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FOREWORD

This report has been prepared for NASA/MSFC under Contract No.

'	 NASS-29033. We are indebted to Dr. Leonard DeVries and Mr. John Kaufman of

the Aerospace Environment Division, Aero-Astrodynamics Laboratory, Marshall

Space Flight Center for their assistance in the preparation of this report. We also

gratefully acknowledge the assistance of Mr. Delwin Mecham of Thiokol Chemical

Corporation, Brigham City, Utah in providing us with information on the probable

emissions of the solid engines of the Space Shuttle vehicle during pad-abort situations.
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SUMMARY

This report describes a quantitative assessment of the potential environ-

mental hazard posed by the atmospheric release of HCl resulting from the burning

of solid propellant during two hypothetical on-pad aborts of the Titan III C and

Space Shuttle vehicles at Kennedy Space Center. In one pad-abort, situation, it is

assumed that the cases of the two solid-propellant engines are ruptured and the

burning propellant falls to the ground in the immediate vicinity of the launch pad

where it continues to burn for 5 minutes. In the other pad-abort situation considered,

one of the two solid engines on each vehicle is assumed to ignite and burn at the

normal rate while the vehicle remains on the launch pad. Calculations of maximum

HCl ground-level concentration for the above on-pad abort situations were made

using the computer-1zed NASA/MSFC multilayer diffusion models in conjunction with

appropriate meteorological and source inputs. Three meteorological regimes at

Kennedy Space Center are considered—fall, spring and afternoon sea-breeze. Source

inputs for the hazard calculations were developed from information supplied by NASA/

MSFC and by Mr. Delwin Mecham of Thiokol Chemical Corporation. The principal

result of the calculations is that maximum ground-level HCl concentrations at dis-

tances greater than 1 kilometer from the launch pad are less than 3 parts per million

,i

	
in all cases considered.
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SECTION 1

INTRODUCTION

1.1	 PURPOSE

The purpose of this technical memorandum is to present calculations of

peak ground-level HCl concentrations downwind from pad aborts of the Titan III C

and Space Shuttle vehicles at Cape Kennedy for three meteorological situations.

1.2	 VEHICLE FUEL DATA

Basic vehicle fuel characteristics used in the calculations are given in

Table 1-1.	 As indicated in the table, both the Space Shuttle and Titan III C zero

stages are comprised of two solid-fueled rockets and the major exhaust component

of interest is hydrogen chloride (HC1).	 Estimates in Table 1-1 of total fuel and

HCl content of the engines for the Titan III C vehicle were obtained from available

.. {;	 ( literature.	 Mr. D. Meacham of the Thiokol Chemical Corporation supplied the

i
estimates of total fuel and HCl content of the Space Shuttle engines as well as the

r`^

enthalpy data for the heat produced by the burning of the fuel.

1.3	 DEFINITION OF PAD ABORT SITUATIONS

Calculations of HCl ground-level concentrations have been made for two

types of on-pad abort situations.	 In one set of calculations—slow  burn on pad—the

cases of the two solid rockets of the zero stage were assumed to be ruptured by an

on-pad explosion, resulting in the solid fuel from both engines burning over a 5-

minute period.	 In the other set of calculations (single engine burn), only one solid

engine of the zero stage was assumed to ignite and burn over a normal firing period,

with the vehicle held on the launch pad.



f

Titan III C Space Shuttle

Total Fuel (lbs)
1:16 x 10 6 62.50	 10(2 Engines) x

Total HCl (lbs)
5 5(2 Engines) 1.76 x 10 4.95 x 10

Enthalpy (cal g-1)

Slow Burn
On Pad 1000 1000

Single Engine
Burn 691 691
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The three meteorological situations used in the hazard calculations are

based on the mean monthly wind speed, wind direction, and temperature profiles

for Kennedy Space Center (KSC) published by Smith and Vaughan (1961) and on the

work of Record, et al. (1970) .	 These profiles have been previously used in hazard

calculations for launches at KSC (Dumbauld and Bjorklund, 1971; and Cramer, et al.,

1972).	 These previous calculations show that peak ground-level concentrations are 	 {

primarily dependent on the depth of the surface mixing layer Hm and the vertical

distribution of material in the stabilized cloud resulting from the pad abort. 	 Study

of the meteorological profiles for KSC showed that, for easterly flow required to	 }

transport the combustion cloud inland, the average mixing depth was about 1000

meters.	 During the spring, however, there are afew occasions when the surface

mixing depth is about 2000 meters. 	 Also, during the afternoon sea breeze which

B develops in all seasons, the average surface mixing depth is about 300 meters.	 j

Composite vertical profiles of .air temperature, wind direction, and wind speed

for easterly wind regimes at KSC used in the hazard calculations are shown in

Figures 1-1, 1-2 and 1-3.	 The three meteorological regimes represented are

r ^fall, spring and afternoon sea breeze.

} 1.5	 REPORT ORGANIZATION

Section 2 below contains a brief description of the calculation of buoyant
j,

cloud rise.	 The meteorological diffusion model used in calculating peak ground-

? level concentration is discussed in Section 3. 	 The procedures used in apportioning

the HCl in the various atmospheric layers is described in Section 4 and the source

and meteorological model inputs are given in Section 5. 	 The results of the calcula-

tions are discussed in Section 6.
a
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SECTION 2

CLOUD-RISE CALCULATIONS

Estimates of the maximum cloud rise were obtained from a modified

form of an expression given by Briggs (1969, p. 33) :

 [ 6F	
3 1/3 rR

zm= 	
(rR

-2	
y	 - —

uy s	 y

where

z = maximum buoyant rise of cloud centroid
M

F = g QH/7r 

0  
p T

I g = gravitational acceleration

f
Q	 = rate of heat emission from burning fuelH
cp	specific heat of air

E 6
p = air density

T = ambient air temperature	 J

E = mean wind speed

- y = entrainment constant

8'ks
? T 8z

z
al) = vertical gradient of potential temperature8z

f rR = reference cloud radius

The derivation of Equation (2-1) is given in Appendix A.

Table 2-1 lists values of the input parameters used in calculating the

. buoyant cloud rise from Equation (2-1) for both the Space Shuttle and Titan III C

vehicles and for the two pad-abort situations. 	 The vertical gradient of potential

t

j

(2-1)
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k

Type of Pad Abort
Parameter Slow Burn on Pad Single Engine Burn

Shuttle Titan III C Shuttle Titan III C

QH (cal sec-1) 3. 78 x 109 1.75 x 10 9 2. 13 x 10 9 1.47 x 109

y 0.5 0.5 0.5 0.5

rR (m) 25, 25 68.5 68.5

c 
	 (c al g -10 K-) 0.24 0.24 0.24: 0.24

T (OK)

Fall 299 299 299 299
Spring 300 300 300 300
Sea Breeze 294 294 294 294

8-1)/ 8z (oK m-1)

Fall 0.0037 0.0033 0.0033 0.0027
Spring 0.0023 0.0024 0.0025 0.0026
Sea Breeze 0.0072 0.0081 0.0082 0.0080

u (m sec-1)

F all 6.0 6.0 6.0 6.0
Spring 7.2 7.2 7.2 7.22
Sea Breeze- 4.2 4.2 4.2 4.2

-3)P (g m 1190 1190 1190 1190

7^s'7f - ^^ - 1
`IL ^^

TABLE 2-1

INPUT PARAMETERS USED TO CALCULATE
BUOYANT CLOUD RISE
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t

temperature &1,/8z was obtained from the temperature profiles shown in Figures

1-1, 1-2 and 1-3 by multiplying the difference between the potential temperatures

s
at ground level and the final cloud stabilization height by the reciprocal of the final

i

	

	 stabilization height, using an iterative calculation procedure. Values for T and u

shown in Table 2-1 were also obtained from Figures 1--1, 1-2 and 1-3.

