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UPWASH ANGLES NEAR ENGINE INLETS OF AN EXTERNALLY
BLOWN FLAP STOL TRANSPORT

Roger L. Naeseth
Langley Research Center

and Danny R. Hoad
Langley Directorate, U.S. Army Air Mobility R&D Laboratory

SUMMARY

An investigation has been conducted in the Langley V/STOL tunnel to determine the
upwash flow angles in the region of the nacelle inlets of a representative powered-lift
transport configuration operating at high lift coefficients. The upwash angles were indi-
cated by tufts and measured from photographs. A potential-flow program was used to
estimate these flow angles.

Large upflow angles exist near the inlets of the nacelles; the highest value (67.3°)
occurred with flaps at 15°,35%,55°, an angle of attack of 25.7°%, and a thrust coefficient of 4.
The upflow angle was found to be strongly dependent on the circulation lift, regardless of
the flap deflection, angle of attack, or thrust coefficient used to generate this circulation
lift. The potential-flow calculations away from the nacelle inlets agreed fairly well with
the experimental data.

INTRODUCTION

An aircraft capable of efficient cruise performance and also short take-off and land-
ing (STOL) would generally have a powered high-lift system. This lift system, in devel-
oping lift coefficients approaching 10, induces large upwash angles in front of the wing in
the region of the nacelles. These flow fields must be defined in order that the nacelles
can be properly designed to minimize flow distortion at the engine face.

Some theoretical work has been done to calculate the flow field using two-dimensional
potential flow (ref. 1) and two-dimensional flow modified to include three-dimensional
effects (ref. 2). Little experimental work has been made available for design and compari-
son with calculated values of the flow field associated with the high lift coefficient generated
by STOL aircraft. Maximum upwash angles for conventional take-off and landing (CTOL)
transport aircraft are near 10° (ref. 8). STOL aircraft producing very high lift coefficients



generate upwash angles of the order of 500; therefore, the engine-inlet flow distortion is
much more severe for a STOL aircraft.

In the present investigation flow angles were measured at two spanwise stations in
the vicinity of the nacelles of a four-engine externally blown flap STOL transport model
by reading photographs of a tuft grid placed streamwise and adjacent to the engine nacelles.
Theoretical estimates of the upwash angle were made by computing the wing circulation
distribution with the vortex-lattice method of reference 4 and then evaluating the flow field
from a modified version of this vortex-lattice method.

Diagrams of the flow fields determined from the test photographs for landing and
take -off flap deflections are presented. Test conditions included a range of thrust coeffi-
cient from 0 to 4.0 and a range of lift coefficient from 1.9 to 9.3. Estimated values of up-
flow angles are compared to the experimentally determined values.

SYMBOLS

The values in this paper are given in both SI and U.S. Customary Units. Measure-
ments and calculations were made in U.S. Customary Units. Factors relating these units

are given in reference 5.

b wing span, 1.90 m (6.25 ft)
C tail-off lift coefficient, Lift
CL,I“ thrust-removed (circulation) lift coefficient, Cp, - nC“ sin (a + 6]-)
C thrust coefficient Static thrust
2 ’ gS
c mean geometric chord, m (ft)
Fp axial force, N (Ib)
Fn normal force, N (lb)
a free-stream dynamic pressure, Pa (Ib/ft2)
R radius of upper half of nacelle, 0.0652—
S wing area, m?2 (£t2)
2




\'2 free-stream velocity, m/sec (ft/sec)
X, Y axes used for wing planform definition

X,y coordinates of breakpoints of wing planform, x positive forward and y
positive toward right wing, cm (in.)

x/c fraction of projected wing chord (slats and flaps included)
173/’—2- tuft grid location, fraction of semispan
Z vertical location of grid relative to wing-chord plane, m (ft)
o angle of attack, deg
O¢ flap deflection, positive trailing edge down, deg
Fxn
Gj jet-exhaust deflection angle, arc tan F deg
A
flap turning effici \IFNZ + ¥y’
n ap turning eiiiciency, ——Trust—'
6 local upflow angle, measured with respect to model horizontal axis, deg
0] local upwash angle, measured with respect to free stream, deg

MODEL AND APPARATUS

The model was a typical powered-lift configuration equipped with externally blown,
triple-slotted flaps. Geometric characteristics of the model are given in figure 1. Pho-
tographs of the model installed in the Langley V/STOL tunnel with tail on are presented
in figure 2. The model had full-span flaps which were deflected to represent the take-off
and landing configurations (fig. 3). The series of numbers which designate the trailing-
edge flap deflections are for the three elements of the flap system.

