiment was primarily to

map rock types.
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TABLE 11

TRAINING SETS SELECTED FOR CRIPPLE CREEK MAPPING

Designation Brief Description

CCG Cripple Creek Granite

DS Dakota Sandstone

FOUNT Fountain Formation

PHONGRAND Phonolite - Granodiorite

PS Pierre Shale

VOL Volcanic Rocks

CCGC Composite of Cripple Creek Granoite and
Coniferous Forest

DSC Composite of Dakota Sandstone and Coniferous

Forest

GRANOC Composite of Granodiorite and Coniferous Forest

PPG Pikes Peak Granite

NS Niobrara Shale

PPGC Composite of Pikes Peak Granite and Coniferous
Forest

VOLC Composite of Volcanics and Coniferous Forest

CCGF Dense Coniferous Forest over Cripple Creek
Granite

GRANOF	 Dense Coniferous Forest over Granodiorite

PPGF	 Dense Coniferous Forest over Pikes Peak Granite

VOLF	 Dense Coniferous Forest over Volcanics

CLOUD	 Clouds

CLDS	 Cloud Shadow

MEAD	 Meadow (grass)

SNOW	 Snow

WATER	 Water
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TABLE 12

ORDERING OF S-192 BANDS FOR TWO
CLASSIFICATION PROBLEMS -- CRIPPLE CREEK

Order General Classification Rock Classification

1 1.55 - 1.75 0.56 - 0.61

2 0.78 - 0.88 1.55 - 1.75

3 1.09 - 1.19 0.68 - 0.76

4 2.05 - 2.35 1.09 - x.19

5 10.4 - 12.5 2.05 - 2.35

'	 6 0.62 - 0.67 0.62 - 0.67

7 0.68 - 0.76 10.4 - 12.5

8 0.56 - 0.61 0.78 - 0.88

9 .52 - .56 0.41 - 0.46

10 1.2 - 1.3 1.2 -	 1.3

11 0.41 - 0.46 0.52 - 0.56

12 0.98 - 1.08 0.98 - 1.08

13 0.46 - 0.51 0.46 0.51
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TABLE 13

CONSENSUS SIX BANDS FOR CRIPPLE CREEK
MAPPING FROM S-192 DATA
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Following the selection of a consensus set of six bands for mapping,

and the definition of a good set of classes for mapping (shown in Table 11),

recognition maps of small test areas were prepared. This was done to

permit a final assessment of the set of classes for mapping and to

provide small test area information. After examination of the prelimi-

nary set of recognition maps by Mr. Ranson, a final set of classes,

shown in Table 14, was defined and a final recognition map of the whole

area was prepared.

Rather than display the recognition map using the conventional

computer-printed map display, a more concise display format was sought.

We had used the Mead Technology Labs ink jet printer to prepare concise

display of ERTS recognition maps and considered it for the display of

the final S-192 map. In the time between the preparation of the ERTS

maps of reference 10 and the time we were ready to print our S-192

maps, a less expensive ink jet printer capabilit y was developed as part

of ERIM's MIDAS (Multivariate Interactive Digital Analysis System) [12].

We used MIDAS ink jet printer capability to generate the original of the

color coded recognition map shown photographed in Figure 27. The cost

of preparing this map was approximately $150.

3.3 DISCUSSION

The processing plan followed for the analysis of S-192 data was

very similar to that for the analysis of ERTS data of the same area.

Only the processing to identify optimum channels was added to the S-192
i

data processing. In this section, the results of the optimum channel

analysis and the nature of the final classes of the recognition map of

Figure 27 are discussed and compared with ERTS results.

3.3.1 OPTIMUM CHANNEL RESULTS

Any optimum channel results generated by channel selection programs

and using training set statistics should be viewed with some caution.
e'

Both sensor data quality (signal-to-noise ratio) and the nature of the
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TABLE 14

