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FOREWORD	 ..._______..----------------------

This is the final report for Phase II of the Scheduling Language and

Algorithm ne•rciopment Study (NAS9-13616). It is contained in three

volumes, The objectives of Phase II were to implement prototypes of

the Scheduling Language called PLANS and the scheduling module library

that were designed and specified in Phase I,

Volume I of this report contains data and analyses related to a

variety of algorithms for solving typical large-scale scheduling and

resource allocation problems. The capabilities and deficiencies of

various alternative problem solving strategies are discussed from the

viewpoint of computer system design.

Volume II is an introduction t.) the use of the Programming Language

for Allocation and Network Scheduling (PLANS). It is intended as a

reference for the PLANS programmer.

Volume III contains the detailed specifications of the scheduling

module library as implemented in Phase II. This volume extends the

Detailed Design Specifications previously published in the Phase II

Interim report (April 1975).

ii
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1.0	 INTRODUCTION

The design of the Programming Language for Allocation and

Network Scheduling (PLANS) was prompted by the inadequacies of

exi3ting languages being used to solve scheduling problems. A

high-level language was needed that would allow easy, direct

expression of the kinds of functions frequently found in scheduling

and resource allocation programs. PLANS fulfills this need primarily

because of its unique capability to allow dynamic manipulation of

tree data structures at execution time. Another important feature

is the close correspondence that exists between basic scheduling

functional operations and PLANS statemeiits. This allows both the

initial programmer and the maintenance programmer to easily design

and modify PLANS programs. These powerful language features make

it applicable to many areas other than scheduling. That is, PLANS

is not a special purpose scheduling language, even though it was

motivated by scheduling problems. It is a generalized, high-level

tree manipulation language.

	

1.1	 PURPOSE OF THE DOCUMENT

This User Guide is intended to provide sufficient information

about PLANS to allow the reader who has some computer programming

experience to construct correct and useful PLANS programs, using

the entire set of functional capabilities which PLANS currently

provides. The basic philosophy of PLANS will be discussed first,

to provide some intuitive feeling for the nature and unique properties

of the language. PLANS access and update reference techniques

will then be described, providing the background information

necessary for the presentation of each of the basic statements of

5.
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PLANS. These statements will be discussed in some detail, with

examples illustrating the major variants of the statements. Several

complete programs will then be presented and discussed in sufficient

detail to provide a working knowledge of some of the techniques of

problem solution to which PLANS lends itself.

1.2	 BACKGROUND OF PLANS

Although its capabilities have proven to be much more broadly

applicable, PLANS was designed to achieve a single goal: to allow

the designer of experimental, constantly changing scheduling and

resource allocation algorithms to translate his algorithm designs

to working code directly from their basic functional descriptions,

without intermediate detailed program design steps, without highly

specialized programming expertise, and at minimum span time and

manpower costs. The necessity to go through several additional

design and implementation steps before the advent of PLANS

resulted in unacceptably long development times and high costs.

Equally important, it tended to discourage the truly experimental

approach to scheduling algorithm development which holds the greatest

promise of convergence on good solutions for large, logically

complex scheduling problems. PLANS was designed, then, to cut

development cost and span time, and also to provide a medium for

easy modification of scheduling programs.

An analysis of previously existing programming languages as

applied to scheduling problems revealed two deficiencies: (1) the

language level did not correspond to the level of the functions

typical in scheduling algorithms, and (2) more significantly, the
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data structures (usually only arrays) of the languages did r

correspond to those typical of scheduling problems.

Scheduling problems typically involve information structures

which are logically hierarchical. A schedule consists of jobs,

each of which has certain properties of its own (time of occurrence,

duration, name, etc.), and each of which also has certain relations

to other jobs (predecessors, etc.) and to particular resources

which are required to perform the jobs. These resource assignments

have, in turn, such properties as time of occurrence, duration,

etc. The inputs to scheduling algorithms are also typically hierarchic

in nature, involving, for example, information about resources,

which breaks down into resource types, each of which in turn may

involve many resource units, each of which has its own physical

and logical properties (weight, location, etc.), and each of which

is also unavailable at certain times due to prior assignments to

jobs. The necessity to represent information of this sort in Che

form of arrays (as when programming in FORTRAN, for example) led

to programs which were quite large, difficult, and unreadable. This is

due to the overwhelming preponderance of indexing operations and

similar functions required to express, in array form, information

which is not logically of an array character.

As a result of these considerations, PLANS was designed

around a single feature which is unique among high-level languages:

the provision of hierarchic data structures -- trees -- whose

structure, as well as data content, can be manipulated at execution

time. Many languages (e.g., COBOL, PL/1, ALGOL) have hierarchic



data structures which are static during execution. ThP feature

of PLANS which is novel (except, perhaps, among difficult-to-use

list-processing languages), is its dynamic manipulation of trees.

The output usually required of scheduling programs is, in large

part, a restructuring of the input, which can be most easily

accomplished in a language which allows direct restructuring of

its data structures.

1.3	 BASIC DESIGN PHILOSOPHY

Because it is intended to be used by problem area experts,

rather than programming experts, the language has been designed

to minimize functionally nonessential details, such as data type

declarations, entry declarations, etc. Such language features

usually allow the programmer greater control over the detailed

execution of his programs, but require greater programmer sophisti-

cation and more difficult program logic. In any case, such features

are more appropriate in languages which are intended to handle

quantitative problems. While PLANS provides quantitative capabilities,

its emphasis is more on manipulation of data structures, which has

proven to be the principal activity performed in most scheduling

algorithms. Although future extensions of PLANS may very well

allow the more sophisticated programmer to use type declarations,

etc., it is basic to the philosophy of PLANS that such program

features should never be unnecessarily required.

PLANS data access and update capabilities have been made

sufficiently powerful to allow PLANS statements to correspond

nearly one-to-one with the functional elemer is of typical algorithm

4



specifications. Dynamic tree man;pula ,;ion, one of the features

which helps accomplish this, has already been discussed. PLANS

also provides data arcess capabilities which allow some operations

which are logically iterative to be performed in a single statement

or substatement. Basically, PLANS is oriented toward qualificational,

rather than cunditional, statements. Conditional construction,

which is much more common, is also more difficult and less natural

to use. A, simple conditional construct might take the form, "Look

at each box in turn. If the box you are looking at is red, then

cease looking and go to a special address, at which you will be

instructed to pick up the box you have found." Although constructer

of this sort are possible it PLANS, the language is more oriented

toward qualificational constructs, such as "Pick up the box which

is red." This orientation results in a considerable increase in

the power of the individual statement.

Throughout the language, emphasis has been placed on simplicity

and generality of function. Even though the basic design goal

of the language is to allow more effective programming of scheduling

and resource allocation algorithms, the language contains no

specialized functions like "Schedule", "Unschedule", etc. Such

specialized functions could only exist if they could be precisely

defined in a way that is invariant across different problem types

and programmers. Such specialized language capabilities often

serve more to constrain the programmer than to aid him. While

PLANS does provide a few somewhat specialized functions (DO FOR

ALL COMBINATIONS, DO FOR ALL PERMUTATIONS, ORDER), its emphasis is

really on appropriate data structures, access methods, and manipulati7a

n	 operations.
s
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2.0	 THE -BASIC -STATEMENT -SET---------------.------------------------------

	

2.1	 PLANS TREES

The principal difference between PLANS and other programming

languages is that PLANS is oriented primarily toward the manipulation

of ordered, labeled tree structures. This section will describe

these structures, illustrating their properties in graphical form,

and the next section will acquaint the reader with the various

mechanisms available for accessing information in PLANS trees.

The tree is a hierarchic data structure which consists of a

number of nodes. Figure 2-1 illustrates a typical tree: the root

5
node is shown at the top and other nodes branch out beneath it.

The tree has a name ("$PAYLOAD"), which starts with a dollar sign

to allow the t::anslator to distinguish it from variable names,

key words, etc. Whenever it occurs in'a program, the tree name

is a referer..ce to the root node and its entire substructure, if any.

Figure 2-2 illustrates a tree which has no substructure.

Each node has a label. For consistency in format, we will

always write the label of a node to the nigh` of the node. A

label can consist of any character string (of length 30 or less)

containing no blanks, or the label can be null. A null label is

indicated by a ^gecial character, the cent sign	 although,

for convenience, the label is sometimes omitted altogether when

trees are displayed graphically. In Figure 2-1, the only node

shown with a null label is the root node, but any node can con-

ceivably have a null label. Note that the name of the tree is net

the same as the label of the root node, although they may be

identical.	
PRWIMING PAGE BLANK NOT F JM
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LIFESCIENCE	 TELESCOPE
	 MANUFACTURING 	 Z )GEOPHYSICAL

Co

yWEIGHT 	 WINDOW9000 STARTYEND10 	 143
WINDOWASTARTOW {OW18	 8000END 	 END 
216	 8	 840	 241	 38

Fig. 2-? A Labeted Tree Odith substructure)



$LIFESCIENCE

QDURATION

5

Ab

Firs. 2-2 A Labeled x'ree (,,7ith va.ue)

a

3

i

i



Labels are useful in two ways; they can be used simply to

store information in the tree, usually to identify the nature of

the information in a subtree, but their more important property

is that they provide a means of directly accessing information.

It is not necessary to search all the way through the information

about a payload, for example, in order to determine its weight.

The weight can be accessed directly. If information is to be

accessed di rectly by label in a PLANS program, however, it is

necessary that the label character string satisfy some more rigid

constraints than those given above. It can still consist of up

to 30 characters, but the first character must be alphabetic and

all others must be either alphanumeric or the special underbar (11_11)

character. The underbar character allows one to use meaningful and

readable labels (e.g., THIS IS A READABLE NAME).

.The nodes exactly one level below a given node are called

its descendants, or subnodes. The root node of the tree in Figure

2-1 has four descendants. The node labeled LIFESCIENCE has two

descendants, which, in turn, are labeled WEIGHT and WINDOW. Nodes

that have descendants are called nonterminal nodes; nodes without

descendants are called terminal nodes. There are 11 terminal and

9 nonterminal nodes in the figure.

The node exactly one level above a given node is called its

ascendant. The root node of the tree in figure 2-1 is the ascendant

bf the nodes labeled LIFESCIENCE, TELESCOPE, MANUFACTURING and

GEOPHYSICAL. The node labeled GEOPHYSICAL is, in turn, the ascendant

of the node labeled LENGTH. Note that any node can have, at most,

one ascendant.

10



In addition to a label, a terminal node has a value, which

may be a character string, a numeric value or null. Values are

shown below their nodes. Thus, the node at the bottom right of

Figure 2-1 has the label "END" and the value "318". Labels and

values are character strings which may, depending on the context,

have numerical significance. Like labels, values may consist of

up to 30 characters with no embedded blanks.

While the graphical format is convenient for displaying

conceptual tree structures and for demonstrating the effect of

specific PLANS statements, it is too cumbersome and rigid for

convenient use in the display of specific tree structures, especially

large ones. For this purpose, the indented text format is used.

The tree of Fig. 2-1 is expressed in the form shown in Fig. 2-3.

In this case, the structure is defined by the indentation pattern,

rather than by node-connecting lines. Each line of text represents

a node. The information occurring first cn a line is the node

label, while the values of terminal nodes are separated from the

corresponding labels by a hyphen (-) character that is surrounded

by blanks. In order to allow rigorous definition of tree structures

in which some nodes have null labels, it is necessary to employ a

special convention for representing them. Null labels are

represented by a cent sign (o). This convention is occasionally

employed in the graphical format, although it is unnecessary there.

11



$PAYLOAD
LIFESCIENCE

WEIGHT - 9000
WINDOW

START - lO
END - 143

TELESCOPE
WINDOW

START - 40
END - 216

MANUFA-CTURING
WINDOW

START - 8
END - 840

GEOPHYSICAL
LENGTH - 18
WEIGHT - 8000
WINDOW

START - 241
END - 318

Figure 2-3 ;'he Tree of Fig. 2-1 in Textual Format

An additional convention, which has been adopted, is the use

of parenthesized labels and values to represent variable data in

the definition of a particular tree application. If a label or

value occurs without parentheses, it is assumed that the character

string shown is literally present in the tree. For example, the

tree

$PAYLOAD
LIFESCIENCE

WEIGHT - 9000
LENGTH - 27

contains only actual valves and labels. But if one wanted to show

only the nature of the information contained in this tree, the

following form might be used.

$PAYLOAD
(PAYLOAD NAME)

(CHARACTERISTIC) - (VALUE)
(CHARACTERISTIC) - (VALUE)

(PAYLOAD NAME)

12
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2.2	 PLANS Tree References

PLANS provides the programmer with a number of simple and

powerful means of accessing and updating the information contained

in the labelled tree structures discussed in the previous section.

These methods are based on the notion that the programmer. can

"point" to a particular tree node by specifying which tree it is

in, which descendant of the root node it is under, which descendant

of that node it is under, etc. (Remember that the term "descendant,"

as used here, means immediate descendant.)

This section will describe these methods of the referencing,

illustrating their properties with simple examples, and the next

section will acquaint the reader with the various PLANS statements

which utilize these tree reference methods.

2.2.1 Tree Reference By Label

There are two basic ways of sp ecifying which subnode of a

given node is the relevant one. The first way of specifying a sub-

node is by its label.

Suppose, for example, that information about the telescope

payload in figure 2-4 is desired. Because the name of the tree

is $PAYLOAD and the name of the payload in question is TELESCOPE,

the programmer might write $PAYLOAD.TELESCOPE to access this infor-

mation. This is an example of qualification by label.

Access qualified by label can be continued to any desired

depth in the tree. Consider, for example, the node with value

216 in Figure 2-4. $PAYLOAD.TELESCOPE.WZNDOW.END is one way of

poi.nring to this node.

13



Fig. 2-4 Basic Tree Access Mechanisms
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Certain words, because they are subscript keywords (see following

sections), cannot be used as labels. They are "FIRST," "LAST",

"NEXT" and FALL". Thus, $X.NEXT is now allowed.

The function keywords "LABEL" and "NUMBER" (see Sections 2.2.9,

2,2.10) also cannot be used as .labels.

2.2.2 Tree Reference By Ordinal Position (Subscript)

The second basic way of specifying subnodes is by ordinal

position, or subscript. As was mentioned before, but not explained

in detail, PLANS trees are ordered trees; that is, the ordering

of the descendants of a node is significant. Unless action is

taken to change or reorder a tree structure, the order remains

constant. In the previous example (see figure 2-4), since TELESCOPE

is the second payload, information about that payload can be referred

to as $PAYLOAD(2), as well as $PAYLOAD.TELESCOPE. The usefulness
F

of referencing a node by subscript becomes apparent when the node

to be referenced has no label.

Access qualified by subscript can be continued to any desired

depth in the tree. Consider, for example, the node with value

216 in figure 2-4. One way of pointing to this node is $PAYLOAD(2)(1)(2).

Labels and subscripts can be mixed at will when specifying a

tree node. For example, several ways of specifying the node with value

216 in figure 2-4 are:

$PAYLOAD. TELE SCOPE.WINDOW (2)

$PAYLOAD.TELESCOPE(1).END

$ PAYLOAD (2) WINDOW (2)
f

3.5
r

J

L.	 6



"FIRST" , "LAST", "NEXT" and "ALL" are keywords which may be

used as subscripts. Their use will be explained in detail in the

following sections. Note that "FIRST", "LAST", "NEXT" and 10ALL"

may not appear as labels (i.e. $X.NEXT is not allowed).

