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16. Abstract (continued)

Within the simulations it is shown that there is little difficulty in recovering the dominant
scattering coefficients with modest realizations of the polarization specifications. Retrieval of the 	 i
weaker scattering parameters requires more careful observation of the polarization requirements. In
the latter case, it is shown that more relaxed realizations of the polarization specifications can be
tolerated for many of the measurements if the phase of the cross polarized leakage can be adjusted to an
optimun value.

In general it is indicated that three real and three complex valued scattering coefficients can
interact with the scatterometer antenna in an undesirable fashior4 when attempting recovery of any one
coefficient. The measurement error arises either as a result of inadequate realizations of the speci-
fied antenna polarization or as a result of the inherent mis-match between antenna and surface
polarizations for small angles.



3

I

_	 FOREWORD

a
i

This report was prepared by the Remote Sensing Laboratory of the University

of Kansas Space Technology Laboratories under Contract NAS1-10048. Under this
contract the principal investigator is Dr. R. K. Moore and the project engineer is

Dr. A. K. Fung.
This document covers a particular task in an on-going effort between NASA

Langley Research Center and the University of Kansas to demonstrate the value of
the microwave scatterometer as a remote sea wind sensor. Specifically the inter-

action between an arbitrarily polarized scatterometer antenna and a non-coherent
distributive target is derived and applied to develop a measuring technique to recover
all the scattering parameters. The results are helpful for specifying antenna polar-

ization properties for accurate retrieval of the parameters not only for the sea but

also for other distributive scenes.
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GLOSSARY OF SYMBOLS

A	 = Area of radar illumination

Cs 	= Coherence matrix for scattered field

Ct(r)	
= Coherence matrix for transmit (receive) antenna

Es	 _ evs i8 + ehs.i,, scattered field intensity in volts/meter per steradion

Et,	 = evt iE) k eht s  incident field intensity in volts/meter

IG= Maximum directivity when transmitting (receiving)

gv(h)	
= Normalized vertically (horizontally) polarized pattern in the surface

coordinate system

s^()	
= As above, however, in the antenna coordinate system

i	 =-Antenna input current 	 }

Im	 = Imaginary part operator

= Unit spherical polar vector in the surface (antenna) coordinate system
3

{^^)	 = Unit spherical azimuthal vector in the surface (antenna) coordinate system
i

k	 = Propagation constant

L	 = Complex effective height vector e

Ms	 = Mutual coherence matrix for the scattered field

Mr	 = Mutual coherence matrix for the reception antenna

P	 = Degree of polarization

Rr	 = Antenna radiation resistance

R	 = Radar range

Re	 = Real part operator

Scattering operator forthe jth incident polarization and the i th scattered	 r
polarization (,$i R /A cos B)

Scattering operator yielding resultant field (See,Siy)
i

3
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GLOSSARY OF SYMBOL S (continued)

CS ij Skl> = C'SijejAIelt>/ejteI}f scattering coefficient

t	 = Time

C >	 = Time (spatial) average

T	 = Polarization rotation matrix

tr	 = Trace operator

(x,y,z) = Surface coordinate system

tx, y', z') = Antenna coordinate system

Wt 	= Transmit power

W	 Receive power

Zo	 = Free space impedance

= Relative phase between the vertical and horizontal antenna polarizations
•	 defined with respect to the surface polarizations

p'	 = Relative phase between the vertical and horizontal antenna polarizations
defined with respect to the antenna polarizations

90	 = Incident angle

A	 = Radar wavelength

110	 = Free space permeability

= Angle between antenna and surface polarizations

St	 = (B,^)^ line of sight

do	 = sin 6dOd^

110	= (130 0) antenna view angle

W	 . = Radian frequency

xi

E.
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1.0 SUMMARY

The non-coherent radar equation is derived within the framework of a general-
ized reception theory. For scenes satisfying reciprocity, the resulting equation confirms
a previously derived theory [6)j this result, however, was extended to o;;count for the
difference between°. antenna and surface polarizations. The present theory permits one

to interpret the radar return and its reception within the context of scattering and co-
herence theories (see Section 5.2). Under the reciprocity assumption it is shown that
in addition to the three commonly known real valued scattering coefficients there are

three complex valued coefficients (without reciprocity there are four real and six
complex valued coefficients). As a result of the new coefficients, the definition of
a scattering coefficient had to be extended. Specifically a descriptive definition was

suggested, viz.,

<S. S* > _	 <'Si j e Ot'S kl e 1 t > R 	
(T-1)ii ki	

ejte t A coseo

where,

^i je jt . = scattered field component

^ij	 = linear polarized scattering operator
eit	 = incident field component

R	 = range to the illuminated area
A	 = incremental area of illumination
00	 = incident angle

The subscripts denote the polarization states of the incident and scattered fields, either
vertical v or horizontal h. The above definition encompasses the old as well as the
new scattering coefficients. In the new notation < SvvS vv> and <ShhShh > denote
the polarized coefficients, < SvhSvh> is the cross polarized coefficient, and <SvvSv>

<SvvShv > , and <SvvShh> are the new complexed valued coefficients.
Other scattering coefficients participate in the scattering process as implied by Equation (1-

i)' above; however, when reciprocity is satisfied the above set is sufficient (See

Equations (4-26) and (4-29).)
The complex valued coefficients account for the relative phase induced between

the vertically and horizontally polarized components by the scattering surface. The
phase characteristic of these scattering coefficients interact with the relative phase pro-
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perties of the transmission and reception antennas to contribute an observed power com-
posed of real and complex valued scattering coefficients. This interaction occurs
within the coherent radar equation also; however the interaction must be inter-
preted differently for the non-coherent cased As a result of the spatial integration
to acquire an average return, the complex valued coefficient must, in general satisfy
Schwartz' inequality

J<Si3Sk1
>12 	 < <`S ij j 2 ><Is kil 2>

For the coherent case, equality is always assured. However, for the non-coherent
case strict inequality can occur. As a result of the strict inequality, one can attribute

a partially polarized character to non-coherent radar returns (See Section 5.4). Also
as a result of the inequality, techniques for measuring the scattering matrix for coherent
targets cannot be employed for non-coherent targets. To illustrate the character of

these scattering coefficients , several scattering theories applicable to sea returns were

Examined (See Section 5.3).

On the basis of the above theory a measurement and inversion technique was

developed to measure all six coefficients (nine parameters when the real and imaginary
parts are considered). The technique is based on intensity measurements by narrow
beam radar scatterometers (See Section 6.4). Inversions are proposed with and without

regard to the distinction between antenna and surface polarizations (See Section 6.4
and Section 7.2, respectively). It is demonstrated that the distinction between polar-
izations is negligible for narrow beam antennas at all but small view angles ,.See Sections

5.5 and 7.3). For small view angles, inversions based on surface polarizations are more

accurate, in general, if the measurements are to b,. compared with theory or with other

experimenters. For example, a 50% error occurs at nai 4 ir in inverting for <jSvh12>

(defined with respect to the surface polarizations) whet, 3 n inversion technique is based

an antenna polarizations. Comparison of the inversions with and without regard to the
distinction are shown in Figures (7.3) through (7.8). Inversions based on antenna polar-

izations can, however, be performed at small view angles if very small beamwidths

are employed. In this case nadir can only be probed in an asymptotic sense. The degree

to which one can approach nadir and yet meet the constraint that the antenna polar-

izations across the main beam approximately match those of the surface is dependent on

beamwidth. Figure (7.2) parametrically shows the beamwidth requirement as a function of
view angle to minimize unwanted orthogonally polarized content in the measurement.

0

2
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This latter technique is preferred in as much as the measurements may be restricted to a
partial set of coefficients whereas when inversions are performed with respect to the sur-
face polarizations the entire set of measurements must be performed. it is also advantag-
eous to use inversions based on antenna polarizations and small beamwidth antennas when
an anisotropic characteristic is to be measured at small view angles.

Computer simulations were conducted to determine the effect of deviations
from the ideal antenna polarizations (required by the measurement technique) on the
accurate recovering of all nine scattering parameters. The deviations, for example,
canbe introduced by the mis-match between surface and antenna polarizations pre-
suming the scattering parameters are to be reported with respect to the surface polar-
izations. Also, deviations obviously occur because ideal antenna polarization speci-
ifications cannot be realized by practical antennas. Within these simulations a scatter-
ing characteristic similar to that of the sea was employed as illustrated in Figure (7.1).

All simulations were conducted with the assumption that the relative phase between the
cross-polarizations was stationary across the main beam.

The simulations indicated that there is little difficulty in recovering the three
dominant scattering coefficients with off-the shelf antennas as illustrated by Figures

(7.9) through (7.12) and Figure (7.15).   Some difficulty can be anticipated when <15hhl2>
is more than 10 dB beneath <I5vv 1 > as illustrated by Figures (7.11) and (7.12). In this

case the cross polarized level must be better than 20 dB below the dominant (h) polar-
ization. On the other hand, the antenna polarization requirement must be more care-
fully observed when retrieving the six weak scattering parameters as illustrated by

Figures (7.13) through V.16). In some cases an adjustment in the relative phase of the
cross polarization (if possible) can relax the antenna requirement. When the relative

phase cannot be controlled in the case of cross polarized measurements, a rule of thumb
for the quality of the antenna was established. If the measurement is to be performed
with a 0.5 dB accuracy and <Isvh , 2 > is X dB beneath the geometric mean of <isVV12>
and t I S hh 1 2>, then the one-way cross polarized pattern must be X + 16 dB beneath
the dominant,,

When the dynamic range of the scattering coefficients is large, it is

clear from the simulation studies that the experimenter must carefully design his
antenna to accurately retrieve the weaker coefficients. Certain types of antennas
which have potential in achieving the ideal polarization states are suggested in

i
I
I

3



f	 Chapter 6. The antenna specifications for observations over the sea or scenes.
I

having similar scattering characteristics can be based on the results reported in
Chapter 7. However, for scenes having an entirely different characteristic, it
is advisable to conduct simulations similar to those reported here. The simulation
program, documented in Chapter 7 and Appendix D, may be easily modified
for this purpose. These observations as well as others serve as a guide for designing
meaningful and accurate scatterometer experiments.
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The term scatterometer was introduced by R. K. Moore of the University of Kansas.
A scatterometer is a radar designed to accurately measure the scattering properties
of no"coherent: scenes The term scatterometer and non-coherent radar will be
used interchangeably.

4



2.0 INTRODUCTION

Various research programs have been proposed or are in progress to demonstrate
the potential of monitoring, on a global basis, important geological, environmental,
hydrological, oceanographic, meteoroloical, and agrarian parameters. The usefulness

of remotely sensing certain parameters has been repeatedly demonstrated with optical
and infrared sensors. More recently however, satellite and microwave technologies
have developed to a point where microwave sensors are also suitable candidates as
remote sensing devices. The microwave radiometer and radar scatterometer are prime
candidate sensors.

In remote sensing technology it is common knowledge that the retrieval of the

remotely sensed parameters often entails compensation of the measurements for sensor
and dtmospheric effects. The antenna is one element of the sensor system that requires
special consideration. An understanding of the antenna-scene interaction is essential
to designing meaningful experiments and for specifying the antenna with which the

experiments are to be conducted.
The radio astronomers, for example, have developed a rigorous theory involving

the complex visiblity function to describe the interaction of a radiometer antenna with a
small celestial scene,[1 ]. ,Measurement techniques were based on the theory to derive

complete emission properties of the scene. Recently Claassen and l =ung [21 and Peake
[31 have reported radiometer interaction relationships for nominally flat scenes having

a simple partially polarized emission property. A measurement technique based an the
relationship was developed by Claassen and l=ung. Grady [41 has illustrated how the
difference between antenna and surface polarizations imps ct radiometer experiments.

To date little has been done to develop and use a comprehensive radar scatterometer
antenna-scene interaction relationship for non-coherent targets. Most efforts have

treated 3nly the spatial extent of the antenna pattern and have avoided general

antenna and scene polarization properties [51. An exception occurs in the theory
developed by Williams, et al. [6]. Their characterization of the scene parameters was

based on the coherent radar equation and no me surement technique was reported.

In this study a complete non-coherent radar equation is derived and interpreted.
The resulting expressions are valid for an arbitrary antenna. The result is also extended

to consider the differences between antenna and surface polarizations. The distinction

5
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is important when measurements are to be compared with theoretical predictions, It
is shown that six differential scattering coefficients are required to describe the antenna-
scene interaction when reciprocity applies. Three of the six coefficients are complex
valued. The coefficients are interpreted within the context of scattering and coherence
theories. A retrieval technique based on intensity measurements is proposed to measure

all the scattering coefficients. Computer simulations, based on the technique and a
scattering characteristic similar to that of the sea, were conducted. The results of the
simulation were employed (1) to validate an approximation used in the inversion, (2)
to demonstrate antenna requirements for accurate retrieval of the scattering coefficients,
and (3) to evaluate whether the distinction between antenna and surface polarizations is
important.

The development of material in the subsequent chapters is accumulative. Chapter

i
	 3 develops the background theory relevant to the derivation and understanding of the

complete non-coherent radar equation, An adequate number of references are cited so
that the reader can fill in background more deeply if he so desires. The derivation of

the non-coherent radar equation is presented in Chapter 4. In the latter section of this
chapter the equation is altered to account for the difference between antenna and surface

polarizations. Chapter 4 is strongly supported by the contents of Appendix A and B.

Chapter 5 is devoted to developing an understanding of the non-coherent radar equation

and the polarization properties of radar returns. Certain scattering theories described
in Appendices A and C are visited to illustrate the behavior of the complex valued co-
efficients. The difference between antenna and surface polarizations is also illustrated.
The measurement and inversion technique is presented in Chapter 6. The mathematical
aspects of the inversion are treated in general and then specialized to the radar problem.
Certain antenna properties which simplify the inversion are described. Antenna types
capable of realizing these properties are suggested. The measurement and inversion
technique is evaluated within Chapter 7, A computer program which simulates the
measurement and retrieval of al  nine scattering parameters is described briefly. Full
documentation of the scatterometer simulation program is provided in Appendix D. The
results of the simulation are employed to illustrate antenna polarization requirements

to measure all nine scattering parameters, Other practical aspects in making radar scatter--
ometer measurements are also discussed. The measurement of the pattern amplitudes is

specifically treated. Appendix E describes a computer program which specifies the points



at which a pattern must be measured. The conclusions and recommendations are presented
i`

in Chapter B. A summary of all significant results is presented in Chapter 1. It is

advisable to read the summary before entering the technical chapters.
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3.4 BACKGROUND

3.1 Introduction

The theory and measurement of radar cross sections have been well developed
for discrete coherent targets. An excellent review on the measurement of radar cross
sections is found in a special issue of the Proceedings of the IEEE [7]. The theory of

measuring non-coherent radar cross sections, except for the isolated works of Williams,

et al. [61 and to some degree Hagfors [81, is largely lacking. Williams, et al. simply

extended the theory for coherent targets to a non-coherent scene. In doing so, they
over-looked some subtle distinctions between coherent and non-coherent theories as
shown in Chapter 5. No measurement technique was presented. Hagfors, on the other
hand, related Stoke's parameters for the incident wave to Stoke's parameters for the

scattered wave in terms of the Mueller matrix [9]. In general, there are sixteen
parameters in the Mueller matrix. However, as shown by Hagfors, targets exhibiting
reciprocity and circular symmetry can be characterized by five independent entries
in the Mueller matrix. Hogfors related his measurements to some of the five inde-
pendent entries but no attempt was made to isolate all five entries. By using
"Gedanken Experimente" as Hagfors did, one can show that for a flat scene there

are nine independent entries. At nadir there can conceivably be only five if the
scene is cylindrical symmetric (isotropic). The fact that there ate nine independerx.t
entries in the Mueller matrix for flat scenes implies that there should be nine
scattering parameters. To date only three scattering coefficients have been reported
by the earth resources community [ 1 01 [ 11 1 [ 121.

In preparing the background for this effort the author chooses to avoid the use

of Stoke's parameters and Mueller matrices since the earth resource community is, for
the large part, unfamiliar with them. Instead polarization coherency matrices, an
entirely equivalent representation for the polarization state of the transverse wave, are
employed. The relationship between the entries in the coherency matrix and the standard
differential•scatterinj coefficients are clearer. To properly introduce the more general
reception theory in terms of coherency matrices, the background for the reception of
(polarized) monochromatic waves is first Established. It is then employed to derive the
coherent radar equation. In doing so the importance of reception theory in understanding

the radar equation is clarified.

8
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3.2 The Reception of Monochromatic Waves and the Radar Equation

3.2 Transmitted Fields
Schelkunoff has shown that the far field of any antenna has a dipole field

characteristic (131, viz.,

o^	
-j kr-+	 -jZ R(^ :)e

E( 0. fl _

	

	 ----	 (3-1)
tar

where
N = radiation vector

ZO intrinsic impedance of the medium

A = wavelength

r = distance to the for field point

k = propagation constant

and where the time factor a 
wt is suppressed. The radiation vector f^, in general,

has complex components and induces a relative phase between the far field exponents.
As a consequence, the far field has an arbitrary elliptical polarization. Now since

Nis proportional to the antenna input current I, Sinclair (14) proposed that a complex

effective height vector L be introduced so that

The far field can therefore be expressed as

R	 -jwji o Z L e- i k r	 (3-3)
4nr

where
W = radian frequency

11 CT;  permeabi l ity of free space
In general, L may have both 9 and 0 components in a spherical coordinate system and

both may be complex. Spe^ifically to emphasize this property, we may write t in

normal ized form



at I$ toll 11 1• tfinpactIy as

f	 L = ICI (1 V 1 g + 1 h 1 )	 (3"5)

1e4 1m Is the orientation of a linear polarization when a = 0 and when 0 0,
I: la Ili- relative phase between the components. With a little effort S and o

et11 r 10$3 ' p lated to the axial ratio and orientation of a polarization ellipse [151.

3 * 7.7 k ni -Piving Polarized Waves

'suppose the above antenna is used to receive a plane wave described by

wliprP l^ Is the propagation vector. 8 v and Eh . 
are the vertically and horizontally

pry 10-tntl amplitudes, respectively. Then it can be shown by the reciprocity theorem
W11 Iliut Ilia open circuit vdtage induced into the terminals of an antenna having
afl•al ' tly', height is given by [141

V	 t• t	 (3 -7)

The Pownr• available at the antenna terminals under matched conditions is given by

p = It-tj 2 /8R r 	(3-8)

w1101e1 It,
t is the radiation resistance of the antenna.

3.2j,3 Monochromatic Reception and the Radar Equation

It tics been shown by Sinclair [171 and by Kennaugh[181 that a radar target

cnil mll cr t a polarization transformer. Sinclair expresses the transformation by a
scg llar Irio matrix which can be incorporated in the radar equation. The scattering

Mrlh I ^t I% de, fined by



where

a' = radar cross section for a q linearly polarized incident wave and a p

pq reflected wave

p pq ^ phase center for each component of the reflected wave

p,q =vorh
If the incident field is denoted as

4.
Lt = ( t 1 8 + ehtI^}e-ji<r	

(3-lad

or - j wil	 i e'"'^ kr
^	 W	 o t	 (3--11)

4Tr r

then the scattered field s in component form is given by*

evs	
r} S1/( 4	

evt	
(3-12)

-	 ^r 

•	 ehs	 eht

If-tr denotes the complex effective height vector of the receiving antenna co-located
with the transmit antenna, then the power received under matched conditions is given
by

P = Its	 Lr 1 2 /8Rr 	(3-13)

or	

P 

J	 (W^ Q It )21 Lt j 2 1 Lr 1 2 j ' tS' r1 2 	
(3-14)

8(470 r``Rr
where

tt, r 	--	 It	 ( 1( ivt;r70 + 1htst,7^}

1vt
LP	

1 ht

*Matrix notation for transverse wave components is frequently used throughout.
11
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=	 1vr
r

hr

Now it is well known 1181 that the antenna gain is given by

-I-41T IL t 

^r

{ 0 ' 0 12

Gtr	
2dS2

f I t, r

and the radiation resistance by

Rt,r, = zo /(4X 2 )	 Lt,rI2do

As a result, . the received power can be written in more familiar form

X 2G t ( O ' O Gr(9,Owta
W	 --
r

(4w )3r4

where the radar cross-section has been identified as

I

(3 .15)	
i

(3-16)

(3"17)

(3-lg)

Cy 	 I r S1 t 1 2	 (3 19)

The above expression for the radar cross section reduces to the linear polarized

cases when both I t and I  contain a single non-zero component. For the coherent

target the above formulation completely describes the interaction between three
I

apertures, the transmitting and receiving antennas and the target*.
Methods for measuring the elements of the scattering matrix have been re-

viewed by Huynen [211. Methods of measuring radar cross sections 6 have been

reviewed by Blacksmith, et al. [221 and by Kell and Ross [23].

3.3 The Non-Coherent Radar Equation
Radar returns for a non coherent scene have been defined in terms of a different-

ial scattering coefficient co rather than a scattering cross section Cr .	C'o is unitless

*It has been shown that the target actually acts like two coupled apertures 1201.

12
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and expresses the equivalent average radar cross section per unit area. Moore [5] has
shown from elementary considerations that when o- o is employed the average return
is given by

W 	
= Wt/(4w )I 

j 
G t 

G r (7"/ r 4 d 	 (3-20)

where the integration is performed over the illuminated area. For linear polarizations

the differential scattering coefficients have been defined in analogy to 6 for the
ooherent case [5] [24)

0	 47rr2 <I E st 12>	 (3 21}
Qqp =	

A 
IElp^2

where
A '= illuminated area
r = distance between the illuminated area and the point of observation

E 	 scattered field intensity

E ip	 =incident field intensity
p,q =v orh

Williams et al. [6] have shown that radar returns cannot be characterized by linear

polarized scattering coefficients for an arbitrary antenna polarization and an arbitrary
scene. They offer an expression for the differential power contribution by a small

patch of the scene. Their formulation, however, is entirely identical to the radar
equation for coherent targets, i.e., the effects of spatial averaging have not been

considered.

3.4 The Reception of Quasi Monochromatic, Partially Polarized Waves

3.4.1 General
The treatment of radar returns for non--coherent scenes to date has relied

on intuitive 'extensions of (polarized) monochromatic theory. Yet when one con-

templates how the measurement of the non-coherent scattering coefficients is actually

performed, one is acuteiy aware that the measurement involves estimating the mean of

	

a fading signal having a certain doppler bandwidth. The resulting returns are, 4s a 	 1
t

13
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consequence, quasi-monochromatic rather than monochromatic. Rirthermore, it is
presumptive to anticipate that average returns from a randomly rough target are com-
pletely polarized*. Indeed one should anticipate that the actual return will be a
mixture of randomly polarized and polarized waves, i.e., will be partially polarized.
Hence, any derivation of the non-coherent radar equation should include this possibility.

KO [15] has developed a comprehensive reception theory for quasi-monochromatic
partially polarized waves. This theory is reviewed below and will be employed in the
succeeding chapter. Important to this theory are the notions of an analytic signal as

defined by Gabor [26] and the polarization coherence matrix as originated by Wiener
[27] and Perrin [2$] and later developed by Wolf [29]. An excellent discussion of

both topics appears in a text by Born and Wolf [30].