A large chord slat, set at a deflection of 500, was used in conjunction with the flaps.

For some tests, wood fillers were installed to close the gap between the slat and the na-
celles. One of the fillers can be seen in figure 2 at the inboard end of the outboard slat.



The four nacelles installed on the model were located below and forward of the wing.
The exhaust flow of the high-bypass-ratio engines were simulated by two-part ejectors
using compressed air. The details of these ejectors are presented in reference 6. Fur-
ther geometric characteristics of this model can be found in reference 7.

The frame for the tuft grid used to indicate the flow angles ahead of the wing was
constructed of steel rods and bolted to the outboard sides of the port nacelles. The grid
was constructed in units of R, which is the radius of the upper half of the nacelle (fig. 4).
Wire standoff masts were used to decrease the interference of the supporting frame. In
addition, four long tufts were installed on masts long enough to put the tufts on the vertical
plane of the center line of the nacelle inlet and were used only during the landing configu-
ration tests. The tuft locations are presented in figure 4.

TEST AND PROCEDURES

This investigation was conducted in the Langley V/STOL tunnel at a nominal free-
stream dynamic pressure of 479 Pa (10 lb/ft2) for a Reynolds number of 0.54 x 106, based
on the wing mean geometric chord of 27.81 cm (10.95 in.). For this investigation the hor-
izontal tail was off. Most of the tests were made over an angle-of-attack range of 0° to
250 for static thrust coefficients of 0, 2, and 4. The various thrust levels were obtained
by setting the primary air-supply pressure at the model plenum in accordance with a pre-
viously determined relationship between model plenum pressure and model thrust.

Force and flow-angle measurements were made at selected angles of attack and
thrust coefficients. A complete investigation had already been conducted to determine the
longitudinal aerodynamics of this model (ref. 7). Maximum angle-of-attack corrections
due to wind-tunnel wall effects were determined to be approximately 0.5° in reference 7
therefore, no corrections to these data have been made.

Flow-angle data were recorded by a camera for the landing and take-off configura-
tions at Cu =0, 2, and 4 and three angles of attack (near zero, midway to stall, and just
below stall). Test conditions and configurations are listed in table I. The angle of each
tuft was measured relative to the body axis on the photograph. An example of the photo-

graphs taken is presented in figure 5.

PRESENTATION OF RESULTS

The tail-off lift-coefficient characteristics of the model which pertain to this investi-
gation are presented in figure 6. These data were obtained from reference 7.

The experimental data are presented in tuft grid form, as measured, in figures 7 to
13. The lift coefficients presented were obtained for the tail-off configuration from ref-
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erence 7. The nacelles are outlined on the figures to show their location relative to the
grid. The upflow angle 6 is given at each tuft location.

A summary of the upwash angle ¢ for one tuft is presented in figure 14 as a func-
tion of thrust-removed lift coefficient. The geometric characteristics required as input
for the program in reference 4 are presented in figure 15.

Comparisons of experimental and calculated results, arranged in essentially a grid
form, are presented in figures 16 to 22,

DISCUSSION

Basic Data

The data of figures 7 to 13 show large effects of the wing and engine thrust on the
flow field in the vicinity of the nacelles. The upflow angle increased as Cyp, was in-
creased by increasing « (for example, see figs. 8(a), 8(b), and 8(c)). The upflow angle
increased as Cj, was increased by increasing C (for example, see figs. 7 to 9). In-
creasing C from 0 to 2 had a large effect, but a further increase to 4 had much less
effect. The maximum value of upflow angle (67.39) occurred at a position ahead of the
lower lip of the nacelle at a lift coefficient of 9.33, a thrust coefficient of 4.0, and angle of
attack of 25.7° (fig. 12(c)).

