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`ABSTRACT

A mathematical model is being developed that will permit predic-

tions of the strength of fiber reinforced composites containing known flaws

to be made from the basic properties of their constituents. 	 The approach

is to embed a local hetero geneous region (LHR) surrounding the crack tip

into an anisotropic elastic continuum.	 The intent is to have the model

(1)	 permit an explicit analysis of the micromechanical processes involved

in the fracture process, and (2) remain simple enough to be useful in

practical computations.	 Material properties used in the analysis are to

be obtained from a concurrent experimental program being carried out at

Virginia Polytechnic Institute and State University.

Computations for arbitrary flaw size and orientation under arbi-

trary applied load combinations have been performed for unidirectional

composites with linear elastic-brittle constituent behavior. 	 The mechanical

properties were nominally those of graphite epoxy. 	 With the rupture proper-

ties arbitrarily varied to test the capability of the model to reflect real

fracture modes in fiber composites	 it is shown in the report that fiber

breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial

splitting can all occur during a period of (gradually) increasing load prior

to catastrophic fracture.	 Of most importance, the computations reveal

qualitatively the sequential nature of the stable crack growth process that

precedes fracture in composites. 	 Quantitative comparisons with the VPISU

experimental results on edge-notched unidirectional graphite epoxy specimens

have also been made and were found to be in fair agreement.

`
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FUNDAMENTAL ANALYSIS OF THE FAILURE OF
POLYMER-BASED FIBER REINFORCED COMPOSITES

INTRODUCTION

There are many different ways in which a structure made of a fiber

reinforced composite material can become unable to adequately perform its

primary function.	 In each such instance failure is considered to have oc-

curred.	 The possible failure modes therefore encompass a wide range of pos-

sibilities from simple loss of structural rigidity due to gross inelastic de-

" formation (e.g., yielding), through a reduction in load-carrying capacity

due to localized damage or separationg	 p	 (e.g., interply delamination), to the

complete loss of strength due to large-scale crack growth and fracture. Each

of these failure modes can be gradual or rapid depending on the nature of the

applied loads, the material properties, the geometry of the structure, and the

is presence of cracks or flaws.	 For polymer-based composites, the loading rate,

r the temperature, and previous load history can also play prominent roles.

In the work described in this report, emphasis is placed upon

$^
i

fracture and, therefore, the work will be primarily concerned with the "strength"

V.	 ! of fiber composites containing known flaws. 	 The term strength is convention-

ally taken to mean the load level at which failure occurs in a standard test

l specimen.	 Clearly, the strength will be a function of many different para-

meters arising in the test program and may or may not be directly applicable

f to engineering design situations. 	 The primary purpose of the research des-

I
cribed in this report is to provide a bridge between standard labo-atory test

procedures and actual engineering applications of fiber composites that will

allow accurate reliable estimates of the failure loads for aircraft and other

engineering structures.	 Such a capability does not presently exist.

i
The design tool that should be developed for the safe and efficient

` utilization of compositematerials is a predictive capability for fracture

that can take account cqf the applied loading, the geometry of the structure,

and the environmental effects in terms of readily measurable properties of the

n composites constituents and of its microstructural design.	 The primary

benefits accruing from such an analvtical capability are twofold. 	 First,

for a given structure, material, and load, the critical flaw size and type in

a structural component can be estimated for comparison with actual flaws ob-

served in an inspection program. Second, guidelines can be provided for the

designer to tailor more fracture resistant "tougher" materials for specific

engineering applications.
i
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PROGRAM PLAN AND SUMMARY OF PROGRESS

The work described in this report represents the first year of effort

in what is planned as a multiyear program. The specific objective of the

first year's work was to develop the basic mathematical procedures required

for the analysis model. To implement this work, attention was focussed on

unidirectional composites with linear elastic-brittle material behavior. In

subsequent work, the model will be extended to treat angle ply laminates and

will include further refinements (e.g., inelastic constituent behavior) re-

quired in order to treat actual engineering problems.

The primary objective of the work will be achieved only if the

mathematical model developed is capable of delineating the role of the various

micromechanical failure processes that dictate the ultimate failure point of

fiber reinforced composites. The research described in this report seeks this

end by merging a micromechanical failure analysis with a macromechanical frac-

ture mechanics approach. This approach treats the material as heterogeneous

and anisotropic where microst;.uctural effects predominate and as homogeneous

and anisotropic where it is permissible and practical to do so. In this way,

direct consideration can be given to

• The external size and shape of the structure and the

laminate stacking sequence

• The applied loads acting on the structure, both

mechanical and thermal, and environmental effects

• The size, shape, and orientation of a flaw in the

laminate.

In particular, the manner in which these parameters influence the sequence

of microstructural failure events whereby a flaw extends stably under an

increasing load up to the point of catastrophic fracture will be determined.

It should be understood that the conventional approach to fracture analysis,

linear elastic fracture mechanics, is not capable of coping with this degree

of complexity, thus necessitating the more general development being pursued

here.

{

T

f
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Linear elastic fracture mechanics (LEFM) is a predictive technique

applicable to structural components containing crack-like flaws when the

material used fits certain key assumptions used in the LEFM theory. Specifi-

cally, the material must behave very nearly as would a completely linear

elastic perfectly homogeneous ideal material. The LEFM approach has been

successful when properly applied (e.g., to high strength steel), but consider-

ably less successful in applications where the basic assumptions are not well

satisfied. Fiber reinforced composite materials are an outstanding example

of the latter case. In particular, in fiber composites with a flaw, a non-

linear "damage" zone is generally produced at the flaw. This zone, generally

growing in a stable manner under an increasing applied load, has a profound

effect on the eventual point of complete fracture. This is shown, for example,

in the work of Mandell, et al. L11* as well as by many other investigators.
The damage zones in a fiber composite are the result of a large

number of discrete failure processes, e.g., fiber breaking, matrix yielding,

etc., that occur in the highly stressed region ahead of a crack-like flaw.

These individual micromechanical everts do not conform to the basic assumptions

of LEFM. Consequently, it is not surprising that the agregate of such pro-

cesses cannot be treated by LEFM. What is therefore needed is a generalized

fracture mechanics treatment which explicitly recognizes the fundamental na-

ture of damage growth in composite materials. Specifically, a proper analysis

of fracture in fiber composites must be cognizant of two key features: the

generally anisotropic constitutive behavior of the material, and the hetero-

geneous nature of the fracture process.

The approach developed in this report can be likened conceptually

to boundary layer theory and, in application, to the well-established singu-

lar perturbation and matched asymptotic expansion techniques of fluid

mechanics. That is, the problem of a composite material containing a flaw

is divided into distinct "inner" and "outer" regions. In each of these regions,

the material is modeled in different ways. The inner region, which contains

the crack tip, is considered on the microscopic level and treats the material

as being heterogeneous. The outer region surrounds the crack tip region. It

is treated as a homogeneous orth.otropic continuum. For simplicity, the inner

crack tip region will be referred to in this report as the LHR (for local hetero-

geneous region) while the outer region will be simply called the continuum.

* References are given on page 45
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The LHR consists of elements representing the matrix, the fibers,

{

i;
and the fiber-matrix interface zones.	 The constitutive relations of these

elements, up to and including their rupture points, are presumed to be known
d

from experiments.	 Any element of a fiber composite ruptures when an intrinsic

x_̂
1.

critical energy dissipation rate can be provided at some point of that element.

These critical values are assumed to be independent of the local stress field

environment at the point of incipient rupture. 	 This permits data from fracture

i ' tests on isolated fibers, matrix material 	 and	 possibly,^ P	 Y^ unflawed composites^

(to obtain interface strengths) to be directly inserted into the model. 	 Ma-

?'` terial properties used in the analysis work and 	 ultimately, critical tests

of the predictions of the model will be obtained from a concurrent experi-

mental program being carried out under NASA sponsorship at Virginia Polytechnic

Institute and State University.

5i Progress to date has permitted computations to be performed for
i

} unidirectional	 composites with elastic-perfectly brittle constituent

behavior.	 The mechanical properties have been those of graphite epoxy.	 The

rupture properties have also been arbitrarily varied to test the capability

of the model to reflect real fracture modes in fiber composites. 	 It has

l
been shown that fiber breakage, crack bridging, matrix-fiber debonding, and

axial splitting can all occur during a period of (gradually) increasing load

{ prior to catastrophic fracture.	 In this way, the sequential and interrelated

manner in which each individual local rupture event occurs during damage
'•r

growth preceding fracture in fiber composites is revealed by the computations.
s

Before beginning a detailed discussion of the analysis technique, it

j may be useful to briefly consider an overview of the entire program required

' to completely develop the analysis model.	 A tentative schedule to carry the1

development of the model from this, the first year, to the point where actual

design problems with composite materials can be addressed is shown in Table I.

The level of effort envisioned to complete these tasks is roughly the same for

each year.	 Note that although a capability for treating fatigue crack growth

will not be addressed until the third year of the program, it was thought desirable

to begin to study theliterature on the subject now.	 The resulting critical sur-

vey is given as Appendix A of this report. 	 Similarly, in anticipation of con-

trasting the model developed in this work with others that have been offered, a

discussion of experimentally observed failure mechanisms in composites and of

various alternative analysis models for predicting fracture of composite materials

is included as Appendix B.

1
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TABLE I. TENTATIVE SCHEDULE FOR A PROGRAM LEADING
TO A COMPLETE ANALYSIS MODEL OF POLYMER-
BASED FIBER COMPOSITES WITH FLAWS

Task

Develop mathematical basis
for prediction of damage
growth in a LHR at the tip
of a crack in plane defor-
mation.

Develop mathematical basis
for model of angle ply
laminates with arbitrary flaws.

Objectives

Demonstrate and verify
practicability of the basic
approach.

Demonstrate and verify
applicability of model to
engineering structures.

Demonstrate and verify use
of the model under loads
representative of service
conditions.

Demonstrate and verify use
of the model under arbitrary
service conditions.