3,.4.2 Quasi-Monochromatic Partially Polarized Waves
Wolf [29] has shown that a quasi-monochromatic wave whose bandwidth is

small in comparison to the mean angular frequency W can be represented in analytic
signal form of the type

Y(r,e.^,t)	 — ev(r$09^0t)ie + 
eh(r'e'^' ^ 	

(3-22)

where

e^	 ^^(r,e,^,t)ej(wt - kr+av (e,c ,t))	 (3-93%

e h = a,(r,e,cp,t)ea{cat-kr+(xh(e,0,t))

The actual signal may be isolated by taking the real part of the above expression.

The elements of this analytic signal have properties such that av h(r,t) >_0 and

dv h(t,t) is real. The correlation of the 0 and 0 components determines the state of
polarization of the wave. 1F.`blf [29] defines the correlation by the complex factor

< e ye* >

NO W	 (3-^4)
< ev >< eh >

irMonochromatic waves are completely polarized.

14



Where the angular bracket < > represents a time average. By Schwartz' inequal ity,
I uvh 

1S I. The absolute value of 11 vh is a measure of the degree of correlation between

v and h components while the phase angle of u vhreflects the relative phase between

the two components. 
2 

I u vhj =Z, the wave is said to be completely polarized. If

I i
'vh 1=0 and if < I ev >= <^ eh (> , then the wave is randomly polarized. The wave

is said to be partially polarized when 1 pvh I is between zero and one. The state of

polarization may be completely characterized by a coherency matrix

<e v e*>	 <e^eh>
C	 (3-25)

<e h e*>	 <ehe*>

as shown by Wolf [29] (See also Born and Wolf [301).

Following Ko [25] and Collin [9] we may now suppose that a quasi-monochromatic
partially polarized wave with coherency matrix C is incident on an antenna with
effective height L. If the bandwidth of the wave or receiver is sufficiently narrow,,

then the open circuit voltage in analytic signal form is given by

V = t • L(E),  T )
	

(3-26)

where 7 is the mean frequency of the wave.

for the antenna

V v

Cr
1^1*

If a coherency matrix is introduced

I^ h
(3.271

^ h h

I
,k

where I I V 1 2 + Jlhl 2 = i, then as shown by Ko [25], the power observed at the

antenna terminals under matched conditions is	 by

2

W ( 0 , ^ ) _	
G(9, 1	

tr C r C^	 (3~28)
41rZ0

where tr is the trace operator ands' is the transpose operator. The coherency matrix
for the impinging wave is the transpose of that defined by Ko. All coherency matrices

employed within this work are defined with respect to a coordinate system located at
the observing antenna. Further interpretation of this expression is deferred until Chapter

5 where a similar expression is discussed in the context of the scattemm eter equation.

15
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4.0 DERIVATION OF THE SCATTEROMETER EQUATION

4.1 Introduction

A generalized reception theory [91 [25] and notions from scattering theory are

combined to derive the complete scatterometer equation for a scatterometer antenna

having a specified but otherwise arbitrary transmit and receive property. The radar

return is treated us a quasi-monochromatic-partially-polarized wave. The quasi-
monochromatic character is induced into the return signal as the antenna linearily

scans the scene. The scan is, of course, important in achieving a spatial average.

The partially polarized assumption as well as the quasi-monochromatic characters per-

mits one to derive the scatterometer equation elegantly within the framework of the
generalized reception theory. Intuitively, it is reasonable to assume that scatterometer

returns are partially polarized since a spatial overage . constitutes the return. This inter-

pretation will be illustrated in Section 5.4.
The scatterometer equation is initially derived assuming that the scatterometer

antenna transmission and reception properties are defined in terms of the surface polar-
izations. In the last section of the chapter the distinction between antenna polarizations
and surface polarizations is introduced and the impact of this distinction on the scatter-

ometer equation is shown.

4.2 Derivation

To determine the average power return from a homogeneous randomly extensive

target, we suppose that a narrow beam scatterometer linearily scans across the scene

with its antenna pointed in direction o = ( 00,00)• If the scene has an anisotropic
character it is important that 0- be maintained constant during the scan (see Figure 4.1).
The incident (transmitted) field E t may be related to the antenna complex effective

height vector L t, a reception property, in the standard way 1251*

Et =	 evt	 -	 -jw 
tEtej(mt-kr(t))

(4-1)
eht	 4Trr

* Reception and scattering relationships in the far field adapt well to the matrix
notation. Capital letters will denote matrices and lower case letters will denote their
elements.
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i
'	 where evt is the vertically polarized component, eht is the horizontally polarized

component and

	

L	 -	 ^Vt
	 .

t .	 (4-2)
ht

The subscript v and h are employed to denote the vector components aligning with

the spherical polarized unit vectors i E) 	 i0 , respectively, associated with the sur-

face coordinate system of Figure 4.1. The backscattered field arriving with direction

(f),O) from a differential patch of the surface will be denoted

s ( e	 ) =	

rehs

vs
(4-3)

Only transverse components for each I ine of sight (e, f) are admitted in the matrix. The

field has the units of volts/meter per steradian. Each component of E s must be regarded	 !

as an analytic signal since the relative motion between the antenna and the rough scene

induces a time varying response for each I ine of sight.

Now the antenna does not respond to the resultant field at the point of observation.

Rather, if LR denotes the complex effective height vector during reception, the antenna

integrates the field components arriving with different directions so that the open circuit
voltage appearing at the antenna termincfls is given by

	

V r ( ^^	 E"(Q)Lr,(n,no)dQ	 (4-4)

where n , as the reader will recall, denotes the look direction and where the symbol

denotes the transpose operator. For narrow beam scatterometers the integration may

be limited to the main beam and under worst circumstances to the first side lobes. The
average power observed at the terminals of the antenna under matched conditions is given

by	 W St	 < V ( go ) 2 >

	

( J	 (4-5)
8 r

where R is the radiation resistance during reception (r) and < > denotes a time average

or equivalently a spatial average-  since the scatterometer is scanning across the scene. 	 " !

l8 	 ',



Expanded, the received power is given by

	

(szn )	 a	 <F5(Q)Lr(sZ,00) ES*(sZ') L*(s2;sZo) >ds3ds^'
8Rr

(4-6)

Define a mutual (polarization) coherence matrix for the scattered fields as

	

_	 <e vs	 s(R)e*(9' )> <evs(Q)ehs(21 )>

	

M S (S2 ' n )	 -
<ehs(R)e* ( 9 1 )> <e hs(n)e*s(21)>

(4-7)

Similarly a mutual coherence matrix con be defined for the receiving antenna

	

M	 _
Ivr(Q'Po)1vr(21'9o)	 ^vr(^'^o)^hr(^^'Qo)

	

r
	

I d )1* (R" Q )	 (Q'Q )1* ( ' ' SI )hr	 o y r 	 o	 hr	 o hr	 a

(4-8)

Then the average return can be written in compact form

	

W (sa e) =	 1	 tr MrM$ d Q dR'	 (4-9)tr	
8Rr ff

where tr denotes the trace operator.
For a random scene it is reasonable to assume that the scattered fields are

angularly non-coherent, i.e.,

<eis( 2 ) a* s ( W )> _ <eis(Q)e*s(^6)> a(sa -st') (4-10)

The pragmatic aspect of this assumption is established in Appendix A. There it is shown

that for a finitely conducting-smoothly undulating surface the degree of coherency

(correlation) defined by

g ij = <eis(9) e^ s (s2')> / < e.ls M e^ s 0) > (4-11)
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1

is given by

6iJ = 2 exp (-k 2  sin 2 e o 2 A 2 0/2) Jinc(k cos6R0AO)

(4-12}
where

0*2 = surface height variance
k = 27r/A
6 = incident angle

06 = small angular deviation from e
R  = radius of the illuminated area

i,J =vorh

The delta function type character of the angular coherency Di.f is illustrated in Figure
4.2 for a patch of rough surface having a radius of one meter and illuminated at 13.9
GHz. A close examination of Di} reveals that, in general, the size of the illuminated
area rather than the surface roughness dominates the correlation property at all angles
of incidence except for the very large incident angles. The above result is based on
plane wave illumination. The degree of coherency is thought to have a stronger delta
function character in the case of spherical wave illumination since returns arriving
from different directions arise from different patches of the scene whose statistical
characteristics are poorly correlated. A discussion of this latter point within the context
of a scattering theory appears in Appendix B.

Under the above assumption the return power reduces to

W (SI ) -	 yr C r C s dR	 (4-13)

	

tr a	
$Rr	 f

where
Cr = Mr{s^^^^^a)

	

C	 = M 5 (^ ^ s^)

	
(4-14)

S 
are the coherency matrices for the receiving antenna and the scattered fields, respectively.
As a result of the integration the units of the elements within C s become . (v/m)2 per
steradian. The change in units is clarified in Appendix B.

Now also under the non-coherent assumption, it is permissible to introduce the

20
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is

notion of a matrix of differential scattering operators so that for each arrival direction
the backscattered field (coming from a differential patch of the surface) is related to
the incident field in the following way

i

E	
[^Vv ^vh	

E t	 (4-I5)	 1

	

S
	 ^hv hh

The second subscript indicates the polarization of the incident field and the first sub-
script denotes the polarizationof the resulting backscattered field. The objective for

introducing this operator is that it identifies the scattered field components for each

component of the incident field. With the introduction of this matrix the coherence 	 !
i	 —

matrix associated with the scattered field may be written as

[C 5] vv	 <Avv'Svvevtevt> + 2Re<.SvvA*hevteht> +

'Avh^vhehteht>

[C S 1 Vh	 <Avv^hvevtevt>	 ^^vv'^hh evt e ht > 	c^vh^hvehtevt>

(4-16)
vh^hh e ht e h >t

^ C S 1 hh	 <18hv`2vhevtevt>	 2Re^,Shv-Shhevteht?

t

3	 e hOhhehteht>

lC s l hv	 -	 l C sl vh

iThe action of the scattering operators on the incident fields is clearly evident in the 	 l
above expression.

If the' incident wave were a plane wave, it is natural to define a scattering
a	 coefficient as

ii kl	 Pij 3t h,1t	 it 1t	 (4-17)	 i
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If the above definition is employed for a spherical wave, the scattering operator will
have to contend with a quadratic phase factor in the incident wave and wi'h a varying
intensity across the surface. The resulting scattering coefficient would depend on the
geometry of the antenna pattern. However, under the non-coherent assumption the
incident wave may be considered locally plane on each patch of the surface and the

scattering action is then interpreted in accordance with the plane wave definition for
the scattering coefficient. In particular, the expectations in C s may be written as

W11 i 2

1ii e ith, e lt, 	J	 4-rrt	 <S ij S lcl' 1
3t 1 1t	 (4-18)

where Equation (4-1) has been employed. The scattering coefficient is now allowed

to vary with (6,0) across the illuminated area. The integrand of the equation can now

equation can now be written as

2

tr C Ct -	 ( uolt
) 

11v 12 [^ISvV12> 
11	 12 + 2Rer

S
	 (4nr)2
	 r

`S vv Svh ' 1 vt l ht	 `isvl^l2' 11ht12I ^" 2Re

1 vr l hr P S vV S*hv > 
11 vt 12	 <SvvShh^lvtlht

<SvllShiti'11i,t12	
+ ll^ r l 2 ^^ls^^1 2> ll vt l 2 	 +

2Re"'ShvShh' 1 vt l ht	 `IShhj^lht`

2

(4--19)

As a result of the non-coherent assumption and the introduction of the scattering co-
efficients, the transmit antenna pattern parameters have been divorsed from the composite
scattering operators. The reader will observe that the scattering coefficient employed

23



47r	 vi12 +Ilh
G1(^,^}

Ll lVi I 2 + 11 hiI

G i	 = max jG! (O,flj
e,

i t	 = 2W t / R 

R 	 _ (Z0/ 4X 2)Ifil,

24
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:j	 -

here has the units of m2/m2 per steradian. This definition is natural to this derivation

and is a direct consequence of the integrating action of the antenna about its observa-
tion point (Equation (4-4)). Further discussion of the scattering coefficients is deferred

until Section 5.2. The above steps in the derivation are clarified in the context of a
simple scattering theory in Appendix S. As illustrated there, the above theory can be
expressed as a continuum limit of an incremental theory which treats the backscatter on
a patch by patch basis. Each patch is associated with an arrival direction.

Now the following identifications are helpful in re--formulating the results in

more common terminology:

I1pi12

Pi	 max ^+ 1'i

tan -1 	 (I M 1 vi	 v iJ* /Re ll hi }	 (4-21)



, vh ' ^hv (x-28)

where i = t (transmit) or r (receive) and p = v or h polarization. Descriptively, during

transmission gvt is the normalized gain of the vertically polarized pattern whereas ght

is the accompanying horizontally polarized pattern. The relative phase between these

at . In general all three are functions of the patterntwo polarizations is denoted as 

coordinates. G' t is the gain under a matched polarization condition and G  is the

maximum gain (presumably on boresight). W t is the transmitted power and R t is the

radiation resistance when the antenna is transmitting. Similar explanations apply to

the reception parameters. They are identified with a subscript r. With the introduction

of the above pattern parameters, the scatterometer equation can be written as.

W(Sto) 	 (X/4w)2 Gt`arWt f Itr/r2 dSl	 (4--26)

where

< S ^ 2 > + 2 ^

	

v	
Re<SvvSvh>e'It) +

I tr	 gvr(gt	 vv	
v

2 g^
g Re<S S* >e

jar 
+ ghtRe<Svhshh>eJ

sr

[_vt	 vv by

Re <S S* ej(Ot+ Or) + <S S* >ej(at-Rr))j

	

+ (Vgvtght R ( vv h^	
vh by

+	 < S	 g	 + 2J 'g	 S *
Re<S hv S hh>ejot )

	

g hr(	 hhl	 ht

2

+ g vrg ht
<,S vh j2> 

+ g hr g vt
<l hv l >

(4-27)

It is interesting. to note at this point that there are ten scattering coefficients. Addition-

al simplification occurs when reciprocity applies. Under this assumption
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.2
g hr g ht<1S hh > > (424)

since field reciprocity implies that the operators must be identical. When the above
property is applied to the definition of a scattering coefficient

I tr	
gvrgvt<isvvi2> + 2Re(g vr g^t ejet +

gvt gre,7^r )<SvvSvh> + 2Re(g hr'l gvtght'

e,]i t	
ght 

g	
ei0r)<SvhSlih> + 2 

9	 .

gI Re<SvvShh>ej($t+sr) + (g vr g ht ghrgvt +

2 gvrghrgvtght 
Re ej(Ot-ar)) <IS v41 ( 2 > +

Y":hen reciprocity applies the number of coefficients reduces to six,

The above result is the complete non-coherent radar equation under the re-
ciprocity assumption. Although the equation was derived from the viewpoint of polar-
izations ascribable to the surface, the same equation would have resulted had the
antenna and surface polarization states been defined with respect to the antenna. In
the latter case the scattering coefficients would not be comparable with those defined

f	 by the theorist who derives scattering coefficients with respect to the surface polari-

zations. In addition, the scattering coefficients for an arbitrarily line of sight would,
in general, be a function of antenna view angle also. progmatically,the antenna polar-

izations are referenced to a coordinate system rigidly bound to the physical antenna.
F	 The antenna polarization vectors, consequently, move with the antenna as it changes

a	 view angle. The surface polarization vectors on the otherhand, remain rigidly oriented
with respect to the surface. The transformation between the two polarizations description
is derived in.the succeeding section. The distinction between antenna and surface polar-
izations on the scatterometer equation is treated simply by transforming the transmission

and reception coherency matrices, Ct and Cr, from the antenna coordinate system in

which they were measured to the surface coordinate system in which the surface polar-

izations are naturally defined.
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4.3 The Scatterometer Equation Including the Distinction Between Antenna and Surface
Po arizations

Suppose that the antenna patterns, both polarized and cross-polarized patterns,

are measured with the scatterameter antenna mounted on an azimuth-over-elevation

positioner. To describe the antenna polarizations measured from such an antenna

positioner, afix a primed coordinate system rigidly to the antenna. Let the x' axis

denote the boresight axis and let the z' axis be oriented in a direction coinciding with

the vertical polarization sense (with respect to the antenna) for an observer on the bore-
sight axis. When the antenna polarizations, vertical and horizontal, will coincide with

the spherical polar unit vectors i,), and ip„ respectively, of the afixed coordinate

system. The antenna coordinate system is illustrated with respect to the pattern measuring

antennas in Figure 4 . 3. Patterns are "cut" by incrementing the positioner in elevation

when the y' and y" axis coincide and then rotating the positioner about the z' axis. The

measuring antennas are located on the x" axis of the range coordinates (x",y",z").

Within the antenna coordinate system the transmitted fields will be denoted by

ee, t and eOt and the complex effective reception heights by I Vr and 10 , r*. Both

pairs of parameters are, in general, complex (to convey the relative phase between

members within the pairs) and vary with V and 0!
Now locate the antenna (primed) coordinate system so that its origin coincides

with the origin of the surface coordinate system (Figure 4.I). Without loss in generality

it is assumed that the antenna scans linearily in the x direction of the surface coordinate

system and that observations are conducted in the x - z plane. The antenna is so oriented

that its vertical polarization sense coincides with the surface vertical polarization sense

at the intersection of the boresight point with the surface. Within the xz plane the antenna

is pointed at an angle 9
0 

with respect to the local vertical (z axis). The geometry of

the two coordinate syster s relative to one another is shown in Figure 4.4.

To develop the relationship between the antenna and surface coordinates consider

any line of sight vector i t which emanates from the common origin and ;whose extension

intersects the surface (See Figure 4.4). By definition, the antenna polarization pair

i^') and the surface polarization pair {^,j^j are both perpendicular to i r . It

follows that the polarization pairs at every line of sight are related by a simple rotation,

* Not normalized as in Chapter 3.
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say 0. Define 0, so that*

	

l e 	Cos	 (4-30)

and

sin ip	 (4-31)

By noting the transformation between the coordinate systems, the reader can easily

show that

cos ^ = cos ^ cos ^, + sin ^ sin ^' sin eo	 (4-32)

and

sin $ = cos e ( sin 'cos ^' - cos ^ sin ` sin e o }	 sin a cos 
0  

sin

(4-33)

where $' is the spherical azimuthal angle in the primed coordinate system. Now

can be eliminated by observing that

tan' _ ( ir	 i 	 } / { it	 ix , }	 (4-34)

to get

	

' = tan-t F
	 sin a sin	 (4-35)

cos a cos 60 + sin e sin e0 cos
j

Finally from the above we have established the transform T between the antenna and

surface polarizations, viz.,

i
i 

8

	

	
3 e ,	 (4-36)

= T

where

{	 cos IP	 sin .4
T -	 (4-37)

	

-sin ip	 cos

Note: An alternate method of mounting the antenna could have resulted in defining
l	 Aso that cosh = To • ip„ etc. The difference between the two is discussed in Chapter

5.	 30	 T-
i



The entries in T are provided by Equat ions (4 -32) and (4 -33) with the assist of

Equation (4-35). When the antenna pattern is finally introduced the following

relationship

cose'	 -	
r	 z'
	

(4-38)

or

cos y = cosesi ne o - si necose 0 cos^ (4-39)

in addition to Equation (4-35) will be helpful in identifying the pattern coordinates

when the surface coordinates are given.
Now from the preceding derivation (Equation (4 •-13)), we had

k	
wtr	

8R fftr  Cr Cs dSZ	 (4-40)
f

	

	 r

where

i	 Cs = < ,^ Ct	 >	 (4-41).

2
I vri	 lvr 1hr

f

l	 Cr -
	

(4-d2)	 i
l hr 1 vr	 ^lhrl2

f	
2

^ evt 	̂ vt ^ht

Ct -	 *	 2
	

(4-43)

eht evt	 }ehtl

The above coherency matrices are written in terms of the surface polarizations

_	 since the scattering operators are defined on the basis of these polarizations. When

the antenna transmission and reception properties are, however, defined within
another coordinate system (the primed coordinate system), these properties must be
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appropriately transformed. It is easily shown that if Cl r and Ct t are the coherency
matrices in the primed coordinate system, then in the surface coordinate system

Cr = Cr T	 (4-44)

and

C  = T Ct T^	 (4-45)

From the above expressions the following identities can be established

1 
1 vri 2 = cos 2 V ll vr i z + sin 2^ Re I

vr I hr + sing ^ 111^r12

i vr l hr -	 hr12	 vr12
	 sin ^ cos ^ + case 1vr^hr

- .51 n'  ^' ^hr ^vr

^hr 1 vh_ r	vr ihr] 	 (4-46)

11hrl2	 = sin ^ I"vri2 - sin 4 Re 1 vr 1hr + cos t 
^ 

r.ihri2

A similar expression can be established for the elements of C f . it is noted that the

coherency matrices reduce to those in the surface coordinate system when 0 = 0.

Now lei g0 , t , g^,t , (3't describe the antenna during transmission and 90,r,

go
, r and Qr , during reception. When the transformed coherency matrices are in-

corporated into the scatterometer equation and relationships of the type as shown in

Equat
i
ons (4-20) through (4-25) are noted in the antenna coordinate system, the

scvtterometer equation can be written as
2

W 
tr	 a

(e ) = --t Gr, Wt	 ^tr d^	 (4-.47)
• 

{47r)2	 r2

provided that the following identities are understood

gvP = g u p cost +gg e^ stn 2* cos R P + g v P sin2
 V

f	 g - g sin 2 - g^ sin 2 cos ^' + g cos t ^hp r	 P	 el 	 ^P	 P	 P

d
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i
sins'

tan	 (966P-9^jp)sinl+cos+ + gs,p9,p cossp(cos ^-sin 2 ► ) (4-48)

where p = t or r. The latter identities indicate how the common antenna parameters

transform. It is noted that Pap , gip or g, is each dependent on all three antenna
hp

parameters, f^'p, g'()p and g'Op . To appreciate the additional complexity in the

scatterometer equation resulting from the transformation expand the integrand in the

form

Ii:r = I
I < Isvv I 2 > + I 2 < 

Ishh12 
> + 13 < Isvh 12

 
>

+ 2 I4 Re < svv s hh > - 2 I5 lm < svv shh
(4..49)

+ 2 I 6 Re < svv s hv > - 2 I7 IM < svv 'hv >

+ 2 I 8 Re < s vh s hh > - 2 I g IM < svh s hh >

"hen it will be noted that

Y 1 = g e , r cos t ^ + g-og sin 2^ cos fa r + g^ r sin2

	

g e ,^ cos 2 1P + g e ,^ sin 21p cos at + g^, t sin2 	(4-50a)

12 y ^96'r sin 	 - 96 1 sin 2^ cos far, + g^, r cos 2 	• (4-50b)

g e , t sin 	 1199 1 sin 2^ cos fa ' + 9v t cos2

1 3 = ^g9,r
 sin 2 - g e , sin 2* cos far + g^, r  Cos 2

	

^g O , cos 2 + g^ t sin 4 cos $' + g,, t sin 	 + (4-50c)

^ge,r cos 2  + g^	 sin 2* cos Ear + g¢ , r sin 2 , .

