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ABSTRACT

Recursive least-squares estimates for processes that

can be generated from finite-dimensional linear systems are

usually obtained via an nxn matrix Riccati differential

equation, where n is the dimension of the state space.	 In

this new recursive method the gain matrix for the Kalman

filter and the con •^,, ariance of the state vector are computed

not via the Riccati equation, but from certain other equat-

ions.	 These differential equations are said to be of

..1 Chandrasekhar-type, because they are similar to certain

equations introduced in 1948 by the astrophysicist,

S. Chandrasekhar, to solve finite-interval Wiener-Hopt

equations arising in radiative. transfer.	 Chandrasekhar

extended Ambarzamian's invariance principles to solve the

E above problem and in fact in recent years this served as a

stimulas for much activity by Bellman in the development of an

invariant approach to the solution of various transport process.

The "invariant imbedding" idea resulted in the reduction of

the basic boundary value problem of transport theory to an

equivalent initial value system, a significant computational

advance.

Initial experience has shown that there is some

11 computational savings in the new method and the loss of

positive definiteness of the covariance matrix is less vulner-

able.
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CHAPTER I

INTRODUCTION

The work of R.E. Kalman is a most significant contribution to

filtering and prediction theory, since the original work of Weiner

(8). The Kalman filtering theory introduces a new look at the

classical problems of prediction, smoothing, and filtering. More

specifically, Kalman's method has the following features:

1. The linear dynamic system is described by the state variables and

state equations. This not only represcAs a modern approach to the

systems problem, but also makes machine computation simpler.

2. The Kalman filtering theory treats stationary and nonstationary

random processes, single- variable and multiVariable systems, all in a

unified manner.

The Kalman filtering problem can be stated in general as: given

y(t) = Z(t) + v(t), where y(t) is a message in the form of a signal

corrupted by additive noise and Z(t) is the actual signal and v(t)

is the noise, determine the value of the Z(t) in the sense of the

minimum mean-square error. The error is defined to be the difference

between the actual output of the filter and the signal component of

the input message.

Generally to determine the value of Z(t) at sometime t = t3,

given the measured or observed value ' jy(r), to c * s tk 1, the time

tj can be less than, equal to, or greater than tk . These three cases
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an be defined as

tj < tk	smoothing (interpolation)

tj = tk	 filtering

t . > tk	predicting

The block diagram illustrating the general philosophy of the

alman filter is shown in Fig. 1.
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Md(s) = e-Ts (T , 0)

Md(s) = 1

Md(s) = e;s	 (T s 0)

Smoothing (Interpolation)

Filtering

Predicting

FIG, 1 KALMAN FILTER
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This research will include the study and comparison of a new

algorithm for recursive state estimation via Chandrasekhar-type

equations (S).

By this method, the gain matrix for the Kalman filter is

obtained directly, without havin g to solve separately for the error-

covariance matrix. In general, the gain matrix is obtained by solu-

tion of n(n+l)/2 simultaneous nonlinear differential equation of

Riccati-type, where n is the dimension of the state space. But in

this new method, it only requires the solution of n(m+p) simultaneous

nonlinear differential equations, where m and p are the dimension of

the input and observation processes, respectively. In most practical

cases n-, p + m, and our experience shows that whenever n :^ p + m, there

is some computational saving in using this new method.
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Notation
dxThe "dot" notation will be used for derivatives (i.e.,
Tt

and "prime" will be used for transpose of a matrix as shown W).
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CHAPTER II

FORWULATION OF PROBLEM AND SOLUTION TECHNIQUE

ti

Problem Statement

Consider the standard Kalman state-space model where the problem

is to calculate linear least-square estimates of a signal process

z(-j from p-vector observations of the form
I

y ( t ) = Z(t) + v(t)	 t } to	 (2-1)	 !

where

E[v(t)v"(s)] = I 	 a(t - s)	 (2..2)

and z(•) is given by a state-space model

Z(t) = HX(t),	 t ? to	(2-3)

X(t) = FX(t) + GU(t), X(to) = x a	 (2-4)

+;There x(-) is an n-vector, U(•)is a m-vector, and

E[Xo] = O,	 E[Xo)n] _ 110 , E[U(t) Xpl = O	 (2-5)	 .4

The input process u(-) is white with covariance function

EJO(t)U'(s)' = Qa(t - s), E[U(t) v'(s)] = Ca(t - s) (2- 5) .	-^

The matrices F, G, H, ,:,, Q, C are assumed to be known and for simplic-

ity we also assume that

H has fell rank p	 (2-7)	 1

It is desired to calcula+._

r
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x(t) = the linear least-square estimate of x(t), given'{y (T),
rl	

to	 T < U.

By linearity it follows "hat

j	 Z(t) = HX(t)	 (2-8)

The Kalman filter for this problem is

	

•	 X(t) = FX(t) + K( t )(y ( t ) - HX(t)), X(to ) = Q	 (2-9)

where

K(t) = P(t)H- + GC	 (2-10)

The form of this best linear estimator, which is called the

Kalman filter is shown in Fig. 2. (7)

The nxn matrix P(•) is the mean- square error in the estimated of

the states

P(t) = E[x(t)-x(t)1 [x(t)-x(t)1'	 (2-11)

This matrix is computed as the unique solution of the non-linear

matrix differential equation of Riccati type.