I

The value of Q for the single-engine burn on the pad was calculated
H

from the expression

W HT • 	 i

QH	 2t'	 - Qi - Q,	 (2-2)
s	 }

`	 where
WT - total weight of solid fuel in grams

(	 H = enthalpy of solid fuel in calories per gram

t = normal burning time of the solid fuel engines (7.24 seconds
{	 for the Titan III C and 135 seconds for the Space Shuttle)

k	 Q' = rate heat must be supplied to heat the gantry deluge water
1	 to boiling point = 9.20 x 10 7 cal sec_1

Q2 = rate heat must be supplied to vaporize deluge water =
^	 6.82 x 108 cal sec -1

1	 The values assigned % and Q 1
2

	 based on the assumption that 1.26 x 10 3 kilo-

grams per second (Susko and Kaufman, 1971) of deluge water are used to cool the

{	 flame trench and that all the deluge water is vaporized by the rocket engine exhaust.

For the case in which the solid engines burn for a 5-minute period on the pad, Q
I	 H

was calculated from the expression

I z 
i	

\WT ' H)
s	 Q =	 _ Q , _ Q,	 (2-3)	 j!	 H	 300 seconds	 1	 2

x	 In solving Equation (2-3), the terms Q' and Q' were set equal to zero because of
1	 2

uncertainty as to the time duration of the full deluge water flow rate and because,

j	 even if the flow rate used for the single-engine burn calculations were to be

j



maintained for 5 minutes, the maximum height of the stabilized cloud would

decrease by less than two percent.

The value of the reference cloud radius rR for the single-engine burn of

the Titan III C was set equal to half the length of the flame trench at Launch Complex

39A at KSC (see Susko and Kaufman, 1971). 	 The same value forrR was used pre-
' viously in a similar pad-abort calculation for a Space Shuttle vehicle prepared for

Thiokol Chemical Corporation (Cramer, et al. , 1972). 	 For the slow burn on the

pad caused by rupture of the solid engine casings, r R was set equal to 25 meters

under the assumption that no thrust develops and the fuel drops and burns in the
4

immediate vicinity of the pad. 	 The entrainment parameter y was set equal to 0.5

all cases.	 of cloud-rise	 static	 of rocket motors andin	 Analyses	 data from	 firings

normal launches have shown that this value of y, when used in Equation (2-1), yields

satisfactory estimates of cloud rise (Dumbauld, 1971; Suslto and Kaufman, 1971).

The results of the cloud-rise calculations and other properties of the

t stabilized exhaust clouds are given in Table 2-2. 	 Inspection of Table 2-2 shows

that, as might be expected from the values of Q H shown in Table 2-1, the final
E cloud stabilization heights for the Space Shuttle pad-abort cases are higher than

f the corresponding heights for the Titan III C pad-abort cases. 	 The difference in	 9
i final stabilization height is greatest for the pad abort in which the vehicles burn for

5 minutes on the pad, where the final height for the Space Shuttle engine burn is

from 25 to 35 percent higher than the final height from the Titan III C burn. 	 The

average concentrations in the stabilized cloud shown in Table 2-2 were calculated
1 by dividing the total amount of HCl released during each pad abort by the volume

of the stabilized cloud, under the assumption that the stabilized cloud was a perfect

sphere with the radius given in the table. It should be noted that ground-level con-

centrations, except in the direct path of the exhaust blast from single-engine burns

or very close to the burning fuel components for the slow burn on the pad must be

smaller than the average concentration shown in Table 2-2 since the cloud will dilute

in mixing to the ground.

10

i>
y

^.^	 ^^.
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Average HCl
Meteorological

vehicle
Height Radius

Concentration
Regime (m)

(ppm).*

(a) Slow Burn On Pad

F all Shuttle 1612 831 62.8

Titan III C 1286 668 43.0

Spring Shuttle 1770 910 48.0

Titan III C 1341 696 38.1

Sea Breeze Shuttle 1450 750 84.0

Titan III C 1064 557 72.9

(b) Single Engine Burn

Fall Shuttle 1290 714 49.5

Titan 
III 

C 1209 673 21.0

Spring Shuttle 1340 739 44.8

Titan III C 1139 638 24.8

Sea Breeze Shuttle 1046 592 85.4

Titan III C 917 527 43.1

Calculated at surface temperature and pressure.



SECTION 3

CONCENTRATION MODELS

I

1
i
1

I
The generalized multilayer concentration models used in the calculations

were taken from a complete set of computerized multilayer diffusion models

developed for use in estimating toxic fuel hazards at Kennedy Space Center

(Dumbauld, et al., 1970). A complete description of these models is available

in the above-referenced report prepared for the Marshall Space Flight Center.

The generalized models are similar in form to the conventional Gaussian plume

equations described by Slade (1968, pp. 97-99) and others. However, additional

terms have been added to account for the effects of mesoscale factors, such as the

depth of the surface mixing layer, vertical wind shear, and precipitation scavenging.

The models also contain provision for gravitational settling, decay, and variations

in source dimensions, source emission time, and in meteorological structure along

the downwind cloud trajectory.

In using the multilayer models, the troposphere is divided into layers in

which the meteorological structure is approximately homogenous. Major layer

boundaries are placed arbitrarily at the points of major discontinuities in the verti-

cal profiles of wind, temperature, and humidity. It is assumed that there is no

vertical flux of material across the major layer boundaries due to turbulent mixing;

material flux across these boundaries can occur only as a result of gravitational

settling or precipitation scavenging. Changes in meteorological structure at some

arbitrary time or distance from the point of release can also be accommodated

through use of special layer-breakdown models previously developed for this pur-

pose in the work for Marshall Space Flight Center. As explained below, these

models were used in the present study because the surface mixing layer was divided

into sublayers to accommodate the height dependence of the initial vertical distri-

bution of exhaust products.

12

-
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L

f

f

,a

The basic formula for the peak or maximum concentration in the Kth

layer at some distance x downwind from the source is given by the expression

where

_ QK
X	

2 ^ yK axK	
{$-1)

P

QK = source strength in units of mass per unit depth of the
Kth layer

a K = standard deviation of the crosswind concentration
y	 distribution in the Kth layer at distance x

axy = standard deviation of the alongwind concentration
distribution in the Kth layer at distance x

i

r

i

r

t

i

1

Equation (3-1) above is defined as Model 1 in the report by Dumbauld, et al. (1970),

and the subset of equations defining yK and axK are given on pages 14 through 20

of the report. Briefly, yK and aXK are calculated by means of simple power-law

expressions relating turbulence parameters to cloud growth with distance. In this

model, the source extends vertically through the entire layer; the vertical distribu-

tion of the material in the layer is assumed uniform with height and Gaussian :Hong

the crosswind (y) and alongwind (x) coordinates. The use of Equation (3-1) requires

that material originating in the K th layer is constrained from diffusing vertically

beyond the vertical boundaries of that layer, as mentioned above.

In this study, only maximum ground-level concentrations were calculated.

The surface mixing layer was divided into sublayers to accommodate the height

dependence of the initial vertical distribution of HC1. The calculation of the initial

distribution of HCl in the surface mixing layer is described in Section 4. Computer

calculations of concentration were initiated with Model 1 given by Equation- (3-1).

One second after cloud stabilization, the material in the sublayers of the surface

mixing layer was permitted to diffuse vertically across the sublayer boundaries.



The layer-transition model described as Model 5 by Dumbauld, et al. (1970, pp.

