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ABSTRACT

Errors in measuring wind speed with radar backscatter from the sea occur due

to precipitation backscatter. The return power during precipitation consists of

returns from both the ocean and the precipitation. This combination of ocean and

precipitation returns causes an inaccurate estimate of the radar cross section of the

sea, a0, which results in an inaccurate estimate of the wind speed. ,

Calculations were made at three frequencies considered possible for the

SEASAT scatterometer: 12.57 13.9, and 15 GHz. The wind response of cr° is

slightly stronger at higher frequencies; and the backscatter and attenuation caused

by rain is less troublesome at lower frequencies. Representative errors at cell 7 of the

proposed SEASAT system (at f = 13.9 GHz) are: (1) With vertical polarization the

user's requirement, wind speed measurement precision to within + 2 m/sec or + 10%

whichever is greater, is violated for wind speeds above 45 knots for rain rate = 2.8 mm/

hr. and wind speeds of 5 - 6 knots; those above 31 knots for rain rate = 5.2 mm/hr,

and wind speeds of 5 - 9 knots; and those above 24 knots for rain rate = 10.3 mm/hr.

(2) For horizontal polarization the user's requirement is violated at wind speeds of

5-9 knots for rain rate = 2.8 mm/hr, wind speeds of 5 - 15 knots and those above 40

knots for rain rate = 2.8 mm/hr, and wind speeds of 5 - 17.5 knots and those above

32 knots for rain rate =10.3 mm/hr.



1. INTRODUCTION

Precipitation backscatter limits the effectiveness of a remote sensing radar in

a satellite. Scatterometer operation on SEASAT is being considered in one of the

following frequency ranges: (1) 12.5 GHz, (2) 13.4 - 14.0 GHz, or 14.4 - 15.35

GHz. This study compares the effect of backscatter from precipitation in these

frequency ranges.

In deciding on a frequency not only should the backscatter from precipitation

be considered, but also the dependence of a° on frequency. The higher the

operating frequency the more dependent a° becomes on wind speed. Combining the

studies on backscatter from precipitation vs. frequency, and a vs. frequency

should make it possible to decide on a frequency best suited for the study of sea

conditions.

2. PRECIPITATION EFFECTS

Precipitation will affect the accuracy of the cr° measurement, and thus that

of the wind speed in each of the proposed frequency ranges. To determine the extent

of the error induced by precipitation, two factors must be considered: (1) precipita-

tion backscatter and (2) attenuation due to precipitation. Therefore, a model for

precipitation must be used to yield realistic results.

Very little is known about the vertical distributions of rain over the ocean.

Consequently, we must assume that rainfall distribution over the ocean is the same as

over land. This report limits itself to a single rainfall case out of the many possible.

The rainfall case is that of a summer rain in temperate latitude or if the tempera-

ture were slightly higher, of widespread tropical rains. Using three different up-

drofts, it is possible to determine three different precipitation rates.

CASE1: 0.4m/sec updraft

rain: 0 < z < 3100 m, r = 10.3 mm/hr

cloud: 3100 m < z < 7000 m, M = 0.3 gm/m3

CASE 2: 0.2 m/sec updraft

rain: 0 < z < 3300m, r = 5.2 mm/hr

cloud: 3300 < z < 7000 m, M = 0.15 gm/m3



CASES: 0.1 m/sec updraft

rain: 0 < z < 3500 m, r = 2.8 mm/hr

cloud: 3500 m •< z < 7000 m, M = 0.1 gm/m^

Since vertical extent of rain over the ocean is usually less than in the model, this

represents a conservative model.

Because rain is not uniform, a limitation on the extent of precipitation is

needed in the model . James determined that in Eastern England the horizontal

extent of precipitation can be given by,

Precipitation extent, (d) = 41 .4 - 23.5 log r, (km).

While the "James Model" is certainly inappropriate for a tropical rain storm,

adequate models of horizontal extent of rain are not well documented, so this one is

used.