P(t) = FP(t) + P(t)F ' - K(t)K* (-t) + GQG_,

P(to ) = 1I0	 (2-12)

since P(-) is symmetric, this Riccati equation involves the solution

of n(n+l)/2 simultaneous nonlinear differential equations, which has

generally to be carried out on an analog or digital computer. The

fact, clear from (2-111, that P(-) has to be nonnegative-definite

often places ' certair, strigent accuracy requirements on the computation

and may require special attention. However, by this method K(-) is



Fig. 2. The continuous-time Kalman-filter
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calculated not via Riccati equation but from certain equations, which

are called of Chandrasekhar -type.

Chandrasekhar-Ty2e E uations

The Chandrasekhar-type equations are as follow (5):

k(t) _ [Yi(t)Yi(t) - Y2( t )Y2( t )] H , K(to) = IF OH + GC	 (2-13)

i i (t) = [F - K(t)H]Yi(t), Yi( to) = Li , i = 1,2	 (2-14)

The initial condition .natrices L i are to be determined from the

following procedure

DeFR O + noF" + GQG -- (H OW + GC)(a O W + GC)'	 (2-15)

Let us assume that D has rank a, and a < n. From (2-15) i is

r?ear that D is a symmetric matrix and it will have real ,eigenvalues.

Here in various ways, which will be described later, we can write D

as

D = [L i L, - L 2L21	 (2-16)

If we assume that

B = the number of positive eigenvalues of D.

Then the dimensions of matrices L i would be

L, = nxa, L2 = nx(a .. s)	 (2-17)

where the number of positive eigenvalues of D is to be calculated,

however, there is no need to calculate the eigenvalues.

The best way to find the initial conditions Li is to use

Cholesky Decomposition which will be described later in this chapter.

i

I	 LJ

Y-i

i

I



10

Therefore let us make a so-called lower triangular-diagonal-upper

i	 triangle (LDU) decomposition of D as
E _	 .

D w L,SLO _ [L i L21S[L1 L21	 (2-18)

where we define S to be the a x a signature matrix of D

5

Now by these assumptions and with (2-18) we can write the

Chandrasekhar-'hype equations more compactly as

I	
k(t) = Y(t)SY'(t)H" Ktto) = R QH_ + GC	 (2-19)

Y(t) = IF - K(t)H)Y(t), Y(t 0 ) = [L i L21
	

(2-20)

where

K(•) is an (n x p) matrix

Y(-) is an (n x a) matrix

F	 is an (n x n) matrix

H	 is an (p x n) matrix

The important aspect of these two last equations (2-19), (2-20)

is that the Kalman gain K(-) can be found directly without going

through the matrix P( • ). Note that if it is desired to find P(-), we

may use (2-10) to write

k t) = Y(t)SY f M , P(to) = no	 ( 2-21)

We would like to develop the new algorithm based on the

Chandrasekhar-type equations (2-13) and (2-14). Here we have n(a + p)

simultaneous nonlinear equations. In many practical cases a is less

z
than or equal to p or to m, where m is the number of inputs; and often

It
IĴ

AM

J

j
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Comparing n(n+l)/2 simultaneous nonlinear differential equations

of Riccati - type with n(cz+p) simultaneous nonlinear differential equa-

tions of Chandrasekhar-type, we see that whenever n ; t P + a, we will

have a substantial computational saving in using the Chandrasekhar-

r.
type equations (2-13) and 2-14).	 Good experience wh 4 ch has been

obtained in several examples, shows that the equations (2-13) and

(2-14) are numerically well behaved.

Let us now dcfin;: the steady state behavior (t 	 of K(•) as

follow

I im K(t)	 (2-22)
t + 	 7

Because ( 2- 1 3) and ( 2-14) are a set of s imultaneou s equations,

it is computationally preferable to find R by computing the solution

of Chandrasekhar-type equation until the solution remains fairly

constant.	 This will be shown on an ,xampla later in this chapter.
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Determination of the Initial Condition Matrices L 1 and L2

-' CHOLESKY DECOMPOSITION

s	 ; 4
;	 ..

Any symmetric positive semidefinite n x n matrix D may be writ-

ten in the factored form (6):

D 11	 D12 ...	 Din	 L11	 0	 ...	 0	 LI, L21	 ...	 Ln1

D 12	 D 22	 L21	 L22 ...	 0	 0 L22	
3:

i

0

Din	 Dnn	 Lnx	 , M j 0 0	 ...	 Lnn	 {{ `

This is called lower triangle-upper triangular decomposition.

Cholesky gave the following recursive algorithm for computing L.