31-33) was used to make these calculations because it provides for the requisite

9 vertical mixing and for identifying the contribution of the material contained in each
c

` initial sublayer to the composite ground-level concentration. 	 The formula for the

peak or maximum concentration for Model 5 is given by the expression

4

QK	 r

r

_

XPL	 4^r v	 v	 `yLK xLK^
k:

0	 2i (z	 z	 +z	 2i (z	 -z	 +z	 zTL zBL) BK L	 TL BL) TKerf	 `	 +erf	 \

I
2	 zLKi-0	 zLK

2i (zTL zBLl+2z	 -z	 -z	 2i(zTL zBLI-2z	 +z	 -z	
f/	 BL BK L	 \	 /	 BL TK L+ erf	 + erf (3-2)

^zLK	 °zLKR

O0	 1	 2iz	 -z	 z	 +z	 2i z	 -z	 +z	 -z
TL BL)	 BK L	 ( TL BL)	 TK L+ erf	 + erf

zLK	 /2—̀
4 zLK

-2i(z
TL zBL^+2zBL-zBK-zL 	-2i(z,I`L-zBLI-2zBL+zTK+zL

/+ erf	 + erf_	
t<j 32	 vzLK	 ozLK

where

a	 _ standard deviation of the vertical concentration distributionzLK in the L th layer for the source originating in the Kth layer
.	 t s

LK - standardldeviation of the crosswind concentration distribution	 {
j y	 in the L	 layer for the source originating in the I^th layer

` xLK - standard deviation of the alongwind concentration distribution
I in the Lth layer for the source originating in the K th layer

`

i
14	

y

I

F



I

z = height of the top of the L th layerTL
height of the base of the Lth

^L yla er

z	 = height of the top of the Kth layer
} ^ TK KthzBK

_
— height of the base of the 	 layer

zL =height in the Lth layer at which the concentration
. is calculated
t

G

f
S

f	
r

y

a

c_
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SECTION 4

VERTICAL DISTRIBUTION OF HCl IN THE SURFACE MIXING
LAYER AND INITIAL CLOUD DIMENSIONS

1

The typical geometry of the stabilized cloud of exhaust products is illus-

trated in Figure 4-1, which shows the stabilized cloud dimensions calculated for

the slow burn of the Space Shuttle solid engines in the spring meteorological regime.

As shown in the figure, the surface mixing layer (Hm = 2000 meters) has been

divided into 10 sublayers to accommodate to the vertical distribution of HCl. The

height of the cloud was obtained from Equation (2-1) and the cloud-rise formula

inputs given in Table 2-1. The radius of the cloud was obtained from the expression

	

r{z} = r  + yz	 (4-1)

using the values of r  and y in Table 2-1. The fraction of HCl by weight in each 	 l

of the K subla ers F{K was calculated from hy	 ^ }	 the relationship

F{K}	 Q [P{ z TK} - P{ z BK)]	 (4-2)

where

Q = total weight of HCl in the stabilized cloud

P z	 = integral of the Gaussian normal{ TK}	 g	 (normal) .probability function
between minus infinity and the top of the I£ th layer zTK

.zz
P TK m

Q	
(4-3)

P{zBK} = integral of the Gaussian (normal) probability function
between minus infinity and the base of the Kth layer z

LK

_ PjzBK - zm
(4-4)

•	 ,a

lu

1
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FIGURE 4-1. Geometry of the stabilized cloud for the slow burn of the Space

k
Shuttle solid-fuel engines in the spring meteorological regime.
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rfz =z 
m

(4-5)U	
2.15

=	 height from Equation	 -1)Z	 cloud stabilization	 (2
m

The models described in Section 3 above require that the source strength in each

k

layer be specified per unit height. 	 If Q is in units of pounds and the desired units

of peak ground-level HM concentration are parts per million, the complete expres-

sion used for the source strength input to the model calculations is

#

1QK =	 F{ K}	 (4.536 x 105 (1M)(	
3)	 (4-6)lb	 / 	273.16 / \PZTK	 zBK)

where
f M = molecular weight of HCl (36.47)

T = ambient temperature at the surface (°K)

P = ambient surface pressure (mb)

Equations (4-2) and (4-6) were used to obtain the values of Q K shown in the

meteorological and source input tables given in Section 5 below.

The source dimensions in each of the K layers were calculated from the
#expressions

rR + _y z" )/2.15	 ;	 z' < zm
v	 f K} = Xo {K} _	 (4-7)	

}:°
YO

	 + y(zm - z l )>/2.15	 ;	 z'	 zm

I
where

z'	 midpoint of the Kth layer

(zBK + zTK )/2

n	 ^

^8
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SECTION 5

METEOROLOGICAL AND SOURCE MODEL INPUTS

Meteorological and source model inputs used in the calculation of maxi-

mum ground-level HCl concentrations are given in Tables B-1 through B-12 in

Appendix B.	 Tables B-1 through B-3 contain the inputs for the slow burn on the

pad of the Space Shuttle solid-fuel engines for the three meteorological regimes.

Tables B-4 through B-6 contain the corresponding inputs for the burn of a single

Space Shuttle engine for the three regimes. 	 The model inputs for the slow burn of

the two Titan III C engines are given in Tables B-7 through B-9 and the inputs for

the burn of a single Titan III C engine are given in Tables B-10 through B-12.

Requisite values of the mean wind speed, wind direction, temperature,

potential temperature, and pressure were obtained from the vertical profiles shown

ilt Figures 1-1 through 1-3. Values of the standard deviation of the wind azimuth

angle at the reference height z  of 18 meters, for a 10-minute sampling period

(Tog = 600 seconds), were obtained from the expression

•R
vABK(TOK = 600 sec; K = 11 = 6d	 (5-1)

where Rd is the wind direction range at the reference height z R from Figure 2-11
of the report by Record, et al. (1970). The quantityoA w is assumed to decrease
with height in the mixing layer according to the expression

_p

o•A(z}	
uAR(z )	 (5-2)

R

as suggested by Record, et al. (1970, p. 48). The power-law exponent p in Equation

(5-2) is given by the expression

i
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ruKfK)^
	(ZTK {K}
	

i

P = log	 log	 (5-3)uBK{K}	 zR

° Values for the standard deviation of the wind elevation angle at the

t `
a

k reference height	 were obtained from theg	 zR 	expression

Y
7

1/5

1	 "

30	 "

'ER	 'AR( 600 /	 (5-4)

which implies that 
'ER 

is equivalent to 
uAR 

measured over a sampling period of

about 30 seconds.	 The quantity aE was assumed to decrease with height in the

= I mixing layer, similar to vA, according to the expression

C ^ ((l-pvE{z} = uEP.\ z	 I	 (5-5)
R

Values for the source strength in the various layers and the source

dimensions were obtained according to the procedures outlined in Section 4 above.

Values in Tables B-1 through B-12 in Appendix_ B for the source emission time TK

r
were calculated from the expression

j tB + tz	 tB + tz < 600 seconds

v..
TK =	 (5-6)	 j

600	 ;	 tB + tz	 > 600 seconds

,t

where,

tB	 propellant burning time
i°

`

d

4 t	 = time to maximum cloud risez
= 7 / 3 1/`	 (see Equation (A-8) in Appendix A)

{

21

1



j

1
SECTION 6

RESULTS OF THE CALCULATIONS

1	 6 1	 DISCUSSION OF RESULTS

1
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Figures 6-1 through 6-4 show profiles of calculated maximum ground-

level concentrations resulting from pad aborts of the Space Shuttle and Titan III C

vehicles in each of the three meteorological regimes described in Section 1. These

concentrations were calculated by using Equations (3-1) and (3-2) in conjunction

with the source and meteorological inputs in Tables B-1 through 13-12 in Appendix B.