Using the horizontal extent of precipitation, d, along with the cell width I

(see Appendix 1) the maximum area of precipitation is

Precipitation Area . = d x ar max

(shown in Figure 1). Combining this with the vertical extent of precipitation, z,

the maximum volume of precipitation is simply

Precipitation Volume „„ = z x d x £ .r . max

Table 1 contains the maximum values of precipitation area and volume for cells 1,3,

7 ' r 12 of the proposed SEASAT scarterometer using the precipitation rates assumed by

our model .

2.1 Radar Return From Precipitation

The return power from precipitation can be obtained from the familiar radar

equation,

Wr = Wtr t

where

W. = transmitted power

G = antenna gain (G , since we assume that the same antenna is used
for both transmitting and receiving)



Figure 1. Resolution Cell.



Table 1: Maximum area and volume of precipitation for cells 1, 3, 7, 12

Cell *

1

3

7

12

Rainfall Rate
(mm/hr)

10.3

7.9

5.2

2.8

10.3

7.9

5.2

2.8

10.3

7.9

5.2

2.8

10.3

7.9

5.2

2.8

Area of
Precipitation

(km2)

290.93

335.56

406.14

510.61

300.78

346.93

419.90

527.91

329.47

380.02

459.95

578.26

378.05

436.04

527.76

663.52

Path Length in
Precipitation

(Average) (Km)

3.327

3.435

3.542

3.757

3.548

3.662

3.777

4.006

4.109

4.241

4.374

4.639

4.864

5.021

5.178

5.492

Volume
(km3)

901.88

1073.79

1340.26

1787.13

932.42

1110.18

1385.67

1847.68

1021.36

1216.04

1517.83

2023.91

1171.95

1395.33

1741.61

2322.32



R = range

L = loss factor

X - = wavelength

a = radar cross section .

The radar cross section of precipitation can be though of as a volume resolu-

tion cell containing many independent scatterers each with a cross section of a j

where V is the volume of the resolution cell.m
The expression for the radar cross section of a single spherical drop/ a , was

developed by Mie/ '

~
a

(-l)n(2n + l)(an - bn) (3)

where a is the drop radius, a = 2-rra/X , and a , b "are coefficients in the1 n n
expression for the scattered field; the a terms refer to the scattering arising from the

induced magnetic dipole, quadrupole, etc.; and the b terms refer to the electric
0) n

dipole/ quadrupole/ etc."v ' Assuming a < X, this can be given by the approxima-

tion/

_ 64TrJ,,,,2a e
i - —IKI ai (4a)

or by

(4b)

2 . .
where D. is the drop diameter. The value of |K | is given by (5)/

K =
+ 1

(5)

where m = n - jK. The parameters n/ K are determined by the following relation-

ships'2'
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Table 3: Two-way transmission loss (attenuation)
due to precipitation

^ -̂v. Precipitation Rate
^^v^frnm/h r)

Cell#^\^

1

3

7

12

10.3 7.9 5.2 2.8

Attenuation (dB), Frequency = 12.5 GHz

2.29

2.44

2.83

3.35

1.71

1.82

2.11

2.50

1.05

1.12

1.30

1.54

0.526

0.561

0.649

0.769

^v^Precipitation Rate
^^-•x^limm/hr)

Cell* ^\^

1

3

7

12

10.3 7.9 5.2 2.8

Attenuation (dB), Frequency =13.9 GHz

2.71

2.89

3.34

3.96

2.05

2.18

2.53

2.99

1.29

1.37

1.59

1.88

0.661

0.705

0.816

0.966



Table 3: (cont'd.)

"̂"̂ -s^ Precipitation Rate
^x^ (mm/hr)

Cell * ^\^^

1

3

7

12

10.3 7.9 5.2 2.8

Attenuation (dB), Frequency = 1-5.0 GHz

3.19

3.40

3.94

4.66

2.42

2.58

2.98

3.53

1.54

1.64

1.90

2.25

0.796

0.849

0.983

1.16

8
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JK = 1 < \
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S 0 ^ S
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1/2

x
x 3 x 1Q O

where for 20°C, e = 5.5, TQ = 8.1 x TO"12

(7)

(8)

= 80.08. Table 2 shows values

of | K| for the frequencies of interest. This parameter will be assumed constant over
2

the frequency range of interest, | K| = 0.926.

