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ABSTRACT

Recursive least-squares estimates for processes that
can be generated from finite-dimensional linear systems are
usually obtained via an nxn matrix Riccati differential
equation, where n is the dimension of the state space. 1In
this new recursive method the gain matrix for the Kalman
filter and the convariance of the state vector are computed
not via the Riccati eguation, but from certain other equat-
ions. These differential equations are said to be of
Chandrasekhar-type, because they are similar to certain
equations introduced in 1948 by the astrophysicist,
5. Chandrasekhar, to solve finite-interval Wiener-Hopt
equations arising in radiative transfer, Chandrasekhar
extended Ambarzamian's invariance principles to solve the
above problem and in fact in recent years this served as a
stimulas for much activity by Bellman in the development of an
invariant approach to the solution of various transport process.
The "invariant imbedding' idea resulted in the reduction of
the basic boundary value problem of transport theory to an
equivalent initial value system, a significant computational
advance,

Initial experience has shown that there is some
computational savings in the new method and the loss of
positive definiteness of the covariance matrix is less vulner-

able,
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CHAPTER 1
INTRODUCTION

The work of R.E. Kalman is a most significant contribution to
filtering and prediction theory, since the original work of Weiner
(8). The Kalman filtering theory introduces a new ook at the
classical problems of prediction, smoothing, and filtering. More
specifically, Kalman's method has the following features:

1. The linear dynam%c system is described by the state variables and
state equations. This not only represeits a modern approach to the
systems problem, but also makes machine computation simpler.

2. The Kalman filtering theory treats stationary and nonstationary
randoﬁ processes, single-variabie and multivariable systems, ail in a
unified manner.

The Kalman filtering problem can be stated in general as: given
y{t) = Z(t) + v{t), where y(t) is a message in the form of a signal
corrupted by additive noise and Z(t) is the actual signal and v(t)
is the noise, determine the value of the Z(t) in the sense of the
minimum mean-square error. The error is defined tb be the difference
between the actual output of the filter and the signal component of
the input message.

Generally to determine the value of Z(t)} at sometime t = tj,
given the measured or observed value {y{<}, t5 < 1 < tk}, the time

tj can be less than, equal to, or greater than ty. These three cases



can be defined as

tj'< tk smoothing (interpolation)
t5 = t filtering
?j >t _ predicting

The block diagram illustrating the general philosophy of the

Kalman filter is shown in Fig. 1.



Noise

v(t)
+
Signal y(t) R Kaiman Z(t)
Z(t) |+ Filter
Error
e(t)
+
2(t)
| Md(s)
My(s) = 778 (v > 0) Smoothing {Interpolation)
Md(s} = Filtering
Mg(s) = €™ (c>0) - Predicting

FIG. 1 KALMAN FILTER



This research will include the study and comparison of a new
algorithm for‘recursive state estimation via Chandrasekhar-type
equations (5).

By this method, the gain matrix for the Kalman filter is
obtained directly, without having to solve separately for the error-
covariance matrix. In general, the gain matrix is obtained by solu-
tion of n(n+1)/2 simultaneous nonlinear differential equation of
Riccati-type, where n is the dimension of the state space. But in
this new method, it only requires the solution of n{m+p) simultaneous
nonlinear differential equations, where m and p are the dimension of
the input and observation processes, respectively. In most practical
cases r'> p + m, and our experience shows that whenaver nxp + m, there

is some computaztiional saving in using this new method.




Notation

The "dot" notation will be used for derivatives (i.e., %%-5

and "prime” will be used for transpose of a matrix as shown (F7).
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CHAPTER 1I
FORMULATION OF PROBLEM AND SOLUTION TECHNIQUE

Problem Statement

Consider the standard Kalman state-space model where the problem
is to calculate linear least-square estimates of a signal process

z(-§ from p-vector observations of the form

y(t) = Z(t) + v(t) tzt, (2-1)
where
Elv(t)vi(s)) = I &t - s) (2-2)
" and z{+) is given by a state-space model
Z2(t) = WX(t), t2t, (2-3)
K(t) = FX(t) + GU(L), X(tp) = X, (2-4)

vhere x(-j is an n-vector, U{-)}is a m-vector, and
ElX) = 0, EI[XX] =My, EfU(t) X1 =0 (2-5)

The input process u(-) is white with covariance function

EQU(t)U"(s)* = Q8{t - s), EQU(t) v'(s)] = Cs(t - 5) (2- 6)

The matrices F, G, H, -, Q, C are assumed to be known and for simplic-
ity we also assume that
H has fi11 rank p (2-7)

It is desired to calculat.:



§(t) = the lirear least-square estimate of x(t), given {y (<), o

to st <th
y

By linearity it follows <hat

Z(t) = HX(t) (2-8)
The Kalman filter %or this problem is ’
X(t) = FR(t) + K(E)(y(t) - KR(E)), K(ty) = O (2-9)
where |
K(t) = P(t)H" + GC (2-10)

The form of this best linear estimator, which is called the
Kalman filter is shown in Fig. 2. (7)
The nxn matrix P(+) is the mean-square error in the estimated of
the states
P(t) = Efx(t)-x(t)) Ix(t)}-x(t)1" (2-11)

