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I. INTRODUCTION 

The NASA program f o r  growth of semiconductor s i n g l e  c r y s t a l s  in the  

space environment of Skylab was expected* t o  produce c r y s t a l s  of s i g n i f l -  

can t ly  higher qua l i ty  than a t t a inab le  through the  same growing procrssee 

on ear th .  A s  the  semiconductor c r y s t a l s  become more per fec t  i f  undoped 

o r  more uniform i f  doped, t he  emphasis in any measurement of them s h i f t s  

increasingly toward ca re  i n  avoiding damage t o  t h e  c r y s t a l  by t h e  measurement. 

A. Need f o r  Nondestructive Method fo r  E l e c t r i c a l  Character izat ion 

E l e c t r i c a l  character izat ion of a s ing l e  c r y s t a l  of semiconductor usual ly  

involves "soldering" ohmic contacts  i n  severa l  loca t ions  i n  order t o  ob ta in  

some average bulk property (e.g. bulk r e s i s t i v i t y )  f o r  t he  sample piece. 

Whenever t h e  c r y s t a l  is t o  be evaluated fo r  use in l a rge  s c a l e  in tegra te3  

(LSI) c i r c u i t r y ,  t he  charac te r iza t ion  should include a search fo r  l oca l  

va r i a t i ons  in e l e c t r i c a l  propert ies .  Such a search should use a nondestruc- 

t i v e  method of mapping t h e  surface of t he  semiconductor. 

Clearly,  t he  mapping of e l e c t r i c a l  c h a r a c t e r i s t i c s  of high qua l i t y  

c rys t a l s ,  such a s  those grown on Skylab f l i g h t s ,  should be done without 

i n f l i c t i n g  any damage, To t h i s  end, noncontacting methods of mapping were 

sought - avoiding the  formation of "solder" contac ts  and avoiding t h e  high 

l o c a l  pressure of point contacts.  In addi t ion  t o  valuable monitoring of 

NASA's space processed mater ia ls ,  the  successful  development of su i t ab l e  

noncontacting methods of e l e c t r i c a l  measurement would be of considerable 

spinoff value t o  U.  S. semiconductor manufacturers or  a t  l e a s t  t o  U. S. semi- 

conductor c i r c u i t  manufacturers. 

*This expectation was rea l ized  many times in  t' high qua l i t y  semicon- 
ductor c r y s t a l s  grown on the Skylab missions dl ,ng 1973 and 1974. 
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B. Noncontacting Techniques f o r  High Qual i ty  Single Crys ta l s  

The c l a s s  of techniques by which the  e l e c t r i c a l  p roper t ies  of 

a semiconductor s ing l e  c r y s t a l  can be observed without contac ts  is l imi ted  

t o  coupling t o  t h e  c r y s t a l  by electromagnetic r ad i a t i on  a t  frequencies 

from r f  t o  t he  near uv. The o p t i c a l  frequencieshave been used t o  probe 

the uniformity of ce r t a in  types of impur i t i es  in semiconductor ~ r ~ s t a 1 s . l  

A wide range of rad ia t ion  frequencies can be used t o  observe the  mobi l i t i es  

and the concentrations of the  various types of charge c a r r i e r s  present  

near the  surface of t h e  semiconductor c y r s t a l b e i n g  examined. For survey- 

ing  c a r r i e r  concentrations and mobi l i t i es  of t h i n  semicr aductor shee ts ,  

usefu l  measureinents of o p t i c a l  transmission and r e f l e c t i o n  with cormaercial 

instruments have been reported2 with 1.5 mu diameter resolut ion.  In 

addi t ion,  t he  impuri t ies  within t h e  semiconductor can of ten  be i den t i f i ed  

by X-radiation. 

Coupling t o  a semiconductor a t  high frequencies implies4 t he  react ion 

of t he  semiconductor w i l l  take place near t h e  surface,  i.e., within t h e  "skin 

depth," 6,. The "c lass ica l"  appl ica t ion  of Maxwell's equations fo r  t he  

case of a f i e l d  E, applied t o  a plane sur face  of semi- inf ini te  conductor 

extending from x = 0 gives  t he  current densi ty  varying with t h e  depth x 

a s  5 

where t he  normal sk in  depth, 6,, is defined a s  

6, ( ~ / n f l J ~ )  'I2 = 504 (p/f)'12 meters (2) 



FTR - NAS8-29542 

I 

fo r  p i n  ohm-meters and f i n  Hz. The r e s i s t i v i t y ,  f o r  a semicon- 

ductor whose dominant charge c a r r i e r  has an e f f e c t i v e  mass m* and mean- 

f r e e  time between co l l i a ions  of T ,  can be expressed6 by the  product of T 

and the  c a r r i e r  concentration n a s  

Usually T and n a r e  each s ign i f i can t  i n  character iz ing the  c rys t a l .  

It might be  noted in passing t h a t  t h i s  normal sk in  depth is small  

i n  our bes t  me ta l l i c  conductors even a t  power l i n e  frequencies. For example, 

Equation 2 indicates ,  as is found i n  prac t ice ,  t h a t  6 7 mm in copper and 

i n  aluminum a t  60 Hz and a t  room temperature. 

1. Use of Radio Frequencies t o  Microwaves 

Returning t o  the  choice of method t o  charac te r ize  a f l a t  semicon- 

i 
j 

ductor c r y s t a l  by its r e s i s t i v i t y  i n  t h e  volume encompased by the  depth 

, > 
.v 

of x = 6 b e l w  t h e  surface,  we can choose t he  frequency t o  use i n  order  

t o  probe the  predetermined depth, 6. Likewise, w e  can choose the  frequency 

t o  obtain a reasonable reso lu t ion  of t h e  mapping s ince  t he  minimum sur face  

a r ea  (= resolut ion element) t ha t  can be probed measures approximately one- 

half  wavelength across.  In any case, an instrumental measurement of a 

value fo r  the sk in  depth a t  a given frequency w i l l  give, by Equation 2, 

t h e  e f f ec t i ve  r e s i s t i v i t y  near t he  c r y s t a l  surface,  averaged over t h e  a r ea  

exposed t o  the  radiat ion.  

For conducting c rys t a l s ,  the  normal akin e f f e c t  app l i e s  t o  within a 

few percent7 with t he  mean-free path of t h e  charge c a r r i e r s  equal t o  one 

sk in  depth a s  given by Equation 2. Values fo r  t he  normal sk in  depth a r e ,  

by Eq. 2: 
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For r s s i s t i * r i t y  of 10 ohm-cm, 6, = 16 nm a t  100 MHz, 

6, = 1.6 rn at  10 GHz, and 

6 = 6.8 mn at  35 GHz. 
8 

For r e s i s t i v i t y  of 0.001 ohm-cm, 6s = 0.16 mn a t  100 MHz, and 

6= = 0.008 mu a t  35 CHZ. 

Values t o  60 GHz a r e  given f o r  s i l i c o n  i n  a recent  book by H. F. Matare. 8 

Comparison t o  c a r r i e r  mean-free path, i, can be made by t h e  "free electron" 

model6 f o r  our semiconductor c r y s t a l  by est imat ing the  Fermi ve loc i ty ,  v ~ ,  

t o  be l ( l o 7 )  cmlsec f o r  m* = Q. The expression f o r  mean-free path 

is 

Values of T = r n * ~ ~ / e  depend on t h e  Hal l  mobili ty,  p ~ .  So the  values  

of near.-free path, 11, expected f o r  "f reel' e l ec t rons  i n  our semiconductor 

a t  room temperature a r e  estimated t o  range from 11 = 0.4 micron f o r  

4 2 = 10 cm /Volt Bee to  i = 0.04 micron fo r  y~ - 1 0 3 c ~ 2 / ~ o l t  sec.  

Clearly,  we expect i << 6,. 

Therefore, t he  c l ae s i ca l  expression for  the  sk in  depth (6, by Eq. 2) 

should be an accurate  way of ca lcu la t ing  the  r e s i s t i v i t y  of f l a t  semicon- 

ductor samples from meaeurement of sk in  depth, 6, even a t  frequencies 

higher than 35 GHz. 

Cyclotron resonance and e lec t ron  sp in  resonance can give useful  

character izhFion wi th in  t h e  sk in  depth region too. For example, t he  con- . i I 

9 I 

cent ra t ions  of impuri t ies  i n  Ce were recent ly  measured by cyclotron resonance. i 



2. Use of Optical Radiation 

Coupling t o  a remiconductor a t  op t i ca l  frequencies can yield elec- 

t r i c a l  characteris t  ics .  lo For th in  semiconductor wafers, standard opt ica l  

(infrared) masurements of ref lec t ion  and transmission have been used t o  

mnp ca r r i e r  concentration end mobility; the  report by Black, e t  a ~ . ~  indi- 

cates precisian b e t t e r  than 10% over a wide range of values for  GaAs wafers 

scanned with a 1.5 mm diameter beam on a Perkin Elmer Model 621 recording 

spectrophotometer. 

NASA's needs include the  a b i l i t y  t o  characterize the surface of 

=re nussive semiconductor crys ta ls  - possibly too thick t o  obtain infrared 

transmission values a s  above. For cer ta in  semiconductors, l i k e  S i  and Ge, 

edge contacts w i l l  serve t o  obtain a map of photovoltaic (PV) response from a 

spot of liat impinging on the c rys ta l  surface, revealing nonunifomity of 

c a r r i e r  concentration and/or mobilities.  Meaningful W response has 

apparently not yet been at tained on other semiconduc~or crys ta ls ,  such as  

GaAs. For large band gap semiconductors l i k e  SIC and GaAe, the  l i g h t  

emitted by electron-hole recomb inat  ion processes has been usedll ,  l2 t o  ident i fy  

the  e l ec t r i ca l ly  ac t ive  impurity s i t e s  present.. Our success a t  obtaining 

impurity concentration in volumes of GaAs less than a cubic millimeter is 

mentioned in the Results Section. 

Another c lass  of op t i ca l  techniques which has p r m i s e  for  

e l e c t r i c a l  characterization involves photo-induced changes. We looked 

b r i e f ly  for photo-induced conductivity a t  room temperature, l3 but our search 

was inconclurive. Photo-induced microwave conductivity is r t i l l  a poten- 

t i a l l y  ureful  technique fo r  mapping high quali ty semiconductor crys ta ls  

without car tac t r  . 



1 
! I 
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C. Crystal  Select ion f o r  t h i s  Study 

The c r y s t ~ l s  of semiconductors used i n  t h i s  study of nondestruc- 

t i v e  techniques f o r  observing e l e c t r i c a l  cha rac t e r i s t i c s  were supplied 

through the  good o f f i c e s  of the NASA Space Sciences Laboratories, MSFC. 