The long tuft mounted on the outboard inlet centerline indicated higher upflow
angles for the power-off condition (fig. 10(c)) than those indicated for power-on conditions
(figs. 11(b) and 12(b)). The effect (local induced upflow angle due to nacelle flow) would
likely be greater (that is the upflow angle would be even smaller) if the flow into the inlet
was of the order of the scaled value. The ejector nacelles produce scaled thrust values
but produce only approximately one-half of the scaled inlet mass flow. The long tufts
below the nacelle centerline indicate very large upflow angles (increasing with power),
which could create large engine-face distortion problems.

A summary plot showing the variation with thrust-removed lift coefficient of the
upwash angle ¢ between nacelles indicated by one tuft, which is located a distance R
behind the leading edge of the inboard nacelle and on the horizontal plane through the
centerline of the inboard nacelle, is presented in figure 14. The thrust-removed 1lift
coefficients, which were computed by subtracting the direct-thrust component of lift from
the overall lift coefficient, are presented in table II. The figure indicates that, for power-
on conditions, the variation of upwash angle ¢ with circulation lift coefficient is essen-
tially the same for different thrust coefficients and flap deflections.

Prediction Calculations

The lift developed by a powered-lift system can be separated into three parts accord-
ing to the source of the lift: (1) the lift that was produced by the unpowered wing, (2) the
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lift due to the component of the jet which has been redirected by the flap system, and
(3) the lift due to circulation induced by power. Experimental results indicated that the
upwash angle ahead of the wing could be estimated based on thrust-removed lift coefficient.

The thrust-removed lift coefficient (circulation lift coefficient) and wing geometric
characteristics were input into the program described in reference 4 to determine the

magnitude of circulation.

The geometry required included planform breakpoints, locations of intersections of
lines defining the planform (fig. 15), and the chordwise angle-of -attack distribution to rep-
resent the slat and flaps on the wing. The program did not account for thickness effects,
so the wing section geometry was reduced to a camber line represented by straight lines
(fig. 3). Experience with the program in reference 4 indicated that a choice of 10 chord-
wise vortices equally spaced was a reasonably good representation of the high-lift system,
since the planform definition points, as shown in figure 15, could be placed in approxi-
mately the right places chordwise without modification of the program. Reference 4 indi-
cates that 20 spanwise stations are adequate. The local angle of attack and circulation
were extracted from the program of reference 4 and input into a flow-field program,
derived from the vortex-lattice method, to compute the upwash angle ahead of the wing.
The experimental angle of attack was then added to the upwash angle to obtain the total
upflow angle 6.

Calculated Results

The calculated results are compared to experimental results in figures 16 to 22.
The method of calculation appears to be useful, showing fair agreement in the regions away
from the nacelle inlet. The calculations near the nacelle inlet are lower than the experi-
mentally measured angles. The program does not include the geometry of the large na-
celles or the sink created by the mass flow into the nacelle when powered. These effects
must be considered to properly simulate the flow near the nacelles. The calculations for
the upflow angle 6 outboard of the nacelles agree very well with the experimental data

(tig. 22).
CONCLUDING REMARKS

An investigation has been conducted to determine the upwash flow angles in the
region of the nacelle inlets of a representative powered-lift transport configuration oper -
ating at high lift coefficients. The upwash angles were indicated by tufts and angles mea-
sured from photographs. A potential-flow program was used to estimate these flow angles

as a comparison.
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The results of the investigation indicate that large upflow angles, as high as 67.3°,
exist near the inlets of nacelles located forward and below a wing configured for externally
blown flaps. The highest value occurred with flaps deflected for landing at a 25.7 0 angle
of attack and a thrust coefficient of 4.

The upwash angle was found to be strongly dependent on the circulation or thrust-
removed lift, regardless of flap deflection, angle of attack, or thrust coefficient used to
generate this circulation lift.

The results of calculations made by a potential-flow method indicated that calculated
upflow angles were in fair agreement with experimental values except near the nacelle
inlets. The nacelle geometry and sink created by the mass flow into the nacelle when
powered must be considered to properly simulate the flow near the nacelle. Calculated
upflow angles outboard of the nacelles were in good agreement.