Goals

Perform computations for
unidirectional flawed
fiber composites for elas-
tic-perfectly brittle con-
stituent behavior.

Perform computations for
multidirectional laminated
plates with through-the-
thickness cracks.

Perform computations for	 Ln

.fracture and fatigue with
realistic material be-
havior.

Perform computations for
fracture under impact loading
and thermal shock; for fa-
tigue crack growth under
variable rate loading.

Time

First year (a)

Second year

Third year	 Develop mathematical basis
for time-dependent loading
and inelastic constitu-
ent behavior.

Fourth year Develop mathematical basis
for dynamic and thermal ma-
terial response with visco-
elastic/plastic constituent
behavior.

(a) Work performed at Battelle's Columbus Laboratories for NASA, Ames Research Center, through
Virginia Polytechnic Institute and State University, 1974-75, as described in this report.

1
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DESCRIPTION OF THE ANALYSIS TECHNIQUE

In the preceding section of this report, the objectives of the work.

and an outline of the general approach were given. The focal point for this

I	 description was the two-dimensional local heterogeneous region (LHR) surrounding

the crack tip. A typical LHR model is shown in Figure 1. Depicted is a uni-

directional fiber composite containing three distinct components: the fibers,

the matrix, and the fiber-matrix interface zones. In this section of the report,

the discrete elements that comprise the LHR and the manner in which theP	 Y are

assembled to give a quantitative predictive capability for composite fracture

will be described in detail.

LHR Boundary Conditions

In the work performed so far, the interaction between the LHR and the

continuum, as is appropriate for preliminary stages of the work, has been taken

in the simplest possible manner. This is by specifying the displacements on the

boundary of the LHR in accord with the "rigid boundary conditions" approach. Use

of this scheme is tantamount to assuming that the LHR is large enough that the

nonlinear inhomogeneity of the crack tip region does not affect the periphery

of this region. In other words, the LHR and the continuum are assumed to be

uncoupled. Consequently, the displacements at the LHR boundary are exactly the

same as if the entire cracked body is an elastic continuum. The required rela-

tions can therefore be obtained from the work of Sih and Liebowitz [2]. Their

approach is briefly summarized, as follows.

Consider a plate with its major dimensions lying in the xy plane.

For either plane stress or plane strain deformation, the inulane strains ex,

ey , and yxY will depend only on the inplane stresses ox , ay , and Txy.

Hence, the appropriate constitutive relations for a rectilinearly anisotropic

body in a state of plane deformation are given by

ex = all 6x + a12 Q
y + a16 Txy

ey = a12 6x + a22 ay + a26 Txy	 C_1)

y xy =a16 
ax + 

a26 Q
y + a66 Txy

Y^-	
ti
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f	 Sih and Liebowitz show that the solution to the governing differential equation

i

	

	 of two-dimensional anisotropic elasticity theory is associated with the roots

of the characteristic equation

	

a A4 2az 3 +(2a +a ) Is	 2a h+a =0 .
^	 11	 16	 12	 66	 26	 22

It can be shown that the roots of Equation (2) are either complex or are pure

€	 imaginary. Hence, these can be labeled z1' 6 4 and h 2 . This suggests the
r;
k	 introduction of the complex variables z1 = x + A Iy and z 2 = x + .S 2y. The plane

problem of an anisotropic body is thereby reduced to the determination of two
x	

complex potential functions of a complex variable ^(z 1) and ^(z 2) that satisfy

the prescribed boundary conditions of the problem.

As further shown in reference 2, the displacement field is expressed

g

	 ^
ll

	 in terms of the potential functions by the relations

^.t

3{
Nr	 i

E
t	 u = 2 Re {p1 ¢ ( z1) + p2 (z2) }

'S

x	 v	 2 Re {q	 ( z ) + q1	 2 ( z 2 ) }1 

where u and v are the x and y displacement components and

9	 s i

pi - all .6 + a1Z - a16 ^1	 p2 = all Is2 + a12 - a16 Is 

ql 
1 

(a12  1 + a22 -x'26 16	 q2 - 2 (a12 ^2 + Q22 a26 ^2 )

Omitting the details, potential functions for a cracked body infinite in extent

have been determined for insertion into Equations (3). In particular, a solution

for remote loading consisting of a uniform tensile loading o acting in the di4	 '

j
section normal to the crack plane and a shear loading T parallel to the crack

-
: 
fi -

4

(2)

(3)
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plane for a crack of length 2a can be obtained. 	 For a polar coordinate system

^ with origin at the crack ti	 as shown in Figure 2 	 theP	 g	 ^ displacements near theP

crack tip are given by

i

u	 K	 2r 1/2 Re	 1	 ^1 P 2 (cos	 +	 d 2 sin x)1/2 +
, I	 r b2-^1

;
re

fi - ^2 P l (cos $ + .1 sin ¢) 1/2 +

E  1/2+KII 	Re
(iTr

	 1 p 2 (cos	 + d 2-^ 1/2sin ^)	 +
1	 2 ,t

- P 1 (cos cp +	 sin ^ ) 1/2 1
4

(	 )

r
and t

v = KI
2r 1/2	 1Re b -d ^1 q2	 (cos ^ + z

1/2
sin ^)	 +

1	 2

C	 {

- b 2 q1 (cos	 + b l sin	 ) 1/2 + (/	 a

1/2 1+ KII	 2_r	 Re	 -^	 q2 (cos	 + '6 2 sin
1	 2

1/2^)	 +

- q1 (cos	 + b l sin ¢ ) 1/2 (5)k

f ^

a



...^ ..	 Imo' ^^

V

u

._ 	 FIGURE 2. DISPLACEMENT COMPONENTS FOR A POINT IN THE
VICINITY OF THE CRACK TIP

!71
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where

KI=a v7Ta

and
	

(6)

KII = T V Tr a

are the Mode I and Mode II stress-intensity factors for the problem.

Equations (4) and (5) can be used to determine displacements on the

LHR boundary via the rigid boundary-condition approach. This means that the

applied stresses acting on the body are transmitted through the continuum region

to the crack-tip region and are "sensed" at the crack tip in terms of the stress-

intensity factors K  and KII . An independent specification of the load and

crack length is therefore unnecessary. Hence, although derived for an infinite

medium, the approach can be used for bodies with finite boundaries by simply in-

serting the appropriate stress-intensity factors. In doing this, it must be

tacitly assumed that the LHR is (1) large enough relative to the microstructural

dimensions of the composite that the boundary displacements are closely given

by continuum theory and (2) small enough relative to the crack length and di-

mensions of the body that the singular behavior of the continuum solution at the

crack tip dominates.

While appropriate for preliminary work, it is anticipated that the

rigid boundary condition approach--even with periodic updating to reflect the

progress of the crack through the LHR--may prove to be too restrictive. There-

for, in subsequent work, a flexible boundary-condition approach which extends

an approach developed in work previously carried out at Battelle [3] will be

used. This is described in more detail in the Recommended Further Research

section of this report. It might be noted that with flexible boundary conditions,

crack iength and load must be specified individually.
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The LHR Element

As shown in Figure 1, the LHR for a fiber reinforced composite is

considered to be made up of three different types of constituents: fiber,

matrix, and fiber-matrix interface. Each of the individual constituents in

the LHR must be capable of rupturing to allow the body to exhibit the changes

in strength that correspond to various levels and orientations of local break-

age. A good deal of success has been obtained by Kanninen [4,5] using "spring-

like" elements to model a local fracture phenomena. This fact, taken together

with the increased computational simplicity of this approach, has led to the

adoption of the basic element shown in Figure 3 for this work.

As shown in Figure 3, each element has eight degrees of freedom

and is connected in the LHR at its four corner node points. Extensional stiff-

ness is provided by four extensional connectors. These connectors resemble

simple extensional springs, but also have a lateral contraction or Poisson effect.

A material made up of a set of these connectors behaves in uniform extension

exactly like a homogeneous orthotropic material. Similarly, shear stiffness

is incorporated in the element through a rotary spring at each node point to

give the proper response to shear loadings. The values of the spring con-

stants are functions of the material's elastic constants and of the element

size and shape.

In addition to giving the proper response to loads, the LHR elements

fracture according to the "codes" shown in Figure 4. In Figure 4, Fracture Code

1 represents an increment of crack extension in the plane lying midway between

Nodes 1 and 4 that extends from the left side of the element to the center of

the element. Fracture Code 2 represents the continuation of the crack to the

right side of the element. Fracture Codes 3 and 4 represent similar increments

of cracking in the vertical direction.

Using an energy approach, it is possible to trace those components

of the elemental stiffness matrix that are associated with each fracture code in

every element in the LHR. This information can be assembled into the stiffness

matrix such that a solution can be obtained for the incipient rupture of any

subelement in the LHR. Note that this is most easily possible if (as in the
present work), the constituent behavior is restricted to being linear elastic

to the rupture point. Inelastic behavior, while more complicated, is not

precluded, however.
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Knowledge of the stiffness components attributable to each fracture

condition also provides a method of calculating the energy-release rate for

crack advance by any of the four codes provided for in each LHR element. Of

course, the critical rupture energy values must be specified to provide a de-

cision rule for breakage in each separate element. Note that while the model

allows separate critical values to be specified for each of the four fracture

codes for every one of the elements in the LHR, ordinarily different values

will be specified only for the different constituents, i.e.., fiber., matrix, or

interface.