Inspection of Figure 6-1 shows that, except for the area in the immediate

vicinity of the launch pad, ground-level concentrations downwind from the slow burn

of the Space Shuttle solid engines are highest for the fall meteorological regime

and reach a maximum of about 2.6 parts per million HCl at 7 kilometers downwind

from the launch pad. In the spring meteorological regime, the highest HCl concen-

tration outside the immediate launch area of 2 parts per million occurs at about 20

kilometers downwind from the launch pad. In the sea-breeze situation, most of the

material in the stabilized cloud is above the top of the surface mixing layer which

is at 300 meters. Thus, bv  and ,a ,%jut 4 kilometers from the launch pad, maximum

ground-level HCl concentrations are lowest for the sea-breeze situation.

Figure 6-2 shows the maximum HCl concentrations downwind from a 135-

second burn of a single Space Shuttle engine with the vehicle restrained on the launch

pad. Highest HCl concentrations downwind from the launch area again occur during

the fall meteorological regime, when the maximum ground-level concentration is

about 4.3 parts per million at 7 kilometers from the pad. Maximum HCl concentra-

tions of 2.2 parts per million occur at distances of 12 to 13 kilometers downwind

from the pad for the spring meteorological regime. Maximum HC1 concentrations

are again lowest for the sea-breeze regime. Comparison of Figures 6-1 and 6-2

shows that concentrations downwind from the launch pad , axe higher for the 135

second burn of a single engine than for both engines burning on the pad over a

22
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FIGURE 6-1. Maximum ground-level HCl concentrations downwind from a slow
_ burn on the pad of the two solid engines of the Space Shuttle vehicle.
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FIGURE 6-2. Maximum ground-level HCI concentrations downwind from a 135-
second on-pad burn of one solid engine of the Space Shuttle vehicle.
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5-minute period. This occurs primarily because the larger cloud stabilization

height in the slow burn case more than compensates for the increased amount of

HCl available when both engines burn.

Maximum HCl concentrations downwind from a slow burn on the pad of

a Titan III C vehicle and from a 124-second burn of a single engine with the vehicle

restrained on the pad are respectively shown in Figures 6-3 and 6-4. 	 In both pad- .

abort cases for the Titan III C vehicle, the concentration profiles resemble those N

for the Space Shuttle pad-abort cases with concentrations downwind from the launch

area being highest for the fall meteorological regime and lowest for the sea-breeze

regime.	 However, for the fall and spring meteorological regimes, the maximum.

t concentrations are higher for the two-engine burn over a 5-minute period rather

r than for the single-engine burn.	 For the Titan III C vehicle, the difference in the

heights of the stabilized cloud for the two different types of abort cases is not{

sufficient to overcome the effect at ground level of the greater amount of HCl

, released when both engines burn over the 5-minute period. 	 Ground-level HCl con-g	 P

centrations downwind from the launch pad during the sea-breeze regime are greater

for the single-engine burn than for the slow burn of both engines over a 5-minute

period.	 In any case, maximum HCl concentrations outside the immediate launch

area do not exceed a 2.8 parts per million for any meteorological regime or pad-

abort situation considered.

Comparison of the maximum ground-level HCl concentration profiles

shown in Figures 6-1 and 6-3 for the slow burn on the pad shows that downwind

concentrations beyond several kilometers from the pad are similar for both the

Titan III C and Space Shuttle vehicles during the fall and sea-breeze meteorological . 3
F

regimes.	 In the spring meteorological regime, maximum ground-level HCl concen-

trations are greater at distances beyond 10 kilometers from the pad for the burn of Y'

the Space Shuttle engines.	 Comparison of the profiles in Figures 6-2 and 6-4 for

( the single-engine burns shows that the concentrations are greater downwind from

{

25

j

s

^i



r
10

e

6

t 4

2

F

10o

a.
a 8

I

Z 6

4

WZ
O 2

{
F

x 10-1
4 Q

e

6
rf

4

2

I 	 7

k 10-2



10,

8

r 6 ,

r

^
4

SEA BREEZE FALL SPRING

2

_ _	 E 10°

:v a. s

f 6
O

a
t	 -

^

-	 ~

4

Z
LLJ

'aF

Z
V0

2

C

10-^
~2 8

#
6

i
^

4j
E

2_

10 3	 4	 6	 8 ^03	 2	 4	 6	 e 
104 	 2	 4

DISTANCE ( meters)

FIGURE 6-4. Maximum grounO .-level HCl concentrations downwind from a 124-
second on-pad burn of one solid engine of the Titan III L vehicle.

„	 f

4 _	 27



r`

the Space Shuttle pad abort than from the Titan III C abort for the fall and spring
4

meteorological regimes. Ground-level HCl concentrations for both vehicles are

'	 approximately equal during the sea-breeze regime.
-f

S .16.2

	

	 COMPARISON OF RESULTS WITH PREVIOUS PAD-ABORT HAZARD
CALCULA'.T'IONS

f

Similar calculations of maximum ground-level HCl concentrations for a

single engine on-pad burn of the Space Shuttle vehicle at Kennedy Space Center are
w

	

	 contained in a report previously prepared for Thiokol Chemical Corporation (Cramer,

et al. 1972, pp. 38-39). Table 6-1 lists the maximum HCl ground-level concentra-

tions, at distances greater than 1 kilometer from the launch area, from Figure 6-2

above and from Figure 4-4 in the Thiokol report. The two sets of maximum concen-

tration estimates are in close agreement and the differences are well within the 	 a

probable confidence limits of such calculations. The small differences between the

two sets are explained by differences in the methods used to calculate buoyant 	 E

plume rise, differences in the number of sublayers into which the surface layer

;.	 was divided, and small differences in the total weig A of fuel assumed to be contained

in a single solid-propellant engine. ('^^^^	 ^	 t^	 sp ace s`,Ae
^	 L_ 

	 a eor-il a

Y	
Calculations of the maximum ground-level HCl concentrations resulting

i
from a slow burn on the pad of the two zero stage engines of a Titan III D vehicle

were previously made by Cramer, et al. (1970) in a hazard study prepared for

Vandenberg Air Force Base. The zero stage engines for the Titan III D are the

same as for the Titan iII C vehicle considered in this report.. Close to the launch

pad, the calculated HCl ground-level concentrations resulting from the slow burn of

the Titan III D vehicle at Vandenberg. Air Force. Base (see Cramer, et al., 1970,

Figure 6-1, p. 96) are approximately ten times larger than the concentration estimates 	 !

for the Titan III C at Kennedy Space Center shown in Figure 6-3. At downwind dis-

tances of 10 to 20 kilometers, the two sets of estimates differ by less than a factor

28
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Meteorological Regime
HCl Concentrations (ppm)

From Figure 6-2 From Figure 4-4 in
Cramer, et al,	 1970

Fall 4.3 4.8

Spring 2.2 2.8

Sea-Breeze 3.7 3.5

L

TABLE 6-1

COMPARISON OF CALCULATED MAXIMUM HCl GROUND-LEVEL
CONCENTRATIONS FOR A SINGLE ENGINE BURN ON THE PAD

F, OF THE SPACE SHUTTLE VEHICLE AT KENNEDY SPACE CENTER



of two. The above differences are principally explained by differences in the

assumptions as to the total weight of HCl contained in the surface mixing layer and

the form of the vertical distribution of this material. In the Titan III D calculations,

the total weight of HCl in the surface layer is 2.5 times larger than that assumed

for the Titan III C sea-breeze regime case at Kennedy Space Center. The depth of

the suff ace mixing layer is approximately the same in both cases. Also, in the

Titan III D calculations, the HCl was assumed to be uniformly distributed with

height in the surface mixing layer above the pad. In the Titan III C calculations for 	
z

Kennedy Space Center, the vertical distribution of HCl in the surface layer was

assumed to be Gaussian with the bulk of the HCl contained at the top of the layer.