•	 ^gs,t sin2 	ge^ sin 2t, cos at + 9v r cos2 , +
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2 (.g c l r - 
g$,r} sin io cos , +g e^ cos 2* cos sr]

1

^,	 cos 2 cos S	 +{ ^l tg 	 -ge, } sin ^, cos ti 	 g,	 t

2 g ê g ê  sin t sin $r

8j

14 2
	

9 r - gear ) 
sin ip cos +ge^ cos 2ip cos sr	 }

E

	

	 (4-50d)	 i
gilt - ge ,.^) sin ^ cos , + 3ge , t g^, cos 2^, cos

{
1

1/98 I
t 

9^1
r 

3ge ,
t
 ge sin ^t Si n 5r

t	 •

fi g =	 {g^,r-ge,r}sink,cosh,+ 3ge,rg^,rcos2^,cos^r^

,/ge , t g,, t sin t +	 { gqltt - ge 'r ) sin	 cos , +	 {4-50e}	 I

t	 t
3
ge,^ g^, cos 2, cos	 sins^	 3gear 9^^r 	0r

I 6 =	 ge , r Cos 2 ^ +Vg e ^ r g^L r sin 2^	 cos^ r - ^g , r sin 2 ^,^
JJJ	

r
l

{	 gql ,.^	 -	 ge ,.^	 } sin + cos ^ + 3ge ,.^ g^ ^ cos 2^ cos ^^ ^ ^-

9e cost 	 + 39e t 9^ t sin 2	 cos'^ ^t + ^4 I r sing '

{ g	 - g
er.	 ^	 r

)sin cos 39e r 9	 t r cos 2^
^

cos O
r	

(4-50f)

I 7	 ge,r cos t 	+ 3ge , r V sin 2^ cos 0r + g,, r 2sin
a

3ge , t 9^ lt sin t +
I 96 1 t cos t 	, + 3ge , t g,, t sin 2q, cos $t

4 1t sin2 3ge,r

1

g	 , r sin	 r {4-50g}

L

34



1	 I__!	 I	 i

IS = 1g9'ti sin g 	- of ^	 g	 sin 2^ cos sI + g^, t cos2 4)] •

•	 I( g , r - ge,r) sin ^ cos + + g^	 cos 2q;cos S r ] +

	LgE),r sing IP - ge	 sin 4 cos far + g^,^, cos2

g,	 - g$ , t )

	

sin	 cos	 + g^^ cos 2^, cos 
S^	

(4-50h)

I g = ^g,, t sin 	 sink cos $ I + go, t cos2

	

g8 1 sin Sr + ^gg , r sin 	 g	 9	 sin 2* cos far +

	

g
o

, r cos 2 ^^ • g $	 sin 0	 (4-50i)

When accurate measurements of the scattering coefficients, say the complete

set of nine parameters is desired, one must contend with inverting a system of integral
equations of the type derived above. The scattering coefficients are rigorously defined
in terms of the surface polarization, a definition universally employed by the scattering
theorist. If comparisons with theory are necessary then the antenna properties must be
transformed to conform with this definition. To date measurements have been reported

without the recognition that Equations (4-47) through (4-50) governor the interaction
between the scatterometer antenna and the scene. Yet reasonable agreement between
measurements from targets with known statistics and theory have been reported «o)
[31] for the polarized scattering coefficients. This indicates that the complexity of II

through k' may be avoidable under some circumstances. To resolve this problem and

related ones,the polarization coordinate systems will be compared and the character of

the scatterometer equation will also be examined in depth in succeeding chapters.

Once the character of the scatterometer equation is established, a measurement technique

to recover all six scatting coefficients is specified. Computer simulations based on
the specified technique are then conducted to determine antenna requirements for
accurate measurements.

F
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5.0 DISCUSSION OF THE SCATTEROMET ER EQUATION

5.1 Introduction

This chapter is devoted to developing an understanding of the scatterometer

equation. The character of the scattering coefficients is established by reference to
previous definitions, both coherent and non-coherent. It is shown that the non-

coherent definition appearing in the literature must be extended to include new kinds
of coefficients. The composition of the average return is examined from the standpoint
of coherence theory and the complete set of scattering coefficients. The importance
of the phase characteristic of the wave and the receiving antenna in governing the
observed power is described. It is also shown that certain properties of the coherent
scattering coefficients cannot be extrapolated to the non-coherent case. Well known

theories applicable to the sea are also employed to illustrate the behavior of the
scattering coefficients having a cross-correlation property. Other possibilities for the

cross-correlation coefficients are also treated intuitively.

Within this chapter it is also shown that this formulation of the scatterometer
equation admits partially polarized returns. A previous formulation [6] failed in this
respect. The degree of polarization of the average sea return is specifically illustrated
using a simple scattering theory.

Finally the distinction between surface and antenna polarizations is illustrated.
Certain aspects of this distinction are. qualitaively applied to specifying antenna
requirements.

5.2 General

5.2.1 The Scattering Coefficient
The scattering coefficients within the scatterometer equation may be partially

identified with the differential scattering coefficients defined by Peake [24]. As the

reader may recall, Peake defines
47rr2 <le,s12>

Yi J	 --	
2	 (5°1]

A cos eJ tl

where je,t 1 2 is the polarized incident intensity,<Je is j 2> is the i polarized backscatter
intensity in volts 2/m2 , a is the incident angle and A is the illuminated area. The
scattering coefficient employed in this formulation is simply related to Yid in the

f
r

1

;i

'!' l
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following way

s

	

<IS	 t..I y = Y.^/411 	(5-2).	 i1 

The difference by 4Tr occurs since the scattered intensities were defined in terms of
inverse steradians. It is clear that, in view of the three addition coefficients, it is
more appropriate to define the coefficients in terms of the scattering operators

< S i jSk l } _ <'S i 8kl e jtelt } R2 /e^ te* QAcos p	 (5.,3a)

it

where^j 'j Ejt yields a scattered field with units volts/meter. The operators in the
derivation are related to those in the definition in the following way

	

*= R2 /AA cos 0	 (5-3b)
/3i	 -k	 ^i kl	 a

To understand the function of these cross -correlation coefficients one must
examine the coherence matrix for the scattered wave. Under the non -coherence
and reciprocity assumptions the elements of C s are given by

[C s l vv	 <I Svv^2>levt^
2
 + 2Re<Svvs vh>evteht +

<I svhl 
2 >le htl 2

[Csl vh r <Svv'hv'levtj2 + <S vv S hh' evt e ht } <iSvh^2>6htevt

*

	

<Ss>Ie	
2

vh hh	 htl

[ C sl b y	 [Cs] vh

[C s l hh	 <^Svh^2'^EVt^2 + 2Re<ShvShh'evteht

2	 2
<Is h1^
 
	 >le htl

(5-4)
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The power in the scattered wave is carried in the trace of Cs whereas the relative

phase between the orthogonal components in an average sense is carried in the off
diagonal elements. From the structure of the coherence matrix it is evident that the

cross-correlation coefficients can be complex valued. The cross -correlation co-
efficients therefore alter the phase property of the scattered wave. Some of the re-
lative phase is attributable to the incident wave and some to the surface, eg., evt

eht* and <SvvShh*> , respectively. The cross-correlation terms also appear in the
diagonal terms and consequently contribute to the total power available in the scattered

wave when both polarizations appear in the incident wave.
During reception the coherency matrix of the antenna interacts with the co-

herency matrix for the wave. The interaction is completely described by taking the trace

of C rCs . The trace is given by

r CrCS =	
vrI2^CsIvv + 1vrlhr[Cslvh + 1 hr^vr EC s J hv +

I I hr l 2 [C s ] hh	 (5-5)

(The expanded version of the trace is given in Equation (4-19) of Chapter 4). The phase

interaction between the scattered wave and the antenna is described by the middle terms
in the trace expression. These terms are complex conjugate pairs and consequently make

a real contribution to the observed power.
To show that the phase properties of the antenna and the wave are important to

the observed return it must be recalled that in the case of polarized waves, the antenna

polarization states must be matched to the polarization state of the wave to observe

maximum power j141 . This requirement in terms of coherency matrices implies that

C r/trC r 	- C5/tr C5	 (5-6)

Under the polarized assumption CS takes the form

a	 c
C s /trC s =	

c^	 b	 (5-7)

where a + b = 1, c = 1G eJ a, and a is the re l ative phase between the v and h

components. The observed power will be proportional to (a q-b ) 2 trC r tr Cs or
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trCr trCs . If the reception matrix had been given by

	

b	 -c

C r =	 {5^8}

	

-c	 al
no power would be observed at the antenna terminals as can be easily demonstrated.
In this case the antenna polarization state is said to be orthogonal to the polarization
state of the arriving wave.

If the wave is pwlially polarized Ko [251 has shown that the observed power

may vary from a minimum of a 2G r0-P)trCs/8 Z  to a maximum of X2G r(1+P) trCs/8Zp,
where P is the degree of polarization (See Section 4 of this chapter). To understand
this result it must be noted that a partially polarized wave can be uniquely decomposed
into a sum of a randomly polarized wave and a completely polarized wave 1301 . As a
consequence for an arbitrarily polarized backscattered wave, the decomposition can

be written as

CS = tr[Q (1-P)
0

where P is defined in Equation (5-30) and

	

0 ,	 + p pv v P  h	 (5-9)

	

1/2	 ahv ahh

^1vv 1/2(1-P)
Pvv r	 P tr [CS]

Uh

pvh	 P tr ^CS^
(5.10)

p h 
'V	 pvh

1

p hh -
P tr Ĉ I'Slhh - 1/2(1

- P)

The first term is the randomly polarized component and the second is the completely

polarized component. If the receiving antenna is orthogonal to the completely polarized

part, then only the randomly polarized component is observed at the antenna terminals.
If the antenna is matched to the completely polarized part maximum power is observed,
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The extremes in the observable power are a positive indication of the importance of

the phase interaction of the antenna and the wave. The cross -correlation scattering
.coefficients and the cross-polarized scattering coefficient can be effect ive in

altering the phase property of the return.
The cross-correlation terms have their analogues in scattering theory for coherent

targets [21]. In the theory for discrete targets the complex scattering matrix is commonly
employed to define scattering properties. The elements of this matrix have the

property that

1 siisjk*1 	 IS4 1Sjk
1
	 (5-11)

However for a stat istical target this property is not necessarily true. Since the scatter-

ing coefficients can be considered as a inner product of the form

<5ii$jk>	 `^iie9t ,S jk e kt > 	 {5-12}

where eitekt = 1, it is concluded by Schwartz' inequality that

f <SiiSik*mil < ^ <1, ii j 2><jSjk 1 2>	 (5-13)

As a consequence the magnitudes of the scattering coefficients may not be simply re-
lated as suggested by WiIIiam, et al. [6]. The inequality is an admission that the

amplitudes or phase centers between scattered field components can be correlated.
One can identify two scattering parameters with each complex valued scattering

coefficient, viz., its real and imaginary parts. As a result one may attribute nine
scattering parameters to Equation (4-29) where reciprocity has been applied. Similarly
from Equation (4-27) where reciprocity has not been applied, sixteen scattering para-

meters can be identified. These observations are in agreement with the "Gedanken

Experimente" cited in Chapter 3.

5.2 2 Special Cases

An examination of the scatterometer equation indicates that the equation under

appropriate conditions reduces to the classical cases. For example, when vertically

polarized measurements are conducted, i.e., ght = ghr - 0, the integrand factor I tr of

the scatterometer equation becomes

l tr	 gvrgvt c I svv1 
2>	

(^-14}
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Similarly when horizontally polarized measurements are conducted, i.e., g vt = gvr - 0,

I tr	 ghrght <I Shh 
1 2 >	 (5-15)

and when cross-polarized measurements are conducted, i.e., ght _ gvr = or

Itr	
r	 gvtghr < I $vh "]
	 (5r-16)

It should be noted that the reductions result from highly idealized representations of

practical antennas. Invariably antennas have cross polarized leakage; and when leakage
is present other scattering coefficients, both auto-correlation and cross ~correlation
types, will be excited. As shown in the last section of Chapter 4, even if the leakage is
not present, the difference between antenna and surface polarizations can introduce,

in effect, cross-polarized components in the incident wave and in the reception antenna.
The impact of undesirable antenna properties and polarization mis- •match on the
measurement of isolated scattering parameters will be treated in Chapter 7.

An understanding of the cross-correlation coefficients from theories applicable
to sea returns is developed in the succeeding section.

5.3 Characteristics of the Correlation Terms

Several scattering theories are examined to disclose the, character of the cross-
correlation terms in the scatterometer equation. Approximate backscatter solutions to
the small perturbation theory [321 [33] [34] [35] and the Kirchhoff theory [ 36] [ 37] are

specifically examined. These theories with some slight alterations are thought to apply

to ocean backscatter and have shown reasonable agreement with measured results. The

selection of these theories by no means exhausts the possibilities. Physically intuitive

arguments are given at th3 end of this section to further enhance our understanding.
When returns are considered from a surface having a small roughness, satisfying

2 2 2o;	 o' '	 i	 number, 	 b. k	 cos 4 _ 1, where is the rms surface height and k s the Wave nu bet, can e
shown that (see Appendix Q*

^,4

CSs*	 sty
 CosVV hh	 OR Rh W(2k sine, 0)	 (5-'17)V.

The reader should be aware that in constructing the scattering coefficients from
scattering theory and identifying them with measured coefficients involves an
ergodic assumption, i.e., an ensemble average is equated with a spatial average.
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In the above equation

(er-1)[er(1+ sin 2 8 ) - sin2e]
-"	 (5--18)

(.Frcase +	 Fr- sin
g e )2

case-	 er- singe
ith =	 -	 --	 (5-19)

cose + eA^si

Comparison of the magnitude of this term with the polarized scattering coefficients

shows that

I<Svv S hh*>1	 -	 <isvv]27 <1 Shh12> 	(5--20)

The equality is true at least to the order to which these soiutions are valid. The

magnitude of this term is illustrated in Figure 5.1 wherein it is also compared with the

polarized coefficients. The computations were based on a slightly rough sea. The

phase of the cross correlation, defined by

4 = tan-1 (im<S
vv S hh' / Re<SvvShh')	 (5-21)

was computed and is shown in Figure 5,2 for three different water temperatures. The

sea water temperature alters the complex dielectric constant of the surface and con-

sequently influences R! and Rh o it is observed from the graph that the imaginary part of

`S
 

vv Shh *> is small in comparison to its real part and only tends to become significant

at the larger angles when compared with the real part..

An examination of the integrand of the scatterometer equation ( 4-29) indicates

that the above cross-correlation term can make a significant contribution to a radar return

when I ike and cross antenna polarizations are present during transmission and reception.

4
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The contribution can be positive or negative depending upon the value of (Pt +^r) and

E`	 can be comparable to the sum of the contributions arising from the polarized scattering

coefficients. To illustrate the above statement it is sufficient to observe that the polarized

contributions are proportional to 9 vt gvr  Svvl? 
and ghtghr <1 

Shh^2	 On the other-

hand, if the imaginary part of <SvvS	 llhh*} is sma so that <Svv Shh*y - '^ < S	 zVV 
<- h

> then the contribution by the cross-correlation coefficient is given by

2 p 9	 9	 I s IjCI s 1 2> Re a i(^r +s#}
vY t vr q ht hr	 vv	 hh

If right circular polarization* is transmitted and re ceived, then cos (P t +fr) = -1 and

gvt '2 ght _ gvr = ghr' It is apparent that when <J S vv l2	 `I S hh l> • the magnitude

of the cross-correlation contribution is identical to the sum of the polarized terms.

The sign of the contribution is, in this case, negative. However, had the wave been
received with a LC polarized antenna, the sign of the contribution would have been

positive. The contribution by this scattering coefficient can also be very effective

when attempting measurement of a weak scattering coefficient such as <,1 Svhl2 with

a "linearily" polarized antenna having some cross polarized leakage. This will be

illustrated in Chapter 7.
When the cross-correlation terms of the type <S vv S vh *> and "hv %0

are examined in the context of small perturbation theory, it is easily shown that these

coefficients vanish at the lowest order where <ISvvI 	 , -I S hh'2 and t! Svhl2

are non-zero (see Appendix C)*: The lack of correlation is physically reasonable since

it is believed that the cross-polarized fields result.from multiple scatter. When higher

order solutions are included these crass-correlation terms will not vanish; however,

their magnitudes will be extremely small.

The above theory is thought to apply with some modification to the sea for angles
of observation between 30 and 80 degrees [37}. At smaller angles Kirchhoff theory [37]

has predicted sea returns reasonably well. When the theory reported by lung [36] is

employed to explain near vertical returns it can be shown that (see Appendix A) for

an isotropic stationary paussian surface
12 1 R2 exp (w tan 2 0 / 2m2 )

< SvvShh* >	 -	 (5-22)
2	 3

Bw m cos 0

* Circular polarization is defined with respect to the antenna; but for narrow beams and
sufficiently large angles, the circular polarization state transforms to the surface with-
out significant alteration. This will be clarified at the end of this chapter and within
Chapter 7.

** Recall <ISvvl2 and <I ShhI> are first order solutions and <I S vh l 2 is a second
order solution.
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1

i

where
4

R^ -	 Rv [Cosa + sin a + Tv cos e^	 )5-23

R	 -	 R cos 6 + sin 0 + T cos e]
2	 h	 h	 (5.,24)

ter sin e

V2	 2	 2	 (5-26)	 E
Crw sin 6 ( 6  cos e - sin 6 J

i 

f	 ,

I

f

-2 stn 6T	 - '	 _'"	
(5-27)

	

r `r	 singe

E
1
J

I	 `3

s

Comparison of the magnitude of this cross-correlation terms with the magnitudes of
the polarized scattering coefficients again shows that (Appendix A)

F

J < SvvShh*' I	 <I Svv 
2 

<1Shn ^'	 (5-$)
•	 3

The equality is valid to at least first order in corrections to the reflection coefficient for
the local slope. The magnitude and phase of the above result is illustrated in f=igures

'	 5,3 and 5.4, respectively, for an isotropically rough sea surface having a moderate 	
i

f
rms surface slope. It is noted that the phase property may be attributed to the linear

corrections of the reflection coefficients for the local slope. The resulting reflection
coefficients compare favorably with that for normal incidence.

When cross-correlations involving Svh ar Shv are considered within the Kirchhoff
approximation little can be said regarding their character.. A typical cross -correlation	 j

i
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between field components is given by

<%vlvh*>	 - 4 1KI 2 Rv (e) [ cos8 + ( sine + TY cos 9) tan e,

 
ZX + ( sine- cosh Zy)

ZX ( Rv+ Rh ) ( cos 8 Zy - sin 9) 	-•j2k-( rl- F2)

ffff<	 2	 2	 e	 > dxiciy,dx2dY2

(5-29)

where integration by parts has simplified Evv and the reflection coefficient R  has

been linearily approximated. Since the expectation involves higher order slope

terms it is anticipated that the correlation will be weak. The stationary phase tech-

nique for solving the integral, for example, would cause the integrand to vanish.

On the basis of the above simple scattering theories, it is clear that the cross-

correlation coefficient <S vv  Shh*> can contribute to a radar return when both I ike

and cross polarizations are present during transmission and reception. The theory for

the slightly rough surface indicates that the phase of the correlation product is depend-

ent on the relative phase between the so-called Rice reflection coefficients. The

phase factor is somewhat significant at the larger angles. Correlation products contain-

ing Svh or Shv vanish for the slightly rough surface and appear to be negligible for

Kirchhoff type surfaces also. These two theories by no means exhaust the possibilities.

Consider, For example, radar returns from a strongly de-polarizing scene such

as a tenuous vegetated terrain in which the depolarization is attributable to linear re-

radiation. Intuitively, one would expect sizeable contributiats from the cross-cor-

relation products containing S vh or Shv . The correlation contributions will likely arise

from a single scatter process, particularly at the canopy. The contributions, as an

examination of Cs shows, will arise if like and cross antenna polarizations are present

during transmission  or reception or both. When < I SvhI2 is somewhata 	 less than

<IS v11I> and ^IShhI> and one attempts retrieval of <ISvhl> with a "linearily"

polarized antenna possessing a cross leakage pattern one can anticipate contamination

not only by JS vvf> ' `1 s hh )?< 	 and <SvvShh*> but also by <S vV  Shv*> and

s oh Shh > '
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5.4 The Degree of Polarization of Radar Returns

Another important aspect of the scatterometer equation derived here is that the

backscattered fields can be considered partially polarized. The partially polarized

character is induced by measuring average returns from a non -coherent scene. This

permits us to consider a statistical coherency matrix as a suitable representation for 	 i
the return. it is well known that the degree of polarization of a wave is given by [30)

4 II CSIIP	 1	 2	 (5-30)
(tr C)

where Cr is the coherency matrix of the wave and 11Cs 11denotes its determinant. If

P = i the wave is said to be completely polarized. This occurs if and only if UC311= 0.
To show that the present formulation admits partially polarized waves (possibly randomly

polarized, P = 0), it is sufficient to show that IICs f! / 0. Now Cs is given in Equation

(4-15) and with a I ittle tedious effort one can show

IICSII	 - Iev 14 [<I5vv l2> <I5 hv 12>- I<svvshv* >I2] + fevi 
Iehi 2 [<ISVV, 2>

< I S hh 1 2> - I < SvvS hh
*>I2 

1 + 
I eh I4 

[<IShl 12> <I shv 
1 2>_ 

I< ShvShh

21e 12 Reeveh* [^ Svv l
 

 ^<ShvShh*> - <SvvShh*> <S vv*Shv>l	 2Re

(eve h
*)2 [<S

vvs vh
*> <ShvShh*> - <SvvShh*> < Is hv I 2>I + 2 1e, I 2 Re

<eveh*>[Csvvsvh*><IShhI2> - <SvvShh*><Svh*Shh>l
(5-31)

where the subscript t has been dropped. If the determinant is to vanish independent of 	 i

the transmitted fields then each difference term in the above expression must vanish.
y
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A non-statistical target having a scattering matrix

l^	
,S	

I eja	 isend
vv	 vh

' 	 s - (5-32)

E Is^hl 
eM	

ishhl 
ejs

F

will obviously meet the requ irement. However, the general result indicates that the

backscattered wave is partially polarized as the examples below iJustrate.
j

	

	 For the case where terms of the type <Svv Svh *> are assumed negligibly small,
as we suspect they are over the sea, we have

11 511	
levi4<1svv12><1Shv12> + jevl2 Jehl2[C,Svvl"C{Shh12>-1<Svvshh*>2

{ Jehl4 <IS hh I .2> c[S hv 1 2> - 9oe (eve,*)2CSvvshh*><jShv12>

(5-33)

At moderate to large incident angles over the ocean it is anticipated that the above
term can be significantly different from zero. Specifically if l a horizontally polarized
wave is transmitted, we have

IIC S II	 - I e h I4 <IS hh I2><ls hv i2>	 (5"34)

The corresponding degree of polarization is given by

<Ishhl2> - <Isvhl2>
P h =	 (5-35)

ISh hl2> f <Isvhl2>

Similarly when a vertically polarized wave is transmitted, the degree of polarization

is given by

< I SVV 1 2 > - < IS vh  l 2>
Pv
	

<Isvv I >+<Isvhi2'

	 (5-3A)
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If a circularly polarized wave is transmitted, then

li CS 	 r 
< l Shv12> [<ISVV,2> + <' 

Shh 1 2>+ 2Re< SvvShh* >] + < 1 Svv 1 2><1 Shh12>

- <S 5 *> 12vv hh	 (5-07)

and the degree of polarization is given by Equation (5-30).