Elemental Stiffness Formulation

Energy principles can conveniently be used to determine the stiffness

of the LHR structure. The sign conventions for an LHR element will be taken as

shown in Figure 5. Then, using the following notation:

Ci = rotational spring constant at the ith node

Kij	 extensional stiffness in the x direction between the
xx

it and jh	 th nodes
ij

yy = extensional stiffness in the y direction between the

ith	 thand j nodes

KXy = cross extensional component (effect of Poisson's ratio)

between the ith and j th nodes

ui = x displacement at the i th node

vi	y displacement at the ith node,

the total strain energy U stored in the element for any set of arbitrary nodal

displacements u  and v i can be written as

r
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U2
KXX

^v4—vl 	 v3V
(u2 - u1) Z + KXy 2 	

+	
2 

2	 (u2-u1)

+ 2 K (u3-u4 ) 2 + K	
v42y1 

+ 
°3 v22	 (u3-u4)

+ 2 KYY
J' -u 	 a -u

(v4-Vl) 2 + Kx	 32 
4	 +	 22 l } (v4-Vl)

:-
+ 1

2
K23
yy (v -v ) 2 + K23	 u3-u4	 + u2-ul v -v3	 2	 xy	 2	 2( 3	 2)

F , 1

+ 2 C1({

((v2-Vl)	 (u4-ul)

+	

^2

Ax	 A y

tw

+ l

2

G
2

(u3-u2)	 +	 (v2-v1)

2 y 	Ax

2_.. 1

+ 2
C
31

(u3-u2)	 (v3-v4)

0	 +	 AxAy

+ 1
2 ^4

2
Sl-u4 

+ w4-v3u)oy	 ^x

r

(7)

It is desirable to determine an elemental stiffness matrix such that

ul	 Fxl
vl	 F

Yl

Ke	 (8)

t	 FX
u4	 4

l
'.

 F
v4	

y4

WOW
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This is accomplished by relating the node forces to the partial derivatives of

the total strain energy. 	 That is

4

F
au

au

e .
1

i

and

y F	 _	 au
F ay.

yi	 i...•'

1,
For example,

An; au
= F	 = K

12	
u -u K12 vl	

v4	

+ V2	 - 
v3

Du 	 xl	 xx	 1	 1 +
xy

-
2	 2	 2	 2

ry

1 2(u-u 4

r
+ 2 Cl2 ^

vl-v2
jAx oy 	 +

(Ay)
2

2(v4-v3)
1

2(ul.-u4)+	 C

2	 4

+

Ax Dy 2	 j (10)
(oy)

Expansion of this relation will give the elements in the first row of the matrix

[K ].	 Subsequent derivatives taken with resk• ::ct to tbe other degrees of freedom
e

generate the remaining rows.

The spring constants used in the formulation must be related to the

constituent's elastic properties.	 This is accomplished via the relations

ij
Kxy - Q12	 for i,j = 1,...4

Kij = Qfor i,j
11

=	 1 ...... 4
xx	 ox

_

w Kyy = Q22 oy	 for all
i,j	 = 1,...,4

Ci4 Q33 Ax Ay for all i = 1,...,4

F
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c ,

where [Q1 is defined as the constitutive stiffness matrix in the usual manner

as

s

Q E
t x

oy = Q

x

Ey (11)

Txy Yxy a

L	 J J L	 J s

. Specifying these relations is tantamount to assuming that the material in each

element is completely homogeneous.	 The desired heterogenity arises from the fact M

that the Qij I s	 are different for the fiber, matrix, and interface elements.

The Energy-Release Rate

The local rupture criterion used in this work is a generalized version

of the ordinary energy-release rate (or crack-driving force) quantity of LEFM.

w`
In formulating it, attention must be placed on the complete structure. 	 The

discretized form of the equations of equilibrium for a complete structure can
k

be represented by the matrix equation
r	 ^.

^

11 = F
	

(12)

J '

where	 is the structural stiffness matrix, u is the nodal displacement vector

and F the applied nodal load vector.	 The energy-release rate G can be defined {

in a giobal sense by relating it to the change in work done by the applied load-

ing and the strain energy during a virtual crack extension. 	 This is

s.

_ dW	 dU

_. da	 da	 (13)

where
F..

W = uT F	 (1CF)

k

'
asatx .^+ar	 _	 - 	 , . -c+mem..x^.cwmr_; 	 _	 ^_	 ^*sKr-^m-_--^	 •._ 	 _

_
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i is the work done b	 the applied loading,y	 PP	 ,g

F

r. U=1uT [	 ] u	 (15)k2 ti	 ti

is the strain energy and a represents the crack length. 	 (In these equations, the

j
superscript T denotes the transpose.)

When Equations (14) and (15) are introduced into Equation (13), it

:. is found that

duT	 T d_ 1 	 d
G =	 ^'	 F- [k] u+	

u	
[k] u	 (16)

da	 ti 	 ti	 da	 2 n,	 da	 ^,	 ti

^.3 It can be seen from Equation (12) that the quantity within the braces of Equa-

tion (16) is a null vector.	 Furthermore, if k is independent of the crack length,

^*
#^ then the second term also vanishes. 	 Equation (16) therefore reduces to

E
1	 T d	 (17)G=	
2 ti da [k] ti

A	 t

Now, it can be considered that the only contribution to the matrix da 
[k] 	 is that

I ^ due to the stiffness matrix 	 K	 of the element containing the crack tip. 	 If W

denotes the displacement vector of the nodes of the element only, then Equation
r (17) can be used to obtain an approximation of G that can be written as

1

T	 T
ti	 [Kb ] u - u	 [Ka]

(18)
E 2Da

k

i
where [Kb ] ([Ka ]) is the elemental stiffness matrix before (after) an extension

4
<:	 s oa	 of the crack within the element. Recognizing that

U	
Te	 2 ti

[K] u
.	 (19)

`t

x
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_ ik	 7:

7 t	 f

is the elemental strain energy, then an alternative form of Equation (18) is

U - U
	a. 	 e

G =	
uaa a

	
(20)

A similar development for the energy-release rate occurs in the recently pub-

lished papers by Hellen, et al. (6,71.

Program Solution Techniques

To use the analysis that has been developed thus far, the material

properties of the constituents and the micromechanical geometry must be specified.

(The material properties are also used to determine the homogeneous orthotropic

properties of the bulk composite through an effective modulus or volume fraction

technique.) The way in which the constituent properties and the geometry are

used to generate elemental stiffnesses for assemblage into the LHR will be des-

cribed next.

There are two classes of _nodal points used in the LHR. The first

consists of the points on the boundary of the LHR where displacements are pre-

scribed. The nodal points in the interior of the LHR having unknown displacements

make up the second class. It is useful to assemble the stiffness matrix in

such a way that these two groups are isolated. The partition used here is

^2J	
k23	 u2) _ F2

[k32]	 k33	 u3^	 F3	

(21)

In Equation (21), the subscripts do not refer to nodes, but to the nodal point

classification just described. That is (u 2) represents the prescribed displace-

ment vector of the peripheral poihtG while(u 3 ) is the vector of the unknown dis-

placements for which a solution is desired. Note that the number 1 was not used

as a subscript because it is more convenient to reserve it for specified zero

displacements.

By performing the matrix multiplication indicated in Equation (21),

the following two equations are obtained:



r-

(22)

r

_.T ^^'^ii	

y 1

^is.

F
a^: r

4	

a- {
I

22

Ck221 1 u2 ^ + [k 231J u31 - 1 F 2 }

r

Lam'
J	 1	 l	 S	 l	 1

Ck321	 1 u2 f + 	Ck331	 1 u3 f	 1 F3 f - 	 l o t	 (23)

^.
Most often, it is either impossible or inefficient to store large matrices such

as [k33 ] in the computer's central processor core area.	 For this reason [k33]

"T is stored externally. 	 The external storage can be minimized by utilizing the

fact that the [k33 ] matrix is always symmetric and banded; the latter term

indicating the tendency for nonzero values to cluster around the diagonal of

the matrix.	 By taking advantage of matrix partitioning (i.e., the grouping

of prescribed and unprescribed degrees of freedom), symmetry, and the banded

s nature of the stiffness matrix, storage of only a small portion of the original

r
total stiffness matrix is required. 	 However, this reduced storage requirement

can still be very large in some problems.

+r Solution of Equation (23) is accomplished through the use of

Gaussian elimination with back substitution.	 Small parts of stored [k 33 ] matrix

are brought into core as required in this operation. 	 Assemblage of the

required parts of the stiffness matrix is done by the direct stiffness method.

Components that would ordinarily fall within the [k22 ] and [k23 ] submatrices

are discarded.	 Stiffness cu:-ponents that fall within the [k 32 ] submatrix are

used in a nonzero {F3 } vector.	 Finally, those values of [k 33 ] falling on or

above its diagonal are stored externally.

Once the boundary conditions have been prescribed, an out-of-core

type solution of the partitioned LHR stiffness matrix with boundary conditions

for a unit load is performed. 	 The resulting displacement vector is then used

to calculate the potential fracture energies associated with each of the four

fracture codes.	 Ratios of the prescribed critical energy levels to these cal-

] culated energies are next computed. 	 The applied load is then adjusted such

that the highest ratio becomes exactly equal to unity.	 This critical region

(if one exists) is allowed to break in one of the four ways (codes) described

above. Appropriate modifications are then made to the LHR stiffness matrix.

* A detailed description of the direct stiffness assemblage technique used
in this work is given by Desai and Abel [8].
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Because the system is completely linear elastic, a solution for another load level

can then be performed in exactly the same manner. In this way, the properties

of a crack tip damage zone as a function of an increasing applied load can be

generated.

As each local rupture occurs, the prescribed boundary conditions must

be adjusted. If the crack has propagated in a self-similar fashion, this is

readily done by shifting the origin (cf, Figure 2). If not, this may present

some very real difficulties for then the continuum solution no longer exactly

applies and some approximations must be used for setting the boundary conditions.

The larger the LHR, the less likely this will be necessary. Of course, large

LHR's require large solution times even though storage is generally not a problem

because of the out-of-core solution. It is likely that the boundary condition

problem can be handled by introducing a flexible boundary-condition scheme (see

Recommended Future Research section), or, possibly, by allowing the fractured LHR

to interact in a hybrid continuum model for future boundary updating.

Verification of Computational Model

KV
	

Before performing extensive calculations on composite materials, it

Z._
is appropriate to verify the computational model by checking it against known

solutions. By letting the model represent a linear elastic homogeneous material,

two checks can be made. These are on the displacements in the LHR and on the

calculated energy-release rate.

