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LIST OF TERMS

e 	 strain tensor

0	 - dilatation

7ij
	 stress tensor

X,µ
	 Lame constants

u	 radial displacementr

uy	 angular displacement

v	 Poissons ratio

E
	

Young's modulus

0	 equatorial minus polar radius

a	 - undeformed rotor radius

cv	 - angular rotation frequency

P	 - density of rotor

a2	- coefficient of second harmonic of rotor

Al	 - principal moment of inertia difference

I	 - moment of inertia of rotor



TECHNICAL MEMORANDUM X• 64964

ELA ST I C DEFORMAT I ON OF THE G YRO ROTOR

IN THE RELAT IV I TY G YRO EXPERIMENT

INTRODUCTION

The elastic deformation of a spinning sphere is an old problem which was
first solved by Chree in 1889 111. This solution is needed to evaluate the elec-
trical torques on the rotor in the Stanford Gyro experiment. In this experiment,
the elastic deformation due to spin will produce nonradial forces on the ball
which will lead to drift-producing torques. These torques must be understood
and calculated to estimate the ultimate accuracy of the experiment.

In thn original derivation by Chree [ 11 and in subsequent treatments [ 2,
31, the results are exhibited without a derivation. A simplified derivation which
points out the assumptions which are made in the derivation is presented here.
Spherical coordinates are used so that the end result can readily be used as an
input to the electrostatic torque calculation. Numerical results are presented
for the most likely configuration in the gyro experiment, a quartz ball spinning
at 200 Hz. The fractional change in difference of principal moments of inertia
A I/ I is then calculated including density changes in the ball. This result is
needed for the gravity gradient torque calculations.

DEFORMATION! CALCULATION

The problem is attacked by solving the Navier equations in elasticity
theory with the appropriate boundary conditions. These equations mast be
written and solved in spherical coordinates because for our electrostatic
torque calculations, the shape of the ball must be developed as a Fourier
cosine series in the polar angle 0. To verify that the shape contains only an
a2 cos 20 term and to calculate a2 , we must work in polar coordinates. We
start from first principles to bring out any approximations or assumptions
made in the derivation. This presents a problem since most books give the



equations only in cartesian coordinate3. The simplest way to find the equations
in spherical coordinates is to write the equations in their general form with
covariant derivatives present and then find the form of the covariant derivatives
in spherical coordinates. To begin, one calculates the strain tensor e ij in
terms c the displacements iii using

eij	 2[Dxj +
	 i
	 (1)

where D/ Dxl denotes covariant derivatives. When this is done and the identi-
fication of the physical components of u  and e ij is made, one can obtain
equation 48.17 of Sokolnikoff 14).

In spherical coordinates, the line element and Christoffel symbols are

ds 2 = dr2 + r2 [d02 + sin  edo21

r 33 = -sin 8 cos 8 r22 = -r r I = -r sin' B

r i2 = r 13 = 1 I' ! = cot 9
r

Identifying; the "physical components" 151 of u  as u  = u l , u8 = u 2/ r, and

uO = u 3/ r sin 8 , one finds for the physical components of e. j from equation (1)i

8ur

	

err	 8r

1 O 0 ur
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(cont' d)

where the physical components of e., are g J_9jj a	 The dilatation A
is given by1Jlli^

9 = 
gibe - 8ur + 1 

au8 + 2u  +	 1	 8 0_ + cot 8 u
iJ	 8r	 r aO	 r	 r sin 8 90	 r	 8

The equations of equilibrium in tensor notation are given by

DT
gJk	 1.1	

F1 = p

Dx

where r
iJ

, is the stress tensor and F  is the body force vector, in this case

representing centrifugal force. The first term in this equation must be cal-
culated in spherical coordinates. Using the definition of covariant derivative
and the Christoffel symbols, the following equations are obtained:

—^	 --^^rrr + 2 r + 1 Orr +	 1	 rr	
1 (r + r ) + 1 cot 8 r = -F 	 (4)

_ -

Or	 r rr r 88	 r sin 8 80	 r 8B	 oo	 r	 r8	 r

arOr+18x88+ 1	 8T	 3 re
8 $ + cota r _cot8r +_-F

	 (5)
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B	 !:M+37-   + 2T cot
Tro 	 'Too

8

Or r sin B 80	 r 88	 r	 ¢ (6)

These equations contain the physical components of
48.18 of Sokolnikoff [4).

To obtain equations containing onl y the u i f s

the Tij ' s must be expressed in terms of. the u i+ S.

generalized Hooke's Law valid for a homogeneous ii

Ti ,
7 

and agree with equation

( the Navier equations) ,

This is done by the

iotropic body

Tij = Iegij + 2µeij

where X and µ are the LamA constants. Using equation (2) , we obtain for
the physical components of Tij :
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(7)

where we have assumed that the u i 
f s are independent of 0 ( and u0 = 0) .