The above cases were evaluated as a function of incident angle for the scatter-

ing characteristic of Figures 5.1 and 5.2 . The results are shown in Figure 5.5 .

It is apparent that the partially polarized character is an important factor when the

non--coherent scatterometer equation is appropriately interpreted.

5.5 Visualization of the Polarization Properties of the Antenna and Scene

Within the latter section of Chapter 4 the scatterometer equation accounting

for the difference between antenna and surface polarizations was derived. it was shown

that the polarization mis-aiignment could be characterized by a simple rotation of either

orthogonal polarization pair through an angle (Y. To show this mis-alignment character,

rtither than study the functional behavior of P on (E),	 it is more convenient to fall

back on the properties of the spherical polar vectors i8 and

Regardless of whether one considers the antenna or surface coordinate system,

the projection of the polar vector 10 and the azimuthal vector 10 on any sphere whose

center is located at the point of observation can be depicted, respectively, by longitudes

and latitudes on that sphere. For any line of sight emanating from the origin of the

sphere the longitude and latitude lines intersecting the line of sight on the sphere will

correspond to the orientation of vertical and horizontal polarization, respectively, for

that line of sight. We can therefore employ spheres marked with longitudes and latitudes

to visualize the antenna or the surface polarizations.

To compare the alignment between antenna and surface polarizations choose

the radii of both polarization spheres so that the spheres are tangent to the scattering

surface at the sub-observational point as illustrated in Figures 5.6 and 5.7. A pole of

the surface polarization sphere will be afixed to the sub-observational point. This

polar axis will correspond to the z axis of Figure 4.4 The xy plane coincides with the

equatorial plane and is parallel the surface. The antenna boresight axis lies in tEe xz

plane and points at an angle of 80 with respect to the z axis (Figure 5.6). Now, on

the otherhand, the equatorial plane of the antenna polarization sphere coincides with the
'	 I

i
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plane containing the boresight and the y axis. This plane corresponds to the x' y'
plane in the antenna coordinate frame (Figure 5.7). The polar axis of antenna

polarization sphere aligns with the z' coordinate. Comparison of the orientations of
the latitudes and longitudes for any common line of sight will indicate the polar-
ization mis-alignment property (Compare Figures 5.6 and 5.7). Within the plane
of observation (the xz or x'z' plane) regardless of view angles the polarizations co-
incide. For any other line of sight there will be a difference in alignment. The mis-

alignment is greatest in the polar regions of th- antenna or surface polarization
spheres. When the antenna is pointed toward the horizon the alignment is everywhere
perfect (one must mentally rotate the sphere in Figure 5.7 so that the x' axis points
to the horizon). When the antenna is pointed at the sub-observational point, the
misalignment is severe everywhere in the vicinity of the sub-observational point.
Within the nadir region the scattering coefficients defined with respect to the surface

as compared , to those one may define with respect to the antenna differ radically.
For example, if a significant anisotropic scattering behavior occurs at nadir, any

finite beam scatterometer would tend to integrate this behavior. The measurement,
as a consequence, would be difficult to refer to the surface polarizations. The surface
Polarization character at nadir indicates that infinitesimai beamwidths must be used if

the nadir region is to be probed and if scattering coefficients defined with respect to the
surface are to be reported. This is clearly true if there is a difference in <j5 vvl 2 > and

<ishhf2> scattering properties as viewed with respect to the surface.
As pointed out in Section 4.3 , there is an alternate method of mounting the

antenna which will produce a different polarization character. Suppose the antenna had

been mounted so that its horizontal polarization vector (ion) op the boresight axis (x')

aligned with the surface vertical polarization at that line of sight. The polar axis of

the antenna polarization sphere (z') would coincide with the -y axis of the surface co-
ordinate system. The corresponding polarization sphere is illustrated in Figure 5.8.
Comparison of the polarization property with that of the surface indicates that the mis-
alignment is invariant with view angle and the polarizations do not align globally for
any view angle. The polarizations continue to align in the plane of observation; however,
the some mis-alignment in the nadir region remains a problem.

Regardless of the mounting position it is evident that for non-zero beamwidth
antennas the discrepancy between antenna and surface polarizations prevails in the
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FIGURE 5,8 ALTERNATE ANTENNA POLARIZATION SPHERE
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nadir region. It is clear that nadir is a forbidden region when one views it from
the point of surface polarizations. At all but small view angles the polarization
discrepancy over the main beam of narrow beamwidth antennas is generally small
(how small will be shown in Chapter 7). At these angles as the beamwidth becomes
narrower for a I ineari ly polarized antenna, the percent antenna power occurring in

the orthogonal surface polarization becomes smaller. As one approaches nadir
the beamwidth must become increasingly narrower for the same degree of mis--al ign-

ment.



6.0 THE INVERSION OF SCATTEROMETER MEASUREMENTS FOR THE SCENE PARAMETERS

6.1 Introduction

The recovery of the scene scattering parameters entails an appropriate set of

measurements and the inversion of a corresponding system of scatterometer equations

of the type derived in Chapter 4. Within this chapter a measurement and an inversion

technique is derived to recover a complete set of scattering coefficients. The technique

is also specialized to the case where the scattered fields may be regarded as completely

polarized. To assure that the technique is both as simple and as accurate as possible,

certain antenna properties are specified. The consequences of not employing a suitably

chosen antenna is illustrated in Chaper 7. The mathematical and physical aspects of

inverting scatterometer measurements are treated in the following sections. Certain

antenna properties which are helpful in approximating the measurements by a system

of algebraic. equations are identified. In this chapter the distinction between surface

and antenna polarization is appropriately discarded to simplify the presentation.

The consequence of this action is treated in Chapter 7.

6.2 Mathematical and Physical Aspects

The inversion of scatterometer measurements falls into the some mathematical

category as do many remote sensing problems. Typically, the observational relation-

ship reduces to solving a Fredholm integral equation of the first kind, viz.,

.1
	 = fK(y,x)  f(x)dx
	

(6-1)

where K(y,x) is usually a continuous function over a rectangular domain attributable

to a sensor, f(x) is the unknown sensor stimulus and g(y) is the observed sensor response.

The scatterometer equation ,s a generalization of the above expression. Since there

are nine unknown scattering parameters, it is clear that there must be at least nine

different kinds of measurements to retrieve all the parameters. If each kind of measure-

ment is identified by a subscript i and if the scattering parameters are denoted by

(SZ) where SZ { g ,) , then the system of measurements can be written as
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!	 I	 I!	 I	 I	 ^	 I

W.(^ ) _ (^ )2 G t G w	 i
E	 K.,^ol.(^)dSZ

i o	 4^	 r t	 3=1	 J	 3

i = I,2,...,9
(6"2)

where

Kid. = (9vrgvt)i/r2

Kit = (ghrght)i/rz

Ki 3	 {gvt g hr+g vr g ht+2 5vtghtgvrghrcos (fi t - s^,)) i /r

Ki4	 2 ( gvtghtgvrghrcos (Rt+ ar )) i /r z

Ki5
	 °2( g^htgvrghrcos(St+i3r))i

/ ra

Ki6 2(gvr g^tcosat+gvt g^ co"r)i/r2

K 
	 - Z ( g vr

 9^tcosat+9vt g^ cos^r)i/r2

Ki8
	

(9
hr g	 tCosRt+ght g	 Cos$ )i/r2

K
	 2(,^	 cos R +g ^ Cris 0 ) /r2
i9	 ghr g vt	 ig ht	 t ht	 y r hr	 r 

6•-3

are the kernel functions with respect to are integration on a sphere and where
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Cl = < ISvv12'

2 = < Ishh12>

93 = <ISVhl2>

	

c =	 Re <SvvSlih'

	

s =	 Im <SvvShh'

6 = Re <Svvsvh'

= Im <SvvSvh>

e = Re <SvhShh'

9 =	 Im <SvhShh'



For each i one must specify receive and transmit antenna polarization states and pat-

terns such that the resulting system of equations can be solved approximately. There are

undoubtedly many such specifications. However, there are certain physical considera-
tions which make the search for the appropriate kernel function (antenna polarizations)

simpler.

It has been shown, for example, that in the measurement of a auto-correlation

coefficient, the kernel function can be approximated by a delta function if the antenna

beam is sufficiently narrow to resolve the angular behavior of the coefficient [3$]. The

method assumes that the scattering parameter is constant across the significant portion

of the kernel function. The unknown parameter is withdrawn from the integral and

the resulting integral expression evaluated. The solution then becomes algebraic. This,

in effect, is equivalent to assuming that the kernel is a delta function with a weight

corresponding to the evaluation of the integral expression. The method is feasible

since the kernel function is sharpened by a product of pattern terms as indicated in

Equation 6-2. The two-way sharpening effect is illustrated in Figure 6.1 where both

g and g 2 are plotted. It should be noted that the ordinate scale has been transformed

logarithmically to dB. The kernel function is consequently significant only over a

very small domain of { (e ,^), eLTr, o L^4;2Ir] .

It would be helpful if the delta function approximation could also be used
to recover the cross-correlation scattering paramete. . An examination of Equations
6-2 and 6-3 indicates that the two-way sharpening effect is present in the gain functions.

However, there is no guarantee that B t and Ir will remain constant across the signifi-
cant domain of the gain functions. Generally the antenna phase factors are functions

of (^, e). On the other hand, if these factors are stationary on the main beam, then
the delta function approximation can be employed for these parameters also (see

Equation 6-6). The ability to realize the stationary condition is treated in the sub-
sequent section.
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6 03 Desirable Antenna Properties

If the delta function approximation is to be employed, then it is desirable to

have the relative phase 
Sr 

and	 constant across the main beam (See Equation (4-29)).

This objective is equivalent to requiring that the gain and polarization be stationary
across the main beam. Chu and Kouyoumjian [391 have derived the conditions under
which stationary gain and polarizations can be achieved. Coincident stationarity,
they state, can be realized by anyIp anar aperture distribution which is symmetric
with resoect to two orthogonal axes in the aperture plane. An aperture is planar
only if the excitation lies in the aperture plane and not orthogonal to it.

For some center fed paraboloids the above requirement can be met; however not all
feeds result in a planar distribution even though the symmetry property is observed.
This is illustrated for the case of a dipole feed. Although the distribution in the
aperture plane is symmetric, it contains excitation components orthogonal to the plane.
The orthogonal components are induced by the depolarization property of the para-

boloid. The far field of such a dish is illustrated in Figure 6.2. The computation was
based on a -10 dB taper, a f/D* ratio of 0.36 and a wavelength of 2.16 cm.

The introduction of variable cross polarized content can clearly destroy the
stationary polarization requirement. Admittedly the cross-polarized content in the illustrated

case is small; however, as will be shown later in Section 7.4, retrieval of the cross-

polarized scattering coefficient can be affected by weak cross polarized pattern levels.
Furthermore, dipole fed paraboloids with smaller f/b ratios will have a larger cross

polarized level than illustrated here [441.
Recently, corrugated horns [401 1411 and dual mode horns [4z1 [431 with

circularly symmetric patterns have been recognized as capable of eliminating cross-
polarization lei center fed paraboloids. The feed pattern of these horns are said to be
balanced. Mathematically their radiation takes the form

_	 cash'	 _	 sink'	 exp( -ikO
E f	 F 

(0r	
^/)	 , fie'	

Gtr	 t6-5)
Sin cb 	 ( COSO,	 P

L (

where the z' axis is directed along the axis of the paraboloid. Chu and Turrin [591
have shown that center fed paraboloids with balanced illumination exhibit no cross-

polarized content in the aperture plane. The fa; fields of the above described para-

* focal length- paraboloid diameter

i

i
i
i	 -
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boloid with a balanced feed was computed and are shown in Figure 6.3. The cross-

polarized field was totally absent in the numerical computations.
Balanced fed paraboloids are suitable candidates for scatterometry work when

a complete set of scene parameters are desired. Since support struts and aperture
blockage, in general, introduce cross-polarized radiation it is important to minimize
blockage in addition to choosing an appropriate feed. The Cutler type feed with

balance radiation may be a suitable approach.

Alternatively, an array of broadly directional radiators is also a suitable can-
didate.. If the interaction between elements is weak, then the pattern of the array
is the product of the array factor and the pattern of one of the elements. The polar-

ization property in the main lobe will be dictated by the polarization property of the
central segment of the elementary pattern. The polarization will generally be station-
ary across a small segment of the elementary pattern; and, therefore, the array polar
ization will -also be stationary there.

6.4 The Inversion of Scatterometer Measurements

When a narrow beam scatterometer antenna with a coincident stat ionary gain
and polarization property is employed,the scatterometrr equation may be approximated

by*

Wtr R)r l< ;I1<ISvv^2> + I2<ishh , 2> + [ I3 + 2Id cos (far -fat }	 vh12> +

214 Re [ 
e i(f3t 

r <Svv Shg>] + 2Re[ Ise Bt + I6 e1Or ]<SvvShv>+

Ji3t	If3r
212e[ I7 e + IB e	 <Svhs *hh? f	 (6-6)

where

* The degree of accuracy wfl,l be demonstrated in Chapter 7.
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i

I I 	_ ffgvtgvr cos2AdSZ
i

I 2	 ght`ghr cos A dR
I

i
s

I 3 	{9ht9vr'9vt9hr} cos% dot
i

2
i I4	

_	
gvtght	 gvrghr cos A dSZ

2I6	
-	 gvtght gvr cos edn	 (b'7

I 6 	 gvt	 gvrghr Cos28dR }

I 7 — ffqvtg ht ghr Cos29dg

I $ 	 ght	 gvrghr cos2Ads^

K 	 X2 W t C t g r /(4Trz) 2
	(678)

It has been assumed that observations are conducted over a planar earth so that r = z/cose .
It has also been assumed that the kernel function has sufficient resolution that the scat-

tering coefficient may be considered constant in the domain where the kernel function is
sigr:ificant.. Now suppose that the scatterometer is equipped with a dual linearily polarized

i feed or if necessary two antenna with orthogonal linear polarizations to assure good Isola-

i	 tion. The amplitude and phase of each feed channel is assumed controllable. Then as

will be shown below, a series of fifteen intensity measurements with different polariza--
tion combinations is capable of extracting a complete set of nine scattering paremeters,viz.,
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< ^ Svv12> ' < I S hh l2 > f 
<1 Svhl 2> : Re < Sw 

Shh*> , I 
m< Svv Shh*> , Re ' <S 

vv 
Shv* >,

Im 
<S vv  Shv* 1 r Re < Svh Shh*> f and Im < Svh Shh*> • A pair of measurements is

required to isolate the real or imaginary part of the complex valued coefficients. The

transmit--receive polarization states are indicated for each measurement:

3) W	 (gvt = gvr = 91 ght = 9hr = 0)

ittr = KI < I Svv 
1 
2>
	 (6-9a)

2) H-H	
( gvt = svr = 0, g

ht 
= 9hr = 9 )

Htr = KI <IShhl2>	 (6-9b)

3) V-H	 ( gvt = 9hr = g, ght = gvr = 0 )

Wtr= KI <ISvh1 2 >	 (6-9c)

1
4a) LC-RC( gvt = g ht = gvr = 9 hr = 2 99 Ot 	 Sr = go-)

I	 i 2
	 I

1'ltr= KI 
C 4 <IS vv 2>	

4 
<IS hh 12> + -2 Re <SvvS11h']

(6-9d)

•	 4b) Cross-Linear(g vt = ght = gvr = 9 hr = --91 St = 0' Sr = 180° )
2

Ktr = KI C < IS vv 1 2 > + 
1 <IS hh 1 2>- 1 Re <SYVshh''

2	 (6-9e )
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5a)	 Elliptical	 ( g vt = g ht = g vr = g hr =	 91 St	 -45° >	 Sr = 135*)
2

W tr= KI [	 < ^Svv^
2> +	 <IShh^ 2>+ 2 Im <S

vv S hh >1	 .a

(6-9f)

Be) Elli p tical	 { gvt = 9ht	 g vr

1
= g hr -	 91 St = 45;	 6r = -135°	 )

2

W tr= KI	 <^Svv^ 2> +
	 <]5hh^ 2> --- Im <SvvShh>]4 4 2

(6-9g)
i

6a) V- Diagonal Linear	 (	 gvt = 90	 g ht. j 
0,	

gvr - g hr	 g'
2

Sr	 0 ?

Wtr=	 KI <I5vv 1 2> +
- <ISvh^ 2> +

Re <SvvShv>l
z 2

(6-9h)

6b) V- Diagonal Linear { gvt = 9^ 9 h r = 4, gvr =g h r = — 9^
2

6r = 180°}

W tr=	 KI
 

<( Svvj 
2 > +

L2
<I5 vh i 2 > - Re <S

vv S hv >
2

1
(6_9i)

7a•) V-RC { gvt-9 ' g ht - 0, g vr r g hr	 — g '2 Or y 90D	 )
j

W ar = 	 KI
C	 <I Sv v 1 2> +

<IS^ h I 2 > + Im <SvvShv>12 2
I

(6-9j)

7b) V-LC { 9vt = g, 9ht = D, gvr = ghr = — g,
2

far 	=	 -90' }

Wtr=	 KI
1 

<IS vv I > 
+

1 
<ISvhi 2 > - Im	 SvvShv>2 2

(6-9k)
8$)H- Diagonal Linear	 (	 gvt

I

0 ' g ht = 9 ' g vr - g hr =	 — 91
2'

$r.	 0	 }

W t .=	 KI

I	

<iShh^ Z> +
2

? <Isvh^ 
2> +

2
Re <SvhShh>

1

(6-9I)

8b)H- Diagonal Linear	 ( gvt - D,	 g ht = a,	
°-vr - g hr -	 9 ' Or = 180")

Wtr -	 KI
<Is hh^ 2> +I 2 C^S vh 1 2 > -

11

	 _	 x

Re CSvhShFi>,Jz

(6-9m)
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9a)H-RC	 9vt = 01 ght = 9, 9v r = 9hr = 

2 
9. Or	

900
= 9

W tr= KI 2 < 1 S hh1 > 2 <Isvhj2>+ IM <SvhShh>^

(b-9n)

9b)H-LC	 t 9vt = 09 9ht = 9s gvr	
9hr = Z 9$ Sr = -ge

s <lShh I 2> + I <jS vh 1 >- IM <SvhShh>]
[q tr = KT 2	 2	 (6-9o)

where

ff g 2 cos 2 8dQ
(6-10)

I =

The transmit and rkceive polarizations may be interchanged without affecting the above

equations. The abc.N , " set of equations assumes that the scattering coefficients are de-

fined with respect t; the antenna frame. As will be shown for narrow beam antenna,
the above polarization states will retrieve scattering coefficients defined with respect

to the surface at all but very small incident angles. The above polarization states may 	 i

be incorporated in the equati .l,i ,hich distinguish surface and antenna polarizations

to develop an inversion technique based on the distinction. These equations are de-

veloped in the succeeding chapter.
From the above set of equations it is noted that < I SVVI ' <1 Shh^2 and

<1Svhl? are each derived from a single measurement i .e. measurements (1), (2), and

(3), respectively. The remaining parameters are isolated by differencing pairs of
equations. It is clear that if a complete set of scattering parameters is desired, the

measurement set is over-specified. If a minimal set of equations is required, then all
measurement pairs can be reduced to one of the members. It is advisable, however,

to work with an over-specified set of measurements to reduce the sensitivity to measure-
ment errors if all the coefficients are desired. It is a distinct advantage to specify
equati;,:-; pairs if a particular complex valued coefficient is to be isolated. The above

technique does not pre-suppose that the scattered fields are completely polarized,
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If one further assumes that the scattered fields are completely polarized, then

the inversion problem reduces to that for non-statistical targets. Various measurement
schemes have been reviewed for this case by Huynen [ 211 . One of these schemes is
based on field amplitude and phase measurements of a pair of orthogonal returns from
each of the two orthogonal illum'noting polarizations. Another scheme involves
amplitude measurements at different polarizations. The latter technique yields a set
of target invariant parameters which must be transformed to a scattering matrix, In-

tensity measurements as described above will, of course, also work. The set of
measurements may be solved subject to the constraints

I<S vv S hh> 
	 Vvv 2> <IS t,l, 1 

2>

J<SrvS.vh>1
	 -	 <{Svv 1 2> <ISv h >	 {6-11)

<S hv s hh >1
	

f<'Shv ^2
> 

<'Shh 
2>

for additional accuracy. Nort linear regression techniques as described in reference

[45] or 1461 may be employed to solve the system of measurements subject to these

constraints.
In retrospect one can also use correlation and cross-correlation techniques to

isolate some of the non-coherent scattering coefficients. For example to measure

<Svv S hv* > ' evt is transmitted. During reception both evs and ehs are cross-correlated

without and with 940 phase shift injected into one of the channels to isolate the real

and imaginary parts, respectively.
Either correlation techniques or intensity techniques as proposed will suf er

from poor realizations of the desired antenna properties Since intensity measurements

are commonly made, this investigation will restrict its attention to the intensity
technique.'
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7.0 PRACTICAL. CONSIDERATIONS IN RETRIEVING THE SCATTERING COEFFICIENTS

7.1 Introduction

In attempting to retrieve the scattering coefficients by the method developed in
Chapter 6, one is immediately confronted with the fact that the ideal antenna polar-
ization states specified in each measurement are seldom achieved in practice. To de-
termine the sensitivity of the measurement to deviations from these ideal states, computer
simulations were conducted. Measurements were simulated on the basis of the complete
scatterometer equation as developed in Chapter 4 and a scattering characteristic similar

to that of the sea under low wind conditions. The scattering coefficients were expressed

with respect to the surface polarizations; and, consequently, all simulated power returns
involve transforming the pattern information to the surface polarization states to compute

accurate power returns. Measurements were computed based on Known deviations from

the ideal antenna polarization requirements and were inverted on the basis of the ideal
antenna specifications. The sensitivity in retrieving each coefficient was thus establish-
ed, namely, by comparing the actual coefficient with the estimated coefficient.

1 he computer simulation wcs designed not only to determine the sensitivity of
the measurement to non-ideal antenna polarization states, but was designed to establish
the beamwidth limitation to realize the delta function approximation for the integrand
in the scatterometer equation. It was also designed to determine whether the distinction
between surface polarizations and antenna polarization is important; and if so, under
what conditions it is important.