Consider the element configuration shown in Figure 1. A check on

the calculated displacements can be made by imposing the continuum derived

boundary conditions on a LHR region where the LHR is used to simulate a com-

s 1

	

	 pletely homogeneous region. Displacements at the node points were calculated

and used to calculate average stresses within the elements. The computed

values of stress and displacement were then compared with values calculatedby

the continuum solution for the interior of the region. Agreement between the

two solutions was found to be quite good. The check thus provided one necessary

verification of both the LHR element itself and of the finite element assemblage

^;.	 and solution procedure as well.

`

	

	 As described in the above, all of the energy released within the

element at the crack tip, if an incremental amount of crack extension were to

occur, should equal the strain energy-release rate, G. To check this, cal

23
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culations were made using the exact near crack tip displacement field for an

elastic isotropic material. The energy-release rate obtained from this calcula-

tion is denoted by G * to distinguish it from the exact theoretical value G. The

necessity for introducing this distinction is as follows.

The quantity G can be formally defined in terms of a virtual crack

extension as the total change in energy of the body per unit area of crack

extension; cf, Equation (13). The quantity G*, on the other hand, reflects

only the change in energy of the element near the crack tip. Consequently, G*

does not include the change in energy of the remainder of the body as the crack

extends. In order to account for the contribution arising from the change in

energy of the remainder of the structure, a term denoted by 6G*  was formulated.

The sum G * + 6G* is then taken as the appropriate approximation to G in this

z

	
work.	

A numerical experiment was performed to calculate G* and 8G* as a

function of the aspect ratio Ay/Ax of the LHR elements. The results are shown

in Table II. It is quite evident that the sum G* + 8G* provides an accurate

approximation to G for the elongated aspect ratios that are convenient to use

in the calculations on fiber composite materials.

There are two further points of interest about the results shown in

Table II. First, while it maybe surprising that 6G* and G* are functions only

of the ratio of Ay to Ax, this is a direct consequence of the use of rigid

boundary conditions which put the near tip displacements into the energy rela-

tionship used to calculate G. The resulting expression contains only the

aspect ratio, Ay /Ax. Second, while it might be expected that 6G* should con-

verge to zero as the grid spacing is collapsed (i.e., as both Ay 4O and Ax-)-0),

it can be seen that this was not the case. Instead, convergence is obtained

only as the ratio of Ay to Ax becomes large. Then, SG* approaches a value equal

s	 to 11 percent of G while G * converges to value equal to 86 percent of G.

A number of different computations for heterogeneous materials have
.a	

also been made. These runs have been made with a model similar to the.one shown

in Figure 3. Preliminary results indicate that most of the initially envisioned
,r

modes of failure are exhibited by the model. A discussion of these results is

given in the next section of this report.

i
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TABLE II.	 AN EXAMPLE CALCULATION OF THE STRAIN ENERGY
! RELEASE RATE AS A FUNCTION OF THE GRID SIZE RATIO :.

FOR A HOMOGENEOUS LINEAR ELASTIC MATERIAL

&G*	 (G* + 6Ga
Ax	 G	 G	 r

1	 0.71	 0.75	 1.46

k^
2	 0.72	 0.42	 1.14

4	 0.77	 0.25	 1.02
1

8	 0.81	 0.18	 0.99

16	 0,83	 0,15	 0.98

32	 0.84	 0.13	 0.97

64	 0.85	 0.12	 0.97

128	 0.86	 0.11	 0.97

256	 0.86	 0.11	 0.97

9r

Z,
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EXAMPLE COMPUTATIONAL RESULTS FOR
FRACTURE OF FIBER-REINFORCED COMPOSITES

^. f

3

2

A number of computations have been performed using the analysis

technique described in the preceding section of this report. As discussed

in this section, the results demonstrate the ability of the model to exhibit

most of the actual failure mechanisms in fiber-reinforced composite materials.

}

	

	 These include fiber-matrix debonding, fiber bridging, matrix bridging, and

matrix crazing. The only important micromechanical mechanism that the model

k !	 currently does not explicitly represent is fiber pull-out.

f

Calculations With Arbitrarily Varied Rupture Properties

The following describes a series of example calculations in which

the various fracture mechanisms are made to manifest themselves. 	 The re-

shown here were obtained by varying each of the constituent's rupture

A

sults

properties and, in some instances, the constituent elastic properties, over a

wide range of values. 	 Hence, the actual values selected to perform these
i

example computations are not totally realistic. 	 The intent here is to provide

a qualitative verification that the model is capable of achieving its primary

i function rather than to make realistic predictions..

Unless otherwise stated, the elastic constants used in the calcula-

tions are those given in Table III.

TABLE III.	 ELASTIC PROPERTIES USED IN THE SIMULATION
OF A. GRAPHITE EPDXY COMPOSITE

C E	 v
Constituent	 Elastic	 Poisson's

Modulus (ksi)	 Ratio

Fiber	 28,000	 0.3
Matrix	 495	 0.3
Interface	 495	 0.3

t

As discussed in the Recommended Future Research section of this report,
steps to incorporate both fiber pull-out and interply delamination can
be performed in a straightforward manner in subsequent work.

i

i
f
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These properties were intended to be nominally equivalent to those of a

graphite epoxy composite with a volume fraction of fiber equal to 70 percent.

Consistent with these values are the following properties of the bulk composites:

El = 18,000 ksi, v 12 = 0.25

E2 = 690 ksi, G = 3,000,000.

Note that the constituents were assumed to be isotropic. However, the model
a .;

does not require this.

The first computation to be discussed is shown in Figure 6. This

result illustrates the fiber-matrix debonding mechanism, a mechanism that occurs

in a large number of cases. Typically, a crack will advance through the matrix

*,I and then vertically separate or axially split the interface. 	 In this example,

the interfacial elements were made relatively weak while the fiber and matrix

material were given relatively average strengths. 	 The loading in this example

R was purely Mode I.	 It was found that axial splitting is even more prevalent

when Mode II loads are applied.

Matrix crazing typically occurs when a crack advancing through the

matrix reaches a very strong stiff fiber.	 Figures 7 and 8 show typical examples.

If the fiber does not break, a number of local events occur in the matrix that

seem to approximate matrix crazing. 	 Typically, the crazing does not occur on

the uncracked side of the fiber.	 The reason is that the displacements on the

cracked side of the fiber are "locked in" by the adjacent highly stretched

fiber.	 Consequently, crazing usually occurs when strong very stiff fiber

ff-a	 s	 -properties are inserted into the model together with average  strength and stiff-
ness properties for the matrix and interface.

Matrix bridging is shown in Figure 9. 	 This phenomenon typically

occurs when the fibers are considered to be stiff, but weak. 	 In these in-

stances the matrix and interface are capable of withstanding higher elonga-

tion than the fiber.	 So, they will remain intact while the fiber cracks. 	 In

the example shown in Figure 9, some additional interfacial response can also
xk _	 ,

be noticed.

V
Unless otherwise stated, in the calculations described in this section of the
report, the applied loading was a tensile normal stress in the direction

`' parallel to the fibers
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EVENT #	 COMPONENT	 RELATIVE LOAD

1	 MATRIX	 1.0
2	 MATRIX	 1.0
3	 INTERFACE	 2.2
4	 INTERFACE	 4.9

5	 INTERFACE	 4.9
6	 INTERFACE	 5.3
7	 INTERFACE	 5.3
8	 INTERFACE	 7.5
9	 INTERFACE	 7.5

10	 INTERFACE	 ?.8
11	 INTERFACE	 7.3

--	 -

.- -------- -	 -

a

N
00

I	 FIGURE 6. EXAMPLE CALCUTATION WITH WEAK INTERFACE SHOWING MATRIX-FIBER DEBONDINC
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ELEMENT	 COMPONENT	 RELA'T'IVE LOAD

?	 MATRIX	 1.0

2	 MATRIX	 2.2

3	 INTERFACE	 3.3
4	 INTERFACE	 4.6
5	 INTERFACE	 4,6
6	 INTERFACE	 4.6

7	 INTERFACE	 4.6

8	 INTERFACE	 4.6
9	 INTERFACE	 4.6

10	 INTERFACE	 4.6
11	 INTERFACE	 4.6
12	 INTERFACE	 4.6

.L

- _
1

FIGURE 7. EXAMPLE CALCULATION WITH STRONG STIFF FIBERS AND WEAK INTERFACE SHOWING MATRIX CRAZING

N̂
O



EVENT #	 COMPONENT	 RELATIVE LOAD

1	 MATRIX	 1,0
2	 MATRIX	 6.1

3	 INTERFACE	 7.3
4	 MATRIX	 27.5 -"--
5	 MATRIX	 27.5

6	 MATRIX	 27.5
7	 INTERFACE	 27.5
8	 MATRIX	 27.8
9	 MATRIX	 27.8

10	 MATRIX	 27.8--- --- --
11	 INTERFACE	 27.8

12	 MATRIX	 39.5

w
O

i

i

FIGURE 8. EXAMPLE CALCULATION WITH STRONG STIFF FIBERS SHOWING MATRIX CRAZ]NC:
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EVENT #	 COMPONENT	 RELATIVE LOAD

1	 FIBER	 1.0
2	 FIBER	 1.0
3	 INTERFACE	 1.3
4	 INTERFACE	 1.3
5	 FIBER	 1.3
6	 FIBER	 1.3
7	 INTERFACE	 1.6
8	 INTERFACE	 1.6
9	 INTERFACE	 1.7

10	 INTERFACE	 1.7
11	 INTERFACE	 1.7
12	 INTERFACE.	 1.7

_

— --^ --

wr
E

s
p

M	 I	 F	 I	 M	 I	 F	 I	 M	 F	 I	 M	 I	 F	 I

r

FIGUR)' 9. EXAMPLE CALCULATION WITH STIFF WEAK FIBERS SHOWING MATRIX BRIDGING

4-
A	 .0	 .dam
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Fiber bridging is more prevalent when the fiber modulus does not

greatly exceed the matrix modulus. (In graphite epoxy, the modulus ratio is

on the order of 50 and fiber bridging does not then seem to occur..) Figure 10

demonstrates this behavior. Fiber bridging can also be related to the micro-

structural geometry. That is, in computations performed with relatively thin

fibers, this mechanism becomes more dominate.