.For	 i = 1, n,
s

a

Lii ~	 Dii 	 LijJ=1

0,	 < i

L

(Dji	
-J71 L

jk Lik) ,	 j =u i + 1. n

i
Li1	 k=1

III 

fIf

- 4
k
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Exampl e: l

2	 3

D	 2	 8	 2

	3 	 2	 14	 1

	

1	 0	 0	 1	 0	 0

	

L= 2	 8-4	 0 = 2	 2	 0	
y

	3 	 (2-8/2)	 14-97	 3	 -2	 1

Lower Triangular-diagonal-Upper Triangular Decomposition

LDU1

D=L.SL'

l	 0	 0

l	 .^

S=

0 `	"1

Exampl e: 2

1	 2	 3

D=	 2	 8	 2

3	 2	 12

i
where a = 3,	 s = 2

L!
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1	 2 3 L11 0 0 1 0 0 L11 L21 L31

2	 8 2	 = L21 L22 0 0 1 0 0 L22 L32

3	 2 12 L31 L2 L33 0 0 -1 0 0 L33

After multiplyin g the right-hand side and equating the corres-

ponding elements

1	 0	 0

L = 2	 2	 0

3	 _2	 1

-Fortran algorithm for D = LSL'

Consider:

D1 1 	 D21... D 1	 L11	
A	

1	 L11 L21 ... Ln1

V

D21	 D22••• D2 L21 L22	 S2	 L22	 Ln

0

Dn 1 	 D2n 	 Dnn Ln1 Ln2	 Lnn	 S	 Lnn

G

^

II^

i

4

7

I^

5

i

Form Col umn 1 of L

t11 = D1 z /S1

L21 = D21/S1L11

L31 = D31/SIL11

j'

r	 ,1

ti

,I	 .i

L

V
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Form Column 2 of L

2

L22 =
S2
( D22 - S1 L21

L32 = ( D32 " S1 L21L$,)/S2L22

.3

L42 = ( 042	 S1L21L41)/S2L22

L52 "' {D 52	 S1L21L51 }/S2L22

Form Column 3 of L

_	 2	 2

L33	 S3 (D33 - S 1 L 31	 S2L22)	
l

L43 w ( D43	 S 1 L 31 L41 ' S2L32L42)/S3L33

L53 ° ( D53	 S 1 L 31 L 51 ' S2L32L52)/S3L33

Form Column 4 of L

1

	

2	 2	 2

L4 4 	 S ^ D44 ' S 1 L41 ' S 2L42 - S3L43)

L 54 -	 (D54 - S 1 L41 L 51 - S2L42L52-S3L43L53)/S4L44

L64 =	 `D64	S1 L41 L61	 S2L42L62 - 5 3L43L63 V S4L44

i

i
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The fortran algorithm is as follows:

L(1 1 1) = SQRT(ABS(D(1,1)/S(1})^

DO 100 I=2,N

L(l,1)=O

IF(L(l,I ).EQ.0. )1.(1,1)=O

jF(L(l,I.EQ.O.) GO TO 100

100 CONTINUE

DO 500 J=2, N

}	 JM1=J-1

JPl =J}l

L(J,J)=D(J,J)

DO 200 K=1, JMl

200	 L(J,J)=(L(J,J)-S(K)*L(J,K) **2)

L(J,J)=SQRT(ABS(L(J,J) /S(J )))

IF(J.EQ.N) GO TO 500

DO 400 I=JP1,N

L(J,i)=0.

IF(L(%r,J).EQ.O.)L(J,J) =O

IF(L(J,J).EQ.0)L (J,J)=0-

IF(L(J,J).EQ.0)GO TO 400

L(I,J)=D(I,J)

DO 300 K= 1, JMl

u
0

jL
f
l
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300	 L ( I,J)=(L(I,,I)-S(K)*L ( J,K)*L(I,L))/S(J)

L(I,J)=L(I,u)/L(J,J)

400 CONTINUE

500 CONTINUE

We now turn our attention to investigate the variety of special

cases. These special cases are of great important.

Case I: (Low Initial Uncertainty)

Let us now assume that the initial state x(to) is fairly, known,

that is we may write

F[x 0x 0] = 110 = 0	 (2-23)

Substitute no = 0 into the equation (2-15), then the matrix D

simplifies to

D = G(Q - W )G'> 0	 (2-24)

Here D can have no negative eigenvalues, so that D may be written as

D = L I LI, L	 nxa	 (2-25)

The Chandrasekhar-type equations now can be simplified to the fewer

than n(mfp) equations

k(t) = Yl(t)Y^(t)H',	 K(t 0 } = GC	 (2-26)

t i (t) = [F - K(t)H1Y I (t), . YI(to) = L I	(2-27)

If it is desired to find P(•), the mean-square error in the estimate

of the states, it can be found via

NO = YI(t)Y'(t);	 P(to) = 0	 (2-28)

ti

j

C k
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The above equation can also be written as

NO = ft Y^(T)Y i (T)dT	 (2-29)
0

A significant aspect of this last formula is that no matter how

inaccurately Y,( . ) may have been computed, the product Y 1 ( • )Y,(•) is

always nonnegative-definite. This property may be last in the subse-

quent quadrature (2-29), but we realize that it is much easier to be

careful in a simple quadrature than in the solution of the Riccati-

type differential equation (2-12).

Let us now consider the following example where the Kalman gain

K(-) is find via Chandrasekhar-type equations.

