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This is the final report for Phase II of the Scheduling Language and
Algorithm Revciopment Study (NAS9-13616). It is contained in three
volumes, The objectives of Phase II were to implemé.nt prototypes of
the Scheduling Language called PLANS and the scheduling module library
that were designed and specified in Phase I.

Vc;lume I of this report contains data and analyses related to a
variety of algorithms for solving typical large-scale scheduling and
resource allocation problems, The capabilities and deficiencies of
various altermative problem solving strategies are discussed from the
viewpoint of computer system design.

Volume II is an introduction t» the use of the Programming Language
for Allocation and Network Schedvling (PLANS). It is intended as a
reference for the PLANS programmer. |

Volume III contains the detailed specifications of the scheduling
module 1library as implemented in Phase II, This volume extends the
Detailed Deéign Specifications previously publighed in the Phase II

Interim report (April 1975).
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The design of the Programming Language for Allocation and
Network Scheduling (PLANS) was prompted by the inadequacies of
existing languages being used to solve ocheduling problems. A
high-level language was needed that would allow easy, direct
expression of the kinds of functions frequently found in scheduling
and resource allocation programs. PLANS fulfills this need primarily
because of its unique capability to allow dynamic manipulation of
tree data structures at execution time. Another important feature
is the close correspondence that exists between basic scheduling
functional operations and PLANS statements. This allows both the
initial programmer and the maintenance programmer to easily design
and modify PLANS programs. These powerful langusapge features make
it applicable to many areas other than scheduling, That is, PLANS
is not a special purpose scheduling language, even though it was
motivated by scheduling problems, It is a generalized, high-level
tree manipulation language.

PURFOSE OF THE DOCUMENT

This User Guide is intended to provide sufficient information
about PLANS to allow the reader who has some computer programming
experience to construct correct and useful PLANS programs, using
the entire set of functional capabilities which PLANS currently
provides. The basic philosophy of PLANS will be discussed first,
to provide some intuitive feeling for the nature and unique properties
of the language. PLANS access and update reference techniques
will then be described, providing the background information

necessary for the presentation of each of the basic statements of
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PIANS, These statements will be discussed in some detail, with
examples illustrating the major variants of the statements. Several
complete programs will then be presented and discussed in sufficient
detail to provide a working knowledge of some of the techniques of
problem solution to which PLANS lends itself.
BACKGROUND OF PLANS

Although its capabilities have proven to be much more broadly
applicable, PLANS was designed to achieve a single goal: to allow
the designer of experimental, constantly changing scheduling and
resource allocation algorithms to translate his algorithm designs
to working céde directly from their basic functional descriptiomns,
without intermediate detailed program design steps, without highly
specialized programming expertise, and at minimum span time and
manpower costs, The necessity to go through several additional
design and implementation steps before the advent of PLANS
resulted in unacceptably long development times and high costs,
Equally important, it tended to discourage the truly experimental
apprcach to scheduling algorithm development which holds the greatest
promise of convergence on good soclutions for large, logically |
complex scheduling problems. PLANS was designed, then, to cut
development cost and span time, and also to provide a medium for
easy modification of scheduling programs,

An analysis of previously existing programming languages as
applied to scheduling problems revealed two deficiencies: (1) the
language level did not correspond to the level of the functions

typical in scheduling algorithms, and (2) more significantly, the
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data structures (usually only arrays) of the languages did r ¢
correspond to those typical of scheduling problems.

Scheduling problems typically involve information structures
which are logically hierarchical, A schedule consists of jobs,
each of which has certain properties of its own (time of occurrence,
duration, name, etc.), and eacﬁ of which also has certain relations
to other jobs (predecessors, etc,) and to particular resources
which are required to perform the jobs. These resource assignments
have, in turn, such properties as time of occurrence, duration,
ete, The inputs to scheduling algorithms are also typically hierarchic
in nature, involving, for example, information about resources,
which breaks down into resource types, each of which in turn may
involve many resource units, each of which has its own physical
and logical properties (weight, locatioﬁ; etc.), and each of which
is also upavailable at certain times due to prior assignments to
jobs, The necessity to represent information of this sort in the
form of arrays (as when programming in FORTRAN, for example) led
to programs which were quite large, difficult, and unreadable. This is
due to the overwhelming preponderance of indexing operations and
similar functions required to express, in array form, information
which is not logically of an array character,

As a result of these considerations, PLANS was designed
around a single feature which is unique among high-level languages:
the provision of hierarchic data structures -- trees -- whose
structure, as well as data content, can be manipulated at execution

time, Many languages (e.g., COBOL, PL/1l, ALGOL) have hierarchic

A\ Y
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data structures which are static during execution, The feature
of PLANS which 1is novel (except, perhaps, among difficult-to-use
list-processing languages), is its dynamic manipulation of trees,
The output usually required of scheduling programs is, in large
part, a restructuring of the input, which can be most easily
accomplished in a language which allows direct restructuring of
its data structures,
BASIC DESIGN PHILOSOPHY

Because it is intended to be used by problem area experts,
rather than programming experts, the language has been designed
to minimize functionally nonessential details, such as data type
declarations, entry declarations, etc. Such language features
usually allow the programmer greater control over the detailed
execution of his programs, but require greater programmer sophisti-
cation and more difficult program logic. 1In any case, such features
are more appropriate in languages which are intended to handle
quantitative problems, While PLANS provides quantitative capabilities,
its emphasis is more on manipulation of data structures, which has
proven to he the principall activity performed in most scheduling
algorithms. Although future extensions of PLANS may very well
allow the more sdphisticated programmer to use type declarations,
ete,, it is basic to the philosophy of PLANS that such program
features should never be unnecessarily required.

PLANS data access and update capabilities have been made
sufficiently powerful to allow PLANS statements to correspond

nearly one-to-one with the functional elemerts of typical algorithm
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specifications, Dynamic tree manipula“ion, one of the features
which helps accomplish this, has already been discussed. PLANS
also provides data arcess capabilities which allow some operations
which are logically iterative to be performed in a single statement
or substatement, Basically, PLANS is orlented toéard qualificational,
rather than cunditional, statements, Conditional construction,
which is much more common, iz also more difficult and less natural
to use. A simple conditional construct might take the form, "lLoock
at each box in turn., If the box you are looking at is red, then
cease looking and go to a special address, at which you will be
instructed to pick up the box you have found." Although constructs
of this sort are possible ir PLANS, the language is more oriented
toward qualificational constructs, such as "Pick up the box which
is red," This orientation results in a considerable increase in
the power of the individual statement,

Throughout the language, emphasis has been placed on simplicity
and generality of function. Even though the basic design goal
of the language is to allow more effective programming of scheduling
and resource allocation algorithms, the language contains no
specialized functions like ''Schedule”, "Unschedule", ete. Such
specialized functions could only exist if they could be precisely
defined in a way that is invariant across different problem types
and programmers. Such specialized language capabilities often
serve more to constrain the programmer than to aid him, While
PLANS does provide a few somewhat specialized functions (DO FOR
ALL COMBINATIONS, DO FOR AIL PERMUTATIONS, ORDER), its emphasis is
really on appropriate data structures, access methods, and manipulativa

operations,

ey
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PLANS TREES

The principal difference between PLANS and other programming
languages is that PLANS is oriented primarily toward the manipulation
of ordered, labeled tree structures, This section will describe
these structures, illustrating their properties in graphical form,
and the next section will acquaint the reader with the various
mechanisms available for accessing information in PLANS trees,

The tree is a hierarchic data structure which consists of a
number of nodes. Figure 2-1 illustrates a typical tree: the root
node is shown at the top and other nodes branch out beneath it.
The tree has a name ("$SPAYLOAD"), which starts with a dollar sign
to allow the translator to distinguish it from variable names,
key words, etc. Whenever it occurs in'a program, the tree name
is a refererce to the root node and its entire substructure, if any.
Figure 2-2 illustrates a tree which has no substructure,

Each node has a lzbel. For consistency in format, we will
always write the label of a node to the righ“ of the node. A
label can consist of any character string (of length 30 or less)
containing no blanks, or the label can be pull. A null label is
indicated by a special character, the cent sign ("¢"}), although,
for convenience, the label is sometimes omitted altogether when
trees are displayed graphically. In Figure 2-i, the only node
shown with a null label is the root node, but any node can con-
ceivably have a null label. Note that the name of the tree is nect
the same as tha label of the root node, although they may be

identical. PRECEDING PAGE BLANK NOT FILMED 7

Gt st



$PAYLOAD

LIFESCIENCE TELESCOPE . MANUFACTURING . GEOPHYSICAL

Y WINDOM QLLUN@ 1 (TGt ()urroou

18 8000

END START END START END [ START . END

10 143 40 216 8 840 241 218

Fig. 2-1 A Labeled Tree (with substructure)
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Labels are useful in two ways: they can be used simply to
store informeztion in the tree, usually to identify the nature of
the informacion in a subtree, but their more important property
is that they provide a means of directly accessing information.

It is not necessary to search all the way through the information
about a payload, for example, in order to determine its weight,
The weight can be Lécessed directly. 1If information is to be
accessed di~ectly by label in a PLANS program, however, it is
necessary that the label character string satisfy some more rigid
constraints than those given above, It can still comsist of up
to 30 characters, but the first character must be alphabetic and
all others must be either alphanumeric or the special underbar ("_'")
character., The underbaf character allows one to use meaningful and
readable labels (e.g., THIS_IS_A READABLE NAME).

. The nodes exactly one level below a given node are called

its descendants, or subnodes, The root node of the tree in Figure

2-1 has four descendants, The node labeled LIFESCIENCE has two
descendants, which, in turn, are labeled WEIGHT and WINDOW. Nodes
that have descendants are called neonterminal nodes; nodes without
descendants are called terminal neodes., There are 1l terminal and
9 nonterminal nodes in the figure.

The node exactly one level above a given node is called its
ascendant, The root node of the tree in figure 2-1 is the ascendant
of the nodes labeled LIFESCIENCE, TELESCOPE, MANUFACTURING and
GEQPHYSICAL, The node labeled GEOPHYSICAL is, in turn, the ascendant
of the node labeled ILENGTH. Note that any node can have, at most,

one ascendant,

10
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In addition to a label, a terminal node has a value, which

may be a character string, a numeric value or null. Values are

shown below their necdes. Thus, the node at the bottom right of
Figure 2-1 has the label "END" and the value '"318", Labels and
values are character strings which may, depending on the context,
have numerical significance,. ‘Like labels, values may consist of
up to 30 characters with no embedded blanks,

While the graphical format is convenient for displaying
conceptual tree structures and for demonstrating the effect of
specific PLANS statements, it is too cumbersome and rigid for
convenient use in the display of specific tree structures, especially
large ones. For this purpose, the indented text format is used.
The tree of Fig., 2-1 is expressed in the form shown in Fig, 2-3.

In this case, the structure is defined by the indentation pattern,
rather than by node-connecting lines. Each line of text represents
a node. The information occurring first cn 2 line is the node
label, while the wvalues of terminal nodes are separated from the
corresponding labels by a hyphen (-} character that is surrounded
by blanks. In order to allow rigorous definition of tree structures
in which some nodes have null labels, it is necessary to employ a
special convention for representing them, Null labels are
represented by a cent sign (¢). This convention is occasionally

employed in the graphical format, although it is unnecessary there,

a0
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SPAYLOAD
LIFESCIENCE
WEIGHT - 9000
WINDOW
START - 10
END - 143
TELESCOPE
WINDOW
START - 40
END - 216
MANUFACTURING
WINDOW
START - 8
END - 840
GEOPHYSICAL
LENGTH - 18
WEIGHT - 8000
WINDOW
START -~ 241
END - 318

Figure 2-3 "he Tree of Fig. 2-1 in Textual Format

An additional convention, which has been adopted; is the use
of parenthesized labels and values to represent variable data in
the definition of a particular tree application., If a label or
value occurs without parentheses, it is assumed that the character
string shown is literally present in the tree. For example, the
tree

$PAYLOAD
LIFESCIENCE
WELGHT - 2000
LENGTH ~ 27

contains only actual values and labels, But if one wanted to show
only the nature of the information contained in this tree, the
following form might be used.

$PAYLOAD
(PAYLOAD NAME)
(CHARACTERISTIC) - (VALUE)
(CHARACTERISTIC) - (VALUE)

(PAYLOAD NAME)

12
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PLANS Tree References

PLANS provides the programmer with a number of simple and
powerful means of accessing and updating the information contained
in the labelled tree structures discussed in the previous section.
These methods are based on the notion that the programmer can
"point" to a particular tree node by specifying which tree it is

in, which descendant of the root node it is under, which descendant

of that node it is under, etc, (Remember that the term "descendant,"

as used here, means immediate descendant.)

This section will describe these methods of the referencing,
illustrating their properties with simple examples, and the next
section will acquaint the reader with the various PLANS statements
which utilize these tree reference methods,

Tree Reference By Label

There are two basic ways of specifying which subnode of a
given node is the relevant one. The first way of specifying a2 sub-
node is by its label,

Suppose, f&r example, that information about the telescope
payload in figure 2-4 is desired. Because the name of the tree
is $PAYLOAD and the name of the payload in question is TELESCOPE,
the programmer might write $PAYLOAD,TELESCOPE to access this infor-
mation. This is an example of qualification by label,

Access qualified by labei can be continued to any desired
depth in the tree, Consider, for example, the node with value
216 in figure 2-4, S$PAYLOAD,TELESCOPE.WINDOW.END is one way of

pointing to this node.
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Pig. 2-4 Basic Tree Access Mechanisms
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Certain words, because they are subscript keywords (see following

sections), cannot be used as labels, They are "FIRST,'" "LAST",

ONEXT" and "ALL". Thus, $X.NEXT is now allowed.

e, A TR TN

The function keywords "LABEL" and '"NUMBER" (see Sections 2.2.9,

2,2,10) also cannot be used as .dabels,

2.2,2 Tree Reference By Ordinal Poéition (Subscript)

. The second basic way of specifying subnodes is by ordinal

position, or subscript. As was mentioned before, but not explained

S e TR e TR T

in detail, PLANS trees are ordered trees; that is, the ordering
of the descendants of a node is significant. Unless action is
taken to change or reorder a tree structure, the order remains
constant, In the previous example (see figure 2-4), since TELESCOPE
is the second payload, information about that payload can be referred
to as $PAYLOAD(2), as well as $PAYLOAD,TELESCOPE. The usefulness
of referencing a node by subscript becomes apparent when the node
to be referenced has no label,
Access qualified by subscript can be continued to any desired
depth in the tree, Consider, for example, the node with value
216 in figure 2-4, One way of pointing to this node is $PAYLOAD(2)(1)(2).
Labels and subscripts can be mixed at will when specifying a
tree node, For example, several ways of specifyimg the node with value
216 in figure 2-4 are:
$PAYLOAD,TELESCOPE .WINDOW (2)
$PAYLOAD,.TELESCOPE(1) .END

| $PAYLOAD(2) .WINDOW (2)

i3



2.2.3

2.2.4

“FIRST", “LAST", "NEXT" and "ALL" are keywords which may be
used as subscripts, Their use will be explained in detail in the
following sections, Note that "FIRST", "TAST", "NEXT" and "ALL"
may not appear as labels (i.e. $X.NEXT is not allowed),

Tree Reference By Subscript Keyword ("FIRST")

The first subnode at a given level can be referenced using the
subscript keyword "FIRST", as in $PAYLOAD(FIRST),which is illustrated
in figure 2-5, $PAYLOAD(FIRST).is equivalent to the subscript
specification $PAYLOAD(1l), but is executed more efficiently.

Since labels and subscripts can be mixed at will when specifying
a tree node, the following are several valid ways of peointing to
the node with value 216 in figure 2-5:
$PAYLOAD (2) (FIRST) (2)
$PAYLOAD .TELESCOPE (FIRST) .END
$PAYLOAD ., TELESCOPE (FIRST) (2)

SPAYLOAD(2) (FIRST).END

Note that the subscript keyword "FIRST' may not appear as a
tree node label (i.e. $X.FIRST is not allowed).
Tree Reference By Subscript Keyword ("LAST")

The last subnode at a given level can be referenced using the
subscript keyword "LAST", as in SPAYLOAD(LAST), which is illustrated
in figure 2-6, Note that in figure 2-6, $PAYLOAD(LAST) is equivalent
to SPAYLOAD(4), and to $PAYLOAD.GEOPHYSICAL.