Letting L7 the loss factor, consist only of attenuation from precipitation, an

expression for L can be obtained from an empirical expression first proposed by

Gunn and East,

• L = A = aRb (9)

where

for the three

A = attenuation (dB/km)

R = rainfall rate (mm/hr)

a & b = frequency dependent constants.

Assuming a Laws and Parson distribution, the parameters a and b

frequencies of interest are

12.5 GHz: a = 0.20, b = 1 .22

13. 9 GHz: a = 0.26, b = 1 .18

15.0 GHz: a=0.032, b= 1.16.

Using the values above for a and b, the two-way transmission loss due to precipita-

tion is given in Table 3.

The values given in Table 3 are for the two-way transmission of the signal

through the rain to the ground and back. For precipitation echoes, the attenuation

is about one-half the value given in Table 3, since the average path length through

the rain is one-half the complete distance to the ground.

Thus, the return from precipitation can be given by



5 9 a
I -A |K|2 D.6
j A4 ' ' 1

(10)

64 A* I

For continuous rain 2 D. is given by Z where Z = 200r ' (mm /m ). Therefore

the return power from precipitation becomes

<">

3.0 RADAR RETURN FROM THE OCEAN

At the frequencies of interest, the major scattering surface is the capillary

waves. This can be shown by considering Bragg's resonance condition; according

to the Bragg resonance condition, the radar return will be governed by ocean waves

of wavelength T which satisfy

F = nX (12)
2 sin 6

where

A = wavelength

n = order of resonance

0 = incident angle.

Knowing that the capillary wave spectrum governs the scattering, the

scattering coefficient can be determined from small perturbation theory:

avj (6) . * cos4 e|Rvv|
2s(2k sin e) <13>

K

10



aHH{9) = T COs4 9|RHH|
2s(2k sin 6)

K

where

S(2k sin 9) = capillary spectrum

RW/ RUU = the Fresnel coefficient in the horizontal and vertical planes,
respectively

k = radar wave number

9 = incident angle.

This result appears satisfactory for vertical polarization, since composite

surface scattering theories indicate that the long wavelength components have

negligible effect on the scattering. Unfortunately, this is not the case for horizontal

polarizations. The tilting of the larger wavelength structure influences the

reflectivity and thus, the small perturbation theory is not as valid. This should be

remembered when comparing theoretical and SKYLAB results.

The Fresnel coefficients for both the horizontal and vertical planes are given

by the following expressions,

e cos 6 - \ e - sin2 9
R =
w - f _ • (15)

ep cos 9 + \e - siri 9

R

cos 9 - \Jer - sin
HH 1 , (16)

cos 9 + \j er - sin 9

where e is the complex relative dielectric constant of sea water. Using Porter's

^ , the complex relative dielectric constant, e , is given by

(17)

_
e ' = 4.8 +
r

NO. 98

2 l - b U x l O - ^ + U,
.. /v / -

11



(es - 4.8)(Xs /X)° '98

-2, . „ ,,J.96 + IT (19)' ( T T x 10') + (XS /X)

The parameters are:

e$ = 87.8- 15.3N -0.363T

Xs = 3.38-0.11T+0.00147T2 + 0.0173TN -0.52N

CT = 5n + 0.12TN+0.04T

X = wavelength (cm)

f = frequency (GHz)

N = normality = salinity / 58. 45

T = temperature (°C)

Pierson proposes the following expression for the capillary spectrum when

the friction velocity is greater than 12 cm/sec,

S(2k sin 6) - . ^
K(gK + g

where

P = 5.29- 1.176 log1Q u^

u* = friction velocity (cm/sec)

g = gravitation constant (981 ergs)

K = ocean wave number . In this case K set = 2k sin0

F(y) = angular spectrum ( -1- [ 1 + 0.78 cos 2^] )

Thus, a theoretical value for a° can be obtained by specifying frequency,

polarization, wind speed and incident angle. Theoretical values for a° at

frequencies and incident angles of interest are given in Figures 2, 3 and 4.