I

u
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Ex mple : 	 3

Consider the Chandrasekhar-type equations

K(t) = Y,(t) Y'(t) H am , K(t ) = GC

lfM) _ IF - K(t) H] Y I (t)	 Y 1 (t} =	 l.a

'We would like to plot the values of K(-) = P(-)H'R-1 for a

five-state system with no = 0 and

-0.0297 -1 0	 0.0438 0

0.331 -0.0042 -0.0461 0 0

F r	 -1.13 0.128 -0.803 0 0

0 0 1 0 0

0 .1 0 0 0

-0.0297 0 0

0.331 0.381 0.040

C =	 -1.13 0.067 1.59

0 0 0

0 0 0

0	 0 0	 1	 0 0.01 0 0
K^

0	 0 0	 0	 1 Q=	 0 0.001 0

0 0 0.001



and with E{v(t)v'(s)) = R a(t - s) where

0.001	 0
R=

0	 0.001

And

20

w

3
k'	

f

'I
I
1

Y	 is

e

0 0 0.00

C " = p 0 -0.035

p 0 !1 =	 0.124

0.00

0.00

Substitute the values into Chandrasekhar-type equations yield:

K11 K12 Y11Y41 Y11Y51

K21 K22 Y21Y41 Y21Y51

0.001 K31 K32 = Y 31 Y41 Y31Y51

41 42 Y41Y,i 1 Y41Y51

K51 K52 Y51Y41 Y51Y51

1 !► ;, -0.0297 0.0438-Kk 1 -K12 X11

Y 21 0.331 -0.0042 -0.0461	 -K21 -K22 Y21

Y 31 = -1.13 0.128 -0.803.	 -K31 -K32 Y31

Y41 (} 0 1	 -K41 -K42 Y41

Y51 p 1 0	 -K51 -K52 Y51

LI
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Where we would finally have fifteen simultaneous differential

equations as follows:

K11 = 1000 Y11Y41

k12 = 1000 Y11Y51

K21 = 1000 Y21Y41

K22 = 1000 Y21Y51

K31 = 1000 Y 31 Y 41

K32'= 1000 Y31Y51

K41 = 1000 Y41Y41

K42 = 1000 Y41Y51

K51 = 1000 Y51 Y41
C
K52 = 1000 Y51Y51

Y11 = 0.0297 Y11 - Y21 + 0.0438 Y41 - K11Y41	 K12Y51

Y 21 - 0.331 Y	 - 0.0042 Y	 - 0.0461 Y	 Y41 	 K	 Y11	 21	 31 - ^1 41	 22 51

Y31 = 1.13 Y11 + 0.128 Y21 - 0.803 Y31-- K31 Y41 " K32Y51

i
.

4l ' Y31 - K41 Y41 - K42Y51

Y5 1 = Y21 - K51 Y41 - K52Y51

I have used IBM-1130 t ,.^ calculate the values of Kalman gain.

Fig. 3 shows the plot of these values. We see that the solution.of

the Chandrasekhar-type equations run quire smoothly into steady state.

The complete computer program and numerical results, using the

4th order Runge-Kutta method, are shown in Appendix I.
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EXAMPLE: 4

As a further example consider an RLC circuit as shown in Fig. 4.

The voltage T(t) is the out put of a system with input, the white

noise U(t). By Kirchhoff's law the following voltage equation may be

written for the circuit

U(t) = L
^ 

+ Ri(t) + 1 ft i d t	 (2-30)

where R. L, and C are the resistance, inductance, and capacitance,

respectively, and i(t) is the circuit current.

Let the variable q be the electric charge then:

R

dt = i(t)	 (2-31)

q(t j ) = 0	 (2-32)

Equation (2-30) may be written

U(t) = L d + R ^- + C q	 (2-33)'

Equation (2-33) is a second-order equation governing the behavior of

charge density.

To put Equation (2-33) in the standard state-variable form use is

made of the definition of Equation (2-31). Thus Equation (2-33) is

equivalent to the two coupled first-order equations.

..dt = i(t}

L di W - Ri(t) - q + U(t)	 (2-34)

^i



U(t)

24
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FIG. 4. AN RLC CIRCUIT
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Defining

X j = q	 X2 = i(t)	 (2-35)

Equation (2-34) may be written as

X(t) = f X(t) + GU(t)	 (2-36)

where

X,	 0	 1	 0

X(t) -	 U(t) = r,U,) , F _	 G --

1 	 R	 lX2	 C	 L	 L

Similarly output voltage Z(t) may be written as

Z(t) =	 q =	 XI

or

Z(t) = U X(t) ,

Suppose that our measurement

Y(t) = Z(t) + v(t)

Let us assume that the input

uncorrelated, so that

E [U(t) v'(S)]

H = [	 01 ,	 (2-37)

is y(t)

Y(t) = observable noise	 (2-38)

noise and the observable noise are

0	 (2-39a,

and

E[U(t) U" ( s )] = [1]	 no = 0
	

(2-39b)
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With these assumptions we can write Chandrasekhar-type equations

as follow
2

ki,	 Y11

Kai	 Y11 Y21

Y ID	 K,,Yll+ Y21

Y21	 -CC— -C.K21 ) Y11-
L Y21

0

LI

L J

Fig. 5 shows the plot of the Kalman gain for this problem where we

assumed that

C = OA I Farad

	

R = 10.0	 Ohm

	

L w 1.0	 Henry
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Case II: (High Initial Uncertainty)

If the initial state X(to) is not known, then we may assume that
I^!

ENxol = 11 0 = W	 (2-40)

	

_ j 	In this case what we should do for both Riccati-type and

 Chandrasekhar-type equations is work with P - 1 (t) instead of P(t).