The emphasis during the  e a r l i e r  portion was on character izing f l a t  sur- 

faces of GaAs i n  preparation f o r  the  M555 Fligfit Experiment. The emphasis 

during t h ~  last s i x  months was on small  s ing le  c r y s t a l l i n e  f l akes  of vapor- 

grown germanium selenide. The comparison of 35 CHz skin depths we observed 

i n  GeSe f lakes  grom14 on Skylab t o  Ge. 2 f lakes  grown a t  RPI is tabulated 

b ,low. 

D. Purpose 

I twas ,  therefore,  the  general purpose of t h i s  contract  t o  demon- 

s t r a t e  t h e  s e n s i t i v i t y  of one o r  more noncoatacting methods of e l e c t r i c a l  

character izat ion of s ing le  c rys t a l s  of the  semiconductors t o  be grown on 

Skylab. Spec i f ic  goals dea l t  at f i r s t  with character izing surfaces 4 . f  gallium 

arsenide s l abs  and dea l t  in t he  last half  year with small f lakes  of germaniuw 

selenide s ing le  c rys ta l s .  

Single c r y s t a l  samples t o  be s tudied were supplied through the  

Space Sciences Lab of NASA/MSFC. The spec i f i c  approaches t h a t  we inves t i -  

gated included microwave sk in  depth and e-h recombination luminescence. TWO 

microwave techniques were developed t o  tire point  of co l l ec t ing  ~ t a t i S t ? . c a l  

. evidence of sens it i v i t y  reprr,ducibili ty The GaAs luminescence s c m n h g  

technique was developed by an in te ree ted  graduate student J. M. h e ,  largely 

on h i s  own time. 



I I. APPROACH TAKEN 

A. Noncontacting Techniques Considered 

1, RF Resistance by --- Coil L o a d i s  

The eddy cur ren ts  induced i n  a semiconductor specimen a r e  a spcc.ifi-  

but complicated geometric function of shape of c o i l s  and semiconductor and 

of the uniformity of r e s i s t i v i t y .  An example of successful  noncontacting 

measurements of bulk r e s i s t i v i t y  by eddy cur ren ts  a t  10 MHz w a s  reported 

by J. C. Brice and P. Moore i n  J. Sci.  I n s t .  38 (1961) on page 307. Mapping 

could be accomplished with s u f f i c i e n t l y  small c o i l s  but consis tent  coupling 

is a d i f f i c u l t  mechanical problem. 

2. Surface Ef fec t s  a t  9 GHz and 35 CHz 

Preference was given t o  35 CHz because t h e  a r ea  of the  mapping resolu- 

t i o n  element can be smaller by x16. We considered t h e  sur face  res i s tance  

by waveguide t e r m i n a t i ~ n ' ~  and by cavi ty  loading, p re fe r r ing  the  l a t t e r  f o r  

f l a t s  with high r e s i s t i v i t y  and f o r  t he  small f l akes .  We ccnsidered the  

microwave Hall e f f ec t .  After s eve ra l  tries with biomodal c a v i t i e s ,  we 

became more f u l l y  appreciat ive of t he  c r i t i c a l  need f o r  equivalence i n  t he  

degenerate modes a s  ca l l ed  fo r  by A. M. P o r t i s  i n  h i s  Phys. Rev. paper, a 

t r u l y  severe mechanical challenge and, theref  ore,  not su i t ab l e  f o r  rapid 

surveying of f l a t  samples. 

Cyclotron teeonance remains a promising prospect9 fo r  measuring t h e  

l i f e t ime  of each type of c a r r i e r  provided the  napping can be arranged at 

low temperatures. 



Photo-induced changes In microwave conduct ivi t> (PC) s imi l a r ly  

s tands an a promising non-contacting way13 of mapping seve ra l  e l e c t r i c a l  

c h a r a c t e r i s t i c s  with a resolut ion element approaching the  s i z e  of t he  

minimum l i g h t  beam. Photo-induced microwave conductivity should be 

espec ia l ly  useful  i n  semiconductor samples of very high r e s i s t i v i t y  f o r  

which the  s e n s i t i v i t y  of surface res i s tance  measurements is decl ining.  

3. Opt ica l  Means --- 
Fluorescence from electron-hole reco&ination is =rrquent ly  a d i r e c t  

ind ica tor  of the  donor impurity The l i t e r a t u r e  is l i t e r a l l y  

crowded with publ icat ions of such obsemations f o r  semiconductors a t  low 

temperatures. We found l i t t l e  evidence of successful fluorescence a t  rocm 

temperature s o  we took up t ha t  challcrige. 

Raman sca t t e r ing  from defect  moues a t  t he  impuri t ies  of i n t e r e s t  

Ls weak a t  room temperature being usual ly  not s e n s i t i v e  enough t o  r e v e t l  the  

imlvurity concent~aticrns of i n t e r e s t  even at very low temperatures. 

B. Noncontact ing Techniques Used 

Each technique f o r  noncontacting e l e c t r i c a l  c h ~ r a c t e r i z a t i o n  of 

semiconductor  surface^ was chosen t o  demons:.raie its r e l i a b i l i t y  f o r  abso- 

Zute values in a  ample sequence represen ta t ive  of t h e  sho r t  term needs of 

NASA's program f o r  space c rys t a l l i z s t i on .  Repeated subs t i t u t i on  of oamples 

w a s  employed t o  a t t a i n  preliminary s t a t i s t i c a l  evidence of r e l i a b i l i t y .  

It should be noted t h a t  in m y  sequent ia l  subrrti tution method 

there  a r e  sources of dc no ise  which can be reduced o r  eliminated by 

properly engineered irrodulation techniques. Therefore, t he  r e l i a b i l i t y  or  

s imal- to-noise  reported here  represent  conservative values  - euscept ibleof  

improvement by one o r  mors orders  of magnitude with t he  appropriate  engineering. 



1. Skin Depth a t  35 GHz 

Pes i s t i v i ty  near a semiconductor surface is re l a t ed  t o  the 

skin depth, 6,, observed a t  the  frequency f by Eq. (2) above. The 

s e n s i t i . l t y  of the measuring c i r c u i t  t o  small changes i n  dS depends on 

the  way the semiconductor surface is coupled t o  the  c i r c u i t .  Two s t y l e s  

of coupling - cavi ty loading and waveguide termination - were chosen i n  

order t o  cover a broader range of r e s i s t i v i t y  values. 

a. Cavity loading, espec ia l ly  f o r  small s ing le  c rys ta l s .  

The lo s s  introduced i n t o  the c i r c u i t  by a sample of semiconductor sur- 

face w i l l  be a small f rac t ion  of the  "no-sample" c i r c u i t  losses  when 

the product16 of the surface a rea  times the sk in  depth 6, is small. 

This occurs both fo r  small c rys t a l s  of normal r e s h t i v i t y  and fo r  

la rger  sect ions of la rge  f l a t  surfaces of high r e s i s t i v i t y .  .Cavity loading 

is preferred because it r a i s e s  t h e  s t rength of  t he  electromagnetic f i e l d  

a t  t he  semiconductor surface r e l a t i v e  t o  its strength i n  mst other  p a r t s  

of the detect ing c i r c u i t  and t h i s  leads t o  grea te r  s e n s i t i v i t y  t o  losses  i n  

the  semiconductor sur f  ace than without the cavity.  

This sec t ion  describes: 1.)  the  micrwave c i r c u i t  which 

was arranged and ca l ibra ted  t o  y ie ld  s igna l s  r e l i a b l y  corresponding t o  

absolute cavi ty parameters and 2.) :he type of subs t i t u t iona l  cavi ty loading 

used. Our analyses f o r  converting cavi ty  parameters i n to  values of sk in  

depth of the  semiconductor sample a r e  given i n  the  appendices. 

1.) The double-arm 35 GHz c i r c u i t  used. I n  Fig. 1, the  

35 (;Hz double arm reflectometer is elrom schematically with a r e f l e c t i v e  
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TABLE 1 

COMPONENTS USED I N  35 GHz DEMONSTRATION WLlRLE ARM REFLECTOMETER 

Label on 
Figure 1 

Kylstron 

S1 

S 2 

S2A 

S2B 

52C 

52D 

52E 

Item - Function -- 

DC Power Supply 

Modulat ion Source 

Source of 35 GHz Power 

I so l a to r  (20 db) 

Direct ional  Coupler (20 db) 

Matched Load 

Frequency Meter (Tunahle Cavity) 

Direct ional  Coupler (20db) 

Waveguide Short (Adjustable) 

Crystal  Holder (Tunable) 

S 3 Attenuator (Variable) 

S4 Mgic Tee (4 arm) 

S 5 Crystal  Holder (Tunable! 

S 6 S l ide  Screw Tuner 
( for  balancing Tee S4) 

Front Arm 

F1 

F2 

F3 

F4 

I so l a to r  (20 db) 

I so l a to r  (20 db) 

Calibrated Attenuator of 
Rotating Vane 

Direct ional  Coupler (10 db- 
broad band) 

Specif &c Type 
Mfg. - Model No. -- 
NAI:DA Model 438 

NARDA 438 

Varian VA-97 

TRG Al10-95 

Microline 405A 

Par t  of S2 

H-P R532A 

Demornay Bonardi 

I.ieco 10vl-26 

Demornay Bonardi 

Demornay Bonardi DBD 419 

h i l i n e  by Cascade Res. 

TRG A110-39 

H-P R382A 

TRG A561-10 



Table 1 - (Contd) 

Label on 
Figure 1 -- Item - Fuflction - 

F4A Tunable Crystal  Holder 
(Containing MA494 c r y s t a l  
selected f o r  havil-_ parer  
response (I vs. Pin) s imi la r  
t o  t h e  c r y s t a l  i n  holder R4A) 

Waveguide (connection between 
reference sho r t  and f ron t  
d i r ec t i ona l  coupler ) 

Reference Load - A low lo s s ,  
j g / 4  sho r t  arranged by F5 
t o  be the  same path length 
from the  f ron t  F4 d i r ec t i ona l  
coupler a s  t he  sample cavi ty  
i r i s  is from the  r e a r  R4 
d i r ec t i ona l  coupler. 

Spec i f ic  Type 
Mf -ModelNo. g. ------ - 

Microwave Associates 
Mod. 5130 

UAH - usual ly  included 
a piece of s t a i n l e s s  s t e e l  
waveguide 20 Ag long 
8.448 + .002 inch, 
having-2. 2 db round t r i p  
loss .  

UAH - Dug avai lable .  