Figure 2: (a) a ° (30°) vs. wind speed

(b) aHH° (30°) vs. wind speed
w

HH

Figure 3: (a) a ° (40°) vs. wind speed

(b) cruu° (40°) vs. wind speed

Figure 4: (a) tfw° (50°) vs. wind speed

(b) CTuu (^O ) vs> wind speed

12



A comparison can be made between theoretical and measured values of

avv°(9) and O^^(Q). Preliminary results from SKYLAB are given in Figures 5, 6

and 7.

Figure 5: (a) a^0 (30°) vs. wind speed

(b) <THH° (30°) vs. wind speed

Figure 6: (a) a ° (40°) vs. wind speed

(b) CTHH° (40°) vs. wind speed

Figure 7: (a) cr^0 (50°) vs. wind speed

(b) CTHH° (50°) vs. wind speed

The theoretical value of a° appears to be a few dB higher than that measured by

SKYLAB (but Pierson has since modified his expression for the capillary spectrum).

With the value of a known, the return signal power, W , can be obtained

by the radar equation. Substituting a = a°A into the radar equation yields

,, «2 2. o .
HtG X Lo A

" (4lt)3 R4

The value of A is derived in Appendix 1 for cells 1, 3, 7 and 12. In this analysis,

the value of L is given in Table 3.*

4.0 EFFECT OF PRECIPITATION ON WIND SPEED MEASUREMENTS

A plot of a vs. wind speed on log-log paper suggests a power law relation-

ship of the form

(23)
= A(dB) + Y(10log10U)

*The values for the remaining variables were obtained from "An Operational
Satellite Scatterometer For Wind Vector Measurements Over the Ocean," a
working document at Langley Research Center.
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Table 4: Values for parameters A and Y using the
theoretical approach to obtain a° for vertical polarization

Frequency
" (GHz)

Cell'

12

12.5 13.9 15.0

A/Y (w)

-17.85 -18.277 -18.671

1.39 1.446 1.488

-25.255 -26.143 -26.70

1.593 1.670 1.719

-30.669 -31.50 -32.40

1.761 1.824 1.885

-34.56 -35.75 -36.684

1.870 1.950 2.012
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Table 4 (cont'd.): Values for parameters A and Y using
the theoretical approach to obtain or° for horizontal polarization

Frequency
GHz)

Cell

12

12.5 13.9 15.0

A/Y (HH)

-19.79 -20.08 -20.471
1.40 1.446 1.488

-29.10 -29.795 -30.30

1.595 1.656 1.705

-37.18 -38.02 -38.90

1.755 1.824 1.885

-44.60 -45.80 -46.48^
l.i 1.965 2.012



Table 4 (cont'd.): Values for parameters A and Y using Skylab
data (13.9 GHz) for a° for both vertical and

horizontal polarization - Upwind case.*

Polarization

Cell'

12

vv

-28.91

1.536

-34.43

1.680

-37.79

1.833

HH

-29.25

1.464

-39.65

1.828

-46.18

2.116

*For the crosswind case A is increased by 4.5 dB.
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where

A = o constant

U = wind speed

"Y = wind speed power coefficient.

Values for A and Y are given in Table 4 for both theoretical and experimental values

of a ° ( e ) a n d a
W i u i A

To find the error in the measured value of wind speed, U , the analysis

assumes that cr° (measurement value of a °) is obtained by measuring the returned

power. Using cr° along with the parameters A and Y , a value for the measured

wind speed can be obtained.