Using equation (2-10) we can get the relation

d-[P-1	 - 1(t)] = -P( t)P(t)P-1(t)	 (2-41)

Substitute P(t) into the above equation, then we have

dt [P
-1 (t)} _ -P -1 (t) pc - FC I P_

I
(t) + H'H - P-1(t)

(2-42)
GQCG'P

_

 1(t)

where we assumed that

Fc = F - GCH	 QC = Q - CC ' 	(2-43)

And if we let

5(t) = p-1 (t)	 (2-44)

R(t) = P -1 (6x(t)	 (2-45)

'When the Kalman-filter equation can be written as

^(t) = P-1(t)X(t) + at [P-1(t)lX(t)	 (2-46)

or

R(t) = -[FC + GQcG'S(tW. R(t) + H'Y(t), R(t ) = 0 (2-47)

t

i

.!
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And from (2-42) we have

^(t)	 -S(t ) Fc - F'S(t) - S(t)GQcG "S(t) + H-H,

S ( to) = P-I ( to)	 (2-48)

The equation ( 2-44) - (2-48) are called "information -filter" form of

the Kalman filter. And whenever we have problems with large inV ial

uncertainty, it is convenient to use them because

I'D = P(to) = 0	 S(to) = 0

To obtain Chandrasekhar-type equation, let

GQcG' = L
I L'	 (2-49)

Now let us define an axn matrix A(t) such that

A(t) = L1 S(t)	 (2-50)

Using the above equation, then the Kalman-filter equation (2-47) will

become

	

R(t) _ -IFc + LIA(t)]^R(t) + H -Y(t), R(ta) = 0	 (2-51)

and it can be shown that AM in (2-51) can be obtained via the fol-

lowing equations

p{t} = LIB(t)B^(t},	 A(to) = 0	 (2-52)

8(t) _ -IFc + LIA( t ) ], B(t), B(to) = H'	 (2-53)

where S(t) can be calculated via the equation

O's-

S(t) = of B(TW(T)dT	 (2-54)
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f

f	 Case III: (Stationary Processes)

' i 	In this case we assume that

1	
E;xoxo} = II = R	 (2-55)

Since F is a stability matrix and the eigenvalues of F have negative
^i

real parts, then as i t - tol	 Z(-) will reduce to a stationary

process.

It can be shown, as was first done by Doob (1944), that for Z(•)

as in (2-3) - (2-6) with constant parameters

E[Z(t) Z'(s) l = H E[x(t) x' (s)l H'	 ( 2-56)

where we have the relation

j

E[X(t) X'(s)l	
eF(t - 

s)U(s),	 t > s	 (2-57)
-

{	
n(t)eF (s - t) , t 5 s

I 	 '
Consider the relations

`d ^( t , to) = F^(t,to)	 (2-58}

^	 t

I	 (t,to) _	 (t,t o )F	 (2-59)	 t

—'	 t

i

^	

1s

d ft f(t,T)dT = f(t,t) + !t d f(t,,r)d.	 (2-60)
0	 0
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where ^(t,to) is the transition matrix, then it is not hard to show

that the variance matrix n(t) = ECX(t)X'(t)] obeys a linear matrix

differential equation

n(t) = Fn(t) + H(t)F ' + GQG ,	 n(to) = no	 (2-61)

and an explicit solution to the above differential equation is

n(t) = eF(t-to)n 
eF- (t-to) + ft eF(t-T) GQG-eF'(t-T) dT
	 (2-62)

to

Now by previous assumption that F is a stability matrix, we see that

as t goes to	 n(t) tends to a constant matrix T. In fact from (2-61)

it is clear that n is the unique solution of the equation

Fu + U' + GQG' = 0	 (2-63)

This is called matrix Lyapunov equation.

To obtain Chandrasekhar equation when Ro = n, we procede as

follow:

D -»(nH' + GC)(EH' + GC)'

and when a = P we can take

Lz = ^[H^ + GC

so that the Chandrasekhar-type equations become

K(t) = -Y2(t)Y2(t)H',	 K(to) _ -H-H' } GC

Y2(t) = fF - K(t)H)Y2(t),	 Y 2 (t 0 ) = L2

(2-64)

(2-65)

(2-66)

( 2-67)
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And also note that NO can be found via

P(t) = -Y2(t)YZ(t),	 P(t o ) _	 (2-68)

And therefore

P(t) = n - ft Y 2 (T) Y2 (T)dT	 (2-69)
0

Case IV; (Stationary Processes with known Covariances)

This case is actually very close to the usual assumptions of

statistical communication theory. Let us assume that the stationary

signal and noise processes are given not via a state-space model but

by their covariance functions. So that we assume

Y(t) = 7(t) + v(t)>	 t > to	 (2-70)

where we have

E Wt)v ' (s)l = I6(t - s)	 (2-71)

Efz(t) v' ( s )l = 0	 s > t	 (2-72)

EIY(t)Y-(s)] = Id(t - s) + K(t,$)	 (2-73)

where K(t,$) is given by

K(t,$) = E( z(t)x'(s) 11 z(t)v'(s) + v(t)z'(s)	 (2-74)

McF(t - s) N,	t > s

(2-75)

N -er(s .- t) M	 t < s



F

i

where:
r	

F is an (n x n) matrix
w

M is an (p x n) matrix

N is an (n x p) matrix

To make this consistent with Case III we shall assume that

N has rank a, a < m,n(n,p)	 (2-76)

Note that if we assume that Z(•) and v( • ) are uncorrelated, K(t,$) is

s	 a covariance function, but here we assume a (one-sided) dependence of

signal on past signal and noise, therefore K(t,$) itself will not, in

general, be a covariance we remark that such a one-sided dependence

arises naturally in feedback control and communication problems.