This matrix is computed as the unique solution of the non-linear
matrixrdifferential equation of Riccati type.
B(t) = FP(t) + P(t)F - K(t)K'(t) + &Qa ,
P(t,) = 1, (2-12)

since P(.) is symmetric, this Riccati equation involves the solution
of n{n+1)/2 simultaneous nonlinear differential equations, which has
generally to be carried out on an analog or digital computar, The
fact, clear frem (2-11), that P(-) has to be nonnegative-definite
often places certain strigent accuracy requirements on the computation

and may require spacial attention. However, by this method K(+) is



u(t t X(t) _!: Z(t) y(t)
G " H
+ +
— v(t)

j(t) y(£)-HX(t X(t)

. K(t)] r >

+
| F
HX(t)
H 4 —

Fig. 2. The continuous-time Kalman-filter
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calculated not via Riccati equation but from certain equations, which

are called of Chandrasekhar-type.

Chandrasekhar-Type Equations

The Chandrasekhar-type eguations are as follow (5):

K(t) = Ma(£)Y1(E) = Y2(£)Yo(£)IH , K(to) = MoH + GC  (2-13)

Yi(t) = [F - K(EIHIY4{t), Yi{te) = L3, 1 =1,2 (2-14)

The initial condition matrices Li are to be determined from the
f011ow{ng procedure

DAFTy + MgF”™ + GQG™- (MgH™ + GC){(mgH™ + GC)~ | (2-15)
Let us assume that D has rank @, and a £ n. From (2-15) i: is

rlear that D is a symmetric matrix and it will have real ¢iyenvalues.
Here in various ways, which will be described later, we can write D
as |

D= [LL; - Lol (2-16)

If we assume that A

g = the number of positive eigenvalugs of D.
Then the dimensions of matrices Li would be |

Ly = nx8, ‘Lz = nx{a - B) | (2-17)
where the number of positive eigenvalues of D is to be calculatled,
however, there is no need to calculate the eigenvalues.

The best way to find the initial conditions Li is to use

Cholesky Decomposition which will be described later in this chapter.
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Therefore let us make a so-called lower triangular-diagonal-upper
triangle (LDU) decomposition of D as

D= LoSty = [Ly L,ISIL] L) (2-18)

where we define S to be the ¢ x ¢ signature matrix of D
S = diag{l,1,...,1,=1,.0.,-1) |
Now by these assumptions and with (2-18) we can write the
Chandrasekhar-type equations more compactly as

K(t) = Y(£)SY (£)H', K{tg) = moH + GC (2-19)

Y(t) = IF - R(OHY(L), Y¥(t) = L) L] (2-20)

where _

K(+) is an (n x p)} matrix

Y(-} is an (n x o) matrix

F is arn {n x n) matrix

H s an {p x n) matrix

The important aspect of these two last équations (2-19), (2-20)

is that the Kalman gain K(-) can be found directly without going
through the matrix P(+). Note that if it is desired to find P(+), we
' may use (2-10) to write

Bt) = Y(E)SY'(t), P(t) = I, (2-21)

We would like to develop the new algorithm based on the
-Chandrasekhar-type equations (2-13) and {2-14}. Here we have n{a + p)
simultaneous nonlinear equations. In many practical cases a is less

than or equal to p or to m, where m is the number of inputs; and often
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m=p=1.

Comphring.n(n+1)/2 simultaneous nonlinear differential equations
of Riccati-type with n{c+p) simultaneous nonlinear differential equa-
tions of Chandrasekhar-type, we see that whenever n 3 p + a, we will
have a substantial computational saving in using the Chandrasekhar-
type equations (2-13) and 2-14). Good experience which has been
obtained in several examples, shows that the equations (2-13) and
(2-14) are numerically well behaved.

Let us now define the steady state behavior {t + =) of K(-) as
follow |

K= 1im k(1) (2-22)

t o

Because (2-13) and (2-14) are a set of simultaneous equations,
it is computationally preferable to find X by computing the solution
of Chandrasekhar-type equation until the solution remains fairly

constant. This will be shown on an ~xampl2 later in this chapter.



Determination of the Initial Condition Matrices L; and L;

CHOLESKY DECOMPOSITION

Any symmetric positive semidefinite n x n matrix D may be writ-

ten in the factored form (6):

g T T :
Dll Dlz e Din Lll 0 'R 0 Lll L21 ae Lnl
D12 D22 L2y L2z ... O [{O L22
.‘ | 6 l' - L ]
Din ... Banfltmy . . loml© 0 .. Ly

This is cailed lower triangle-upper triangular decomposition.
Cholesky gave the following recursive algorithm for computing L.