Since labels and subscripts can be mixed at will when specifying
tree nodes, the fellowing ars several valid ways of pointing to the

node with value 216 in figure 2-6:

16
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Fig. 2-5 Tree Access By Subscript Kewyword ("FIRST")
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Fig. 2-6 Tree Acecess By Subscript Keyword ("LAST")
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2,2.5

2,2,6

SPAYLOAD(2) (LAST) (LAST)
SPAYLOAD , TELESCOPE (FIRST) (LAST)
$PAYLOAD(2) (LAST).END
$PAYLOAD,TELESCOPE (LAST),END
$PAYLOAD . TELESCOPE(LAST) (2)

Note that the subscript keyword "LAST" may not appear as a tree
node label (i.e. $X,LAST is now allowed).
Tree Reference By Subscript Keyword ("NEXT")

In appropriate contexts, a new subnode can be established at
the right by using the subscript keyword "NEXI". For example,
SPAYLOAD (NEXT) causes a new subnode to be created to the right of
SPAYLOAD(4) in figure 2-7.

UNEXT" is meaningful only in the context of updates, for example
in the tree assignment statement (see section 3,1,1) $X(NEXT) = 5°
which causes a new node to be created in the tree $X which has a
value of 5, "NEXT" is mentioned here in this discussicn of tree
references because of its similarity to "LAST".

Note that "NEXT" may not appear as a tree node label (i.e. $X.NEXT
is not allowed).

Conditional Tree Reference By Subscript Keyword ("FIRST:")

PLANS provides conditional access mechanisms which allow access
to one or more subnodes which satisfy a specified condition. The
conditional access mechanisms are the keywords "FIRST:condition"
and "ALL:condition"., "ALL:condition" will be discussed in the

following section,
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Fig. 2-7 Tree Update Mechanism ("NEXT")
$PAYLOAD

n
7 ()

' |

( Jurescrence ()etescore () manuracturing () GEOPHYSICAL O\
|

SPAYLOAD(NEXT)

. WETGHT . WINDOW . WINDOW . WINDOW . LENGTH . WEIGHT . WINDOW
18

8000
STAR’T END smmb END ¢START END
10 143 40 216 8 840

START . END
318

241




R e B

The "FIRST:" ("first such that,..") conditional access constitutes
a reference to the first (that is, leftmost) subnode which satisfies
a particular condition, where the condition is a Boolean expression.
Figure 2-8 illustrates a specific example, Here, a programmer
wishes to refer to the first payload whose launch window is at least
150 days long, so he writes:
$PAYLOAD(FIRST : SELEMENT ,WINDOW ,END - SELEMENT.WINDOW,START y = 150).

The string "FIRST:" might bé read "first subnode such that.,.”
the specified condition is satisfied. SELEMENT is a tree pointer
(see section 3,2) in this context, and represents a reference to
the particular subnode being considered at the current instant in
the left-to-right search., Expressed in procedural terms, the operation
might be, "going from left to righ., consider each elazment (i.e.
each descendant of SPAYLOAD) in turn. Calculate the launch windew
duration of the element being considered. If greater than or equal to 150,
proceed as if it had been referenced by subscript (since "FIRST:"
is a subscript keyword)." If no subnode can be found to satisfy
the condition, $PAYLOAD(FIRST:$ELEMENT.WINDOW ,END - $ELEMENT ,WINDOW.
START »= 150) will refer ﬁo a null node {see section 2.2.1l1), a node
with no label and no value or substructure.

The conditional gualification can be combined with other
qualification methods, Thus, if the programmer wished to refer
to the start time of the launch window for the first payload whose
launch window is at least 150 days long, he might write:
SPAYLOAD(FIRST : SELEMENT ,WINDOW.END - SELEMENT ,WINDOW.START >= 150).
WINDOW (FIRST) or, equivalently,
$PAYLOAD(FIRST : SELEMENT .WINDOW , END-SELEMENT .WINDOW . START > = 150)

(1) .START
21
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Fig., 2-8 C(onditional Access Using Qualifier rprpgp.n
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2.2,7

e

$PAYLOAD (FIRST : SELEMENT ,WINDOW .,END-$ELEMENT ,WINDOW ., START > = 150) .WINDOW .
START

$PAYLGAD (FIRST : SELEMENT ,WINDOW ,END-SELEMENT ,WINDOW . START »= 150) (1) (1)
$PAYLOAD(FIRST : SELEMENT ,WINDOW ,END~$ELEMENT ,WINDOW . START »= 150) (LAST)
(1).

Conditional Tree Reference By Subscript Keyword (“ALL:")

"ALL:condition' is the second of two conditional access
mechanisms. The "ALL:' ("all such that...") conditional access
refers to all the subnodes which satisfy a particular condition,
where the condition is a Boolean expression.

Figure 2-9 illustrates a specific example, Here, a programmer
wishes to refer to all payloads with launch windows at least 150
days long, so he writes:
$PAYLOAD (ALL :$ELEMENT .WINDOW ,END ~ $SELEMENT ,WINDOW ,START »= 150).

The string "ALL:" might be read "all subnodes such that.,..,"
the specified condition is satisfied, S$SELEMENT 1s a tree pointer
(see section 3.2) in this context, and represents a reference to the
particular subnode being considered at the current instant in the
left-to-right search,

Basically, the ALL: access is a reference to all the subnodes
which satisfy the stated condition as shown in Fig. 2-8, The exact
meaning of this type of access is somewhat context-specific, however,
For a discussion of the way in which this access is interpreted
in the various statements in which it can occur, see the sectinms
dealing with those statements (sections 3.1.1, 3.1.2, 3.1.3, 3.1l.4,

3.1.5).
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An ALL; qualifier must be the last qualifier in a tree reference.
Since ALL: constitutes a potential reference to more than one node,
it is not possible to qualify it further, so that
SPAYLOAD (ALL: $ELEMENT ,WINDOW ,END - $ELEMENT .,WINDOW,START »=150).
= WEIGHT is an  illegal reference.

Since "ALL" is a subscript keyword, "all' cannot appear as a

f _ tree node label (i.e. $X.ALL is not allowed).

| 2,2,8 Indirect Tree Reference

; Another powerful access mechanism is the indirect reference,

| which allows considerable program independence from specific character-
istics without loss of efficiency.

For example, unless the programmer resorts to very expensSive
iterative tree searching there is no way, without indirect referenc-
ing, that he can write a program to schedule shuttle flights that
does not contain words like PAYLOAD, ORBITER, etc. 1In order to
access information about these resources, he wants to use them as
labels for qualified access, or, conceivably, as tree names. What
is needed is a capability that allows the characteristics of a
problem to reside in the.data, rather than the program., Only in
this way can a program that schedules shuttle flights also schedule
machine shop operations., What the programmer needs is the capability
to read in, as data, the labels he will use to access particular
tree nodes.

Accordingly, PLANS allows the kind of indirect referencing
illustrated in figure 2-10, What the programmer is attempting to

: ' do in this illustration is to access information about the resource

types named in a tree called SRESOURCE_REQUIREMENTS., He therefore
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writes the tree node expression, $RESOURCE_INFO.# ($RESOURCE_REQUIRE-
MENTS(1)), to access information about the first such resource type.
This expression might be read, "the descendant of the node $RESOURCE_
INFO whose label is the character string found as the current value
of the node $RESOURCE_REQUIREMENTS(1)". The programmer is in effect
saying, "Behave as if I had written SRESOURCE_INFO,ORBITER, but

allow me the freedom to use some other label than QRBITER by changing
the data, without changing the program,"

Another type of indirect referencing 1s illustrated in figure
2-11. Here the programmer is attempting to access information about
the resource types whose names appear as labels in the tree $RESOURCE_
REQUIREMENTS. He therefore writes the tree node expression,
$RESOURCE_INFO,#LABEL ($RESOURCE_REQUIREMENTS(1) }, to access infor-
mation about the first such resource type. This expression might
be read, 'the descendant of the node $RESOURCE_INFO whose label is
the character string found as the current label of the node SRESOURCE_
REQUIREMENTS (1)",

Indirect referencing can be combined with other qualification
methods. The following are valid tree references:
$X(2).#(8Y,A) ,START
$X.A JFLABEL(S$Y.A) (3)
$X.A(FIRST) .#($Y(LAST).B) .END
$X.# ($Y.FLABEL(S$Z(2)))

The last example above shows that indirect referencing can be nested

to any depth,
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2.2.9

2.2,10

2,2.11

Label Function

Since it is sometimes necessary to access the label of a node,
the function LABEL was created which takes as its argument a tree
node reference. For example, LABEL(3X(3)) is a reference not to the
node $X(3) and its value or substructure, but to its label alone.

The LABEL function can appear anywhere a character string
literal (e.g., 'XYZ') can appear in a PLANS program; LABEL cannot
appear as a tree node qualifier (i.e. $X.IABEL and $X,LABEL(S$Y(1))
are not allowed) unless the tree reference is indirect (i,e.,
$X.#LABEL(5Y(1l)) is allowed, see section 2.2.8),

A special application of the LABEL function is in the case of a
tree node which has a numeric label, For example, the tree assignment
statement {see section 3.1,1) LABEL($X(1)) = 34 causes the first
subnode of $X to have a label 34, $X(1) cannot be accessed by label,
since $X.34 is not allowed, but we can access $X(1) by $X(FIRST:
LABEL(SEIEMENT)=34) which utilizes the label 34,

NUMBER Function

A second special function of PLANS is NUMBER. This function
returns the number of descendants possessed by a given node. Thus,
the expression NUMBER($PAYLOAD) applied to the tree of figure
2-9 yields the numerical value 4.

Since NUMBER is a function keyword, NUMBER cannot appear as the
label of a tree node (i.e., $SX.NUMBER is not allowed).

Null Nodes and $NULL

If a node has no label and no value or subnodes, it is called
a null node. If a node is referred to in a context in which the
reference is to the node as a subtree, and the node does not exist,
it will be evaluated as a null node, For example, in the tree

assignment statement (see section 3.1.1) $X = $Y(ALL:LABEL(SELEMENT)=
29



e g et

2c2n12

'START'), if there are no descendants of $Y which satisfy the
condition, $Y(ALL:LABEL(SELEMENT)='START') will refer to a null

node, so0 $X will become null upon execution of this statement.

Nften it is desirable for purposes of condition-checking to
be able to refer to a node which is assuredly null. The keyword
$NULL represents a node which has no label, value, or substructure.
If, for example, the programmer wanted to determine whether the
tree $X is null, he might write IF $X IDENTICAL TO $NULL THEN...
(For an explanation of the boolean relation "IDENTICAL TO', see
section 3.4.2,)

Additional Notes Concerning Tree Accesses

The meaning of a tree reference depends to a considerable
extent on the context in which it occurs. References to
particular nodes may be intended to refer to a& tree substructure
(i.e., the node "pointed" to, including its label,
and anything below that node in the tree) or to a value. The
meaning of a tree reference depends on the context in which the
reference occurs, Thus, a statement which commands that a node
be "pruned" (i.e., deleted from its tree) is obviously a structure
reference, while a statement like
WINDOW_DURATION = $PAYLOAD(2).WINDOW.END - $PAYLOAD(2).WINDOW,START;
refers, because of its arithmetic nature, to the values (216 and
40) of the two tree nodes used in the statement,

If a referenced node does not exist, or has no value, a value

is assumed which depends on the context of the reference.
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Let us assume, for example, that the node $X has only 2 subnodes,
The node $X(3) is therefore a nonexistent node. In an arithmetic
context, a reference to this node would be assigned the value

zero, For example, after execution of the statement

Y = $X(3) + 7;

Y will have a value of 7, In a string context, however, the refer-
ence evaluates as a null string, Thus, the Boolean expression in
IF $X(3) = '' THEN.,.

will be evaluated as true. The same properties are exhibited by

a node which exists, but has no value, even though it has a sub-

structure, Thus, in this example, the statement
Y = $X+ 7;
will assign a value of 7 to ¥, and the Boolean expression in IF

$X = '' THEN .., will be evaluated as true.
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2.3 BRIEF LIST OF PLANS STATEMENTS (WITH EXAMPIE STATEMENTS)
Tree Manipulation Statements

Tree Assignment Statement
$X(3) = §Y.A;

GRAFT Statement
GRAFT SNAME (LAST) AT $LIST(NEXT)

5 INSERT Statement
INSERT $NEXT__ELEMEN’I.‘ BEFORE $CURRENT__TREE (POSITION);

GRAFT INSERT Statement
GRAFT INSERT $Z(3) BEFORE $%B.X,Y.Z;

PRUNE Statement
PRUNE $X, $Y(3), SY(FIRST);

Label Assignment Statement
LABEL($X(LAST)) = "SELECTED';

ORDER Statement
ORDER $PAYLOADS BY WEIGHT;

Tree Pointer Statemen*-

DEFINE Statement
DET INE $TREE_?OINTER.AS $X(CURRENT_INDEX);

ADVANCE Statement
ADVANCE $TREE POINTER;

Arithmetic Statement

Arithmetic Assignment Statement
X= V¥3.0 + 26.5;

Conditional Statements and Expressions

IF Statement
IF $X IDENTICAL TO $NULL THEN GO TO FINISHED;

Boolean Expression
X<26,0}(§Y < MAXIMUM & $Z SUBSET OF $LIST)



TRt e o e

Control and Transfer of Control Statements

. GO TO Statement
A GO TO TRY_AGAIN;

CALL Statement
CALL ORDER_LIST (SLIST, XMAX, INDEX);

RETURN Statement
RETURN;

STOP Statement
STOP;

? . TRACE Statement
. TRACE HIGH;

Input/Qutput Statements

READ Statement
READ $X, $Y, NUMBER OF CREWMEN;

WRITE $tatement
WRITE 'ERRONEOUS TREE RETURNED', $RETURNEQ_IREE

Structural Statements

PROCEDURE Statement
GET_NEXT CANDIDATE: PROCEDURE($CANDIDATE_LIST, $SELECTED) ;

DECLARE Statement
DECLARE X, STEMP LOCAL:

BEGIN Statement
BEGIN; ‘

Noniterative DO Statement
DO;

END Statement
END;

Iteration Statements

DO FOR ALL SUBNODES Statement
DO FOR ALL SUBNODES OF $X USING SPOINTER;

DO FOR ALL COMBINATIONS Statement
DO FOR ALL COMBINATIONS OF $SCANDIDATES TAKEN 2 AT A TIME;

33
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DO FOR ALY, PERMUTATIORS Statement
DO FOR ALL PERMUTATIONS OF $QUEUE TAKEN NUMBER($QUEUE) AT A TIME;

DO WHILE Statement
DO WHILE (SPOINTER NOT IDENTICAL TO SNULL);

Incremental DO Statement
DO I =1,2,4,7 TO 20;

Lty
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3.1

DETAILED DESCRIPTION OF PLANS STATEMENTS
TREE MANIPULATION STATEMENTS

There are seven tree manipulation statements in PLANS; each
statement allows tree references to an information source and/or
an information destination. The seven statements are:
Tree Assignment Statement:

(Destination tree reference) = (Source tree reference);

GRAFT Statement:

GRAFT (Source tree reference) AT (Destination tree reference);

INSERT Statement:

INSERT (Source tree reference) BEFORE (Destination tree
reference);
GRAFT INSERT Statement:

GRAFT INSERT (Source tree reference) BEFORE (Destination tree
reference);
PRUNE Statement:

PRUNE (Source tree reference), (Source tree reference),...,
(Source tree reference);
LABEL Assignment Statement

LABEL (Destination tree reference) = (Expression);
ORDER Statement:

ORDER (Destination tree reference) BY (Property);

The basic tree manipulation statement is the tree assignment

statement, which is closely analogous to the ordinary arithmetic
assignment statement. In order to provide a context within which

to discuss the general properties of tree manipulation statements,
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the tree assipgnment statement will be described in considerable
detail, after which the other tree manipulation statemsnts will
be discussed in relation to it.