It should be emphasized that the examples given in the above deliber-

ately used exactly the same LHR configuration and applied loading. The program

has the flexibility to consider different loading conditions and LHR geometries.

However, this option was not exercised here because of the complications that

would be added to the interpretation of the results. That is, it would be

difficult to separate the effects due to the LHR geometry and loading from

those due to variations in the rupture strength and modulus. Such calculations

will be deferred until further refinements have been incorporated into the

model. Again, the purpose of the computations given in Figures 6-10 is to give

a qualitative demonstration that the model is capable of coping with the micro-

mechanical failure processes involved in the fracture of composite materials,

not to produce precise quantitative results.

Finally, note that the relative load levels at which each individual

fracture event occurs is recorded. (These levels are relative to the load

level at whir_h the initial rupture event occurs.) It can be seen that the

load level must ordinarily be increased to obtain additional rupture events,

or, in other words, in order to enlarge and propagate the crack-tip damage

zone. This can be contrasted with the behavior of completely homogeneous,

perfectly brittle materials represented by LEFM where crack extension, once

initiated, would continue in a catastrophic manner under a constant load level.

The initial stages of the fracture event in fiber composite materials therefore

can obviously be characterized in terms of a stable growth process. This sug-

gests that a modification of the crack growth resistance curve (R curve) ap-

proach developed for the fracture of ductile materials could be useful for

studying fractures in fiber composite materials. Such an approach, it might

be mentioned, has already been suggested in the literature; for example, by

Gaggar and Broutman [9]. However, these approaches are usually semiempirical

in nature, relying heavily on LEF14 concepts. The present approach, in con-

trast, should be able to make a direct prediction of the crack growth resis-

tance parameter purely from fundamental-level considerations.

L^
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FIGURE 10. EXAMPLE CALCULATION WITH STIFF MATRIX SHOWING FIBER BRIDGING
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Comparison of Calculated Results
with VPISU Experimental Data

The computations described in the preceding section demonstrate

that the model developed in this report displays the various micromechanical

' failure mechanisms actually exhibited by fiber reinforced composites. 	 A

v more quantitative verification is also possible.	 This can be done by com-

paring the predictions of the model with the experimental results obtained

in the :oncurrent NASA-Ames sponsored research at Virginia Polytechnic

Institute and State University (VPISU) by Brinson and Yeow [10]. 	 They have

measured the strengths of both unidirectional and angle ply graphite/epoxy

composites using unnotched, single edge notched, and double edge notched speci-

mens	 with the crack introduced at various angles to the fiber direction. 	 In

this section, the model will be used to estimate the strengths of some of the

Brinson-Yeow unidirectional notched tests using input values inferred from

their unnotched tests.

A precise prediction of failure loads is not to be expected at the

present stage of this research for several re&sons. 	 First, because of the

stable damage growth that precedes fracture in composites, computations per-

formed using rigid boundary conditions (which artifically constrain the damage

growth process) will not be realistic.	 The predictions of the initial local

'`	 z failure event--the threshold of stable damage growth--should be reasonably

well predicted, however.	 This load level will therefore be taken as the

prediction of the model to be compared with the experimental measurements.

It should be recognized that, because of the neglect of the stable growth

regime, these should underestimate the actual failure loads.

A second reason for the lack of precision inherent in the present

predictive capability is that the constituent properties needed in the model

have not been properly determined as yet. 	 As in the preceding section, linear

elastic-perfectly brittle behavior can be assumed with handbook values being

taken for the elastic properties. 	 Rupture properties are not as readily

available, however.	 To circumvent this difficulty, the experimental results

on unnotched specimens obtained by Brinson and Yeow can be used. 	 Their data

on the strengths of unnotched coupons pulled to failure with the load in the

fiber direction (6 = 0°) and normal to the fiber direction (8 = 90°) are given

in Table IV.	 Relying on their observation that matrix failure occurred in

E
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TABLE IV. CRITICAL VALUES FOR MATRIX FAILURE
F	 IN GRAPHITE EPDXY COMPOSITES

Angle
	 Experimental Values 	 CriticalBetween	 Critical

Load and	 Elastic	 Fracture	 Fracture	 Strain Energy
Fiber	 Modulus	 Stress	 Strain	 Density

4	 Directions	 (ksi)	 (ksi)	 (%)	 (in. lb/in.3)

	

00	 18,200	 154.7	 0.82	 576

	

90 0 	1,700	 6.1	 0.44	 13.6

( a) Data of Brinson and Yeow [10] on unidirectional urnotched specimens for
 -3a loading rate of 2 x 10inches/min.
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virtually all cases, the critical strain energy density quantity can be cal-

culated (i.e., 2E e l ) for use in the model. These f igures are given in the

last column in Table IV.

As discussed on page 11 of this report, the applied loads acting

on the body are communicated to the crack tip elements via the anisotropic

elastic stress intensity factors. For test specimens, such as the single and

double edge notched configurations used by Brinson and Yeow, there is a term

in the Stress intensity factor that contains the effects of the finite geometry.

This term is not the same for anisotropic and isotropic bodies. However, in

view of the approximate nature of the present calculations, the refinement

added through the use of the rather complicated anisotropic expression was

not believed to be warranted. Hence, the isotropic expressions were used.

For Mode I loading, these have the form.

1
KI = 6 a2 Y	 (24)

where a is the applied stress normal to the crack plane, a is the crack length

and Y is a dimensionless function of the specimen geometry. For the double

edge notched configuration

2	 2
Y = 1.99 + 0.76 W - 8.48 W ) + 27.36 W^	 (25)

while for the single edge notched configuration

Y 1.99 0.41(W) + 18.7 (W ) 2 - 38.48 (W) 3 +53.85 \ W ) 4 , (26)

where W is the plate width._

For a given crack length and load-fiber orientation in either the

single or double edge notched configuration, the load corresponding to the

threshold of damage is determined by a single calculation. This is due to

the linear elastic material behavior assumed in the current model. That is,

a computation can be performed for an estimated value of KI. The solution

can then be scanned to determine the highest strain energy density in any

matrix element. By "scaling up" the solution to force this value to match

i

r
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i
KI = =2 Y sing

i

K 	 oa2 Y cos ^ sin (27)

fi

	

4	

}

the critical value given in Table IV, the value of K  corresponding to the
Y

threshold of damage is determined. The final step is to use Equation (24)

to calculate the applied stress for direct comparison with the experimental

results.

Comparisons of the calculated results as a function of crack length
'i

with the Brinson-Meow results on unidirectional composites are shown in

i Figures 11 and 12 for the single and double edge notch configurations, re-

spectively. Note that a semilog format is used (so that both the 0° and the

	

°	 i mE	 90 fiber-load angle results can be shown on the same plot) and this may makea

the agreement appear to be better than it really is. Nevertheless, in view of

the remarks made in the preceding section, the prediction is reasonably

accurate and, as expected, generally provides a lower bound to the experimental
a

i	 data. Note also that the unnotched result (W = 0) is included on the theo-
s

retical curve to emphasize that this point was used to construct the curve.

Finally, comparisons with experimental data can also be made for the

case of cracks introduced at an angle to the fiber direction. An example

	

FF y
	 computation is shown in Figure 13. The threshold-of-damage load level calcu-

lations are made as above except that both the Mode I and Mode II stress

intensity factors now are involved in the computation. These have been taken

as

where ^ is the angle between the crack plane and the fiber direction. A

comparison between the predicted results and the Brinson-Meow experimental

results as a function of for a 0 load-fiber angle is shown in Figure 14.

Again, it can be seen that the model provides a reasonable lower bound to

the experimental results.
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RECOMMENDED FURTHER RESEARCH

Being two dimensional, the model described in this report is so far

limited in application to unidirectional laminates and can only reflect the

local damage modes that occur in plane deformation. In subsequent work, it

would be desirable to extend the model from two dimensions to three dimensions

to treat angle ply laminates. In addition to treating the effect of different

layups, new modes of damage (e.g., interply delamination, fiber pull-out)

should also be included.

A straighforward extension of the model could be made by devising

a three-dimensional LHR. But, the number of storage locations required for

the three-dimensional grid would likely exceed the fast access storage of most

computers. To circumvent this situation, the present two-dimensional model

could be extended to angle ply laminates by considering laminates with an LHR

only in a single ply. Figure 15 shows this concept. In the simplest case,

the LHR can be confined to the most critical ply as the load level is increased.

In general, there can be an LHR in each ply with attention shifted from one ply

to another in turn. In either case, it would be necessary to assume that the

interply interactions are not affected by the precise details of the local

damage occurring in each ply.

In Figure 15a, a laminate containing a flaw is shown with generalized,

loading conditions. In this the first level of modeling, all of the plys are

considered as homogeneous orthotropic layers. Displacements can be calculated

in this model for any load level and applied to the boundaries of the local

homogeneous region in each ply. Then, just as in the two-dimensional model,

the LHR shown in Figure 15b can be monitored to determine the local rupture

events and the extent of the damage zone at that load level. When significa,at

crack growth has occurred in one or more plys, the first level model must, of

course, be made to reflect this. But, the basic approach would not be changed

thereby.

Two distinct techniques must be developed in order to obtain an

accurate set of boundary displacements for each LHR when extensive damage

occurs in that or in neighboring plys. The first is to incorporate the effect

of the stiffness change in the LHR into the first level model of the laminate.

The loading conditions would then be obtained from this modified first level

model (i.e., one with locally reduced stiffnesses) to give the new boundary
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	 conditions for the LHR. In the second technique, the influence of the stiff-

ness of the laminate away from the crack tip will be directly transferred to

1

	 the LHR through what can be called a "flexible boundary condition" technique.