2.2.3 Tree Reference By Subscript Keyword ("FIRST")

The first subnode at a given level can be referenced using the

subscript keyword "FIRST", as in $PAYLOAD(FIRST),which is illustrated

in figure 2-5. $PAYLOAD(FIRST) is equivalent to the subscript

specification $PAYLOAD(l), but is executed more efficiently.

Since labels and subscripts can be mixed at will when specifying

a tree node, the following are several valid ways of pointing to

the node with value 216 its figure 2-5;

$PAYLOAD(2)(FIRST)(2)

$PAYLOAD.TELESCOPE(FIRST).END

$PAYLOAD.TELESCOPE(FIRST)(2)

$PAYLOAD (2) (FIRST). END

Note that the subscript keyword "FIRST" may not appear as a

tree node label (i.e. $X.FIRST is not allowed).

2.2.4 Tree Reference By Subscript Keyword ("LAST")

The last subnode at a given level can be referenced using the

subscript keyword "LAST", as in $PAYLOAD(IAST), which is illustrated

in figure 2-6. Note that in figure 2-6, $PAYLOAD(LAST) is equivalent

to $PAYLOAD(4), and to $PAYLOAD.GEOPHYSICAL.

Since labels and subscripts can be mixed at will when specifying

tree nodes, the following are several valid ways of pointing to the

node with value 216 in figure 2-6:
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Fig . 2-5 Tree Access Bra Subscript Keyword ( "FIRfiT'r)
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F..,	 Fig. 2-6 Tree Access B^ Subscript Keyword ("FAST"J
00
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WEIGHT	 WINDOW

9000

START	 END
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$PAYLOAD(2)(LAST)(LAST)

$PAYLOAD.TELESCOPE(FIRST)(LAST)

$PAYLOAD(2)kLAST).END

$PAYLOAD.TELESCOPE(L4ST).END

$PAYLOAD.TELESCOPE(LAST)(2)

Note that the subscript keyword "LAST" may not appear as a tree

node label (i.e. $X.LAST is now allowed).

2.2.5 Tree Reference By Subscript Keyword ("NEXT")

In appropriate contexts, a new subnode can be established at

the right by using the subscript keyword "NEXT". For example,

$PAYLOAD(NEXT) causes a new subnode to be created to the right of

$PAYLOAD(4) in figure 2-7.

"NEXT" is meaningful only in the context of updates, for example

in the tree assignment statement (see section 3.1.1) $X(NEXT) = 5•

which causes a new node to be created in the tree $X which has a

value of 5. "NEXT" is mentioned here in this discussion of tree

references because of its similarity to "LAST".

Note that "NEXT" may not appear as a tree node label (i.e. $X.NEXT

is not allowed).

2.2.6 Conditional Tree Reference By Subscript Keyword ("FIRST.:")

PLANS provides conditional access mechanisms which allow access

to one or more subnodes which satisfy a specified condition. The

conditional access mechanisms are the keywords "FIRST:condition"

and "ALL:condition". "ALL:condition" will be discussed in the

following section.
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Fig. 2-7 Tree Update Mechanism ("NEXT")
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The 01 FIRST:" ("first such that ... 11 ) conditional access constitutes

• reference to the first (that is, leftmost) subnode which satisfies

• particular condition, where the condition is a Boolean expression.

Figure 2-8 illustrates a specific example. Here, a programmer

wishes to refer to the first payload whose launch window is at least

150 days long, so he writes:

$PAYLOAD (FIRST: $E LEMENT.W IN DOW. END - $ELEMENT.WINDOW.START>:: 150).

The string "FIRST:" might be read "first subnode such that..."

the specified condition is satisfied. $ELEMENT is a tree pointer

(see section 3.2) in this context, and represents a reference to

the particular subnode being considered at the current instant in

the left-to-right search. Expressed in procedural terms, the operation

might be, "going from left to righ.., consider each element (i.e.

each descendant of $PAYLOAD) in turn. Calculate the launch window

duration of the element being considered. If greater than or equal to 150,

proceed as if it had been referenced by subscript (since "FIRST:"

is a subscript keyword)." If no subnode can be found to satisfy

the condition, $PAYLOAD(FIRST :$ELEMENT.WINDOW,END - $ ELEMENT.WLNDOW.

START)=150) will refer to a null node (see section 2.2.11), a node

with no label and no value or substructure.

The conditional qualification can be combined with other

qualification methods. Thus, if the programmer wished to refer

to the start tim(: of the launch window for the first payload whose

launch window is tit least 150 days long, he might write:

$PAYLOAD(FIRST:$ELEMENT.WINDOW.END - $ ELEMENT.WINDOW.START ) = 150).

WINDOW(FIRST) or, equivalently,

PAYLOAD (FIRST: $ELEIJENT .WINDOW .END-$ELEMENT .WINDOW . START) =150)

(1).START

1
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Fig. 2-8 Conditional Access Using Qualifier YFIRSp:,,
NN
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$PAYLOAD(F'IRST:$ELEMENT.WINDOW. END- $ELEMENT.WINDOW. START) = 150) .WINDOW.

STAR'S

-	 = 5	 1 I$F.AYLOAD{FIRST :$ELEMII3T,WINDOW.END $ELEMENT .WIND(7W.START) 1 0) ( ) I, )

$PAYLOAD(FIRST:$ELEMENT.WINDOW.END-$EIEMENT.WINDOW.START'>;^ 150)(-2.iST)

{1).

2.2.7 Conditional Tree Reference By ' Subscript Keyword ("ALL:'')

"ALL:condition" is the second of two conditional access

mechanisms. The "ALL:" ("all such that...") conditional access

refers to all the subnodes which satisfy a particular condition,

where the condition is a Boolean expression.

Figure 2-9 illustrates a specific example. Here, a programmer

wishes to refer to all payloads with launch windows at least 150

days long, so he writes:

$PAYLOAD (ALL: $ELEMENT .WINDOW . END - $ E LEMENT.WINDOW . START } a 15 0).

The string "ALL:" might be read "all subnodes such that..."

the specified condition is satisfied. $ELEMENT is a tree pointer

(see section 3.2) in this context, and represents a reference to the

particular subnode being considered at the current instant in the

left-to-right search.

Basically, the ALL: access is a reference to all the subnodes

which satisfy the stated condition as shown in Fig. 2-9. The exact

meaning of this type of access is somewhat context-specific, however.

For a discussion of the way in which this access is interpreted

in the various statements in which it can occur, see the sections

dealing with those statements (sections 3.1.1, 3.1.2, 3.1.3, 3.1.4,

3.1.5).
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$PAYLOAD(ALL:$ELEMENT.WIMDOW.END - $ELEMENT. WINDOW. START) _150)

Fia. 2-9 Conditional Access Using Qualifier "ALL. r'
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An ALL: qualifier must be the last qualifier in a tree reference.

Since ALL: constitutes a potential reference to more than one node,

it is not possible to quelify it further, so that

$PAYLOAD(ALL:$ELEMENT.WINDOW,END - $ELEMENT.WIN Dow. START ),150).

WEIGHT is an illegal reference.

Since "ALL" is a subscript keyword, "all" cannot appear as a

tree node label (i.e. $X.ALL is not allowed).

2.2.$ Indirect Tree Reference

Another powerful access mechanism is the indirect reference,

which allows considerable program independence From specific character-

istics without loss of efficiency.

For example, unless the programmer resorts to very expensive

iterative tree searching there is no way, without indirect referenc-

ing, that he can write a program to schedule shuttle flights that

does not contain words like PAYLOAD, ORBITER, etc. In order to

access information about these resources, he wants to use them as

labels for qualified access, or, conceivably, as tree names. What

is needed is a capability that allows the characteristics of a

problem to reside to the data, rather than the program. Only in

this way can a program that schedules shuttle flights also schedule

machine shop operations. What the programmer needs is the capability

to read in, as data, the labels he will use to access particular

tree nodes.

Accordingly, PLANS allows the kind of indirect referencing

illustrated in figure 2-10. What the programmer is attempting to

do in this illustration is to access information about the resource

types named in a tree called $RESOURCE REQUIREMENTS. He therefore

d
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writes the tree node expression, $RESOURCE INFO.#($RESOURCE REQUIRE-

MENTS(1)), to access information about the first such resource type.

This expression might be read, "the descendant of the node $RESOURCE_

INFO whose label is the character string found as the current value

of the node $RESOURCE REQUIREMENTS(1)". The programmer is in effect

saying, "Behave as if I had written $RESOURCE_INFO.OR.BITER, but

allow me the freedom to use some other label than ORBITER by changing

the data, without changing the program."

Another type of indirect referencing is illustrated in figure

2-11. Here the programmer is attempting to access information about

the resource types whose names appear as labels in the tree $RESOURCE

REQUIREMMTS, He therefore writes the tree node expression,

$RESOURCE INFO.#LABEL($RESOURCE REQUIREMENTS(l)), to access infor-

mation about the first such resource type. This expression might

be read, "the descendant of the node $RESOURCE INFO whose label is

the character string found as the current label of the node $RESOURCE

REQUIREMENTS(1)".

Indirect referencing can be combined with other qualification

methods. The following are valid tree references:

$X(2).#($Y,A).START

$X.A.#IABEL($Y.A) (3)

$X.A(FIRST).#($Y(LAST).B).END

$X.#($Y.# ABEL($Z(2)))

The last example above shows that indirect referencing can be nested

to any depth.
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2.2.9 Label Function

Since it is sometimes necessary to access the label of a node,

the function LABEL was created which takes as its argument a tree

node reference. For example, LABEL($X(3)) is a reference not to the

node $X(3) and its value or substructure, but to i.ts label alone.

The LABEL function can appear anywhere a character string

literal (e.g., 'XYZ') can appear in a PLANS program; LABEL cannot

appear as a tree node qualifier (i.e. $X.LABEL and $X.LABEL($Y(1))

are not allowed) unless the tree reference is indirect (i.e.,

$X.#LABEL($Y(l)) is allowed, see section 2.2.8).

A special application of the LABEL function is in the case of a

tree node which has a numeric label. For example, the tree assignment

statement (see section 3.1.1) LABEL($X(1)) = 34 causes the first

subnode of $X to have a label 34. $X(1) cannot be accessed by label,

since $X.34 is not allowed, but we can access $X(l) by $X(FIRST:

1ABEL($E1EMENT)=34) which utilizes the label 34.

2.2.10 NUMBER function

A second special function of PLANS is NUMBER. This function

returns the number of descendants possessed by a given node. Thus,

the expression NUMBER($PAYLOAD) applied to the tree of figure

2-9 yields the numerical value 4.

Since NUMBER is a function keyword, NUMBER cannot appear as the

label of a tree node (i.e., $X.NUMBER is not allowed).

2.2.11 Null Nodes and *NULL

If a node has no label and no value or subnodes, it is called

a null node. If a node is referred to in a context in which the

reference is to the node as a subtree, and the node does not exist,

it will be evaluated as a null node. For example, in the tree

assignment statement (see section 3.1.1) $X = $Y(ALL:IABEL($ELEMENT)=

29



'START'), if there are no descendants of $Y which satisfy the

condition, $Y (ALL: LABEL ($ELEMENT)='START') will refer to a null

node, so $X will become null upon execution of this statement.

9ften it is desirable for purposes of condition-checking to

be able to refer to a node which is assuredly null. The keyword

$NULL represents anode which has no label, value, or substructure.

If, for example, the programmer wanted to determine whether the

tree $X is null, he might write IF $X IDENTICAL TO $NULL THEN...

(For an explanation of the Boolean relation "IDENTICAL TO", see

section 3.4.2.)

2.2.12 Additional Notes Concerning Tree. Accesses

The meaning of a tree reference depends to a considerable

extent on the context in which it occurs. References to

particular nodes may be intended to refer to a tree substructure

(i.e., the node "pointed" to, including its label,

and anything below that node in the tree) or to a value. The

meaning of a tree reference depends on the context in which the

reference occurs. Thus, a statement which commands that a node

be "pruned" (i.e., deleted from its tree) is obviously a structure

reference, while a statement like

WINDOW DURATION = $PAYLOAD(2).WINDOW.END - $PAYL0AD(2).WINDOW.START;

refers, because of its arithmetic nature, to the values (215 and

40) of the two tree nodes used in the statement.

If a referenced node does not exist, or has no value, a value

is assumed which depends on the context of the reference..

30



Let us assume, for example, that the node $X has only 2 subnodes.

The node $X(3) is therefore a nonexistent node. In an arithmetic

context, a reference to this node would be assigned the value

zero. For example, after execution of the statement

Y = $X(3) + 7;

Y will have a value of 7. In a string context, however, the refer-

ence evaluates as a null string. Thus, the Boolean expression in

IF $X(3) = " THEN,

will be evaluated as true. The same properties are exhibitee by

a node which exists, but has no value, even though it has a sub-

E

	 structure, Thus, in this example, the statement

Y=$X+7;

will assign a value of 7 to Y, and the Boolean expression in IF

$X = " THEN ... will be evaluated as true.
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2.3	 BRIEF LIST OF PLANS STATEMENTS (WITH EXAMPLE STATEMENTS)

Tree Manipulation Statements

Tree Assignment Statement
$X(3) = $Y.A;

GRAFT Statement
GRAFT $NAME(LAST) AT $LIST(NEXT)

INSERT Statement
INSERT $NEXT ELEMENT BEFORE $CURRENT TREE(POSITION);

GRAFT INSERT Statement
GRAFT INSERT $Z(3) BEFORE $B.X.Y.Z;

PRUNE Statement
PRUNE $X, $Y(3), $Y(FIRST);

Label Assignment Statement
LABEL($X(LAST)) = 'SELECTED';

ORDER Statement
ORDER $PAYLOADS BY WEIGHT;

Tree Pointer Statemen*-,

DEFINE Statement
DEFINE $TREE POINTER AS $X(CURRENT_INDEX);

ADVANCE Statement
ADVANCE $TREE POINTER;

Arithmetic Statement

Arithmetic Assignment Statement
X = Y*3.0 + 26.5;

Conditional Statements and Expressions

IF Statement
IF $X IDENTICAL TO $NULL THEN GO TO FINISHED;

Boolean Expression
X426.01($Y c MAXIMUM & $Z SUBSET OF $LIST)

32
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Control and Transfer of Control Statements

GO TO Statement
GO TO TRY AGAIN;

CALL Statement
CALL ORDER LIST ($LIST, XMAX, INDEX);

r
RETURN Statement
RETURN;

g
STOP Statement
STOP;

u

	

	 TRACE Statement
TRACE HIGH;

Input/Output Statements

READ Statement
READ $X, $Y, NUMBER—OF—CREWMEN;

WRITE Statement
WRITE 'ERRONEOUS TREE RETURNED', $RETURNED TREE

Structural Statements

PROCEDURE Statement
GET NEXT—CANDIDATE: PROCEDURE($CANDIDATE LIST, $SELECTED);

DECLARE Statement
DECLARE X, $TEMP LOCAL;

BEGIN Statement
BEGIN;

Noniterative DO Statement
DO;

END Statement
END;

Iteration Statements

DO FOR ALL SUBNODES Statement
DO FOR ALL SUBNODES OF $X USING $POINTER;

DO FOR ALL COMBINATIONS Statement
DO FAR ALL COMBINATIONS OF $CANDIDA'T'ES TAKEN Z AT A TIME;

33
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DO FOR ALL PERMUTATIONS Statement
DO FOR ALL PERMUTATIONS OF $QUEUE TAKEN NUMBER($QUEUE) AT A TIME;

DO WHILE Statement
DO WHILE ($POINTER NOT IDENTICAL TO $NULL);

Incremental DO Statement
DO I - 1,2,4,7 TO 20;

11
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3.0	 DETAILED DESCRIPTION OF PLANS STATEMENTS

	3.1	 TREE MANIPULATION STATEMENTS

There are seven tree manipulation statements in PLANS; each

statement allows tree references to an information source and/or

an information destination. The seven statements are:

Tree Assignment Statement:

(Destination tree reference) _ (Source tree reference);

GRAFT Statement:

GRAFT (Source tree reference) AT (Destination tree reference);

INSERT Statement:

INSERT (Source tree reference) BEFORE (Destination tree

reference);

GRAFT INSERT Statement:

GRAFT INSERT (Source tree reference) BEFORE (Destination tree

reference);

PRUNE Statement:

PRUNE (Source tree reference), (Source tree reference),...,

(Source tree reference);

LABEL Assignment Statement

LABEL (Destination tree reference) _ (Expression);

ORDER Statement:

ORDER (Destination tree reference) BY (Property);

The basic tree manipulation statement is the tree assignment

statement, which is closely analogous to the ordinary arithmetic

assignment statement. In order to provide a context within which

to discuss the general properties of tree manipulation statements,
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the tree assignment statement will be described in considerable

detail, after which the other tree manipulation statements will

be discussed in relation to it.