.For i=1,n,

i-1 2
L::= D . I
il J T4 ij
0, J<i

Lji =

L (Dy; -371 Lip Lik)s =1+ 1,n
¥ ( Ji K Jk 1k)

12



Example:

W N

1

Y4 3‘
8 2
2 14
d

0

oy

(2-8/2) J14-9-4)

0
0

-

o O,
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Lower Triangular-diagonal-Upper Triangu]ar Decomposition

(LDU\
=LsL
1 0 .
1
3
0 .
Tl
.~T\
L ...
Example: 2
1 2
= 2 8
3 2
wherea = 3, g=2
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1 2 3 b, 0 o]y o of fin ta la
2 8 2 §=]L2y L2z 0 0 1 0 0 Loz La2
l.3 2 12 _L31 Laz L33l § O 0 -1 ¥} 0 L33

After multiplying the right-hand side and equating the corres-

ponding elements

] 0 0
L=)2 2 0
3 -2 1

‘Fortran algorithm for D = LsL”

Consider:
D11 D21... D 1‘1 111 0 165, 0 T'i.u L2y... bl
D21 D22... D2 L21 L2z S2 L2z Lng
:. : ) - .. : ) & 0 * 0 -
Dni1 Dan Dnn ] Ll.m Ln2 Lnr:‘ Sny . Lnr:i
he L i

Form Column 1 of L

L1y =,|011/51

L2y = D21/Silas

L3y = D31/Sibna
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Form Column 2 of L

_ : -
L22 — (D22 - S1L21)
S2

Laz = (D32 - Silailsi)/Salez
Lya = (Dy2 - S1l21lyy)/Salez

(D55 - SiLoybey MSotyo

Lso =
qum Column 3 of L
Lgz = J g% (D33 - S1‘-%1 - Sngz)
Ly3 f (Dy3 = Sitzikyy = Solaabys)/Salas
Ls3 = (Ds3 - Silsilsy - Salaals2)/Salas
_Form Column 4 of L
Liy = J'g'};‘ (Dyy - SlLil - 52[-132 - 53'—23)
Lsy = (Dgy - 51L§1L51 - SzLustz“ssLusLsa)lsuLuu

Lew ~ (Dsu - SILHILSI - SzLustz - saLuaLss)/SuLuu



100

200

The fortran algorithm is as follows:

L{1,1) = SQrRT(ABS(D(1,1)/s{1)))
PO 100 I=2,N

L{1,1)=0

IF(L(1,1).EQ.0. )L(I,1)=0
TF(L{1,1.EQ.0.) €0 TO 100
L(1,1)=D(1,1)/(5{1)sL(3,1))
CONTINUE |

PO 500 =2, N

IM=-1

JP1=J+]

L(J,3)=D(3,4)

DO 200 K=1, JM)
L(3,0)=(L{2,9)-5(K)4L (3, K) #42)
L{J,9)=5QRT(ABS({L(9,3)/s{3)))
1F(J.EQ.N) 60 TO 500

DO 400  I=JP1.N

L(d,1)=0. |
1F(L(3,d).EQ.0.)L(J,J)=0
IF(L(J,J).£Q.0)L{J,d)=0.
1F(L(J,9).£Q.0)GO TO 400
L{I,J)=D({1,3)

DO 300 K=1, JM1

16
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300 L(1,3)=(L(1,3)-S(K)xL{J,K)sL(1,L})/5(J)

L(1,9)=L(1,0)/L(J,)
400 CONTINUE
500 CONTINUE

We now turn our attention to investigate the variety of special
_cases. Theselspecia1 cases are of great important. |
Case I: (Low Initial Uncertainty)

Let us now assume that the initial state x{tg) is fairly known,
that is we may write

Efxoxg) = Mg = 0 ' (2-23)

Substitute Mo = 0 into the equation (2-15), then the matrix D

simplifies to

6(Q -CC')62 0 (2-24)

D

Here D can have no negative eigenvalues, so that D may be written as

D=1Ll;, L =nxa (2-25)

The Chandrasekhar-type equations now can be simplified to the fewer
than n{m+p) equations ,
K(t) = Vi ()Y (W,  K(t,) = 6C (2-26)

Ya(t) = [F - K(tIHIYV2(t), - Yilte) = Ly (2-27)

If it is desired to find P(:), the mean-square error in the estimate
of the states, it can be found via

Bt) = Y, (LY(E):  P(t) = 0 m
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The above equation can also be written as
P(t) = st ¥ (x)¥]{x)dv ’ (2-29)
0

A significant aspect of this last formula is that no matter how
inaccurately Y,(+) may have been computed, the product Y,(-)Y;(-) is
‘alwa&s nonnegative-definite. This property may be last in the subse-
quent quadrature (2-29), but we realize that it is much easier to be
careful in a simple quadrature than in the solution of the Riccati-

~ type differential equation (2-12).
Let us now consider the following gxample where the Kalman gain

K(+) is find via Chandrasekhar-type equations.



Example: 3
Consider the Chandrasekhar-type equations

K(t) = Yy(t) Yi(t) H', K(t ) = 6C

Y, (t) = [F - K(t) WD Y (£) Y (t)=1L

" We would 1ike to plot the values of K(.) = P(-)H'R"1 for a

five-state system with g = 0 and

. - .
~0. 0297 -1 0 0.0438 0
0.331 -0.0042  -0.046 0 0
F=[-1.13 0.128 -0.803 0 0
0 o 1 0 0
0 3 0 0 0
L _ J
-0.0207 0 0
0.331 0.381 0.040
6= |-1.13 0.067 1.59
0 0 0
L 0 0 0
0 0 © 1 0 0.01 0 0
"
00 0 0 1 o= o 0.0 0
K 0 0.001




and with E{v{t}v"(s)} =

And

0.001
0

R 8(t - s) where

0.001

0.00
0.00

!