Tree Assignment Statement

The basic function of the tree assignment séatement is to
copy tree information (either a node's value or its entire sub-
structure) from one place to another. For example, consider the
statement $XTREE = S$YIREE;. This statement (1) destroys the
current value or substructure of $XTREE, (2) creates a copy of
the node and value or substructure of $YIREE, and (3) places the
resulting structure at $XTREE, The net result is one of replace-
ment or assignment of a new value.

Of course, the tree node expressions in a tree assignment
statement may be more complex than simple tree names., An example
is shown in Fig. 3-1, and should be considered in detail. Figure
3-1 (a) shows the initial condition of two trees, $X and 8Y,

The first statement, $X(3) = $Y.C, modifies the tree $X, as shown
in . (b). Note ‘that the original third subnode of $X has been deleted
and replaced with a copy of the node $Y.C, and that the tree $Y

has not been altered at all. Note also that the label of $Y.C has
replaced the label of §%{7).

Contrast (b) with (¢), where the assignment statement $X.D =
$Y.C causes $X.D to be deleted and replaced with a copy of the
node $Y.C, which is exactly what occurred with $X(3) = $Y.C, but
this time the label of $X(3) remains what it was before the assign-

ment, Thus, in an assignment statement, if the destination already

E1)
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c) Trees of (a) After $X.D = $Y.C

FIG. 3-1 Results of Simple Tree Assignment Statements
{Changing Labels and Values)
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has a value or substructure, it is automatically deleted before

the copy operation occurs. However, the label of the destination
will be replaced only if the destination tree. reference is qualified
by subscript {(e.g., $X(3)). If the destination is qualified by

label (e.g., $X,D), the lab:l remains the same,

1f the destination node do;s not yet exist, it is created.

For example, beginning with the trees in figure 3-2(a), the statement
$X(4) = $Y(LAST) results in the modified $X shown in (b). Because
the left-hand side of the tree assignment referred to a node not yet
in existence, a new subnode of $X was created,

Again beginning with the trees in (a), the statement $X(5) = $Y(LAST)
results in the modified $X shown in {(c). Note that a null node was
created at $X(4) so that a copy of $Y(LAST) could be placed at $X(5).

The destination tree reference is qualified by label in (d), so
the tree assignment $X.E = $Y(LAST) results in a modified $X very
similar to that in (b) except that now the label of $X(4) is "E",
$X.E is created at $X(4) because in tree assignments new subnodes are
always added at the right,

Copying a nonexistent or null node results in the generation
of a node with no value or substructure at the destination. This
case is illustrated in figure 3=3. In (a), there is no node $Y.E.
Therefore, the statement $X(2) = $Y.E (1) deletes the contents of

$X(2), (2) makes a cdpy (null) of $Y.E, and (3) replaces $X(2)

28
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c) Trees of (a) After $X(5) = $Y(LAST)
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d) Trees of {a) After $X.E = $Y(LAST)'

FIG. 3-2 Results of Simple Tree Assignment Statements (Creating New
Nodes)
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FIG. 3-3 Results of a Tree Assignment Statement When the Source
Node is Null
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with the copy. That is, $X(2) is replaced by a null node under these
circumstances.

This convention is consistent with the execution of the statement
when the node in question exists, and has the advantage that it allows
the programmer to test explicitly for a null node ("IF $X(2) = SNULL
THEN ...") if he is in doubt about the existence of the node referred
to on the righthand side of the tree assignment statement. This
same behavior occurs when a conditional tree access is used in which
the condition is not satisfied., Suppose, for example, that the program-
mer had wanted to replace $X(2) in the =xample by a copy of the first
descendant of $Y that had : .. .structure. He might have written $X(2) =
$Y(FIRST: NUMBER( {ELEMENT) »>0), Because none of the descendants of
$Y satisfies the condition, the result would have been identical
to that resulting from 5X(2) = $Y¥.E. Both statements yield the same
resulc as $X(2) = SNULL,

The source information can be arithmetic or a character string
rather than a reference to an existing tree node. Type conversion
is performed automatically. Figure 3-4(a) shows the initial condition
of the tree $X. Figure 3=4(b) shows $X as modified after the execu-
tion of the statement $X.B = 'ABC'. Described algorithmically, here
is what has happened: (1) the value or substructure of $X.B has been
deleted, because $X.B occurs on the left-hand side of a tree assign=
ment statement; (2) the right-hand side of the statement has been

evaluated as a tree expression, because that is what is called for by

i e e s
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a) Original Tree
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QA/IB\QC
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b) Tree After $X.B = 'ABC'
$X

c) Tree of (a) After $X.B

n
()

3
I

2 13.5 6
d) Tree of (a) After $X.B = $X.C + 7.5
$X
A C
2 ABC 6
e) Tree of (@) After $X (2) = 'ABC’

FIG. 3-4 Type Conversion in Tree Assignment Statements
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the tree assignment statement, and (3) a copy of the tree structure
referred to on the right-hand side has replaced the value or substruc=-
ture of $X,B. By this description, then, this tree assignment statement
operated like any other. But how is something evaluated as a tree
expression when it is in fact a character string?
Any time a character striﬁg or arithmetic expression occurs,

when the context clearly calls for a tree expression, a dummy tree

is created. This dummy tree has only a single node, the root node,
which has a null label. The value of the node is the string or
arithmetic value specified in the PLANS expression, in this case the
string 'ABC'. The dummy tree is then used just as if the programmer
had explicitly created the tree and placed the tree's name in the
program., Ln the case of the example, the result is the same as if
' the programmer had written $X.B = $DUMMY, where $DUMMY is a tree with
one node, no label, and the string wvalue 'ABC'.

As suggested in the explanation above, the same mechanism applies

when an arithmetic expression appears in a context that requires a

tree node reference, Thus, application of the statement $X.B = 2%4

to the tree of 3~4(a) yields the result shown in (c). The value of the
arithmetic expression, in this case 8, is calculated, placed on a dummy
node, and becomes the value of $X,B. It may occur to the reader that
the same behavior could as well be described as replacement of the value

(or substructure) on the left by the value of the expression on the

3
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right. As the discussion of (e) will show, this is not always true.
It will be helpful, therefore, to think in terms of the generation
of a dummy node when considering statements of this type.

Figure 3~4 (d) shows a statement of the same basic sort as
that of (c). 1In this case, the arithmetic expression on the right=
hand side involves a tree node reference, Because $X.C occurs within
an arithmetic expression, it has the value 6, just as if $X.C were
an arithmetic variable name. Therefore, the statement $X.B = $X.C + 7.5
results in substitution of the numeric value 13.5 at $X.B.

Finally, figure 3-4(e) shows a statement similar to (b), except
that the destination tree reference is qualified by subscript. In
this case the destination will assume the label of the source tree
reference, which is a null label.

A property of FLANS tree operations that should be well under-
stood is the exclusivity of values and substructures. A node may have
a null value or it may possess either a value or a substructure, but
it may never have both a value and a substructure. Figure 3-5 illus-
trates this conceﬁt, In (b), execution of $X.A = $Y(1) places a new
value on the node $X.A, with the result that the previous substructure
of $X.A is deleted. Figure 3-5(c) shows the converse case in which
placement of a new substructure on the node $X.B deletes the previous
value of that node.

Figure 3~6 illustrates some tree assignments to previously non=-

existent nodes, Figure 3-6 (b) shows the tree of (a) as modified by

4



(@) Original Trees

(b) Trees After $X.A = $Y(L)

6 12 18 24
(c) Trees Of (a) After $X.B = $Y(2)

Fig. 3-5 Value-Substructure Exclusivity
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(@) Original Tree

{b) Tree after $X.D = 8

(c) Tree of (a) after $X(NEXT} = 8

2 4 6
(d) Tree of (a) after LABEL ($X(NEXT)) = 'D'

$TREE

A OB C(P

2 4 6 8

(e) Tree of (a) after $X(5) = 8

Fig. 3-6 Assignments to Nonexistent Nodes
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the statement $X.D = 8, It should be noted that this statement has assigned

a value and a label to the new node. Any time the referenced node

does not exist, it is caused to exist as specified. If it was specified

by label, this means the indicated label must be placed on the new node.
Figure 3-6(c) shows the result of a statement in which a non-

existent node was specified by subscript, Because no label was used

to indicate the node and the expression on the right has no label

(it is a dummy node), the resulting node has a value, but no label.

Figure 3«6 (d) involves a new node with a label, but no value, In

the figure this result was achieved by the statement LABEL($X(NEXI)) = 'D',

However, because two prime (quote) marks together refer to the null

character string, the same result would be observed after execution

of the statement $X.D = '', This statement places a null string on the

node as a value, but that is completely equivalent to no value at all,
Figure 3=-6(e) shows what happens when an assignment is made to a

node specified by a subscript that is too laxge. (It is, of course,

only too large if the programmer did not want the result shown in

the figure.) The programmer has stated that the fifth subnode of $X

is to acquire the value 8, But this can only occur if, after execution

of the statement, $X has at least five descendants, Because there

were only three descendants before the statement was executed, two new

nodes will be created. Only the latest of these newly created nodes is

involved in a tree assignment statement; therefore, only the last node

can acquire a label or a value. The remaining new node(s), in this

case $X(4), will be null,
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3,1.2

There need be no correspondence of level between the source and
destination references., Since the tree assignment statement just copies
the substructure or value at the source and places this copy at the des-
tination, no reference is made to tree levels at all, Notice also that
the source node is not affected by the execution of a tree assigament
statement.

GRAFT Statement

The GRAFT statement, as its name suggests, involves the removal
of a piece of cne tree which is then placed on another tree, Note
that instead of copying the information to be added to the target tree, as
is done in tree assignment Statements, the GRAFT staiement removes the
specified structure from its original location and moves it to the
target tree. Examples are shown in figure 3-7, Figures (a)=(d)
illustrate the fact that the tree assignment and GRAFT statements
have the same effect (replacement) on 35X, the destination reference,
However $Y, the source reference, remains unaffected by a tree assign-
ment statement while it is altered by a GRAFT statement.,

It is sometimes important to recognize that the execution of a GRAFT
statement is a sequential process, involving first the removal of a tree
substructure from the source tree, then the placement of the structure
at the destination, Figure 3-7(e) illustrates the effects of GRAFT
$X.C at $X(4). First, $X.C is removed from the source tree, (note
that $X has only three subnodes now); then $X.C is placed at $X(4).

But since $X has only thres subnodes after the removal of $X.C, $X.C

is placed to the right of $X.D,
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(a) Original Trees

ix
mc

2
(b} Trees Aftzr GRAFT $Y.C AT $X(3)

$X $Y
mn AB
| 1 3
(c) Trees Of (b} After GRAFT $Y(LAST) AT $X.D
$Y
m 4\98
1 3

{d) Trees Of c) After GRAFT $Y E AT $X(2)

A

(e) Tree Of { After GRAFT $X. C AT $X(4)
Fig. 3-7 GRAFT Statements

$X $Y
o oo mv
2 4 1 1 3 6 8
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Because it doves not involve any copying of tree nodes, the GRAFT
statement executes much more quickly than the tree assignment statement.
GRAFT gives the appearance of being more complex than the tree assign-
ment statement, and the programmer may naturally assume that the latter
is more efficient and should be given preference whenever there is a
choice, A little reflection on the underlying structural operations will
show that this is not‘true.

The tree assignnient statement requires the generation of a complete
copy of an existing structure., The execution cost of these statements
(and the storage space required) 1s largely a function of the size of
the structure that must be copied. The GRAFT statement, on the other
hand, requires only the alterition of a few pointers so that an
existing structure can be moved, completely intact, to another iree lo=~
cation. The execution cost of this statement is minimal, no additional
storage is involved, and the cost is entirely independeant of the size
of the structure that is moved. It cannot be overemphasized that the
GRAFT operation is not only very powerful, but also very efficient.

The source information may be of an arithmetic or character string
tvpe, in which case the statement behaves like the corresponding
tree assignment statement. Figure 3-8 illustrates GRAFT statements
which are equivalent to the tree assignment statements in figure 3=&.

Similarly, if the source reference is to a nonexistent node, the
GRAFT statement has the same effect as the corresponding tree assignment

statement. Figure 3-7(d) illustrates the effect of tl.e statement GRAFT
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(d) Tree Of (a) After GRAFT $X.C +7.5 AT $X.B
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(e) Tree Of (a) After GRAFT 'ABC' AT $X(2)

Fig. 3-8 GRAFT Statements With String And Arithmetic Source References.
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3.1.3

$Y.E AT $X(2). Since $Y.E is nonexistent, a null node is createa and
placed at $X(2).

Like the tree assipnment statement, the GRAFT statement may or may
not result in replacement of the label of the destination node., If the
destination rei'erence is by label, no label replacement will occur; if
by subscript, the label will be replaced.

INSERT Statement

For the purpose of the INSERT statement, the subnodes of a node are

regarded as an ordered list. Rather than replacing one of the elements

of that list, this statement inserts a copy of the spurce tree before

one of them. Examples are shown in Figure 3~9. Like the tree
assignment statement, & copy i1s made of the source reference, but an INSERT
statement places this copy before the destination node.

It should be observed that the INSERT operation of (d) results in
two subnodes of $X that possess the same label., This is quite allowabple,
but the programmer should be aware that, if this occurs, the sub-
sequent reference $X.D is a reference to only the first such node.
Either node can étill be referenced by subscript, however, and a
reference of the form $X(ALL; LABEL(SELEMENT) = 'D') would access all such
nodes in one operation.

Type conversion occurs automatically if the sources reference is
aritimetic or & character string. In an INSERT statement, as with

the arithmetic #ssignment statement, any time a character string or
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a) Original Trees

m %%

bY Trees after lNSERT $Y. C BEFORE $X (3)

mqo mo
2 4 6 { 1 3 6 R

c) Trees of (a) after INSERT $Y.C BEFORE $X.D

$X $Y
A GSB OC OD OD mn
2 4 6 8 7 1 3 ¢ 8

d) Trees of (c) after INSERT $Y(LAST) BEFORE $X.D

Fig. 3-9 Resuits of a Sequence of INSERT Statements
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arithmetic expression occurs, when the context clearly callis for a tree
expression, a dummy tree is created. This dummy tree has only a single
node, the root node, which has a null label, The value of the node is

the string or arithmetic value specified in the PLANS expression, for
example the string 'ABC' in the figure 3-10(b) . The dummy tree is then
used just as if the programmer had explicitly created the tree and placed
the tree's name in the program. In the case of tﬁe example, the result

is the same as if the programmer had wricten INSERT $DUMMY BEFORE $X.B,
where SDUMMY is a tree with one node, no label, and the string value ‘'ABC',

As suggested in the explanation above, the same mechanism applies
when an arithmetic expression appears in a context that requires a tree
node reference, Thus, application of the statement INSERT 2%4 BEFORE $X.B
to the tree of 3-10(a) yields the result shown in (c). The value of the
arithmetic expression, in this case 8, is calculated, placed on a dummy
node, and becomes the value of the node to the left of $X,B.

Figure 3-10(d) shows a statement of the same basic sort as that of
(e¢). In this case, the arithmetic expression on the right-hand side
involves a tree node reference. Because $X.C occurs within an arithmetic
expression, it has the value 6, just as if $X.C were an arithmetic variable
name. Therefore, the statement INSERT $X.C+7.5 BEFORE $X.B results in
insertion of the numeric value 13.5 before $X.B.

Neither the source node nor the destination node is directly affected
by the INSERT operation., In particular, the question of replacement or
nonreplacement of the destination basg node label does not arise with
insertion, Note that the statements, "INSERT $Y.C BEFORE $X.D" and "INSERT

$Y.C BEFORE $X(3)" are identical (see (b) and (c) in figure 3-9).
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$X

2 ABC 4 6
() Tree After INSERT 'ABC' BEFORE $X.B

mc

2 8 4 6
(c} Tree Of (a} After INSERT 2*4 BEFORE $X.B

mc

2 135 4 6

(d) Tree Of (a) After INSERT $X.C + 7.5 BEFORE $X.B

Fig. 3-10 Type Conversion In iNSERT Statements
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1f the source reference is to a null or nonexistent node, a null
node is created and inserted at the indicated locatiom, Figure
3~11(b) illustrates this point,

I1f the destination node exists but is null, funny things happen.
It is assumed that the PLANS programmer does not ordinarily leave null
nodes lying about. For example, figure 3-11(c) illustrates the state=
ment INSERT $Y.A BEFORE $X(2), where $X(2) is a null node. Note that
the copy of 3Y.A is not placed before $X(2), but right on the null
node,

If the destination node does not exist, the INSERT statement
behaves like the tree assignment statement, Figure 3-12 illustrates
the statements, $X(4)=8$Y.B and INSERT $Y.B BEFORE $X(4). Note that
the trees resulting from the two statements are identical,

GRAFT INSERT Statement

The GRAFT INSERT statement is a simple combination of the pro=-
perties of the INSERT statement with those of the GRAFT statement.