3.1.1 Tree Assignment Statement

The basic function of the tree assignment statement is to

copy tree information (either a node's value or its entire sub-

structure) from one place to another. For example, consider the

statement $XTREE = $YTREE;. This statement (1) destroys the

current value or substructure of $XTREEE, (2) creates a copy of

the node and value or substructure of $YTREE, and (3) places the

resulting structure at $XTREE. The net result is one of replace-

ment or ,assignment of a new value.

Of course, the tree node expressions 3n a tree assignment

statement may be more complex than simple tree names. An example

is shown in Fig. 3-1, and should be considered in detail. Figure

3-1 (a) shows the initial condition of two trees, $X and SY.

The first statement, $X(3) = $Y.C, modifies the tree $X, as shown

in.(b). Note-that the original third subnode of $X has been deleted

and replaced with a copy of the node $Y.C, and that the tree $Y

has not been altered at all. Note also that the label of $Y.0 has

replaced the label of

Contrast (b) with (c), where the assignment statement $X.D =

$Y.0 causes $X.D to be deleted and replaced with a copy of the

node $Y.C, which is exactly %ha t, occurred with $X(3) = $Y.C, but

this time the label of $X(3) remains what it was before the assign-

ment. Thus, in an assignment statement, if the destination already
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has a value or substructure, it is automatically deleted before

the , copy operation occurs. However, the label of the destination

will be replaced only if the destination tree. reference is qualified

by subscript (e.g., $X(3)). If the destination is qualified by

label (e.g., $X.D), the labal remains the same.

If the destination no3e does not yet exist, it is created.

For example, beginning with the trees in figure 3-2(a), the statement

$X(4) = $Y(LAST) results in the modified $X shown in (b). Because

the left-hand side of the tree assignment referred to a node not yet

in existence, a new subnode of $X was created.

Again beginning with the trees in (a), the statement $X(5) = $Y(LAST)

results in the modified $X shown in (c). Note that a null node was

created at $X(4) so that a copy of $Y(LAST) could be placed at $X(5).

The destination tree reference is qualified by label in (d), so

the tree assignment $X.E = $Y(LAST) results in a modified $X very

similar to that in (b) except that now the Label of $X(4) is "E".

$X.E is created at $X(4) because in tree assignments new subnodes are

always added at the right.

Copying a nonexistent or null node results in the generation

of a node with no value or substructure at the destination. This

case is illustrated in figure 3-3. In (a), there is no node $Y.E.

Therefore, the statement $X(2) = $Y.E (1) deletes the contents of

$X(2), (2) makes a copy (null) of $Y.E, and (3) replaces $X(2)

38



c) Trees of (a) After $X(5) = $Y(LAST)

$x

(A I B C

2	 4	 6

a) Original Trees

$X

KA I B C D
2	 4	 6	 8

b) Trees After $X. D = $Y(LAST)

$x

a	 e	 c	 v
2	 4	 6	 8

8X

A	 B	 C	 E
2	 4	 6	 8

$Y

A hB C D

1	 3	 6	 8

3Y

A	 B	 C	 D
1	 3	 6	 8

$Y

A	 B	 C	 D
1	 3	 6	 8

$Y

A	 B	 C	 D

1	 3	 6	 8

d) Trees of (a) After $X. E = $Y(LAST)

FIG. 3-2 Results of Simple Tree Assignment Statements (Creating New

Nodes)

39



$x

A	 3	 C	 D
2	 4	 6	 8

a) -Original Trees

$X

JA	 C	 D
2	 6	 8

b) Trees After $X(2) = $Y. E

$Y

A NB C D
1	 3	 6	 8

$Y
A	 B	 C	 D

I	 3	 6

f
FIG. 3-3 Results of a Tree Assignment Statement When the Source

Node is Null

40



with the copy. That is, $X(2) is replaced by a null node under these

circumstances.

This convention is consistent with the execution of the statement

when the node in question exists, and has the advantage that it allows

the programmer to test explicitly for a null node ("IF $X(2) = $NULL

THEN	 ") if he is in doubt about the existence of the node referred

to on the righthand side of the tree assignment statement. This

same behavior occurs when a conditional tree access is used in which

the condition is not satisfied, Suppose, for example, that the program-

mer had wanted to replace $X(2) in the example by a copy of the first

descendant of $Y that had ;... • :structure, He might have written $X(2)

$Y(FTRST-NUMBER("MEMENT) :0), Because none of the descendants of

$Y satisfies the condition, the result would have been identical

to that resulting from $X(2) = $Y.E. Both statements yield the same

result as $X(2) = $NULL.

The source information can be arithmetic or a character string

rather than a reference to an existing tree node. Type conversion

is performed automatically. Figure 3-4(a) shows the initial condition

of the tree $X. Figure 3-4(b) shows $X as modified after the execu-

tion of the statement U.B = ' ABC'. Described algorithmically, here

is what has happened: (1) the value or substructure of $X,B has been

deleted, because $X.B occurs on the left-hand side of a tree assign-

ment statement; (2) the right-hand side of the statement has been

evaluated as a tree expression, because that is what is called for by
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the tree assignment statement, and (3) a copy of the tree structure

referred to on the right-hand side has replaced the value or substruc-

ture of $X.B. By this description, then, this tree assignment statement

operated like any other. But how is something evaluated as a tree

expression when it is in fact a character string?

Any time a character string or arithmetic expression occurs,

when the context clearly calls for a tree expression, a dummy tree

is created. This dummy tree has only a single node, the root node,

which has a null label. The value of the node is the string or

arithmetic value specified in the PLANS expression, in this case the

string 'ABC'. The dummy tree is then used just as if the proGrammer

had explicitly created the tree and placed the tree's name in the

program. In the case of the example, the result is the same as if

the programmer had written $X.B = $DUMMY, where $DUMMY is a tree with

one node, no label, and the string value 'ABC'.

As suggested in the explanation above, the same mechanism applies

when an arithmetic expression appears in a context that requires a

tree node reference. Thus, application of the statement $X.B = 2*4

to the tree of 3-4(a) yields the result shown in (c) . The value of the

arithmetic expression, in this case 8, is calculated, placed on a dummy

node, and becomes the value of $X.B. It may occur to the reader that

the same behavior could as well be described as replacement of the value

(or substructure) on the left by the value of the expression on the
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right. As the discussion of (e) will show, this is not always true.

It will be helpful, therefore, to think in terms of the generation

of a dummy node when considering statements of this type.

Figure 3-4 (d) shows a statement of the same basic sort as

that of (c). In this case, the arithmetic expression on the right-

hand side involves a tree node reference, Because $X.0 occurs within

an arithmetic expression, it has the value 6, just as if $X.0 were

an arithmetic variable name. Therefore, the statement $X.B = $X.0 + 7.5

results in substitution of the numeric value 13.5 at $X.B.

Finally, figure 3-4(e) shows a statement similar to (b), except

that the destination tree reference is qualified by subscript. In

this case the destination will assume the label of the source tree

reference, which is a null label.

A property of PLANS tree operations tLat should be well under-

stood is the exclusivity of values and substructures. A node may have

a null value or it may possess either a value or a substructure, but

it may never have both a value and a substructure. Figure 3-5 illus-

trates this concept. In (b), execution of $X.A = $Y(1) places a new

value on the node $X.A, with the result that the previous substructure

of MA is deleted. Figure 3-5(c) shows the converse case in which

placement of a new substructure on the node $X.B deletes the previous

value of that node.

Figure 3-6 illustrates some tree assignments to previously non-

existent nodes. Figure 3-6 (b) shows the tree of (a) as modified by
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the statement $X.D = 8. it should be noted that this statement has assigned

a value and a label to the new node. Any time the referenced node

does not exist, it is caused to exist as specified. if it. was specified

by label, this means the indicated label must be placed on the new node.

Figure 3-6(c) shows the result of a statement in which a non-

existent node was specified by subscript. Because no label was used

to indicate the node and the expression on the right has no label

(it is a dummy node), the resulting node has a value, but no label.

Figure 3-6 (d) involves a new node with a Label, but no value. In

the figure this result was achieved by the statement LABEL($X(NE=)) = 'D'.

However, because two prime (quote) marks together refer to the null

character string, the same result would be observed after execution

of the statement U .D = ''. This statement places a null string on the

node as a value, but that is completely equivalent to no value at all.

Figure 3-6(e) shows what happens when an assignment is made to a

node specified by a subscript that is too large. (It is, of course,

only too large if the programmer did not want the result shown in

the figure.) The programmer has stated that the fifth subnode of $X

is to acquire the value 8. But this can only occur if, after execution

of the statement, $X has at least five descendants. Because there

were only three descendants before the statement was executed, two new

nodes will be created. Only the latest of these newly created nodes is

involved in a tree assignment statement; therefore, only the last node

can acquire a label or a value d The remaining new node(s), in this

case $X(4), will be null.
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There need be no correspondence of level between the source and

destination references. Since the tree assignment statement just copies

the substructure or value at the source and places this copy at the des-

tination, no reference is made to tree levels at all. Notice also that

the source node is not affected by the execution of a tree assignment

statement.

3.1,2 CRAFT Statement

The GRAFT statement, as its name suggests, involves the removal

of a piece of one tree which is then placed on another tree. Note

that instead of copying the information to be added to the target tree, as

is done in tree assignment statements, the GRAFT statement removes the

specified structure from its original location and moves it to the

target tree. Examples are shown in figure 3-7. Figures (a)-(d)

illustrate the fact that Che tree assignment and GRAFT statements

have the same effect (replacement) on $X, the destination reference.

However $Y, the source reference, remains unaffected by a tree assign-

ment statement while it is altered by a GRAFT statement.

It is sometimes important to recognize that the execution of a GRAFT

statement is a sequential process, involving first the removal of a tree

substructure from the source tree, then the placement of the structure

at the destination. Figure 3-7(e) illustrates the effects of GRAFT

$X.0 at $X(4). First, $X.0 is removed from the source tree, (note

that $X has only three subnodes now); then $X.0 is placed at $X(4).

But since $X has only threA subnodes aster the removal of $X.C, $X.0

is placed to the right of $X.D.
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Because it does nut involve any 'copying of tree nodes, the GRAFT

statement executes much more quickly than the tree assignment statement.

GRAFT gives the appearance of being more complex than the tree assign-

ment statement, and the programmer may naturally assume that the latter

is more efficient and should be given preference whenever there is a

choice. A little reflection on the underlying structural operations will

show that this is not true.

The tree assignment statement requires the generation of a complete

copy of an existing structure. The execution, cost of these statements

(and the storage space required) is largely a function of the size of

the structure that must be copied. The GRAFT statement, on the other

hand, requires only the alteration of a few pointers so that an

existing structure can be moved, completely intact, to another tree lo-

cation. The execution cost of this statement is minimal, no additional

storage is involved, and the cost is entirely independent of the size

of the structure that is moved. It cannot be overemphasized that the

GRAFT operation is not only very powerful, but also very efficient.

The source information may be of an arithmetic or character string

type, in wt ich case the statement behaves like the corresponding

tree assignment statement. Figure 3-8 illustrates GRAFT statements

which are equivalent to the tree assignment statements in figure 3-4.

Similarly, if the source reference is to a nonexistent node, the

GRAFT statement has the same effect as the corresponding tree assignment

statement. Figure 3-7(d) illustrates the effect of Ute statement GRAFT

i
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t

$Y.E AT $X(2), Since $Y.E is nonexistent, a null node is created and

placed at $Y,(2).

Like the tree assignment statement, the GRAFT statement may or may

not result in replacement of the label of the destination node. If the

destination reference is by label, no label replacement will occur; if

by subscript, the label will be replaced.

3.1.3 INSERT Statement

For the purpose of the INSERT statement, the subnodes of a node are

regarded as an ordered list. Rather than replacing one of the elements

of that list, this statement inserts a coRy of the source tree before

one of them. Examples are shown in Figure 3-9. Like the tree

assignment statement, a copy is made of the source reference, but an INSERT

statement places this copy before the destination node.

It should be observed that the INSERT operation of (d) results in

two subnodes of $X that possess the same label. This is quite allowable,

but the programmer should be aware that, if this occurs, the sub-

sequent reference $X.D is a reference to only the first such node.

Either node can still be referenced by subscript, however, and a

reference of the form $X(ALL. LABEL($ELEMENT) = 'D') would access all such

nodes in one operation.

Type conversion occurs automatically if the source reference is

arithmetic or a character string. In an INSERT statement, as with

the arithmetic assignment statement, any time a character string or
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arithmetic expression occurs, when the context clearly calls for a tree

expression, a dummy tree is created. This dummy tree has only a single

node, the root node, which has a null label. The value of the node is

the string or arithmetic value specified in the PLANS expression, for

example the string 'ABC' in. the figure 3-10(b). The day tree is then

used just as if the programmer had explicitly created the tree and placed

the tree's name in the program. In the case of the example, the result

is the same as if the programmer had written INSERT $DUMMY BEFORE $X.B,

where $DIIIOfY is a tree with one node, no label, and the string value 'ABC'.

As suggested in the explanation above, the same mechanism applies

when an arithmetic expression appears in a context that requires a tree

node reference. Thus, application of the statement INSERT 2*4 BEFORE $X.B

to the tree of 3-10(a) yields the result shown in (c). The value of the

arithmetic expression, in this case 8, is calculated, placed on a dummy

node, and becomes the value of the node to the left of $X.B.

Figure 3-10(d) shows a statement of the same basic sort as that of

(c). In this case, the arithmetic expression on the right-hand side

involves a tree node reference. Because $X.0 occurs within an arithmetic

expression, it has the value 6, just as if $X.0 were an arithmetic variable

name. Therefore, the statement INSERT $X.0+7.5 BEFORE $X.B results in

insertion of the numeric value 13.5 before $X.B.

Neither the source node .nor the destination node is directly affected

by the INSERT operation. In particular, the question of replacement or

noureplacement of the destination base node label does not arise with

insertion. Note that the statements, "INSERT $Y.0 BEFORE $X.D" and "INSERT

$Y.0 BEFORE $X(3)" are identical	 (see (b) and (c) in figure 3-9).
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If the source reference is to a null or nonexistent node, a null

node is created and inserted at the indicated location. Figure

3-11(b) illustrates this point.