Generally it is not easy to find a solution for this problem with-

-	 out first having to determine models for Z(•) and y( • ). Therefore let

us assume the following equations:

P

(2-77)Z(t) = Mom

;(t) = FO(t) + K(t) [Y(t) - Me(t)]

KM = N- EMW

where the nxn matrix Z(•) obeys the Riccati equation

i(t) = FI( t) + J(t)F ' + K(t)K' (t), J( to) = 0

(2-78)

(2-79)

(2-80)

1.,

L^

Under the assumption t^.at the matrices M, F, and N are constant,

we may calculate K(•) via the following n(p + p l ) Chandrasekhar-type

equations:
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i
t

K(t) _ _Y(t)Y-(t)M'	 (2-81)	 i

Y(t) _ (F - K(t)M) Y(t) 	 (2-82)

!;(t o ) = N	 Y(t o ) = N
0
	(2-83)

where the initial conditions N and No satisfy

NN E = N 0 N'	 (2-84)

and

No = n x p, matrix	 (2-85)

Note that whenever a = p, where a is rank of NN', we have much

simpler formula, since we can take

V(to) = K(to) = N (2-86)

Also note that there Chandrasekhar equations have the same form as in

Case I.
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CHAPTER III

CONNECTION BETWEEN THE CHANDRASEKHAR X, Y
FUNCTIONS AND THE CHAN DRASEKHAR-TYPE EQUATIONS

The algorithm is now in a form where we can point out a close

relationship to some famous equations obtained in astrophysics. It

is shown that the Kalman gain Function was intimately related to the

basic X and Y functions of Chandrasekhar (1).

Consider the stochastic process

YM = Z(t) + v ( t ),	 0 < t < T < m	 (3-1)

where v is a white Gaussian noise process with unit spectral intensity,

such that

E[v(t)] = 0.	 E[v(t)v'(s)] = d(t - s)	 (3-2)

and Z(t) is such that

EIZ(t)v"(s)] = 0.	 t < s	 (3-3)

And v and Z are n-dimensional vectors. Also for simplicity we assume

that

EIZ(t)] =0,	 0 < t < T

Therefore the covariance K of the signal process Z is the nxn

matri x

K(t,$) = E[Z(t)Z.(s)], 0 < t, s s T,
	

(3-4)

where we impose the condition that K(t,$) is continuous in t and s.

Let us define the quantity Z(t) to be the linear least squares estimate

of Z(t) to be given the observation * y(s), 0 < s < t?, 0 < t < T.

0
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It as now a well-known fact that Z(t) may be written as a linear func-

tional of Y,

x(t) = ft h(t,$)y(s)ds,	 (3-5)
0

where the weighting function h(t,$) satisfies the integral equation

h -(t,$) = K(t,$) - of K(T,$)h(t,T)dT, 0 < s < t < T (3-6)

In view of (3-5), all the information necessary to characterize the

optimal estimate is contained in the function h(t,$). Let us now

turn our attention toward development of a procedure for obtaining h

as a function of the observation time t.

Consider the integral equation

h(t,$) = K(t,$) - of K(T,$)h(t,T)dT, 0 < s < t <T	 (3-7)

where the kernel K is subject to the previous assumptions. We now

wish to impose the additional assumption that K may be represented in

the form:

K(t,$) = K(It-si) = oI exp.(-Jt-sJa)w(a)ds	 (3-8)

and, by suitable choice of w(sums of delta functions, for example), a

broad class of important problems may be simply handled. To avoid

trivial details, we shall assume w is a scalar function.

We can show that an initial value representation for h is given

in terms of the functions X, Y and J as



I _!	 37

axft,a) 	 -Y(t,a) f , Y(t,a')w(a') da'	 (3-9)
at	 0

ayat,a) = -aY(t,a) -X(t,a) oI Y(t,a')w(a A )da'	 (3-10)

aJ(a,t,a') _ _aJ(s,t,(%)-X(t,a) 
41 

J(s,t,a')w(a')da'	 (3-11)'

for 0<S<t<T, 0 <a<i.

X(O,a) = 1	 ( 3-12)

Y(O,a) = 1	 (3-13)

J(S,S,a) = X(S,a)	 (3-14)

The function h is then given by

h(t,$) = f  J(s,t,a')w(a')da' 	 (3-15)
A

The two nonlinear differential equations (3-9) and (3-10 are

generally known as Chandrasekhar's X and Y functions.

Although knowledge of the function h(t,$) is sufficient to deter-

mine the optimal estimate 2(t) via (3-5), it is computationally desir-

able to obtain an alternative form for Z involving a quadrature over

a fixed interval, rather than the variable interval of (3-5). Such a

representation will also simplify the real-time calculation of Z.

