FEASIBILITY INVESTIGATION OF
GROWING GALLIUM ARSENIDE SINGLE CRYSTALS
IN RIB* J FORM

NSF GRANT GI-43093
July 1, 1974 - December 30, 1975

$164,000 ADL
60,000 MIT

David L. Richardson
Arthur D. Little, Inc.
Cambridge, Mass. 02140

Dr. Joan Berkowitz, Principal Investigator

Presented at the
National Solar Photovoltaic Program Review Meeting
at the
University of California, Los Angeles

July 22 - July 25, 1975
ABSTRACT

An eighteen month program was initiated July 1, 1974 to determine the feasibility of producing GaAs single crystal ribbons suitable for solar cell substrates. Constrained, encapsulated molten zones are passed through rectangular polycrystalline feed material to form single crystal ribbons. The objective of this program is to grow 10 cm x 1 cm x 0.1 cm single crystals by a process that is amenable to continuous growth.

During the past six months, two methods have been used to establish passage of a molten zone through ribbon GaAs feedstock; direct coupling with rf to the GaAs and constrained zone-melting in B₂O₃ sealed graphite boats. Establishment of a narrow molten zone by direct rf coupling to GaAs was shown to be limited by the large skin depth required for heating GaAs as compared to the desired ribbon thickness.

Polycrystalline GaAs ribbons have been grown in graphite boats by passage of a wide zone through B₂O₃-encapsulated feedstock, confined by a quartz cover plate. Failure to remove the encapsulant above its glass transition temperature, however, resulted in cracking of the ribbons on cooling to room temperature. In order to study the crucial zone melting step in isolation from the encapsulation steps of the continuous process, a horizontal constrained-zone melting apparatus made from graphite was used in which a boron oxide moat serves only as a sealant to suppress arsenic vaporization. Melt zones were passed through 5 and 10 cm long samples of GaAs ribbon feedstock. By controlling the heat flow in the graphite boat and controlling the zoning rate, large grained, single phase polycrystalline samples with directional solidification and good thickness control were achieved. Arsenic vaporization was effectively suppressed at the melting point of GaAs (1240°C) by the B₂O₃ moat and 3 atmospheres of pressure.

A vertical constrained-zone-melting apparatus with a B₂O₃ moat seal, rf heating, and water cooling on the bottom will be used to control the heat flow and temperature patterns required for growth of single crystal ribbons. These conditions will then be adapted to a continuous growth process.

Contribution Personnel: Dr. Joan B. Berkowitz, Principal Investigator
Joseph Wenckus
David L. Richardson
Dr. Peter E. Glasser
Dr. John Haggerty
Wilson Menashi
RIBBON GROWTH OF GALLIUM ARSENIDE

NSF Grant GI-43093
A.D. Little, Inc.

July 1, 1974 – December 30, 1975 (18 Months)

$ 164,000 ADL

$ 60,000 MIT (Crystal Characterization)

Dr. Joan Berkowitz, Principal Investigator

PROJECT OBJECTIVES

- To grow and characterize GaAs substrate ribbon single crystals 10 cm long x 1 cm wide x 0.1 cm thick
- To develop designs for a continuous growth experimental apparatus
ACTIVITY DURING THE LAST 6 MONTHS
Tests with Direct Coupling
Horizontal Confined Growth
Characterization of Specimens
Vertical Confined Growth

DIRECT COUPLING
Temperature Limit of 900°C
Skin Depth for RF Heating is Greater Than Crystal Thickness
GaAs Spalled by B₂O₃ in Direct Contact
HORIZONTAL CONFINED GROWTH

Constraint of the Molten Zone
B_2O_3 Does Not Contact the GaAs
GaAs Does Not Wet the Graphite
SUMMARY OF KEY RESULTS

- Confined Melt Zone
- Directional Solidification
- Control of Arsenic Vaporization
- Single Phases Polycrystalline Material

PLANNED ACTIVITY FOR THE NEXT 6 MONTHS

- Experiments with Vertical Confined Growth
- Physically Characterize Crystals
- Design Continuous Growth Apparatus

- Construction of Experimental Continuous Growth Apparatus
- Optimization of Process with Respect to Energy and Cost
- Solar Cell Development and Characterization