Rear A r m  - Each corresponding item is the  same model a s  i n  t he  
f ron t  arm, except: 

R6 Sample Cavity - usually TE015 UAH - assembled copper 
mode rectangular cavi ty  incor- pieces ,  dwgs avai lable .  
porat ing : 
1. Special  sample holder 
2. Fixed (but demountable) 

coupling iris. 
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sarnple cavi ty  on one arm and a high qua l i t y  waveguide sho r t  on the. 

re4erence arm. The list of the  components used i n  t h i s  c i r c u i t  is given 

. . Table 1 and points  t o  the  i d e n t i c a l  c h a r a c t e r i s t i c s  of t he  two arms, 

i:lcluding matching the  power response of t he  de tec t ing  c r y s t a l s  over t h e  

frequency range of some 100 MHz width. 

Frequency modulation over one klystron mode presented 

t' e two c r y s t a l  outputs  simultaneously on a double input scope. By 

ciireful ca l i b r a t i on ,  including frequent subs t i t u t i ons  of standard metal 

sanples,  t h e  desired cav i ty  r e f l ec t i on  coe f f i c i en t  change w a s  determined 

from t h e  change i n  the  ca l i b r a t ed  a t tenua tor  R3 required i n  order  t o  

rematch the  CRO t r aces  upon each subs t i t u t i on  of t he  sample. The formulae 

used a r e  given separa te ly  i n  an appendix fo r  the  d i f f e r e n t  types of cav i ty  

loading. 

2 . )  Types of cav i ty  loading used. Rectangular TEOlp 

mode c a v i t i e s  were constructed of milled s ec t ions  of copper bo l ted  together 

with one s ec t ion  carrying a f ixed  c i r cu l a r  iris17 i n  a t h i n  (.020 inch) 

wal.1 and one sec t ion  mounting the  sample. With t h e  minimum mil led radius  of 

ins ide  cornes.s a t  ,016 inch, we found it necessary t o  have the  sample 

cav i ty  a t  2ast f i v e  ha l f  wavelengths (p = 5) long. Greater s e n s i t i v i t y  

w i l l  Tccrue t o  sample c a v i t i e s  formed t o  permit p = 2. The need fo r  t h e  

f 'xed i r is  is evident i n  the formulae i n  t he  appendices, permit t ing cav i ty  

changes upon subot i tu t ion  t o  be r e l a t ed  so l e ly  t o  the  sample. The o r i g i n a l  

- and s t i l l  ~ s e f u l  reference on iris deisgn is MIT Rad Lab Report 43-22 by 

H. 2 .  Yethe. 17 
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Loading of t he  cav i ty  by a semiconductor sur face  was done 

i n  one of two ways: by replacing the  end wal l  o r  by adding sur face  i n  

t he  t ransverse plane a t  one-half wavelength from the  end wal l .  F l a t  CaAs 

surfaces  were held a t  the  end of t h e  rectangular  TEOlp mode and leakage 

losses  were held t o  a s a t i s f a c t o r i l y  low l e v e l  by appropriate  choke 

jo in t s .  Clearly an improved design with much lower coupling losses  would 

involve a sample cavi ty  i n  t he  shape of a r i g h t  c i r c u l a r  cyl inder4 and 

the semiconductor f l a t  a s  i ts end wal l  o r  c e n t r a l  portion thereof .  

Thin semiconductor (GeSe) f lakes  whose other  two dimensions 

were under 7 and 3.5 arm, respect ively,  were suspended between two s t r i p s  

of p l a s t i c  (sample holder) at one half  wavelength up. Fig. 2 i nd i ca t e s  

the microwave magnetic f i e l d  pa t te rn  i n  t he  l a s t  two ha l f  wavelengths i n  

the TEol mode, ou t l ined  by the cav i ty  wal ls  and intercepted by t h e  sample 

a t  one-half wavelength up where t h e  microwave magnetic f i e l d  is p a r a l l e l  

t o  the l a rges t  faces  of the  t h i n  f lakes .  Our tests indicated no appreciable 

mode d i s t o r t i o n  by the  t h i n  GeSe f l akes  used so t he  observed changes i n  

Q were re la ted  t o  losses  on t h e  GeSe surfaces.  We assumed these l o s se s  

were conduction lo s se s  within t he  GeSe and calculated t he  appropriate  

sk in  depths a f t e r  in tegra t ing  over t h e  f l ake  area.  16 

b. Wave~uidc termination. For mapping f l a t  semiconductor 

surfaces  having low r o s i s t i ~ i r y  (below about ; ohm-a), t h e  simple termina- 

t i on  of a waveguide 5,:. the  samp1.e surface being held across  t h e  guide open- 

-ing w i l l  give reasonable s e n s i t i v i t y .  One expects,  !?r example, a f ac to r  

of 4 i n  standii.2 wave r.: t i o  a t  35 GH0_ f o r  cl f ac to r  of t en  i n  r e s i s t i v i t y  
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Fig. 2. One wavelength of the 
pattern of microwave 
magnetic f i e ld  
in rectangular TEOlp 
mode sample cavity 
as viewed through a 
broad face. 

Sample Plane 

George R. Smith for this  
accurate represent at ion 
of the H-pattern and its 
generation using an 
HP 9100 Plotter. 

Credit : 

End Wall 
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according t o  Lundmayer et a1.15 Again, t h e  e f f e c t s  of  leakage on va r i a t i ons  

i n  the  choke coupling can be e f f ec t i ve ly  eliminated f o r  sur faces  f l a t  t o  

within one o r  two degrees over m a l l  sampling a r ea s  by using c i r c u l a r  guidc:. 

Our preliminary tests confirmed t h e  s u i t a b i l i t y  of choke 

coupling fo r  mapping GaAs f l a t s  with a s  cu t  sur faces  when held a s  rectangular  

waveguide terminations.  

2 .  Fluorescence from Electron-Hole Recombination 

The recent  surge i n  t he  semiconductor market for  l i d h t -  

emitting diodes for  o p t i c a l  couplers and lasers as w e l l  ds f o r  d i sp lays  has  

placed considerable addi t iona l  premium on improving semiconductor c r y s t a l  

qua l i ty  i n  t h e  category of gallium-aluminum phosphide -arsenide. Of spec i a l  

i n t e r e s t  is the spectrum of luminescence and the  dens i ty  of donor s i t e s .  

Our fluorescence method of surface charac te r iza t ion  d e a l t  d i r e c t l y  with 

these two propert ies  of a GaAs sur face  on a reso lu t ion  s c a l e  of a f r a c t i o n  of 

a mm. Fluorescence measurements a r e  inheren t ly  capable of charac te r iza t ion  

on a resolut ion s c a l e  of t he  dimensions of e i t h e r  the  c a r r i e r  mean-free 

path o r  the d i f f r a c t i o n  l i m i t  of the  o p t i c a l  system used t o  exc i t e  t h e  

c a r r i e r s  .- whichever is t h e  l a rge r  fo r  t he  sample i n  question. 

The s t rong  market f o r  microwave generation and l i g h t  

modulation i n  Ga-A1-P-As semiconductors merits more d i r e c t  measurements of 

c a r r i e r  l i f e t imes  than by standard fluorescence. We suggest op t i ca l l y -  

pumped cyclotron resonance should do w e l l .  
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Our approach was t o  use the  photoluminescence reported 10.12 

f o r  gallium arsenide c r y s t a l s  a t  low temperatures, where t he  d i f f e r e n t  kinds 

of donor centers  can be resolved i n  t he  emission spec t ra ,  i n  i n t e rp re t i ng  

the room temperature luminescence. We pumped a spot  about 0.5 mm diameter 

on a GaAs surface with a l a s e r  beam, de l iver ing  some 20 mi l l iwat t s  a t  632.8 nm, 

and co l lec ted  the  emission over a so l id  angle of approximately 0.3 ster- 

radians not including the angle of specular  re f lec t ion .  After  passing 

through a double monochromator a t  low reso lu t ion  (1 m s l i t s ) ,  a narrow band 

of t he  emitted l i g h t  is co l lec ted  on a red s ens i t i ve  photomultiplier tube 

(C3893) and t h e  output displayed on a chart  recorder  a s  t h e  monochromator 

wavelength is scanned from 8200 t o  8800 1 i n  about 10 minutes. 

The pr inc ipa l  f ea tu re s  of a char t  record of t he  room tempera- 

t u r e  fluorescence from a s ing le  spot on GaAs are:  t he  t o t a l  i n t ens i t y ,  t he  

wavelength of the  maximum in t ens i t y  and the  widths of t he  low energy t a i l  

and of the high energy s ide .  A t y p i c a l  spectrum from GaAs is displayed in 

Fig. 3. Mapping is done e f f ec t i ve ly  by reposi t ioning the  GaAs surface f o r  

each spot of i n t e r e s t ,  with micrometer dr ives .  

Credit  goes t o  M r .  James M. Rowe f o r  arranging, c a l i b r a t i n g  

and tuning up the  apparatus t o  the  s t a t e  where we could acan a s e t  of spo t s  

and then get  reproducib i l i ty  i n  t o t a l  i n t ens i t y  t o  within ten  percent. The 

wavelength for  t h e  peak ind ica tes  t he  kind of e-h recombination center  a c t i v e  

(usual ly  a donor s i t e ) .  When t h e  t a i l s  on e i t h e r  s i d e  a r e  narrow, t he  t o t a l  

i n t ens i t y  i s  r e l a t ed  d i r e c t l y  t o  t he  number of these  donor cen te rs  being 

exci ted by t he  pump l i g h t .  With the  focus and power of t h e  pump l i g h t  held 

constant,  the  t o t a l  emitted i n t ens i t y  is proport ional  t o  t h e  l oca l  concentra- 

t i o n  of donors. 
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I d e n t i f i c a t i o ~  of t he  type of donor s i t e  by co r r e l a t i on  

with the value of t he  ~ a v e l e n g t h  a t  t h e  peak of each spectrum w i l l  r equ i r e  

correct ion of the  PMT output t o  one proportional t o  t he  number of photons 

col lected.  J. M. Rowe used a standard lamp t o  c a l i b r a t e  t h e  PMT output 

and with the a id  of Karla Dalton prepared an e f f e c t i v e  computer program f o r  

carrying out t h i s  cor rec t ion  procedure. The program's flow char t  is given 

in  t h e  l a s t  appendix. The output of t h e  program i n  i ts  present form is 

automatic graphing of: t he  input spec t r a l  da ta ,  t h e  corrected PMT output vs. 
wavelength, and the  corrected PMT o u t p t  vs. energy of t he  emitted photons. 