- A(dB) + OQ (dB)

for" (24)
u = 10

Assuming this is the case, the return power during precipitation will consist

of both returns from the ocean and the precipitation.

Wr(s+p) = Wrs + Wrp (25)

Since the return in precipitation is W , . y the measured value of ocean backscatter,

aQf will now be changed. Thus, an error will occur in the determination of U.

Examples of wind speed errors caused by precipitation are given for both upwind and

cross wind cases at f = 13.9 GHz in Figures 8, 9, 10, 11 and 12.

Figure 8: (a) Cell 3 at f = 13.9 GHz where both upwind and cross wind
cases use SKYLAB value of aw° (30°).

(b) Cell 3 at f = 13.9 GHz where both upwind and cross wind
cases use SKYLAB value of aHH° (30°).

Figure 9: (a) Cell 7 at f = 13.9 GHz where both upwind and cross wind
cases use SKYLAB value of aw° (40°).

(b) Cell 7 at f = 13.9 GHz where both upwind and cross wind
cases use SKYLAB value of aHH° (40°).

Figure 10: Cell 7 at f = 13.9 GHz using the theoretical value of

Figure 11: (a) Cell 12 at f = 13 .9 GHz where both upwind and cross wind
cases use SKYLAB aw° (50°).

(b) Cell 12 at f = 13.9 GHz where both upwind and cross wind
cases use SKYLAB ao (50°).
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If a RADSCAT system was used, the radiometer could be used to locate areas

of-precipitation and to estimate the attenuation. ' Using the radiometric measure-

ment to correct the scatterometer return would then result in a better estimate of the

wind speed. Examples of such corrections are shown in Figures 12a and b.

The original intent of this paper was to determine the degree of improvement

realized by operating the scatterometer at lower frequencies where atmospheric

effects are less severe. A comparison of wind speed error (due to rain) vs. frequency

for the upwind case using the theoretical values of a (0) and (TIILI (9) 's shown

in Figures 13-17.

Figure 13: Cell 7 with wind speed of 5 knots for vv and HH.

Figure 14: Cell 7 with wind speed of 25 knots for w and HH.

Figure 15: Cell 7 with wind speed of 45 knots for w and HH.

Figure 16: Cell 12 with wind speed of 5 knots for w and HH.

Figure 17: Cell 12 with wind speed of 45 knots for w and HH.

5.0 CONCLUSION

The SEASAT instrument must measure the wind speed to within either + 2 m/sec

or + 10%, whichever is greater to satisfy the user's requirements. Considering only

the case where a °(0) and a,,|,o(6) are determined from SKYLAB data (note,

f = 13.9 GHz), it is seen that for the cross wind case:

(1) At cell 3 with vertical polarization this requirement is violated at ,

wind speeds above 45 knots for rj^.8 mm/hr, wind speeds above 25 ~
" ~ M p^ v

knots for r = 5.2 mm/hr, and wind speeds above 18.5 knots for ^t.^w^

r = 10.3 mm/hr. For horizontal polarization this requirement is

violated at wind speeds above 45 knots for r = 2.8 mm/hr, wind speeds

above 29 knots for r = 5.2 mm/hr, and wind speeds above 19.5 knots

for r = 10.3 mm/hr.

(2) At cell 7 with vertical polarization this requirement is violated at wind

speeds above 43 knots for r = 2.8 mm/lir, wind speeds of 5 - 9 knots and

those above 32 knots for 4 = 5.2 mm/hr, and wind speeds of 5 - 11 knots

and those above 25 knots for r = 10.3 mm/hr. For horizontal polariza-

tion this requirement is violated at wind speeds of 5 - 17.5 knots for

r = 2.8 mm/hr, wind speeds of 5 - 22 knots and those above 44 knots
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for r = 5.2 mm/hr, and wind speeds of 5 - 24 knots and those above

39 knors for r = 10.3 mm/Tir.