Recall (3-5):

Z(t) = oth(t,$)Y(s)ds, t > 0
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Making use of (3-15), we see that

Z(t) = of o^ J(s,t,a ' )w(a r )da 'y(s)ds	 (3-16)

Interchanging the order of integration in (3-16) gives 	 a

Z(t) ' = f l ft J(s,t,a ` )y(s)ds w(a " )da m 	 (3-17)
o a

Introduce the new function L(t,a) as

L(t,a) = ft J(s,t,a)y(s)ds, t> 0, 0 5 a g 1	 {3-18)
0

We can show that L actually satisfies the Cauchy problem:

at L(t,a) _ -A(t,a) +X(t,a){y(t) -fl L(t,a')w(a')

	

da')	 (3-19)

L(t,0) = 0	 (3-20)

By using these results, the optimal estimate Z is then given by

	

Z(t) = f  L(t,a`)w(a')doa' 	 (3-21)
D

At this point it seems essential to point out that unless the

function h(t,$) is desired for some reason other than calculating Z.

we need not calculate it at all. In fact, (3-21) and (3-19) show

that knowledge of the function X and L suffice to determine Z. This

observation is of considerable computational importance, as well as

of some analytical interest.
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With some effort, we should be able to see that these equations

are essentially the same as (2-77), (2-78), (2-81), (2-82), (2-86) if

we make the assumption

n
W(a) 	 a i S ( a - ai),ai	 0, -F = diag{a 1 , ..,an}

1

This is why the equation for K(•) and Y(-) are said to be of

Chandrasekhar type.

Further Examine of Case IV

To make some connections with the radiative-transfer problem in

which Chandrasekhar originally introduced the X(-) and Y(•) functions,

we-shall examine Special ' Case IIIa further. Let us assume also that

N has rank P, so that the relevant equations are (2-81), (2-82), and

(2-86). Not let us define an impulse response function h(t,T) as

I(t) = of h(t,T)y(T)dT
	

(3-22)

Then we can show that

(t,'C)K(T),	 t > T

h(t,T) =	 (3-23)

0,	 t < T

where	 is the state-transition matrix of F-K(•)M, that is

(F - K(t) M) ^ (t,T), v(T,T) = I	 (3-24)

Also note that h(.,.) satisfies the Wiener-Hopf type of equation
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h(t,T) + of h(t,$)K(S,T'is = K(t,T),t > T	 (3-25)

Now it is clear that from (3-23) and (2-7), (2-82) we can obtain the

following relations

h(t,t) = MK(t)	 (3-26)

h( t,0) = MP(t,0)K(0) = 14Y(t) 	 (3-27)

Then we see that the equation (2-81)

k(t) = -Y(t)Y'(t)M', is the same as

ah alt = - h(t,o) h'(t,O)
	

(3-28)

which is a result that follows from a resolvent identifying in the

theory of integral equations.

It is of interest to not that when the signal x(•) and noise

v(-) are uncorrelated, i.e., when K(t,$) is a covariance function, we

can identify

MK(t) = E[Z (t) Z'(t)]
	

(3-29)

MY(t) = Elz (t) Z'(0)]
	

(3-30)

where Z(t) = Z(t) - Z(t) is the instantaneous error in the estimate

of Z(t). The relations (3-29) and (3-30) have been used to suggest

filtering-theory analogs of some quantities that arise in radiative

transfer, e.g., the reflection, transmission, and internal intensity

functions; however, these analogies have to be treated with some care

because the assumption that K(t,$) is a covariance function, which is
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necessary for (3-29) and (3-30), is not valid in the radiative-

transfer problem.
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CHAPTER IV

PROOF OF THE CHAHDRASEKHAR-TYPE FORMULAS

The Chandrasekhar-type equations presented in previous chapters

can be derived in several ways. We choose one that begins with

knowledge of the Kalman filter solution. in this way, the manner in

which the constancy of the model parameters can be exploited will per-

haps standout most clearly. Also, all questions of existence and

uniqueness can be resolved immediately by use of the known results for

the Kalman Theory (5).

For our convenience, let us restate the equations of the Kalman

filter

A	 A	 A	 A

X(t) = FX(t) + K(t)CY(t) - HX(t)a, X(to) = O 	 (4-1)

Qt) = P(t) H' + GC	 (4-2)

P(t) = FP(t) + P(t)F' - K(t)K'(t) + GQG%

P(to) = no	
(4-3)

!et us define 0(t,to) to be the state-transition matrix of the

matrix F - K(t)H. That is *(t,to) is the unique solution of the linear

d*(t,to) = IF - 
K(t)H) ^(t,t o ), *(to ,t o ) = I	 (4-4)

Before we proceed to derive our algorithm, let us consider the

following lemma

I

I^
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l.enma: The derivative P( • ) of the solution PH of the Riccati-

type equation (2-12) can be written as follow

NO = ^(t,to) P (to)	 (t, to)	 (4-5)

where

P(t o ) = D = FP(t o )+ P(t o )F- - K(t o )K- (to ) + GQG -	(4-6)

And if we let P(to) = 'no and K(to) = H O H' + GC we have:

P(to ) = D = FR O + 11 O F' - (n oH' + GC)(H OH - + GC) -+ GQG -	(4-7)

Proof: we attack (4-3) by differentiation to get

P(t) = FP(t) + P(t)F - K(t)^'(t) - K(t)K"(t) 	 (4-8)

Also, differentiation of both sides of (4-2) yield:

R(t) = P(t) H	 (4-9)

Using equation (4-9;, we can rearran ge (4-8) as

P(t) _ (F - K(t) H) P(t).+ P(t) (F - K(t) H)	 (4-10)

Now let us temporarily diregard the dependence of K( • ) on P(-), and

just regard K(•) as some given function, then equation (4-10) is a

linear homogeneous equation in P( • ). This equation can be solved to

give

P(t) = ^(t,t o ) P(t ) *, (t,to)

It can be easily checked by differentiation that the last expression

for P(,) does indeed satisfy (4-10).

e

:a

a
az,
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The basic idea underlying the rest of the arguments is that for

certain choices of P(to), P(to), and therefore k t) can have rank less

than n. For example let us consider Case 1.