Examples of thsse  automatic graphs f o r  t h e  emission spectrum of one spot 

on a GaAs as-cut surface a t  room temperature a r e  displayed i n  Figures 3, 4 

and 5. 
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111. RESULTS - DEMONSTRATION OF SENSITIVITY OF NONCONTACTING TECHNIQUES 

I n  d i r e c t  a s s i s t a n c e  t o  t h e  NASA space  process ing program, t h i s  s t u a g  
e 

has  developed t h r e e  noncontacting techniques  i n t o  s u c c e s s f u l  l abora to ry  

procedures f o r  the  nondes t ruc t ive  e l e c t r i c a l  c h a r a c t e r i z a t i o n  of s i n g l e  

c r y s t a l  semiconducting s u r f a c e s .  Time permit ted  on ly  pre l iminary  measure- 

ments wi th  each of t h e  t h r e e  procedures,  but  an i n d i c a t i o n  of t h e i r  s e n s i -  

t i v i t y  is given i n  tire p r e c i s i o n  s t a t e d  below f o r  t h e  measured c h a r a c t e r i s t i c s .  

Values obta ined f o r  t h e  s k i n  depth  at  35 GHz and 300 O K  i n  s e l e c t e d  GaAs 

s u r f a c e s  a r e  l i s t e d ,  fo l lowing a d e s c r i p t i o n  of t h e  s k i n  e f f e c t  found i n  a 

few of t h e  CeSa f l a k e s  grown on Skylab miss ions .  

A .  Skin Depths i n  GeSe .- Flalces a t  35 GHz 

The high q u a l i t y  s i n g l e  c r y s t a l  f l a k e s  pi.-oduced by vapor t r a n s p o r t  

i n  ampules I n  Skylab 's  multipur?ose furnace  were t h i n  p l a t e l e t s  a few square  

millimeters i n  area .  We developed t h e  procedure descr ibed above f o r  load ing  

a room temperature 35GHz copper c a v i t y  wi th  one GeSe f l a k e  a t  a t ime s o  

tirat t h e  c a v i t y  r e f l e c t i o n s  could be i n t e r p r e t e d  t o  y i e l d  t h e  r a t i o  of t h e  

s k i n  de?th averaged over esch f l a k e  t o  t h e  s k i n  depth  of t h e  copper w a l l s  of 

the  c a v i t y .  A p rec i s ion  mehsurement of c a v i t y  Q would then y i e l d  a p r e c i s e  

va lue  of t h e  average 6 i n  each f  Jake. 

In  our  pre l iminary  l a b o r a t o r y  opera t  ion. we obta ined in t roduc to ry  

informat ion on s e v e r a l  s p e c i f i c  ques t ions  abor~ t  t h e  use  of 35 GHz r a d i a t i o n  

t o  c h a r a c t e r i z e  smal l  semiconducting c r y s t a l s .  F i r s t ,  our proceadres a c e  

capable  of c h a r a c t e r i z i n g  wi thout  damsge t h e  s k i n  depth  of each of a l a r g e  

number of  c r y s t a l s  per day.  Secondly, c e n t e r i n g  of t h e  sample was judged 

v i s u a l l y  and remained one of t h e  p r i n c i p a l  sources  of f l u c t u a t i o n  i n  our  



FTR - NAS0-29542 

observed values. Except f o r  more d i f f i c u l t  sample handling, t he  same cav i ty  

loading procedures work at l i q u i d  ni t rogen temperature with t h e  expectat ion 

of even b e t t e r  s ens i t i v i t y .  Some care  must be exercised in t h e  choice of  

mater ia ls  f o r  holding the  sample f lakes  i n  place within t h e  copper cav i ty ,  

but polyethylene f i lm appears t o  se rve  we l l  a t  our present s e n s i t i v i t y .  

It should a l s o  be noted tha t  t h e  sur face  cur ren ts  induced i n  t h e  f l a t  plate-  

let when properly mounted i n  cavi ty  are a l l  i n  one d i rec t ion ,  t h e  same on 

both s ides  of t he  p l a t e l e t ,  permitting thereb - a search f o r  anisotropy in 

the  r e s i s t i v i t y  of each semiconductor c rys ta l .  

One operat ional  aspect was t e s t ed  - namely the  s k i l l  l e v e l  required 

fo r  carrying out  t he  cavi ty  loading observations on GeSe a t  35 GHz. After 

the  se lec ted  GeSe f lakes  had been measured by a highly experienced operator  

:#I) t o  be ce r t a in  t ha t  the  loading procedure functioned s a t i s f a c t o r i l y ,  i n  

t he  ref 1- -tior. cavity (A), verbal  i n s t r u c t  ions were given t o  a new tech- 

nician (operator 2) who had experience with ham radio but none with microwaves. 

Operator 2 then surveyed the  same samples i n  cav i ty  A and again i n  a modified 

cavi ty  (B) i n  which the  end of t h e  cav i ty  had been modified t o  permit t rans-  

miss ion measurements. 

The room temperature r e s u l t s  a r e  s u m r i z e d  i n  Table 2. The r e l a t i v e  

Q fac tors  (Qs) of each sample t o  t h a t  (&) of the  cav i ty  wal ls  a r e  l i s t e d  

a s  an a i d  t o  later evaluation of t h i s  cav i ty  loading technique. Per t inent  

d e t a i l s  a r e  l i s t e d  in t h e  appendices. 

- Inspection of Table 2 shows how the  GeSe skin depths vary between 

these f i v e  c r y s t a l s  by a fac tor  of 6. T' corresponding range of equivalent 



TABLE 2 

RELATIVE Q AND SKIN DEPTHS FOR GeSe FLAKES 
AT 35 GHz AND ROOM TEMPERATURE 

* Number of independent subst i tut ions of sample in to  cavity. 

** Firs t  s e t  for operator 2 

0 Calculated with So = 0.35 micron 

98 Combinations used were Cavity A by operator 1, Cavity A by operator 2, 
and Cavity B by operator 2. 

- 
Crystal 

Total  ) Area . 
Label 

I 
\ 1 18-F6 
! 

I 
I 
/3A-F1 

3A-F2 

RPI-A 

(HI) 

mm2 

0.96 

1.11 

0.89 

6 . 5  

6J6,, 

16.2 

2 1.6 

3.7 

+0 .9  - 

2.7 

5 0 . 9  

6.0 

2 2.4 

2.9 

2 0 . 1  

Mean 
Value 

QJQ, 

0.137 

- + .014 

0.016 

2 . 0 0 4  

0.015 

5 . 0 0 5  

0.025 

2 .010 

0.149 

- +.005 

%all' Qsample 6s 

micron 4 

5.7 

1.3 

0.9 

2.1 

1.03 

A 

A, 1 

0.119 

+ .015 - 
from 3* 

0.018 

+ - .003 

from 6* 

- 
t r i e d 2 *  

0.016 

+ .005 - 
from 4* 

0.150 

+ - .005 

from 2* 

Cornhinations 

A, 2 

0.134 

- + .013 

from 2* 

0.014 

+ - .004 

from 2* 

- 
t r i e d 2 *  

0.038** 

- + .008 

from 2* 

0.149 

- + .005 

from 2* 
- 

usedw . 
B s ~  

0.159 

- + .015 

£ram 2* 
I 

0.015 

+ . O O  - 
from 2* 

0.015 

+ .005  - 
from 2* 

0.020 

+ .005 - 
from 2* 

0.139 

- + . 0 2  

from l* 



bulk r e s i s t i v i t i e s  is a f ac to r  of 36. The unce r t a in t i e s  observed would 

have been reduced - probably t o  + .003 in %/Q, - by using t en  o r  s o  

independent subs t i t u t i ons  of the  sample during each run. 

The da ta  represented in Table 2 a l s o  confirm t h e  soundness of our 

t heo re t i ca l  ana lys i s  I n  regard t o  sample configuration. The absolute  

values of t h e  sk in  depth, 6,, l i s t e d  i n  t he  l a s t  column of Table 2 con- 

firm the v a l i d i t y  of t h e  f i zkes  b e b g  th i ck  compared t o  t h e i r  own sk in  

depth so  t h a t  t he  power l o s s  in a f l a k e  is the  same kh.d of product16 of 

surface Integrals  of uT2 as f o r  t he  copper walls.  Secondly, t he  f lakes  were 

t h i n  enough t o  permit using the  undis tor ted mode values f o r  HT ac toss  the  

sample. 

A f i n a l  note  about s e n s i t i v i t y  of t h i s  cav i ty  loading subs t i t u t i on  

procedure is t h a t  when a f l ake  of u l t r a  high puri ty  aluminum f o i l  was t h e  

subs t i tu ted  load, t he  minimum detectable  area was about 3 m2 of A l .  As 

the  r e s i s t i v i t y  of the  semiconductor f l a k e  is increased, our cavi ty  loading 

s igna ls  become larger ,  ind ica t ing  the  capabi l i ty  or charac te r iz ing  smaller 

fla'hes o r  of obtaining more precision. For example, t h e  observed standard 

deviat ions l i s t e d  i n  Table 2 give: - + 3% fo r  a 712 mm2 f lake  having b s  = 1 

2 and - + 10% f o r  a 1.912 nun f l ake  having 6s = 6 micron. 

B. Skin Depths i n  GaAs F l a t s  a t  35 GRz 

High qua l i t y  boules of GaAs grown by M. Rubinstein of Westinghouse 

Research and Development Center i n  preparation fo r  the  M555 Experiment on 

Skylab had been s l i c e d  fo r  character izat ion.  Several cut faces ,  termed 

f l a t s ,  were mapped f o r  sk in  depth a t  35 GHz using a reso lu t ion  element of  

4 x 7 m a s  the  rectangular TEolp cav i ty  end wal l  i n  t he  procedure mentiontd 
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above. Cavity r e f l ec t i ons  were in te rpre ted  i n  accord with t h e  ana lys i s  out- 

l ined  i n  t he  appendices i n  terms of t h e  sk in  depth 6s in t h e  GaAs. Some of 

t he  average values found f o r  6. a r e  l i s t e d  i n  Table 3, taking 6Cu - 0.35 

micron. 

TABLE 3 

CLASSICAL SKIN DEPTH 

*A value fo r  bs was not obtainable  from t h e  data.  

Sample 

W-2 

W- 3 

E-2 
- 

The uncertainty i n  the  measured values was much l a r g e r  than the  l i m i t -  

ing  uncertainty due s o l e l y  t o  t h e  a b i l i t y  t o  read t h e  equipment accurately.  

Evidently the  var ia t ions  i n  r e s i s t i v i t y  between the  a r ea s  being sampled a r e  

comparable t o  but not much l a rg&r  than the var ia t rons  i n  coupling a s  an end 

wal l  i.2 one posi t ioning of t he  sample. Precis ion improvement of almst one 

order of magnitude is expected i n  the  same procedure wher, t he  shape of the 

sample cav i ty  is a r i gh t  c i r cu l a r  cyl inder  and the  reso lu t ion  element of t h e  

semiconductor f l a t  is the  c i r cu l a r  end wal l  o r  a concentr ic  c i r c u l a r  port ion.  