On the other hand, for the upwind case (again using the SKYLAB results for a (6)

and cr,,L|O(3) ) it can be seen that:

(1) At cell 3 with vertical polarization the user's requirement is violated at

windspeeds above 42 knots for r = 2.8 mm/hr, wind speeds above 23

knots for r = 5.2 mm/hr, and wind speeds above 14 knots for r = 10.3

mm/hr. For horizontal polarization this requirement is violated for

wind speeds above 40 knots for r = 2.8 mm/hr, wind speeds above 23

knots for r = 5.2 mm/hr and wind speeds above 14.5 knots for r = 10.3

mm/hr.

(2) At cell 7 with vertical polarization the requirement is violated at

wind speeds above 40 knots for r = 2.8 mm/hr, wind speeds above 25

knots for r = 5.2 mm/hr and wind speeds above 17 knots for r = 10.3

mm/hr. For horizontal polarization the requirement is violated for wind

speeds above 45 knots for r = 2.8 mm/hr, wind speeds above 30 knots

for r = 5.2 mm/hr, and wind speeds of 5 - 6.5 knots and those above

22 knots for r = 10.3 mm/hr.

(3) At cell 12 with vertical polarization the requirement is violated at wind

speeds above 39 knots for r = 2.8 mm/hr, wind speeds above 24 knots

for r = 5.2 mm/hr, and wind speeds above 17.5 knots for r = 10.3 mm/hr.

For horizontal polarization this requirement is violated at wind speeds

of 5 - 6 knots for r = 2.8 mm/hr, wind speeds of 5 - 9.5 knots and those

above 33 knots for r = 5.2 mm/hr, and wind speeds of 5 - 12.5 knots

and those above 26 knots for r = 10.3 mm/hr.

From these results, we can conclude that the wind speed error is governed by

two phenomenon: precipitation backscatter and attenuation due to precipitation.

Comparing Figure lla, where both precipitation backscatter and attenuation are

present, with Figure 12, where only precipitation backscatter is present, it is possible

to separate the wind speed error into two regions where only one effect is dominant.

At low wind speeds, the wind speed error is primarily due to precipitation backscatter;

whereas, attenuation is the major source of error at high wind speeds.
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When the results of Figures 13-17 are used to illustrate the frequency effect,

in the absence of an attenuation correction, we find:

(1) For upwind 5-knot measurements at Cell 7, all frequencies studied

are satisfactory for VV polarization for the three rain rates; but for HH

frequencies above 13.9 GHz are unsatisfactory for the 10.3 mm/hr rain

rate.

(2) At cell 12, upwind 5-knot VV measurements are all satisfactory; for

HH, however, all frequencies are unsatisfactory for r = 5.2 and r = 10.3

mm/hr, and frequencies above 13 GHz are unsatisfactory at 2.8 mm/hr.

(3) For 45 knots upwind at Cell 7, the VV measurements are unsatisfactory

above 13.4 GHz for r = 2.8 mm/hr, and for r = 5.2 and 10.3 mm/hr all

frequencies are unsatisfactory; the HH measurements are only satisfactory

for 2.8 mm/hr and below 13.0 GHz.

(4) For 45 knots upwind at Cell 12, all VV measurements are unsatisfactory;

for HH, all 2.8 mm/hr measurements are satisfactory, but measurements at

5.2 and 10.3 mm/hr are unsatisfactory at all three frequencies.

With attenuation corrections, these conclusion would change.

Several other conclusions can be drawn from the results. First, the wind

speed error increases as the precipitation rate increases. Second, the error at lower

wind speeds increases with incident angle, since the difference between precipita-

tion returns and returns from the ocean becomes larger. Note, at low wind speeds

the precipitation return may be larger than the return signal. Third, for higher wind

speeds the error does not necessarily increase with increasing incident angles. This

unexpected event occurs since the secondary error due to the precipitation return

increases with increasing incident angles, thus, cancelling some of the attenuation

effect. To see this compare Figures 12a and b with Figures 8a, 9a and lla, the

error due to precipitation backscatter is positive, while the error due to attenuation

is negative.