If the destination node exists but is null, funny things happen.

It is assumed that the PLANS programmer does not ordinarily leave null

nodes lying about. For example, figure 3-11(c) illustrates the state-

ment INSERT $Y.A BEFOG $X(2), where $X(2) is a null node. Note that

the copy of 4Y.A is not placed before $X(2), but right on the null

node.

If the destination node does not exist, the INSERT statement

behaves like the tree assignment statement. Figure 3-12 illustrates

the statements, $X(4) =$Y.B and INSERT $Y.B BEFORE $X(4). Note that

the trees resulting from the two statements are identical,

3.1.4 GRAFT INSERT Statement

The GRAFT INSERT statement is a simple combination of the pro-

perties of the INSERT statement with those of the GRAFT statement.

It possesses all the basic properties of INSERT and, in addition, the

source node is removed from its tree. Examples are illustrated in

figure 3-13.

As with the INSERT operation, it should be observed that the

GRAFT INSERT operation of (c) results in two subnodes of $X that possess

the same. label. This is quite allowable, but the programmer should

be aware that, if this occurs, the subsequent reference $X.D is a

reference to only the first such node. Either node can still be ref-

erenced by subscript, however, and a reference of the form
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$X(ALL:LABEL($ELEMENT) = 'D') would access all such nodes in one operation.

Like the GRAFT statement, the GRAFT INSERT statement is executed

in a sequential manner which should be understood, The GRAFT INSERT

statement first removes the specified structure from its original

location, then inserts it before the destination location.

Thus, the statement, GRAFT INSERT $X.0 BEFORE $X(4) results in

the tree of figure 3-14(b). Note that first $X.0 is removed from the

tree; then $X.0 is placed before $X(4), but $X(L) is now the node

$X.E (i.e., after the removal of $X.C, $X(1) is $X.A, 4X(2) is

$X.B, and X(3) is $X.D, and $X(4) is $X.E ).

As with an INSERT statement, in a GRAFT INSERT statement any time

a character string or arithmetic expression occurs when the context

clearly calls for a tree expression, a dummy tree is created. This dummy

tree has only a single node, the root node, which has a null label. The

value of the node is the string or arithmetic value specified in the PLANS

expression, for example the string 'ABC' in figure 3-15(b). The dummy

tree is then used just as if the programmer had explicitly created the tree

and placed the tree's name in the program. In the case of the example,

the result is the same as if the programmer had written GRAFT INSERT

$DUMMY BEFORE $X.B, where $DUMMY is a tree with one node, no label, and

the string value 'ABC'.

i
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As suggested in the explanation above, the same mechanism applies

when an arithmetic expression appears in a context that requires a tree

node reference. Thus, application of the statement GRAFT INSERT 2*4

BEFORE $X.B to the tree of figure 3-15(a) yields the result shown

in (c). The value of the arithmetic expression, in this case S, is

calculated, placed on a dummy node, and becomes the value of the node

to the left of $X,B.

Figure 3-15(d) shows a statement of the same basic sort as that

of (c). In this case, the arithmetic expression on the right-hand

side involves a tree node reference. Because $X.0 occurs within

an arithmetic expression, it has the value 6, just as if $X.0 were as

arithmetic variable name. Therefore, the statement GRAFT INSERT $X.0

+7.5 BEFORE $X.B results in insertion of the numeric value 13.5 before

$X.B.

GRAFT INSERT, like GRAFT, involves no copying and is relatively

efficient to execute. The tree assignment and INSERT statements

require the generation of a complete copy of an existing structure.

The execution cost of these statements (and the storage space required)

is largely a function of the size of the structure that must be copied.

The GRAFT and GRAFT INSERT statements, on the other hand, require

only the alteration of a few pointers so that an existing structure

can be moved, completely intact, to another tree location. The execu-

tion cost of these statements is minimal, no additional storage is

involved, and the cost is entirely independent of the size of the
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structure that is moved, It cannot be over-emphasized that GRAFT and

GRAFT INSERT operations are not only very powerful, but are also very

efficient.

3.1.5 PRUNE Statement

The function of the PRUNE statement is to remove one or more specified

nodes (with substructures, if any) from their trees. Examples are

illustrated in figure 3 . 16. The programmer simply specifies the node

(or nodes) that, together with the associated substructure, is to be

removed. This operation allows the removal of undesired information

from a tree. It may also be urged, particularly as in (d), to release

computer storage that is no longer needed.

It should be kept in mind while programming in PLANS that the

programmer is really doing his own dynamic storage allocation

(although PLANS handles all the details for him)„ When information

is no longer needed, its storage can be reused, but only if the

programmer releases it by means of a PRUNE statement.

If a PRUNE statement refers to more than one node to be pruned,

operations occur in

of this is the seemingly

illustrated in figure 3-17.

$X(3) is $X.(, and $X(4)

s $X.A, $X(2) is $X.C, and $X(3)

it must be kept in mind that the pruning

sequence, one after another. An example

redundant statement, PRUNE $X(2) , $X(2) ,

Initially, $X(7,) is $X.A, $X(2) is $X.B,

is $X.D; so $X.B is pruned, Now $X(1) i

is $X.D; so $X.0 is also pruned.
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$X

A^D
2	 4	 6	 8

(a) Original Tree

$X

AA -B  D

2	 4	 8
(b) Tree after PRUNE $X. C

(c) Tree of (a) after PRUNE $X.C,

#X

OA OB

2	 4
$X.D

$X
0

(d) Tree of (a) after PRUNE $ X

Fig, 3-16 Prune Statements
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a) Original Tree

$X

A	 D

bf Tree after PRUDE $X(2), $X(2)

Fig. 3-17 Sequential Execut i on of the PRUNE Statement
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3.1.6 Label Assignment Statement

The label assignment statement replaces only the label of the

indicated node, without disturbing its value or substructure. LABEL

is a special PLANS function that takes as its argument a tree node

reference. LABEL ($X(1)) is a reference not to the node $X(1) and

its substructure, but to its label alone. The LABEL function can

appear anywhere a character string can appear in a PLANS program.

In addition, it can appear on the left-hand side of an equal sign,

as figure 3-18 shows. Such a statement is a command to replace the

current label of the specified node with the new string, which is

obtained by evaluating the expression to the right of the equal sign.

Consider figure 3-18; (a) shows the initial state of the tree

$X. Figure 3-18(b)	 illustrates the effect of the label assign-

ment, statement LABEL($X(1)) = 'A'; which simply replaces the current

label of the node $X(l), "A", with a new string, "A". The label

assignment statement only replaces labels, having no structural

effect if the referenced node already exists. If the indicated

node does not exist, it is established, with a null, value and the

indicated label.

The statement illustrated in (c) has exactly the same effect as

that of (b)„ It makes no difference whether the node is referenced by

label ($X.A) or by subscript ($X(1)). The effect of the statement is

the same.
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A B C

2	 4	 6
(a) Original Tree

$x

D NB C
2	 4	 6

(b) Tree After LABEL ($X(l)) = 'D'

$X

D	 B	 C

4	 6

(c) Tree Of (a) Af` r LABEL (X. A) = 'D'
$X

y4  C D

(d) Tree Of (a) After LABEL ($X. E) = ' DI

$X

B	 C

2	 4	 6

(e) Tree Of (a) After LABEL ($X(1)) = $X. C

Fig. 3--1t' LABEL Assignment Statements



If the referenced destination node does not yet exist, it is estab-

lished. Figure 3-18 (d) illustrates the statement, LABEL ($X.E) = 'D!,

where $X.E is a nonexistent bode.

If the source information is not a character string, automatic

type conversion occurs. Figure 3-18(e) is an illustration of automatic

conversion. The right-hand side of the statement LABEL ($X(1)) = $X.0

is a tree expression, but the context calls for a string or numerical

value. The value of $X.0 is therefore obtained, and replaces the

label of $X(1).

An additional concept is illustrated here: labels can be

numerical values. In fact, anything that can be a value can be a label,

and vice versa. However, nodes that have numerical values (or strings

not having identifier syntax) cannot be accessed by label inn a PLANS

program. Thus, $X.6 is not a legal expression. On the other hand,

$X(1) is still a legitimate way to refer to this node. This property

can be used to advantage in some numerical applications.

3.1.7 ORDER Statement

The ORDER statement is used to reorder the subnodes of a given node

on the basis of a numerical property that each possesses. If, for

example, it is desired to order a group of payloads by weight, heaviest

first, one might write ORDER $PAYLOADS BY WEIGHT; or if they were to

be ordered by length, longest first, a statement of the form ORDER

$PAYLOADS BY LENGTH would be appropriate.

69



Figure 3'-19 illustrates a few of the properties of the ORDER

statement. It should be apparent that an ORDER statement refers to a

node, which, in turn, has subnodes to be ordered. Each subnode has,

at least potentially, the property or properties on which ordering

is to occur.

Figure 3-19(b) illustrates an ORDER statement in which the subnodes

of the node $X are sorted into descending order on the basis of

property Y. Note that, where the property in question is not possessed

by a particular subnode (e.g., $X.0 has no subnode labeled Y), a value

of zero is assumed and the sort is performed accordingly. Note also

that the normal ordering is descending; that is, the largest value

occurs first. Thus, after execution of ORDE $PAYLOADS BY WEIGHT, the

heaviest payload will be $PAYLOAD(1).

More than one property can be listed in order to cause ties on the

first property to be broken by values on the second, etc. For example,

if it is desired to order a group of payloads by length, longest first,

with ties broken by width, widest first, a statement of the form

ORDER $PAYLOADS BY LENGTH, WIDTH. would be appropriate.

Ordering can be in either ascending or descending sequence.

Figure 3-19(b) illustrates ordering in descending sequence (i.e.,

largest value of Y first). If ascending order is desired, the

property name should be preceded by a minus sign (-), as in (c).

Thus, a statement like ORDER $PAYLOADS BY -LENGTH, -WIDTH would order

payloads by length, shortest first, with ties broken by width,

narrowest first. An example is illustrated in figure 3-19(c).
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(a) Original Tree
12	 -3	 21	 19 -4

$X

D

Y

a

E	 ^;

$X

{Y g X ^Y ^X X A Y

21	 19	 8 -4	 12 -3

	(b) Tree after ORDER $X BY Y 	
$X

-4	 8

(c) Tree after ORDER $X BY -X

YX Yy QY QX

12 -3 21 19

Fig. 3-19 ORDER Statements
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The tree pointer (see section 3.2) $ELEMENT may be used in cases

where ORDER (tree node reference) BY (common label of ordering nodes)

cannot be applied; for example, a tree with no labels or with no

common labels on the ordering nodes can be ordered by the statement,

ORDER (tree node reference) BY $ELEMENT (see figure 3-20(a)). Note

that $ELEMENT always refers to the nodes being ordered. Thus, the state-

ment illustrated in (a) orders the subnodes of $NUMBERS by their values.

$ELEMENT may be qualified by'subscript or label. Thus, to order

the subnodes of $PAYLOAD by their weights, we might use the statement,

ORDER $PAYLOAD BY $ELEMEUT.WEYGHT; or, equivalently, ORDER $PAYLOAD

By $ELEMENT(2) (see figure 3 .20(b)). Note that the former statement

is equivalent to ORDER $PAYLOAD BY WEIGHT.

Figure 3-20(c) illustrates the basic difference between ORDER

(tree node reference) BY $ELEMENT and ORDER (tree node reference) BY

(common label of ordering nodes), Note that figure (c) can be

ordered by the statement ORDER $X BY $ELEPiENT, but it cannot be

ordered by the statement ORDER $X BY Y. The latter statement implies

that each of the subnodes of $X (these subnodes are the nodes to

be ordered) has in turn a-subnode labelled Y. If such a statement is

applied to the tree of figure (c), each of the values on which

ordering is to occur will be zero, and the intended ordering will not

occur,
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$NUMBERS

4
5	 1	 1	 10

a) ORDER NUMBERS BY SELEMENT
3PAYLOAD

$NUMBERS

4
10	 7	 5	 1

$PAYLOAD

FESC I ENCE^ +QGEOPHYS ICAL EOPHYS ICAKXLIFESC IENCE

b	 2?WEIGHT b WEIGHT O	 L?WEIGHT O t?WEIGHT
9000 10000 10000 9000

b) ORDER $ PAYLOAD BY $ELEMENT. WEIGHT

$X	 $X

4yy  Y Y	 Y Y Y Y
10	 13	 7	 3	 13	 10	 7	 3

c) ORDER $X BY $ELEMENT (Note: ORDER $X BY Y NOT VALID)
$A	 $A

5	 5
d) ORDER $A BY Y

Fig, 3-20 ORDER Statement Using the Tree Pointer $ELEMENT
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Ordering can be on the basis of the values of the sorted nodes,

or on properties any number of levels down. Figure 3-20(c) is an

example of the first type of ordering, and figure 3-20(b) is an

example of the second type.

Note that figure (d) illustrates a tree which cannot be

ordered with respect to Y since'Y is on a different level for each

node to be ordered.	 Since the first Y-labelled node encountered is

on the third-level, the other Y-labelled nodes will be expected to

be on the third level. If the statement, ORDER $A BY Y is executed

on this tree, $A.0 will be assumed to have a Y-value of zero.

3.2 TREE POINTER STATEMENTS

3.2.1 DEFINE Statement

The standard form of this statement is:

DEFINE tree-pointer-name AS tree-node-reference;

The DEFINE statement is used to set a tree pointer so that it can be

used to refer to a specified tree node. This capability allows the PLANS

programmer to reference any tree node simply by using the tree pointer

name. For instance, if the user wished to refer to the fifth subnode

of a tree called $ShZME-TREE he might write DEFINE $SLJBNODE 5 AS

$SANFLE TREE(5); Thereafter, $SUBNODE 5 could be used to refer to what-

ever node happened to be $SAMPLE TREE(5) at the time the DEFINE state-

ment was executed.

^t

.i
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It is important to note that the DEFINE statement causes an action

to occur at execution time, and not at compile time. That is, the DEFINE

statement can be used to dynamically update tree pointers and is not

intended to be used for defining static storage "equivalences." The

data attributes of a tree pointer are different from those of a "real"

tree. Due to this fact, an attempt to use the same tree name for both

purposes will cause an error.

Logically, tree pointers can only indicate already-existent tree

nodes. Therefore, if the node referred to in the DEFINE statement does

not already exist, it will be generated when ttLe statement is executed.

Considerable improvement in both program readability and execu-

tion efficiency can be realized through the use of tree pointer

statements. Using a long list of qualifiers (labels, subscripts, etc.)

to access a subnode several levels down in a tree causes multiple node

accesses. If such an access is performed repeatedly, unnecessary ex-

pense is incurred. This extra expense is avoided by accessing the node

directly with a tree pointer. At the same time, the tree pointer gives

the PLANS programmer the opportunity to substitute a brief meaningful

name for the cumbersome qualifier list. Many hours of a maintenance

programmer's time will be saved if the original programmer pays

attention to this type of readability enhancement. The example

below demonstrates the degree of clarity that can be achieved.
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IF $JOB NETWORK.JOB_37,SCHEDULE—INTERVAL,START< 10

THEN IF $JOB_NETWORK.JOB 37.SCHEDULE INTERVAL.END=w 15

THEN GRAFT $JOB NETWORK.JOB 37.SCHEDULE_INTERVAL AT $WINDOW(NEXT,;

without a tree pointer;

DEFINE $INTERVAL AS $JOB NETWORK.JOB 37.SCHEDULE_,INTERVAL;

IF $INTERVAL„ START C 10

THEN IF $INTERVAL.END ] 15

THEN GRAFT $INTERVAL AT $WINDOW(NEXT);

with a tree pointer.