This approach c:°Cn be likened to placing a series of springs on the LHR boundary

with stiffnesses taken from the first level model. The actual technique is

more sophisticated than this, however, as follows.

In the work described so far, the peripheral elements in the LHR

have been positioned according-to the displacement field given by a completely

linear elastic continuum solution for the given crack tip location and applied

loads. This is not strictly correct even when the displacements are periodically

updated as the crack extends in the LHR. Even in the absence of local damage,

the highly nonlinear inhomogeneous nature of the crack-tip region in a com-

posite will cause significant departures from the continuum displacements. A

scheme for estimating these displacements based on a determination of the equi-

librium state between the LHR and the continuum can be obtained by adapting

the technique reported in Reference 3. Such a scheme has been referred

to as the "flexible boundary condition" approach. The approach used so far can

be called the "rigid boundary condition" approach because, even with periodic

updating to reflect the progress of the crack through the LHR, the LHR does

not directly affect the continuum region surrounding it. The flexible boundary

condition approach, in contrast, accounts for the interaction.

Finally, the range of modes of damage should be extended over those

	

f!
	

of the two-dimensional model to include interply delamination and a "free-

	

^i

	 edge" effect. The general approach could be similar to that described in

}

	
References 10 and 11. Attention should first be focused on through-the-thickness

cracks in laminated plates under tension with part-through flaws being considered

later. Of most importance, the three-dimensional model of an angle ply laminate

should permit arbitrarily varied multidirectional layups to be explicitly con-

sidered. The properties for the ply moduli could be obtained from laboratory

investigations, e.g., in the program being conducted for NASA-Ames at Virginia

Polytechnic Institute and State University.
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The purpose of this appendix is to inventory existing knowledge on

fatigue-crack propagation in composite materials in preparation for treating

the analysis of fatigue by means of the mathematical model presented in

this report. A brief review of the available literature on the subject is

given first. Problems involved in the application of the model will then be

discussed.

Literature Review

Characterization of fatigue damage in fiber-reinforced composite

materials is complex because of the various damage mechanisms involved, and be-

cause of the many material/structural variables in any one composite system.

The reported research usually considers only a very limited number of these

variables. As a result only fragmentary information is generated. This

seriously hampers the development of a fatigue model for composite materials.

The fatigue properties of composites are generally considered to be

superior to those of metals. However it is useful to recognize that this

judgment is primarily based on experiments under specific conditions

(a) Mainly unnotched or mildly notched specimens

(b) Small coupons

(c) Primarily unidirectionally reinforced materials

(d) Almost exclusively tension-tension loading.

As an example, consider the fatigue diagram for carbon-fiber reinforced epoxy [I]*
in Figure A-1. The maximum stress for the fatigue limit is on the order of the

tensile strength, ou , as long as no compressive stresses occur (i.e., R >.O,

symbols are defined in the insert to Figure A-1). This means that at a high

mean stress, a  au a . For fully reversed loading (R -1), however, the 	 {

endurance limit is dictated by the compressive strength. The low fatigue pro -
perties are associated with fiber buckling Ill. From R = 0 to R = -1 there is

a transition from tensile strength governed fatigue to compressive strength

governed fatiguo. In this region, fatigue resistance is relatively poor.

* References for this appendix are given on page A-15.	 J
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The same observations were made for glass-fiber composites[2]. Similarly,

fatigue performance is redr.ced in bending [3) and, in general, in the case of

interlaminar shear 111, where other damage mechanisms occur.

The available literature allows an inventory of the various damage

mechanisms. These are presented in Table A-1 together with the conditions

and the composite systems in which they were observed. The damage mechanisms

are

e Fiber-matrix debonding

e Fiber failure (breakage or buckling)

• Matrix cracking

• Delamination.

Intuitively, debondi.ng may be an important damage mechanism in the case of

transverse fibers, whereas, fiber breakage may be more important for the case

of longitudinal fibers. This is confirmed by the information contained in

Table A-1. However, it can be concluded from the table that it is as yet

impossible to draw a clear picture of fatigue damage development in composite

materials in general.

At this time, an extensive and systematic research program is re-

quired to establish a physically sound damage model, capable of showing under

which circumstances a particular damage mechanism prevails. An experimental

program would require a systematic investigation of all material/structural

parameters and loading conditions of a large number of composite systems.

One experimental difficulty would be to distinguish between the various damage

mechanisms. Newly developed techniques that have been successfully applied to

fatigue damage evaluation of composites [10-121, are acoustic emission, time

resolved thermography, and tetrabromoethane enhanced X-ray radiography. These

techniques could be used in addition to conventional methods to characterize

damage development. Then, a general physical model would evolve that is so

badly needed as a basis for analytical models.

The fatigue life of metals is terminated by the formation and growth

to failure of one or more distinct cracks. In composites on the other hand,

a gradual degradation of the specimen is usually observed. Therefore, the end

of the fatigue life is often defined as the point where the modulus has de-

creased a significant amount as a result of wide-spread microdamage. As a

result, very little d;u • P.ct quantitative information is available on the growth

of cracks during fatigue.

^4 1



TABLE A-1. FATIGUE DAMAGE DEVELOPMENT

Composite System 	 Experiments
	 Fatigue Damage Development
	 Reference

Glass/Epoxy

Chopped Strand Mat

Fabric Reinforced
and Cross Ply

Unidirectional

Carbon/Epoxy

Unidirectional

Cross Plied

Cross Plied

Boron/Epoxy

Cross Plied

Reversed stress Debonding followed by matrix cracking 	 2
unnotched

Debonding of transverse fibers, debonding at yarn 	 2
cross overs, debonding laminates, resin cracking

Zero-tension Matrix microcracks, fiber failure	 4

Tension-tension Fiber failure, matrix cracking	 4

Compression-Com- Fiber buckling, matrix cracking 	 1
pression

Intermediate Fiber buckling, longitudinal splitting

Bending Debonding, matrix crack, interlamellar crack

Bending Splitting within and between transverse plies 	 3
(notched)

Tension-tension Strong interface:	 debonding, fiber failure,	 5

Mildly notched Matrix cracking:	 delamination
Weak interface: 	 line voids, fiber failure
matrix damage

Y

Boron/Aluminum

Unidirectional
	

Tension-tension	 Fiber failure, matrix cracking
	

6



.	 *T

­J k

TABLE A-1 (Continued)

Composite System 	 Experiments	 Fatigue Damage Development	 Reference

Boron/Aluminum

Low Angle Cross Plied Zero-tension	 Fiber failure	 7

Aluminum/Steel

Ribbons	 Reverse bending 	 Matrix cracking, debonding, ribbon failure 	 8

Copper/Tungston

Unidirectional	 Tension-tension	 Matrix cracking, fiber failure	 9
9
v.
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From a technical point of view, however, the growth of cracks is

definitely of interest. In actual structures there will be joints and other

local areas of stress concentration. In such areas, fatigue damage will be

contained within large undamaged areas. Hence, the local modulus change will

not significantly change the stiffness of the component before the fatigue

damage develops into large cracks. In such a case, the damage growth may well

be totally different from what is observed in a small notched coupon where

the damage is not contained.

Apart from the growth of macrocracks, the propagation of microcracks

is of interest for the accumulation of fatigue damage in general. It will be

the basis for mathematical models for quantitative fatigue evaluation. Yet,

only few investigations have been performed to characterize crack growth in

composites subjected to cyclic loading.

Fatigue-crack growth in compression (bending) was studied by Kranz

and Beaumont [3]. Crack growth showed a retardation period (Figure A-2) which

was associated with axial splitting. Mandell and Meier [13] examined crack

growth behavior of 0°/90° E-glass-epoxy composite in tension at R = 0. They

observed crack extension in small increments. After each increment, the

crack was stationary and terminated by a vertical split. After a while, the

next ligament (about 0.01 inch in size and containing about 700 fibers) failed.

Here, the information is also quite fragmentary. Crack-growth be-

havior may be anticipated to depend largely on the composite system and the

loading characteristics. For the simple case of unidirectional fibers and

tensile loading, the possible crack growth mechanisms are shown in Figure A-3.

For multidirectional composites, the sequence of events will be largely com-

plicated by the possibility of delamination and the effect of fiber orienta-

tion on debonding.

Modeling Fatigue-Crack Growth

Both fatigue-crack growth in metals and the fracture of low toughness

metals can be adequately analyzed with linear elastic fracture mechanics (LEFM).

Although there is considerable physical background for the LEFM analysis, the

procedure is still entirely pragmatic in its applications. Basically, applied

r
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FIGURE A-3. CRACK GROWTH IN UNIDIRECTIONAL
COMPOSITE UNDER TENSION
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LEFM is nothing more than the recognition that fracture and fatigue-crack

growth are governed by the stress-intensity factor. A critical stress-intensity

for fracture can be experimentally determined under certain conditions but can-

not be derived from theoretical models. Similarly, fatigue-crack growth rates

can be measuared as a function of the applied stress intensity, but the form

of the relation cannot so far be theoretically predicted.

Physical mechanistic models have been developed for crack growth

and fracture in metals (e.g., Reference 14), but mathematical evaluation of

these models have failed to provide reliable predictive tools. It was shown

only that the stress-intensity factors is a significant parameter in many cases.

The applicabil.ity of LEFM in its present state to metals is limited

to defects that are large with respect to the structural inhomogeneities. Crack

sizes on the order of the size of second phase particles and grains cannot be

treated on the basis of the bulk properties. Another restriction to LEFM is

that plasticity should be very limited, both with respect to the crack size

c1s

	

	
and the specimen dimension (not only thickness, but also overall size).

Plasticity should be fully contained.

Similarly, successful application of LEFM to composites will be

limited to cases of large damage, where damage propagation can still be con-

sidered to occur in a self-similar fashion. The flaw has to be large with

respect to local irregularities in the damage, but small with respect to the

specimen dimensions. Therefore, any attempt to correlate small sample data

by means of LEFM is basically useless. Nevertheless, numerous publications

(e.g., 15 - 20) have appeared on this subject. As might be anticipated, only

limited success was achieved. Reasonable correlations on the basis of LEFM

could be obtained only in cases where crack extension was fairly regular with

one dominating failure mechanism [21-221. In most cases, the basic assumptions

of LEFM had to be mathematically or physically violated to show consistency

with experimental data.