[ 0.003]
-0.035
0.124

Substitute the values into Chandrasekhar-type equations yield:

0.001

Yai

K11
K21
K31

Ky 3
Ksy

X

o |
K22
K32

Ky2

Ks2

~-0.0297
0.331
-1.13
)
0

Y11¥m1
Y21Yu3
Y31Yua
YurYa1

Ys1Yu1

-0.0042
0.128
0
]

-0.
-0.
)
0

Ylist

Y21Ys51
Ya1Ys
Yu1Ysa

Ys1Ys1

0.0438-K;;

0461
803 .

-K21
-Ka1
-Ky1

-Ks)

-Ki2
-Ka2

-K32

-Ks2

Y11
Y21
Y31
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Where we would finally have fifteen simultanecus differential

equations as follows:

K11 = 1000 Y11Yu)

Kyp = 1000 Y;,Ysy

Kpy = 1000 Y5 Yy,
*Kpz = 1000 Yy, Ys,

Ksy = 1000 Y4 Yy,

Ky, = 1000 Y, Ys,

Kyy = 1000 Yy Vs,

Kyp = 1000 Y, Y,

Ksy = 1000 Y, Y,

Ksp = 1000 Yg,Ys,

Y,y = 0.0297 Ypy = Y, + 0.0438 Y, - K,y - Kyo¥e;

Y,y = 0.331 Yy, - 0.0042 Y,, - 0.0861 Yy, = K,y¥,, = Kpp¥e,

Y5, = 113 ¥p; + 0.128 ¥, - 0.803 Yy, - Kyy¥u, - KapVsy
Vi = Vg - KgYag - KoY

Y-51 = Ya1 - KiYuy = Kso¥sy

I have used IBM-1130 t, calculate the values of Kalman gain;
Fig. 3 shows the plot of these values. We see that the solution of
the Chandrasekhar-type equations run quire smoothly into steady state.
The complete computer program and numerical results, using the

4th order Runge-Kutta method, are shown in Appendix I.
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wio

-2
2
1 -
Ksz2
e
,-/‘ : . N Kaa tm
°IN K [4 4 3 8
2 .
, N it -:.-—
K32 Kz
14
-2

Fig. 3. Plots of Kaiman gain: matrix computed usmg Chandrasekhar-type
equations for example in Case 1. SR
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EXAMPLE: 4

As a further example consider an RLC circuit as shown in Fig. 4.
The voltage Z{t) is the out put of a system with input, the white
noise U{t). By Kirchhoff's law the following voltage equation may be

written for the circuit
= L di 4+ Ry + 1, 54 -
u(t) = L T Ri(t) c ’t11 t (2-30)

where R, L, and C are the resistance, inductance, and capacitance,
respectively, and i(t) is the circuit current.

Let the variable q be the electric charge then:

9% = i(t) (2-31)
alts) = 0 (2-32)

Equation (2-30) may be written
1 ,
u(t) = ——51 + R d—% £ | (2-33)

Equation (2-33) is a second-order equation governing the behavior of
. charge density. '

To put Equation (2-33) in the standard state-variable form use is
made of the definition of Equation (2-31). Thus Equation (2-33) is

equivalent to the two coupled first-order equations.

..dt i)

T = - Ri(t) - -q + U(t) _ (2-34)



L ik e v R e i L

¥
L4

Z(t)

FIG. 4. AN RLC CIRCUIT
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Defining
X; 24 X, = i{t) (2-35)

Equation (2-34) may be written as

X(t) = F X(t) + 6U(t) | (2-36)
where
X, [ 0 1] 0]
X(t) = » U(t) =1u%1,F= G =
| 1 R ]
X - LR 1
| 2] [ & T L]

Similarly output voltage Z({t) may be written as

.1 21
(t) = t9°¢ X1
or
Z(t) = H X(t) , H= {JC 0l , (2-37)
Suppose that our measurement is y(t)
y(t) = Z(t) + v(t) ., V(t) = observable noise (2-38)

Let us assume that the input noise and the observable noise are

uncorrelated, so that

E [u(t) vi(s)1 =0 . (2-39a)

and

EU(t) U(s)) = 111 me= 0 (2-300)
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With these assumptions we can write Chandrasekhar-type equations

as follow
- 1 2
Kiz = ¢ Y12
K21 = %Y;l Y21

1
Y5, = -t KVt Yo

Yoy = ( - J,_-—-%-_Kzl ) Y- %721

Fig. 5 shows the plot of the Kalman gain for this problem where we

assumed that

C = 0,01 Farad
R = 10.0 Ohm
L = 1.0 Henry

s i A rrade ST it i Tr
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0.2

o_‘ou

0-08“
Kat —
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2041 Ku
0.0
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Fig. 5. Plot of Kalman Gain Matrix
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Case II: (High Initial Uncertainty)
If the initial state X(tp) is not known, then we may assume that
EfXgXe) = Ty = = (2-40)
In this case what we should do for both Riccati;type and
Chandrasekhar-type equations is work with P7Y(t) instead of P(t).