3„2,2 ADVANCE Statement

The standard form of this statement is

ADVANCE tree-pointer-name;

The ADVANCE statement allows the PLANS programmer to update tree

pointers. It effectively "moves" the pointer one node to the right.

That is, after the statement is executed, the pointer will indicate

the next node, at the same node level, immediately to the right of

the node previously indicated. If there is no such node, the tree

pointer will indicate $NULL.

If the node referred to by a tree pointer is pruned or grafted,

the pointer is automatically advanced. Because of this property,

the ADVANCE statement can be very useful for programming some kinds

of explicit loops, For instance, in the example below it is used

to conditionally balance. the PRUNE statement that causes the pointer to

be automatically advanced. By using this technique, the user can

insure that all subnodes are examined by the loop.
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DEFINE $POINTER AS $SAMPLE. TREE(FIRST) ;

DO WHILE ($POINTER -IDENTICAL TO $NULL);

IF condition

THEN PRUNE $POINTER;

ELSE ADVANCE $POINTER;

END;

NOTE: Of course, this particular operation could be accomplished

with the single statement: PRUNE $SAMPLE TREE(ALL: condition);
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3.3	 ARITHMETIC STATEMENT

3.3.1 Arithmetic Assignment Statement

The arithmetic assignment statement of PLANS, which is of

the form (arithmetic variable) = (arithmetic expression), is

essentially the same as that of other high-level programming

languages.

An arithmetic variable is any character string not more than

30 characters long, where the first character is alphabetic and

all others either alphanumeric or the special underbar ('12)

character. Arithmetic variables may be of either integer or

real types; variables starting with the letters I through N are

implicitly declared integer, otherwise they are real. (Note tha-

the type declaration is done automatically.) PLANS variables cannot

be keywords, so LABEL, NUMBER and so forth are illegal names for

arithmetic variables.

Arithmetic expressions are evaluated according to the priority

of the operator. Any expression enclosed in parentheses is evaluated

before any other part of the expression. Exponentiation (**),

prefix + and prefix - have the highest priority. These operations

will be completed first, and if more than one of these operators

appear in the same expression, they are evaluated from right to

left. Multiplication (*) and division (/) have the second priority.

They are evaluated from left to right. Addition (+) and sub-

traction (-) have the lowest priority. They are evaluated from f

left to right. If any other order is desired, parentheses must

be used to indicate the order.
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When tree references appear in an arithmetic context, automatic

type conversion occurs. For example, the arithmetic statement

THIS—IS—AN—ARITHMETIC—VARIABLE = $X(2) + 15 causes the tree refer-

ence $X(2) to be converted to the value of the node (say the value

of the node is 3) so that the arithmetic statement becomes:

THIS_IS AN ARITHMETIC VARIABLE _ .3E+01 + 15. Note that $X(2)

is automatically converted to floating point. This will be true

for any tree reference which appears in an arithmetic context.

Several special function keywords can appear in an arithmetic

context. These include the NUMBER function (see section 2.2.10),

the LABEL function (see section 2.2.9), and the keyword INFINITY,

which refers to a very large number (the exact value is imple-

mentation specific). The following are examples of valid arithmeri^.

assignment statements. INTEGER = NUMBER($X) * 3.2 -LABEL($Y(2)), and

$X.A(NEXT)	 = 15.2 - NUMBER($Y).

3.4	 CONDITIONAL STATEMENTS AND EXPRESSIONS

3.4.1 IF Statement

The PLANS statement capability includes both IF ... THEN and

IF ... THEN ... ELSE constructs. The characteristic make-up of these

constructs are:

IF Boolean expression

THEN executable statement;

IF Boolean expression

THEN executable statement;

ELSE executable statement;

The following are examples of the two types of conditional

statements:

IF $X(2) + 3 = NUMBER($Y) - 1

THEN $X = $Y;
iy



IF NUMBER($X) = 5 & $Y(1) < 4 1 LABBL($Z(2))

THEM GO TO LOOP;

ELSE STOP;

Note that all types of Boolean. expression can follow the keyword

IF. The different types of Boolean expressions will be described

in detail in the following section.

Executable statements are all statements which can be executed.

Examples of statements which cannot be executed are: the END

statement, Boolean expressions, a PROCEDURE statement, and so

forth.

If more than one executable statement must be included in a

THEN or ELSE clause, noniterative DO statements (see section 3.7.3)

may be used. For example:

IF IX(2) < $Y.B

THE[ DO;

$X(2) = $Y.B;

LABEL($X(2)) = 'B';

END;

ELSE DO;

IF $X(3) < $Y.0

THEN $X(3) = $Y.C;

$Y = $Z;

TRACE OFF;

END;

IF statements can be nested to any depth, as the following

example illustrates:

IF$.X=$Y

THEN IF $X.A = 2

^Q
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THEN IF $X.B = $Z(1)

THEN;

ELSE TRACE HIGH;

ELSE;

ELSE GO TO START;

The above example also illustrates the use of null THEN and

ELSE clauses, which are used to hold position and clarify nested

IF statements. Waether this is an acceptable programming practice

is for the reader to decide. With sufficient ingenuity, such null

statements can be avoided.

In a nested IF statement, each ELSE clause is associated with

the innermost IF ... THEN which has no ELSE clause already attached.

Thus the following statement,

IF $X = $Y THEN IF $Y = $Z THEN TO TO START; ELSE RETURN;

is interpreted as:

IF $X = $Y

THE[ IF $Y = $Z

THEN GO TO START;

ELSE RETURN;

To associate the ELSE RETURN clause with the outermost IF state-

ment, a null ELSE clause may be used;

IF $X = $ Y

THEN IF $Y = $Z

THEN GO TO START;

ELSE;

ELSE RETURN;
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or the entire structure can be modified to:

IF $X -i = $Y

THEN RETURN;

ELSE IF $Y = $Z

THEN GO T4 START;

3.4.2 Boolean Expressions

Boolean expressions can appear in three contexts: in IF-

clauses (see section 3.4.1), in conditional tree references

("FIRST:" and "ALL:" see sections 2.2.6 and 2.2.7 ), and in

DO WHILE statements (see section 3.8.1). The following examples

illustrate the use of Boolean expressions in the three contexts:

IF $X(2) = 15 - $Y.A THEN ... ELSE ...

$X(FIRST: LABEL($ELEMENT) _ W)

$Y(ALL: NUMBER($ELEMENT) = 3)

DO WHILE (A > 10)

3.4.2.1 Arithmetic Relati.oas

PLANS allows a complete set of standard arithmetic relations.

They are:

_ (equal to)

(not equal to)

(greater than)

,>(not greater than)

>= (greater than or equal to)

(not greater than oz equal to)

< (less than)

-, ((not less than)

<= ('less than or equal to)

-r< = (not less than or equal to)
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Note that the arithmetic relation "_" compares values, so

it should not be used to compare tree structures,or misleadingly

true Boolean expressions may result. For example, the two trees

in figure 3-21(a) are obviously not the same, yet the Boolean

expression $TREEA = $TREEB is true. Since 11_11 compares values,

values are expected on both sides of the "_" sign. However, $TREEA

is not a terminal node so it has no value. In this case, the value

zero is assigned to $TREEA. The same thing happens to $TREEB:

since it has no value, it is automatically assigned the value

zero. Thus the value of $TREEA is equal to the value of $TREEB.

The above example illustrates the importance of remembering

that arithmetic relations compare values; to compare tree structures,

the tree relations described in section 3.4.2.2 should be used

(in particular, the tree relation IDENTICAL TO should be used in

place of "_").

The default value for any tree node which has no value is

a function of the arithmetic relation. " A" and "-'_" will auto-

matically assign the value zero or " (a null character string)

to a tree node which has no value, depending on the context.

Thus in figures 3-21(b) and (c), the Boolean expressions $X.A =

0 and $X.A = " are both true; while the expressions $X.A — 0

and ^X.A,= " are both false. All of the other Eight arithmetic

inequality relations listed above automatically assign the value

zero to any tree node which has no value. Thus, the eight inequality

relations are capable of numeric comparisons only, while the 11_11

and	 relations can do both numeric and character string com-

parisons.
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tat $TIREEA = $TREEB

(b) $ X. A =0 , $ X. A="

tcf $X. A=0 , $X. A

1	 2

$X

1	 2

Z

$X

3	 5

Z

l

z

$TREEA
	

$TREES

Fig. 3-21 Automatic Evaluation Of Tree Nodes Used With
Arithmetic Relations.
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3.4.2.2 Tree Relations

Three PLANS tree relations provide considerable condition-

testing power. They are ELEMENT OF, SUBSET OF, and IDENTICAL TO.

Examples are illustrated in figure 3-22. Figure (a) illustrates

a situation in which the Boolean expression, $TREE1 ELEMENT OF

$TREE2, is true. This expression compares $TREE1 with the sub-

nodes of $TREE2. Figure (b) illustrates the expression, $TREEA SUBSET

OF $TREES. Here, the subnodes OF $TREEA are compared with the

subnodes of $TREEB. The expression, $ TREEX IDENTICAL TO $TREEY,

is illustrated in figure (c). This expression tests for complete

identity between the two trees.

The ELEMENT OF tree relation can be better understood if

one thinks of a tree node as a set of elements, each of which is

one of its subnodes. Thus, in figure 3- 23(a), the elements of the

node $X.A are the nodes labeled X, Y and Z. The Boolean expression

illustrated in figure (b), $W ELEMENT OF $X.A, is then really

asking, "Is $W an element of $X.A? In other words, does $W appear

as a subnode of $X.A?" Figure (c) illustrates a more complicated

example of the tree relation ELEMENT OF.

If one continues to think of a tree node as a set of elements

(as in figure 3-23 where $X.A was the set consisting of the elements

labeled X, Y and Z), then one can easily see that the relation

SUBSET OF tests whether each element of one set is also contained

in another set. For example, $TREEM.X SUBSET OF $TREEP.Y tests

whether the subnodes of $TREEM.X are also subnodes of $TREEP.Y.
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(c) 3TREEX IDENTICAL TO $TREEY

Fig. 3-22 PLANS Tree Relations
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Figo 3-23	 The ELEMENT OF Tree Relation

87



i

r

A particularly common expression in PLANS takes the form $X

IDENTICAL TO $NULL, where $NULL is the name of a tree which has

no label and no value or substructure (see section 2.2.11).

Figure 3-24 (a) illustrates the Boolean expression, $Y.A(2) IDENTICAL

To $NULL. Since $Y.A(2) has no label and no value or substructure,

the node is identical to $NULL. Figure (b) illustrates a slightly

different case. here, $Y.A(2) does not exist so the node has -o

label and no value or substructure. In this case, also, $Y.A(2)

is identical to $NULL.

The tree relations ELEMENT OF and IDENTICAL TO may also be

used to compare character strings or numeric values with tree

structures. Examples are illustrated in figure 3-25. Note that

in each example, a dummy :lode is created (for comparison purposes

only) which has, as its value, the character string or numeric value.

The tree relation SUBSET OF cannot be used to compare character

strings or numeric values with tree structures, because any Boolean

expression of the form, (character string or numeric value) SUBSET

OF (tree reference), will always be true. Note that the dummy

node created for comparison purposes has no subnodes, so the set

represented by the dummy node is empty, and an empty set is always

a subset of any set. Thus, a character string or numeric value

is always a subset of any tree node.

The keyword "NOT" may be used to negate tree relations only. For

example, $TREEI NOT ELEMENT OF $TREE2, $TREEA NOT SUBSET OF $TREES, and

$TREEX NOT IDENTICAL TO $TREEY are valid statements. Note that $VALUE_

A NOT = $VALUE B and other expressions of this type which combine NOT

with an arithmetic operator are not valid,
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(b) $Y. A(2) IDENTICAL TO $NULL

Fig. 3-24 "IDENTICAL TO $NULL"
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A.2.3 Logical Operations

There are three logical operations on Boolean expressions

which are available in PLANS: "-}" (NOT), '-&-- (AND) and IT$ (OR).

These operations take the form:

+(Boolean expression)

Boolean expression & Boolean expression

Boolean expression I Boolean expression

Examples are illustrated in figure 3-26.

The """ operator logically negate: any simple or complex

Boolean expression (see figure (a)). Note that the Boolean expression

to be negated is always enclosed in parentheses.
i

The --&" and "!-' operators provide a means for combining simple

Boolean expressions. Any Boolean expression of the form, Boolean

expression #1 & Boolean expression #2, is true only if both of the

Boolean expressions are true (see figure (b)). On the other hand,

an expression like Boolean --xpression #1 1 Boolean expression #2

is true if either Boolean expression #1 or Boolean expression #2

is true or both (see figure (c)),

If all three logical operators are found in a Boolean expression,

the expression is evaluated as follows: from left to right, with

r-.-.,ri having the highest priority, followed by "&", then "J". The

following example illustrates  this point:

$X <$Y & LABEL($X(2)) = 'B' I ,($Y.A > $Z.C) & $Z(1) = 2.3 is

evaluated as (($X ($Y) & (LABEL($X(2)) = 'B')) I ((-i($Y.A) $Z.C))

& ($Z(1) = 2.3)).

i
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3.5 CONTpOL AND TRANSFER OF CONTROL STATEMENTS

3.5.1 GO TO Statement

The standard form of this statement is

GO TO statement label;

An example is GO TO TRY—NEXT—NODE. The GO TO statement causes an

unconditional branch to the statement with the specified label. It is

clear that this functional capability is desirable. It is often

true, however, that the use of appropriate structures (DO-groups,

etc.) can eliminate the necessity for GO TO statements while increasing

program simplicity and clarity. PLANS allows structured or unstructured

programming, at the programmer's option, but lends itself especially

well to the former.

GO TO statements in internal procedures may have as :heir

destinations any statement in a containing procedure. However,

they cannot be used to branch from a procedure into the middle of

one of its internal procedures.

3.5.2 CALL Statement

The standard form is

CALL procedure name (argument—list);

An example is CALL PROCEDURE —A (A,B,$X). The CALL statement invokes

the specified procedure, causing program control to be transferred

to it. The statement immediately following the CALL statement automatically

receives control when the called procedure finishes executing.

Arguments may be passed to the procedure via a parenthesized list.

This argument list may consist of integer variables, real variables,

and/or trees. It is the programmers responsibility to insure that

i

r

93

{



the data attributes of the calling arguments match those of the

corresponding procedure parameters. Failure to do so will result in

conversion errors at execution time.

3.5.3 RETURN Statement

The return statement causes return of control from the currently

executing procedure to the statement immediately following its invoking

CALL statement. RETURN statements are needed to specify conditional

returns in the middle of a subprogram. Otherwise, they need not be

used, since the final END statement of a procedure causes an auto-

matic return.

3.5,4 STOP Statement

The STOP statement causes an entire program to be aborted. Its

use should be reserved for abnormal terminations. Normal program

termination occurs when the final END statement of the main procedure

is executed, or a RETURN statement is encountered in the main program.

3.5.5 TRACE Statement

TRACE trace—level—indicator;

The TRACE statement provides a simple mechanism by which the user

can cause trace information to be output by his program. This

debugging tool can be used to control both the type and frequency

of trace output.

If TRACE statements appear in a program, the TRACE option (see

section 3.7,1, "PROCEDURE Statement") must be in effect.

<1
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It is important to note that the TRACE statement is executable.

