General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
SEMI-ANNUAL REPORT
Interaction of Hydrogen Chloride with Alumina

by

R. R. Bailey
James P. Wightman

(NASA-CB-145708) INTERACTION OF HYDROGEN
CHLORIDE WITH ALUMINA Semiannual Report
(Virginia Polytechnic Inst. and State Univ.)
12 p HC $3.50

Prepared for
National Aeronautics and Space Administration

December, 1975
Grant NSG 1195

NASA-Langley Research Center
Hampton, Virginia 23665
Space Applications and Technology Division
Gerald L. Pellett

Chemistry Department
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
A. INTRODUCTION

Research prior to December, 1975 has primarily concentrated on an investigation of the adsorption behavior of two aluminas, Alon-C (gamma form) and A16SG (alpha form). The influence of outgas conditions and temperature on the adsorptive properties of these two aluminas have been studied using adsorption isotherm measurements. Alon-C and A16SG have been characterized using X-ray powder diffraction, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and BET nitrogen surface areas. Some of these techniques were applied to two other aluminas but no isotherm data has been obtained. Studies using transmission infrared spectroscopy are now beginning. Table I summarizes the isotherm data and techniques applied to each alumina.

B. CHARACTERIZATION TECHNIQUES

1. Alon-C

Alon-C, a high surface area alumina was obtained from Cabot Co., Boston, Mass. It is a fumed alumina made by the hydrolysis of aluminum chloride in a flame process, similar to that described by Fricke and Jockers(1). An X-ray powder diffraction exhibited diffraction lines at 1.98 and 1.39 kx characteristic of $\gamma$-$\text{Al}_2\text{O}_3$. The BET surface of 93.5 \pm 0.5 m$^2$/g for Alon-C was determined by low temperature nitrogen adsorption. Thermogravimetric analysis (TGA) of Alon-C, because of a lack of sensitivity, did not show water loss from the Alon.

Scanning electron micrographs were obtained of Alon-C before and after exposure to 20 torr of hydrogen chloride. Micrographs at 5000 X magnification show the effect hydrogen chloride has on the texture of the alumina. The degree of roughness of the alumina decreases after HCl exposure.
2. **A16SG**

An X-ray powder pattern of A16SG showed lines characteristic of an alpha alumina. The BET surface area of A16SG is $8.16 \pm 0.2 \text{ m}^2/\text{g}$. SEM experiments on A16SG, showed the particle size to be larger than that of Alon-C, however, the two aluminas have similar texture. Again a significant change is seen in the surface roughness of the alumina after exposure to 20 torr of hydrogen chloride. Thermogravimetric analysis of A16SG, like that of Alon-C showed no weight loss due to water desorption.

3. **Other Aluminas**

Two gamma aluminas were prepared by heating two different aluminum trihydroxides obtained from Alcoa. The $\gamma$-alumina prepared by heating Alcoa's C-31 coarse at 600°C for 6 hrs. show the same two X-ray diffraction lines as Alon-C. A BET $N_2$ surface area of this preparation was taken. No other characterization techniques have been performed on the alumina.

No X-ray powder pattern was obtained on a sample of Hydral 710, an aluminum trihydroxide, after the heat treatment to transform it to a $\gamma$-alumina. Because of its small particle size less than 2 microns, it does not easily undergo transition to the $\gamma$-form. BET surface areas obtained before and after the heat treatment were markedly different. Hydral 710 had a surface area of $3.75 \text{ m}^2/\text{g}$ and Hydral 710 after heating at 600°C for 6 hours showed an increase to $170.2 \text{ m}^2/\text{g}$.
C. ISOTHERM MEASUREMENTS

1. Experimental

Adsorption measurements were made manometrically in a constant volume apparatus with a base pressure of $10^{-5}$ - $10^{-6}$ torr. Prior to adsorption, the alumina sample was dried in situ under vacuum for a few hours at varying temperatures. The HCl gas was of reagent grade, and the pressure of the test gas (HCl or H$_2$O vapor) was varied to develop an isotherm.

2. H$_2$O/Alon-C

Adsorption of H$_2$O on Alon-C was used as a criteria to study the reproducibility of the alumina surface as a function of outgas temperature and the time of outgassing. No time dependence was found, but the temperature of the pretreatment was critical in defining the adsorption capacity of Alon-C for H$_2$O.

Isotherms of H$_2$O on Alon-C were taken after outgassing at 80° and 400°, the 400° outgassed sample adsorbing significantly more water. Desorption experiments show the isotherm to be reversible. Comparison of the H$_2$O surface area obtained at these outgas temperatures and the N$_2$ BET surface areas gives an indication of the degree of hydrophilicity of the Alon-C surface. 100% reversibility was found for the H$_2$O adsorption at 40° and 50°.

3. H$_2$O/A16SG

Adsorption of water vapor on the α-alumina (A16SG) was found to be sensitive to the outgas temperature. 400° isotherms taken at a series of outgas temperatures from 800° - 750°C showed successive increases in BET water surface area indicating a change in degree of hydrophilicity of A16SG. After outgassing at 400°C and H$_2$O area was the same as that for the BET N$_2$ area, a possible
indication of the removal of all molecular water (hydrophobic site) from the Al6SG. A comparison of $\text{H}_2\text{O}$ adsorption on Alon-C and Al6SG is shown in Figure 1. Al6SG is more adsorptive than Alon-C after outgassing at $400^\circ\text{C}$.

4. **HCl/Alon-C**

Hydrogen chloride adsorption at 0, 40, 50$^\circ\text{C}$ on Alon-C shows no significant temperature dependence. Readsorption measurement, where HCl is pumped away from the alumina show the hydrogen chloride adsorption on Alon-C is 75% irreversible.

Sample pretreatment, as shown in Figure 2, greatly affects the adsorption capacity of Alon-C for HCl.

5. **HCl/Al6SG:**

Isotherms for HCl/Al6SG has been obtained at 40$^\circ\text{C}$ for Al6SG after outgassing at 80$^\circ\text{C}$ and $400^\circ\text{C}$. Again the temperature of outgassing affects the adsorptive properties of the alumina. Irreversibility of HCl adsorption is seen on Al6SG using readsorption experiments. Fig. 3 shows a comparison between HCl adsorption on Alon-C and Al6SG after outgassing at $400^\circ\text{C}$. A difference in the adsorptive behavior of these two alumina phases is evident at $400^\circ\text{C}$, outgassing at 80$^\circ\text{C}$ shows similar behavior but the effect is not as pronounced, Fig. 4.

**D. I. R. STUDY**

An infrared study of the aluminas, to determine the nature of the adsorbed species after HCl adsorption and the nature of the different alumina surfaces has just commenced. An infrared cell has been constructed which is capable of heating the alumina sample in vacuum to outgas temperature up to 800$^\circ\text{C}$. 
Some difficulty has been encountered in pressing the alumina into transparent disk for transmission infrared measurements. Alon-C can be pressed into disks and infrared measurements are now underway.

Spectra of Alon-C and Al6SG without a pretreatment have been obtained in nujol mulls.
REFERENCES

Table I

<table>
<thead>
<tr>
<th>Alumina</th>
<th>Characterization Technique</th>
<th>Isotherm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X-ray diffraction</td>
<td>SEM</td>
</tr>
<tr>
<td>ALon-C</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16SG</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-C-31</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hydral 710</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. HCl/Alon-C at different outgas temperatures.
Figure 4. Adsorption of HCl at 50° on Alon-C and A16SG after 80° Outgas.