Other attempts have been made to derive the fracture behavior by

postulating various damage growth mechanisms and then applying fracture

mechanics concepts 123-241. In these cases, the problems are similar to those

encountered in the evaluation of micromechanistic crack models in metals.

Progress is very slow because the models require so many assumptions and need

input quantities that cannot be measured directly.
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In view of the foregoing, it is not surprising that very few quantita-

tive models have been proposed to deal with fatigue crack growth in composites.

Mandell and Meier [13] presented a mathematical model for the incremental

fatigue crack extension observed in their experiments. At each increment of

crack growth, the crack extends over a distance defined as the ligament size.

Fracture of the ligament was assumed to follow from a Miner's rule linear

cumulative damage calculation. The stress history experienced by the ligament

basically follows from the elastic crack tip stress field. The stress in the

ligament is determined by its distance from the crack tip. Each time the

crack advances, the stress increases.

The damage accumulated by the ligament can be determined. This allows

calculation of the remaining life when the crack tip has approached the liga-

ment. Then the crack growth rate follows from the assumptions, provided the

ligament size is known. The latter has to be found from experiments.

Becasue of its obvious simplicity, the same approach has been pro-

posed many times to treat crack growth in metals. Naturally, it leads to a

rising curve, which if properly adjusted will cover a limited collection of

data. But, the method has no generality and no predictive power.

Another fatigue crack growth model is based on a static shear lag

analysis [28]. In its application to fatigue, the material parameters in this

model are changed at the same rate as experimentally observed in a crack growth

test. Obviously, the result will be close to the experiments upon which 	
c9

it was based.	 However, its generality depends upon the generality of the

experimental observations.

The energy-based micromechanical analysis scheme described in this

report offers more promise for application to growth of fatigue damage.

u. Because it is based on a detailed model of the structural elements in the

vicinity of the damage, it requires no advance knowledge of the history and

sequence of damage development. 	 What is needed is knowledge of the possible

damage mechanisms and of the criteria for their occurrence. 	 A discussion of

the utilization of this model for fatigue crack growth will be presented in

the following section.
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cif By means of a local energy-based fracture condition, 	 ',e model can i

6	 ±	 1

determine the history of damage propagation for various types of local damage.

21 The type and sequence of damage growth that occurs depends upon the energy re-

3

quired by each individual process.	 In a given location, the type that requires 1
f(
1
t

the least energy will occur first. 	 Since the required energy quantities are`^

independent of the geometry and the loading conditions, generality of the model

is maintained.

Some problems arising in the applicaton of the model to fatigue can

best be explained on the basis of a load displacement diagram as in Figure A-4.

For simplicity, linear elastic behavior is assumed. 	 If a crack of size a	 were

to extend to a.2 = al + Aa at a load Pl , the energy production (release) rate

MA
would be given by triangle OAB. 	 The crack will extend if this energy is equal

1
U t/

to or greater than the energy consumption rate for the formation of Aa. 	 If

c the crack were to extend at a load P2 , the energy-release rate would be given

t. fby oocD .

` t
fj

In the case of quasi-static loading, the energy-release rate at

 7e
crack extension can be directly related to the stress-intensity factor. 	 In

^ si

fatigue, the load changes cyclicly.	 The rate of crack growth (in metals) 
^	 r

r'
^f

ears to be related to the range of the stress intensity OK.	 Physically,appears	 g	 Y	 Y	 Y

this can be interpreted as the change of crack opening displacement during

the cycle.	 Mathematically OK can still be related to a change in energy-

release rate AG.	 However, AG has no physical meaning.	 G is the instan-

taneous value of the energy-release rate at a given crack size and load.

If the crack would extend this energy would be available for crack growth.

'T' If the crack does not extend no energy is released;	 the load can be further

increased and G attains a different value. 	 Its previous value is of no

significance if nothing happened to the crack.	 As a consequence, the G
min at

the low point of a fatigue cycle is of no significance for what happens at theh

maximum stress in this cycle where G = G	 Determining AG = G	 - G
max	 max	 min

is then merely a mathematical exercise without physical meaning.

If da/dn = f(AK), where da/dn is the crack growth rate per cycle,

one could mathematically write (using K2 	EG)

da/dn	 f (/—AG,)	 .
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Figure A-4 shows what this means. If the load is cycled between P 2 and P1

(Figure A-4), the mathematical representation of AG iso CARD. The phsyical

significance of G, however, is limited to the energy released by an instanta-

neous infinitesimal crack extension.

Crack growth during a cycle can be followed step by step, just as

in the case of quasi-static loading. It cannot be based on an integrated

release of energy during a cycle unless it is known before hand how damage

will develop during the cycle. For this reason, and for the evaluation of the

residual stresses built up during unloading, fatigue-damage evaluation would

require a cycle-by-cycle exercise of the model. This would be cumbersome.

For practical purposes crack extension should be expressible in the parameters

descriptive of the fatigue cycle. Therefore, one of the problems to be solved

is the establishment of a simplified picture of damage development per cycle.

This can be done when sufficient experience is obtained with the model to

provide some insight in the mechanics of damage accumulation.

Finally, it might be pointed out that it is possible to evaluate

the model experimentally on the basis of real damage observations by means

of the techniques described above. Since acoustic emission and thermography

are closely related to the energy in the system, they allow a critical evalua-

tion and further development of an energy-release rate model. TBE-enhanced

X-ray can be used to characerize the associated damage.

For illustrative purposes consider the case where the energy-

release rate can be simply defined on the basis of specimen compliance, C, as

1 2 DC
G = 2 P 8D

where P is the applied load and D is a measure of damage size. Experimentally,

the compliance is observed [10,12] to be a function of the number of cycles.

In crack growth tests on metals, compliance measurements can therefore be

used to monitor crack growth. By the same token, compliance measurements

can be applied to monitor damage of composites, if the compliance can be

characterized as a function of damage. This can be done analytically if the

types of damage are identified by means of TBE-enhanced radiography. That is

acoustic emission and thermographic measurements are a measure of energy dis-

sipation, and as such, they are a measure of damage accumulation.

r
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	 Intelligently p'.anned experiments on simple composite configurations

can be used to distinguish between each of these quantities. A combination

of acoustic emission, thermography and radiography can identify the damage and

the associated energy dissipation. Hence, the theoretical model can be sub-

stantiated experimentally.
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APPENDIX E

DISCUSSION OF EXISTING PREDICTIVE TECHNIQUES
FOR THE ANALYSIS OF FRACTURE IN COMPOSITES

The stress analysis techniques used for designing with composite

materials are generally based on the effective modulus representation of

fiber-matrix laminates. The effective modulus approach has provided many

rules which guide the designer in his selection of lay-up angles and laminate

geometries. The designer currently has few such pules to determine the fail-

ure point of composite materials, however. In order to use composites to

their fullest extent as engineering materials, it will be necessary to estab-

lish rational predictive techniques for the various failure modes and, in

particular, failure by catastrophic crack propagation.

This appendix contains some background information on failure and

strength of composite materials as an aid in placing the fracture model des-

cribed in this report in proper perspective. A critical review of predictive

techniques for fracture of composite materials is also presented for this

purpose.

General Discussion on Composite Failure and Fracture

The terms "failure" and "strength" are not always used in a precise

manner. There are many different ways that a structure made of a composite

material can become unable to adequately perform its primary function. In

each such instance, failure is considered to have occurred. The possible 	
1

failure modes encompass a range of possibilities from simple loss of structural
a

rigidity due to gross inelasttxn deformation (e.g., yielding) through a reduction

in load-carrying capacity due to localized deformation_ and crack growth (e.g.,

delamination), to the complete loss of load-carrying capacity by gross macro-

sco is deformation and separationF	 p	 p	 (e.g., fracture). Failure can be gradual

or rapid depending on the nature of the applied loads, the material properties,

and the geometry of the structure. For polymer-based composites the load

rate, the temperature, environment, and previous load history will also play

prominent roles.

Conventionally, the term "strength" is taken to mean the load level

at which failure occurs by some means in a standard test specimen. Clearly,

E	 _m
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the strength will be a function of many different parameters arising in the

^y.

test program and may or may not be directly applicable to engineering design

i situations.	 It is of great importance that a bridge be established between

standard test procedures and engineering applications that will allow accurate

reliable estimates of the failure loads to be made in the latter instance
1

using test results (e.g., the yield strength determined in a tension test).

Even though substantial failure analysis work has already been performed on

composite materials, this capability does not presently exist. 	 Moreover, it

t appears that the least progress has been made in the most critical problem

area--fracture.

Composite fracture research results given in the literature gener'.11y

fall into'one of two broad categories. 	 These are either

(1) A theoretical analysis with the material being

treated as a homogeneous but anisotropic linear

elastic continuum containing an internal or ex-

ternal flaw of known length, or

(2) a semiempirical analysis of the details of the crack

tip region in a unidirectional fiber composite.

x
aC <4

The first approach completely ignores the inherently heterogeneous nature

of composite materials and the basic way that heterogeneity affects crack 	 i

extension.	 In fact, this approach represents only a slight extension of

ordinary linear elastic fracture mechanics to account for the anisotropic

response of the material to load. 	 In quantitative terms, it involves an

evaluation of the left-hand side of the basic fracture mechanics relationa	 n

for crack growth

G > Gc 	 (B-1)

with the right-hand side being obtained from experiments. 	 It is this ex-

..	 ; erimental reliance that makes this approach inadequate for fiber compositesP	 PP	 q	 P 

because, unlike ordinary engineering materials, G c can be a function of the

crack size, shape, and orientation. 	 Because G	 cannot be considered to be a
c

* The term G denotes the energy released by the structure while G 	 denotes	
4

the energy dissipated at the crack tip, both per unit area of crack extension.