Therefore, it allows the user to dynamically vary the characteristics

of the trace output during program execution. For instance, a program

could be set up so that trace information is only output if certain

error conditions arise during execution. Based on the conditions,

the logic could dynamically select which sections of PLANS code

would be traced. This would eliminate irrelevant trace .utput,

directing the programmer's attention to those areas that are more

likely to contain the bug.

There are three "trace-level-indicators" (OFF, LOW, and HIGH)

used to specify the type of trace information desired. Of course,

TRACE OFF, specifies that no trace output is desired. If TRACE

LOW is selected, the numbers of all executable statements are output

just before their execution. This provides a detailed record of the

program logic flow. TRACE HIGH is used to obtain the maximum amount

of detailed trace information. This includes statement numbers,

all changes to variable values, and all changes to tree nodes.

3.6	 INPUT/OUTPUT STATEMENTS

3.6.1 READ Statement

The standard form of this statement is:

READ input—item list.

The READ statement allows the programmer to input data from a

file external to the source program. This file could be on cards, disk,

tape, etc. The, "input item list" can coi. -Rist of integer or real

variables and tree node references.



To read in a value to be assigned to a specified variable, the

numeric constant is placed anywhere within the first twenty

columns of the input file record. The following are examples of

legal numeric constants: 3.1416, -s, .037, 0092, -78.1, +61.43E-01.

The last item in this list of sample constants is written in the conven-

tional exponential notation common to many other programming

languages.

When reading in a tree structure, if the target node does not

r_-Ast yet, it will be established by the READ statement. Trees are repre-

sented, on input, in a standardized indented format. Each card image

in the input file represents a tree node and may contain both a label

and a -7alue. Figure 3-27 is an example, showing a tree and its corres-

ponding indented textual representation. Note that if a label is

indented three spaces more than the label immediately preceding it, the

corresponding node is interpreted as a subnode of the preceding node.

The maximum length for any label or value is 31 characters.

Null labels are represented by a cent sign ("0"). The

input tree is terminated by the keyword "END" beginn-ing in column

one.

3.6.2 WRITE Statement

The standard form of this statement is:

WRITE output—item list.

The WRITE statement is used to output a character string literal,

a specified tree node with its value or substructure, or the value

of an integer or real variable. Character strings must be enclosed
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$TREE
Of

LABEL ^?LABEL 2 LABEL 3

LABEL 4 LABEL--5	 4
VALUE 1 VALUE 2	 VALUE 3

COLUMN Z

COLUMN 4

+
II COLUMN 7

¢	 i i
LABEL 1

LABEL-4 - VALUE 1
LABEL 5 -VALUE 2

LABEL 2 - ¢

LABELS
-VALUE}

END

FIG 3-27 Indented Tree Format
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in single quotes (e.g., WRITE $THIS IS A CHARACTER STRING LITERAL';).

Tree structures are output in the same indented format as described

for input (see Section 30601),

The values of any variables that appear in the output item list

are output in the conventional "E" format. For example if the WRITE

statement was used to output a value of -12.345 the following would

result; -1.234500E+01.
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3.7 STRUCTURAL STATEMENTS

PLANS is a hierarchic block-structured language. Each program block

is a separate logical entity and may have its own local storage. The block

structure of PLANS is determined by a set of PROCEDURE blocks, BEGIN

blocks, and DO groups. The blocks may be nested at will, yielding a

hierarchic structure such as that shown in Figure 3-28. Note that

each block and group must be terminated with its own END statement.

If the programmer takes advantage of the characteristics of a block-

structured language, program structure can be greatly simplified while simul-

taneously improving program readability. Blo^k structure also tends to in-

crease the power of a language by providing a natural mechanism for

treating a whole block of statements as single unit. In a high-level

language, such as PLANS, these blocks correspond directly to the logical

blocks in terms of which the software designer thinks about his problem.

In PLANS, all tree and variable names are automatically given global

scope, unless they are: (1) explicitly declared LOCAL, or (2) procedure

parameters. In either of these two cases the names become local to the

block with which they are associated. That is, their values or structures

are not known outside of the block,, Since this convention is just the opposite

of that used by most non-structured languages (e.g., FORTRAN, COBOL) it

can be difficult to grasp.

Any tree that is not a parameter but is declared LOCAL to a

procedure or BEGIN block is automatically pruned on exit from the block.

This insures that such trees will be inaccessable to all statements

outside of the block, and automatically makes the storage associated with
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A: PROCEDURE;

statement - al

statement - a2

B:	 DO I = 1 TO 10;

statement - bl

statement - b2

C:	 PROCEDURE;

statement - cl

statement - c2

D:	 DO;

statement - dl

statement - d2

E:	 BEGIN;

statement - el

statement - e2

END;

statement - d3

END;

statement - c3

END;

statement - b3

END;

statement - a3

END;

Figure 3-23
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these trees available for reuse. The values of LOCAL variables, likewise,

become unavailable on exit from the block.

3.7.1 PROCEDURE Statement

The standard form of this statement is:

label: PROCEDURE ( parameter-list) OPTIONS(option-list) RECURSIVE;	 'I

In the above format only the label and PROCEDURE keyword must always appear.

All other items are iptional.

There are three kinds of procedures in PLANS: main, external, and

internal. Main and external procedures are compiled independently, while

internal procedures are nested inside other procedures, Every PANS main.

program must begin with a MAIN procedure statement and end with the

closing END statement. In the execution of any PLANS program the main

procedure always receives initial control. It may then transfer control

to a subprogram written as an internal or external procedure. This can

only be done by means of a CALL that refers to the label of the appropri-

ate procedure. Thus, in figure 3-28, if statement -b2 is not a CALL or

other transfer -of-^control statement, it will be followed logically by

statement-0, with transfer of control skipping around internal pro-

cedure C.

When using an internal or external procedure as a subprogram,

it is usually desirable to pass arguments as a part of the CALL statement.

The calling argument list corresponds directly to the parameter list

specified in the PROCEDURE statement. The variable and/ox tree names

z
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appeariLig in the rarameter list automatically assume local scope with

respect to the called procedure. The called procedure uses these names

to refer directly to particular arguments passed to it by the invoking

CALL statement.

Internal or external procedures may also be declared RECURSIVE by

specifying this keyword oit the PROCEDURE statement. This must be done if

a procedure: (1) directly calls itself, or (2) indirectly calls itself by

invoking another procedure that causes it to be called. RECURSIVE procedures

can be extremely powerful tools, although programmers unfamiliar with their

use may find it difficult to take advantage of the added capability they

provide. Their operation is relatively sophisticated and users are well

advised to read carefully the following explanation. Each time a

procedure is invoked recursively, all of its local storage is reallocated,

and the previous allocation is pushed down in a stack. Each time a

recursive execution of a procedure is terminated, local storage is popped

up, yielding the next most recent generation of local storage.

No global variables or trees are saved on the stack. Operation

of the stack provides a mechanism for preserving each generation of

local storage. This makes it possible to restore the execution

environment associated with each recursive call.

A main or external procedure statement can specify a list of trans-

lation-time options. Most of the options occur in pairs, specifying that

a certain option was either "on" or "off". In the list below, the default
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options are underlined. Each column exce;

mutually exclusive pair of options.

MAIN	 NOTES	 STAT

EXTERNAL	 NONOTES	 NOSTAT

The MAIN and EXTERNAL, options specify* the

option is not needed since this is always

.3t the last represents a

TRACE	 NODES (400,800

NOTRACE

procedure type. An "internal"

obv.ous from the program struc-

ture. The NONOTES option supresses output of all diagnostic messages

classified as nates. The STAT and TRACE options are very useful but will

cause an increase in program execution time and storage. The STAT

option causes generation of statistic-keeping code. Similarly the TRACE

option causes generation of code that will provide an execution-time

trace very useful for debugging purposes. 'Note that this option must be

selected if any trace statements (see section 3.5.5) appear in the program.

The NODES option can only be used if the MAIN option is also in effect.

It is used to specify: (1) the number of tree node storage spaces to be reserved,

and (2) the number of 8-character blocks to be reserved for tree node labels

and values. Since all labels and values are stored as character strings,

space for them is allocated in the same way by the PLANS "buddy" system

dynamic storage allocation routine, If a program exceeds the default 1.bel-

value storagE space allocation, the table below can be used to estimate

the value to be used when overriding it with the NODES option.

NUMBER OF CHARACTERS
IN LABEL OR VALUE

I through 7

8 through 15

lb through 31

NUMBER OF 8-CHARACTER
STORAGE BLOCKS REQUIRED

1

2

4
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3.7.2 DECLARE Statement

The standard form of this statement is:

DECLARE declare-item-list LOCAL;

In PLANS DECLARE statements are used only to control variable scope and

not to declare data types. Data types are implicitly declared by the first

character of the identifier. All identifiers beginning with a dollar sign

CT') are assumed to be trees or tree pointers. All identifiers beginning

with one of the letters I through N are assumed to be integer variables.

All identifiers beginning with any other alphabetic character are assumed

to be real variables.

DECLARE statements, if they occur, must immediately follow the

appropriate internal procedure statement or BEGIN statement. Any

variables, trees, or tree pointers used in the program block may appear in

the "declare-item-list." However ;, procedure parameters are automatically

assumed to be local. Any trees that are explicitly declared LOCAL

(except procedure parameters) will automatically be pruned on exit from

the block. This guarantees that the storage space taken up by these trees

will be released for reuse.

LOCAL declarations are never needed in a MAIN or EXTERNAL procedure,

since in this context local and global have the same meaning. In the

use of an EXTERNAL procedure, all trees (except parameters) will automatically

be pruned on exit.
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3.7.3 Noniterative DO Statement

The form of this statement is:

DO;

It is often convenient to be able to group several statements together

into a single logical unit. The noniterative DO statement provides

this capability. It can often be on the THEN or ELSE cla y..se of an IF

statement (see section 3.4.1) to maintain sequential control. The

example below demonstrates the use of this statement to avoid unnecessary

GO TO statements.
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Coded with CO TO statements:

IF 'VALUE C 5

THEN GO TO LABEL 1;

PRUNE $TREE;

WRITE 'MESSAGE2' ;

GO TO LABEL-2;

LABEL-1: GRAFT $TREE #,.i° $SAVE(NEXT) ;

WRITE 'MESSAGEI';

LABEL 2:

Coded with Noniterative DO statements:

IF VALUE C 5

THEN DO;

GRAFT $TREE AT $SAVE(NEXT);

WRITE 'MESSAGEI'.;

END;

ELSE DO;

PRUNE $TREE;

WRITE 'MESSAGE2' ;

END;
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3.7.4 BEGIN Statement

The standard form of this statement is:

BED IN;

This statement is used for the same purpose as the noniterative DO

statement, but it also allows the declaration of local variables and

trees. The BEGIN statement should not be used unless this additional

capability is actually required.

3.7.5 ENF Statement

The form of this statement is:

END;

The END statement is used to terminate any PROCEDURE block, BEGIN block,

noniterative or iterative DO group. Every block or group must have its

own associated END statement.

i
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3.8	 ITERATION STATEME'iM

.	 3.8.1 DO WHILE Statement

The DO WHILE statement allows a statement or group of statements

to be executed repeatedly as long as a specified condition is true.

For example:

DO WHILE (I <5) ;

$X(I) = 2;

I=I+1;

END;

Like all iterative DO statements in FLANS, the group is not

executed at all if the condition is found not to be satisfied the

first L'ime. Note that the condition is evaluated before execution

of the loop, rather than after. For example, the following DO

WHILE group will not be executed at all:

K = 3;

DO WHILE (K > 5);

$Y(K) = $X(K) + 1;

LABEL($Y(K)) = LABEL($X(K));

K=K - 1;

END;

If it is desired to execute a loop until a condition is satis-

fied, DO WHILE is used with the Boolean expression negated. For

example, the following group of statements will be executed until

$Y(I) is identical to $NULL:

}c8



I=l;
DO WHILE (-+($Y(I) IDENTICAL TO $NULL));

GRAFT $Y (I) AT $X (I) ;

I=I +1;
END;

3.8.2 Incremental DO Statement

The incremental DO loop allows a group of statements to be

executed for each of a specified set of values of a particular

variable. The basic structure of the incremental DO loop is

illustrated below:

DO (variable) = (arithmetic expression),...,(arithmetic expression)

,.To (arithmetic expression) BY (arithmetic expression)
optional

' (arithmetic expression),...,(arithmetic expression)
elements 

^ WHILE (Boolean expression);
statement;

statement;

statement;

END;

The two basic types of incremental DO loops are:

DO (-variable) _ (arithmetic expression),...,(arithmetic expression);

Example: DO I = 5, 3, 7, NUMBER($X)+4, 7-$Y.B;

Explanation: The group of statements will be executed five times;

in the five iterations, I will successively assume the values 5,
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3, 7, NUMBER ($X)+4, and 7 -$Y.B.

DO (variable) = (arithmetic expression) TO (arithmetic expression)

BY (arithmetic expression);

Example: DO COUNTER = 5 TO 14 BY 3;

Explanation: The group of statements will be executed four times;

in the four iterations, COUNTER will successively assume the values

5, 8, 11 and 14.

Remarks: If the BY-clause is eliminated, the variable is auto-

matically incremented by 1. Thus the statement, DO I = 3 TO 7,

will result in five executions of the incremental DO group.

A negative number in the BY-clause will cause the counter

variable to be decremented, rather than incremented, by the specified

amount. For example, DO VARIABLE = 12 TO 9 BY -2 successively

assigns the values 12 and 10 to VARIABLE.

The amount to be incremented or decremented which is specified

in the BY-clause need not be an integer. Thus the statement DO X =

6 TO 4 BY -.5 will assign the values 6, 5.5, 5, 4.5 and 4 to X.

Note that the increment condition is tested at the beginning

of the DO-group, rather than at the end, so that a DO-group starting

DO I - 1 TO 0; would not be executed at ail.

The two incremental DO statements described above may be

expanded by including any of the optional elements listed in the

basic structure. The WHILE-clause, for example, terminates the

DO loop whenever a specified Boolean condition is no longer satis-

fied.

DO (variable) = (arithmetic expression),...,(arithmet:ic expression)

WHILE (Boolean expression);
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Example: DO I = 4, 2, 7 WHILE ($X IDENTICAL TO $Y);

Explanation: The DO group will be executed three times or until

$X is no longer identical to $Y (whichever occurs first). In the

three iterations, I will successively assume the values 4, 2 and 7.

DO (variable) - (arithmetic expression) TO (arithmetic expression)

BY (arithmetic expression) WHILE (Boolean expression);

Example: DO VALUE = 10 TO 1 BY -2 WHILE ($X(3) = 5);

Explanation: The DO group will be executed five times or until $X(3)

is no longer equal to 5.

Note that the condition is tested at the beginning of the

DO-group, rather than at the end, so that a DO-group starting:

A = 20;

DO I = 1 TO 10 WHILE (A < 10); would not be executed at all.

If it is desired to execute a loop until a condition is

satisfied, WHILE is used with the Boolean expression negated.