In retrospect, we feel that the assumptions made in the Titan III D pad-abort cal-

l	 ,
culations concerning the amount of HCl contained in the surface layer and the form

of the vertical distribution of HCl were unrealistic and led to large overestimates

of the ground-level HCl concentrations in the first 10 kilometers downwind from the
f

launch pad at Vandenberg Air Force Base.

n'
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APPENDIX A

DERIVATION OF MAXIMUM PLUME RISE FORMULA
r	

5

The following derivation of Equation (2-1) for the maximum buoyant rise

4 + of the hot plume of combustion products from the on-pad burning of solid propellant

is based principally on material contained in a preprint of a paper by G. A. Briggs

t (1970) presented at the Second International Clean Air Congress.

3
The derivation begins under the assumptions that we are dealing with a

f y

plume in which the axis is only slightly inclined above the horizontal, the density p

is nearly the same as the density of the ambient air, and the horizontal component •

of motion is approximately equal to the mean wind speed u.	 In the case of a buoyant

plume, the buoyancy flux divided by 7r p is given by the time derivative of the verti-

I cal momentum flux divided by 7r p

f

4
' d	 w u r2	=	 u d(w u r2)	 -	 2	 '-bur	 (A-1)dt	 dx

where

l	 ^" w	 vertical velocity component
i

r = plume radius
t x 

b	 characteristic buoyant acceleration of the plume

The decay of the buoyancy flux with time, assuming an adiabatic process, is

sexpressed by

2d (b 5 r2)	 = u	 d b u r	
_ -- w s ti r2

i
(A-2)

dt	 dx

where

s	 T az

fi
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=gravitational	 ler	 iog	 accelerationn	 r

T = ambient air temperature

8 = vertical gradient of ambient potential temperature

i.

w	 r
Differentiating Equation (A-1) with respect to time, assuming x = u t, and substi-

tuting from Equation (A-2) leads to the expression

2
u 2 

d2 
(w2 

r)
- s (w u r2)	 (A-3)_

dX

r

J If the quantity s is positive and approximately constant with height, Equation (A-3)

indicates that the vertical momentum flux can be expressed by the harmonic function

(w u r2) = Fm Cos	 sinu /	 +	 1^2	 sin (s 1/2 u/
	 (A-4)

s

where

Fm = ^w u r2^tr0 = wo ro

F = (b u r2)t=
	

= b w  ro0

The above derivation is based on conservation assumptions and is indepen-

dent of the behavior of r. 	 Briggs (1970) notes that a simple linear relationship for

r accounts very well for the great bulk of observed plume rises, even including

Yi plumes that are more nearly vertical than horizontal. 	 This relationship can be

expressed by r = yz, where z is the rise of the plume centerline above the source

and y is an entrainment constant. 	 In this report, we have used a modified equation

for r to account for the large initial dimensions in the case of the on-pad abert of 	 P

f the Titan III C and Space Shuttle vehicles. 	 The modified equation has the farm

y

t
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S

r	 r + yzR (A-5)
n'

where rR is the referenceeference cloud radius at the source.

w ' Substitution of Equation (A-5) into Equation (A-4) and the use of w =

u dx yields

2 ( 	\2	 1/2 xl	 F	 1/2 xlU	 rR + yz)	 dz = F m cos s	 u dx + /2 sin s	 u dx (A-6)s1
r<

Integrating Equation (A-6) and solving for z with the boundary condition that z _= 0

when x = t = 0 gives

{
z =

3 Fm 	3F,	 1/2	 (rRl3
(1 - cos^s	 t) +sin (s

1/2
t) + ['2

]1/3
rR

(A-7)1/2	 2 \ y y us	 uy s

In the case of an on-pad burr ► of a solid rocket motor, the buoyancy term is dominant.

k

Thus, the buoyant rise of the plume is given by

1/3

z(t) - 3F	 1/2	 l rR 
3

(1 -cos (s	 t 	 ( rR- — (A-8)
tl-

-	 2	 \ y yr u y s

The maximum buoyant rise zm of the plume is expressed by

{
( 1/3

6F	 rR `) r (A-9)
1

zm -
- 2	 +u y s

which is identical to Equation (2-1) in the body of the report.

2
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The initial buoyancy flux parameter F may be calculated by assuming

that the molecular weights and specific heats of the ambient air and the plume are

approximately equal. Thus,

F = b wo ro = g ^1 - Ps /P wo ro	 (A-10)

	

i	 where

g = gravitational acceleration

R

	

	 p = ambient air d asity

Ps = plume density

	

`	 Substitution from the Ideal Gas Law gives

r

F = g AT w  ro	 (A-11),
E	

s

where	 ?

F AT = TS-T

T = ambient air temperature
7

Ts = plume temperature

	

k	 Use of the Second Law of Thermodynamics yields the form of F shown in Section 2

of the report

g QH

F = P c T	 (A-12)
P

i 	 where

	

r	 a	 specific heat of air	
j

T .
QH	 rate of heat emission from the burning fuel

3
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APPENDIX B

TABLES OF METEOROLOGICAL AND SOURCE INPUTS	 s
s

	

j	 x

This appendix contains tables of source and meteorological inputs used

	

Y "`{	 in the calculation of maximum HCl concentrations downwind from pad aborts of the 	 3
Space Shuttle and Titan III C vehicles. Tables B-1 through B-3 contain the inputs 	 {

for the slow burn on the pad of the Space Shuttle solid-fuel engines for three meteoro-

logical regimes. Tables B-4 through B-6 contain corresponding inputs for the burn	 b

of a single Space Shuttle engine. The model inputs for the slow burn of two Titan 	
F
1

	l3	 III C engines are given in Tables B-7 through B-9, and the inputs for the burn of a

single Titan III C engine are given in Tables B-10 through B-12.

i
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Parameter Units
Layer

1 2 3 4 5 6 7

QK ppmm 1 9.77x104 5.49x10 5 2.69x106 1.01x10 6 2.25x10 7 3.61x107

zR
m 18

-1uR m sec 4.7

6AR{TOK} deg 12.0

'ER deg 6.6

oK sec 600 600 600 600 600 600

TK sec 586 586 586 586 586 586

aATK{ OK} deg 9.41 8.78 8.42 8.18 8.08 8.00

6ABK{ TcK) deg 14.98 9.41 8.78 8.42 8.18 8.08

{K} m 34.9 8i.4 127.9 174.4 209.3 232.6yo

aK 1 1 1 1 1 1

aETK deg 5.18 4.83 4.63 4.50 4.45 4.40

6EBK deg 8.24 5.18 4.83 4.63 4.50 4.45

6	 {Kf m 57.7 57.7 57.7 57.7 28.9 28.9
zo

xo{K} m 34.9 81.4 127.9 174.4 209.3 232.6

^w
c^



y'^r YYI!

TABLE B-1 Continued

Parameter Units
Layer

1
---

2 3 4 5 6 7

Ilk
1 1 1 1 1 1

zTK m 200 400 600 800 900 1000

'BK
m 2 200 400 600 800 900

uTK m sec 5.97 6.39 6.65 6.85 6.93 7.00

_1
uBK

m sec 3.78 5.97 6.39 6.65 6.85 .6.93

0 T
deg 95.8 101.6 107.4 113.2 116.1 119.0

0 B
deg 90.0 95.8 101.6 107.4 113.2 116.1

(DTK
aK

298.6 299.1 299.3 299.8 299.9 299.9

-(DBK cK 297.9 298.6 299.1 299.3 299.8 299.9

TTK ^K 297.7 296.2 294.2 292.7 291.7 290.7

TBK cK 299.0 297.7 296.2 294.2 292.7 291.7

PTK mb 990 967 944 920 908 898

PBK mb 1013 990 967 944 920 908

t* sec 1 1 l 1 1 1

Model No. 5 5 5 5 5 5



I

{

i

Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

-1
QK ppm 

m
7.88x 3.79x 1.70x 6.14x 1.78x 4.14x 7.72x 1.16x 1.40x 1.35x

104 105 106 106 107 107 107 108 108 108
zR m 18

-1uR m sec 6

vAR{T oK} deg 7

'ER deg 3.8

oK sec 600 600 6001 .600 600 600 600 600 600 600

TK sec 600 600 600 600 600 600 600 600 600 600

^ATK{T°K} deg 6.25 6.04 5.93 5.85 5.79 5.74 5.70 5.66 5.63 5.60

°ABK{TOK} deg 7.00 6.25 6.04 5.93 5.85 5.79 5.74 5.70 5.66 5.63

{K} m 34.9 81.4 127.9 174.4 220.9 267.4 314.0 360.5 407.0 393.0Y
°

«K 1 1 1 1 1 1 1 1 1 1

'ETK deg 3.39 3.28 3.22 3.17 3.14 3.11 3.09 3.07 3.06 3.04

6EBK (leg 4.14 3.39 3.23 3.22 3.17 3.14 3.11 3.09 3.07 3.06

azo
{K} m 57..7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7

x0{K} m 34.9 81.4 127.9 174.4 220.9 267.4 314.0 360.5 407.0 393.0
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TABLE B-2 (Continued)
ii