It possesses all the basic properties of INSERT and, in addition, the
source node is removed from its tree. Examples are illustrated in
figure 3=13,

As with the INSERT operation, it should be observed that the
GRAFT INSERT operation of (c) results in two subnodes of $X that possess
the same label, This is quite allowable, but the programmer should
be aware that, if this occurs, the subsequent reference $X.D is a
reference to only the first such node, Either node can still be ref-

erenced by subscript, however, and a reference of the form
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(@} Original Trees

(b) Trees After INSERT $Y.E Ri:FORE $X(2)

2 1 4 6 8 {
(c} Trees Of (b} After INSERT $Y.A BEFORE $X(2)

Fig. 3-11 INSERT Statements With NULL Source And Destination Nodes
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a) Original Trees

$X
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> 4 6 8

b) Trees of (a) After $X(d) = $Y.D

c) Trees of (a) After INSERT $Y.D BEFORE $X(4)

FIG 3-12 INSERT Statement With A Non-Existent Destination Node
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b) Trees After GRAFT INSERT $Y.C BEFORE $X(3)

$X $Y
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¢) Trees of (b) After GRAFT INSERT $Y (LAST) BEFORE $X.D

$X $Y
A 4B \)C D ~OD d{\bs
2 4 6 8 7 1 3

d) Trees of (c) After GRAFT INSERT $Y.E BEFORE $X(2)

FIG 3-13 GRAFT INSERT Statements
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SX(ALL :LABEL(SELEMENT) = 'D') would access all such nodes in one operation,
Like the GRAFT statement, the GRAFT INSERT statement is executed
in a sequential manner which should be understood. The GRAFT INSERT
statement first removes the specified structure from its original
location, then inserts it before the destination location,
Thus, the statement, GRAFT INSERT $X.,C BEFORE $X(4) results in
the tree of figure 3-14(b). Note that first $X.,C is removed from the
tree; then 3X.C is placed before $X(4), but $X(4) is now the node
$X.E (i.e., after the removal of $X.C, $X(1) is $X.A, §X(2) is
$X,B, and X(3) is $X.D, and $X(4) is $X.E ),
As with an INSERT statement, in a GRAFT INSERT statement any time
a character string or arithmetic expression occurs when the context
clearly calls for a tree expression, a dummy tree is created. This dummy
tree has only a single node, the root node, which has a null label. The
value of the node is the string or arithmetic value specified in the PLANS
expression, for example the string 'ABC' in figure 3-15(b). The dummy
tree is then used just as if the programmer had explicitly created the tree
and'placed the‘tree's name in the program, In the case ¢f the example,
the result is the same as if the programmer had written GRAFT 1INSERT
$DUMMY BEFORE $X.B, where $DUMMY is a tree with one node, no label, and

the string value 'ABC',
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a) Original Tree

1 3 7 5 9
b) Tree After GRAFT INSERT $X.C BEFORE $X(4)

FIG 3-14 Sequentia! Execution of a GRAFT INSERT Statement
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a) Original Tree
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b) Tree After GRAFT INSERT 'ABC' BEFORE $X.B

$X
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2 8 4 6
c) Tree of (a) After GRAFT INSERT 2*4 BEFORE $X.B

$X

A B C
2 135 4 6
d) Tree of (a) After GRAFT INSERT $X.C + 7.5. BEFORE $X.B

FIG 3-15 Type Conversion in GRAFT INSERT Statements
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As suggested in the explanation above, the same mechanism applies
when an arithmetic expression appears in a context that requires a tree
node reference. Thus, application of the statement GRAFT INSERT 24
BEFORE §X.B to the tree of figure 3-15(a) yields the result shown
in (¢). The value of the arithmetic expression, in this case 8, is
calculated, placed on a dummy node, and becnmes the wvalus of the node
to the left of $X.B.

Figure 3-15(d) shows a statement of the same basic sort as that
of (¢). In this case, the arithmetic expression on the right=hand
side involves a tree node reference., Because $X.C occurs within
an arithmetic expression, it has the value 6, just as if $X.C were an
arithmetic variable name. Therefore, the statement GRAFT INSERT $X,.C
+7.5 BEFORE $X.B results in insertion of the numeric value 13,5 before
$X.B.

GRAFT INSERT, like GRAFT, involves no copying and is relatively
efficient to execute, The tree assignment and INSERT statements
require the generation of a complete copy of an existing structure,
The execution cost of these statements (and the storage space required)
is largely a function of the size of the structure that must be copied,
The GRAFT and GRAFT INSERT statements, on the other hand, require
only the alteration of a few pointers so that an existing structure
can be moved, completely intact, to another tree location., The execu=
tion cost of these statements is minimal, no additional storage is

involved, and the cost is entirely independent of the size of the
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3.1.5

structure that is moved. It cannot be over-emphasized that GRAFT and
GRAFT INSERT operations are not only very powerful, but are also very
efficient,

PRUNE Statement

The function of the PRUNE statement is to remove one or more specified
nodes (with substructures, if any) from their trees. Examples are
illustrated in figure 3~16., The programmer simply specifies the node
(or nodes) that, together with the associated substructure, is to be
removed, This operation allows the removal of undesired information
from a tree. It may also be used, particularly as in (d), to release
computer storage that is no longer needed.

It should be kept in mind while programming in PLANS that the
programmer is really doing his own dynamic steorage allocation
(although PLANS handles all the details for him), When information
is no longer needed, its storage can be reused, but only if the
programmer releases it by means of a PRUNE statement,

If a PRUNE statement refers to more than one node to be pruned,
it mﬁst be kept'in mind that the pruning operations occur in
sequence, one after another., #An example of this is the seemingly
redundant statement, PRUNE $X(2), $X(2), illustrated in figure 3-17,
Initially, $X(1) is $X.A, $X(2) is $X.B, $X(3) is $X.C, and $X(4)
is $X.D; so $X.B is pruned. Now $X(1) is $X.A, $X(2) is $X.C, and $X(3)

is $X,D; so $X.C is also pruned,

bl

i



o Ty

(@) Original Tree

{b) Tree after PRUNE $X.C

2 4
{c} Tree of (a) after PRUNE $X.C, $X.D

$X
O
{d) Tree of (a) after PRUNE $X

Fig. 3-16 Prune Statements
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a) Original Tree

b) Tree after PRUNE $X(2), $X(2)

Fig. 3-17 Sequential Execution of the PRUNE Statement
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3,1.6 Lahel Assignment Statement

The label assignment statement replaces only the label of the
indicated node, without disturbing its value or substructure, LABEL

is a special PLANS function that takes as its argument a tree node

reference, LABEL ($X(1)) is a reference not to the node $X(1l) and

its substructure, but to its label alone. The LABEL function can
appear anywhere a character string can appear in a PLANS program.

In addition, it can appear on the left=hand side of an equal sign,

e R TR T T R AR TR A

as figure 3-i8 shows. Such a statement is a command to replace the
current: label of the specified node with the new string, which is
obtained by evaluating the expression to the right of the equal sign,

Consider figure 3-18; (a) shows the initial state of the tree
$X, Figure 3-18(b) illustrates the effect of the label assign-
ment statement LABEL($X(1)) = 'D'; which simply replaces the current
label of the node $X(1), "A", with a new string, "D", The label
assignment statement only replaces labels, having.né structural
effect if the referenced node already exists, If the indicated
node does not exist, it is established, with a null value and the
indicated label,

The statement illustrated in (c) has exactly the same effect as
that of (b). It makes no difference whether the node is referenced by
label ($X.A) or by subscript ($X(1)). The effect of the statement is

the same,
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{c) Tree Of (a} Af'~r LABEL ($X.A) = 'D'
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(e) Tree Of (a) After LABEL ($X(1})) = $X.C

Fig. 3-1¢ LABEL Assignment Statements
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If the referenced destination node does not yet exist, it is estab=-
lished, Figure 3=18 (d) illustrates the statement, LABEL ($X.E) = 'D!,
where $X,E is a nonexistent node.

If the source information is not a character string, automatic
type conversion occurs, Figure 3«18(e) is an illustration of automatic
conversion, The right-hand side of the statement LABEL ($X(1)}) = $X.C
is a tree expression, but the context calls for a string or numerical
value, The value of $X.C is therefore obtained, and replacas the
label of $X(1).

An additional concept is illustrated here: labels can be
numerical values. In fact, anything that can be a value can be a label,
and vice versa, However, nodes that have numerical values (or strings
not having identifier syntax) cannot be accessed by label in a PLANS
program, Thus, $X.6 is not a legal expression., On the other hand,
$X(1) is still a legitimate way to refer to this node. This property
can be used to advantage in some numerical applications,

ORDER Statement

The ORDER statement is used to reorder the subnodes of a given node
on the basis of a numerical property that each possesses, If, for
example, it is desired to order a group of paylocads by weight, heaviest
first, one might write ORDER SPAYLOADS BY WEIGHT; or if they were to
be orderéd by length, longest first, a statement of the form ORDER

$PAYLOADS BY LENGTH would be appropriate,
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Figure 3~19 illustrates a few of the properties of the ORDER
statement, It should be apparent that an ORDER statement refers to a
node, which, in turn, has subnodes to be ordered, Each subnode has,
at least potentially, the property or properties on which ordering
is to occur,

Figure 3=19(b) illustrates'an ORDER statement in which the subnodes
of the node $X are sorted into descending order on the basis of
property Y. Note that, where the property in question is not possessed
by a particular subnode (e.g., $X.C has no subnode labeled Y), a value
of zero is assumed and the sort is performed accordingly. Note also
that the normal ordering is descending; that is, the largest value
occurs first, Thus, after execution of ORDE: S$PAYLOADS BY WEIGHT, the
heaviest payload will be $PAYLOAD(1).

More than one property can be listed in order to cause ties on the
first property to be broken by values on the second, etc, For example,
if it is desired to order a group of payloads by length, longest first,
with ties broken by width, widest first, a statement of the form
ORDER $PAYLOADS BY LENGTH, WIDTH would be appropriate.

Ordering can be in either ascending or descending sequence.

Figure 3~19(b) illustrates ordering in descending sequence (i.e.,
largest value of Y first), If ascending order is desired, the
property name should be preceded by a minus sign (=), as in (c).
Thus, a statement like ORDER $PAYLOADS BY -LENGTH, -WIDTH would order
payloads by length, shortest first, with ties broken by width,

narrowest first, An example is illustrated in figure 3-19(c).
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(a) Original Tree

() Tree after ORDER $X BY -X

Fig. 3-19 ORDER Statements
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The tree pointer (see section 3,2) $ELEMENT may be used in cases
where ORDER (tree node reference) BY (coﬁmon label of ordering nodes)
cannot be applied; for example, a tree with no labels or with no
common labels on the ordering nodes can be ordered by the statement,
ORDER (tree node reference) BY $ELEMENT (see figuré 3-20(a)). Note
that SELEMENT always refers to the nodes being ordered. Thus, the state-
ment illustrated in (a) orders the subnodes of $NUMBERS by their values.

SELEMENT may be qualified by subseript or iabel. Thus, to order
the subnodes of $PAYLOAD by their weights, we might use the statement,
ORDER S$PAYLOAD BY $ELEMENT.WEIGHT; or, equivalently, ORDER S$PAYLOAD
BY SELEMENT(2) (sée figure 3-20(b)). Note that the former statement
is equivalent to ORDER $PAYLOAD BY WEIGHT.

Figure 3-20(c) illustrates the basic difference between ORDER
(tree node reference) BY $ELEMENT and ORDER (tree node reference) BY
(common label of ordering nodes). Note that figure (c) can be
ordered by the statement ORDER $X BY S$SELEMENT, but it cannot be
ordered by the statement ORDER $X BY Yo The latter statement implies
that each of the subnodes of $X (these subnodes are the nodes to
be ordered) has in turn a subnode labelled Y. If such a statement is
applied to the tree of figure (c), each of the values on which
ordering is to occur will be zero, and the intended ordering will not

0CCUur,



$NUMBERS $NUMBERS
> 1 7 10 0 7 5 1
a) ORDER $NUMBERS BY $ELEMENT
$PAYLOAD $PAYLOAD

IFESCIENCE “QGEOPHYSICAL

WEIGHT WEIGHT

9000 10000 10000 9000
b} ORDER $PAYLOAD BY $ELEMENT. WEIGHT

$X $X
mv va
10 13 7 3 3 10 7 3
c) ORDER $X BY $ELEMENT (Note: ORDER $X BY Y NOT VALID)
$A

d) ORDER $A BY Y

Fig. 3-20 ORDER Stétemen’t Using the Tree Pointer $ELEMENT
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3.2,1

Ordering can be on the basis of the values of the sorted nodes,
or on properties any number of levels down, Figure 3-20(c) is an
example of the first type of ordering, and figure 3=-20(b) is an
example of the second type.

Note that figure (d) illustrates a tree which cannot be
ordered with respect to Y since'¥Y is on a different level for each
node to be ordered, Since the first Y-labelled node encountered is
on the third-level, the other Y-labelled nodes will be expected to
be on the third level, If the statement, ORDER $A BY Y is executed
on this tree, $A,C will be assumed to have a Y-value of zero,
TREE POINTER STATEMENTS
DEFINE Statement

The standard form of this statement is:

DEFINE tree=pointer=name AS tree-node~reference;

The DEFINE statement is used to set a tree pointer so that it can be
used to refer to a specified tree node., This capability allows the FLANS
programmer to reference any tree node simply by using the tree pointer
name, For instance, if the user wished to refer to the fiftn subnode
of a tree called $SAMPLE TREE he might write DEFINE $SUBNODE_5 AS
$SAMPLE_TREE(5); Thereafter, $SUBNODE 5 could be used to refer to what-
ever node happened to be $SAMPLE_TREE(53) at the time the DEFINE state-

ment was executed,
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It is important to note that the DEFINE statement causes an action

to occur at executlon time, and not at compile time. That is, the DEFINE

statement can be used to dynamically update tree pointers and is not
intended to be used for defining static storage "equivalences.” The
data attributes of a tree pointer are different from those of a "real”
tree, Due to this fact, an atfempt to use the same tree name for both
purposes will cause an error,

Logically, tree pointers can only indicate already-existent tree
nodes. Therefore, if the node referred to in the DEFINE statement does
not already exist, it will be generated when the statement is executed,

Considerable improvement in both program re.dability and execu-
tion efficiency can be realized through the use of tree pointer
statements, Using a long list of qualifiers (labels, subscripts, etc.)
to access a subnode several levels down in a tree causes multiple node
accesses, If such an access is performed repeatedly, unnecessary ex-
pense is incurred. This extra expense is avoided by accessing the node
directly with a tree pointer, At the same time, the tree pointer gives
the PLANS programmer the opportunity to substitute a brief meaningful
name for the cumbersome qualifier list. Many hours of a maintenance
programmer's time will ba saved if the original programmer pays
attention to this type of readibility enhancement. The example

below demonstrates the degree of clarity that can be achieved.
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IF $JOB_NETWORK.JOB_37.SCHEDULE_INTERVAL,START« 10
THEN IF $JOB_NETWORK.JOB_37.SCHEDULE_INTERVAL .END=>15
THEN GRAFT $JOB_NETWORK,JOB_37,SCHEDULE_INTERVAL AT $WINDOW(NEXT) ;
without a tree pointer;
DEFINE $INTERVAL AS $JOB_NETWORK.JOB_37,SCHEDULE_INTERVAL;
IF $INTERVAL,START < 10
THEN IF SINTERVAL.END> 15
THEN GRAFT SINTERVAL AT $WINDOW(NEXHD;
with a tree pointer.
ADVANCE Statement
The standard form of this statement is
ADVANCE tree-pointer=-name;
The ADVANCE statement allows the PLANS programmer to update tree
pointers, It effectively "moves'" the pointer one node to the right,
That is, after the statement is éxecuted, the pointer will indicate
the next node, at the same node level, immediately to the right of
the node previously indicated, If there is ne such node, the tree
pointer will indicate 3NULL.