Proof of the Case I

Since we assumed that no = 4, therefore (4- 7) becomes

P(to) = GQcG'

where

i

a

(4-11)

(4-12)

(4-13)

Then by differentiation we see that

Y 1 (t) = IF - K(t)H] YI(t),

Also from (4-11) - (4-13) we see that

P(t) = Y1 (t) Y'(t)

QC Q - CC'

And the basic. relation (4-5) becomes

0(t) = g t,to)GQCCf '^t,to)

Since GQcG is nonegative-definite, we can factor it as

GQcG = L I L I	Li = n x a matrix

where

rank of GQcG' a

Note that the dimension of L 1 is unique. Now if we define

Y1(t) = *(t,to)Lj

YI( to) = Li (4-14)
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Then (4-18) can be written as

P(t) = Y i(t) Y I (t) - Y2 (t) Y2 (t)	 (4-20)

And also from (4-19)

Yi(t) = (F - Kk* t) H) Yi(t), Y i (t } = L i 	(4-21)	 •

Then we see that

K(t) = P(t)HO = 1Y 1 (t)Y 1 (t) - Y 2 (t)Y 2 (t)l H^	 (4-22)

K(to) = P(to)H -+ GC = IToH - + GC	 (4-23)

Equations (4-21) - (4-23) are just the Chandrasekhar-type equations,

and the proof of the general formula is completed.

Proof of the Case IV

Ire this case we have covariance information rather than a state

model. Let us work wi th the Riccati equation (2-80).

E(t)	 FY(t) + X( t ) F^ + K(t)K(t), Y( t o) = 0

K(t) _ N - J(t)M_

,i
and thus for E (t) we can have

(t) _ (F - K(t)M) J( t) + 	(t) (F - K(t)M) ' 	(4-24)

Now, if we define , (t,to) to be the state-transition matrix of

F - K(t) M, then from (4-24) we have

1( t) = *(t, to) i (to) ^ ' (t,to)	 (4-25)

'f
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and from (4-9) we have

K(t) = P(t)H' = Y i (t) YI(t)H .
	

(4-15)

K(to) = P(to)H " + GC = GC	 (4-16)

Equations (4-14) - (4-16) are simultaneous Chandrasekhar-type equa-

tions for Case I.

Proof of the General Formulas

The proof in the general case is almost as simple. Since for

any value of no, D = P(to) as given in equation (4-7) is symmetric,

therefore, it can be factored as

D _ P(to) = L I LT - L2 L2 	(4-17)

Let us assume that

a = rank of C

aed rank of L 1 L, is the number, say	 where is the number of

positive eigenvalues of D and the rank of L 2 L2 is

Here we can always choose the dimensions of L 1 and Lz so that

	

L, = n x B,	 L2 = n x(a

By these assumptions, now we can write (4-5) as

P(t) = ^(t,to)L,Li^ (t,to) — +( t ,to) L 2 L2	 (t,to)	 ( 4-18)

Now if we define

	Yi(t) = ^(t,to)Li	 i = 1,2	 (4-19)

L



and from (2-80) we get

J(t ) w K(to) K (to) = t;111r

Now if N has rank P, 5 min(n,p), we can write

NNE = N oNa,	 N o an n x p, matrix

Therefore from (4-25)

r

j(t) = ^(t,to)NoN'O*'(t,to) = Y(t) Y-(t)

where we can take

Y(t) = *(t,to!N0

and therefore

(4-27)

Y(t) = (F - K (t) M) Y(t),	 Y(to) = No	 (4-28)

	

Note that when P 1 = P we can identify N and No 	 Equations (4-26) -

(4-28) are Chandrasekhar-type equations.

Also note that we can verify the relation

I(t) = n(t) - PM

So that

J(t)	 P(t) = -PM

And if K ( t,$) as in ( 2-75) arises from P model of the fore (2-1) -

(2-6), we can identify

M = H, N(t) = n(t) H' + GC



CONCLUSION

A new class of algorithm for l inear least squares, estimation

problem is presented. Th ,^ new algorithm does have some computational

saving when the number o =̂ observation vectors are much less than the

dimension of the state space.
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APPENDIX I

Fortran IV Proqram for Solution of the Chandrasekhar-TvPe Equations

Here we present the computer program, using i.he fourth-order

Runge-Kutta method. to solve the Chandrasekhar-type equations of the

example 3 in Ciiapter II, Case 1.

The purpose of the Runge-Kutta method is to obtain an approxi-

mate solution of a system of first order ordinary differential

equations.

ii
it
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