For example, the following DO-loop will be executed three times

or until $X.A = $Y.B:

DO K = 1, 3, 5 WHILE (-+($X.A = $Y.B));

An example of an incremental DO-loop which utilizes all of

the possible options is:

DO COUNT = 2, NUMBER($X), $Y.B, 6 TO $Z(1), 11, 12 TO 8 BY -3, 15

:MILE (-,($Z IDENTICAL TO $NULL)) ;

As long as $Z is not null, the DO loop will be executed and COUNT

will successively assume the values 2, NUMBER ($X), $Y.B, 6, 7, 8,

..., $Z(1), 11, 12, 9 and 15.
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The variable to which various values are assigned on different

executions of the loop is available for use in the loop but ordinarily

should not be changed to a different value. The following example

illustrates a valid use of the increment variable;

DO I = 1 TO NUMBER($X);

$X(I) = I + 3;

LABEL($X(I)) = I BEL($Y(I+1));

,END;

A possible consequence of changing the increment variable

to a different value within the loop is illustrated in the

following example:

DO I = 1 TO NUMBER($X);

I = 1;

END;

The statement, I = 1, will cause the DO loop to be executed forever

if $X has more than one subnode.

Note that the seemingly identical statements, DO I = 1 TO

NUMBER($X) and DO FOR ALL SUBNODES OF $X USING $SUBNODE, do not

necessarily cause the loop to be executed an identical number of

times. In DO I = 1 TO NUMBER($X), NUMBER($X) is evaluated before

the first iteration. Thus, if within the loop another subnode is

placed on the tree $X (so that $X has four rather than three sub-

nodes), the loop will still be executed only three times. Depending

upon where the new node is placed in the tree $X, the DO FOR ALL

SUBNODES loop will be executed three or four times (see section

3.8.3).
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3.8.3 DO FOR ALL SUBNODES Statement

The DO FOR ALL SUBNODES loop allows a group of statements to

be executed for each of the subnodes of a particular node. In

the first iteration of the loop, a tree pointer (see section 3.2)

is placed at the Leftmost subnode of the specified node. The

tree pointer is moved from left to right in successive iterations;

in each iteration the pointer points to a different subnode until

all of the subnodes have been exhausted.

The basic structure of the DO FOR ALL SUBNODES loop is illus-

trated below:

DO FOR ALL SUBNODES OF tree-mode-reference USING tree-pointer;

statement;

statement;

statement;

END;

The following example refers to the tree illustrated in figure

3-29: DO FOR ALL SUBNODES OF $X.A USING $A DESCENDANT;

LABEL ($A DE SCENDANT)

$A DESCENDAI3T.B = 2;

END:

Note that the tree pointer $A DESCENDANT is available for use within

the DO loop, and that it can be qualified by label or subscript

like any other tree node reference. However, it must be kept in

mind that $A DESCENDANT.B = 2 really means that $X.A(1).B = 2,

$X.A(2).B = 2, and so forth.
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$X

1	 3	 5	 l	 9	 11

B

B

i^

i

(a) Initial Tree

$X

1	 2	 5	 2	 9	 2
(b) Tree After DO FOR ALL SUBNODES OF $Xo A

USING $A DESCENDANT;
LABEL($A DESCENDANT)=
$A DESCENDANT. B =2;
END;

Fir? 3-29 DO FOR ALL SUBNODES Loop
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As explained in section 3.2.1, the data attributes of a tree

!	 pointer are different from those of a "real" tree, so any attempt

to use the same tree name for both purposes will cause an error.

For example, the statements;

READ $X;

DO FOR ALL SUBNODES OF $TREE USING $X;

will cause an error since $X is first used as the name of a tree,

and then defined in DO FOR ALL SUBNODES as a tree pointer.

Note, however, that a tree pointer may be used outside of a

loop to refer to the last subnode the pointer was identified with

within the loop. For example, suppose $X has three subnodes

labeled A, B, and C. During the second iteration of the loop, DO FOR

ALL SUBNODES of $X USING $X DESCENDANT, if a branch to a statement

outside of the loop occurs, then $X DESCENDANT will continue to refer

to the node $X.B. Thereafter in the program, any reference to

$X DESCENDANT will automatically be a reference to $X.B (as long as

$) DESCENDANT is not redefined). Note that if the branch had not

occurred during the second iteration, after the third iteration of

the loop $X DESCENDANT will be pointing to a null node. $X DESCENDANT

does not refer to $X.0 after three iterations because the pointer is

advanced to the next node (which is null since $X has only three sub-

nodes) before the loop is terminated.

Yif
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The use of tree pointers oul°side of a loop is also illustrated

in the following example:

$Y = $X(F1RST:NUMBER($ELEMENT)=O);

WRITE $ELEMT.4T;

In this example, $ELEMENT refers to the subnode of $X which has

no substructure (i.e., NUMBER($ELEMENT) = 0). In figure 3-29,

$ELEMENT thus refers to the node $X.B. Thereafter in the program,

any reference to $ELEMENT will automatically be a reference to

$X.B (unless $ELEMENT is redefined), so the statement WRITE $ELEMENT

will cause $X.B to be written out.

If the tree node reference in the DO FOR ALL SUBNODES statement

has no subnodes, the DO loop is never executed. The following is

an example of a loop which will not be executed: (the tree referred

to is illustrated in Figure 3-29(a))

DO FOR ALL SUBNODES OF $X.B USING $B DESCENDANT;

statement;

statement;

.

I

statement;

END;

If the node ^o which the pointer currently refers is removed

from its tree, the pointer will immediate point to the next node.

Au example is illustrated in Figure 3-30. In the first iteration,

$SUBNODE points to $Y.A. The instruction, PRUNE $SUBNODE, removes

$Y.A from the tree so $SUBNODE now refers to $Y.B. The END statement
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^	 1	

r

$Y

^Â ABC  D

Z	 2	 3	 4
(a) Initial Tree

$Y

AB^

2	 4

(b) Tree After DO FOR ALL SUBNODES OF $Y
USING $Y DESCENDANT;
PRUNE $Y DESCENDANT;
END;

Fig. 3-30 Pruning The Pointer In A DO FOR ALL SUBNODES Loop
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indicates the first iteration is comrieted, so the pointer is

advanced to the next subnode and the second iteration begins.

Note that $SUBNODE now refers to $Y.C. $Y.C. is removed from the

tree by the instruction, PRUNE $SUBNODE, and the pointer $SUBNODE

now refers to $Y.D. The END statement terminates the second

iteration, and an attempt is made to advance the pointer. But

$SUBNODE is already pointing to the last subnode of $'Y, so it can

be advanced no further. Thus, there are no other iterations of

the DO loop,

if new nodes are added to the left of the node to which the

pointer currently refers, they will be ignored; if they are added

to the right of the current node, they will be included in the

iteration. Examples are illustrated in figure 3-31.

3.8.4 DO FOR ALL COMBINATIONS Statement

The DO FOR ALL COMBINATIONS loop allows a group of statements

to be executed for each possible combination (of a specified size)

of subnodes of the indicated base node. The indicated base node

is considered to be a set whose elements are its subnodes. The DO

FOR ALL COMBINATIONS loop generates, one at a time, all combinations

of those elements for a given combination size. Thus, for example,

one can write DO FOR ALL COMBINATIONS OF $X TAKEN 2 AT A TIME;

with the result that the DO loop will be executed once for each 2-

element combination of the subnodes of $X.

The particular combination that is relevant during an iteration

of the DO loop may be referred to within the loop by the reserved

tree name $COMBINATION. $COMBINATION should be used by the programmer

as if it is the name of a tree which consists of the nodes (and

r

their substructures) making up the present combination. For example,
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$X

A B C

POINTER

(a) Initial Tree With $POINTER Pointing To $X. B
$POINTER Is Being Automatically Advanced Each Time
The End Of A DO FOR ALL SUBNODES Loop Is Reached.

$X

4A B C',-0D
=$POINTER f ^^^

(b)1 If A New Node Is Added At $X(NEXT),
APO I NTER Will Advance To C, Then D On
Successive Iterations Of The Loop

$X

Orb A B	 C

$POI NTER

(c) if The New Node Is Inserted Before $X(FIRST),
The Position Of $POINTER Is Not Affected,
And $POI NTER Will Advance To C Only.

Fig 3-31 Addition Of New Subnodes Within A DO FOR ALL SUBNODES
Loop
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in figure 3-32, $X has three elements with labels A, B, and C.

The combinations of these elements taken two at a time are [A,Bj,

JA,Cf, and tB,ij. As illustrated in figure 3-32, $COMBINATION

consists of the nodes $X.A and $X.B during the first iteration

of the DO loop, $X.A and $X.0 during iteration two, and $X.B and

$X.0 during the final iteration.

$COMBINATION is not actually a separate tree, but is instead

merely a set of tree pointers. This is quite efficient, but results

in an implementation restriction which requires that reference be

made only to individual subnodes (elements) of $COMBINATION, and

then only by subscript reference. Thus, any reference to the tree

$COMBINATION is illegal (without subscript qualification); $COMBINA-

TION(l), $COMBINATION(2), and so forth are examples of the only

way $COMBINATION may be used in a tree node reference. The

reference may be further qualified, however, as in $COMBINATION(3).

WEIGHT, $COMBINATIONI(I).PREDECESSOR(3), etc.

The DO FOR ALL COMBINATIONS loop generates combinations in a

standard order. For example, if $Y is a tree with five subnodes

labeled A, B, C; D and E, the statement DO FOR ALL COMBINATIONS

OF $Y TAKEN 3 AT A TIME would generate combinations in the following

order:

A B C

A B D

A B E

A C D

A C E

A D E

.*i.1_ C



$X

AA B C
(a) Original Tree
	 2	 4	 6

$C OM6I NATI ON

A^B
2	 4

(b) First Iteration Of DO FOR ALL COMBINATIONS
OF $X TAKEN 2 AT A TIME

$COMB 1 NATION

A C

(c) Second Iteration 	 2	 b

$COMB I NATI ON

	

B	 C

(d) Third Iteration	 4	 6

Fig. 3-32 Automatic Generation Of Combinations
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B C D

B C E

B D E

C D E

Note that if no combinations of the given size exist, the loop

is not executed. For example, the statement DO FOR ALL SUBNODES

OF $X TAKEN 4 AT A 'RIME (where $X is illustrated in figure 3-32)

would not be executed since $X has only three subnodes.

3.8.5 DO FOR ALL PERMUTATIONS Statement

This statement behaves in the same way as DO FOR ALL COMBINA-

TIONS. (see section 3.8.4), except that; (1) all permutations of a

given size are generated, and (2) reference is made to $PERMUTATION,

rather than $COMBINATION.



4.o	 SAMPLE PROGRAMSx------------------------------------------------------------

4.1	 ORDERING OF A PRECEDENCE NETWORK

4.1.1	 Problem Statement

This example will assist the reader in gaining a greater

intuitive feeling for PLANS dynamic tree operations. The pro-

gram is called ORDER—BY—PREDECESSORS and its function is to

technologically order the list of jobs passed to it in $JOBLIST.

A technological ordering requires that any job will appear in

the list only after all of its associated predecessor jobs.

4.1.2	 Problem Model

In order to illustrate the operation of ORDER BY PREDECESSORS

on a simple data case, a job network containing four jobs is pro-

,Tided Lit the input tree, $JOELIST. The initial state of $JOBLIST

is shown in Stege 1 of Figure 4-1. Note that the tree structure

provides a natural way of associating each job with its corres-

ponding predecessor jobs.

4.1.3	 Program Logic

Implementation of a program to perform this function, while

fairly difficult in most programming languages, is very simple

and straightforward in PLANS. While there are many functionally

equivalent ways to write this program, one of the simplest and

most efficient is as follows:
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Fig. 4-1 Data Structures Illustrating the Operation of ORDER BY PREDECESSORS
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j OR0FR_8 y_PREDErE;snkb: PROCEUURE ('SJUHLIST9 950kDEREU_LISr) T

/* THIS PP0CE1 )Ui'jF TE.CHNOLOGICALLY ORDERS THE SET OF JOtIS IN puT TO	 +^/
IT IN %J041_I5T ANU HErLJRNs THEM I ,v sORDERE,D_LISTe	 +► /

2	 DECLA14E %NAmEL i 5 T +'r TEMP LOCALS
3	 00 WHILE MJn8UST(FIRST) NUT IL)ENTICHL ro `NULL) i

4	 GRAFT `FJOHI- L E;T ( ►- IKST : Lb ELEt!F^ %]TeRHE.,JECESS(IR SO4- SET OF $NAME_LIST)
At VEMP;

5	 TF STFMP 10ENrICAL ro7 'fiNULL THEN RETURN i

6	 SNAIK_LIfi'r('4EXT) = LABEL(`STEMP) 3

7	 GRAFT STFIA') 1^ T %0RDEREU_LIST (NEXT) i
g	 E114I)

9	 =V I) i)+ nE q_RY_0PE0 Cz;5a0HS

Notice, first (statement 1), that the program is written

as an internal procedure with explicit parameters $JOBLIST and

$ORDERED LIST. The calling program will initialize these trees

with the structures of the trees specified in the argument-

list of the CALL statement.

In statement 2, $TEMP and $NAME LIST are declared to be

LOCAL trees. This means two things: (1) any use of these tree

names within this procedure is entirely local, and will not

affect-trees of the same name outside this procedure, and (2)

each time ORDER BY PREDECESSORS is called, $TEMP and $NAME LIST

will be initially null, and any storage they use will be made

available for reuse upon return without any other action on the

programmer's part.

Rather than reordering $JOBLIST, ORDER BY PREDECESSORS will

iteratively move the jobs, one at a time, from $JOBLIST to

$ORDERED LIST; so that the $ORDERED LIST will become a correct

ordering of the jobs that were originally in $JORLIST. This
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iteration is accomplished via the DO-WHILE statement. The

WHILE condition causes the program to check to see if there are

any jobs left in $JOBLIST before beginning each successive pass

through the loop. When tbis condition is not satisfied exe-

cution of the loop terminates and control is passed to the

procedure END statement (statement 9), since it immediately

follows the DO group END statement. This terminates the pro-

cedure and the complete $ORDERED LIST is returned to the call-

ing program.

$JOBLIST, on the other hand, will be returned null,

assuming all goes well. Upon return from ORDER—BY—PREDECESSORS,

then, the calling program will use $ORDERED LIST where $JOBLIST

was used before (or will GRAFT $ORDERED LIST AT $JOBLIST) after

checking $JOBLIST for a null condition.

Note that the data input in $JOBLIST describes a prede-

cessor network in which JOB —B has no predecessor jobs, jobs C

and D must each be preceded by JOB B, and JOB —A must follow

both C and D. The diagram shows only information essential for

present purposes. However, it is assumed that other information

about each job (e.g., duration, resource requirements, etc.) is

also present. Because we can access predecessor information

by label without regard for its ordinal position, any other

information about these jobs is irrelevant, no long as the

label PREDECESSOR is used only with the meaning assumed here.

$ORDERED LIST is assumed to be null. Ordinarily this condition
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will be assured by the calling program. $TEMP and $NAME LIST

are automatically initialized to a null condition.

Consider now the effect of the GRAFT statement (statement

4) on these trees. This statement specifies that a particular

job is to be removed from $JOBLIST and placed at $TEMP. The

job to be selected is to be the first job whose predecessor

set is a subset of $NAME LIST. $NAME LIST will be used to

collect the names of the jobs in $ORDERED LIST, so that the

SUBSET OF relation can be used to automatically determine

whether the predecessor requirement of a particular job is

satisfied. Because $NAME LIST is presently null, the only job

of $JOBLIST that can possibly satisfy the conditional access

is a job that has no predecessors. Note that JOB_B fulfills

this requirement, and that it is not necessary in this case that

a node labeled PREDECESSOR even appear under JOB —B because a

nonexistent node has all the properties of a null node, includ-

ing null subnode structure. JOB B therefore satisfies the con-

ditional access, and is removed from $JOBLIST and placed at

$TEMP. Note that this causes the previously null root node of

$TEN? to be replaced by the JOB —B base node and any associated

substructure.