CLASSES OF THE FINAL CRIPPLE CREEK MAP

Undivided Sedimentary Rocks

Undivided Volcanic -- Plutonic Rocks

Dense Forest

Sparse Forest

Meadow

Water and Cloud Shadow

Cloud and Snow

3
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FIGURE 27. COLOR
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classes being mapped control which channels are selected. Any set of

channels used for classification should be justified not only on the

grounds of the channel selection program results, but also considering

data quality and the nature of the reflectance signatures of the materials

being discriminated. Considerations of data quality are par-cicularly

important in the case of 5-192 data because of the obvious variation

in signal-to-noise ratio from channel to channel. Thus, it may very

well be that high signal-to-noise ratio, non-optimally placed spectral

channels are selected before low signal-to-noise ratio optimally placed

spectral channels because the low signal-to-noise obscures intrinsically

larger signa.ure separability in the optimally placed bands. This

hypothesis must be examined before we can generalize from channel

ordering results to say that a particular spectral band is a good one

for a particular classification problem,

Table 15 lists the 5-192 bands in order of decreasing signal-to-

noise ratio. The data were obtained from reference 5. In the same

table, the ordering of these bands for general classification and rock

type mapping are presented. The conclusion drawn from Table 15 is

that signal-to-noise ratio does not materially influence the order

of selection of channels. For example, although channel 2 (0.46 - 0.51 hem)

has the best noise equivalent reflectance, it is selected last for both

general classification and for rock type mapping. Channel 11

(1.55 - 1.75 um) has the ninth smallest noise equivalent reflectance

but is selected first for general mapping and second for rock type

mapping. Similarly channel 12 (2.05 -- 2.35 Um), which has the largest

noise equivalent reflectance of any of the reflective bands, is selected

fourth best for general mapping and fifth best for rock type mapping.

Of the six bands selected for the classification, all can be

3ustified on physical grounds. Referring to Table 13, the six bands

selected bear marked similarity to the four ERTS bands plus two near

infrared bands, and to early recommendations for the EOS Thematic
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TABLE 15
Y

ORDERING OF 5-192 BANDS BY SIGNAL-TO-NOISE RATI0
AND BY UTILITY IN TWO CLASSIFICATION PROBLEMS

Mapping Utility
Order Siganl-to-Noise General	 bock

1 2 11	 4

2 3 7	 11

3 6 9	 6

4 8 12	 9

5 1 13	 12

6 4 5	 5

7 7 6	 13

8 9 4	 7

9 11 3	 1

10 10 10	 10

11 5 1	 3

12 12 8	 8

13 (13) 2	 2

t

1
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Mapper [6]. The bands of Table 13 are not listed in order of selection,

but by increasing wavelength.

The 0.56 - 0.61 lam band is useful for vegetation assessment because

it is close to the green peak (actually on the long wavelength side of

the peak) of reflectance caused by lack of chlorophyll absorption. This

band is also useful in discriminating rock types containing ferric iron

because of the absorption by ferric iron in the yellow-green portion of

the spectrum.

The 0.62 - 0.67 um band is very useful in discriminating vegetation

types (because it is placed near the red chlorophyll absorption dip)

t	 and is also useful in discriminating ferric iron containing rocks (when

used with the 0.56 - 0.61 lam band) because of the lack of ferric iron

absorption in the 0.62 - 0.67 pm region.

The 0.68 -- 0.76 pm band may be useful in discriminating vegetation

types. The band is located near the "shoulder" of the vegetation

reflectance curve, where the vegetation reflectance rises steeply.

Changes in the position or height of the shoulder would be reflected as

changes in the reflectance in this band. The selection of this band

third for rock type mapping cannot be justified by any particular

spectral features in the spectra of the rocks in the test site.

The 1.09 - 1.19 Um band (or a band with similar response) has

been found optimum for vegetation mapping in nearly every study

addressing optimum bands. This band was also selected third for rock

type discrimination, probably because the rock type training sets

contained some vegetation as well as rock. The 1.09 -- 1.19 lam band does

not match the ferric or ferrous iron absorption features at 0.95 and

1.0 pm respectively, and therefore cannot be justified on that basis.

The 1.55 - 1.75 pm region has also been shown in many studies Lo

be a good band for vegetation classification. In this region the

controlling factor in vegetation reflectance is the water content of

the foliage. This band is thus a useful one for discriminating live
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from dead vegetation. Its selection second for rock type discrimination

is probably a consequence of the vegetation content of most of the rock

type training sets.

Comments similar to that for the 1.55 - 1.75 um band can be made

for the 2.05 - 2.35 pm band. The conclusion of the spectral band analysis

is that despite variations in data quality from band to band, optimum

channels selected are well matched to major vegetation and rock type

spectral reflectance features. Bands in the yellow, red, and near

infrared were most useful. These bands represent narrowed, and slightly

better placed bands than ERTS bands, plus two bands in the 1.5 - 2.5 pm

region which ERTS did not have. The latter two bands have been

consistently recommended as good bands in EOS Thematic Mapper studies.