These equations can now be substituted into equation (4) , from which we obtain

8u

(^+2µ) O
r	 ae	 Or( 0)+r^88 (ain 0 8© =-Fr .

(8)
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Substituting equation (7) into equation (5). we obtain

y1 8	 _

r 88 (X+ )®+ 8	 8'u

r (ruo)	
8r r = -FO	(9)

Equations (8) and (9) are the Navier equations of elastic equilibrium written in
spherical coordinates with no 0 dependence. They agree with equation 110f
of Honeywell's report No. 20831 FR 16).

They must be solved for the case of a body force given by the centrifugal
force on the spinning ball. The solution must satisfy the boundary condition 	 _ -=
that the surface of the spinning spherep ng p	 being considered is free from stress.
That is, at r = a, we must have

Trr = 0 7 r = 0	 (10)

The body force can be derived from a scalar potential given by

V = 2 pw'r' sin' 0

where p is the density of the ball and w its angular velocity. Then, in
spherical coordinates,

F = 8V

r	 a r	 p w'r sin  0

(11)

FO =
i av	 :
r 80	

pw r sin 0 cos 0

Now the solutions to equations (8) and (9) are written with the body force given
by equation (11) . This solution satisfies the boundary conditions of equation
(10):

5



#0

r'	 r'
ur = p w 2a2 P2( cos 9) ai ^F + a2r + a3 + a4r

r'	 (12)
u0 = p w 2a2 sin 0 cos 0 .1 S

(12)
 p2r

where

3x + 2u
Ul	 3µ(19k+ 141A)

_ 2(4X+ 3u)
a2	 3µ(19a+ 141+)

_	 1
13	 15(7 + 21A)

( 5X + 6u )

a4	 15(7 + 21A) (3X + 2µ )

(5A,+ 4u)

2µ(19R+ 14$A)

4X + 3u
92	 µ (197 + 141A)

1
P2( cos 0)	 2 ( 3 cost 0 - 11

It can be verified that this is a solution of equation (8) as follows. First, if e
is calculated from this solution,

(X+2µ) 	 = 1)W a2 I(X+2µ) [P2(cos 0)(5ai+2R2) aF + 10a, a J^
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The other terms in equation (8) give

	

r s 0 ae sin 0 8r (rue ) 	 -pw 2 a= -µ(4Si a + 2^ T 2P2(cos 0)

8u

r- sin0 a8 (sin 0 88 = pw2a^ 1 _31A a 1 a + a= r 2P2( cos 0)

Addiug these three terms and using the identities

as(5%+ 7µ) + PI(2X) = 1
3

10(X + 21A	
2

) ag = - 3

we find that the left side of equation (S) gives -p w 2r bin2 B in agreement with
equation (11) . The three terms in equation (9) are

a ( rue) - p w Za2 sin 0 cos 0 12 p
i r2

 + 2 p2

a 2	 l
arse = pw2a2 -3 cos 0 sin 0 3a, a + a2

2
LQ= pw2a2 -3 cos 0 sin 0 ( 5a 1 + 2 ^, )

Combining these terms, we verify that the left side of equation ( 9) gives
-pw 2r2 sin 0 cos 0 in agreement with equation ( 11) . Therefore, this verifies
that our solution satisfies equations ( 8) and ( 9) . It remains to show that the
solution also satisfies the boundary conditions in equation (10). Using
equation ( 7) with the differentiated form of equation ( 12) , we find that at
r = a

7



Tri	 Pw 2a2 {P=(cos 0)1 al( 5A+ 61A) + 2ARi + 2µa1)

+ I CiA5A+ 6µ) + a4 ( 37, 2µ)j)

The second square bracket is obviously zero and, using the expression for a l ,
p1 and U2, the first square bracket is also zero. Again, using equation (7)
and the differential form of equation (12) , we find that at r = a

T 
r0 = µP2a2 sin 0 cos Of -3a 1 - 30 2 + 2 P1)

and this is also zero by the definition of ap n2, and P1 • This demonstrates
that equation (12) satisfies both boundary conditions in equation (10) .

Evaluating the solution at r = a gives

	

w2as	
cos 8 (1 + v) (2 + v) + 1 - 2vu =r	 3E I-P2  (	 )	 ( 7 + 5v)	 5	 '	 (13)

where we have used the definitions of the Lams constants in terms of Young's
modulus and Poisson' s ratio:

X

v	 2(A+µ)

E
A	 2(1 + v)

From this we note that the fractional difference A between the equato-
rial and polar radii is

^uJO= 2)-ur(0-0)] 
^ii,2 (1+v)(2+v)

-	 a	 r E	 7 + 5v

AAA

t

1

i
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A

We also note that since

3 11 +c 29	 1

the coefficient of the cos 20 term, which we will call a2 , is given by

_ - P w 2a3 [(1+0(2+P1	 1
a2	

2E	 7+5v	
- -2Da

Thi .:,^uifficient a2 is necessary to calculate electric torques on an Olectro-
sts+.tic kyro since they t-.re calculated in terms of harmonic coefficients of
whi:,.i a2 is the to vest.