Langley Research Center

National Aeronautics and Space Administration
Hampton, Va. 23665

October 8, 1975
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TABLE 1.- TEST CONDITIONS AND CONFIGURATIONS

Figure presenting —

Grid
Flow data C?}:Sl:llﬁged 1;;?1?/%?’
7 16 | 0338 |
8 17 .338
9 18 .338
10 19 .338
11 20 .338
12 21 .338
13 22 .502

Flap
setting,
deg

0,20,40

0,20,40
0,20,40
15,35,55
15,35,55
15,35,55

15,35,55

Slat
fillers

a’
deg
0.5, 6.6, and 12.5

0.5, 12.7, and 24.8
0.6, 12.7, and 24.8
0.5, 6.7, and 12.8
0.9, 12.4, and 25.7
1.4, 13.5, and 25.7

-0.8, 9.0, and 17.1

.



2.0
2.0
2.0
4.0
4.0
4.0

2.0

2.0
2.0
4.0
4.0
4.0

TABLE II. - SUMMARY OF DIRECT THRUST

CONTRIBUTION CALCULATIONS

9.33

dee o?gé n CL CLr
'I;le -off fvlapé
0.5 22.76 0.8755 2.93 2.24
12.7 22.76 8755 5.00 3.98
24.8 22.76 8755 6.25 4.96
6 20.66 8903 3.56 2.27
12.7 20.66 .8903 5.90 3.94
24.8 20.66 8903 7.90 5.36
o Lénding fiapé |

0.9 44.53 0.7819 | 4.90 3.79
12.4 44.53 7819 6.72 5.41
25.7 44.53 7819 6.75 5.28
1.4 42.45 7935 6.00 3.80
13.5 42.45 1935 8.40 5.77
25.7 42.45 7935 6.39
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wing:
Arrfol! section, root NACA 63,4214
Airfol section, tip NACA 63, A211
Area,sq m{sq ft) 499 (5374)
Mean aerodynomic chord, m{ft) 278 (913)
Span, m (ft) 1905(6 250)
Aspect ratio 7.269
Vertical tail:
Airforl section NACA 0012
Area,sgm(sq ft) 183(1.968)
Mean aerodynamic,m{ft) 374(1228)
Span,m(ft) 493(1617)
1.328

Aspect ratio

- - - = 19050
17500

T

i
40 00 b
(15 75}

2438
. (960)

8 2 B

Figure 1.- STOL model geometric characteristics.

S0 11428
(44 99)

6425
12529)

4082
(16 07)

|

4947
519413 36)
| Vo toil
: T4
Co 51096 82 10 22073
13e1t 176.78
! 2 sto 7828, 186.90)
40 96
51916 13) ) 31.03__|
: ‘ (12.22)
.
: AI
k 49.27
na.a0)
23l29 ’
ol
[ |

Dimensions are in cm  (in.)
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unless otherwise noted.
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L-72-352
(a) Side view.

Figure 2.- Tuft grid mounted between nacelles of STOL model. 50° slats with fillers and flaps at 15°,35°,55°
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(b) Front quarter view.

Figure 2.- Concluded.

L-72-3527



O Bound vortex

‘0 Control point for camber slope

oa:oaoaoaoaoﬁﬂer}jc,\ﬂ,lerﬂcﬁ
| .

0 0.1 0.7 0.8 0.9 L0
— X/C

(a) Landing configuration. 15°,35°%,55° flap deflection and 50° slat deflection.

(b) Take-off configuration. 0°,20°,40° flap deflection and 50° slat deflection.

Figure 3.- Comparison of flapped wing sections and vortex-lattice representations
used in calculations.
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0.258¢ —;+~’-1*- 1298¢ - ~— €=27.81(10.95)

—~— 15568 — - = \

Spanwise tuft locations
e Tufts located between nacelles

o ‘Tufts on vertical plane through

nacelle ¢
%=95.25(37.500) —

R— ™1 R
I
e A —
! LR_ o~ _
4 L ; ./‘
'0 ]
Tuft spacing = Radius of upper part of nacelle

R = 0065 %

(a) 0.338‘% location.

Figure 4.- Location of tufts. Dimensions are in cm (in.) unless otherwise noted.



j

€=27.81(10.95)

e Tuft locations

a4

Radius of upper part of nacelle
0,065 &

Tuft spacing
R

(b) 0.502% location.