3

L

co

Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

PK 1 1 1 1 1 1 1 1 1 1

m 200 400 600 800 1000 1200 1400 1600 1800 2000zTK

2BK m 2 200 400 600 800 1000 1200 1400 1600 1800

uTK m sec-1 6.72 6.95 7.08 7.18 7.26 7.32 7.37 7.42 7.46 7.50

uBK m sec
-1

5.41 6.72 6.72 7.08. 7.18* 7:26 7.32 7.37 7.42 7.46

0 TK deg 108 116 124 132 140 148 156 164 172 180

0 B deg 100 108 116 124 132 140 148 156 164 172

"'TK OK 299.6 299.9 300.4 301.1* 301.6 302.0 302.5 302.9 302.9 303.5

4)BK
OK' 298.9 299.6 299.9 300.4 301.1 301.6 302.0 302.5 302.9 303.5

TTK OK 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7 284.2

TBK 0 300.0 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7

PTK
mb 990 967 944 920 898 875 855 835 815 795

PBK mb 1013 990 967 944 920 898 875 855 835 815

t* sec 1 1 1 1 1 1 1 1 1 1

Model No. 5 5 5 5 5 5 5 5 5 5



_.,.,.. _

Parameter Units
Layer

1 2 3 4 5 6 7

-1 8.02x104 1.71x105 4.75x 105QK ppm m

zR.
m 18

_1
uR m see 4.5

aAR{'TOK} deg 12

'ER deg 6.6

oK sec 600 600 600

TK see 503 503 503

'
ATK

{oK} deg 7.62 6.35 5.70

"ABK{ TOK}
deg 21.5 7.62 6.35

{K}yo m 23.3 46.5 69.8

c'K 1 1 1

6ETK deg 4.18 3.48 3.12

6EBK deg 11.84 4.18 3.48

QZO{K} m 28.9 28.9 28.9

x0{K} m 23.3 46.5 69.8

a^0
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TABLE B-3 (Continued)

j

s

r

Parameter Units
Layer

1 2 3 4 5 6 7

PK 1 1 1

m 100 200 300zTK

zBK m 2 100 200

-1uTK m sec 7.09 8.53 9.50

1uBK m sec 2.51 7.09 8.53

0 TK
deg 143.3 146.7 150.0

0 B deg 140.0 143.3 146.7

4)TK OK 293.7 294.0 294.2

%K
0K

292.9 293.7 294.0

TTK
oK

293.7 293.2 292.2

TBK OK 294.0 293.7 293.2

PTK mb 1000 990 977

PBK mb 101.3 1000 990

t* sec 1 1 1

Model No. 5 5 5



Parameter Units
Layer

2 2 3 4 5 6 7

QK ppm m 
1

1.93 x 10 5 1.19 x 10 6 ' 5.71 x 10 6 1.43 x 10 7 2.43 x 10 7 3.78 x 10 7 5.37 x 107

zR m 18

uR ; m sec
,-1

4.7

6AR{ToK} deg 12.0

'ER deg 6.6

oK
sec 600 600 600 600 600 600 600

TK sec 438 438 438 438 438 .438 438

'ATK{ oK} deg '9.41 8.78 8 . 42 8.29 8.18 8.08 8.00

^ABK { 
TOK} deg 14.98 9.41 8 . 78 8.42 8.29 8.18 8.08

{K} m 55.1 101.6 148.1 183. 0 206 . 3 229.5 252.8yo

aK 1 1 1 1 1 1 1

'ETK deg 5.18 4.83 4.63 4.56 4.50 4.45 4.40

6EBK deg 8.24 5.18 4.83 4.63 4.56 4.50 4.45

QZO{K} m 57.7 57.7 57.7 28.87 28.87 28.87 28.87

x0{K} m 55.1 101.6 148.1 183.0 206.3 229.5 252.8

1

iF	

t



Parameter Units
Layer

1 2 3 4 5 6 ?

aK
1 1 1 1 1 1 1

m 200 400 600 700 800 900 1000zTK

zBK
m 2 200 400 600 700 800 900

_1

uTK
m sec 5.97 6.39 6.65 6.76 6.85 6.93 7.00

uBK
m sec-1 3.78 5.97 6.39 " . 6.65 6.76 6.85 6.93

0 T deg 95.8 101.6 107.4 110.3 113.2 116.1 119.0

0
deg 90.0 95.8 3.01.6 107.4 110.3 113.2 116.1

B

4'TK OK 298.6 299.1 299.3 299.5 299.8 299.9 299.9

BK OK 297.9 298.6 299.1 .299.3 299.5 299.8 299.9

TTK 0 297.7 296.2 294.2 293.4 292.7 291.7 290.7

TBK OK 299.0 297.7 296.2 294.2 293.4 29247 291.7

PTK
mb 990 967 944 930 920 908 898

PBK mb 1013 990 967 944 930 920 908

t* sec 1 1 1 1 1 1 1

i	 Model No. 5 5 5 5 5 5 5
5
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TABLE B-4 (Continued)



Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

1QK ppmm 1.71x 1.00x 4.73x 1.60x 3.91x 6.84x 8.62x 7.81x 5.09x 2.38x
105 106 106 107 107 107 107 107 107 107

zR m 18

uR m sec_
1

6

°'AR{TOK} deb 7

'ER deg 3.8

oK
sec 600' 600 600 600 600 600 600 600 600 600

TK sec 486 486 486 486 486 486 486 486 486 486

'ATK{T°K} deg 6.25 6.04 5.93 5.85 5.79 5.74 5.70 5.66 5.63 5.60

°ABK{T°K} deg 7.77 6.25 6.04 5.93 5.85 5.79 5.74 5.70 5.66 5.63

{K} m 55.1 101.6 148.1 194.7 241.2 287.7 334.2 306.3 259.8 213.3
y°

«K
1 1 1 1 1 1 1 1 1 1

'ETK deg 3.39 3.28 3.22 3.17 3.14 3.11 3.09 3.07 3.06 3.04

'EBK deg 4.14 3.39 3.28 3.22 3.17 3.14 3.11 3.09 3.07 3.06

az°{K) m 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7

Xa{K} m 55.1 101.6 148.1 194.7 241.2 287.7 334.2 306.3 259.8 213.3 E`
i -

METEOROLOGICAL AND SOURCE INPUTS FOR A SINGLE ENGINE ON-PAD BURN OF
THE SPACE SHUTTLE VEHICLE - SPRING METEOROLOGICAL REGIME
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TABLE B-5 (Continued)
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Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

