General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
THE INFLUENCE OF COASTAL FRONTS ON THE MOVEMENT AND DISPERSION OF OIL SLICKS

V. Klemas, G. Davis, S. Kupferman
College of Marine Studies
University of Delaware

October 25, 1975
Report on Significant Results
NASA LANDSAT CONTRACT NAS5-20983
UN 20570

Prepared for
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
SIGNIFICANT RESULTS

LANDSAT, aircraft and boats have been used successfully to study estuarine and coastal fronts or boundaries. Fronts (regions of high horizontal density gradient with associated horizontal convergence) are a major hydrographic feature in Delaware Bay and in other estuaries. Horizontal salinity gradients of 4% in one meter and convergence velocities of the order of 0.1 m/sec. have been observed. Visibility improved from one meter to two meters as certain boundaries were crossed. Fronts near the mouth of the bay are associated with the tidal exchange with shelf water. The formation of fronts in the interior of the bay appears to be associated with velocity shears induced by differences in bottom topography with horizontal density difference in the deep water portion of the estuary. Surface slicks and foam collected at frontal convergence zones near boundaries were found to contain concentrations of Cr, Cu, Fe, Hg, Pb, and Zn higher by two to four orders of magnitude than concentrations in mean ocean water.

By capturing and holding oil slicks, these frontal systems also significantly influence the movement and dispersion of oil slicks in Delaware Bay. Recent oil slick tracking experiments conducted to verify a predictive oil dispersion and movement model have shown that during certain parts of the tidal cycle the oil slicks tend to line up along boundaries. Thus, unexpected oil slick distribution patterns result which even for a known oil type cannot be predicted on the basis of wind and tidal current information alone.