If the node referred fo by a tree pointer is pruned or grafted,
the pointer is automatically advanced. Because of this property,
the ADVANCE statement can be very useful for programming some kinds
of explicit loops. For instance, in the example below it is used
to conditionally.balance the PRUNE statement that causes the pointer to
be automatically advanced., By using this technique, the user can

insure that all subnodes are examined by the loop,
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DEFINE $POINTER AS $SAMPLE TREE(FIRST);
DO WHILE ($POINTER - IDENTICAL TO $NULL);
IF condition '
THEN PRUNE $POINTER;
ELSE ADVANCE $POINTER;
END;
NOTE: Of course, this particular'oparation could be accomplished

with the single statement: PRUNE $SAMPLE_TREE(ALL: condition);
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ARITHMETIC STATEMENT
Arithmetic Assignment Statement

The arithmetic assignment statement of PLANS, which is of
the form (arithmetic variable) = (arithmetic expression), is
essentially the same as that of other high-level programming
languages,

An arithmetic variable is.any character string not more than
30 characters leng, where the first character is alphabetic and
all others either alphanumeric or the speciul underbar (')
character. Arithmetic variables may be of either integer or
real types; variables starting with the letters I through N are
implicitly declared integer, otherwise they are real. (Note tha.
the type declaration is done automatically.) PLANS variables cannot
be keywords, so LABEL, NUMBER and sco Zorth are illegal names for
arithmetic variables,

Arithmetic expressions are evaluated according to the priority
of the operator. Any expression encleosed in parentheses is evaluated
before any other part of the expression. Exponentiation (%¥*),
prefix + and prefix - have the highest priority, These operations
will be completed firét, and if more than one of these operators
appear in the sam= expression, they are evaluated from right to
left, Multiplication (*) and division (/) have the second priority.
They are evaluated from left to right. Addition (+) and sub-
traction (-) have the lowest priority. They are evaluated from -~

left to right, If any other order is desirad, parentheses must

be used to indicate the order,
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3.4.1

When tree references appear in an arithmetic context, automatic
type conversion occurs. For example, the arithmetic statement
THIS_IS_AN_ARITHMETIC_VARIABLE = $X{(2) + 15 causes the tree refer-
ence $X(2) to be converted to the value of the node (say the value
of the node is 3) so that the arithmetic statement becomes:
THIS_IS_AN_ARITHMETIC_VARIABLE = .3E+01l + 15. Note that $X(2)
is automatically converted to floating point. This will be true
for any tree reference which appears in an arithmetic context.

Several spceial function keywords can appear in an arithmetic
context. These include the NUMBER function (see section 2.2.10),
the LABEL function (see section 2.2.9), and the keyword INFINITY,
which refers to a very large number (the exact value is imple-
mentation specific), The following are examples of valid arithmectic
assignment statements: INTEGER = NUMBER($X) * 3.2 -LABEL($Y(2)), and
$X.A(NEXT) = 15.2 - NUMBER($Y).

CONDITIONAL STATEMENTS AND EXPRESSIONS
IF Statement

The PLANS statement capability includes both IF...THEN and
IF...THEN,, .ELSE constructs. The characteristic make-up of these
constructs are:

IF Boolean expression

THEN executable statement;

IF Boolean expression

THEN execuiable statement;
ELSE executable statement:

The following are examples of the two types of conditional
Statements:

IF $X(2) + 3 = NUMBER($Y) - 1

THEN $X = $Y;
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IF NUMBER($X) = 5 & $¥Y(1) < 4 | LABEL($Z(2)) = 'A'
THEN GO TO LOOP;
ELSE STOP;

Note that all types of Boolean expression can follow the keyword
IF. The different types of Boolean expressions will be described
in detail in the following section.

Executable statements are all statements which can be executed,
Examples of statements which cannot be executed are: the END
statement, Boolean expressions, a PROCEDURE statement, and so
forth.

If more than one executable statement must be included in a
THEN or ELSE clause, noniterative DO statements (see section 3,7.3)
may be used. For example:

IF 5X(2) < $Y.B

THEN DO;

§X(2) = $Y.B;
LABEL(S$X(2)) = 'B';
END;

ELSE DO;

IF $X(3) ¢ $Y.C

THEN $X(3) % §Y.C;

§Y = $2Z;
TRACE OFF;
END;

IF statemeuts can be nested to any depth, as the following
example illustrates:
IF $X = §Y

THEN IF $X.A = 2
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THEN IF $X.B = $Z(1)
THEN
ELSE TRACE HIGH;
ELSE;
ELSE GO TO START;

The above example also illustrates the use of null THEN and
ELSE clauses, which are used to hcld position and clarify nested
IF statements, Whether this is an acceptable programming practice
is for the reader to decide. With sufficient ingenuity, such null
statements can be avoided,

In a nested IF statement, each ELSE clause is associated with
the innermost IF,,,THEN which has no ELSE clause already attached,
Thus the following statement,

IF $X = 3Y THEN IF $Y = $Z THEN TO TO START; ELSE RETURN;
is interpreted as:

IF $X = §Y

THEN IF $Y = §Z
THEN GO TO START;
ELSE RETURN;

To associate the ELSE RETURN clause with the outermost IF state-
ment, a null ELSE clause may be used:

IF $X = 5Y

THEN IF $Y = $2
THEN GO TO START;
ELSE;

ELSE RETURN;
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3.4,2

or the entire structure can be modified to:
IF $X == §Y
THEN RETURN;
ELSE IF $Y = §$Z
THEN GO TO START;
Boolean Expressions
Boolean expressions can appear in three contexts: in IF-
clauses (see section 3.4.1), in conditional tree references
("FIRST:" and "ALL:" see sections 2.2.6 and 2.2,7 ), and in
DO WHILE statements (see section 3,8,1). The following examples
illustrate the use of Boolean expressions in the three contexts;:
IF $X(2) = 15 - $Y,A THEN..,ELSE.,.
$X(FIRST: LABEL(SELEMENT) = 'A')
$Y(ALL: NUMBER($ELEMENT) = 3)

DO WHILE (A > 10)

3.4.2.1 Arithmetic Relatioas

PLANS allows a complete set of standard arithmetic relatioms,
They are:
= (equal to)
== (not equal to)
) (greater than)
-y {not greater than)
>= (greater than or equal to)
2>»= (not greater than o: equal to)
{ (less than)
=< (not less than)
{= (less than or equal to)
-{= (not less than or equal to)
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Note that the arithmetic relation "=" compares values, so
it should not beAused to compare tree structures,or misleadingly
true Boolean expressions may result, For example, the two trees
in Ffigure 3-21(a) are obviously not the same, yet the Boolean
expression $TREEA = STREEB is true, Since "=" compares values,
values are expected on both sides of the '=" sign., However, $TREEA
is not a terminal node so it has no value. In this case, thé value
zero is assigned to STREEA. The same thing happens to $TREEB:
since it has no value, it is automatically assigned the value
zere, 'Thus the value of $TREEA is equal to the value of $TREEB.
The above example illustrates the importance of remembering

that arithmetic relations compare values; to ¢ompare tree structures,

the tree relations described in section 3.4.2.2 should be used
(in particular, the tree relation IDENTICAL TO should be used in
place of "="),

The default value for any tree node which has no value is
a function of the arithmetie relation, "=" and "-=" will auto-
matically assign the value zero or '' (a null éharacter string)
to a tree node which has no value, depending on the context,
Thus in figures 3-21(b) and {(c), the Boolean expressions $X.A =
0 and $X.4 = '' are both true; while the expressions $X.A -= 0
and $X,A-= '' are both false., All of the other eight arithmetijc
inequality relations lisﬁed above automatically assign the value
zero to any tree node which has no value, Thus, the eight inequality
relations are capable of numeric comparisons only, while the ="
and "-=" relations can do both numeric and character string com-

parisons.
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Fig. 3-21 Automatic £valuation Of Tree Nodes Used With
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3.4.2.2 Tree Relations

Three PLANS tree relations provide considerable condition-
testing power. They are ELEMENT OF, SUBSET OF, and IDENTICAL TO.
Examples are illustrated in figure 3-22, Figure (2) illustrates
a situation in which the Boolean expression, $TREEL ELEMENT OF

$TREE2, is true. This expression compares $TREEl with the sub-

nodes of $TREE2, Figure (b) illustrates the expression, $TREEA SUBSET

OF $TREEB. Here, the subnodes OF S$TREEA are compared with the
subnodes of $TREEB, The expression, $TREEX IDENTICAL TO $TREEY,
is illustrated in figure (c). This expression tests for complete
identity between the two trees.

The ELEMENT OF tree relation can be better understood if
one thinks of a tree node as a set of elements, each of which is
one of its subnodes, Thus, in figure 3-23(a), the elements of the
node $X.A are the nodes labeled X, Y and Z. The Boolean expression
illustrated in figure (b), $W ELEMENT OF $X.A, is then really
asking, "Is $W an element of $X,A? In other words, does $W appear
as a subnode of 3X,A?" Figure (c) illustrates a more complicated
example of the tree relation ELEMENT OF,

If one continues to think of a tree node as a set of elements
(as in figure 3-23 where $X.A was the set consisting of the elements
labeled X, Y and Z), then one can easily see that the relation
SURSET OF tests whether each element of one set is also contained
in another set, For example, $TREEM.X SUBSET OF $TREEP,Y tests

whether the subnodes of $TREEM.X are also subnodes of $TREEP,Y,
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$TREEL $TREE2

Q /N
1
1 2 3

(a) $TREE]1 ELEMENT OF $TREE2

$TREEA $TREEB

RO

(b) $TREEA SUBSET OF $TREEB

$TREEX STREEY

A QB b
3

XEY Z

1 2 4

(c) $TREEX IDENTICAL TO $TREEY

Fig. 3-22 PLANS Tree Relations
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$X

(@ TREE $X

(c) $A.Y(1) ELEMENT OF $B.X

Fig. 3-23 The ELEMENT OF Tree Relation
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A particularly common expression in PLANS takes the form $X
IDENTICAL TO $NULL, where SNULL is the name of a tree which has
no label and no value or substructure {see section 2,2.11).
Figure 3-24 (a) illustrates the Boolean expression, $Y.A(2) IDENTICAL
TO SNULL. Since $Y.A(2) has no label and no value or substructure,
the node is identical to $NULL. Figure (b) illustrates a slightly
different case: here, $Y,A(2) does not exist so the node has .o
label and no value or substructuré. in this case, also, $Y.A(2)
is identical to SNULL.
The tree relations ELEMENT OF and IDENTICAL TC may aiso be
used to compare character strings or numeric values with tree
structures. Examples are illustrated in figure 3-25, Note that
in each example, a dummy node is created (for comparison purposes
only) which has, as its value, the character string or numeric wvalue,
The tree relation SUBSET OF cannot be used to compare character
strings or numeric values with tree structures, because any Beolean
expression of the form, (character string or numeric value) SUBSET
OF (tree reference), will always be true. Note that the dummy
node created for comparisbn purposes has no subnodes, so the set
represented by the dummy node is empty, and an empty set is always
a subset of any set. Thus, a character string or numeric value

is always a subset of any tree node,

The keyword "NOT" may be used *o negate tree relations only. For

example, $TREE1l NOT ELEMENT OF $TREE2, S$TREEA NOT SUBSET OF $TREEB, and

STREEX NOT IDENTICAL TO STREEY are valid statements. Note that $VALUE_

A NOT = $VALUE_B and other expressions of this type which combine NOT

with an arithmetic operator are not valid,

88

T

Ladier S S b i e



(a)

Y

X
5

$Y. A(2) IDENTICAL TO $NULL

(b} $Y.A(2) IDENTICAL TO $NULL

Fig. 3-24 "IDENTICAL TO $NULL"
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Fig. 3-25  Tree Rzfations: Comparisons Between Character String

Or Numeric Val::2s And Tree Struciures
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Logical Operations
There are three logical operations on Boolean expressions
which are available in PLANS: "a" (NOT), "&" (AND) and "|" (OR).

These operations take the form:

~ (Boolean expression)

Boolean expression & Boolean expression

Boolean expression | Boolean expression
Examples are illustrated in figure 3-26,

The ™" operator logically negatet any simple or complex
Boolean expression (see figure (a)). Note that the Boolean expression
to be negated is always enclosed in parentheses,

i

The "&" and ”‘" operators provide a means for combining simple

b}
i

Boolean expressions, Any Boolean expression of the form, Boolean
expreassion #1 & Boolean expression #2, is true only if both of the
Boolean expressions are true (see figure (b)). On the other hand,
an expression like Boolear =xpression #1 | Boolean expression #2
is true if either Boolean expression #1 or Boolean expression #2
is true or both (see figure (c)).

If all three logical operators are found in a2 Boolean expressiom,
the erpression is evaluated as follows: from left to right, with
"= having the highest priority, followed by "&", then "l". The
following example illustrates this point:
$X ¢ $Y & LABEL($X(2)) = 'B' | =($¥.A> $Z.C) & $Z(1) = 2.3 is
evaluated as (($X<$Y) & (LABEL($X(2)) = '8")) | ((~(sv.4)> $z.C))
& ($2(1) = 2.3)).



(@) 7 (X.B<2)

| 4 5 6
(h) ($X.B =3) & (Y(2.Y = 6
$X

e

©) $X83).2 =4 | LABEL ($X(2) = '

Fig. 3-26 PLANS Locical Operations
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3.5 CONTROL AND TRANSFER OF CONTROL STATEMENTS

3.5,1 GO TO Statement

3.5.2

The standard form of this statement is
GO TO statement label;

An example is GO TO TRY_NEXT NODE. The GO TO statement causes an
unconditional branch to the statement with the specified label. It is
clear that this functional capability is desirable., It is often
true, however, that the use of appropriate structures (DO=groups,
etc,) can eliminate the necessity for GO TO statements while increasing
program simplicity and clarity. PLANS allows structured or unstructured
programming, at the programmer's option, but lends itself especially
well to the former.

GO TO statements in internal procedures may have as their
destinations any statement in a containing procedure., However,
they cannot be used to branch from a procedure into the middle of
one of its internal procedures.
CALL Statement

The standard form is

CALL procedure_name (argument_list);

An example is CALL PROCEDURE_A (4,B,$X). The CALL statement invokes
the specified procedure, cgusing program control to be transferred
to it, The statement immediately following the CALL statement automatically
receives control when the called procedure finishes executing,

Arpuments may be passed to the procedure via a parenthesized list,
This argument list may consist of integer variables, real variables,

and/or trees, It is the programmer's responsibility to insure that
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3.5.3

3.5.4

the data attributes of the calling arguments match those of the
corresponding procedure parameters, Failure to do so will result in
conversion errors at execution time,
RETURN Statement

The return statement causes return of control from the currently
executing procedure to the statement immediately following its invoking
CALL statement. RETURN statements are needed to specify conditional
returng in the middle of a subprogram, Otherwise, they need not be
used, since the final END statement of a procedure causes an auto=-
matic return,
STOP Statement

The STOF statement causes an entire program to be aborted, Its
use should be reserved for abnormal terminations, Normal program
termination occurs when the final END statement of the mair rrncedure
is =xecuted, or a RETURN statement is encountered in the main program,
TRACE Statement

TRACE trace_level_indicator;

The TRACE statement provides a simple mechanism by which the user
can cause trace information to be output by his program. This
debugging tool can be used to control both the type and frequency
of trace output.