Now we can compute 0 and a2 numerically for a quartz ball spinning
at 200 Hz. We will use the following parameters:

p = 2.2 g/ cm3

w = 200 cps

a = 0.75 in. = 1.9 cm

E = 10.4 x 1)6 lb/ in. 2 = 7.17 x 10 11 dynes/ em2

P = 0.16

JO W
2a2

 = 1.76 x 10-6

A = 5.62 x 10-`

a2 = -2.1 µin. = -5.33 x 10-4 cm

Both these quantities scale as c4+2.

9



MOMENT OF INERTIA CALCULATION

Using the results of the last section, we can calculate the difference in
the principal moments of inertia produceti by the centrifugal expansion. This
calculation is needed to evaluate the effects of gravity gradient torques on the
gyro experiment. In the expression for gravity gradient torques, the quantity
A I/ I is needed, where

,&I = 133	 (Ill + 122)	 f dv j r 2 - 3Z2 1 p(r)	 (14)2	 2

and Ill , 122, and 133 are the principal moments of inertia. There are two con-
tributions to AI/ I: the first due to the oblateness of the ball, and the second
due to density changes in the ball. The first effect is calculated as follows: the
expansion of the ball given by u 

r 
(0) produces an extra infinitesimal element

dm given by

(tm = Pu r ( 0) ( 2 7ra sin 0) ( adO)

and one then needs to calculate

AI = I- f a[ 1 - 3 COS
' 0 j dm = a2	 P2(C3S 0) dM

2

where P2 is the second Ugendre polynomial. Using equation (13), this
becomes

2p2 W 2aT	 (1 + v) (2 + V	

7r

3E	 (7 +- 5t,)	 f I P2(COS 
0) ] 2 2 7r sin 0 dO

1	 0

1	 2. Ir
5	 f 1 P2 (% COS 0) 1 2r sin 0 d8

0	 1 -

10



The second integral is zero because of the orthogonality of Legendre polynomials
(Po = 1) , and the first integral is equal to 41/5 by the normalization integrals
for P2 . Hence,

_ 87rP 2w2at (1 + v) (2 + v)
15E	 (7 + 5v)

and, since I= 8/ 15 apab , we finally have

W _ p2a2 (1 + v) (2 + v)  Pw2a2	 5X + 41A

I	 E	 (7+ 5v)	 2µ	 197,+ 141A

which is equal to 0. Therefore, we have the result that for the distorted sphere
of uniform density, DI/ I = 0 13).  However, in actuality, there will be a change
in density when the gyro is spun up which will Rlso produce a contribution to
AI/ I . This is given by

ir	 2
All _ -2v f sin 0 d9 f r2 dr 2 [ 1 - 3 cos 8j Pe

0

where the integral is now over the entire volume of the rotor ( assumed spherical)
and -0 is the fractional density change Ap/p . Using the expression for 9
computed from equation (12) , tids integral becomes

HIV = 2a w2a2 fr 2dr f [ P2 ( cos 8)] 2 sin 8 d8 - 2 1 + v) (1 - 2v)

E	 0	 0	 3	 (7 + 5v)	 a

+ f P2( cos 8)) sin 0 d0 - 3	 (1 - v)	 a0

1 (3-v) (1-2v)
+ 5	 (1-v)

11



As before, the second 8 integral is zero and the first is 2/ 5; therefore, this
expression gives

Dh = -4rp 2 w2a7 (1 + v) (1 - 2v) 2
21E	 (7 + 5v)	 5

AI' _ _pw2a2 (1 + v) (1 - 2v) _ pw2a2 	 1
I, 	 7E	 (7 + 5v)	 7	 19k + 14p

This gives for the total change in DI/ I

Al  p w2a2 35N + 6
I	 141A	 19X + 14µ

which is agreement with Reference 3. This gives a reduction in DI/ I of

1-2v 
- 4.5%7(2 + v)	 .

Therefore, for the quartz sphere at 200 Hz, we have

DI = 5. 37 x i0 -6
I	 '

While this is a small number, the usual expression for gravity gradient torques
involving AI/I indicates that they will contribute one of the largest torques on
the gyro in the final gyro experiment. For this reason it is important to know
the actual magnitude of the AI/I term accurately.
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