Figure 4.- Concluded.
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L-75-222

Figure 5.- Example of tuft photographs. Tuft grid located at 0.338 -g—;
flaps at 0°,20°,40% C, = 4.0; slat fillers on.
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Figure 6.- Tail-off lift characteristics.
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e Tufts in a chordwise plane located
between the port nacelles
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-1.1 -2.5 0.1

_\/
(@ a=0.5% Cp, = 1.90.

Figure 7.- Upflow angle, deg, between nacelles as shown by a tuft grid
located at 0.338 '%. Flaps at 0°,20°,40% €, = 0; slat fillers on.



o Tufts in a chordwise plane located

11.3

o = g

13.3

between the port nacelles
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(b) a=6.6% cCy, =2.60.

Figure 7.~ Continued.
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o Tufts in a chordwise plane located
between the port nacelles
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Figure 7.- Concluded.



e Tufts in a chordwise plane located
between the port nacelles

-0.5 0.2 0.5 0.1 -0.7 -0.5
= — """ e """ e """ &— """ & 7 &
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Figure 8.- Upflow angle, deg, between nacelles as shown by a tuft grid

located at 0.338 g- Flaps at 00,200,400; C. = 2.0; slat {fillers on.
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o Tufts in a chordwise plane located
between the port nacelles
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Figure 8.- Continued.
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o Tufts in a chordwise plane located
between the port nacelles
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Figure 8.- Concluded.



e Tufts in a chordwise plane located

between the port nacelles
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Figure 9.- Upflow angle, deg, between nacelles as shown by a tuft grid

located at 0.338 ;_’. Flaps at 0°,20°,40% C,
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= 4.0; slat fillers on.
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e Tufts in a chordwise plane located
between the port nacelles
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e Tufts in a chordwise plane located
between the port nacelles
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Figure 10.- Upflow angle, deg, between nacelles as shown by a tuft grid

located at 0.3382. Flaps at 15°,35°,55% Cy = 0.
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e Tufts in a chordwise plane located
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Figure 10.- Concluded.
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e Tufts in a chordwise plane located
between the port nacelles

o Tufts in vertical plane of centerline
of outboard nacelle
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Figure 11.- Upflow angle, deg, between nacelles as shown by a tuft grid
located at 0.3382. Flaps at 15°,35%,55% Cy, = 2.0.
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e Tufts in a chordwise plane located
between the port nacelles

o Tufts in vertical plane of centerline
of outboard nacelle
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e Tufts in a chordwise plane located
between the port nacelles

o Tufts in vertical plane of centerline
of outboard nacelle
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Figure 12.- Upflow angle, deg, between nacelles as shown by a tuft grid
located at 0.338'%. Flaps at 15°,35%,55% C,, = 4.0.



o Tufts in a chordwise plane located
between the port nacelles

o Tufts in vertical plane of centerline
of outboard nacelle
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e Tufts in a chordwise plane located
between the port nacelles

© Tufts in vertical plane of centerline
of outboard nacelle
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Figure 12.- Concluded.
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e Tufts in a chordwise plane located
outboard of the port nacelles

92 10 40

LY A Y A A
RAY

L9, 22 22

or

L, 03, 03

18 .

06, 0ol Ol

30, 06,

—=V
(a) a=

-———— .IP—— e, G Ll S
3. .0 3
"'1' ~— '3"" >~ '3"" -~ @
2.3 l 6.0 4.8

-0.3 \\13 1.9

= — T g "= :K

01 0.7 0.8 Qutboard
R G nacelle
LSS ¥ R Y

-0.8°% Cp,=2.58.

Figure 13.- -Upflow angle, deg, outboard of nacelles as shown by a tuft grid
located at o.sozkz—’. Flaps at 15°,35°,55% C, = 0.




e Tufts in a chordwise plane located
outboard of the port nacelles
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e Tufts in a chordwise plane located
outboard of the port nacelles
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Basic wing
—— ——Flapped wing pd

50° slat and 0°,20%,40° flap (take-off)
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Figure 15.- Wing planforms used in calculations. Dimensions are in cm (in.).
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