Statement 5 now tests for failure of the previous GRAFT

statement. In the event that no subnode of $JOBLIST satisfied

the access condition, $TEMP will now be null, and detection of

this condition can be used to trigger return from ORDER BY -
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PREDECESSORS. However, this could only occur if there were a

precedence cycle or a missing job in $JOBLIST. If one of these

error conditions is detected, a non-null $JOBLIST will be returned

to the calling program, warning it of the problem. In the present

case, however, $TEMP is not null. A node is defined as null only

if it either does not exist or has both a null value and a null

label. Regardless of any substructure, the node $TEMP now has

the label "JOB B" and is therefore not null, so no return occurs.

Statement 6 is therefore executed, placing the name of the

job that was found into $NAME LIST. Several things should be

noticed here. Since $NAME LIST is currently null, $NAME LIST

(NEXT) is equi-talent to $NAME LIST(1). LABEL($TEMP) is a char-

acter string. Therefore, a dummy node is established, with a

null label, and placed at $NAME LIST(NEXT). The statement causes

the job name, "JOB B" to be a value of $"NAME LIST(1), so that

subsequent comparisons of $NAME LIST and PREDECESSOR nodes will

find job names as values in both places.

Finally, line 7 is executed, moving the found job, with all

descriptive information, from $TEMP to the next available position

in $ORDERED LIST, resulting in the state shown in Stage 2 of

Figure 4-1. Note that $TEMP again reverts to a null condition.

Trees always have root nodes, although they may be null. Thus,

the removal of the node labeled "JOB B" causes another null node

-to be placed at $TEMP.

The program has now found the first job that can be executed

and has moved it into $ORDERED LIST. Since the END statement of

the DO group (statement 8) has been reached another iteration is

initiated (line 8) by jumping back to the. beginning of the loop

(statement 3).
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Stage 3 of Figure 4-1 shows the results of the tree manipu-

lations that occur during iteration 2. The initial state ie the

same as that shown in Stage 2 of the diagram. The conditional

GRAFT statement again searches for a job whose predecessors, if

any, are all named in $NAME LIST. Since $NAME LIST now contains

JOB B, either a job with no predecessors or a job with only the

predecessor JOB —B will satisfy the access condition. The first

such job now in $JOBLIST is JOB C, which is therefore grafted

at $TEMP. Because $TEMP is not null, no return is made by

statement 5.

Statement 5 places the name of the found job at the next

available subnode of $NAME LIST. As shown in the diagram

$NAME LIST now contains the names of the two jobs (JOB —B and

JOB C) founL' so far. $TEMP is grafted (statement 7) onto the

next available position of $ORDERED LIST, which now contains

all the information about jobs JOB —B and JOB —C (in that order)

that was originally in $JOBLIST. Only the jobs not yet placed

in $ORDERED LIST still remain in $JOBLIST. Statement 8 then

causes another iteration to begin.

This process is repeated two more times, once for JOB D and

once for JOB A, with the results shown in Stages 4 and 5 of

Figure 4-1, respectively. All jobs have now been moved to

$ORDERED LIST. Since $JOBLIST(FIRST) is now null, the condition

tested in statement 3 will not be satisfied and execution of the

loop (and of the procedure) will be terminated. $JOBLIST and

I29



$ORDERED LIST will be returned to the calling program, while

$TEMP and $NAME LIST will be pruned automa%`ically in order to

free their storage.

It may occur to the Treader to question the use of $TEMP,

because a found ,job could be grafted (statement 4) directly at

$ORDEREDLIST(TNEXT). ILowever, this would require two additional

accesses to $ORDERED LIST(LAST), one to test for a null condition

(statement 5) and one to extract the label (statement b). In

addition, before exit, the extra null node that would have been

grafted onto $ORDERPn T_IST would have to be removed. It should

always be borne in mind that node access time is a function of

the number of subnodes that must be scanned (left to right)

before the desired node is found. Thus, $TEMi' is more efficient

to access than is $ORDERED LIST(LAST), and the difference is

more pronounced as the $ORDERED LIST grows. Because GRAFT state-

ments are very efficient, the use of $TEMP is preferable here.

1
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4.2	 ELIMINATION OF REDUNDANT PREDECESSOR INFORMATION

4.2.1 Problem Statement

This example, like the previous one (Section 4.1), deals with

a problem frequently encountered when working with job networks

containing precedence relations. The program presented eliminates

all redundant predecessor relations found in the input $JOBLIST.

A predecessor is said to be redundant if it is not an immediate

predecessor. For example, in Figure 4-2(a) jobs B and C are

immediate predecessors of job D, while job A is a predecessor of

a predecessor. In this case, if job A is shown in the list of

predecessors of job D, it is redundant and should be removed from

the list,

4.2.2 Pr-gram Logic

Considering the potential complexity of a large job network

containing many redundantly specified predecessors, the solution

program clearly requires some degree of sophistication. The PLANS

program below, called REDUNDANT PREDECESSOR CRECKER, is quite

short but powerful in the sense that it will handle the most

general case. It takes advantage of some o f the capabilities of

PLANS (e.g., indirect referencing, tree pointers, "FIRST.", etc.)

to efficiently eliminate all redundant predecessors in a single

pass through $JOBLIST.
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The PLANS source code for REDUNDANT PREDECESSOR CHECKER

is shown below.

1 REDUNDANT_PRF_0FCESS0sr — CHF_CKEP:	 N i40CE0tJi4E: (SJ08L-IST) ;

/	 THTS RPUCEnUWE ELIMINATES ALL, OF NNE REIJUNDANT PHED E:CESSORS	 +^/
/+► FOUND IN THE SF f OF JOHS PASSED To IT IN %JOPL I 5T •

2 DECLARE dt;!1+^Y^.1^r^^ iiG^^I[,}'H^.1Qa^^^s ,rIU+l_J{)H_ p 1^EU LOCAL;

3 00 FOR ALL SUHN , OoES )F $J(tHLIST USING $iOts;
4	 SCOPY = +JJR@PkF0ECESS00;
5	 DO FOR ALL S0-0j0JEi OF *C: PY 'J .')ING %PWIOR —JOH;
b	 00 FOP A a_ L :iUHM I JI)VS (IF ^J^aHLI5 f .^(i'^tIUH_,Jt7t^} .r'kEl)FC^SS{)K USING

7	 IF hNH r t)^s_.J(1+,_N^tt^} ^LLf rll--- N ( OF SC(JNY
g	 THP'.i nCiJPY (..[EAT) = %EP1iI()H_J0F9_PRF-0;
9	 PPLINE	 ,,.}w .^+ ^tr IJF_t; F 55Ua (F IRST:*kf_E vi k:, V f= t P4IUi-t_J7ei— P #EU) i

10	 ENl) i /*

12 EivD# /* -*,Jo-,-
13 EiVU HEM}[JN1n,^ f_^'^tF, Jf CE^Sia^?_C^iE_CKF `^ ;

Three nested DO FOR ALL SUBNODES loops are used to scan $JOBLIST.

Each DO loop specifies a tree pointer in its USING clause that

facilitates iteration across the subnodes of the tree. The

initial arrangement of the tree pointers for this data case is

illustrated in Figure 4-2(b), Note that REDUNDANT PREDECESSOR

CHECKER does not require that $JOBLTST be technologically ordered.

Briefly, the program logic operates as follows. The jobs

are examined	 at a time using $JOB (statement 3). First, the

job's PREDECESSOR substructure is duplicated in $COPY (statement 4),

Then, each predecessor's predecessor is checked to see if it

appears in ,COPY; if not, it is added there. This insures that

eventually $COPY will contain all (both immediate and "indirect")

ORIGWa GF
OF ?W-R Q
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predecessors of $JOB. Since these nodes are added at $COPY(NEXT)

they will be examined by the UO IOOP that iterates on

the subnodes of $COPY. Statement 9 causes the redundant prede-

cessor to be pruned. Note that if the "FIRST" . ,-,uch-that condition

is not satisfied, indicating that a redundant predecessor was not

found, no action will be taken by the PRUNE statement.
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4.3	 SELECTION OF A SPECIALIZED CREW

4.3.1 Problem Statement

Both of the previous examples aealt with generalized solutions

to problems commonly encountered in precedence networks. This

example presr.nts custom-tailored logic to solve a specific problem.

An English-language description of the "real world" problem is

given below and then an example is given showing how the problem

could be described and solved using PLANS.

Assume that a target of opportunity has been identified for

a shuttle mission. A flight vehicle is available, but crewpersons

must be trained for the special. flight. There are six (b) candi-

date crewpersons, each with some, but not all, of the nine (9)

required skill types. To fly the mission, a total of fifteen (15)

"skill units" must be represented. These are defined in Table 1.

A "skill unit" is the possession of a particular skill by a crew-

person. Thus, if two crewpersons are required to be trained pilots,

this represents two skill units. Training must be conducted as

required to insure that the crewpersons who will fly have the

required skills. The acquisition of the various skills requires

training for the lengths of time shown in Table 2. No crewperson

can participate in more than one training activity at any one time,

Table 3 defines the skills that each candidate crewperson possesses

initially, The mission can be flown using two, three, or four

crewpersons as long as the flight team collectively satisfies the

skill profile of Table 1. The objective is to select crewpersons

whose training can be accomplished in minimum time and therefore

permit the earliest launch.
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Table 1 -- Required Skill Profile

Skill
Pilot
Observer
Paramedic
Camera Operator
Cook (knowledge of equipment)
Tape Recorder Expert
Mechanic
Electrician
Plumber

Table 2 -- Training Times

Skill
Pilot
Observer
Paramedic
Camera Operator
Cook (knowledge of equipment)
Tape Recorder Expert
Mechanic
Electrician
Plumber

Table 3 -- Available Crewpersons

Name
John Doe
,lack Smith
Ray Green
Jay Johnson
Bob Schillings
Mike Davis

Skill Distribution
2
2
1
2
2
1
2
2
1

15

Training Time
16 days
4 days
2 days
1 day
1 day
9 days

12 days
13 days
8 days

Initial Skills
Pilot, Cook, Observer
Pilot, Plumber
Tape
Pilot, Paramedic
Mechanic, Cook, Electrician
Pilot, Mechanic, Cook

4.3.2 Problem Model

One of the first things that should be addressed by the

programmer is how he might represent the three tables as PISS tree

structures. By separating this data from the source program, a

great deal of program adaptability is gained. This is especially

important if there is a high probability that the problem situation
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will change slightly causing corresponding changes in one or more

of the tables.

The tree structures used in this example are shown in Figure

4-3 exactly as they would appear in the input file to be read by

the PLANS program. Note the easy one-to-one correspondence

between tables and trees.

4.3.3 Program Logic

After drawing up a functional block diagram (high-level flow-

chart) the programmer will be ready to start writing the PLANS

program. This can be easily accomplished by considering each

block in the flowchart individually and then writing the PLANS

statement(s) needed to perform its function. Although there are

many possible ways of approaching this particular problem, the

one implemented in Figures 4-4 and 4-5 was found to be quite

straightforward. To demonstrate the close correspondence between

the functional block diagram (Figure 4-4) and the block-strw,,tured

PLANS program (Figure 4-5), the corresponding statement numbers

are shown to the right of each block in Figure 4-4. It is reco-

mmended that serious readers examine the program in detail in order

to understand how PLANS capabilities are used to solve this problem.
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SSKILLS
PILOT - 2
OBSERVER - 2
PARAMEDIC - 1
CAMERA - 2
COOK	 2
TAPE - 1
MECHANIC - 2
ELECTRICIAN - 2
PLUMHEW - 1

END
STNAININCi_TIMFS

PILOT - !b
OBSERVER - w
PARAMEDIC - 2
CAMEWA - 1
COOK - 1
TAPE - 9
MECHANIC - 12
ELECTHICIA P4 	 13
PLUMgEH - A

END
$CWEWmhN

DOE
SKILLS

— COOK
— n9SERVEK

AVAILA8LE_0ATF - 1
SMITH

SKILLS
a - PILOT
it — PLUt,l,3EH

AVAIL.At#!_L_PkrE «.	 1
GREEN

SKILLS
2 - TAPE

AV41LAHLl---_i1A FF - 1
JOHNSON

SKILLS
a - PILOT
¢ - PARAMEDIC

AVAILAHLE,_DATl= - 1
SCHILLI-Ira

SKILLS

4A05IB	 ¢ - MECHANIC

Of ppOR

	

	 T - FLE fRICIAN
AVAILABLE OATF - 1

DAVIS
SKILLS

t - PlLuT
2 - mECHANIC

t. 2 - COOK
AVAILAHLE_DATE - 1

END

Fig. 4-3 FIND A CREW Input Trees
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SIZE 2, 3, OR 4)
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OF THE REQUIRED
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OF CREWMEN.
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Frq. 4-4 FIND A CREW Functional Block Diagram
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1 FIND_A_CREW: PROCEUUHE;

/• THIS PROGR AM SELECTS A CREW FROM $CREWMEN WHICH HAS THE SKILLS
/0 SPECIFIES) tN $SKILLS AND WHICH REQUIRES THE LEAST AMOUNT OF
/a TRAINING TIME AS OETERMINED FROM STRAINING_TIME. THIS PERMITS
/» THE EARLIEST POSSIBLE LAUNCH,

READ SSKILLS• STRAINING_TIME,Se SCREWMEN;
BEST—LAUNCH = INFINITY;
DO I	 4 TO 2 y Y -1;

DU FOR ALL COMHINATIONS OF SCREWMEN rAKEN I A r A T IME;
PRUNE $CRE4;

DO ,! = 1 rk) 1;
SCREW(J) = SCOMHINATIUN(J);
FND;

00 FO R ALL SUBNOOES OF %SKILLS USING $REWUIREU_NUMBER;
nO J = 1 TO $PE(JUIREb—NUMr#ERl

IFrSEHT STRAINING_TIME:S.#LAHEL (SREDUIRE9_NUMBER)
BEFORE. Sr)EF'ICIENCIES(FIRST);

ENU;
FN0;

00 PUP ALL SOHNODES OF SCREW USING $PERSON;
no F fIR ALL SUHNODES OF Sn£RSON.SKILLS

USING %CURRENT—SKILL;
PRUNE SDEFICIENCIES9#($CURRENT_SKILL);
ENU;

FNn;
ORDER SDEFICIENCIFS RY SELEM£NET;
DO WHILE (iDEFICIENCIES NOT 10ENTICAL TO SNULL);

nknER SCREW HY -AVAILABLE_DATE;
nEFINE $POINTE.R AS SCREW(FIR S T 2

LABEL(IDEFICIENCIES(FIRST)) NOT ELEMENT OF
%EL,EMENT.SKILLS);

^POINTF_R.SKILLS(NEXT) = LAHE.L(SOEFICIENCIES(FIRST));
TP01NTEH.AVAILARLE_DATE = SP0INTER.AVAILA8LE_0ATE

SDEFICIENCIES(FIRST);
PRUNE $DEFICIENCIES(FIRST);
FN7i

OROFR SCREW HY AVAILAHLE_DATE;
IF TCREW(FlRST).AVAILAHLk_OATE t tJEST,-LAUNCH

THE, on;
$SOLUTION = SCREW;
HFST_LAUNCH = SCHEW(FIRST).AVAILABLE—DATE;
ENO;

WRITE SCgE:v;
ENO;

END;
WRITE SSOLUTION, BEST—LAUNCH;
END FINn_A_CRE. W;

Fig. 4-5 FIND A CREW PLANS Program
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