1 2 The ac tua l  values obtained, however, from t h e  two c a v i t i e s ,  Cs and Cs , 

fo r  the c l a s s i c a l  skin depth of t he  samples. a r e  i n  good agreement. Clearly 

the  sho r t e r  cavi ty  produces higher precis ion a s  expected. Again, when 

CS' ( p l 3 )  6, (mm) 

(1.178 - + 1.2) x 10'~ 

(2.053 - + 2.66) x 10'~ 

(2.423 2 2.07) x 10'~ 

c ~ ~ ( p - 7 )  6J.m) 

(--I * 

(1.014 + 0.3) x 

(2.056 - + 0.6) x 
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machining o r  e tching techniques a r e  used t h a t  permit sharper ins ide  

corners (than x = 0.016 inches),  then p = 2 c a v i t i e s  can be used and 

precis ion v i l l  be improved over t he  p = 7 cavi ty .  

C. Mapping of GaAs Single Crystals  by Fluorescence -- 
Photo-induced luminescence of t he  electron-hole recombi~a t ion  radia- 

t i on  h,?s been observed by J .  H.  Roue from cut  faces  ( f l a t s )  o t  ; ~ v e r a l  

high qua l i t y  GaAs c rys t a l s .  The technique out l ined  above permits mapping 

by reposi t ioning the  f l a t  in the  plane of i ts  i r r ad i a t ed  face  by ~ i c r o m e t e r  

dr ives .  A spectrum is scanned f o r  each posi t ion of t he  l a s e r  beam spot .  

Fig. 3 shows, with the  a i d  of automatic graphing on the  UNIVAC 1108 computer, 

t he  t yp i ca l  spectrum emitted from a spot  on the  face of a c r y s t a l  doped with 

- 1017 donors/cm3. The t o t  a 1  i n t ens i t y  (proportional t o  the  donor concent ra-  

tion'') was found t o  be reproducible t o  + 10% f o r  10 minute s p e c t r a l  scans 

of the  same spot loca t ion  and relocat ions.  Observed va r i a t i ons  across  a 

sample were occasionally 50% and were, therefore ,  a t t r i b u t a b l e  t o  doncr 

concentration va r i a t i ons ,  but no d i r e c t  corroburation of the  same surface 

p r o f i l e  was ava i lab le  a t  t he  time of the  fluorescence scans. The automatic 

correct ion of PMT output v i a  standard lamp ca l ib r a t i on  is discussed i n  an 

appendix and t h e  corrected r e s u l t s  p lo t ted  i n  Fig. 4 and 5 of t h e  spectrum 

of Fig. 3. 

Uniformity of surface roughness probably represen ts  t he  u l t imate  l i m i t  

t o  t he  precision of t h i s  high resolut ion method of charac te r iz ing  the  donor 

concentration. Changes i n  t he  type of donor w i l l  s h i f t  t he  peak of t h e  

spectrum. For example, nitrogen donors a r e  a few mi l l i e l ec t ron  v o l t s  below 

the  band edge a t  Eg -1.43 e V .  No attempt was made t o  c o r r e l a t e  peak posi t ion 
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with active donor types, br- i t  is clear12 thct lower temperatures permit 

complete resolution of each type of donor trapb:. 
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IV.  SUMMARY AND PROGNOSIS 

The r e s u l t s  of t h i s  study of nondestructive methods of electrical 

charac te r iza t ion  of t h e  higher qua l i t y  s i n g l e  c r y s t a l s  of semiconductor 

grown i n  t he  microgravity of space environment include both t h e  demn- 

s t r a t i o n  of successful  methods - two microwave and one o p t i c a l  - and the  

measurement of t he  r e s i s t i v i t y  of a few of t h e  small GeSe c r y s t a l s  grown 

by vapor deposition on Skylab f l i g h t s .  The observed s e n s i t i v i t y  of t he  

two microwave methods - one f o r  mapping l a rge  f l a t  semiconductor surfaces  

and one f o r  observing the  whole sur face  of small t h i n  f l a t  c r y s t a l s  - is 

reported f o r  a limited range of r e s i s t i v i t y .  The r e l a t i v e  sk in  depth 

values f o r  t he  GeSe f l akes  s tudied by a sample subs t i t u t i on  procedure were 

found t o  have standard deviat ions around 10% fo r  r a the r  small  c ry s t a l s .  The 

absolute sk in  depth values could r ead i ly  have had t h e  same precis ion i f  

we had made t h e  frequency measurements which lead t o  t he  absolute  QL values.  

Our prognosis is  opt imis t ic ,  namely t h a t  these room temperature micro- 

wave techniques can be car r ied  out  nondestruct ively using l i g h t  weight 

apparatus with adequate precis ion f o r  measuring uniformity of r e s i s t i v i t y  

of high qua l i t y  semiconductor surf  aces. Furthermore, r e l a t ed  noncontact ing 

rechnl.ques such a s  cyclotron resonance and photoinduced microwave conductivity 

show promise of being usefu l  sources of e l e c t r i c a l  c h a r a c t e r i s t i c s  of the  

high qua l i t y  semiconductors t o  be grown i n  space. 

The observed reproducib i l i ty  of the  fluorescence of room temperature 

G~A; under i r r ad i a t i on  a t  632.8 nun of some 10% in donor dens i ty  fo r  our 

slow scan technique a l so  shows promise f o r  NASA appl ica t ions .  Actually,  

w i t +  t h e  l a rge  expansion in the  l i g h t  autstting diode producticn i n  t he  



past several years, the LED manufacturers very l ike ly  have a similar 

optical scanning technique in regular use by now. 
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APPENDIX A 

ASSUMPTIONS FOR EQUATIONS I N  APPENDICES B USD C 

I f  a l l  of the microwave energy is stored i n  the rectangular 

cavi ty  i n  only one TE resonant mode, i t  is possible t o  find a point, 
O ~ P  

z such tha t  the e l e c t r i c  f i e l d  is 0, independent of the x and y posi- 
0' 

t ions  m d  time. Thus, we can insert a very th in  conducting sample and 

a sample holder, made of a d ie l ec t r i c ,  a t  tha t  point, with i t e  th in  

dimension p a r a l l e l  t o  the z-axis without changing the e l e c t r i c  f i e ld .  

rn I f  % = ua pot where ps is the permeability of the  sample and 

" H is the permeability of the holder, then we do not change the 

magnetic f i e l d  and thus the energy stored i n  the empty cavity is the 

eame ae tha t  of the cavity with sample holder with or without the sample. 

I f  the  e l e c t r i c  and magnetic f i e l d s  a r e  not a l te red  within the  

cavity by the  addition of the sample holder and sample, then the i n t r i n s i c  

impedance of the  cavity has not changed. Thus, the energy radiated out 

the coupling iris, back down the  waveguide should not change. This means 

tha t ,  fo r  case8 (A) through (C) the value of should be theeame. 

Similarly, i f ,  by adding the sample and sample holder t o  the empty cavity, 

we do not change the current density i n  the cavity waLls, then the ohmic 

losses due t o  the walls is the eame i n  cases (A) through (C). This can 

be done, f o r  example, by making the eample holder out of a loseless di- 

elec$ric so  tha t  the conducting sample is isolated from the walls of the 

cavity. A problem can a r i s e ,  however, i n  the manner i n  which the sample 

holder and sample a r e  inserted in to  the cavity. In  t h i s  par t icular  proccse, 

a r l o t  was cu t  in to  the r ide  of the cavity. This meanr tha t  nome power was 



radiated out of the  cavity. This lose is usually neglected i n  the  t o t a l  

l o s s  of power due t o  the walls  of the cavity.  We assume t h a t  adding 

the s l o t  d id  not change the  e l e c t r i c  and magnetic f i e l d  configurat ion 

i n  the cavi ty,  and, a s  we a r e  i n  a TE mode, t h i s  meam that a t  Zo, 
O ~ P  

where the  s l o t  was made, the tangent l a 1  e l e c t r i c  and tangent ia l  magnetic 

f i e l d s  a r e  both zero. Thus the amount of energy rad ia ted  out of the 

cavi ty is only a small pa r t  of the t o t a l  wal l  losees.  Thus, a l t e r i n g  

t h i s  amount of radiated energy, such a s  is caused by in se r t i ng  the  

d i e l e c t r i c  sample holder i n t o  the s l o t ,  does not s ign i f i can t ly  a l t e r  the  

t o t a l  energy lo s s  due t o  the walls  of the cavity.  Hence the  value of 

does not change fo r  caaes (A) through (C) . A s imi la r  argyment shows 

tha t  the value of QW is  a l s o  a constant f o r  cases  (D) through (F). 

I f  we assume tha t  the addi t ion  of the second coupling iris does not 

change the resonant mode e l e c t r i c  and magnetic f i e l d  

of t he  s ingle- l ine cavity-coupling system, then does not change from 

case (A) through (F) a s  the  t o t a l  energy s tored w i l l  be  t he  same, and the 

change i n  the energy l o s t  due t o  the walls  is not g rea t ly  chawed by the  

l o s s  of the  surface area,  due t o  the second coupling iris, fro. jsl$2ds, 

which is  proportional t o  the ohmic energy l o s s  per cycle  due t o  the wal l s  

of t h e  cavity,") where HT is  the  amplitude of the amgnetic f i e l d  t a w e n t  

t o  the  wal l s  of the  cavi ty and the in t eg ra l  is taken over the  t o t a l  sur face  

of cavity walls. The a s smpt ion  t h a t  the addi t ion of the  second coupling 

iris does not change the resonant mode is j u s t i f i e d  i n  the  equipment and 

c a v i t i e s  used, by the f a c t  tha t  the resonant frequciicy sh i f t ed  by l e s s  than 

0.1% from the single-line cavity-coupling systmn t o  the two-line cavity- 

coupling system. 

(1) See E. U. Condon, Rev. Mod. Phys. 14, P-341 (1942). 



Final ly ,  i f  the  addi t ion  of a second coupling iris does not  change 

the  e l e c t r i c  and magnetic f i e l d s  i n  the  cav i ty ,  then the  value of Q 
c, 1 is 

the  same i n  cases  (A) througl. (C) and caees (Dl through (F), Thus, t he  

values of Qw, Qc, 9,. and QH a r e  t he  same fo r  cases  (A) through (P) . 
Hence, equation (18) is ju s t i f i ed .  It a l s o  means t ha t  t he  values  of 

B I s  * and 0 
2, MT 

a r e  the same i n  both the  s ing le - l ine  and two-line cavity- 

coupling system, so  t h a t  we can measure both values by using the  s ing le - l ine  

cavity-coopling system and use these values  i n  an equation t h a t  is t rue  

fo r  a two-line cavity-coupling system. Thus we can obtain a j u s t i f i a b l e  

value fo r  Q using equations (191, (201, and (17) o r  (17A). 
8 

If  w e  s t i l l  assume tha t  a l l  t he  microwave energy of t h e  rectangular  

cav i ty  is s tored i n  only one TE mode'and tha t  t he  e l e c t r i c  and magnetic OlP 

f i e l d s  i n  t h i s  mode a r e  t he  same for  t h e  coupled cav i ty  a s  f o r  t h e  uncoupled 

cavity: then the  t o t a l  energy stored i n  t h e  empty cav i ty  is I Iv p 0 ~ * d v  
2 

where H is t h e  magnitude of the  magnetic f i e l d  and the  i n t e g r a l  1s taken 

over the  t o t a l  volume of the  cavi ty .  I f  we i n s e r t  our s a q l e  and 

sample holder i n  the cav i ty  a t  the  point Z euch t h a t  t h e  e l e c t r i c  f i e l d  is 

zero, then t h e  energy s tored i n  t he  cav i ty  with t he  sample and sample 

holder i5 the  same a s  the empty cavi ty .  