Usirig equation (2-10) we can get the relation
A = b (2-41)

Substitute ﬁ(t) into the above equation, then we have

-1 -1 -1 -1 . -1
_&%[P (t)} = P (L)F, ~ F P (t) + H'H - P (t)

: . (2-42)
6Q.6P (t)
where we assumed that
Fo=F-6H Q. =Q-¢CC © o (2-43)
And if we let
s(t) = P (t) S (2-44)
R(t) = P (£)X(t) (245)
Then the Kalman-filter equation can be written as
R(t) = P H(E)X(L) + ‘&% Pl (£)1X(t) (2-46)
or
R(t) = -IF, + GQCG‘S(t)l‘ﬁ(t) + HY(t), R(t ) = 0 (2-47)
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And from (2-42)‘we have
§(t) = -S(t)Fc - FcS(t) - S(t)8Q.6 S(t) + H'H,
S(ty) = P} (t,) (2-48)

The equation (2-44) - {2-48) are called "information-filter" form of
the Kalman filter. And whenever we have problems with large ini‘ial
uncertainty, ii js convenient to use them because

Mo = P(to) = 0 + S(tg) = 0
To obtain Chandrasekhar-type equation, let

6Q.6" = L,L] (2-49)
Now Tet us define an axn matrix A(t) such that

A(t) = L] S(t) (2-50)

" Using the above equation, then the Kalman-filter equation (2-47) will
become

R(t) = “IFg + LA(E)IR(E) + HY(t), R(tg) = 0 (2-51)

and it can be shown that A(t) in (2-51) can be obtained via the fol-
lowing equations

Alt) = LiB(t)B (t),  Alto) = 0 (2-52)
B(t) = -IF, + LA(L)] B(t), B(ty) = H  (2-53)

where S{t) can be calculated via the equation

s(t) = {t B(<)B (1)dr (2-54)
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Case ITI: (Stationary Processes)

In this case we assume that

Efxoxol =1 =T (2-55)

Since F is a stability matrix and the eigenvalues of F have negative
veal parts, then as It - to] + =, Z(+) will reduce to a stationary
pracess. _

It can be shown, as was first done by Doob (1944), that for Z(.)
. as in (2-3) - (2-6) with constant parameters
E[Z2(t) 27(s)] = H EIX(t) X" ()] ¥ (2-56)

where we have the relation

E(e) X(s) = Je ot T n(s), tas (2-57)
11(t)eF’(s -t} tes
Consider the relations
"3% o(t,te) = Folt,to) (2-58)
T (ttg) = ¢ ()P (2-59)

©fe,n)de = f(t,t) + 0 S f(ta)d (2:60)

d
e
i | ;
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where ¢(t,tp) is the transition matrix, then it is not hard to show
that the variance matrix n(t) = E(X{t)X"(t)] obeys a linear matrix

differential equation
m{(t) = Fr(t) + M{t)F" + 606 , m(ty) = 7, (2-61)

and an explicit solution to the above differential equation is

F(t-—t(,)]I eF (t-t,) ' ;t eF(t-r) GQG‘eF (t-1) de
to

n{t) = e {2-62)

Now by previous assumptibn that F is a stability matrix, we see that
as t goes to =, n(t) tends to a constant matrix T. In fact from (2-61)
it is clear that T is the unique solution of the equation
Fi + TIF + 6QG~ = 0 | - (2-63)
This is called matrix Lyapunov equation.
To obtain Chandrasekhar equation when Ty = T, we procede as

follow:

D =-(TH" + GC)(TH + 6C)° (2-64)

and Qhen a = P we can take

L, = "+ 6&C (2-65)
so that the Chandrasekhar-type equations become

K(t) = ~Y,(t)Vo(t)H ,  K(tg) = T + GC (2-65)

Y,(t) = IF - K(OHIV,(8), Y, (t)) =L, (2-67)
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And also note that P(t) can be found via

P(t) = -, (t)Y}(t), P(t) =T (2-68)

And therefore _
p(t) = T - /% Y,(x) V5 (x)dn (2-69)
. 0

Case IV: (Stationary Processes with known Covariances)

This case is actually very close to the usual assumptions of
statistical communication theory. Let us assume that the stationary
~ signal and noise processes are given not via a state-space model but

by their covariance functions. S0 that we assume

y(t) = Z(t) + v(t), t=>t, (2-70)
where we have

Efv(t)v (s)] = 1&(t - s) : (2-7)

E[2(t)v'(s)} =0 s>t ‘ - (2-72)

Ey{t)y (s)] = Is(t - s) + K(t,s) (2-73)

where KIt,s) is given by

K(t,s) = Ef Z(t)Z"(s) * Z(t)v'(s) + v(t)Z(s) | (2-74)

MeF(t - S)N, t>s

n

nef (s =ty ¢ <s

(2-75)

v iy s 38 L -
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where: '

F is an {n x n) matrix

M is an (p x n) matrix

N is an (n x p) matrix
To make this consistent with Case III we shall assume that

N has rank a, a < m,n(n,p) (2-76)
Note that if we assume that Z(-) and v{(+) are uncorrelated, K{t,s) is
@ covariance function, but here we assume a (one-sided) dependence of
signal on past signal and noise, therefore K(t,s) itself will not, in
general, be a covariance we remark that such a one-cided dependence
arises naturally in feedpack control and communication problems.