1f TRACE statements appear in a program, the TRACE option (see

section 3,7,%, "PROCEDURE Statement') must be in effect,
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It is important to note that the TRACE statement is executable,
Therefore, it allows the user to dynamically vary the characteristics
of the trace output during program exacution, For instance, a program
could be set up so that trace information is only output if certain
error conditions arise during execution. Based on the conditions,
the logic could dynamically select which sections of PLANS code
would be traced, This would eliminate irrelevant trace :utput,
directing the programmer's attention to those areas that are more
likely to contain the bug,

There are thrse 'trace-level-indicators' (OFF, LOW, and HIGH)
used to specify the type of trace informatioﬁ desired., Of course,
TRACE OFF, specifies that no trace output is desired. If TRAGE
LOW is selected, the numbers of all executable statements are output
just before their execution. This provides a detailed record of the
program logic flow, TRACE HIGH is used to obtain the maximum amount
of detailed trace information. This includes statement numbers,
all changes to variable values, and all changes to tree nodes,
INPUT/OUTPUT STATEMENTS
READ Statement

The standard form of this statement is:

READ input_item list.

The READ statement allows the programaser to input data frcm a
file external to the source program. This file could be on cards, disk,
tape, etc, The "input_item list" can consist of integer or real

variables and tree node references,
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3.6.2

To read in a value to be assigned to a specified variable, the
numeric constant is placed anywhere within the first twenty
columns of the input file record. The following are examples of
legal numeric constants: 3,1416, -5, ,037, 0092, -78.1, +61,.43E~01,

The last item in this list of sample constants is written in the conven-
tional exponential notation common to many other programming
languages,

When reading in a tree struéture, if the target node does not
ekist yet, it will be established by the READ statement., Trees are repre-
sented, on input, in a standardized indented format, FEach card image
in the input file represents a tree node and may contain both a label
and a value, Figure 3-27 is an éxample, showing a tree and its corres=-
ponding indented textual representation, Note that if a label is
indented three spaces more than the label immediately preceding it, the
corresponding node is interpreted as a subnode of the preceding node,
The maximum length for any label or valwe is 31 characters,

Null labels are represented by a cent sign ("¢"). The
input tree is terminated by the keyword "END" beginning in column
one,
WRITE Statement
The standard form of this statement is:
WRITE output_item list,

The WRITE statement is used to output a character string literal,

a specified tree node with its value or substructure, or the wvalue

of an integer or real variable., Character strings must be enclosed
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VALUE_1

HG 3-27

LABEL 3

VALUE_2 VALUE_3

Indented Tree Format

COLUMN 1
COLUMN 4
1 COLUMN 7

LABEL_]
LABEL 4 - VALUE_1
LABEL 5 - VALUE_2
LABEL 2 - ¢
LABEL_3
¢ - VALUE_3
END



in single quotes (e.g., WRITE ‘THIS IS A CHARACTER STRING LITERAL';).
Tree structures are output in the same indented format as described
for input (see Section 3.6.1),

The values of any variables that appear in the output item list
are output in the conventional "E" format, For example if the WRITE
statement was used to output a ‘w;ralue of -12,345 the following would

result: =1,234500E+01,
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3.7

STRUCTURAL STATEMENTS

PLANS is a hierarchic block=structured language. Each program block
is a separate logical entity and may have its own local storage. The block
structure of PLANS is determined by a set of PROCEDURE blocks, BEGIN
blocks, and DO groups. The blocks may be nested at will, yielding a
hierarchic structure such as that shown in Figure 3~28. Note that
each block and group must be terminated with its own END statement,

If the programmer takes advantage of the characteristics of a block=
structured language, program structure can be greatly simplified while simul=-
taneously improving program readability, Block structure also tends to in-
crease the power of a language by providing a natural mechanism for
treating a whole block of statements as single unit., In a high-level
language, such as PLANS, these blocks correspond directly to the logical
blocks in terms of which the software designer thinks about his problem.

In PLANS, all tree and variable names are automatically given global
scope, unless they are: (1) explicitly declared LOCAL, or (2) procedure
parameters. In either of these two cases the names become local to the
block with which they are associated. That is, their values or structures
are not known outside of the block, Since this convention is just the opposite
of that used by most non~structured languages (e.g., FORTRAN, COBOL) it
can be difficult to grasp.

Any tree that is not a parameter but is declared LOCAL to a
procedure or BEGIN block is automatically pruned on exit from the block.
This insures that such trees will be inaccessable to all statements

outside of the block, and automatically makes the storage associated with
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A: PROCEDURE ;
statement - al
statement - a2
B: DO T = 1TO 10;
statement - bl
statement =~ b2
C: PROCEDURE ;
statement - cl
statement - ¢2
D: DO;
statement - dl
statement - d2
E: BEGIN;
statement - el
statement ~ e?2
END;
statement ~ d3
END;
statement - c3
END;
statement - b3
END;
statément - a3

END;

Figure 3-24

PLANE Hieparenic Bloel Program Structure
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3.7.1

these trees available for reuse., The values of LOCAL variables, likewise,
become unavailable on exit from the block,
PROCEDURE Statement
The standard form of this statement is:
label: PROCEDURE(parameter=-list) OPTIONS(option=list) RECURSIVE;
In the above format only the label and PROCEDURE keyword must always appear.,
All other items are sptiomal,

There are three kinds of procedu¥es in PLANS: main, external, and
internal., Main and external procedures are compiled independently, while
internal procedures are nested inside other procedures. Every PLANS main
program must begin with a MAIN procedure statement and end with the
closing END statement., In the execution of any PLANS program the main
procedure always receives initial control. It may then transfer control
to a subprogram written as an internal or external procedure, This can
only be done by means of a CALL that refers ro the label of the appropri-
ate procedure., Thus, in figure 3-28, if statement-b2 is not a CALL or
other transfer-of-control statement, it will be followed logically by
statement~b3, with transfer of control skipping around internal proe
cedure €,

When using an internal or external procedure as a subprogram,
it is usually desirable to pass arguments as a part of the CALL statement,
The calling argument list corresponds directly to the parameter list

specified in the PROCEDURE statement. The variable and/or tree names
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appeariug 1n the parameter list automatically assume local scope with
respect to the called procedure. The called procedure uses these names
to refer directly to particular arguments passed to it by the invoking
CALL statement,

Internal or external procedures may also be declared RECURSIVE by

specifying this keyword si the PROCEDURE statement, This must be done if

a procedure: (1) directly calls itself, or (2) indirectly calls itself by
invoking another procedure that causes it to be called, RECURSIVE procedures

; can be extremely powerful tools, although programmers unfamiliar with their

use may find it difficult to take advantage of the added capability they
provide, Their operation is relatively sophisticated and users are well |
advised to read carefully the following explanation. Each time a
procedure is invoked recursively, all of its local storage is reallocated,
and the previous allocaticn is pushed down in a stack. Each time a é
recursive execution of a procedure is terminated, local storage is popped j
up, yielding the next most recent generation of local storage, i
No global variables or trees are saved on the stack, Operation
of the stack provides a mechanism for preserving each generation of
local storage. This makes it possible to restore the execution
environment associated with each rcecursive call,
A main or external procedure statement can specify a list of trans-
lation=time options. Most of the options occur in pairs, specifying that

a certain option was either "on" or "off", In the list below, the default

162

N



i o

options are underlined. Each column except the last represents a

mutually exclusive pair of optioms,

MAIN NOTES STAT TRACE NODES (400, 800)
EXTERNAL NONOTES NOSTAT NOTRACE

The MAIN and EXTERNAL options specify the procedure type. An '"internal"
option is pot needed since this is always obvious from the program struc-
ture, The NONOTES option supresses output of all diagnostic messages
classified as notes, The STAT and TRACE options are very useful but will
cause an increase in program execution time and storage, The STAT
option causes generation of statistic-keeping code. Similarly the TRACE
option causes generation of code that will provide an execution-time

trace very useful for debugging purposes, MNote that this option must be

selected if any trace statements (See section 3,5,5) appear in the program,

The NODES option can only be used if the MAIN option is also in effect,

It is used to specify: (1) the number of tree node storage spaces to be reserved,

and (2) the number of 8-character blocks to be reserved for tree node labels

and values, 8ince all labels and values are stored a5 character strings,

space for them is allocated in the same way by the PLANS "buddy" system

dynamic storage allocation routine. If a program exceeds the default lubel=-

value storage space allocation, the table below can be used to estimate

the wvalue to be used when overriding it with the NODES option,

NUMBER OF CHARACTERS NUMBER OF 8~CHARACTER
IN LABEL OR VALUE STORAGE BLOCKS REQUIRED
1 through 7
8 through 15 2

16 through 31
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3,7.2 DECLARE Statement

The standard form of this statement is:
DECLARE declare«item~list LOCAL;

In PLANS, DECLARE statements are used only to control variable scope and
not to declare data types, Data types are implicitly declared by the first
character of the identifier, All identifiers beginning with a dollar sign
("$") are assumed to be trees or tree pointers. All identifiers beginning
with one of the letters I through N are assumed to be integer variables,
All identifiers beginning with any other alphabetic character are assumed
to be real variables,

DECLARE statements, if they occur, must immediately follow the
appropriate internal procedure statement or BEGIN statement. Any
variables, trees, or tree pointers used in the program block may appear in
the "declare-item=list,”"” However, procedure parameters are automatically
assumed to be local, Any trees that are explicitly declared LOCAL
(except procedure parameters) will automatically be pruned on exit from
the block, This guarantees that the storage space taken up by these trees
will be released for reuse,

LOCAL declarations are nefer needed in a MAIN or EXTERNAL procedure,
since in this context local and global have the same meaning. In the
use of an EXTERNAL procedure, all trees (except parameters) will automatically

be pruned on exit,
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3,7.3 Noniterative DO Statement
The form of this statement is:
DO;
It is often convenient to be able to group several statements together
into a single logical unit, The noniterative DO statement provides
this capability, It can often be on the THEN or ELSE clause of an IF
statement (see section 3.,4.1) to maintain sequential control., The
example below demonstrates the use of this statement to avoid unnecessary

GO0 TO statements,
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Coded with GO TO statementé:
IF VALUE<S
THEN GO TO LABEL_1;
PRUNE $TREE;
WRITE 'MESSAGE2';
GO TO LABEL_2;
LABEL_1: GRAFT $TREE AL $SAVE(NEXT);
WRITE 'MESSAGEL';

LABEL_2:

Coded with Noniterative DO statements:

IF VALUE< 5
THEN DO;
GRAFT STREE AT $SAVE(NEXT);
WRITE 'MESSAGEL';

END;

ELSE DO;
PRUNE $TREE;
WRITE 'MESSAGE2';

END;
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3.7.4 BEGIN Statement

3.7.5

The standard form of this statement is:
BF.IN;
This statement is used for the same purpose as the noniterative DO
statement, but it also allows the declaration of local variables and
trees, The BEGIN statement should not be used unless this additional
capability is actually required,
ENI' Statement

The form of this statement is:

e .

END;
The END statement i1s used to terminate any PROCEDURE block, BEGIN block,

noniterative or iterative DO group. Every block or group must have its

own associated END statement,
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3.8

3.8.1

ITERATION STATEMENTS
DO WHILE Statement

The DO WHILE statement allows a statement Or group of statements
to be executed repeatedly as long as a specified condition is true.

For example:

DO WHILE (T «5);

$X(I) = 23
I=1I+1;
END;

Like all iterative DO statements in PLANS, the group is not
executed at all if the condition is found not to be satisfied the
first cime. Note that the condition is evaluated before execution
of the loop, rather than after. For example, the following DO

WHILE group will not be executed at all:

K = 3;
' DO WHILE (k > 5);
$Y(K) = $X(K) + 13
LABEL($Y(K)) = LABEL(SX(X));
K=K - 1;
END;
If it is desired to execute a loop until a condition is satis-
fied, DO WHILE is used with the Boolean expression negated. For
example, the following group of statements will be executed until

$Y(1) is identical to SNULL:
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3.8.2

I=1;
DO WHILE (=($Y(I) IDENTICAL TO $NULL));
GRAFT $Y(I) AT $X(I);
I=I1+1;
END;
Incremental DO Statement
The incremental DO loop allows a group of statements to be
executed for esach of a specified set of vaiues of a particular
variable, The basic structure of the incremental DO loop is
illustrated below:
DO (variable) = (arithmetic expression)},...,(arithmetic expression)
,TO (arithmetic expression) BY (arithmetic expression)
optional
1 (arithmetic expression),...,(arithmetic expression)
elements l-
WHILE (Boolean expression);

statement;

statement;

statement;

END;

The two basic types of incremental DO loops are:
DO (variable) = (arithmetic expression),...,(arithmetic expression);
Example: DO I =5, 3, 7, NUMBER($X)+4, 7-8Y.B; % H
Explanation: The group of statements will be executed five times; :

in the five iterations, I will successively assume the values 5,
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3, 7, NUMBER ($X)+4, and 7-5Y.B.

DO (variable) = (arithmetic expression) TO (arithmetic expression)
BY (arithmetic expression);

Example: DC COUNTER = 5 TQ 14 BY 3;

Explanation: The group of statements will be executed four times;
in the four iterations, COUNTER will successively assume the values
5, 8, 11 and 14,

Remarks; If the BY-clause is eliminated, the variable is auto-
matically incremented by 1. Thus the statement, DO I = 3 TO 7,
will result in five executions of the incremental DO group.

A negative number in the BY-clause will cause the counter
variable to be decremented, rather than incremented, by the specified
amount., For example, DO VARIABLE = 12 TO 9 BY -2 successively
assigns the values 12 and 10 to VARIABLE,

The amount to be incremented or decremented which is specified
in the BY-clause need not be an integer. Thus the statement DO X =
6 TO 4 BY ~,5 will assign the values 6, 5.5, 5, 4.5 and 4 to X,

Note that the increment condition is tested at the beginning
of the DO-group, rather than at the end, so that a DO-group starting
DO L = 1 TO 0; would not be executed at all,

The two incremental DO statements described above may be
expanded by including any of the optional elements listed in the
basic structure. The WHILE-clause, for example, tcrminates the
DO loop whenever a specified Boolean condition is no longer satis-
fied, |
DO (variable) = (arithmetic expressiomn),,..,(arithmetic expression)

WHILE (Boolean expression);

110




g ——

Example: DO I = 4, 2, 7 WHILE ($X IDENTICAL TO $Y);
Explanation: The DO group will be executed three times or until

$X is no longer identical to $Y (whichever occurs first), In the

three iterations, I will successively assume the values 4, 2 and 7.

DO (variable) = (arithmetic expression) TO (arithmetic expression)
BY (arithmetic expression) WHILE (Boolean expression);

Example: DO VALUE = 10 TO 1 BY -2 WHILE ($X(3) = 5);

Explanation: The DO group will be executed five times or until $X(3)

is no longer equal to 5,

Note that the condition is tested at the beginning of the
DO-group, rather than at the end, so that a DO-group starting:
A = 20;
DO I= 170 10 WHILE (A £ 10); would not be executed at all,

If it is desired to execute a loop until a condition is
satisfied, WHILE is used with the Boolean expression negated,
For example, the following DO-loop will be executed three times
or until $X.A = $Y.B:
DO K =1, 3, 5 WHILE (n($X.A = $Y.B));

An example of an incremental DO-loop which utilizes all of
the possible options is:
DO COUNT = 2, NUMBER($X), $Y.B, 6 TO $Z(1l), 11, 12 TO 8 BY -3, 15
WHILE  (-~($Z IDENTICAL TO $NULL));
As long as $2 is not null, the DO loop will be executed and COUNT
will successively assume the values 2, NUMBER ($X), $Y.B, 6, 7, 8,

cees $2(1), 11, 12, 9 and 15.
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The variable to which various values are assigned on different

executions of the loop is available for use in the loop but ordinarily

should not be changed to a different value. Thz following example
illustrates a valid use of the increment variable;
DO I = 1 TO NUMBER($X);
$X(I) = I + 3;
LABEL($X(I)) = LABEL($Y(I+1));
END;
A possible consequence of chaﬁging the increment variable
to a different value within the loop is illustrated in the

following example:

D0 I = 1 TO NUMBER($X);

END;

The statement, I = 1, will cause the DO loop to be executed forever
if $X has more than one subnode.