Through the use of a radiometer, the attenuation errors can be minimized.

Comparing Figures 12a and b (where the attenuation effect is eliminated) with

Figure 8a, 9a, and lla (where attenuation losses are included) several differences

can be distinguished. First, at low wind speeds, where precipitation backscatter

is the major source of error, the non-attenuation case experiences greater wind
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speed error. As previously mentioned, the errors due to attenuation and precipita-

tion backscatter cancel and thus, the error should increase. Second, the error at

high wind speeds for the non-attenuation case is lower. This would be expected,

since the major source of error at high speeds, attenuation, is eliminated. Third,

for the non-attenuation case, the wind speed error always increases for increasing

incidence angles. Fourth, the wind speed error at a particular incident angle

decreases with increasing wind speeds for the non-attenuation case.

For the non-attenuation study, as was the case with attenuation study, the

wind speed error increases with increasing precipitation rate. Also for low wind

speeds, the precipitation return may be greater than the return from the ocean.

The generalized results given so far will apply regardless of how a (0)

and O',,,jO(9) are determined. As mentioned before, a discrepancy (does exist
o I o

between the theoretical and the empirical values of cr (e) and OJJLJ (0). An

example of this difference is shown in Figures 9 and 10.

Using the theoretical values for a °(0) and a,jLjO(0) to show the frequency

dependence of wind speed error, the following results are obtained: (1) The wind

speed error increases as frequency increases; and (2) The wind speed error increases

as the rainfall rate increases.

This report may have neglected several areas of possible importance:

(1) The effects of rain on the ocean surface, since this phenomenon has not

been studied before;

(2) Some compensation may be available to correct the wind speed error

by comparing the horizontal and vertical polarization vertical measure-

ments; and

(3) Use of cross polarization may eliminate or substantially reduce the

error caused by precipitation backscatter. Radar meteorologists have

long used circular polarization to eliminate the return from spherical

particles such as rain.
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APPENDIX 1

SEASAT's resolution cell is shown in Figure A.I . To determine the area, first

the area of the cell in Figure A. 2 is found and then the Doppler effects are subtracted.

The area of the approximate resolution cell (A. 2), A^-p. . , , is

ACELL, = 2'B' + 'A' (A.I)

where

'A1 = £ x L1

'B' = 1/2 (vgtp) ( VTR/)

v = satellite ground velocity, 6.61 km/sec
«9

t = measurement period, 1 .891 sec
P !_g

p = narrow 3 dB beamwidth of the fan beam, 8.73 x 10 rod.

RC = slant range to the center of the doppler cell .

The parameter £ is given by

c
 (A*2)

The value of L1 is

L- = a?r _ _§_ _ R A (A.3)
8\/2 c

where

r = equivalent resolution size

S = spacing along the direction of the satellite track between successive
scans of the same antenna

R = slant range to the center of the cell.

Values of the parameters of A^ri 1 1 are given in Table A.I for cells 1 and 15.

Doppler correction needs to be calculated so that the correct area of the reso-

lution cell, ACI I / can be obtained,

ACELL = ACELL' " 2Ad

where A ., the area lost by Doppler shift, is shown in Figure A.3. Values of the

angles and area of the Doppler correction are given in Table A. 2.
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Table A.I: Parameters of , for cells 1 , 3, 7, 12

Cell*

1 .

3

7

12

(km)

16.53

17.09

18.72

21.48

'A1 (km2)

896.26

916.54

973.63

1265.39

'B' (km2)

67.57

72.81

87.06

109.19

2
ACELL' ^m ^

1031.40

1062.16

1147.75

1483.77
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Table A.2: Values of the various angles and A
for doppler correction

need

Cell

1

3

7

12

A

84.99

81.05

72.01

62.62

B

50.01

53.95

62.99

72.38

C

39.99

36.05

27.01

17.62

h

0.94

1.81

4.30

8.03

b

11.89

14.00

21.68

40.79

Doppler

5.59

12.67

46.61

163.77
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