Generally it is not easy to find a solution for this problem with-

out first having to determine models for Z{.) and y(+). Therefore iet

us adsume the following equations:

i(t) = Mo (t) (2-77)
8(t) = Fo(t) + K(t) [¥(t) - Ma(t)] (2-78)
K(t) = N - T(E° | (2-79)

where the nxn matrix Z(-) obeys the Riccati equation

§(t) = FI(t) + S(E)F + K(£)K'{t), I(to) = 0 (2-80)

Under the assumption that the matrices M, F, and N are constant,
we may calculate K(-) via the following n{p + p;) Chandrasekhar-type

equations:



K(t) = -Y(t)Y"(t)M (2-81)
Y(t) = (F - K(EM) Y(t) (2-82)
Ke) = N ¥(E) = N, (2-83)

where the initial conditions N and Ny satisfy

NNT = NN | | (2-84)

~and
No = n x p, matrix ' (2-85)
Note that whenever « = p, where o is rank of NN”, we have much

simpler formula, since we can take

¥(tg) = K(tg) = N (2-86)
Also note that there Chandrasekhar equations have the same form as in

Case I.

34
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| CHAPTER 111
CONNECTION BETWEEN THE CHANDPASEKHAR X, Y
FUNCTIONS AND THE CHANDRASEKHAR-TYPE EQUATIONS
Tﬁe alyorithm is now in a form where we can point out a close
relationship to some famous equations obtained in astrophysics. It
is shown that ihe Kalman gain function was intimately related to the
basic X and Y functions of Chandrasekhar (1).
Consider the stochastic process

y(t) = Z(t) + v(t), D<t<T<m (3-1)

where v is a white Gaussian noise process with unit spectral intensity,

.such that

Elv(t)] = 0. Efv{t)v (s)] = &(t - s) (3-2)
and Z{t) is such that

EfZ{t)v'(s)1 = 0. t<s (3-3)

And v and Z are n-dimensional vectors. Also for simplicity we assume
that '
- E[Z{(t)) =0, Os<t<T

Therefore the covariance K of the signal process Z is the nxn

‘matrix
K(t,s) = E[Z(t)Z°(s)], O0<t, ssT, (3-4)

where we impose the condition that K(t,s} is continuous in t and s.
Let us define the quantity Z(t) tc be the linear least squares estimate

of Z{t) to be given the observation {y(s), 0 <s < t}, 0<t<T.
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It is now a well-known fact that i(t) may be written as a linear func-
tional of Y,

i(t) = {)t h(t,s)y(s)ds, (3-5)

where the weighting function h(t,s) satisfies the integral equation

h(t,s) = K(t,s) - gt K(t,s)h{t,t)dr, 0<s <st<T(3-6)

In view of (3-5), all the information necessary to characterize the
. optimal estimate is contained in the function h{t,s). Let us now
turn our attention toward development of a procedure for obtaining h
as a function of the observation time t.

Consider the integral equation

h(t,s) = K(t,s) - {’t K(t,s)h(t,c}dt, O <s <t<T C{3-7)

where the kernel K is subject to the previous assumptions. We now
~ wish to impose the additional assumption that K may be represented in
the form: |

K(t,s) = K([t-s]} = 51 exp. (-] t-sla)w(a)de (3-8)

and, by suitable choice of w(sums of delta functions, for example), a
broad class of important prdblems may be simply handled. To avoid
trivial details, we shall assume w is a scalar function.

We can show that an initial value representation for h is given

in terms of the functions X, Y and J as
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Atha) o y(t,a) 11 Y(t, 0 Yula”) da” (3-9)
st 0
a—ua-%l—ﬁ- = ~a¥(t,a) -X(t,a) .gl Y{t,a )w(a")da” (3-10)
§Q£§%£l2).= ad(s,t,a)-X(t,a) {1 s, t,a Yula”)de” (3-11)
for 0 <S5 <t<T, 0« a <. |

X(0,a) = 1 | (3-12)

- ¥(0,a) = 1 - {3-13)

J(S,S,a) = X(S,a) (3-14)

The function h is then given by
a(t,s) = 11 3(s,t,a Yola )de” (3-15)
4]

The two nonlinear differential equations (3-9) and (3-10 are
generally known as Chandrasekhar's X and Y functions.

Although knowledge of the function h(t,s) is sufficient to deter-
mine the optimal estimate Z(t) via (3-5), it is computationally desir-
able to obtain an alternative form for Z involving a quadrature over
a fixed interval, rather than the variable interval of {3-5). Such a
representation will also simplify the real-time calculation of 7.