QK 1 1 1 1 1 1 1 1 1 1

zTK m 200 400 600 800 1000 1200 1400 1600 1800 2000

'BK
m 2 200 400 600 800 1000 1200 1400 1600 1800

-1
uTK m see 6.72 6.95 7.08 7.18 7.26 7.32 7.37 7.42 17.46 7.50

-1
uBK m sec 5.41 6.72 6.95 7.08 7.18 7.26 7.32 7.37 7.42 7.46

8TK deb 108 116 124 132 140 148 156 164 172 180

eBK deg 100 108 116 124 132 140 148 156 164 172

"^TK
OK 299.6 299.9 300.4 301.1 301.6 302.0 302.5 302.9 302.9 303.5

'BK
oK

298.9 299.6 299.9 300.4 301.1 301.6 302.0 . 302.5 302.9 303.5

TTK 0 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7 284.2

T
BK

OK 300.0 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7

PTK mb 990 967 944 920 898 875 855 835 815 795

PBK
mb 1013 990 967 944 920 898 875 855 835 815

t* ^u 1 1 1 1 1 1 1 1 1 1

Model No. 5 5 5 5 5 5 5 5 5 5



r	
,

TABLE B-6

METEOROLOGICAL AND SOURCE INPUTS FOR A SINGLE-ENGINE ON-PAP BURN OF
THE SPACE SHUTTLE VEHICLE - SEA-BREEZE METEOROLOGICAL REGIME

cs

X^_

ff

r

Parameter Units
Layer

1 2 3 4 5 6 7

Q,K ppmm-1 2.17x10 5 5.64x10 5 1.70x105

zR m 18

uR m sec 4.5

aAR{T oK} deg 12

"ER deg 6.6

oK
sec 600 600 600

TK sec 325 325 325

aATK{ oK} deg 7.62 6.35 5.70

6ABK{ oK} deg 21.5 7.62 6.35

{K} m 43.5 66.7 90.0yo

aK 1 1 1

'ETK deg 4.18 3.48 3.12

°'EBK deg 11.84 4.18 3.48

azo{K}
m 28.87 28.87 28.87

xo{K} m 43.5 66.7 90.0
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Parameter Units
Layer

1 2 3 4 5 6 7

QK
ppm m 6.36x104 5.20x10 5 3.07x10 6 8.60x10 6 1.57x10 7 2.59x10 7 3.84x107

zR
In 18

u m see 4.7
R

o-	 {T OK}AR de0
12.0

'ER deg 6.6

T,A
see 600 600 600 600 600 600 600

TK
see 600 600 600 600 600 .600 600

'A M. f 'roK} deg 9.41 . 8.78 8.42 8.29 8.18 8.08 8.00

ABK{ TOK} &'g 14.98 9.41 8.78 8.42 8.29 8.18 8.08

a {K} m 34.9 81.4 .127.9 162.8 186.0 209.3 255.8yo

a K 1 1 1 1 1 1 1

'ETK deg 5.18 4.83 4.63 4.56 4.50 4.45 4.40

'EBIK deg 8.24 5.18 4 83 4.63 4.56 4.50 4.45

a	 {K} m 57.7 57.7 57.7 28.9 28.9 28.9 28.9zo

aXOV"f m 34.9 81.4 127.9 162.8 186.0 209.3 255.8

4
00
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TABLE B-7 (Continued)

• Layer
Parameter Units

1 2 3 4 5 6 7

PK
1 1 1 1 1 1 1

m 200 400 600 700 800 900 1000
zTK

ZBK
m 2 200 400 600 700 800. 900

-1uTK m sec 5.97 6.39 6.65 6.76 6.85 6.93 7.00

_1
m sec 3.78 5.97 6.39 6.65 6.76 6..85 6.93

uBK

0 T
deg 95,8 101.5 107.4 110.3 113.2 116.1 119.0

0 B
deg 90.0 95.8 101.6 107.4 110.3 113.2 116.1

'-'TK
OK 298.6 299.1 299.3 299.5 299.8 299.9 299.9

BK 0 297.9 298.6 299.1 299.3 299.5 299.8 299.9

• TTK 0K 297.7 296.2 294.2 293.4 292.7 291.7 290.7
_

OK 299.0 .297.7 ` 296.2 294.2 293.4 292.7 291.7TBK

PTK
mb 990 967 944 930 920 908 898

PBK mb 1013 990 967 944 930 920 908

t* sec 1 1 1 1 1 1 1

Model No. 5 5 5 5 5 5 5a
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TABLE B-8

METEOROLOGICAL AND SOURCE INPUTS FOR A SLOW BURN ON THE PAD OF A
TITAN III C VEHICLE - SPRING METEOROLOGICAL REGIME

cn0

Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

QK
-1Ppm m 5. 66 x 4.32 x 2.47 x 9. 76 x 2. 66 x 5 .00 x 6.49 x 5. 82 x 3.60 x 1.54 x

104 105 106 106 107 107 107 107 107 107

zR m 18

.1 .
uR m see 6

O'AR{TOK} deg 7

'ER deg 3.8

oK see 600 600 600 600 600 600 600 600 600 600

TK
see 600 600 600 600 600 600 600 600 600 600

'ATK
{7* oK} deg 6.25 6.04 5.93 5.85 5.79 5.74 5.70 5.66 5.63 5.60

'ABK{
T °K} deg 7.77 6.25 6.04 5.93 5.85 5.79 5.74 5.70 5.66 5.63

{K} m 34.9 81.4 127.9 174.4 220.9 267.4 314.0 360.5 407.0 393.0yo

aK 1 1 1 1 1 1 1 1 1 1

'ETK deg 3.39 3.28 3.22 3.17 3.14 3.11 3.09 3.07 3.06 3.04

'EBK deg 4.14 3.39 3.28 3.22 3.17 3.14 3.11 3.09 3.07 3.06

o-{K} m 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7zo

xO{K} m 34.9 81.4 127.9 174.4 220.9 267.4 314.0 360.5 407.0 393.0
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TABLE B-8 (Continued)

x

Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

RK
1 1 1 1 1 1 1 1 1 1

m 200 400 600 800 1000 1200 1400 16('i0 1800 2000
zTK

'BK m 2 200 400 600 800 1000 1200 1400 1600 1800

uTK m sec 6.95 7.08 7.18 7.26 7.32 7.37 7.42 7.46 7.50

uBK
m sec 6.72 6.95 7.08 7.18 7.26 7.32 7.37 7.42 7.46

0 TK deg 108 116 124 132 140 148 156 164 172 180

0 B deg 100 108 116 124 132 140 148 156 164 172

4) 0 299.6 299.9 300.4 301.1 301.6 302.0 302.5 302.9 302.9 303.5
TK

'BK
0 298.9 299.6 299.9 300.4 301.1 301.6 302.0 302.5 302.9 303.5

TTK 0 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7 284.2

TBK OK 300.0 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7

PTK mb 990 967 944 920 898 875 855 835 815 795

PBK mb 1,013 990 967• 944 920 898 875 855 835 815

t* -sec 1 1 1 1 1 1 1 1 1 1

Model No. 5 1 5	 j 5 5 5 5 5 5 5 5
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TABLE B-9

METEOROLOGICAL AND SOURCE INPUTS FOR A SLOW BURN ON THE PAD OF A
TITAN III C VEHICLE - SEA-BREEZE METEOROLOGICAL REGIME

cn

Layer
Parameter Units

1 2 3 4 5 6

pKK ppmm 
1

5.24x104 1.73x105 6.16x105

zR
m 18

-1uR m sec 4.5

'AR{'roK}
deg 12

'ER
deg 6.6

oK
sec 600 600 600

TK sec 491 491 491

QATK{oK} deg 7.62 6.35 5.70

'ABK{ T
oK} dea 21.5 7.62 6.35

{K} m 23.3 46.5 69.8Yo
cxK 1 1 1

'ETK deg 100 200 300

aEBK
deg 2 100 200

•zo{K}
m 7.09 8.53 9.5

xo{K} m 2.51 7.09 8.53

4
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TABLE B-9 (Continued)