A s  the sample is conducting, it w i l l  c r ea t e  an ohmic power loas  t ha t  

w i l l  increase the  energy lo s s  per cycle  i n  the  cavi ty .  The energy l o s s  

6 ~ C I  per cyc le  i n  t he  sample i~ given by s r I8HT2ds where 6, is the  
2 

sk in  depth of the sample and HT is the magnitude of the  magnetic f i e l d  

tangent t o  the surface s f  the sample A and t h s  i n t e g r a l  is taken over 

t he  t o t a l  surface of the sample. 

2. See Fig. 2 of t h i o  report  f o r  t he  shape of t he  H pat tern.  



AS Qs I 2r(Energy Stored i n  t he  Cavity) 
(Energy Lost i n  the  a m p l e  I n  one cycle) 

and we have already assumed pa = PO we ge t ,  

Using the solut ione fo r  the e l e c t r i c  and magnetic f i e l d s  i n  t he  

TE mode and assurnlng tha t  the sample is a rectangular  para l le le -  
O ~ P  

piped, we can perform the volume and sur face  i n t e g r a l s  above, rememberlrig 

t h a t  the sample is a t  z we ge t ,  
0' 

Where A is  the length cf the cav i ty  along the x-axis, B is  :h. length 

along the  y-axis, C is the  length along the  z-axis ,  Ax is  the  length cif t he  

sample along the  y-ax'o Ay is its length along t h e  y-axis and yl and 

y2 a r e  the  y posi t ions of the sample i n  t h e  cavi ty .  Thie r e s u l t  a l s o  

assumes tha t  Az of the  sample is s o  small  t h a t  w e  can ignore t h e  sur face  

i n t eg ra l  over those port ions of the  surf  ace of the sumple t h a t  involve Az. 

This is j u s t i f i e d  i n  a l l  the  GeSe f lakes  measured. 

Other shapes w i i l  produce other  so lu t ions ,  however, most shapes can 

be approximated by a rectangular  paral le lepiped o r  a sum of such shapes, 

i n  which case,  the above eqwt ion  w i l l  s t i l l  hold. Otherwise, other  

4 .  See Technique of Microwave Measurements, Vol 11, edi ted by C. G. 
Montgomery, P. 295, McGraw-Hill (1947). 
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coordinate systems a d  techniques of integrat ion w i l l  have LO be  wed. 

t *  Also, note tha t  the  factor  of 4 appears i n  equation (28), ra ther  than a 

factor of 2, t o  account for  the loss  i n  both s ides  of the  sample, s o  that, 

i f  a sum of rectangular parallelepipeds is t o  be used a s  the  approxlma- 

tion, t h i s  factor  can be changed t o  2 and the sum carried over both s ides  

independent lye  

Finally, i f  we again have a rectangular parallelepiped i n  which we 

can ignore the Az terms a d  further,  tha t  by is s o  small tha t  

k sin2 ( i ( y l  + 9)) - sin2(: yr)* then w e  a r r ive  a t  a good approximation for  

f Q by assuming tha t  tIZT is a constant over the  t o t a l  surface area of the s 

sample; tha t  is 

The basic assmption in  the choke jo in t  cavity system is tha t  the  

resonapt e l ec t r i c  and magnetic f i e lds  a r e  the same i n  a l l  four types of 

cavit ies .  The same recsoning applies  i n  these s e t s  of cav i t i e s  i n  

transferring £ram the single l i n e  cavity-coupling system (cavi t ies  X, Y, 

and Z) t o  the two-line cavity-coupling system (cavity T) .  Any difference 

i n  microwave energy losses, due t o  the choke joint ,  between the  Z cavity 

and the X cavity is taken in to  account by the Q term. Finally, 
R, C, H 

the same reasoning is  used i n  calculating the c l a s s i c a l  skin depth, 6s, 

of -the sample f r a l  QUSs, as  was used i n  the proceeding cavity system, keeping 

i n  mind that  now the sample makes up one canplete end wall of the cavity. 
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APPENDIX B 

BASIS FOR LOSS CALCULATIONS FOR Cu TE RECTANGULAR CAVITIES 
O ~ P  

FOR f LARGE ENOUGH TO SUSTAIN NO2M.L MODE CONFIGURATIONS 

Terms f o r  Single  Line Cavity-Coupling System: 

P = 2CIxg 

c = Cavity dimension along z a x i s  

hg 
= Wave length i n  t he  cav i ty  a t  resonance 

Q = 2n (energy st.rred/energy d iss ipa ted  per cycle)  

= Loaded Q of empty cav i ty  
Q L , ~  

Q ~ , o  = Loaded t of cav i ty  with sample holder but without sample 

QL, s = Loaded Q of cav i ty  with sample holder containing sample 

Qw = Q of Cu wal ls  of cav i ty  

Qc, 1 
= Q of 1st coupling i;is 

QH 
= Q of sample holder 

Qs 
= Q of sample 

Qu,o 
= Q of Cu wal ls  and sample holder 

Qu,s 
= Q of walls,  sample holder and sample 

B = Geometrical coupling parameter whlch is a constant  f o r  a 
given iris and c a r i t y  mode. Each value of B is obtained 
from a measured re f lec ted  power r a t i o  r. 

r = Power r a t i o  (Power r e f  lected/Power incident  a t  plane of cav i ty  i r i s )  

B = Coupling parameter of 1st coupling iris with empty sample 
1.0 holder 

8 = Coupling parameter of 1st coupling iris with sample 
1,s 

8 = Coupiing parameter of 1st coupling iris with empty cav i ty  
1,MT 



Terms for  Tbo-Line Cavity Coupling System: 

QL,UT,T 
= Loaded Q of empty transmission cavity 

QL,O.T 
= Loaded Q of cavity with empty sample holder 

QL,.,T 
= Loaded Q of cavity with sample holder containing sample 

Qc, 2 
= Q of 2nd coupling iris 

QH 
= Q of sample holder 

- Q of Cu walls and sample holder 
Q u , ~ , ~  

= Q of walls, sample holder and sample 
Qu,o,a 

Qc, 2 
= Q of 2nd coupling iris 

@2,m 
= Coupling parameter of 2nd coupling iris with empty 

cavity 

@2,0 
= Coupling parameter of 2nd coupling iris with empty 

sample holder 

@2. s 
= Coupling parameter of 2nd coupling iris with sample 

holder 

f = Resonant frequency of empty cavity 
0 

Af (3db) = Width of power resonance curve a t  half-peak values 
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The following equations are applicable when the loss  mechanis~ae 

are independent and the microwave energy is stored i n  only one mode. 

Basic Equations for Single-Line Cavity Coupling System:' 

A. For the Empty Cavity 

1. 
1 - = -  1 + -  
Q L , ~  Qc, 1 Qw 

B. For Cavity v i th  Empty Sample Holder 

C.  For Cavity with Sample Holder and Sample 

Qu s = 2 
8 o  61,s Qc, 1 
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Basic Equations for Single-Line Cavity Coupling System (contd) 

For the Empty Cavity 

I?. For cavity with empty sample holder 

F. For cavity with sample 

1 1 1 + - 1 + -  + - 1 
14. - = - + - 

Q L , ~ . T  Qc, 1 Qw QH Qs Q,,2 

G. Equations for calcuiating $ 
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fi can be chosen to  be overcoupled (Eq. 17A) (or  undercoupled (Eq. 17)) 

by convenience of mcchining and de t ec to r  s ens i t i v i t y .  

B calculated using equation 17 or  17A is t h e  0 of t h e  s ingle-  

l i n e  cavi ty  coupling system. However, as we do not  change the  normal 

mode nor t he  shape of t he  iris, it, therefore ,  has  t he  same value as 

i n  t he  two-line cav i ty  coupling system. 

The f a c t  that the  coupling parameter, B ,  f o r  each case  can be cal-  

culated from experimental da ta  leads t o  s eve ra l  important r e su l t s .  F i r s t ,  

by using equations (1) through (8), w e  can r e l a t e  the  sample l o s se s  t o  

the  cav i ty  wal l  losses  by equation 

A s  a l l  the  values on the  r i g h t  can be calculated from experimental 

Qw measuresments, a value can thus be assigned t o  - . From t h i s ,  a compari- 
Qs 

son of the Q values of d i f f e r en t  samples can be made i n  a given cavi ty ,  
S 

provided the  value of Q does not change. Experimental confirmation t h a t  
W 

had not changed was obtained by f inding the  value of f$m(= QU/Qc, 1 

[Eq. 21) t o  be t he  same t o  within - +0.4% each time the  empty cav i ty  was 

measured . 
Secondly, using equations (2) and (10) w e  can rep lace  t h e  Q values  

i n  Equation (9) with 6 values t o  ge t  equation 



As we can ca lcu la te  a value f o r  ( ~ 1  ,WF + I + B  ) , w e c a n  t h u s g e t  
2.m 

a value of Q from a known value of w Q L , ~ , T ~  Final ly ,  w e  measure t he  

value of Q experimentally by using equation 
L,NT,T 

We can a r r i v e  a t  a value of QW tha t  is 

Thus, using Equations (18) and (21) , w e  a r r i v e  a t  an equation f o r  
Q s 9  

dependent t o t a l l y  on measurable quant i t i es .  

By using the  previously mentioned equations, we can a l s o  make measure- 

ments on the uncertainty of the quan t i t i e s  Qw/QS and Q s 

F i r s t ,  by using Equation (15) w e  f ind  t he  uncer ta in ty  A (Qy/Qs ) is 

given by 
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Secondly, using Equation (19), we f ind  the uncertainty of Q is s 

given by 

For the  case i n  which the sample is placed i n  a two-line cavi ty  coupling 

system, an equation s imi la r  t o  (18) can b e  developed. I n  f a c t ,  we get  

Then, by using Equations (19), ( 20), and (25) , w e  can develop equations s imi la r  

t o  (21) through (24) which r e l a t e  
Qs 

t o  the  second coupling iris parame- 

t e r s ,  fo  and A £  (3db). 