Within the latter portion of this chapter special consideration is given to the

sampling requirements when measuring an antenna pattern. The simulations described
above were based on idealized functional representations for antenna patterns. In
reality these ideal symmetric representations are seldom achieved (See Figures 6.2 and
6.3 1 for examples of non-symmetric patterns). As a consequence, to accurately specify
the scatterometer integrand recourse to pattern measurements is necessary. The latter
section of this chapter develops the theory which specifies the density of points at

which the pattern must be measured to uniquely represent the pattern. This section
of the chapter is important in numerically evaluating the inversion parameters in the

scatterometer equation.
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7.2 Description of the Scatterometer Simulation Program 

The reader will recall that the inversion technique developed in Chapter 6 was
derived without regard to the distinction between surface and antenna polarizations.
As a consequence to compute the return power accurately from scattering coefficients

defined with respect to the surface polarizations, the scatterometer simulation program
was specifically designed to compute the return power on the basis of Equation (4-50) of
Chapter 4 rather than Equation (4-29), i.e., with the pattern transformation included.
hor an antenna pattern and a view angle selected externally to the program, the exact

return power is computed for all fifteen measurements described in Chapter 6.
The inversion of the resulting measurements is performed in two ways. In the

first method, called the approximate method, the inversion is performed without regard

to the distinction between antenna and surface polarizations .- It is (erroneously)

assumed, as in Chapter 6,that the scattering coefficients are expressed in the antenna

coordinate system. Equation (6-19) served as the inversion model. Since the return

power was computed on the basis of the difference between surface and antenna polar-

ization and the inversion was performed without regard to the difference, the distinction

Between surface and antenna polarizations could be evaluated. The second method,
called the exact method, does not ignore the difference between antenna and surface
polarizations. The inversion is based on antenna weights that are computed by trans-

forming the pattern polarization states to the surface polarmafiion states for each of the

fifteen measurements. The transformation, in general, "excites" additional scattering
coefficients above those recognized in th,-4 approximate method (See, for example,

Equation (4-49).)
A delta function approximation was also employed in the matrix inversion

model. The model was based on an approximation of Equation (4-47) and takes the form

Wtr	
a2 G 

t 
G 
r 
Wt/(47z)2	 <jSvv12> 

I 1cos0 2dQ +

<^ Shh) 
2> i 2cosD 2 dn + <I SVhl 2> i 3coso2 dQ +
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2Re< SvvS*h'	 I^COSO Z
dn - 2Im<SvvShh' I

5cosG 2dn +

2Re<SvvS*	
I 6cosa 2dn - 2Im<S

vv Svh' 117coSE)2do +

2Re<ShvShh' I 
Voso 2dSi - Im<ShvS* > I9cose2dn

(7-1)

where the Is are defined in Equations (4-50). The resulting fifteen equations are
employed in o least squares estimation technique to recover the scattering coe Icients.
The matrix technique was developed to test whether the fifteen measurements were
sufficient to invert for the coefficients when the difference in polarizations is recognized.

In addition to specifying the choice of antenna view angle, the program user

may, through the use of the input control card, introduce cross pattern amplitude bias
and relative phase bias into those measurements employing vertically or horizontally

polarized transmissions or receptions. The return power is accurately computed for all

fifteen measurements with the biases included. The inversions, both approximate and

exact methodF, are performed, however, without regard to the biases, i.e., they are
based on ideal antenna states. The sensitivity of the inversions to pattern deviations

from ideal conditions could thus be studied.
Cross pattern amplitude and phase biases have precise meanings for vertically

and horizontally polarized transmissions or receptions. However, for those measure-
ments requiring simulationeous vertically polarized and horizontally polarized patterns

(eg., LC, RC, linear t 450*), it was more meaningful to conduct Monte Carlo
studies on amplitude and phase. This technique requires many simule. ions to be con-

ducted. Each simulation is based on a different set of deviations in amplitude and/or

in phase d First and second order error statistics are accumulated from all the experi-

ments conducted in this fashion. In the measurements requiring simultaneous cross

patterns, it its evident from Chapter 6 that balanced patterns are required, i .e.,

* Assuming the antenna is not simply rotated.
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gv gh -1/29 . So it was appropriate to specify the pattern amplitude perturbation in the

Monte Carlo studies as a deviation from a balanced condition. For each experiment

the amplitude and phase are randomly perturbed within bounds specified by the user.

The deviations are based on samples from a uniform distribution so that the perturbed

gain and phase satisfy
gh = 1/29h + 

Ap9

g; = 1	 gh	 (7-2)

13' =	
+ 3P

where A < 112, 0 < < n and P  and P^ are random samples from a population d istrib-

uted uniformly over [-1, 11 . 1/2 gh and 6 are the ideal gain and phase requirements.

Both approximate and exact inversions are performed for each experiment. The error
statistics are formed independently for each. The above studies are initiated by

specifying 2A and 26 on the input control card.
This program allows the selection of one of four symmetric antenna patterns.

For any selection it is assumed that both dominant and cross patterns have identical
functional forms. The relative phase between the pattern.; (if both exist) was assumed

stationary. When amplitude error is introduced into any one of the fifteen measurements,
the deviation is applied so that the normalized gains satisfy g v(0)+gh (0)=1 on the bore-
sight axis. The specific pattern options are given by the following functions:

P 1 
= ( sin x/x)2

P2 = ( i 1 (x)/x )2

(7-3)

P3 = ( 32 ( sin x-c os x) )2
X

d2 (x)

P4	
x2
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where

x = kasin6'
a = aperture radius

k = 2n/X

The above pattern functions correspond to one-way patterns having respective side lobe
levels of -13.2, -17.6, -20.5 and -24.5 dB. In addition to providing a choice in
pattern functions, the program requires an input parameter denoted as ka to control the

beamwidth. The beamwidth for the respective patterns are related to ka by the follow-
ing expressions:

Ae1 = 0.887r/ka

AO  = 1.02 Tr /k3

C7-4?
AB 3  = 1.157r / ka

O0 4 = 1.27w/ka

For a fuller understanding of the pattern functions the reader is referred to pages 9.14-

9.21 of reference [51 .
The scattering characteristics on which the simulations were conducted are

illustrated in Figure 7.1. The coefficients except for the real and imaginary parts of

< Svv Shv > are based on theoretical results reported in reference [10] . The magnitude

of < Svv Shh* > was set at the geometric mean of < [ S vv 12 > and < I Shh 12 > in accord-
ance with tree results of Chapter 5. The phase characteristic of < SvvShh*> was
assigned to be that for small perturbation theory for a sea water temperature of 2930.
The characteristics are similar to that of the sea under low wind conditions. In accord-

-	 once with small perturbation theory the coefficients < SvvShv*> and < SvhShh*> are
extremely small. For the sake of the simulations weak but identical characteristics

were arbitrarily assigned to the real and imaginary parts of these coefficients. All

characteristics were assumed isotropic.

For a complete descriprion of the scatterometer simulation program the reader

is referred to Appendix D.
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7.3 Resolution Requirement

7.3.1 General

Angular resolution in scatterometry has been achieved either by employing a
narrow beam or by doppler filtering or by a combination of both. Angular resolution
is clearly required to search the scattering characteristic„ It is also required to realize
the delta function approximation in the inversion technique. It has been common pmc--

Lice. to specify the resolution on the basis of some notion of the scattering character-
istic. However, when the difference between surface and antenna polarizations is an

important consideration, a resolution guideline can also be established to assure that
the antenna polarization coincides with the surface polarization over the significant

portion of the beam. An expression is developed showing the percent power incident
on the surface in the orthogonal surface polarization for an antenna whose polarization
is pure with respect to the antenna frame. The results can be interpreted in terms of
resolition (13earriwidth).

Resolution requirements are also established for the assumed scattering character-
istics by employing the simulation program. The result expresses the measurement
adcuracy achieved by the delta function approximation with ideal antenna polarization

specifications.

7.3.2 Polarization Decomposition of the Incident Beam

Suppose a scatterometer transmits a horizontally poicrize'd wave E^r, when po int-

ed in direction @a . The total power incident on the surface is given by

a +'' T 2Z f IEV	do	 (7Q
When E01 is decomposed into orthogonal surface components, the above expressions

can be written by
(7-6j

A	 2ZP f I E^, 1 2 [ 1 i	 yI2+ j1	 1, 12] dQ

The percent power appearing in the orthogonal surface polarization is given by

pe
JE^, 1 2 lie	 i^r 1 

P

% ^ 300

P

79

N

(7-7)



11^	 I	 I	 I	 .	 I	 I	 1	 11	 1

Or

P	
^ ^2	

^ i^. i^, ^ 2

P$ 3 
°^ = g oo	 1	

^ E

- ^	 d2]

(7-8)
The latter expression is simpler to evaluate numerically.

The above expression was evaluated as a function of view-angle for various

beamwidths, A Jinc pattern function was employed in the computation. The results of

the evaluation are shown in the graphs of Figure 7.2. The polarization mis-match as

anticipated from Chapter • 5 is greatest at nadir regardless of beamwidth. It is evident

that small beamwidths ,cre able to probe closer to nadir without introducing significant

orthogonally polarized components. The permissable level of orthogonal polarization
will be treated in a subsequent section. Although the above results were based on a
horizontally polarized incident wave, a similar result could have been computed for a

vertically polarized incident wave.
If one chooses to avoid transforming the pattern polarization states to the sur-

face and accurate measurements of the surface scattering coefficient are desired near
nadir, then the graphs of Figure 7.2 are helpful in choosing the proper beamwidth. If
the experiment requires that the cross polarized content be less than, say, -20 dB,
then the i% ordinant will specify how close one can probe nadir with various beamwidths.

An alternative to the above procedure is to employ the exact inversion model
based on the differences between antenna and surface polarizations. The delta function
accuracy of this technique for small angles is developed in the succeeding section.

7.3.3 An Evaluation of the Delta Function Approximation

To determine the beamwidth (resolution) requirement to realize the delta
function approximation,scatterometer simulations were conducted in the vicinity of
nadir where angular resolution is required to search the rapidly varying scattering char-
acteristics d The ability of the delta function approximation to retrieve each scattering

coefficient was established at incident angles of O o, 40 and 80 . Beamwidths from 1
degree to 12 degrees were considered. The results are illustrated  in the graphs of
Figures 7.3 and Figures 7.5 through 7.8 for both the approximate and exact methods.

The performance of the delta function approximation at nadir is shown in
Figure 7.3 for the approximate method. It is evident that there is little difficulty in

retrieving < Svv Svv* > , < Shh S hh* 
> and Re < SVV Shh* > except for beamwidths in

excess of 10 degrees. The degradation at large beamwidths is, of course, the result of
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the antenna beamw dth interacting with the scattering surface "beamwidth". The beam-
width interaction problem is clearly evident in the error characteristic of Im < Svv S hh*> •
Since this coefficient has a notch character at nadir, it is impossible for any non-zero
beamwidth antenna to retrieve this parameter.

Unusual error performances are apparent in retrieving <I SvhI 2> , Re < SvvShv*>
and Re < 5 v Shh*> • A constant 50% error occurs for < I Svh l 2> regardless of beam-
width; whereas a 1009/6 error occurs for the latter two parameters. An explanation for

the error in <ISvh F> can be constructeu :,oiely on the basis of the difference between
antenna and surface polarizations. A similar explanation '* .thought to apply to the

other two parameters, although no quantitative argument could be constructed. The
error in < ISvh I 2 > can be best understood when the antenna and surface polarizations
are projected on the surface. The surface polarizations will project as a polar grid
whereas the antenna polarizations will project roughly as a rectangular grid as illustrated
in Figure 7.44 From these diagrams it is understood that when a vertically polarized
spherical wave is incident on the surface, half the power appears in the surface vertical
polarization and the other half in the surface horizontal polarization. As shown in the

accompanying decomposition diagram both incident components are depolarized by the
surface and upon their return to the antenna each depolarized component is transformed
(T) back to the antenna polarizations. Upon transforming back to the antenna polar-
izations, one half of each depolarized component is transformed into the antenna
horizontally polarized state. As a result, the inversion based on the antenna polarizations
is 50% low. This result indicates that it is futile to recover <Isvh

I
2 > as defined with

respect to surface polarizations with a recovery technique based on the antenna polar-

izations
It is also informative to examine the power structure for a cress-polarized

measurement. The third row of Table 7.1 shows how the returo power is distributed
among the scattering coefficients for a cross-polarized measurement. A sizeable
contribution arises from the polarized coefficients (columns 1 and 2); however, the sum

of those components is fortunately cancelled by the contribution from Re <5vvShh*>

(column 4). The cancellation is assured by the isotropic character assumed for the

surface.
For the same incident angle no results can be reported for the exact method.

For the nadir angle the observation matrix is singular. The singularity is plainly evident

in the observation matrix as shown in Table 742. The reader will observe that the
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HEAS/CCEF VV

1 O.Fn?9E	 00
2 0.6629F 00
3 0.2276E• 00
4 9.4553E DO
5 0.2276E 00
6 0.3415E	 00
7 0.3415E	 00
8 0.4553E	 00
9 0.4553E	 00

i0 A. 4553E	 00
11 0.4553E	 00
12 0.4553E	 00
13 0.4553E	 00
14 6.4553E 00
15 0.4553E 00

POWER MATRIX

HH	 VH	 VVVHR	 VVVHI	 VVVHR	 VVVHI	 HVHHR	 HVHHI	 POWER

0.FB?9F 00 6.11'181-D? 0.4653F 00 0. an as 0. 00 0.18??1 Di
0.6829E 00 0.1398E-02 0.4553E 00 0. O. 0. 00 Da O.1N22E 01
0.2276E 90 0.134BF-02 -0.455iE 00 09 0. 0. D. at 0.1311AL-02
0.4553E 00 0.2328F-09 O.9i05E 00 -0.6595E-19 -O.MTE-17 0. -0.5857E-17 D. 0.1821E at
0.2276E 00 0.1398E-02 -0.4553E 00 0.1309E-16 0. -6.4376E-12 0. -0.4376E-12 0.1399E-02
0.3415E 00 0.6988E-03 0.2276E DO -0.6596E-08 0. 0. 0. 0. 0.9112E 00
0.3415E 00 0.6988E-03 0.2276E 00 0.6596E-08 0. 0. 0. 0. 0.41t2F 00
0.4553F 00 0,1398E-02 0. 0. -4.2979E-08 0. -6.2924E-08 09 0.911.= Oct
0.4553E DO 0.1398E-02 0. 0. 0.2979E-08 -0.4376E-12 0.2924E-08 -0.4376E-12 0.9119E 00
0.4553F. 00 0.13911E-62 0. 0. -0.7941E-L7 4.2205E-03 -0.?8871-17 0.2?O5F-83 0. •!12 4+F 00
0.4553F OO 0.1398F -02 0. 0. -0.2969E-17 -0.2205£-03 -0.2916E-17 -0.2205E-03 0.4115E 00.
0.4553E 00 0.139OF-02 Oa of -0.2924E-08 0. -0.2979E-08 p . 0.9119E 00
0.4553E 00 0.1398E-02 t: 0. 0.2924E-OB -0.43TGE-l? 0.2979E-08 -0.4376E-12 0,9119E 00
0.4553E 00 0.1398E-02 0. O. -p.2887E-17 0.2205E-03 -0.2941E-17 0.2205E-03 0.9124E 03
0.4553E 00 0.1398E-02 C. 0. -0.2916E-17 -0.2205E-03 -0.2569E-17 -0.2205E-03 0.9115E 00

ca
	 TABLE 7.1	 POWER COMPOSITION MATRIX FOR A NADIR MEASUREMENT

(-U

itd

HEAS/COEF	 VV HH VH VVVHR VVHHI VVVHR VVVHI HVHHR HVHHI

1 0.1654E-01 0.1654E-01 0.2205E-OL 0.1103E-01 0. 01 0. 0. 04

2 0.1654E-01 0.1654E-01 0.2205E-01 0.1103F-01 D. 00 at 06 04
3 0.5513E-02 0.5513E-02 0.2205E-0L -0.1103£-01 0. 0. 0. 0. 0.
4 0.1103E-01 0.1103E-01 0.5725E-08 0.2205E-01 -0.296BE-I? -0.5856E-15 Be -0.5P--E-15 0.
5 0.5513E-02 O.E513E-02 0.2205E-01 -0.1103E-01 0.5891E-i5 D. -0.4376E-10 0. -0.4376E-10
6 0.8270E-02 0.8270E-02 D.1103E-01 0.5513E-02 -0.2969E-06 0. 0. 0. 0.
7 0.8270E-02 0.8270E-02 0.1103E-01 0.5513E-02 0.2969E-06 0. 0. 0. 0.

8 0.1103E-01 0.1103E-01 0.2245E-01 0. p. -0.2978£-06 0. -0.2924E-06 0.
9 0.1103E-31 0.1103E-01 0.7205F-01 0. 0. 0.2970E-06 -0.4376E-10 0.2924E-06 -0.4375E-10

1D 0.1103E-01 0.1103E-01 0.2205E-01 .0. 0. -0.2940E-15 0.2205E-01 -0.2886E -15 0.2205E-01

11 0.1141E-01 0.1103E-01 0.2205E-01 0. 0. -0.2971E-15 -0.2205E-OL -0.2915E-15 -0.2205E-01
17 1'.1103E-01 0.110SE-01 8.2265E-01 0. 0. -0.2924E-06 0. -0.297BE-06 0.
13 0.1103E-01 0.1103E-01 0.2205F-01 0. 0. 0.2924E-06 -0.4376E-10 0.2578E-06 -0.4376E-10

14 0.1103E-01 0.1103E-01 0.2205E-0`- 0. O. -0.2806E-15 0.2285£-01 -0.2940E-15 0.2205E-01
15 0.1103E-01 0.1iO3E-01 0.22D5E-0', 0. 0. -0.2915E-15 -012205E-01 -0.2971E-15 -0.2205E-01

TABLE 7.2	 OBSERVATION MATRIX BASED ON SURFACE POLARIZATIONS



i

f
following pairs of observations are identical: 1 and 2, 3 and 5, 6 and 7, 8 and 12, 9
and 13, 10 and 14 and 11 and 15. The rank of the matrix is consequently 8. For iso-
tropic scenes the singularity may be removed by solving the system of measurements

subject to the constraints: <) Svv > - <, Shh
12> 

' <Svv Shv*>	 <Svh Shh' and
<S

vv hhS *>	 j vv^^_	 < S Z >	 Shh l 2 > . As a result of the constraint there are only

five independent parameters. This result was anticipated from the "Gedanken Experi-
mente" referenced in Chapter 3.

In general, retrieval of the scattering coefficients at nadir is a difficult task, it

is merely coincidence that the approximate method yielded as many accurate estimates

as it did. If a scene is anisotropic or if it has a peculiar character where 1<SvvShhk>i z

4 <I Sv J 2> <I Shh >, then there is no assurance that either method will work.

See the fourth column of Table 7.1 where it is evident that Re< SvvShh*> plays an
important role in forming the polarized measurements. Careful investigations at nadir
will require very narrow beams ;o search nadir asymptotically if the coefficients are to
be reported with respect to the surface polarizations.

The accuracies of the delta function approximation for the approximate and

exact models at a view angle of 40 are shown, Figures 7.5 and 7.6, respectively. From
Figure 7.6 it is apparent that the approximate method can be employed with reasonable

accuracy (0.5 dB) to retrieve all coefficients if the beamwidth is less than 3 0 . A beam-

width as much as 100 can be tolerated for the recovery is restricted to the polarized co-

efficients. The exact inversion method will permit beamwidths up to 90 in retrieving
all the scattering coefficients. Similar results are apparent in the error characteristics

for a view angle of 8 0 (See Figures 7.7 and 7.8).

7.4 Antenna Requirements for the Accurate Recovery of the Scattering Coefficients

7.4.1 General

A number of simulations were conducted at various incident angles with and

without biases and also with and without random perturbations introduced into the

measurement. These simulations served cos a training set to identify the particular
scattering coefficient or coefficients which primarily contributed to the error character-

istic for each scattering coefficient. Invariably the best single parameter to which the

error could be attributed was the magnitude of < Svv S hh*> • The magnitude of this 	 i '!

parameter cor;veys a notion of the size of <JSvv I` > and <IShhi2 >as well. These	 ! 1
three coefficients generally interacted to introduce an error in the measurement when

86	
^.

i
a



^i

s

o^
co

LLI

w

w
J

I.

dF

SVHSVH

RE{SvvSHv^

RE(SVHSHH'

IM?SvvSHH

RE<SvvSHH

vv vv

SHHSHH}

WSvvSHv}

IM?SVHSHH—

J

001
0.	 4	 S	 12	 16

BEAMWIDTH (DEGREES)
FIGURE 7,5 ACCURACY OF THE DELTA FUNCTION

APPROXIMATION FOR THE APPROXIMATE INVERSION

MODEL FOR 0 = 4'

R

87



x
0

w
F-
M-1w
L.)

wr

c$VVSH

a
SVHSVH,

100

10 I

SVvSVv

<SHHSHH>

R <SVvSHH

oe0000	 , 14e

1 

,O1 1

001 0	 -
	 812	 16

BEAM! IDTH (DEGREES)

FIGURE 7,6 ACCURACY OF THE DELTA FUNCTION

APPROXIMATION FOR THE EXACT INVERSION MODEL

FORE-4°

88



	

100
	

R4SvvSHv>

R CSVHSHH

IMSVVSHH

	10
	

(SVHSVH"

CDx
c^
w
t--
w
ca	 -

ŵ
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the antenna transmission and reception properties deviated from the ideal state specified

in Chapter 6.
The training set also made it apparent that the error characteristics were primarily

governed by the level of the cross-polarized leakage for those measurements involving
linearity polarized iiansmission or reception. The level of the leakage is expressed in

terms of one-way depression relative to the dominant pattern. The relative phase
between the dominant and leakage patterns was treated as an independent error parameter,
A bias error study was, therefore, applied to the retrieval of < Svv Shh* > , <I Shh, 2 >,

<Svv Shv - and <Svh Shh*> • Although the latter two coefficients involve balanced

cross patterns during reception, studies showed that the error performance was largely

insensitive to small deviations from a balanced condition U. small deviations from the

required phase condition in comparison to leakage appearing in the linearity polarized

transmission. Now in the case of < Svv Shh* > ► it is more meaningful to consider Monte
Carlo studies since both transmissions and receptions involve balanced cross patterns.

All simulations were conducted for a one degree beam having a (2,l 1 (x)/x)2
pattern. The resulting error characteristics apply equally as well to approximate or

exact inversion methods. When translating the performance to small incident angles
where the antenna and surface polarizations differ significantly across the beam, then
one must assume that the inversions had been performed by the exact method. The
graphs of Figure 7.2 serve as a guide as to when the matrix method must be used.
Simulations with the other pattern functions yielded similar results and so are not reported.

7.4.2 Error Characteristics
The error characteristics for the recovery of <SvvSvv*? are shown in Figures

7.9 and 7,10. The results are shown For two phase conditions in which Ea t = ^ r = 00
and Ea t = E3 r = 90o, respectively. These two conditions result in extrernal error character

istics in which the maximum error results from one phase condition and a minimum error
from the other condition. The extremes are induced by a sign change in the

contribution from Re< Svv Shh* >, a dominant parameter. As shown by Figure 7.9

there is no difficulty in retrieving the dominant scattering coefficient <l Svv 1 2 > except
for a cross polarized pattern less than 10 dB beneath the vertical polarized pattern and

a large separation between <l Svj 2> and <I Shhl 2> . The weakened dominant pattern

results in less return power from <I S v j 2>. A further reduction occurs when <IShh 1 2 > and

< SW S hh*> are significantly weaker than <I SW 1 2 > . A similar result occurs when

0 t =01 r = goo (Figure 7.10). The error is slightly larger because the coefficient
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Re ,SvvShh*> causes a "negative" power contribution, resulting in an even smaller

resultant power. Recall that <SvvShh*> responds to the product pattern gghgh and
its sign is controlled by the sum at + or (See Equation 4-29).