P



material constant, the approach is virtually useless for composites except

in special circumstances.

kThe second general approach cited above can also be related to

Equation (B-1).	 It essentially represents a way to determine the right-hand

side of (B-1) in terms of basic material properties by considering various

mechanisms involved in composite fracture. 	 For example, values of G^ have beenc
deduced for debonding of the fiber from the matrix material, pull-out of the

fiber from the matrix, viscoelastic-plastic deformation of the matrix material,

etc.	 While useful, this approach is also an oversimplification for the reasons
i

{ given above.	 In addition, in other than simple tests, several of these processes

are likely to occur more or less simultaneously with the actual process (and,

hence, the amount of energy dissipated) being dictated by the kind and rate of

loading, the flaw size and orientation, external geometry, and temperature.

Hence, the appropriate value of G 	 to be used with a theoretically derived G
c

for a given engineering application cannot be deduced by summing the effects

of single mechanisms operating independently. 	 This can contrasted with the

¢ simple "rule of mixtures" which works quite well in determining the effective

l elastic moduli.	 In contrast to the predictions of effective moduli, where it

may be safely assumed that generic stress-strain relations and geometries do

r not change under load, the prediction of strength implies that processes in

the material have progressed to the extent that significant changes in ma-

terial behavior and geometry have occurred; e.g., yielding, crack formation.

( Thus, in order to perform a failure analysis, it is necessary to quantify

these fundamental changes in the behavior of a structure. 	 While the fundamental
i

changes which take place may be the same for uniaxial composites or multi-

axial laminates, failure modes for each can be quite different. 	 The reason
I

is that the local stress state is different even under the same applied

loading.	 The situation is further complicated due to the fact that a simple

combination of discrete failure modes does not adequately represent the result

in combination.
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Micromechanical Failure Processes in Composites

As is the case with homogeneous isotropic materials, it may be

safely assumed that failure is precipitated by local defects in a fiber

composite. These can occur in the fibers, the matrix, or the interface be-

tween the two regions. It has been suggested that a stochastic strength

length relationship exists for brittle fibers [1]. That is, the longer the

fiber, the greater the probability that a critical defect exists that will

cause individual fiber breakage at loads well below the average fiber strength

of the composite. After a single fiber break, a crack is induced causing a

transfer of load and possibly leading to an avalanche of fiber breakage.

Perhaps more importantly, after a fiber breaks, a shear stress is introduced

at the fiber-matrix interface and debonding or separation of the fiber and

matrix may result. Defects in the matrix may also lead to yielding or actual

fracture of the matrix on the local level and thereby create stress concentra-

tions at the fiber or at the fiber-matrix interface. Thus, at relatively low

load levels, minute cracks are likely to occur in the fiber, the matrix, or

the interface which will be oriented both normal and transverse to the fiber

directions. Hence, in some circumstances, the initial crack lengths will be

of the same order as the diameter or the distance between fibers.

Even after the microcracks coalesce to form an identifiable separa-

tion plane, the size scale of the critical zone of influence near the crack tip

will still be of the same order of magnitude as the spacing between fibers.

Hence, the same failure mechanisms (e.g., fiber breakage, debonding, and

matrix yielding or breakage) will all be important in an overall examination

of the fracture process whether the composite is composed of uniaxially or

multiaxially oriented fibers.

These failure and/or fracture processes are often described as

energy absorption processes. Some of the more prominent energy absorption

processes which have been identified with a macrocrack are fiber pull-out,

debonding, stress-relaxation, crack bridging, and matrix yielding. Theoretical

estimates of the energy absorption per fiber have been compiled by Phillips

and Tetelman [2]. They include fiber pull-out, debonding, stress-relaxation,

crack bridging, and plastic deformation of the matrix. Brief qualitative,

descriptions relevant to a macrocrack running transverse to the fibers are as

follows

* References for this appendix are given on page B-10.
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Figure B-1 shows a possible sequence of events during the fracture

of a fiber composite. At some distance ahead of the crack, fibers are intact.

In the high stress region near the tip, they are broken; although not necessarily

along the crack plane. Immediately behind the crack tip fibers pull-out of the

matrix, absorbing energy if the shear stress at the fiber-matrix interface is

maintained while the fracture surfaces are separating. Theoretical treatments

of the mechanics of the fiber-matrix interface have been given by Cottrell [3],

Kelly [b], and by Cooper [7].

In some bonded composites, the stresses near the crack tip could
	 r

cause the fibers to debond from the matrix before they break. When total

debonding occurs, the strain energy in the debonded length of fiber is lost to

the material and is dissipated as heat. Fiber stress-relaxation, a variation

of the debonding model, estimates the elastic energy that is lost from a broken

fiber when the interfacial bond is not destroyed. It is also possible for a

fiber to be left intact as the crack propagates. This process, known as

crack bridging, can also contribute to the toughness of the material. Analysis

of combined debonding and crack bridging for brittle fibers in a perfectly

plastic material has been given by Piggott [8].

When brittle fibers are well-bonded to a ductile metal matrix, the

fibers tend to snap ahead of the crack tip leaving bridges of matrix material

that neck down and fracture in a completely ductile manner. This is also shown

in Figure B-1. The fracture toughness in these circumstances is largely govern-

ed by the energy involved in the plastic deformation of the matrix to the

point of failure. This process has been analyzed by Cooper and Kelly [9].

Of the above energy absorption models, debonding and pull-out have

been used most widely. Obviously, the same mechanisms will not be important

in all combinations of matrix and finer materials. For example, the fracture

energies of carbon-fiber composites have been more successfully correlated

with pull-out model, while for boron and glass composites, debonding is more

successful[2]. Marston, et al. [10], however, have shown that no single

mechanism such as pull-out, debonding, or stress redistribution taken alone

can account for the observed toughnesses of boron-epoxy composites.

Fracture Theories for Composites

Despite the fact that composite materials are by their very nature

heterogeneous materials, analyses developed for homogeneous materials are



FIGURE 8-1 " MODEL OF A CRACK ZIP IN A FIBER COMPOSITE
ILLUSTRATING THE VARIOUS ENERGY DISSIPATION
MECHANISMS INVOLVED IN C.RACK PROPAGATION
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usually applied in treating composite fracture. 	 A typical rationale has

been given by Corten [11] by analogy with metals. 	 Correct or not, such a

point of view allows relationships between the variables to be developed for

engineering purposes that could not otherwise be obtained. 	 This is the basic

reason for treating composite fracture with an extension of LFFM to account
i

for their inherent anisotropy. E.

The applications of fracture mechanics to characterize the failure

of composites cannot so far be considered to be particularly successful. 	 There

are, in fact, papers in the literature that suggest that some workers do notc:<
fully understand the fundamental principles involved. 	 As an example, Waddoups,

et al. [12], have employed an empirical extension in linear elastic fracture

for isotropic materials which, for a crack of length 2a in an infinite body

funder tensile load normal to the crack, can be expressed as

1/2

`	 ' c1a K	 = a Tr (Q + a)

I^'
5

,t where 2 is taken to be the dimension of a characteristic "intense energy region"
k 	

i'1

at the crack tip.	 The critical stress for crack extension is then

#;
1/2'

a	 = K
I
	/Tr(2 + a)

C	 c

WaddouP s	 et al. treat K	 and 2 as disposable parameters which are evaluatedIc

from experimental data.	 They then conclude that the agreement of this equation

with the single body of data from which K Ic and Q were determined shows that

linear elastic fracture mechanics can be applied to composite materials. 	 In 

` the	 have devised a two -parameter empirical correlation of certain testfact	 PY	 P

data which may or may not be applicable to other materials or to other crack

orientations in the same material.

j
A more correct application of anisotropic LEFM to fiber composites

is given b	 noted that critical values of the stressY Konish ^ et al.	 [ 13 ].	 They

intensity factor for crack growth in the laminates that they tested depended

upon the crack path.	 In particular, a high value of fracture energy was ob-

tained for tests in which fibers were broken while values approximately two

orders of magnitude lower were obtained when the crack passed between fibers.

f.



l

i
h

1

B-8

Laboratory results on balanced symmetric laminates containing a flaw

perpendicular to direction of loading indicate that the damage mode may propa-

gage in a self-similar manner or may change to another mode; for example,

axial splitting. In order to understand fracture of composite materials, it

is necessary to develop a mathematical model which will predict and incorporate

this nonself similar propagation.

At present, there are a number of fracture theories which attempt to

accomplish the above result. Sih [14] and Wu [15] each have theories based on

an anisotropic continuum interpretation of fracture. S ih's method is based on

a strain energy density concept which will predict not only fracture, but the

direction of fracture. This technique requires that the intense energy region

size be estimated either from the analysis or an experiment. Wu's method also

will predict fracture and the direction of fracture. This is accomplished by

locating the intersection of the stress vector surface and the failure surface

in the intense energy region ahead of the flaw. Again, the failure surface

must be obtained from experimental studies to determine remote properties.

In order to use either theory for quantitative comparisons with experiment,

the intense energy region ahead of the crack must be observable by experimental

techniques.

Another theory due to Kulkarni, et al. [16], uses a materials science

approach in which the region adjacent to the notch is modeled as a shear

stress transfer region. Here axial fracture (normal to the original crack

surface) is assumed. The regions adjacent to the crack are subdivided into a

region of shear stress transfer in the core, a region of stress concentration,

and region of shear stress transfer in the average material. The quations of

analysis are given in Reference [16]. Again, however, the parameter m, which

is the number of broken fibers in the core, has to be identified and is de-

termined from laboratory experiments. Thus, for these theories, it appears it

is necessary to identify experimentally the size of the region of intense

energy adjacent to the flaw and the demarcation between Mode I and Mode II

behavior.

In closing this Appendix, it is pointed out that what is needed for

the proper utilization of composite materials is a predictive capability for
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count of loading and geometry of the

s well as the properties of the composite's

al design. This report describes an ap-

ace, unifying the two current approaches

complished by treating the material as

effects are predominant and as homogeneous
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