Note that the seemingiy identical statements, DO I = 1 TO
NUMBER ($X) and DO FOR ALL SUBNODES OF $X USING $SUBNODE, do not
necessarily cause the loop to be executed an identical number of
times, In DO I = 1 TO NUMBER($X), NUMBER($X) is evaluated before
the first iteration. Thus, if within the loop another subnode is
placed on the tree $X (so that $X has four rather than three sub-
nodes), the loop will still be executed only three times. Depending
upon where the new node is placed in the tree $X, the DO FOR ALL
SUBNODES loop will be executed three or four times (see section

3.8.3).
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3.8.3

DO FOR ALL SUBNODES Statement

The DC FOR ALL SUBNQDES loop allows a group of statements to
be executed for each of the subnodes of a particular node, In
the first iteration of the loop, a tree pointer (gee section 3.2)
is placed at the leftmost subnode of the specified node, The
tree pointer is moved from left to right in successive iterations;
in each iteration the pointer po@nts to a different subnode until
all of the subnodes have been exhausted.

The basic structure of the DO FOR ALL SUBNODES loop is illus-
trated below:
DO FOR ALL SUBNODES OF tres-node-reference USING tree-pointer;

statement;

statement;

statement;
" END;

The following example refers to the tree illustrated in figure

3-29; DO FOR ALL SUBNODES OF $X.,A USING $A_DESCENDANT;
TABEL ($A_DESCENDANT) = "*;
$A_DESCENDANT,B = 2;
END:
Note that the tree pointer $A_DESCENDANT is available for use within
the DO loop, and that it can be qualified by label or subscript
like any other tree node reference. However, it must be kept in

mind that $A_DESCENDANT.B = 2 really means that $X.A(1).B = 2,

$X.A(2).B = 2, and so forth.
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! | (a) Initial Tree

1 2 5 2 9 2

(b) Tree After DO FOR‘ ALL SUBNODES OF $X.A
USING $A DESCENDANT;

LABEL($A_DESCENDANT)=",
$A DESCENDANT. B =2
END:;

Fi¢ 3-29 DO FOR ALL SUBNODES Loop
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As explained in section 3.2.1, the data attributes c¢f a tree
pointer are different from those of a "real" tree, 80 any attempt
to use the same tree name for both purposes will cause an error.

For example, the statements:

.

READ $X;

DO FOR ALL SUBNODES OF $TREE USING $X;

will cause an error since $X is first used as the name of a tree,
and then defined in DO FOR ALL SUBNORDES as a tree pointer,

Note, however, that a tree pointer may be used outside of a
loop to refer to the last subnode the pointer was identified with

within the loop. For example, suppose $X has three subnodes

labeled A, B, and C. During the second iteration of the leop, DO FOR
ALI, SUBNODES of $X USING $X_DESCENDANT, if a branch to a statement
outside of the loop occurs, then $X DESCENDANT will continue to refer
to the node $X,B, Thereafter in the program, any reference to

$X DESCENDANT will automatically be a reference to $X.,B (as long as
$X_DESCENDANT is not redefined). Note that if the branch had not
occurred during the second iteration, after the third iteration of
the loop $X DESCENDANT will be pointing to a null node. $X _DESCENDANT
does not refer to $X.C after three iterations because the pointer is
advanced to the next node (which is null since $X has only three sub~

nodes) befcre the loop is terminated.
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The use of tree pointers ourside of a loop is also illustrated

in the followiang example:

$Y = $X(FIRST:NUMBER (SELEMENT)=0);

WRITE $ELEMENT;

In this example, SELEMENT refers to the subnode of $X which has
no substructure (i.e., NUMBER(SELEMENT) = 0), In figure 3-29,
$ELEMENT thus refers to the node $X.B. Thereafter in the program,
any reference to SELEMENT will automatically be a reference to
$X.B (unless $ELEMENT is redefined), so the statement WRITE $ELEMENT
will cause $X.B to be written out.

If the tree node reference in the DO FOR ALL SUBNODES statement
has no subnedes, the IO loop is never executed., The following is
an example of a loop which will not be executed: (the tree referred
to is illustrated in Figure 3-29(a))
DO FOR ALL SUBNODES OF $X.,B USING $B_DESCENDANT;

statement;

statement;

statement;

END;

If the node to which the pointer currently refers is removed
from its tree, the pointer will immediately point to the next node,
An example is illustrated in Figure 3-30., 1In the first iteration,
$SUBNODE points to $Y.A, The instruction, PRUNE $SUBNODE, removes

$Y.A from the tree so $SUBNODE now refers to $Y.B. The END statement

-
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(a) Initial Tree

(b} Tree After

Fig. 3-30 Pruning The Pointer in A DO FOR ALL SUBNODES Loop

8y
c;éitpo
2 4

DO FOR ALL SUBNODES OF $Y
USING $Y _DESCENDANT;
PRUNE $Y DESCENDANT;

END;
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indicates the first iteration is completed, so the pointer is
advanced to the next subnode and the second iteration begins.
Note that $SUBNODE now refers to $Y.C. $Y.C. is removed from the
tree by the instruction, PRUNE $SUBNODE, and the pointer $SUBNODE
now refers to 5Y.D. The END statement terminates the second
iteration, and an attempt is made to advance the pointer. But
$SUBNODE 1s already pointing to the last subnode of $Y, so it can
be advanced no further. Thus, there are no other iterations of
the DO loop,

If new nodes are added to the left of the node to which the
pointer currently refers, they will be ignored; if they are added
to the right of the current node, they will be iﬂcluded in the
iteration, Examples are illustrated in figure 3-31,

DO FOR ALL COMBINATIONS Statement

The DO FOR ALL COMBINATIONS loop allows a group of statements
to be executed for each possible combination (of a specifieZ size)
of subnodes of the indicated base node. The indicated base node
is considered to be a set whose elements are its subnodes., The DO
FOR ALL COMBINATIONS loop generates, one at & time, all combinations
of those elements for a given combination size, Thus, for example,
one can write DO FOR ALL COMBINATIONS OF S$X TAKEN 2 AT A TIME;
with the result that the DO loop will be executed once for each 2-
element combination of the subnodes of $X.

The particular combination that is relevant during an iteration
of the DO loop may be referred to within the loop by the reserved
tree name $COMBINATION, S$COMBINATION should be used by the programmer
as if it is the name of a tree which consisté of the nodes (and

their substructures) making up the present combination. For example,
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$X

A OB ©OC
$PCINTER

(@) Initial Tree With $POINTER Pointing To $X.B
$POINTER Is Being Automatically Advanced Each Time
The End Of A DO FOR ALL SUBNODES Loop |s Reached.

$X

“~
.
Y

A ,OBJOC >OD

—-—

$POINTER== —

{b) If A New Node Is Added At $X(NEXT),
$POINTER Will Advance To C, Then D On
Successive Iterations Of The Loop

$POINTER

(c) If The New Node Is Inserted Before $X(FIRST),
The Position Of $POINTER s Not Affected,
And $POINTER Will Advance To C Only.

Fig 3-31 Addition Of New Subnodes Within A DO FOR ALL SUBNODES
Loop
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in figure 3-32, $X has three elements with labels A, B, and C,
The combinations of these elements taken two at a time are {A,B},
{A,c§, and {B, {. As illustrated in figure 3-32, $COMBINATION
consists of the nodes $X.A and $X.B during the first iteration
of the DO loop, $X.A and $X.C during iteration two, and $X.B and
$X,.C during the final iteration, .

SCOMBINATION is not actually a separate tree, but is instead
merely a set of tree pointers., This is quite efficient, Put results
in an implementation restriction which requires that refélrence be
made only to individual subnodes (elements) of $COMBINATION, and
then only by subscript reference, Thus, any reference to the tree
$COMBINATION is illegal (without subscript qualification); $COMBINA-
TION(l), $COMBINATION(2), and so forth are examples of the only
way SCOMBINATION may be used in a tree node reference. The
reference may be further qualified, however, as in $COMBINATION(3).
WEIGHT, $COMBINATION(I).PREDECESSOR(3), etc.

The DO FOR ALL COMBINATIONS loop generates combinations in a
standard order. For example, if $Y is a tree with five subnodes
labeled A, B, C; D and E, the statement DO FOR ALL COMBINATIONS
OF $Y TAKEN 3 AT A TIME would generate combinations in the following
order:

ABC

ABD

ABE

ACD

ACE

ADE

e e el s o

i
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(@) Original Tree 2 4 6

(b} First iteration Of DO FOR ALL COMBINATIONS
OF $X TAKEN 2 AT A TIME

$COMBINATION

{c) Second lteration

(d) Third Iteration 4 &

Fig, 3-32 Automatic Generation Of Combinations
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BCD

BCE

BDE

CDE

Note that if no combinations of the given size exist, the loop
is not executed, For example, the statement DO FOR ALL SUBNODES
OF $X TAKEN &4 AT A TIME (where $X is illustrated ‘in figure 3-32)
would not be executed since $X has only three subnodes.
DO FOR ALL PERMUTATIONS Statement

This statement behaves in the same way as DO FOR ALL COMBINA~
TIONS (see section 3.8.4), except that: (1) all permutations of a
given size are generated, and (2) reference is made to $PERMUTATION,

rather than $COMBINATION.
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4.1

4.1.1

4.1.2

4.1.3

SAMPLE PROGRAMS
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ORDERING OF A PKECEDENCE NETWORK
Problem Statement

This example will.assist the reader in gaining a greater
intuitive feeling for PLANS dynamic tree'operations. The pro-
gram is called ORDER_BY PREDECESSORS and its function 1is to
technologically order the list of jobs passed to it in $JOBLIST.
A technologlcal ordering requires that any job will appear in
the list only after all cof its associated predecessor jobs.
Problem Model

In order to illustrate the operation of ORDER_BY PREDECESSORS
on a simple data case, a job network containing four jobs is pro-
vided in the input tree, SJORLIST. The initial state of $JOBLIST
is shown in Stage 1 of Figure 4-1, Note that the tree structure
provides a natural way of associating each job with its corres-
ponding predecessor jobs.
Program Logic

Implementation of a program to perform this function, while
fairly difficult in most programming languages, 1s very simple
and straightforward in PLANS, While there are many functionally
equivalent ways to write this program, one of the simplest and

most efficient is as follows:
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SJ0BLIST SNAME_1 55T SORDFRED_LIST
STAGE 1 o O
Jeg_a Jop_e Jo8_p |
PRECECESSC? PREDECESSCT PREDECESSOF |
M8 ¢ 485 Jog_2 Jos_B |
7836 2 $J0RLIST SHAME_LIST SORDERED_LIST
;
1
:
184 S50 3080 4088 3
JBE |
POFNECESS - PREDECISSCR PREDECESSOP 1
1
. 4
: i
.- i 2 M JoB 8 Jos B :
: vpe SORDERED_L1ST ’
: SNAME_LIST ‘
|
;
. J08_C i
1088 }
Jos_B JoB ¢
: - PREDECESSC®
: A
: JOB_B ;
SNAME_LIST SCRBERED_LIST ]

C}( JuB_D

J5E J05C  JOB_O

PREUECESSOR

PREDECESSOR

JIE_T iBD ol g
STACE 5 £oCaLIST SHAME_L1ST SORDERED_LIST

@

J0B§  JOBC  JOBD  JOBA

PREDECESSOR

‘ ) PREDECESSOR

PREDECESSOR

7

. , J08 8 J0B8 M8 J08_D

Fig. ¢-1 Data Structures Illustrating the Operation of ORDER BY PREDECESSORS
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ORDER_HY_PREDEFESSHHE: PROCEVURE (SJUBLISTs BORKDERED_LISF) 3

/®
A

THIS
IT IN

PROCENURF

FJOBLIST an KETURNS THEM IN 30RDERED_LIST,.

NDECLARE $NAmME) 1STerTEMP LOCALY
D0 WHILEA(SJNBILYST(FIRST) WUT ILENTICAL TO BNULL) 3

GRAFT $JUNBILLIST(F IRSTISELEMFANTJPREDECESSNR SUHSET OF SNAME_LIST)

AT STEMPS

TF STEMH I[OENTICAL 0O WANULL  THEN RETURN §
FNAAK_LISTINEXT) = LABEL (BTEMP) 3§
GRAFT $TFM? AT WORNDEREU_LIST(NEXT) 3§

END

L]

END DRDER_RY_PREDECESSORS

Notice, first (statement 1), that the program is written
as an internal procedure with explicit parameters $JOBLIST and
$ORDERED LIST. The calling program will initialize these trees
with the structures of the trees specified in the argument-
list of the CALL statement.

In statement 2, $TEMP and $NAME LIST are declared to be
LOCAL trees. This means two things: (1) any use of these tree
names within this procedure is entirely local, and will not
affect- trees of the same name outside this procedure, and (2)
each time ORDER_BY PREDECESSORS 1s called, S$STEMP and S$NAME_LIST
will be initially null, and any storage they use will be made
available for reuse upon return without any other action on the
programmer's part.

Rather than reordering $JOBLIST, ORDER_BY PREDECESSORS will
iteratively move the jobs, one at a time, from $JOBLIST to
$ORDERED_LIST; so that the $ORDERED_LIST will become a correct

ordering of the jobs that were originally in $JOBLIST. This

TECHNOLOGICALLY ORUERS THE SET OF Jnads INPUT TO

*/
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iteration is accomplished via the DO~WHILE statement, The
WHILE condition causes the program to check to see if there are
any jobs left in $JOBLIST before beginning each successive pass
through the loop. When thkis condition is not gatisfled exe-
cution of the loop terminates and control is passed to the
procedure END statement (statement 9), since it immediately
follows the DO group END statement. This terminates the pro-
cedure and the complete $ORDERED LIST is returned to the call-
ing program.

S$JOBLIST, on the other hand, will be returned null,
assuming all goes well. Upon return from ORDER _BY PREDECESSORS,
then, the calling program will use $ORDERED_LIST where $JOBLIST
was used before (or will GRAFT $ORDERED LIST AT $JOBLIST) after
checking $JOBLIST for a null condition,

Note that the data input in $JOBLIST describes a prede-
cessor network in which JOB B has no predecessor jobs, jobs C
and D must each be preceded by JOB_B, and JOB_A must follow
both € and D, The diagram shows only information essential for
present purposes. However, it is zssumed that other information
about each job (e.g., duration, resource requirements, etc,) is
also present, Because we can access predecessor information
by label without regard for its ordinal position, any other
information about these jobs is irrelevant, so long as the
label PREDECESSOR is used only with the meaning assumed here.

$ORDERED_LIST is assumed to be null. Ordinarily this condition
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will be assured by the calling program. S$TEMP and S$NAME_LIST
are automatically initialized to a null condition,

Consider now the effect of the GRAFT statement (gstatement
4) on these trees, This statement specifies that a particular
job 18 to be removed from S$JOBLIST and placed at $TEMP, The
job to be selected is to be the first job whose predecessor
set is a subset of $NAME_LIST. $NAME LIST will be used to
collect the names of the jobs in $SORDERED_LIST, so that the
SUBSET OF relation can be used to autcmatically determine
whether the predecessor requirement of a particular job is
satisfied. Because $NAME LIST is presently null, the only job
of $JOBLIST that can possibly satisfy the conditional access

is a job that has no predecessors. Note that JOB_B fulfills

this requirement, and that it is not necessary in this case that

a node labeled PREDECESSOR even appear under JOB_B because a
nonexistent node has all the properties of a null node, includ-
ing nuil subnode structure, JOB_B therefore satisfies the con-
ditional access, and is removed from $JOBLIST and placed at
S$TEMP. Note that this causes the previously null root node of
$TEMP to be replaced by the JOB_B base node and any assoclated
substructure,

Statement 3 now tests for failure of the previous GRAFT
statement, In the event that no subnode of $JOBLIST satisfied
the access condition, $TEMP will now be null, and detection of

this condition can be used to trigger return from ORDER_BY _
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PREDECESSORS. However, this could only occur 1if there were a
precedence cycle or a missing job in $JOBLIST. If one of these
error conditions is detected, a non-null $JOBLIST will be returned
to the calling program, warning it of the problem. In the present
case, however, $TEMP is not null, A node is defined as null only
if it elther does not exist or has both a nﬁll value and a null
label. Regardless of any substructure, the node $TEMP now has

the label "JOB_B" and is therefore not null, so no return occurs,

Statement 6 is therefore executed, placing the name of the
job that was found into $NAME_LIST. Several things should be
noticed here. Since $NAME;LIST is currently null, $NAME_LIST
(NEXT) is equivalent to $NAME_LIST(1). LABEL($TEMP) is a char-
acter string. Therefore, a dummy node is established, with a
null label, and placed at SNAME LIST (NEXT). The statement causes
the job name, "JOB_B" to be a value of $"NAME LIST(1), so that
subsequent comparisons of $NAME_LIST and PREDECESSOR nodes will
find job names as values in both places,

Finally, line 7 is executed, moving the found job, with all
descriptive information, from $TEMP to the next available position
in $ORDERED LIST, resulting in the state shown in Stage 2 of
Figure 4-1, WNote that S$TEMP again reverts to a null condition,
Trees always have root nodes, although they may be null. Thus,
the removal of the node labeled "JOB_B" causes another null node
ito be placed at $TEMP.