The retrieval performance, when attempting measurements of < 15 hh [2 >, is
illustrated in Figures 7.11 and 7.12 for pattern phase conditions corresponding to I3t =

gr = Oo and R  = Pr = 900 , respec}ively. Since <[S hh 12 > is generally less than or
equal to < [ Syvl2 >, one can anticipate a poorer error characteristic. For the case

where Bt = Br = 00, the ability to recover < iShh 1 2 > is shown to be strongly dependent
on its separa, •--in from [<SvvS hh *>[ • Positive power contributions are made by both

< [SvvI2> and <SvvS hh *> . The resultant power in this case is excessive. When pt =
/3 = 900, the contributions by <SvvShh*> is negative and partially cancels the
<S S *> contribution. As a consequence, one may suspect that the latter -hosevv vv
condition yields a slightly better error characteristic. Comparison of Figures 7.11 and

7.12 demonstrates that this is the case. From either graph it is observed that when
< [Shh[2> is 10 dB lower than [<SvvS hh *>[ , the antenna cross polarization level must
be less than 30 dB for a error less than 0.5 dB. When the separation is 5 dB, the

antenna cross polarization level must be better than -20 dB. The latter is probably re-
presentative of the sea for angles of incidence up to 700.

The error characteristics for retrieving <I S vh 1 2> for the some two relative phase
conditions are shown in Figures 7.13 and 7.14. From Figure 7.13 it is apparent that

fine weakness of the scattering coefficient in the presence of cross-leakage makes it
very difficult to isolate. The ability to measure <[5 vh [ 2> is shown to depend strongly
on its depression from the polarized scattering coefficients as conveyed parametrically

by [,SvvShh*>[ . Figure 7.13 represents a worst case situation in which all the
dominant coefficients to include Re < SvvShh*> make positive contributions to the

return power. This situation is consequently useful for formulating a criteria for accurate
measurement of <[S vh I 2> . It has been common practice to judge the ability of an

antenna to measure cross-polarized coefficients by its one-way and in some cases by
its two-way isolation in comparison to the separation between the polarized and cross-
polarized coefficients. The graphs of Figure 7.13 show explicit 	 the antenna require-
ment. If a 0.5.dB accuracy is desired and if <[S vh [':-> lies X dB beneath [<SvvShh*>['
then approximately X + 16 dB one-way isolation is required. The above result indicates
that one must not only consider the polarized coefficients in making a Mgement on

an antenna but a complex valued coefficient must also be considered.
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It is apparent from the graphs of Figure 7.14 that if the phase of the leakage

pattern can be adjusted to 90 0 during transmission and reception, the level of

leakage is almost immaterial. In this case contributions by <ISvv 1 2 > and 
<IShh12'

are almost entirely cancelled by the contribution from Re < 5 vv S hh*>	 These results

show that if the phase of the cross leakage can be adjusted for Rt = 5r = 900 , the
stringent requirements on the cross pattern amplitude can be relaxed.

The error characteristics for Re < Svv Shh*> and Im < Svv Shh* > are shown in

Figure 7.15. Monte Carlo studies were performed to construct this characteristic. The
random deviations in amplitude (from balance) and in phase were uniformly distributed.

Maximum deviations are indicated on the graphs. It is apparent that the real part of
< Svv Shh* > is easy to recover. Phase perturbations have little effect on the accuracy.
The recovery of the imaginary part appears to be more difficult; but this is mainly a

result of its weak response in comparison to <I SvvI 2> and < I S hhl 2> •
The error characteristics for the cross-correlation coefficients < SvvShv*> and

<Svh Shh*> are all shown in the graphs of Figure 7.16. Both extremal phase con-
ditions are superimposed on the some plot. The graphs show that the real parts of the

coefficients are difficult to retrieve if Fa t = 5 r = 0 5 Similarly, the imaginary parts are

difficult to retrieve if = a  = 900 . On the otherhand, the imaginary part and the

real parts are easily recovered if Fat = $ r = 00 and ^ t = S , = 900, respectively. The
graphs also indicate that the ability to retrieve the coefficients is dependent upon the

separation of the coefficients from the real or imaginary part of <Svv S hh* " It is

again evident if the correct phase property is employed that a reasonable accuracy can

be anticipated.

7.4. 3 Alternatives
When the ideal antenna states as specified in Cha er 6 cannot be approximated

ra^isonably and if as. a consequence significant error is introduced into the measurements,
the experimenter has recourse to specifying the complete antenna polarization states he

is able to achieve. As long as he approaches the desired states and performs an adequate
number of measurements, he can be reasonably assured that inversions based on the com-

plete scatterometer equation will yield improvements in the estimates of the coefficients.
The inversion model should be tested to determine whether his system of measurements

is well conditioned. At least nine measurements must be performed unless one has prior
knowledge that some of the coefficients are negligible. In this technique one must re-
concile with making at least nine measurements; whereas if the beamwidth constraint
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is met, a single scattering parameter can be recovered with at most two measurements

if the antenna specification can be realized.

7.5 Evaluation of the Inversion Parameters

7.5.1 Introduction
Essential to accurate inversion of scatterometric measurements is the knowledge

of the actual antenna pattern, To form the integral weights for each scattering ca-
efficient, the pattern and phase functions must be numerically integrated over the main
beam and perhaps the first side lobes. Since pattern information is seldom available in

functional form, one is dependent on measurements. In measuring the pattern,, the question

arises as to what sampling density is required to adequately specify the pattern. The

sample requirement is derived on the basis of simple aperture theory. The results of
the theory are applied to the SKYIAB S-193 antenna fo illustrate the sampling require-

ment.

7.5.2 Derivation of the Pattern Spectrum

It is well known that the far field E of an aperture type antenna is related to
the aperture illumination function, A(x,y), through an inverse Fourier transform
relationship [19]

CO

	

E ( r 6,	 )	 K  ffA(  x ,y ) exp [j( kxx ^ kyy )] dx dy
_ 00	 (7_9)

where

KO
 = (jA r) exp (- jkr)

	

kx = k sine coso	 (7"10)
k  = k sine sinO

k = 2n/a
The relationship is considered valid for spherical polar angles 8 satisfying cos eZ0.9.

A is assumed to be a real function* so that the main beam of the antenna is located about

the positive z axis. Now it is convenient to rewrite the above expression in the form

E	 f,3 fn )	 K  ffA(  Eyn) exp j 27r ( f + fq	d^ dri
(7-11) .

* A uniform phase distribution across the aperture.
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where
f,= sin  cos
f^= sin9 sin	 (712) i

= XA

ri = yA

K 1= (i Vr) eXp (^Jkr)

The for field power pattern P is given by

G	 p { f9	 fn ) = KNEE	 (7-13)

j	 where K2 is a suitable constant. The Fourier apectrum rf P is given by

P ] = K2	 EE*	 (7"14)

or

K A * A	 (7--1 5)

where	 is the autocorrelation operator. Specifically

- ^ P	 K2 ffA(  to A( ^+a, ri+O dE dTI (7..16)
Y

and implies that the spectrum of the power pattern is proportional to the autocorrelation of
the aperture distribution and is therefore band limited for finite apertures.

For circularly symmetric aperture distribution a similar theory could have been
derived if the initial expression had been transformed to the Bessel ,Fourier integral.

'a
However, seldom are aperture distribution circularly symmetric, as a consequence, we
have a more general result.

7.5.3 SamplingRequirement
M

Now suppose that an aperture has maximum length x o and maximum height yo.

From the above result and the illustration in Figure 7.17, it is clear that the spectrum

of P is restricted to the product domain (xOA, _xo/X) x {y^A; "y^7 . By the sampling

theorem, Ce pattern can be specified uniquely if samples are taken at 	 i

{ 
f

' f71	 { 2x ^	 2n
^{	

J	 (7-17)

	

4	 Jp
d

y
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k

i1	 where M. n e .... -2r-It O r I r2r ...	 The above result can be written in terms of

6 and Y by means of (Equation 7-14). Specifically

V	 sin 8 cos 4) =	 ZIn	 (7"'18)
4

and

sin B si n (b =	 nA	 (7..19)
2y4

As can be easily shown the above relationships require that the antenna pattern be

sampled at points (6mn' Omn) satisfying

2	 2

8mn - sin ^ 1 2 ( x2 -r 2 ? z	 (7 -20)
y,

n	 xo0
mn = tan	

myQ	
(7-21)

in the principal planes the above sampling requirements reduce to

^m0 = sin-1 'MX	
(7-22)

0

in the "x" plane and

	

wl	 nABon =

	

sin-1
	

(7 23)

in the "y" plane. Between the planes in the pattern must be sampled in accord with

Equations (7 .22) and (7-23).

7.5.4 Illustration
To develop an understanding of the sample requirement, Equations (7-2Q and

(721) were evaluated for an aperture having a maximum dimension of 1.12 meters in

the x as well as the y dimension and illuminated at 13.9 GHz. The sampling points
for one quadrant out to approximately seven degrees in theta is illustrated in Figure

7.18. Sampl ing in the remaining quadrants is performed in an identical fashion.

It is noted that the sampling array forms a square matrix in polar.coordinotes where

theta is represented as the polar radius and phi as the polar angle.

105

i

1

i^

f i'



0	 10	 20	 30

AZIMUTH ( DEGREES

40

t p p ♦ • e B

s • s • r • s w D

• e m m s • •

+ • • o' ♦ o o e

• • • • • a s r • r

• • s • • o • e m

e a a • • • • • • r •

• • • • • e • o

90

80

70

60

50

0

2

CiJ 4w

A 6V

FIGURE 7.18 SAMPLING POINTS FOR A SQUARE APERTURE

1.1 METERS BY 1,1 METERS OPERATING AT A WAVELENGTH

OF 2416 CENTIMETERS	 1

106	 i



The above results are representative of the sampling requirement for the 5-193
antenna (121. Although, since the physicv.1 aperture was under-illuminated, the
above result is a very conservative sampling density. A description of a program
which computes the sampling points when given the aperture dimensions appears in

Appendix E.



?	 I	 i	 I	 I	 I	 I	 I

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 General

The scatterometer equation was derived for scenes whose mean plane is flat
and for an antenna having an arbitrary polarization. Ten scattering coefficients were
identified for scenes not satisfying reciprocity and six were identified for scenes
satisfying reciprocity. Some of the scattering coefficients were demonstrated to be
complex valued and were shown to impart a relative phase between the vertically
and horizontally polarized scattered components. As a result of the complex valued
coefficients, the definition of a scattering coefficient had to be generalized. A new
descriptive notation for the coefficients was suggested.

As a consequence of I inear i ly scanning the scene to obtain a spatial average,
it was demonstrated that the scattering coefficients must satisfy Schwartz' inequality

j< SijS*1>12 <	 <lS^ j l 2 > <jj 112>	 (8-1)
where i, j, k or I = v or h. This naturally implies that equality is assured for the
polarized and cross-polarized coefficients. However, equality should, in general,

not be anticipated for the cross-correlation scattering coefficients. It is this feature
which distinguishes coherent and non - coherent scattering coefficients. As a result of
this inequality, scatterometer returns can be partially polarized, Furthermore, the

inequality also implies that one cannot employ the properties of the (coherent) scattering

matrix to describe non-coherent measurements. For a coherent target five independent
parameters (from the Fcattering matrix) are required to describe its scattering coefficients.

However, a non-coherent scene requires as many as nine independent parameters.
The scatterometer equation under the reciprocity assumption was extended to

account for the difference between antenna and surface polarizations. It was
illustrated that the difference in polarizations was significant only a, nall view angles
for narrow beam radars. The effect of misalignment can be minimized by reducing the
beamwidth as one approaches nadir as illustrated in Figure (7.2). Minimizing the mis-

alignment is important if an experimenter wishes to compare his measurements with

theoretical predictions which are invariably reported with respect to the surface
polarizations. It is shown, for example, that a cross polarized measurement at nadir
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cannot be interpreted as an attempt to retrieve `-'l  Svhl 2 > as defined with respect to

the surface polarizations. In view of the difficulty in interpreting measurements at
small angles with respect to the surface polarizations, it is recommended that the
nadir region be probed in an asymptotic sense with a very narrow beam antenna when
scattering parameters are to be reported with respect to the surface polarizations.
When a scene has an anisotropic behavior at small incident angles, it is particularly
advantageous to report parameters in this fashion.

A measurement and inversion technique was proposed to measure all nine
scattering parameters. The technique was formulated without regard to the distinction

between antenna and surface polarizations. Since the difference between the polar-
izations is negligible for narrow beam radars at c',l but the small view angles, the

formulation without alteration is valid there. In addition, it was shown that the
system of measurements (antenna polarization states) is sufficient to retrieve all the

parameters at small incident angles under an isotropic surface assumption if the inversion
is based on the extended formulation, i.e., accounting for the difference between
antenna and surface polarizations.

The computer simulations based on the above technique demonstrated that the

dominant scattering parameters could be recovered with modest realizations of the antenna

polarization requirements. However, retrieval of the weaker scattering parameters, as

shown by the simulations, requires more careful adherence to the antenna polarization
requirements. Cross polarized leakage in the case of linearily polarized transmissions

or receptions causes the antenna to couple to the dominant scattering parameters. The
leakage results not only in coupling to the real valued coefficients but also to the
complex valued coefficients. The degree of coupling depends strongly on the relative
phase of the leakage as well as on its amplitude. For scattering characteristics similar

to that of the sea (where < S.vv Shv > and <SvhShh*> are considered weak), strong

undesirable contributions can be anticipated from < I SvvI 2> , < I Shh 12 > , and
<SvvShh*> , as demonstrated by the simulations. For a scene having randomly oriented

linear re-radiators such as vegetation one can anticipate not only strong contributions
from the above coefficients but also from <SvY Shv*> 'r <Svv Svh*> , <SvhShh*> and
<5hv S hh*> • All four scatter ng coefficients have been cited to emphasize that the
scattering processes are differe it although under the reciprocity assumption there are

only two independent coefficients.

It is evident from the simulations that whin only the amplitude of the ortho-

gonal leakage is known and not its phase, stringent specifications on the amplitude
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are required to achieve, say, an accuracy of 0.5 dB for the weaker coefficients. This

is illustrated when < I Svh l 2> is to be recovered from scenes having weak cross-correlation
coefficients <Svv Shv*> and c Svh Shh*>2. When it is suspected that < I S vh l 2> is X

dB beneath the geometric mean of < i Svv! > and < !Shh >, then the permissible level
in the cross leakage is -(X + 16) dB. On the otherhand if the phase of the leakage can
be adjusted so that it is at or near 90 0 (or it is known to be near 90 0) during transmission

and reception, then the amplitude specification can be relaxed as demonstrated by

Figure 7.14. For scenes in which Re <SvvShv*> and lie <ShvShh*> are dominant,

this same phase condition can minimize contributions by these terms in the case of
cross-polarized measurements. This may be concluded by an examination of Equation

(4-29) .
Although the assumed scattering characteristics reflected a wide latitude of

conditions, the error characteristics generated here are by no means exhaustive. The
retrieval accuracy to some degree is dependent on the assumed scattering characteristics.

For example, 
<S vv Svv*

 > and <Svh Shh*> were assumed wear and their error character-
istics reflected this weakness. It is recommended that simulations similar to those report-
ed in this effort be conducted whenever significantly different scattering behaviors are
encountered. The antenna specifications can be established on the basis of these
simulations. One may employ the program described in Appendix D in which case sub-
routine SIGMA must be replaced with a subroutine that will compute the scattering
parameters of interest.

It is evident from these efforts that there is a fine opportunity to extend the
three standard measurements to nine measurements. When the distinction between

polarizations is not important,* any combinations of measurements can be selected to
isolate particular coefficients. It is intriguing to consider certain combinations of
measurements to observe soil moisture, crop maturity, etc. From small perturbation
theory there is evidence that the cross-correlation coefficients may contain additional
information on the dielectric property of the scene when compared with the auto-

correlation coefficients. The comparison of like and cross-correlated coefficients may
be the key to distinguishing dielectric effects, say in agrarian scenes, from volume

roughness effects.

This can always Le aci,:avPd at all view angles except nadir if the beam is
sufficiently small,
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The above results also have an impact on emission theory and radiometer measure-
ments. It is clear Mat the backscatter coefficients employed within this effort can be

extended to the bi-static case. As a consequence, we may address emission theory
from the aspects of bi-static coefficients as Peake [24] did. Generalizing Kirchoff's
radiation law, Peake has shown that the definition of emissivity, when assigned
standard surface polarizations, may be related to the bistatic differential scattering
coefficients in the following way

ep = 1 -	 (<IsPP I 2> + <ISpg 1 2
>) do	 (8-2)

p ^ q

where the integration is performed over all incident angles. The corresponding bright-

ness temperatures were given as

	

Tp = e  TS 	 (8-3)

where Ts is the physical temperature of the emittitnS surface. Peake's formulation for

brightness ignores the possibility of correlation between emitted components. When

correlation exists between the components, the concept of brightness temperature must

be extended as shown by Ko [471 . Ko had shown that an emi ion of total brightness
(intensity) B 0 and with a normalized coherency matrix p can be ,regarded as a unique

superposition of two coherent oppositely polarized emissions, i.e.,

Paa	 Pat	 Pia	 Piz	 Pii	 Ail
Bo	

Pea	 P22.	 —	

l31	

P21	 P221{
	 32

	 ii	 Piz

where

Pia =	 Pia

Pie =	 —Pza

Pza =	 —Pi2

Pat =	 Pii

Pia +	 P22	 =

Pia {	 P22	 —



Temperatures are assigned to the brightness according to the Rayleigh-Jeans law

	

Ti = B  A2 	 (8-6)

Arbitrary measurement of this emitted field, say, with any two orthogonal polarizations
will not necessarily result in any unique temperatures. The correlation between emitted
components plays an important role in defining the brightness temperatures. Within the

context of 6i-static theory, the cross-correlation coefficients <Svh S hh *' ' <SvvSvh*>'
<Shv Shh* >'< SvvShv*> and < SvhShh*> establish this correlation. For some surfaces,

the first three coefficients are not important unless the emissions within the radiating
body are correlated. Under this circumstance the correlation is governed by < SvvShv*>
and <Svh Shh*> , i.e., by the correlations which the emitting surface induces. These
cross-corre lotions for the sea are assumed negligibly small . The brightness temperatures
are, therefore, given by the vertically and horizontally polarized emissions and the
correspondinq decomposition into coherencv matrices is g iven by

Pii	 P12	 z 
ri	 0	 2 0	 0

B4	=	 kTVA	 + kTl^/A	 (8-7)
p21	 Azz	 0	 0	 0	 i

For an agrarian scene the above simple decomposition may not occur at al l, since

multiple reflections are likely to induce correlations into the emissions internal to the
radiating boundary and because <SvyShv*> and < Svh S hh*> are not negligible.

Therefore the brightness temperature concept must be altered for agrarian scenes.

8.2 Final Remarks

The above observations as well as the developments in the earlier chapters
indicate the importance of having derived the complete sco t-Mrcmeter equation and in
particular having derived it in the framework of coherency theory. The interaction of
the transmitted fields with the scattering surface was expressed as a transformation of a

coherence matrix (Equation (4-41)). Interpretation of the scattered fields from its
coherence matrix imparted meaning to the cross-correlation scattering coefficients.
The complete scattering action of the surface, when interpreted in the context of

emission theory also enables one to interpret the coherency properties of microwave
emissions. The reception of scattered or emitted fields is also expressed as the product
of two coherence matrices.
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Althou-jh a fuller interpretational basis lies in coherency theory, practical

application of the theory has led to a technique for measuring 711 six scattering
coefficients. The measuring technique was evaluated for practical antennas. As a
result of this evaluation it becomes apparent that measurement standards or standardized
reporting procedures or both should be instituted. There is also a ciear need to dis-
tinguish scattering parameters reported with respect to the antenna polarizations from
those reported with respect to the surface polarizations. The measurement of weak

scattering coefficients requires stringent realization of the antenna polarization require-
ments. The documentation of the antenna transmission and reception property must be

complete, to include amplitude and phase properties, to validate a measurement. Until
such a procedure is followed it could be erroneous to report, for example, "cross-
polhrized" measurements as cross-polarized scattering coefficients. To assist the ex-
perimenter it is also clear that a program should be initiated to develop a scatterometer
antenna which is capable of meeting the antenna specifications for most if not all the

scattering parameters for a variety of scenes.
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APPENDIX A

I Correlation and Cross-Correlation

Products from Kirchhoff Theory

1.0 INTRODUCTION

The scattering and coherency properties of a finitely conducting random
surface satisfying the Kirchhoff approximation are investigated within this appendix.

The expressions for the polarized scattered fields in the plane of incidence. Qre
specifically derived for both vertically polarized and horizontally polarized incident

plane waves. The scattered fields are derived under the assumption that the surface
slopes are small. (Only zero order and first order slope terms are retained within

the derivation). The resulting expression is specialized to the backscatter case to

derive the self-correlation and cross-correlation scattering coefficients. The angular
coherency of the scattered fields about the backscatter direction is also considered.

2.0 THEORY

2.1 General

For a plane wave E  incident with direction n  on a gently undulating finitely

conducting bounded surface Fung [36] has shown that the for field scattered in direction

n  is given by

E S = Kn S x	 rnxE - 7)n S x ' (nxti) I e	 S	 dS (A_1)

where	 -,j ke 
-jkR

K
4rrR	

(A-2)

R = distance from the surface to the for field point
A = position vector from an origin local to the surface to a point on that surface
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1	 :	

nxE -	 (I+R n }(a•f i }(nxti }- (1.- R V ){n . ni )(a.ai )fi I'Eo I (A 3)

nx;i	 -	 {I+R V (a-di}{nxf	 (I-Rn}(TIT )- i] IEo I	 (A-4)

3 (mot- ^• P)	 (A-)
E	 --	 E a e	 `

	

ki =	 kni

k - 27A
nix-

ti = f
1 xf I

Ti .. nixTi

71 = intrinsic impedance

Rvah = Fresnel coefficient for horizontal (vertical) polarization

The geometry associated with the scattering problem is illustrated in Figure A-1.

fi, dj forms an orthogonal triad of vectors at each point of the random surface.