3.3.2 FINAL MAP CATEGORIES, COMPARED WITH ERTS

After consultation between Mr. Ranson and ERIM personnel, a final

set of classes to be displayed were selected. These classes are shown

in Table 16 along with the classes mapped from the ERTS data collected

on 20 August 1972 and reported in reference 10. Because of a misunder-

standing between Mr. Ranson and ERIM, the Niobrara Shale signature was

omitted from the final recognition map shown in Figure 26. There had

been preliminary indications that the Niobrara Shale could be reliably

discriminated from other rock types using the S-192 data.

Analysis of Table 16 reveals that the subjective analysis of

recognition accuracy in test sites and the objective analysis of

pairwise probabilities of misclassification from the channel selection

program STEPL convinced Mr. Ranson that the sedimentary rock types,

with the exception of Niobrara Shale, could not be accurately separated

by the S-192 data. A quantative analysis of accuracy of recognition

to be performed. by Dr. Smedes and Ar. Ranson will reveal the accuracy

of mapping the composite sedimentary rock class.

	

Further, the intermediate forest class, consisting of intermediate
	 L

cover coniferous forest over various rock type substrates, was not formed
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TALE 16

FINAL MAP CLASSES FOR ERTS AND S-192
COMPUTER MAPPING OF CRIPPLE CREEK TEST SITE

ERTS	 S--192

Niobrara Shale	 (Niobrara Shale)

Pierre Shale

Limestone

	

	 Undivided Sedimentary
Rocks

Dakota Sandstone

Fountain Formation

Gruss	 Pikes peak Granite

Forest	 Forest

Intermediate Forest

Grassland

	

	 Undivided Volcanic - Plutonic
Rocks
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for the 5-192 results. Instead these categories were lumped into either 	 It

the undivided volcanic-plutonic rocks or the Pikes Peak granite classes,

depending on the substrate. It was judged not possible to separate the

various "exposed" volcanic-plutonic rocks with ERTS data, and these

classes were lumped into a composite grassland category. Pikes Peak

granite was judged separable from the other volcanic--plutonic rocks

(granodiorite, phonolite, Cripple Creek granite, and volcanics) in the

5--192 data.

The other categories were similar between the ERTS mapping and

5-192 mapping efforts. The water category probably could have been

separated from the cloud shadow category, but the same misunderstanding

which caused the omission of the Niobrara Shale signature caused the

omission of the water signature in the final classification results.

3.3.3 QUANTITATIVE CLASSIFICATION ACCURACY OF THE
5--192 RECOGNITION MAP

Quantitative recognition accuracy of the map will be assessed by 	 +

Dr. Smedes and Mr. Ranson. Because accuracy figures were not available

at the time this report was written, we are unable to include these

numbers.

3.4 CONCLUSIONS

Several conclusions were reached as part of this study of land

cover mapping in the Colorado Mountain Area near Cripple Creek. First,

six useful channels for discriminating vegetation and and rock classes

were selected. These bands were narrowed versions of the four ERTS

bands plus two bands in the near infrared region from 1.55 - 2.35 pm.

Most of the bands selected can be justified on the basis of the

reflectance spectra of vegetation and rock types. The lack of correlation

of channel selection ordering with noise equivalent reflectance in each

band is indicative that reflective band data quality did not play a

major role in the selection of channels.
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There was preliminary evidence that sedimentary rock type

discrimination could be done more precisely with ERTS data than with

S-192 data, perhaps because of the relatively higher noise equivalent

reflectances of the S-192 channels. A final conclusion regarding this

hypothesis must await quantitative accuracy evaluation of the S-192

recognition map to be performed by Dr. Smedes and Mr. Ranson.

In spite of a time of data collection near solar noon, the thermal

channel was only the fifth most useful band for general classification

(all scene categories) and seventh most useful for rock type classi-

fication. This result is at odds with studies made using aircraft data

(e.g., reference 6) and may be explained by the relatively large 2.3'

noise equivalent temperature of the thermal band on the SL-3 mission.

To this extent then, the data quality of the thermal channel did

influence the order of channel selection.

r
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