Recall (3-5):

2(t) = {th(t,s)Y(s)dé, t>0
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Making use of (3-15), we see that

(t) = t 5’ s, t,a Yol Yo'y (s)ds (3-16)

Interchanging the order of integration in (3-16) gives

2t)'= 1 1F s, t,0"Wy(s)ds ula”)da” (3-17)
Introduce the new function L(t,a) as

L(t,a) = gt As,toa)y(s)ds, 20, O0<as] (3-18)

He can show that L actually satisfies the Cauchy problem:

2 1(tsa) = al(t,a) +X(t,c)¥(t) -g‘ L(t,a )o(a”)
' do”) (3-19)

L(t,0) =0 (3-20)

By using these results, the optimal estimate 7 is then given by

() = ﬁl L(t,0 )u(a Yo" (3-21)

At this point it seems essential to point out that unless the
function h(t,s) is desired for some reason other than calculating Z,
we need not calcuiate it at all. In fact, (3-21) and (3-19) show
that knowledge of the function X and L suffice to determine Z. This
observation is of considerap1e computational importance, as well as

of some analytical interest.

nmbire
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With some effort, we should be able to see that these equations
are essentially the same as (2-77), (2-78), (2-81), {2-82), (2-86) if

we make the assumption

n
N(O‘.) = z uiﬁ(a - u_i),a_i '>_ 0, -F = diag{dl,.--,ﬁ }
1

n

This is why the equation for K(-) and Y(:) are said to be of

Chandrasekhar type.

Further Examine of Case IV

To make some connections with the radiative-transfer problem in
which Chandrasekhar originally introduced the X(-) and Y(.) functions,
we .shall examine Special Case 11la further. Let us assume alsu that
N has rank P, so that the relevant equations are {2-81), (2-82), and

(2-86). "Not let us define an impulse response function h{t,t) as
3(t) = {t h(t,)y(x)de (3-22)
Then we can show that

Mo(£,1)K(1), t >
h{t,<) = | (3-23)
0: t T

[ RS

A

where ¢{.,.) is the state-transition matrix of F-K(-)M, that is

gi%%ill-= (F - K(t) M) v {t,1), vfr,7) = I (3-24)

Also note that h{.,.) satisfies the Wiener-Hopf type of equation
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Mhﬂ+£tMLﬂMmﬂk=KHJLtzt (3-25)

Now it is clear that from (3-23) and {2-7), (2-82) we can obtain the
following relations
h(t,t) = MK(t) (3-26)
h(t,0) = Me(t,0)K(0) = MY(t) (3-27)
Then we see that the equation (2-81)
K(t) = -Y(t)Y"(t)M°, is the same as

Ehig%il = - h(t,0) h"(t,0) (3-28)

which is a result that fo1iows from a resolvent identifying in the
theory of integral equations. |

It is of interest to not that when the signal Z(:) and noise
v(+) are uncorrelated, i.e., when K(t,s) is a covariance function, we
can identffy

MK(t) = EIZ (t) Z°(t)) (3-29)

MY(t) = EIZ (t) 27(0)] (3-30) .

where i(t) = i(t) - Z(t) is the instantanecus error in the estimate
of Z(t). The relations (3-29) and (3-30) have been used to-suggest
fi1terihg-theory analogs of some gquantities that arise in radiative
transfer, e.g., the reflection, transmission, and internal intensity
functions; however, these analogies have to be treated with some care

* because the assumption that K(t,s) is a covariance function, which is




necessary for‘(3-29) and (3-30), is not valid in the radiative-

transfer problem,

Iy
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| CHAPTER 1V
PROOF OF THE CHANDRASEKHAR-TYPE FORMULAS

fhe Chandrasekhar-type equations presented in previous chapters
can be derived in several ways. We choose one that begins with
kpow?edge of the Kalman filter solution. In this way, the manner ‘in
which the constancy of the model parameters can be exploited will per-
hapé standout most clearly. Also, all questions of existence and
“uniqueness can be resolved immediately by use of the known results for
the Kalman Theory (5).

For our convenience, let us restate the equations of the Kalman

filter

K(t) = F(t) + KO IY(e) - HR(ED, R(eg) =0 (4-1)

K{t) = P{t) H" + GC (4-2)

P(t) = FP(t) + P(t)F” - K(t)K'(t) + 606,
' : 4-3
P(to) = no ( )

~ Let us define ¥(t,tp) to be the state-transition matrix of the

matrix F - K(t)H. That is ¢(t,tp) is the unique solution of the linear

d¢$§,tg) = [F - K(E)H) w(t,t)), ¥(t,,t)) =1  (4-4)

Before we proceed to derive our algorithm, let us consider the

following lemma

o o> e gty 4

- atin . AT U
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Lemma: The derivative f’(~) of the solution P{+) of the Riccati-

type equation (2-12) can be written as follow

B(t) = v(t,to) P (to) ¥ (t,to) (4-5)
where

P(t,) = D = FP(t )+ P(t )F - K(t )K (t;) + 6QG" (4-6)
And if we let P(ty) = ng and K{ty) = ngH™ + GC we have:
P(t,) = D= F, + M F - (M H + GCY(moH™ + 6C) ™+ 6O~ (4-7)

Proof: we attack (4-3) by differentiation to get

P(t) = FP(t) + P(L)F - K(L)K'(t) - K(t)K'{t) (4-8)

Mso, differentiation of both sides of (4-2) yield:

K(t) = B(t) W (4-9)

Using equation (4-93, we can rearrange (4-8) as

P(t) = (F - K(t) H) P(t).+ P(t)(F - K(t) W) (4-10)°
Now let us témporarily diregard the dependence of K(-) on P(-), and
jusf regard K(-) as some given function, then equation (4-10) is a
linear homogeneous equation in P(-). This equation can be sb]ved to
give
P(t) = w(t,ty) P(t ) ¥ (t,tp)
It can be easily checked by differentiation that the last expression

for P(.) does indeed satisfy (4-10).
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The basic idea underlying the rest of the arguments is that for
certain choices of P(t,), ﬁ(to), and therefore ﬁ(t) can have rank less

than n. For example let us consider Case I.