The plane of incidence coincides with the y - z plane. Now expanding the terms

Figure A-1. Scattering Geometry
Z

within the integrand we have

n	 - I	 (	 }(-.) { n t )nj	 _ =n • n i -5 x(nxE)	 I	 I+R	 aT

	

Q	 h	 j	 S. 1	 ^ S	 ^ ^l

	

( I-R V ) (n• n i ) {a •ni } (n^ xti }	 (A°'6)`''
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and

-'qn sx(ns x( nxH )) = IEJ 
I

	 - ( n s•n)n s kt i l -

	

(n•ni )(I - Fh )(a •Y
i i ^ 	

(A 7)

where a radial component was dropped under the far-field assumption. Now restrict

observations to the plane of incidence so that

ns = sines sins I  + cos es I 	 (A-8)

with Ŝ = -ff/2 or -n/2, depending whether the forward or back scatter quadrant is, re-

spectively, chosen. Denote

n i = sin e i i y - Cos a z	 (A7)

where ei is the incident angle. Now it is easily shown that r61

ii =	 [(sin ei-Cos 0i z y ) 
x + Cos 0 i Z x i y + sin aizxiz] /D, (A -10)

and

	

ai = CZxix + cosei (cosei Zy -sinei } i y 	sine ( co seiZy- sineiJiz /DI

(A-11)
where

D	 - Zx + (sine i -CosaiZy)2	 (A-12)r

Z	 r Z( x,y)

az
zx aY= 8x:,y

Then

t	 = {sin g sin¢ cos e. + cose sine •.) . Z /Ds• i	 s	 s	 z	 s	 x	 I

6 n•rii	 - - ( sinei Zy + Cos ei)/D2

ns- n	 = (coses - sines sinos z )/D 2 	(A-13)

nsxti

	

	[(sin es sinOssin ei -cos es cos ei ) Z x 1 x + cos eG (sin ei -cos 0izy)iy

sines sinOs (sinei -cosei Zy )i z /D1

ns xn	 -	 {sine s sin as + Cos 8S zy }ix - Cos aS z xiy + sinessinOsZxTz]/D1
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a-d. = (sinei -cosei?y)/3^

and

where

D2 = I+z2+Z2	 (A-14)

2.2 Horizontally Polarized incident Wave

Suppose a 3 x , i.e., the incident wave is horizontally polarized. Then

	

a•t i	_ -(sinei - Cosa Zy )/ D 1/2	 (A-15)

and

	

a • d7	 - -Zx / DI /2	 (A-16)

The horizontally polarized field scattered in the plane of incidence may be shown to be

given by

	

E s ' i^	 = K	 Ihhexp [i k(n s - n i )•P] dxdy	 (A-]7)
5

where

10s = -sin0six	 (A -18}

I h h = sin0s [ 	 + (I-R h )(cosysine i Zy )] JEoj
(A-1 g)

Only terms to first order in Z  and Z  have been retained. To the same order it may be

shown that the depolarized component is zero, i.e.,
Es• ie = o	 (A20)

2.3 Vertically Polarized Incident Wave

Suppose a = -cosG y - sin8 ii z , i.e.. a vertically polarized wave is incident

on the x y plane. Then

a•t i = -Zx/DI	(A-21)
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The vertically_ polarized scat: erect field may be shown to be given by

Es. ies = K	 Ivvexp[,jk(ns-ni)- P]ds 	(A-23)

whe re

	

i es = coses sinyiy - sinesiZ 	 (A"24)

I	 = sink [(1+Rv)(coses-sinessin  0 Z) + (1-R }(case. + sine.Zvv 	s   	 s y	 v	 i	 3 y	 o

Only terms to first order in Zx and Zy have been retained in Ivv . 7'o the some oA5).

may be shown that the depolarized component is zero, i.e.,

S*
• i	 = Q	 (A•-26)

2.4 Linear Approximations for the Reflection Coefficients

It is necessary to understand that the reflection coefficients are functions of the

local incident angle and are therefore functions of the local slopes, Z  and Zy . For

small slopes we may approximate R h and R  I inearily by

Rh' v(Zx,ZY) 
= 

Rh'v(010) + 6Rh.v(010) Z + Uh 
v(010) Z

Y	 (A"27)C)ZX X aZy

Now the relation between the local incident angle 6' and the local slopes is

E	 cos e' = -- ǹ i . n	 (A-28)

or

	

_ [Zys i n ei + co s ei] /D2	(A-29)

The derivatives within the linearily approximated reflection coefficients can then by

the chain rule be written 
aR	 aR	 "'

aZX'Y
	 $®'	 aZx'Y

An evaluation of the derivatives yields

aRh	- 	 2siro?h ( et )	 .

Z =Z =0
x y Fsiry
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ii

i

	 UV	 -2 ersi n ei Rv (ei }

30` Zx=Zy-OEr; singe ; { ercos 2e i -sin2e i }

(A-•31)

aZx ZX Zy=o
I

a a'	 ^z
azy 

ZX=ZY-o

It has been recognized in the above expressions that W = e  when Z  = Z y 0. We

finally have the approximate expressions

2e sine. Rv ( e. )Z yRv(ZX,Zy) = Rv(ei) +	 r	 (A-32)

•	 7-sin'OI(e  os2e;-sin2ei}

and

.	 .
Rh(ZX,Zy) ^ RO }	

zsineR ' h (e i ) Z y	 (A-33)

je-.^-sin2ei

2.5 Partial Evaluation of the Field Integrals

The evaluation of the polarized field expressions requires that integrals of the type

Intg	
ffZY exp

 [j k(ns-ni )• p]dxdy	 (A-34)

be considered. By employing an integration by parts technique, specifically by letting

dv = exp[jk(cos%+cosei)Z]ZYdy	 (A-35)

and

U = exp[Zk ( si n essin0s -sine. )y]	 (A-35)

we get

Intg =v 
oundary 

dx - N
S

exp IJ k( ns -ni } • p I	 (A-37)
^

l23

9

t

is
r

i

iE
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f{E[f

	 '

f Where
sinesslnos- sinei

S	
(A-38)c	 cos Ycos ei

The first term is identified as the edge effect and may be neglected.
When the above results are incorporated in the field integrals we can write a

unifying expression

i

	

Ej (as,e) _ - K Bj I (n s an i ) Eo	 (A 39)

where

I M
ff exo [j k (ns - ij )-p] dxdy

B.s aRj	 s ^RjW szn	 {Z+R^- c dZ )cases - (1-Rj+ --)cose. - [(I+Rj)sin%sinOS
* -	

s	
y	 az^	

(A-40)
(I Rj )sinei ^

EJ u=v or h) denotes the like polarized field component when a jth polarized wave of

amplitude E  illuminates the surface. The reflection coefficient and its derivative are

evaluated at the incident angle.

3.0 THE SACKSCATTER COEFFICIENTS

Now specialize to the backscatter case. Specifically, let 95 = ®i and 9s = - ^2a

Then

Ej(e,i, -) = K B11 ( - -n i ,n i ) Eo	 (A-41)

where
(A-42) i

The differential scattering coefficient employed in this effort is given by

<EjEk> R2

<S33Ske
	 x	

(A-43)

I E6 1 	 Acos ei
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where A is the i lluminated area. Consider the ratio of the intensities

CE-E >

fEo1
where

	

<1I*> =	 J exu [-32ky(Yl-Y2)1<exp[j2kZ(ZI-Z2)]>dxadx2dx2dY2

icy = ksinei	 (A-45)
kZ = kcos 0 	 (A-46)

Suppose that 
Z  

and Z2 are joint gaussian variables with zero mean, variance a2 and

correlation A(x l , x2 , y l , y2). Then it is easily shown from the characteristic function

properties of gaussian variables that

<exp LJ2k f, 1 -Z2)]> = exp[-4kz2c2(I-A)]	 (A"47)

Now transform the resulting integral to the center of mass coordinates. Let

U = x1-x2

V = Y1—Y2

X
2 

= x	 (A-A3)
^ 2

Y2 = Y2

The integral then can be written as

	

< II*> _	 ffff exp [ j2kyv] exp [-4kz2 a2 (1-A)] dedvdx 2dy2 	(A-'49)

Further transform the integral to cylindrical coordinates where

U = pcose

V	 psing	 (A-50)
x2 = pcos

Y2 = psin C

E^

i

i

I¢
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If it is further assumed that the surface is statistically stationary and isotropic, then

<IT*> = G (P)G(P) exp j j2kzsinepjexp [-4kz2 a•2(i-A(P)] P dpd fpld#dC
ffff (A-5 1)

where G (p) is a gate function describing the limits of the illuminated area. Specifically

1	 if p< A/Tr
G( p ) = Q	 if p > A/7	 (A"52)

where A is the area of illumination in the mean plane of the surface. Now recall that

2n

	

exp(±jasine)de= 2vJo(a)	 (A„53)
0

The integral . wi I I then reduce to

c'<TI*> = 27rA f G(P)exp[-4kz20,2(1-A(P)) ) Ja(2ksineiP)CdP 	 (^'S )0

Ari asymptotic evaluation of the above integral for large ly yields

-tan2Y&2
T

2k%2cos26i

where a2 / p"(0) has baen identified as the slope variance m2.
Combining the above results it is clear that

*^ -tan2ei/2m2

<S
jjSkk> =	

Bj Bk a	
(A"56)

32TTM Cos3ai

where j, k = v or h.



4.0 THE ANGULAR COHERENCY OF THE SCATTERED FIELDS

i
At this point consider the mutual coherence function

(e, , 021 Os ) = CE i ( e1 Os ) E j ( e2' Os ) >	 (A-•57)
i

where i(j} = v or h. The coherence function denotes the cross-corre lotionbetween two

field components scattered in the plane of incidence at scattering angles 6 I and 62 with

a common range R. The expectation is an ensemble average over all random surfaces

satisfying the Kirchhoff approximation. Now in view of (A-39) the coherence function

can be written in the form

Eij = jEokE 
2 C i

ffff<ejtp[jk( 'ff j - R j ) ' jF1 -(7i 2 -ni}.p2>dxldyldxZdy2

where	 y

C B --	 g3 gk	 (A-59)

Now transform the center of mass coordinate system where

	

U = x1-x2	
(A-60)

v - y1-y2 i
Also let E)	 9i and 62 

= 0. + 46 where A9 is a smal l deviation from the backscatter
c

direction. We have

-2(sin9.y + cos9.Z )	 _( 1 :) Al	 t 1	 i 1	 (A ^1}

(^2-ni )•F2 -	 ( - 2sinei + Aecose i )y 2 + (2cosoi- Aesinei ) Z Z

Now for a gaussian random surface having a surface height characteristic with zero mean,

variance a and correlation function A, the expectation within the integral becomes

E	 > = exp[- j2kyv+jk Z Aey 2 j exp[-ky 2a- Ae2 /2 ] exp[-4kZ2a2(1 -R)l

The integral then can be written as
j	 I

	Intg = exp [-ky2o-2 Qg2 /2]	 exp [-j2kyv + j kZd9y2]•

(A-63)
exp [4..x2a2(1-A)] dudvdx2dy2

127

I.

t



Now transform the integral expression to cylindrical coordinates by letting
U = Pcos,;

v = Ps i n e	 (A-64)

X 2 = P'COse

Y2 
= Psi n6

Then

2	 x

8jk(0 i1 0 2 }	 _ 1 KI 2Cjk JE o iuxp(-kya A02/2)Intg

where	 (A-65)

Intg = ffffG  (P)G(p')exp[-j2kysinfpJexp[jkZABSinCP')

exp [2k Z 2 Q2 ( I- A(P) )] P dP dfp dpdC	 (A-66)

and where it has been assumed that z is stationary and isotropic. G(p) is a gate function

defining the region of uniform illumination on the mean plane. Using Equation A-53

twice, we can write the integral as

Intg = (2rr)2III2	 (A`67)
where

k	 II	 = fG(P)J.(2kyp)  exp [4k Z 2 ar2 (I-A)] P dp (A-6g)

I2 = fG( P)J.(k z  AeP)P'dP'

For a circularly illuminated area of radius Ra the latter integral can be evaluated to

get

I2 = RpJinc(k ZRo a) 	 (A-69)

where J i nc (x) _ J I (x)/x.	 As a consequence, for a circul ar region of,area A

i	 we have

Le= 4 A IK(2C^kexp(-*%

(A-70)
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' R	 Now normalize the mutual coherence function in the following fashion

P-r  
k= 3 k 47rh o	E 2 Acos oi)	

(A-71)

P
t

Now recognize that for smal I d 6

15 k ss 2exp(- Esy 2v2Q9 2 	 ^/2)Jinc (x)4S i S k >

where x = kzR0 6. (See equations A-43 and A-54). , The degree of coherence or

correlation is consequently related to the mutual coherency function by

D= rJ'/(47r<SiiSkk> }	 (A-72)
or

2 exp(-k2a2A0z/2)Jinc(kZRoAG)

Consider the character of the degree of coherency. Except for extremely large

ko'values the exponential term contributes negligibly to D at small incident angles.
The decorrelatibn is consequently largely governed by the Sessel function for small
incident angles. D vanishes at the zeroes of Jinc. The first zero occurs where

AM0 cosO	 = 3.832	 (A-73)

The corresponding angular separation is given by

ao = 3.832/kR0cosO	 (A°74)
Suppose k = 291 (f = 13.9 GHz), Ro = 10 meters and e = 250; then decorrelation occurs
when 46 = 0.00146 radians or at -08 degrees. It is concluded that radar returns de-
correlate rapidly with changes in view angles.

At large incident angle (grazing angles) the exponential factor will pre-
dominate. This result is physically reasonable since the surface roughness predominates
the view; whereas at small angles the area of illumination as conveyed in Jinc is the
dominant factor.
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APPENDIX B
The Scatterometer Equation Within
the Context of a Scattering Theory

1.0 INTRODUCTION

•	 The scatterometer equation is once again derived within the context of a
specific scattering theory. The structure aisd meaning of the formulation, as a
consequence, readily becomes apparent. SpeciOcally, the angular correlation
assumption is shown to be equivalent to the non-ccherent property of scattering; the
relation between scattering operator and the scattering coefficient is clarified also.

1.1 Derivation and Discussion

Silver [19] has shown that the far field radiated in the direction rn s from a

bounded closed surface S having surface excitation and H is given by
•	 _j k
E5	a-i kR 

nx
ff P x E - rl n S x (n x H ^^ eJ kp ' ns ds41TR	 S

In_ 41

where
R = distance from the surface to the for field point

F= position vector from an origin local to the surface to a point on the surface
W = surface unit normal
k = 27r/2L

= intrinsic impedance
The geometrical entries of the above expression are illustrated in Figure B-1.
Suppose that the surface is smoothly undulating and perfectly conducting. Then under

the Kirchhoff approximation the tangent surface fields are given by

n x E " 0	 (B-2)
and

nxH = 2n x Ht	(B-3)

130

i

jI	 ^

f

r	 .

If
I[

{	 ^6

r^



x

FIGURE B--1 GEOMETRY FOR SCATTERING INTEGRAL

Z.
i

1

I



_ I 	I

where t is transmitted field incident on the surface. The scattered field., therefore,

simplifies to

j kn	 kR	 _
E=

S 	
27fR • 

a-3	
S

n x	 n
5, 

X ( ►̂  X ht) e^ kp•n : ds	 (B-4)

Now when specializing to the backscatter case we can write

	

5  X ( R  X ( 6 X ^t )) = - ( n S • 5 ) 5  X Ht 	 (BMB)

so that

-j ke-i kR
ES _	 ( n S	n) Et e,7 kp ' ns ds	 (B-6)

27'R ff
where for the backscatter case

.Et_ nns xHt 	(67)

In beginning with the far field expression we have in effect anticipated the use of a non-
coherent assumption since in scatterometry one would not necessarily be in the far field

if the entire scattering aperture were coherent.
Now the spherical incident field is denoted as

E - -^ K : ,Et e,I ( wt - kR)	 (B-B)

where

K WIo i t//47rR	 (B -2)
i t = antenna input current

Y complex effective height vector of the antenna
The range R is measured from the antenna as illustrated in Figure B-T . The spherical
wave can be approximated by segments of plane waves each illuminating a patch of the 	 '	 1

surface. In addition, the incident field amplitude components as conveyed by L t may	 ^ f

be considered constant on a given patch. Suppose the entire illuminated surface is

segmented. into N patches. Then the incident field on the mth patch may be approximated
by

E= -j	 l-tm e
J( wt - kR + k p .n	 )	 (B -10)

tm	 m	 m sm
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where
R	 range to the centroid of the mth patch

i	 m = position vector from the centroid to a surface point in the mth parch

nsm - unit vector in the backscatter direction for the mth patch
i

Km= w^ i t/4 Rm

Now from Equation (B-6) we note that the backscattered field for the mth patch is

given by
k 

^n

e --j 2kRm

ism	 27rRm	 l"tm	 (n • n sm } eJ 2k 5-n- sm 	 ds
S	 (B-11)

m
The integration is performed on the surface within patch m.

Now define the scattered field per differential steradian subtended about the

antenna as 1	2
_	 ism Rm	 (B-12)

sm	 AAm cos em

where-AAm is the area of the mth patch in the mean plane of the surface and 0m is the
incident angle on the mth patch. The scattering operator employed within Chapter 4
may be identified with the above expression, viz.Y

'$vv (gym'm )	 i i m	 E sm	 8m 
4 R

	

j	 (B-13)QAm->0 -, Km 1_ t	 m

4 7r R
;hh ^m ^^m )= 1im	 ism ^

 m

AAm-}0 -j K 
m 

1
htm 

e-a kRm

where

	

lvtm t iam	 I(B-14).

1 tm Lt ism'

The inner products above isolate the vertically and horizontally polarized components as

defined with respect to surface. It is appropriate to denote-.,g as an operator since it
pp

must recognize the phase of the incident field relative to the centroid of the patch.

Whether these differential scattering operators exist is not important to the development

within the appendix. However, within the main text they are assumed to exist at least
s

in approximate form.
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Within the context of this theory J  
=,Jhv ` 

0. This is simply a statement of a well
known result that a smoothly undulating perfectly conducting surface does not depolarize
the incident field. In general, the latter operators are not zero. The above increment-

al field is defined so that the total field at the antenna is given by
N

Ea = E ^Sm OSZm	(B-15)

or in the continuum limit
Ea = f 

'TS 
dQ	 (B-16)

It must be recognized that the antenna does not respond to the total field, a
quantity often computed by the theorist. Instead the antenna responds so that the open
circuit voltage induced into the antenna terminals by the mth patch is given by

AV 0C = tsm ' Lrm Apm	 (B-17)

where L.rm is the complex effective height vector in the direction of the mth patch

during reception. The total induced voltage is clearly approximated by
N

V 0 = E1 E 
sm	 rm An 	

(B-1$)

The average power available under matched conditions at the antenna terminals is given

by the ensemble average

W 	 =	 < j Voc , 2 	 (B-19)gRr
or	

N N
r	

8R , E < ism * brm Esn * L rn > An Ag 	(B-20)
n

where R  is the radiation resistance of the antenna during reception.

Now the scattered fields and effective heights can be decomposed into polarization
components coinciding with the surface polarizations, viz.,

and ism smv em + ^smh ^m	 (BR21)

	

Lrm = 1vrm 
i 
em + 1 hrm m	

(B-22)

I

I

I	 -.
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< i sm	 i -M ism° 
I"rn ' ` ( ^vsm vrm + 6hsn 1 hrn ) ( 6vsn 1 vrn + hsn hsn } >

(B-23)
or	

tr M
rmn smn	

(B-24)

where

	

< vsm E vsn '	 < vsm hsn >
(B 25)

	

smn	
< hsm 9 vsn >	 < hsm E hsn '

and

^vrm ^vrn	 ^vrm ^hrn

Mrmn r	 (B-26)

^hrm ^vrn	 ^hrm ^hrn

are identified as mutual coherence matrices. The mutual coherence matrix for the

scattered field is composed of elements correlating fields arriving from patches m and

n or equivalently from different angular directions (6m , 0m) and (en . 6n). Now within

Appendix A it is shown it is reasonable to assume, on pragmatic grounds, that returns

arriving at different view angles from the same patch are uncorrelated. The assumption
is exact in the geometric-optics limit. It is even more reasonable to assume Mere that

fields arriving from different angles are uncorrelated since they arise from different
patches. As a consequence the mutual coherence matrices have the special property

Nlsjk = 
N$jj ajk	 (B-27)

for every jk.	 k is the Kronecker delta and

` 
l e

	

VS j 2'	 ` ^vs'j ohs j. >

Nsjj

	< E hsj vs j >	 < I^hsj I 
2 >	

(B-28)

The non-coherent assumption, consequently, allows us to write the received power in the

form	 N	 N	 T

W = 1	 tr tom.. (	 Mrjk Sjk ^S^'k ) Nsjj 
oszj
	 (B -29)

	

r	
$pr	 j=1 k=1
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or

8Rr
	 tr Crj ( 

Nsjj Anj	
Anj 	 (B-30)

where

Crj r Mrj j	 (B-31)

is the coherency matrix for the receiving antenna in direction (9,, 0j) . Now expanding

Nsi! dnj, we have

4 k2 ^KI2R2	
Bjvv	 Bjvh

5^ j

	

N	 Mj =	 (B -32)
{4^r) 2 AA  Cos 8j	

Bjhv	
Bjhh 

	

where - 1	

1*^3	 < (n	 ns3 } ( n' ' ► Si ), Cj2k[R-5sj - _P-Es j ] >.	 > dS dS''
B

3A9	 P a q	
(8-33)

S.

From the above expression we note that the. incident field complex amplitude components

Avt and I ht have been separated from the scattering integrals. The relative phase

between incident amplitude components is retained in the products I ptj lgtj*. Now the

non-coherent differential scattering coefficients per unit steradian for the jth patch is

defined as

. pp Sq9 >	
(41T)

r	
4k2

2 	 ('•"s )(n'• " s' ) ej2k ^p•ns
	 ^^ *nsjj > dS dS'

_	 (B 34)
Si 

(See Equation (A- 43)f Appendix A). As a consequence we can write the coherency
matrix for the scattered fields based on intensities per unit steradian in natation similar
to that of Equation (4-16) of Chapter 4. We have

CS 
j	 NS j j An 	{$ 35)

Or

` I SvvI2> J1 vtj 12
	

Svv S hh > 1 vtj 1 htj
Kj'

Svv Shh' 1 vtj 1 htj
	 <IShh12> 1 1 htj 1 2

(B -36)
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1	 We have shown above that the elements of the coherency matrix change units
a	after the non-coherent assumption has been applied to the double summation. The

return power can now be wtitten as
N

is	 W - 8R	 tr Gri C S j A923	(8 37)

	

r	 j=1i;.
or upon tap ing the limit of the sum as And -A-0, we get an integral approximation

1
F	 8Rr	 tr Cr CS dQ	 (B38)
k

where the above equation has a form identical to that of Equation (4, 13) of Chapter 4

i	 when,3vh 0'

i



APPENDIX C
Correlation and Cross-Correlation

Scattering_ Properties of a S1 ightly Rough Surface,

1.4 THEORETICAL DEVELOPMENT

For a Plane wave incident with angle 19 i in the x , z Plane on slightly rough

surface, satisfying the requirement

(k (Ycosal)2 «I,	{C-1)

where a2 = surface height variance and k = 2n/a, the solution for the scattered fields is
expressed in a perturbation expansion of spatial Fourier components [ 32] [33] [34] [35] .