The program has now found the first job that can be executed
and has moved it into $ORDERED _LIST. Since the END statemexn® of
the DO group (statement 8) has been reached another iteraticn is

initiated (line 8) by jumping back to the beginning of the loop

(statement 3).
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Stage 3 of Figure 4-1 shows the results of the tree manipu-~
lations that occur during iteration 2, The initial state ies the
game as that shown in Stage 2 of the diagram. The conditional
GRAFT statement again searches for a job whose predecessors, if
any, are all named in $NAME_LIST. Since $NAME LIST now contains
JOB_B, either a job with no predecessors or a job with only the
predecessor JOB_B will sﬁtisfy the access condition. The first
such job now in $JOBLIST is JOB_C, which is therefore grafted
at $TEMP. Because $TEMP is not null, no return is made by
statement 5.

Statement 6 places the name of the found fob at the next
available subnode of $NAME_LIST., As showm in the diagram
SNAME_TIST now contains the names of the two jobs (JOB_B and
JOB _C) founl so far. $TEMP is grafted (statement 7) onto the
next available position of SORDERED LIST, which now contains
all the information about jobs JOB B and JOB_C (in that order)
that was originally in $JOBLIST. Only the jobs not yet placed
in $ORDERED LIST still remain in S$JOBLIST. Statement § then
causes another iteration to begin,

This process is repeated two more times, once for JOB_D and
once for JOB_A, with the results showm in Stages 4 and 5 of
Figure 4-1, respectively. All jobs have now been moved to
$ORDERED_LIST. Since $JOBLIST(FIRST) is now null, the condition
tested in statement 3 will not be satisfied and execution of the

loop (and of the procedure) will be terminated. $JOBLIST and
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$ORDERED_LIST will be returned to the calling program, while
$TEMP and $NAME LIST will be pruned automatically in order to
free their storage.

It may occur to the reader to question the use of S$TEMP,
because a found job could be grafted (statement 4) directly at
SORDERED _LIST (REXT). Hewever, this would require two additional
accesses to SORDERED LIST(LAST), one to test for a null conditiom
(statement 5) and one to extract the label (statement 6). In
addition, before exit, the extra null node that would have been
grafted ocnto $ORDERFD LIST would have to be removed. It should
always be borne in mind that node access time is a function of
the number of subnodes that must be scanned (left to right)
before the desired node is found. Thus, STEMP is more efficient
to access than is $ORDERED LIST(LAST), and the difference is
more pronounced as the SORDERED_LIST grows. Because GRAFT state-

ments are very efficient, the use of $TEMP is preferable here.




4.2

4.2.1

4.2.2

ELIMINATION OF REDUNDANT PREDECESSOR INFORMATION
Problem Statement

This example, iike the previous one (Section 4,1), deals with
a problem frequently encountered when working with job networks
containing precedence relations. The program presented eliminates
all redundant pfedecessor relations found in the input $JOBLIST.
A predecessor is said to be redundant if it is not an ilmmediate
predecessor, For example, in Figure 4-2(a) jobs B and C are
immediate predecessors of job D, while job A is a predecessor of
a predecessor, In this case, 1f job A is shown in the 1list of
predecessors of job D, it is redundant and should be removed from
the 1list,
Pr~gram Logic

Considering the potential complexity of a large job network
containing many redundantly specified predecessors, the solution
program clearly requires some degree of sophistication. The PLANS
program below, called REDUNDANT PREDECESSOR_CHECKER, is quite
short but powerful in the sense that it will bandle the most
general case, It takes advantage of some of the capabilities of
PLANS (e.g., indirect referencing, tree pointers, "FIRST:", etc.)
to efficiently eliminate all redundant predecessors in a single

pass through $JOBLIST.
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Tree Pointers |
$JOBLIST

$JOB

JOBC JOB_A JOB_B,/I0B A
| $PRIOR_JOB_PRED

$COPY
PREDECESSOR

$PRIOR_JOB
JOBC JOB A JOB B

(b} Tree Pointers Used By REDUNDANT PREDECESSOR CHECKER

Fig 4-2 Sample Job Network Containing A Redundant Predecessor




W a~ Th LN e W N

10
11
12

The PLANS source code for REDUNDANT PREDECESSOR_CHECKER

is shown below,

REDUNDANT _PREUFCESSOR_CHECKER: RrROCEDURE (FJUBLIST) S

/#
i,

THTS PROCENURE ELIMINATES ALl OF THE REUDUNDANT PREDECESSORS
FOUND IN THE SFT JF JOHS PASSED To IT IN SJOBLIST,

DECLARE BCORY e®UNde$PATUR_JOBs$PRIOR_JOH_PREL LUOCALSJ
DO FOR ALLL SUBRNMIGES OF SJNALIST USING $J0bd

SCOPY = $JURJPHEUDECESSIH]

NG FOR ALL SUSHOIES OF %CORY USING BPRIDH_JUHS

DO FOR AL SUHNIDES OF hJOHLTSTed (PRIUR_JORB) 4PREDECESSOK USING

SRPH TN _ I _FrREUS
[F SPRIOK_JOn_PHRED =kLEMENT OF SCOFY
TetFn wCORPY(NEAT) = $PRI0R_JOA_FPRED S
PAUNE $JdHGPREDECESSOR (F IRST I SELEMENTSRPRIUH_JNA_PRED) §
ENIIG /% S 2 Un_gitH_PHED #/

ENDS /7% sFERTUN_ I #/

EnD}

YA IV ST )

13 END REDUNDANT BHEJIECESSOR_CHEUKE!S

Three nested DO FOR ALL SUBNODES loops are used to scan $JOBLIST.
Each DO loop specifies a tree pointer in its USING clause that
facilitates iteration across the subnodes of the tree. The
initial arrangement of the tree pointers for this data case is
i1lustrated in Figure 4-2(b)., Note that REDUNDANT PREDECESSOR
CHECKER does not require that $JOBLIST be technologically ordered.
Briefly, the program logic operates as follows. The jobs
are examined -z at a time using $JOB (statement 3). TFirst, the
jobs PREDECESSOR substructure is duplicated in $COPY (statement 4),
Then, each predecessor's predecessor is checked to see if it
appears in $C0PY; if not, it is added there. This insures that

evertually $COPY will contain 211 (both immediate and "indirect')
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predecessors of $JOB. Since these nodes are added at $COPY(NEXT)
they will be examined by the DO loop that iterates on

the subnodes of $COPY. Statement 9 causes the redundant prede-
cessor to be pruned. Note that if the "FIRST". :uch-that condition
is not satisfied, indicating that a redundant predecessor was not

found, no action will be taken by the PRUNE statement.
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4.3

4.3.1

SELECTION OF A SPECIALIZED CREW
Problem Statement

Both of the previous examples uealt with generalized solutions
to problems commonly encountered in precedence networks. This
example presents custom-tailored logic to solve a specific problem.
An English-Jlanguage description of the "real world" problem is
given below and then an example is given showing how the problem
could be described and solved using PLANS,

Assume that a target of opportunity has been identified for
a shuttle mission. A flight vehicle iIs available, but crewpersons
must be trained for the special flight, There are six (6) candi~
date crewpersons, each with some, but not all, of the nine (9)
required skill types. To fly the mission, a total of fifteem (15)
"skill units' must be represented. These are defined in Table 1.
A "'skill unit" is the possession of a particular skill by a crew-
person, Thus, if two crewpersons are required to be trained pilots,
this represents two skill units. Training must be conducted as
required to insure that the ecrewpersons who will fly have the
required skills. The acquisition of the various skills requires
training for the lengths of time shown in Table 2. No crewperson
can participate in more than one training activity at any one time.
Table 3 defines the skills that each candidate crewperson possesses
initially. The mission can be -flown using two, three, or four
crewpersons as long as the f£light team collectively satisfies the
skill profile of Table 1. The objective is to select crewpersons
whose training can be accomplished in minimum time and therefore

permit the earliest launch.
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Table 1 --

Table 2 --

Table 3 --

Required Skill Profile

5kill
Pilot
Observer
Paramedic
Camera Operator
Cook (knowledge of equipment)
Tape Recorder Expert
Mechanic
Electrician
Plumber

Training Times

Skill
Pilot
Observer
Paramedic
Camera Operator
Cook (knowledge of equipment)
Tape Recorder Expert
Mechanic
Electrician
Plumber

Avaiiable Crewpersons

Name
John Doe
Jack Swmith
Ray Green

" Jay Johnson

Bob Schillings
Mike Davis

4.3.2 Problem Model

Skill Distribution

lHNMHNN!—lMN

-
w

Training Time

16 days ‘ -
4 days
2 days
1 day
1 day
9 days
2 days
3 days
8 days

1
1

Initial Skills

Pilot, Cook, Observer
Pilot, Plumber

Tape

Pilot, Paramedic

Mechanic, Cook, Electrician
Pilot, Mechanic, Cook

One of the first things that should be addressed by the

programmer is how he might represent the three tables as PLANS tree

structures

great deal of program adaptability is gained.

By separating this data from the source program, a

This is especially

important if there is a high probability that the problem situation

L 3l




4.,3.3

will change slightly causing corresponding changes in one or more
of the tables,.

The tree structures used in this example are shown in Figure
4-3 exactly as they would appear in the inpu;: file to be read by
the PLANS program. Note the easy one~to-one correspondence
between tables and trees,
Program Logic

After drawing up a functional block diagram (high-level flow-
chart) the programmer will be ready to start writing the PLANS
program, This can be easily accomplished by considering each
block in the flowchart individually and then writing the PLANS
statement(s) needed to perform its function., Although there are
many possible ways of approaching this particular problem, the
one implemented in Figures 4-4 and 4-5 was found to be quite
straightforward. To demonstrate the close correspondence between

the functional block diagram (Figure 4-4) and the block-strictured

. PLANS program (Figure 4-5), the corresponding statement numbers

are shown to the right of each block in Figure 4-4. It is reco-

mmended that serious readers examine the program in detail in order

to understand how PLANS capabilities are used to solve this problem.
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S$SKILLS
PILOT =~ 2
OBSERVER = 2
PARAMEDIC = 1
CAMERA = ¢
CooK -~ 2
TAPE = 1
MECHANIC = 2
ELECTRICIAN = 2
PLUMBEKR = ]

END

STHAINING_TIMFS
PILOT = o
OBSERVER = &
PARAMELIC = 2
CAMERA = |
COoOK = |
TAPE = 9
MECHANIC = 12
ELECTRICTIANY = 13
PLUMHBER = R

END
SCREWMEN
DOE
SKILLS
¢ = BlLOY
= CO0K
» = NRASERVER
AvAlLABLE_DATE = 1
SMITH
SKILLS
¢ = ©ltuT
¢ = PLUMAER
AVAILAHLE_ATE = 1
GREEMN
SKILLS
¢ = TAPL
AVallLadiE_i)aTE = )
JOANSON

SKILLS
¢ = elL0T
¢ =~ PARAMEDIC
AVATLAMLE_DATE = 1
SCHILLINGS
SKILLS
pacE B ¢ = MECHANIC

Oﬁﬂgnshliqphllvi ¢ = £ODFK

4
1
i
3
g
1
:
;

QOR ¢ = FLFCTRICTIAN
OF‘E AVAILARLE_DATE = 1
DAVIS
SKILLS .
¢ = pPILuY
¢ =  MECHANIC
¢ = CONK
AVAILABLE_DATE = 1
END

Fig, 4-3 FIND A CREW Imput Trees
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{ START ) !

READ PROBLEM
DATA

]

CONSIDER A coM~ | 4-5
BINATION (OF
SIZE 2, 3, OR 4)
OF THE AVAILABLE
CREWMEN,

cONSTRUCT A LtsT | 10719

0F THE REQUIRED
SKILLS NOT SATIS=-
FIED BY THE CUR=
RENT COMBINATION
OF CREWMEN.

ORDER THE SKILLS | 20
LIST BY DECREAS-
ING TRAINING
DURATION,

REMOVE THE ASSIGN-
ED SKILL FROM THE
SKILLS LIST,

ASSIGN THE FIRST
SKILL ON THE LIST
TO THE EARLLEST
AVAILABLE CREWMAN
NOT HAVING THE
SKILL.

Fig. 4-4 FIND A CREW Funetional Bloek Diagram
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22-25
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REPLACE PRE~ 30-33
VIOUS BEST
SOLUTION

35-36

TRY NEXT
COMBINATION

BINATION (OF
2,3,0R &)NOT

WRITE SOLUTION, | 37
( CREWMAN, TRAINING
ASSIGNMENTS,

LAUNCH DATE)

A

( STOP )38
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24
25

26
27
23
29

31
32
33
34

36
37
38

FIND_A_CREwW: PROCEDURES

/7
VA
A
/7"

THIS PROGRAM SELECTS A CREw FROM SCHEWMEN WHICH HAS THE SKILLS
SPECIFIFED T $SKILLS AND WHICH REQUIRES THE LEASYT AMOUNT OF
TRAINING TYME AS DETERMINED FROM STRAINING_TIME, THIS PERMITS
THE EARLIEST POSSIBLE LAUNCH,
READ SSKILLSes STRAINING_TIMESs SCREWMENS
BEST_LAUNCH = INFINITYS
DO I = 4 TO 2 4Y =1%
DO FOR ALL COMBINATIONS OF SCREWMEN TAKEN T Al A TIME}
PRUNE $CHFEWS
DO 4 =1 Tu 1}
SCREW(.})} = SCOMHBINATIONC(J}E
FND3
DO FORrR ALL SUBNOJES OF $9KILLS USING SREQUIRED_NUMSBERS
NO J =} TO SRENUIREL_NUMHERS
IMSERT STRAINING_TIMES #LABEL ($REQUIREN_NUMBER)
BEFORE SDEFICIENCIES(FIRST) S
ENUY
FNMGE
DO FOP ALL SUBNNDDES QF $CREW USING BHPERSONI
NO FNR ALL SUBNUDES OF SPERSON.SKILLS
USING SCURRENT_SKILLS
PRUNE SDEFICIENCIES # (SCURRENT_SKILL) S
ENDS
FAND3
ORUDFR SNEFICIENCIES RY BELEMENTS
DO WHILE (SDEFICIENCIES NOT [DENTICAL TO SNULL)S
NRNER SCREW RY =AVAILABLE_DATES
NEFINE BSPOINTER AS BCREW(FIRST:
LABEL ($DEFICIENCIES(FIRST)) NOT ELEMENT OF
SELEMENT A SKILLS) 3
SPOINTERZSKILLS(NEXT) = LABEL(SDEFICIENCIES{FIRST) )}
SPNINTEXAVAILABLE_NDATE = SPOINTERLAVAILABLE_DATE «
SOEFICIENCIES(FIRST) S
PRUNE SDEFICIENCIES(FIRST)S
FENDS
OQRUFR HCHEW HY AVAILABLE_DATER
IF SCREW{FIRST) JAVATLAHMLE_DATE < BSBEST_LLAUNCHY
THEN U013
PSOLUTION = $CHEWS
HEST_LAUNCH = SCHEW(FIRST) dAVAILABLE_DATES

EnNUS
WRITE GCREwS
ENDS
END?

WRITE SSOLUTIONs BEST_LAUNCH}
END FIND_A_CRE®}

Fig. 4-5 FIND A_CREW PLANS Program
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