Proof of the Case I

Since we assumed that &, = 0, thergfdre (4~ 7) becomes
P(to) = GQCG"
whére
chq-CC‘

And the basic relation (4-5) becomes

B(t) = v(t.ty)GQE v (tst,) (4-11)
Since GQCG' is nonegetive-definite, we can factor it as
606 = LiLy , Ly =nxamatrix (4-12)
where
| rank of 606" = a
Note that the dimension of L; is unique. Now if we define
Yo (t) = w{t,ty)L, {4-13)
Then by differentiation we see that
Yi(t) = F - KM Yi(t),  Yalte) = Iy (a-14)
A]sé from (4-11) - (4-13) we see that

P(t) = Y (t) Y (t)

e e et S B Al e R i O AL AR T e e i B S B P DatT s b

i g e aipecs i
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Then {4-18) can be written as
P(t) = Yl(t) Yl(t) - Yz(t) Yz(t) {4-20)

And also from (4-19)

Yi(t) = (F = k{t) W) Yi(£), Y¥;(t) =14 (4-21)
Then we see that |

K(t) = P(t)H = [V, ()YV5(t) - Y {t)Vo(t)) H (4-22)

K(to) = P(to)H '+ 6C = ToH + GC (4-23)

Equations (4-21) - (4-23) are just the Chandrasekhar-type equations,

and the proof of the general formula is completed.

Proof of the Case 1V

In this case we have covariance information rather than a state

model. Let us work with the Riccati equation (2-80).
F0e) = FI(E) + JFT + KK(E), D(gy) = O
K(t) = N - J(t)w

and thus for E.(t) we can have

I (t) = (F - k(eM) §(e) + § (£) (F - k(em)’ (4-24)
Now, if we define y(t.to) to be the state-transition matrix of

F~ K(t) M, then from (4-24) we have

T(t) = o(t.to) T (to) ¥ (t.to) (4-25)
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and from (4-9} we have
K(t) = B(E)H" = Y, (1) Yi(t)H (4-15)

K(to) = P(to)H  + 6C = 6C (4-16)

Equations (4-14) - (4-16) are simuitaneous Chandrasekhar-type equa-

tions for Case I.

Proof of the General Fomulas

The proof in the general case is almost as simple. Since for
any value of mo, D = 5(t0) as given in equation (4-7) is symmetric,

therefore, it can be factored as

D= P(ty) = Lily - Loly (4-17)
Let us assume that

-u = rank of D
and rank of LyL] is the number, say 8, where g is the number of
positive eigenvalues of D and the rank of LZL; is a - B.

Here we can always choose the dimensions of L, and L, so that
Li = nx 8, L2.= n x{a - B).
By these assumptions, now we can write (4-5) as

CP(E) = it todliliy (tato) - e(titodlols ¥ (tite)  (4-18)

Now if we define

Yi(t) = v(t,tolLy » i=1,2 (4-19)




and from (2-80)_we get
f(t ) = K(ty) K‘(to) = (4-26)
Now if N has rank P, g min(n,p), we can write
ﬂN' = NN;, N ann x p, matrix
Therefore from (4-25)
B(£) = v(t,t0)NoNg¥ (. t0) = Y(£) Y (¢) (4-27)
where we can take
Y(t) = v{t,ty)N,
and therefore
) = (F - KO W) Y, Y(to) = Mg (4-28)

Note that when P, = P we can identify N and Ny . Equations (4-26) -
(4-28) are Chandrasekhar-type equations.

Also note that we can verify the relation

I(t) = n(t) - P(t)
So that .
18) = 7 - P(t) = -P(t)
And if K(t,s) as in (2-75) arises from = model of the fora (2-1) -
(2-6), we can identify
M=H, N(t)=rmn{t)H +6C

47



CONCLUSION

A new class of algorithm for lipear least squares estimation
problem is presented. Th: new algorithm does have some computational
saving when the number o’ observation vectors are much less than the

dinension of the state space.
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APPENDIX 1

Fortran IV Program for Solution of the Chandrasekhar-Type Equations

Here we present the computer progfam, using ihe fourth-order
Runge-Kutta method, to sg]ve the Chandrasekhar-type equations of the
example 3 in Cuapter II, Case I.

The purpose of the Runge-Kutta method is to obtain an approxi-
mate solution of a system of first order ordinary differential

equations.

A Bt S+ A ot T T am s (s e et ae L e
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