Qs is defined as, 

Zn(Energy Stored i n .  t he  Cavity) 
(her8; Dissipated i n  t h e  Sample i n  One Cycle) 

The energy s tored i n  the  cav i ty  is equal t o  16 

where H is the  amplitude of  t h e  magnetic f i e l d .  The energy d i s s ipa t ed  

i n  t he  sample is due t o  ohmic l o s se s  and i n  one cycle  is equal t o  

where 6s is the  sk in  depth of the  sample, Us is t he  permeabili ty of 

the  sample, HT is the  amplitude of t h e  magnetic f i e l d  p a r a l l e l  t o  the  

sample's surface and the  i n t e g r a l  is taken wer the  t o t a l  sur face  a r ea  

of t he  sample. Thus 

Po 
A s  the  samples a r e  only weakly paramagnetic - = 1 t o  within 0.1% 

IJS 
Hence we  use the  following equation f o r  Q 

s ' 

Using the TE mode .lumbers, w e  can f i nd  the  magnetic f i e l d  cotEigu- 

r a t i o n  within the  cavity.  Thus, Equation (27) can be solved t o  a good 

approximation, a s  follows: 



Our coordinate system is t h a t  used i n  Pchnique of Hicrowave 

Measurements, Vol. 11 of t he  M.I.T. Radiation Laboratory Ser ies ,  

edi ted by C. G. Montgomery, McGraw-Hill, Inc. 1947, page 295. The 

dimensions of our cav i ty  a r e  A,  p a r a l l e l  t o  t he  x ax is ,  H p a r a l l e l  

t o  t he  y ax is ,  and C, p a r a l l e l  t o  the  Z a x i s  

With the  t h i n  sample placed i n  t h e  cav i ty  such tha t  its corners  

a r e  located a t  (xl, y l ,  zO) ,  (xl,  ~ 2 ,  zO),  (x2, Y I ,  zO) and (x2. ~ 2 ,  zO) 

where z0 = ~ ~ g / 2 ,  Q an in teger ,  we a r r i v e  a t  t he  following so lu t ions  

t o  Equation (27) a s  discussed i n  Appendix A: 

A. I f  (x2 - x l )  (y2 - y l )  which is  the  c ros s  s ec t i ona l  area of 

t he  sample is comparable i n  s i z e  t o  (A B) which is the  c ros s  s ec t i ona l  

area of the  cavity,  then 

Thus w e  can write 6 as a funct ion of Qs , t he  cav i ty  geometry, 
S 

t he  sample posi t ion,  and t h e  normal mode, a11 of which can be  found from 

experimental values. Equations 28 o r  29 were used t o  ca lcu la te  t he  values 

of bs presented i n  Tables 2 and 3 of t h i s  report .  



Finally,  t he  uncertainty i n  6 is given f o r  l a rge  samples by 
8 

(30) 

and f o r  small  samples by 

where ~y is t h e  uncertainty of the  pos i t ion  of the sample along the y 

ax is  i n  the  cavity.  

Equation (31) can be used t o  es t imate  the  dependence of  t h e  s e n s i t i v i t y  

of subs t i t u t i on  techniques on f l ake  s i z e  and sk in  depth. We ca lcu la te  t h e  

t he  values of t he  second term ( i n  t he  brackets)  t o  pass through t h e  10% 

value fo r  combinations such a s  : 

6 = 25.0microns with Ax - Ay- 0.5 nun 

and 6 = 2.5 microns with Ax .Y Ay .- 2 m 

and 6 = 0.25 microns with Ax - Ay - 5 nun 

This uncertainty (by Eq. 31) r i s e s  s t eep ly  f o r  smaller  semiconductor f lakes  

and is only a few percent, f o r  l a rger  ones. 
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APPENDIX C 

CAVITY LOADING BY SEMICONDUCTOR END WALL 

X = The r e f l e c t i v e  c a v i t y  w i t h  choke and t h e  sample as a n  
end wall 

Y = The r e f l e c t i v e  c a v i t y  w i t h  choke and a  f l a t  p i e c e  of Cu 
a s  a n  end w a l l  

Z = The r e f l e c t l \ ~  c a v i t y  w i t h  equa l  dimensions t o  X and Y 
bu t  wi thout  a  choke 

T = The t ransmiss ion c a v i t y  

Q c , l  
= The Q of the  f i r s t  ccupl ing i r is  

Qc, 2 = The Q of t h e  second coupl ing iris 

QR, CH = The Q of t h e  c.hoke j o i n t  due t o  microwilve energy being 
r a d i a t e d  ou t  of the  s l o t s  of t h e  choke 

%,s 
= The Q of t h e  sample end w a l l  

%, x 
= The Q of t h e  X c a v i t y  due t o  ohmic l o s s e s  i n  t h e  w a l l s  of 

the  c a v i t y  except  f o r  the  sample which a c t s  as a n  end w a l l  

QW,Y 
= The Q of t h e  Y c a v i t y  due t o  ohmic l o s s e s  i n  t h e  w a l l s  of 

t h e  c a v i t y  e- . e p t  f o r  t h e  Cu f l a t ,  which a c t s  as a n  end 
w a l l  

%, 2 
= The Q of t h e  Cu f l a t  a c t i n g  as a n  end w a l l  i n  t h e  Y c a v i t y  

- - 
, end 

The Q of t h e  end wa l l  of t h e  Z c a v i t y  

L; = The coupling parameter of the  f i r s t  coupl ing i r is  a s  
1.k measured i n  t h e  ~1 c a v i t y  

= The coupl ing parameter of t h e  second coupl ing iris a s  
B2 ,!A measured i n  t h e  !A c a v i t y  
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H. Equations for cavity X 

1 2B. - 1 + -  1 1 + - -  0 - 
Q i t , ~ ~  %,s Qw , x Q,, x 

I .  Equations for cavity Y 

1 
5B.  - 1 + -  1 1 + -  

QR.CH %,cu Q ~ . Y  Qu, Y 

6B $ 1 , ~  Qc*1 
t 

QU,Y 

J .  Equations for cavity Z 

K.  Equations for cavity T 

1 + 1- 9B. - 1 1 + - -  
Qc, 1 QW.T Q=,2 QL,T 

0 
10B. QLST r - 

Af (3db) 
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In a r ec tangu la r  mode QR,c" is smal l  enough t h a t  it cannot be  I&.. red 

i n  t h e  above equat ions .  Therefore,  a  f i n a l  s o l u t i o n  t o  %,, must 

t ake  i n t o  account t h e  value  of QR,CH 

I f  we assume t h a t  Qw,Z is equa l  t o  %,T, :-.en, us ing equa t ions  

8B. and 1 1 B .  we g e t  

QL*T( 4 , ~  + ' 2 , ~  + 

12B. F c , l  = -- and thus ,  
'31,7 

a l s o ,  eince 

1 1 - = -  1 1 + .- + --- 
Qu,x QR,CH Qw, s Qw, x 

and 

1 1 1 + .-- = -.- thus ,  
Qw, exid qw. x qw, z 

14B.  1 1 1 1 - = -  1 + - + - - -  
QU,X Q R , c ~  %,s Qw, z Qw , end 

As (K)QWgZ is equal  t o  Qw,end, where K is a cons tan t  determined 

by the  geometry of the  c a v i t y ,  we g e t  

To so lve  f o r  -- I , we i s s tme  t h a t  the l o s s e s  i n  the  Cu end w a l l  
QR,CII  

p i ece  of c a v i t y  Y a r e  equal  t o  t h e  Losses i n  t h e  end w a l l  of c a v i t y  Z,  

SO t h a t  Q W , c c  i s  equa l  t o  Qw,end , then 



16B. 
1 1 - = -- 1 + - using equat ions  5B, 68, 12R, 

Qhz 9r.c. Q#,x 

and 168.. we g e t  

S u b s t i t u t i n g  17B. i n t o  15B. and using equat ions  11B.  and 13B y i e l d s  

Qw and J $ d s  
Now K = G- = -.SL-- where sw 

i n d i c a t e s  t h a t  the  i n t e g r a l  is taken over a l l  t h e  s i t r fa re  a r e a  of t h e  

c a v i t y ,  s e  i n d i c a t e s  t h a t  t h e  i n t e g r a l  is taken over the  end wal l  only,  

and H is t h e  magnitude of t h e  t a n g e n t i a l  magnetic f i e l d .  I n  f a c t ,  
T 

3 3 
K = [LC A + c  B + P ~ B ~ C  + ? A ~ * B ~ ]  3 2  

where A, B, and C a r e  
AB P 

2C 
t h e  dimensions of t h e  Z cav i ty ,  and P = - k 
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19B. A s  = 
C B ~  $ + c21 c 

and 

[gZp2 + cZ]c 6 
AAS = = - s 

Qw, s 
A(Q"s). 

8*p2(q 
w,s 
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APPENDIX D 

GaAs PL DATA REDUCTION 

(by J .  M. Rave) 

A computer program has  been used t o  a i d  i n  c o r r e c t i n g  photolumines- 

cence d a t a  f o r  t h e  response of t h e  o p t i c a l  system, pho tomul t ip l i e r  tube 

and associa ted e l e c t r o n i c s .  Ca l ib ra t ion  f a c t o r s  obta ined by running a 

tungs te r  r ibbon lclmp and us ing t h e  known emiss iv i ty  of tungsten had been 

t abu la ted  by wavelength every 5 % between 8010 % and 8920 A and were read 

i n  by t h e  computer. The remainder of t h e  input  cons i s ted  of c h a r t  r e fe rence  

marks and d a t a  p o i n t s  i n  char t  coordinates ,  a l l  taken from t h e  record pro- 

duced dur ing a data  run. Since t h e  computer used d a t a  i n  c h a r t  paper 

coordinates,  much work w a s  saved. 

0 

During data  taking,  t h e  wavelength i n  Angstroms w a s  noted a t  t h e  

beginning and end of a run and t h e s e  po in t s  were marked on t h e  c h a r t  paper. 

These wavelengths and t h e i r  corresponding coordinates  were read i n t o  t h e  
0 

computer and using t h i s  t h e  computer determined t h e  wavelengths i n  Angstroms 

of d a t a  points .  This  coordinate  was taken a s  an i n t e g e r  f o r  convenience. 

PL amplitude coordinates  were taken a s  f l o a t i n g  point  numbers and were 

a r b i t r a r y  t o  wi thin  a s c a l e  f a c t o r  w r i t t e n  down dur ing  d a t a  t ak ing  i n  case  it 

would be  needed l a t e r .  