Parameter Units
Layer

1 2 3 4 5 6 7

QK 1 1 1

zTK m 100 200 300

zBK m 2 100 200

-1aTK m sec 7.09 8.53 9.5

-1m see 2.51 7.09 8.53'uBK

0 T deg 143.3 146.7 150

0BK
de 140 143.3 146.7

4)TK
OK 293.7 294.0 294.2

BK
oK

292.9 293.7 294.0

TTK 0K 293.7 293.2 292.2

TBK 0 294.0 293.7 293.2

PTK
mb 1000 990 977

•BK
mb 1013 1000 990

t* see 1 1 1

Model No. 5 5 5



Parameter Units
Layer

1
-

2 3 4 5 6 7

QK
ppm m-1 8.50 x 10 4 5.70 x 105 2. . 82 x 10 6 7.01 x 10 6 1.17 x 10 7 1.78 x 10 7 2.43 x107

ZR
In 18

uR
m see 4.7

oAR{7' oK} deg 12.0

'ER deg 6.6

'roK
see 600 600 600 600 600 600 600

'rK
see 458 458 458 458 458 458 458

'r
'ATK

f OK) deg 9.41 8.78 8.42 8.29 8.18 8.08 8.00

ABK{ToK} deg 14.98 9.41 8.78 8.42 8.29 8.18 8.08

(7	 {K} M 55.1 101.6 148.1 183.0 206.3 229.5 252.8
yo

aK 1 1 1 1 1 1 1

'ETK
deg 5.18 4.83 4.63 4.56 4.50 4.45 4.40

'EBK
deg 8.24 5.18 4.83 4.63 4.56 4.50 4.45

a	 {K} m 57.7 57.7 57.7 28.9 28.9 28,.9 28.9
zo

X0- 
01-f

f Irl
I

m 55.1 101.6 148.1
I

183.0

I

206.3
I

229.5
I

252.8
I

•	 I

cn
pp,

7

7-7
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TABLE B-10

METEOROLOGICAL AND SOURCE INPUTS FOR A SINGLE-ENGINE ON-PAD BURN OF A
TITAN III C VEHICLE - FALL METEOROLOGICAL REGIME
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TABLE B-10(Continued)

i

cn

f

f

c

5

6

k

Parameter Units
Layer

1 2 3 4 5 6 7

AK
1 1 1 1 1 1 .1

m 200 400 600 700 800 900 1000
zTK

m 2 200 400 600 700 800 900zBK

-1m see 5.97 6.39 6.65 6.76 6.85 6.93 7.00
uTK

_1
m see 3.78 5.97 6.39 6.65 6.76 6.85 6.93uBK

0 T
deg 95.8 101.6 107.4 110.3 113.2 116.1 119.0

0 deg 90.0 95.8 101.6 107.4 110.3 113.2 116.1B

-ID TK
OK 298.6 299.1 299.3 299.5 299.8 299.9 299.9

'BK
OK 297.9 298.6 299.1 299.3 299.5 299.8 299.9

TTK 0 297.7 296.2 294.2 293.4 292.7 291.7 290.7

TBK OK 299.0 297.7 296.2 294.2 293.4 292.7 291.7

PTK mb 990 967 944 930 920 908 898

PBK mb 1013 990 967 944 930 920 908

t* see 1 1 1 1 1 1 1

Model No. 5 5 5 5 5 5 5
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TABLE B-11	 v _

METEOROLOGICAL AND SOURCE INPUTS FOR A SINGLE-ENGINE ON-PAD BURN OF
A TITAN III C VEHICLE SPRING METEOROLOGICAL REGIME

i	
•

^I

t

en
c^

Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

1QK ppm m 1.05 x 7.55x 3.81x 1.24x 2.60x 3.52x 3.08x 1.74x 6.36x 1.49x
10 5 105 106 107 107 107 107 107 106 106

zR m 18

-1uR m see 6

o-AR{Toy} deg 7

'ER deg 3.8

oK
see 600 600 600 600 600 600 600 600 600 600

TK see 463 463 463 463 463 463 463 463 463 463

'ATK{TOK}
deg 6.25 6.04 5.93 5.85 5 79 5.74 5.70 5.66 5:63 5.60

7ABK{7'OK}
deg 7.77 6.25 6.04 5.93 5.85 5.79 5.74 5.70 5.66. 5.63

{K} m 55.1 101.6 148.1 194.7 241.2 287.7 334.2 306.3 259.8 213.3yO
Ck 1 1 1 1 1 1 1 1 1

'ETK deg 3.39 3.28 3.22 3.17 3.14 3.11 3.09 3.07 3.06 3.04

'EBK deg 4.14 3.39 3.28 3.22 3.17 3.14 3.11 3.09 3.07 3.06

azo{K} m 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7

x0 {K} m 55.1 101.6 148.1 194.7 241.2 287.7 334.2 306.3 259.8 213.3

a
i

1

is

1
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TABLE B-11(Continued)

Parameter Units
Layer

1 2 3 4 5 6 7 8 9 10

RK
1 1 1 1 1 1 1 1 1 1

m 200 400 600 800 1000 1200 1400 1600 1800 2000zTK

m 2 200 400 600 800 1000 1200 1400 1600 1800
zBK

uTK m sec-1 6.72 6.95 7.08 7.18 7.26 7.,j2 7.37 7.42 7.46 7.50

uBK m see
_1

5.41 6.72 6.95 7.08 7.18 7.26 7.32 7.37 7.42 7.46

0 T deg 108 116 124 132 140 148 156 164 172 180

0 B
deg 100 108 116 124 132 140 148 156 164 172

^TK
oK 299.6 299.9 300.4 301.1 301.6 302.0 302.5 302.9 302.9 303.5

%K 0 298.9 299.6 299.9 300.4 301.1 ' 301.6 302.0 302.5 302.9 303.5

TTK 0 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7 284.2

TBK oK 300.0 298.7 297.0 295.5 294.0 292.5 290.7 289.2 287.5 285.7

PTK
mb 990 967 944 920 898 875 855 835 815 795

PBK mb 1013 990 967 944 920 898 875 855 835 815

t* sec 1 1 1 1 1 1 1 1 1 1

Model No. 5 5 5 5 5 5 5 5 5	 - 5

,



Parameter Units
Layer

1 2 3 4 5 6 7

QK ppmm-1 1.13x10 5 3.41x105 1.11x106

zR m 18

1uR m see 4.5

uARfT OK} deg 12

'ER deg 6.6

oK sec 600 600 600

TK
see 317 317 317

vATK{ oK} deg '7.62 6.35 5.70

'ABK{ ToK} deg 21.5 7.62 6.35

yo(K} m 43.5 66.7 90.0

"K 1 1 1

'ETK deg 4.18 3.48 3.12

°"EBK deg 11.84 4.18 3.48

o-{K} m 28.9 28.9 28.9zo

xo(K} m 43.5 66.7 90.0

F
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TABLE B-12 (Continued)

W
to

Parameter Units
Layer

1 2 3 4 5 6 7

PK
1 1 1

zTK
m 100 200 300

zBK
m 2 200 300

1
uTK m sec 7.09 8.53 9.5

-1uBK m sec 2.51 7.09 8.53

0 TK deg 143.3 146.7 150

0 deg 140 143.3 146.7
B

(D OK 293.7 294.0 294-.2
TK

'BK
OK 292.9 293. 7 • 294.0

TTK 0K 293.7 293.2 292.2

TBK 0 294.0 293.7 293.2

PTK
mb 1000 990 977

PBK
mb 1013 1000 990

t* sec 1 1 1

Model No. 5 5 5

i
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