Each d a t a  wavelength was found i n  t h e  t a b l e  us ing l i n e a r  i n t e r p o l a t i o n  

and t h e  i n t e r p o l a t e d  cor rec t ion  f a c t o r  appl ied.  Corrected amplitudes were 

each divided by t h e  maximum uncorrected amplitude f o r  t h e  d a t a  s e t  t o  y i e l d  

comparable s c a l e s .  This  was done f o r  convenience. The s c a l e  f a c t o r  appears  

i n  t h e  p r in tou t  and no information was l o s t .  The e l e c t r o n  v o l t  equ iva len t  of 

each wavelength was a l s o  computed. 



The output appears i n  tabulated form with f i v e  columns. These are:  

(1) corrected and scaled amplitude, (2)  energy i n  e lec t ron  vo l t s ,  (3) wave- * 

a 

length i n  Angstroms, (4) uncorrected amplitude, and (5) char t  coordinate 

of wavelength. The l i s t i n g  was made i n  order of  increasing energy. n r  

a l t e rna t ive ly  fed t o  Karla Dalton's program f o r  d i sp lay  and f o r  automatic 

graphing a t  the Tektronix terminal of the  UNIVAC 1108 computer. 

The flow chart  f o r  t he  PL DATA REDUCTION program is given on the  next 

page. A l i s t i n g  of t he  program and one output t a b l e  is attached, too. 



Pt Data Reduction Flow C h a r t  

h i a d  ca l ibra t ion  table  (CW¶B(I ) ,FAc(I ) ) 1 

I 
Read c h a r t  reference points (F'IRST,AFFST, XLhST,ACAST) .- 

aqd number of data points (NB'LTA) ! 

I 

[ ~ e a d  c h a r t  coordinates of data points (MPl (I ) ,!?NB(I) ) 1 
I 

-* 

un i t s  (XJUIB(I)) and I 
1 save max@um_pli - tude -- (A!'Ax) 1 

I 

/ s o r t  data by wavelength i n t o  increasing order ; 

I 

Interpolate in to  the  table t o  f i n d  the correc t ion  fac tor .  
Complte corrected amplitude and divide by AMAX. 
C a l l  the r e s u l t  1V.IP2('1) 
Compte WER(I), the electron v o l t  equivalent o f  XLAMB(1). 

Rint "THE SCALE FACTOR ISn AWE: ! Frht column h e a d i ~ e s  : AMP2,ENER, XLA111B,A,t'P1,NLBL13. ! 
R i n t  - ----- resul ta  ordered by increasing BIEP.(I). 

r - ---- 

1 

END OF DATA S E F  (END)) 
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GLOSSARY (By order  of appearance) 

CLAMB(1) wavelength i n  the ca l ibra t ion  t ab l e  

FAC(1) ca l ibra t ion  f ac to r  a t  wavelength CL&(I) 

0 

FIRST wavelength (A) of i n i t i a l  char t  reference mark 

AFRST chart coordinate of i n i t i a l  char t  reference mark 

0 

XLAST wavelength (A) of f i n a l  chart  reference mark 

ALAST chart coordinate of f i n a l  char t  reference mark 

NDATA number of data  points  f o r  the chart  

AMP1 ( I )  chart  coordinate of the PL amplitude 

NLAMB(1) chart  coordinate of wavelength ( in teger )  corresponding 
t o  AMP~(I )  

XLAMB ( I )  wavelength (i) corresponding t o  NLAMB( I )  

AMAX maximum uncorrected amplitude found in  the  da t a  
s e t  

IUP2 ( I) corrected amplitude divided by = 
ENER(1) energy (eV) corresponding t o  XLAMB(1) 



u ~ 3 0 2 7 - 1 0 1 2 3 I Z C - 1 m O I  
0 3 0  aAsG8T IO,T 
UaO OSAVT IO,KARLADALTON'~CASTLC'~PL DATA - R E D U C T I P N - ' ~ " ~ ~ ~  - -- 
0 3 0  PFOR,X lST  GAAS - 
0 0 0  c A S  CL DATA REDUCTION--------- 
0 0 0  D ~ M ~ N S I O N ' C L ~ M B I ~ Q O ~ ~ ~ A C ~ ~ ~ ~ ~ ~ A M ? ~ ~ ~ ~ ~ ~ ~ ~ L ~ ~ B ( ~ ~ ~ ~  
0 0 0  DlMkNSlOk X L A ~ ~ ~ ~ O O J ~ A M P Z ( ~ O ~ I I L ~ E ~ I ~ O O I  

000 - - - - - -  25 roRnAT ( Y f l O e 2 ~ I % ~  . - - . . - - - .  - - - -  - ----- 

0 3 0 -  -- 3 0  FORMAT l F l O e 2 ~ 1 5 m C I O i 2 i 2 1 5 ~ -  -- -. ... - --- 

0 0 0  '---*-- -YO FORMAT - I f  lOe2 i -158 - -.-- -- 
OOU RLAO IO,ITBL 
0 0 0  READ ~ O ~ ( C L A ~ B ~ J J ~ F A C ( J I ~ C L A ~ B ( J + I ~ ~ F A C ~ J + ~ ) ~ C L A ~ B ( J + ~ ~ ~ ~ A C ( J ~ ~ I ~  
O O O - - - -  I C L A M B ( J + ~ ~ ~ F A C ~ J ~ J ~ ~ ~ J * I ~ ~ T B L ~ Y )  ---- . . . . _. _ .-.__ - -- 
000.- -- 1  READ 2s,FlRSToAfRSTgXLAST8A~AST8NDAT--  - .- - - -. - 
OCIO- --- - If- (NOATAoGToPJ -CO-TO-) ----------- - ----- -- 
000"- - - - P R I N T - 9 0  ----- 
0 0 0  9 0  FOnnAt  I l X e l l H f N D  OF RUN*) 
0 3 0  s TOP 
0 0 0  -- 1 READ YO,  IAMP1 (Jl ,NLAMB( JIi'Jrl ,r(DATA)--- - ---"----'----A 

000 - --- D I F N  m -  ALAS1 --- A f  R S T U - - - - - -  
------- 

- - - ---PA.- 
0 0 0 - -  - U N I T  * - l X L A S t - -  f 1 R S T l l D l F n ~ - -  
,000------ - A H A X  AH AMP^ t r l  - - .------- 

000 0 0  1 0 0  1 m I;NDATA 
UOo XLAHB(1J = (NLAMB(1) - APRSTlaUy lT  + F IRST 
0 0 0  ---~oo-IF ~ r n P I ( I ~ o G f m A . t l r x ) - - A n A x  m - A M P 1 1 1 ( ~ - - ~  .--- 

OOO-----'- - NDMl * 'NOATA- i - - l - - .  
-- - -- - 

000-- - - -  0 0  '400'1 * 1 - iNO l l l  
-- - - - - - . . - - . . - . - - - 

0 0 0  ' - I P l  - t + - t  ---.---- 

0 0 0  DO ' to0  J = IPABIDATA 
O00 uoo-- .. 

I F ( X L A H B ( I J ~ L E ~ X C A H ~ O )  GO TO YO0 
TEHP m -  ELAHBt 11- -.- -. 

0 0 0  XLAMBf l F = X L A l l C J l  
- - - - - . - . -. . - 

0 0 0  ---.--- - XLAHB ( J  l - =  TEHP- 
- 

0 0 0  *'----- 7tC)P.NLAMBt Z I ----- 
0 0 0  NLAMB( I )~NLAHBIJ !  
0 0 0  h L l H B ( J ) * f E M P  
000  --.- TEMP - * -AHPI  ( t t  --- - 
UOO - - - - - A M P  11  Z ) AMP 1-1 ---- 

000 --- --Amp I (  J I - m  TEMP- 
-. - -. - - .- 

0 0 0  '---'-'IOO-CONT 1NUL 
- - ---- 

U30 N . 1  
0 0 0  0 0  20Q I * IvNOATA 
0013 ---- DO--300 -;I - m  -N  ; t reC- -- 
0 0 0  ---  - - I F  ( XLAMBt I I o C t e C ~ A f l B 1  J) TGO T 0 - - 3 0 0 - - - - - -  
0 0 0  ---'--- N ='-J----- 

.-- .-----.-- 
OoO --.-- C ~ I X L A M B ~ ~ ~ - C L A ~ ~ ( J - I ~ ) / ~ C I ; L M B ~ J ~ - C ~ . A H B ~ J ~ ~ ~ ~ -  

OUO C.C.~FAC~JI-fACtJ-1I~+FAC~J-1I 
0 0 0  ooo ---.. 

A H P 2 ( I ) * A H P l 1 l l e C / A M k X  
EhERt I 1  I e Z 3 9 5 E Y / X L A h I B C f l  ---- 

0 0 0  GO TO 2 0 0  - -  ' 

. . - .- ---- -.-- -- 
0 0 0  3 0 0  CONIZNUE -- - . . - - - . 

0 0 0  - ---. - PRlNT -50- - 
0 0 0  5 0  FORMAT I IX@ZIHLAHBDA OUTSIDE TABLE RANGE*) 
UJO GO TO 1 -- -.-- .- 

ORIGINAL PAGE Is 
OP POOR QU- 



0 0 0  - 200 CONTINUt 
0 0 0  PRlNT 55,  ANAX 
boo 55  F o R M A T ~ I X , ,  THE SCALE . - .-- FACTOR - - - - - - - -  i f  *mTlO*ul  -- - - - . . ----- ----.---.- 

Pnl*T .(O - 0 0 0  - -  - 
~ ~ ~ ~ ~ ~ W R ~ T L I ~ O ) N D ~ T A ~ I E N E R I I I ~ ~ A H ? ~ ~ ~ ~ ~ ~ L A M B ~ ~ ~ ~ A M P ~ ~ I ~ * ~ ~ ~ - ~ ~ ~ A ~ A ~  --.- a 

0 0 0.- - P R - ~ N T - ~ O  ~ A H P ~ ~ ~ I , E N c R ( ) ) ; x C ~ ~ ~ B ~ ~ I ~ A M P ~ ~ I ) , N L A ~ ~ ~ ( I I ~  . ----- 
0 0 0  l -1-  -NOATAeI , - i r  -- --------- 

000  ?HINT 80 
090  60 ~ O W R ~ T ~ / ~ X ~ ~ H A ~ ? ~ ~ ~ X ~ ~ ~ ~ N ~ R ~ ~ ~ ~ ~ H ~ L A H O ~ ~ X ~ ~ ~ A H ? ~ B ~ X ~ ~ ~ ~ ~ A ~ B / ~  

70-FORMAT - t  l X ~ Z F I O m ~ ~ 2 F 1 0 . 2 ~ l S t - -  
- -- ~- -- 

000  - - 
000--- 80 FORHATI'/lXe16HEND OF DATA S E T U T l  
OOU END 
000  --oxqr 
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