The Fourier components are interpreted as an angular spectrum of plane waves. Suppose,
the spectral -components are denoted as A V x(k , k ) where

kx = ksinOscas(Ps

ky = ksin ssiOs	(C-2)

p`x,y.z

Figure C- I. Scattering Geometry
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when a vertically polarized plane wave illuminates the surface and as A h(x,y,z) when

*	 a horizontally polar ized plane illuminates the surface, (See Figure C-l). For either

case the electric field Epg at point (x,y,z) is given by an inverse Fourier transform re-

lationsh ip

'	 r 	 r	 J (l<xx a- !<YY - kz z }
Ep -
	 ff Ao 

rLx 
ky } e	 dkxdkY

7') 
2

(2 (C°)

where k2  = k2 - k - ky a Thes uperscripts denote the incident polarization wherec:s

the subscripts denote the scattered Cartesian components (EX, E r , Ey). If we suppose

F	 that a highly directional antenna points in the direction ($s, Ŝ^with beam-volume
QGAO, then only certain spectral components near

kx = ksinescos^s

•	 k
Y

k
Z

j	 will be observed. The angular s
sinO AOJ is given by

^E

Akx Aker

ksine ssiO s 	(C-4)

kcoses

pectral space surrounding (6 s ,0s) with angular volume

where

3k 
aes

^ky	
=	 k2sine s cos e$	 (C-6)

6 ` s

^n of electric field components observed within the

r	 g*
G BED	

(21r)
AEq ^ -	 4	 AprA S*

^q	 i

AxA	 J(kxx + k.,Y) _j( Xx f 1C
e	 e	 dkdkd Xd 

Y
x Y 

(C-7)

a kx

aas

` f - 6k 
ads

Now the cross- correiatii
antenna beamwidth is given by



Ax0 = (AkX kkY) x (AkX k Y ) denotes the cartesian domain of ink.gration. The solution

for the spectral components are given by the form [35]

Apr (kX ,k y ) = A°br (k,V)Z(k X+ksinB, , ky )	 (C-$)

for the first order solutions and by the forms

BX,Y (k
X ,IcY ) - B°X9Y ffA X ly Z(kx- a,kY- B )da do +

B	 i:T(^<, k) Z( a+ ksin e , B ) Z(k X - cc, kY- B )da dB + jiS{/

B 2
	
ff^(k, k) Z(a+ ksin % , 3) Z(k X- a, kY- a)dado +

x ,,Y

B3
ff

A Y X Z (kX- a , ky- B )dad B
Xsy

(C-9)
and

k	 lc
YBz^ (kX ,kY) = k 3Xr +	 $^r'	 (C-10)

z	 kZ

for the second order fields. Z(kx, kY) is a random variable describing the Fourier spectre'

heights of the rough surface and kz = k2 - kX - kY2 o The coefficients Aop, 
BoX^Y

Bzx,Y 
and 

Bxpy 
are determinstic functions depending on the propagatior constants in

the upper and lower media. For the purposes of this appendix it is sufficient to observe

that the first order fields are dependent on Z(kx , k y ) whereas the second order fields

are dependent on Z(a+ksin00. 0) Z(kx -a, ky -S)o The functional form of the A and

B coefficients is at this point immaterial

2.0 CORRELATION PRODUCTS FROM THE FIRST ORDER FIELDS -, CASE I

Now consider a typical correlation product from the first order solutions. We

have from the integrand of (C-5)

Ap ( kX , ky ) A*( X,K^)	 = Ar (k ,Ic ^} A s	 ( x , R"

<Z(k),+ksin %°, k,,)Z•'(KX+ksin%„ Ky ) >

140 	
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The expectation can be written as

<Z(U ,v )Z*(U',V')> _	 ffff<Z(x ,Y )Z(x' ,y' )>. 	 (C-12)
-i (Ux + V.Y) J ( U ' x ' +V'Y }

e	 e	 dx dy dx'dv'

where z and Z are Fourier transform pairs. If the random process is stationary, then

<Z(x ,y ) Z(x' ,v' )> = R(x-x' , v-y ')	 (C-13)

where R is the auto-correlation function of the surface heights, Now transform the

variable to the center of mass coordinates, i.e.. let -[ X  = x - x 	 Y = y - y', x' = x

and y' = y'. Then

<Z(U ,V ) Z* ( U ',V' )> 
= ffffR(TX5 

TY)e -j ( T xU + Tvv) 
dz Td
X y

iUU[ -U)X` + (V'-v)Y']
e	 dx'dV'

or

ffW(U ,v) e
-j[(U-U')X' +
	

, 
)Yj dx'd,y'
(C-14)

where W(u,v) is the spectral density of the surface heights. Finally we recognize than

<Z(U ,V )Z* (U',V' )> = (27r) 2 W(U ,v ) 8(U-U' ,V -V ' ) (C-15)

When the above results is sub..tituted into the correlation integral we get

< DEr p E*s 	 ^Lo Avs W (k + ksinO., k )dk dk C- 16P	 q	 2	 P Q	 x	 Y x Y(	 )
(2TO Oxa

When A is sufficiently small, the incremental complex intensity may be approximated by
r	 s

r *s	 A0P 
Aoq

	<A EP AEA > _	
{ 2rr 

2	 W ( kx+ks i n ea , ky )OkxAkY 	 (C-17)

The cross-correlation per unit steradian is therefore given by

<AE^ 2AE*s> 	-	 kCosa Ao p Ao^
W(kx+ ksine, kYl 

(C-18)sine s A esA^s	 (.21r) 2

A
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where (C-5) has been used. The total cross-correlation in direction (es , f1lS) is given by

k 2COS 2es A 	 Ao* W(kX + ksineo , ky) AA
OP

<E E^^ =
(27r)2	 R2 (C--19)

where AA is the illuminated area in the x - y plane and R is the range to the element of

area.
To consider the horizontally and vertically polarized backscattered components 	 s

	

re lated  t th	 a	 iswe must realize that the horizontal pol arized component iso e c rtes n

components by

Ah(kx ,ku} = -AX ( kx , ky} sins + Ay ( kX , kv ) cosos (C-24)

and the vertical component by

Av ( kx , ky )	 AX ( kx , ky ) Cosa COSOs + A
Y 

( kx , ky ) Co sessinO -

Az (kx ,ky ) sine 	 (C-21)

When we specialize to the backscatter direction (e s = eQ, 0S = n) r we see that

i	 Ah (kx ' k ► }	 -Ay (kx' ky }	 (C-22)
and

Ar ( kX , ky )	 AX (kx ,ky)Cose;- AZ (kx,ky)sinep	
(C-23)

with kX = k sin El ky = Q, kz = kcos 90 . It is wel I known that the first order backscatter

fields do not involve depolarized components [34]. From reference [351 we now identify	
p
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i
Ah (kx ,ky ) 	 -j2kcosep Rh Z(2ksinea,0)	

(C-24)

and

Av
v
 ( kX , ky ) = -j2kcose,Tv [ Er ('+ sin ge,) - sin2e,]Z(2ksineo90)

(C-25)
where

Rh = Fresnel reflection coefficient for horizontal polarization

T = Fresnel transmission coefficient for vertical polarizationv
Er = relative (complex) dielectric constant.

and where a unit amplitude incident wave has been assumed. Therefore the correlation

components in the backscatter direction become

V v*	
40 Cos 4	

2	 2 2	 AA

	

CEv E  > _	 I Tv 
[Er(1} 

sin e,) - sin e,11	 4!(2ksine„ 0)—
R

2—(21T)2	
(C-26) 

4k4 Cos 4eo	 *	 ^A

	

CEv
v
 Eh

h* 
> -^	 T	

2
v [E r (1+ sin e	 2,) -sin e,] Rh W(2ksine„ 0)	

2(2,r) 2

t(C-97) R

	

4k 4 Cos 4e 	 0A
< Eh E

h
	 -	 ° I Rh l 2 W( 2ksine,, 0) 2

( 2Tr ) 2	 R	 (C-20)

The corresponding generalized differential scattering coefficient per unit intensity per

steradian is given by
2

<Sr S*s ue _ <Er Es j R	 (Cr-29)
	PP q4

	 p	 AAcos e,

(See the generalized definition of the scattering coefficients in Chapter 4). So

k	 2

	

<ISvv^ 2' -	 2 ca; 0 
ITv [ Er

	 sin g e, }- sin2eo7E	 W(2ksine,, 0)
^r	 (C_30)
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 Cos 3e

<SvvShh^	 ^Tv[ Er (I+  sin 20. )-  sin 28.]] Rh W(2ksineo , 0)
7T2 (C-31)

2	 k Cos 3e	
z.

<l Shh^	 =	 J Rh l	 W(2ksi n 0p , 0)
(C-32)TF2 

3.0 CORRELATION BETWEEN FIRST AND SECOND .ORDER FIELDS — CASE II

To develop the correlations between first and second order fields it is sufficient

to note that the correlations involve expectations of the type <Z(kx ,ky) Z* (a, 0 Z* (Kx

a, Ky 'and of type Z(k,ky) Z* (a+ksin9, f3) Z* (Kx -a, Ky -B} fl These
expectations involve independent gaussian random variables with zero mean and con-
sequently vanish. The first and second order fields are therefore uncorrelated. It is

concluded that <S vv Svh*> = 0 and <S hv  S'hh*> = 0 at the lowest order.



APPENDIX D
Scatterometer Simulation Program (SCATSIM)

3.0 INTRODUCTION

The theory and operation of the scatterometer simulation program is described

within this appendix. The following section shows how the scatterometer equation of
Chapter 4 was implemented with ideal and non-ideal antenna parameters. The compu-

tation of the inversion models with and without recognition of the difference between

surface and antenna polarizations is also described. Finally the operation of the pro-

gram is treated by means of a flow chart. A source listing and a sample output is also
presented. Additional program documentation is provided by comments within the pro-

gram

2.0 TH EORY

2.1 Simulation of the Scatterometer Equation

Since the scattering characteristics were based on surface polarizations, Equations

(6-47), (6-49) and (6-50a) through (6-50i) were implemented for use on the computer. The
equation was simulated using identical functional forms for the vertically and horizon-
tally polarized patterns (if they are both present during a transmission or reception).
Recall that the normalized patterns are given by

9V=h=	 (D- 1)
1 1 V ( 0 , 0 )1 2 +	 11 

h(0'0)1 2
where (9', 0') = (0, 0) is the boresight point. As a consequence, we require

MOM +- gh(0'0) _ i	 (D-2)

i
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Now if g denotes the functional form for the pattern and has the property g(0,0) = Z

and if gh is assignee the value ag where a <1, then we require that gv = (I - a)g o The

scatterometer equation under the above assumption can be written as

A2GtGr
W(60)	

2
4 7r z )

Itr(g cos9) 2 dQ (D-3)

where

2	 2

Itr =
	 I 1 <Is vv l> 

+ 12 <IShh l> + I 3 <IS vn l>	 +

21 4 Re<SvvShh' - 21sIm<SvvShh' + 21 Re<SvvShv' -

2I7 Im<SvvShv' + 21gRe<SvhShh> - 21gIM<SvhShh>
(D-h)

where

I1 = (1-a r )(1-aOc os 40 + a r a t sin 4^ + ((1- a r ) a t +

(1-a t )a r + 4ctcr )s-in2Ocos2

I-	 -	 a.a cos 4 ib	 + fl —a. M-a )cin 4 t11	 4- !li -A 1 a	 a.



`	 1 4 = c
t 
c r (cos 4q) + sin4f) + ((2ar-1)(2at-^1) -2ctcr)°

(D-$)

sin 2 ^cos 2^ - s sr t

I5 = ( c y s t + c t s r ) ( cos 2 o - sin 2 ^ )
P-9)

1 6 	 ((1-a r )c t + i ?-a t )c r ) cos 4* - (a rc t + atcr)

2

sin 4

	

+ 3 ((2a r-I)c t + (2a t -1)c r ) sin 2
	

cos

(D-10)

2
1 7 = ((1-a r )s t + (1-a t )s t ) cos 

2 * + (asst + a t S r
) sin

(D-11)

Ig 
= (atcr 

+ a r c t ) cos 4 - ((1-a r )c t + (1- at)cr)

Sin  - 3 ((2a r -1)c t + (2a t-1)c r ) cos t * sing
(^-12)

I 9 -	 (a t s r + a 
r 

s t ) cos t* + ((1-a r )s t + (1-at)sr)

sin 2 	(D-13)

c t =	 a t 	1	 - a te' cosat

C 
=	 %/a r 1 - - a—r7 cosat

(D-14)
s t -	 a t	- at sinot

s r =	 a r	 - -a--T- sina

The integration is performed in the surface coordinate system (See Figure 4.1). In the

above expression al  odd powers in sink have been pragmatically dropped. These factors
are odd functions of and will not contribute to the integral (See Equation 4-33). 3

}
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Now since the scattering characteristic was assumed isotropic, the return

}	 power can be approximated by
A

W ( 60

 - Z 
t r N -

(4^ z )2 	 < ^svv^2 >w	 I (9 ca sA )2 d sz	w l	
^W 

Z	 i

	

2	 z
<Ishh^ '^,	 IZ(g Cosa)	 d2

StW
+ < I s vh, 2>W 	 I3(g ca^A)2 d

P
^wE

+2 Re<l 
s vv s hh > c ̂f I q ( g Case )2 do

62w

- 2 Im< s s >	 2
VV hh . f I , ( g ^'asA) do

f

2 Re 
<s vv s hv >w	 I 6 (9 Cos9) dS2

•	 ^	
2

2 Im <svvshv>" J I7(g CasA) do
2w

s^ >	 I	
z+ 2 Re <s

vh hh w f g (g casA) do	 5
2W

2
2 Im <svhshh >.	 I g( g COSH) d,

SZ	 (D-.15)

and where { QW , = 1, 2, o .., N } is a set of half degree annu I i centered about the sub-

observation point. < > denotes an evaluation of the scattering coefficient on the

Q annulus, function subroutine SIGMA contains the functional representations for all

nine scattering coefficients. The integrations are performed, of course, only over those

annuli where the pattern function g is significant. The above approximation reduces

the computation to integrals of the following kinds:

J I {cv)	 -	 g2 Cos t a Cos h+ do	 J 3 (W)	 -	 g2 cos 2 A sin g , cos 2 c^ dSZ

StW	^W

2	 2	 4 J4 ( W) =	g2 cos t a sin g do	 r

0
Z (m) =	 g cos A sin , d9
 fa

SSW	
^



J 5 (w) =	 9  cos 2 0 cos 2 iy dQ	 `l6(w) -	 92 cos 2 0 dQ

^w	 ^w	 (D-16)

F
	 These integrals are evaluated in subroutine DINTEG using a two-dimensionai Gaussian-

i
	 Legendre quadrature technique [48 ] . For a selected antenna pattern and a selected

view angle the return power is computed in accord with the above expression. The antenna

gains Gt and G r are formed in a separate computation. These factors are based on an
evaluation of the expression

2
G  - G  -	 f  sine` de`	 (D-17)

The evaluation of the above integral is performed in subroutine_ SOLID, which employs

a single dimension Gauss ian-Legendre quadrature. The numerical evaluation of the
pattern functions is provided by subroutine LAMBDA. All of the above integrations are
executed from the mainline of SCATSIM.

Since the relative phases a t and Ir were assumed stationary over the main beam

and first side lobe, the return power could be evaluated for various combinations of ar,

at , at and s r without re-evaluating the double integrals. As a consequence, an arbitrary

pattern condition within the above constraints (gv = (1-a)g and gh = ag) could be esta-
blished. The combination of relative amplitudes and phases for the fifteen prescribed

measurements are shown in Table D.l . Subroutine ANTENNA, when addressed with

zero arguments, generates those prescribed values. When amplitude and phase biases
and/or perturbations are entered as arguments, subroutine ANTENNA will apply biases

of the prescribed value to all measurements in which or or at is zero or unity. Random
perturbations are applied to the remaining cases if the perturbation arguments are non-
zero. In this fashion either measurements based on 15 ideal or 15 deviated antenna con-
ditions can be generated. The actual coefficients required in the integrand factors

I
i i , i = 1, 91 are computed in subroutine COEF. COEF fills a 15 x 9 x 6 array with the

appropriate values so that the return power can be computed for each of the 15 measure-

ments. Let C i ,k denote the array. The i subscript designates the measurement number,

the j subscript identifies one of the nine scattering coefficients within the integrand,

and the k subscript identifies one of the six kinds of integrands (Jk(w)). See Table D.2

for the entries in C iik . Let y,, i = 1,9 denote the nine scattering coefficients and
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MEASUREMENT
NO.

1

2

3

4

5

6

7

8'

9

10

11

12

13

14

15

FABLE D.1

COEF at
ar Sr

<ISvv l 21> 0 -, 0 --

<IShh 1 2 > 1 --- 1 ...

<ISvh 1 2> 0 — 1 —

Re <S Shh*> 0.5 --900 0.5 90°vv

Re <SvvShh*> 0.5 00 0.5 1800

Im <Sw S hh*> 0.5 450 0.5 -1350

Im <S Shh*> 0.5 -450 0; 1350vv

Re <Svv Shv*> 0 -- 0.5 00

Re <S vv S hv*> 0 — 0.5 1800

Im <S Shv*> 0 --- 0.5 g0o
vv

Im <Svv S hv
*>

0 --- 0.5 -90o

Re <Svh S hh*> 1 — 0.5 00

Re <Svh Shh*> 1 — 0.5 1800

Im <Svh shh*> 1 --' 0.5 90°

Im <S
vh Shh*> 1 .- 0.5 -goo
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e

; RLE D-2

THE CUEFFICISNT N4AiRIX 
Cijk ^—

ROW/COL, 1 2	 3 4 5 6

1 (]-a)at+ (1-0 )ar	
r

(1-ate (1-ar) arat	 +4ctcr
0 0 0 i

2 arat ( 1 -at) ( 1 -0 0 	 ad at+ (1- at) orr} 0 0
f

0

(1-at)ar + (1-ar)at (1-ot)ar + (1-ar)at	 (1-ar} (1-at) + afar +
3

-2 ctcr -2ctcr	 (tar	 1) (2a t- 	 - 6ctcr
0 0 2stsr

4 2ctcr 2ctcr	 2 [ (2ar--1) (2a t-1) - 2c tcr } 0 0 -2stcr

5
to

0 0	 0 -2 (crst+c tsr) 2 (c r.t+c tsr) 0

5 21 (1 -ar)ct 	)c	 } -2[a- 2[arct+ atcr 1	 6 [ (2ar- ] )ct+ (tat 1)c r ] 0 0 0

7 0 0	 0

-2 [ ( 1 -ar)st + -2[a 
r 
s

t 
+ atsr)

0
( 1 -at)sr }

8 2 [atcr
 +0 r t ]

-2 [ ( 1 -ar)ct + (1 -at)cr ]	 -61(2a 
r- 

1)ct+ (tat] )cr j 0 0 0

-2 (a tsra• orst) -2 [ (]-ar)st +
9 0 0	 0 (1-ads, 1 0

NOTE.	 The different plan=es of 
CIIk, 

I =	 1,2,..., 15, are
farmed by subst ituting values far at , at , ar and pr

from Table D.2.



let Y i (W) denote its evaluation on the SZW annulus. Furthermore let

N
Kk1 = L1 Y1 ( W ) ,J k (w)	 (D_18)

where Jk (W) denotes the evaluation of .Jk on the Q W annulus. Then the return power is

given by

	

.	
a^Gt Gr	

t

	

W 7 (eo)	 =	 2	 tr	 Ci^k 
Kk1	

(D-19)

Subroutine EXACT performs the above computation for i = 1,2,.,..15. For each

measurement M the contribution by each 
J 

is isolated by EXACT and stored in its second

argument. The power matrix is clearly given by

X2GtGr 6
P .. _	 C. - K	 (D-20)i^	 (4uz)2 k=1 ijk ki

The structure of the return can thus be examined.
Another routine, called IDEAL, also estimates the return power but without regard

to the distinction between surface and antenna polarizations. The computation follows the
above scheme, however, it recognizes that ^ = 0. In this case. all the necessary inform-
ation is carried in J6(W). Again IDEAL isolates the power contributions by each scatter-

ing coefficient and consequently forms a power matrix also.

2.^ The Inversion Models

The above formulation of the return power was designed so that the exact or
approximate inversion model parameters could be isolated from intermediate steps.
Either model assumes that the measurement can be approximated by

im 	 Y^ ( 8 ^ J	 = l+l. (eo)	 (D -21)
J- 1	7 	 A



i

where 
Mij 

is a 15 x 9 matrix. Each row of M corresponds to one of the fifteen measure-

ments. When the distinction between surface ani: tintenna polarizations is required, the

elements of 
M,, 

are simply filled by forming
6'	 N

M j = E C 
i 
j k EI J k (w)	 (D-22)

Mij is constructed in subroutine EXACT. Once 
MiJ 

has been constructed the inverse
model is computed by Forming the normal equations 

Mij 
M ik and computing its inverse

(HEMINV in the mainline). The inversion for this model is performed in subroutine

MATRIX. Within MATRIX a least squares solution is executed, viz., s

ya(6 o ) 	 )i;ZM i k Wk(a0)
h-r

(D-23)

This subroutine also accumulates the first and second order error statistics during a Monte

Carlo study. A call to a secondary entry MATSHOW will display the statistical results.
Similarly when the distinction between polarization frames is not required, an

approximate inversion model may be formed from Equation D-22 above by simply setting
= 0 in each J04) (See Equation D-I6). Symbolically we have

6	 N

M
;j -	 ICi jk E J k ( w ! '	 (D-24)

The integrals need not be re-evaluated since all the desired information is contained in
J6(w). Particularly J I " ^ = 0) = J5 ( 4 ^ = 0) = J6(w). The remaining J are identically
zero. These special properties were recognized and accordingly a routine (DEAL) was
prepared to evaluate the elements of M

iJ
. for this case. The inversion of this model is

Performed as suggested in Chapter 6. Recall that the < 
ISJ 

2> , < 
1Shh 12> and

<1 Svh l 2 > are each computed from a single observation (a row of M). The remaining

coefficients are computed by differencing pairs of equations (rows). The inversion For

this model is performed in subroutine DIFFER. Again first and second order error statistics

are accumulated. They are displayed by calling the secondary entry DIFSHOW.

The reader should note than routines EXACT and IDEAL play dual roles. Either

can form their respective inversion models or they can compute the return powers for

the fifteen Kinds of measurements. Only EXACT computes the exact return power since
the scattering coefficients are defined with respect to the surface polarizations. The

option to use IDEAL to compute return power exists to compare the two polarization frames.
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I

i

2.3 Documentation for SCATSIM

A macro-flow chart of program SCATSIM is shown in Figures D.1 through D.4.
The program is organized into roughly four functions. Each figure covers one of the
program functions, Figure D .1 documents the part of the program which reads the in-
struction card and initializes various ;parameters for use in the actual simulations. This
portion of the program, once validating the instruction, prepares various deGceipt:"te
antenna parameters such as beamwidth and gain. These parameters and the input para-
meters are displayed to document the case study. The second zero in the pattern function

is employed to establish the domain of integration. The domain is broken into N half

degree annuli. On each annulus J k(u), k = 1,2 ...6 and w= 1,2,...,N is computed.

Once Jk (w) are formed, Kk1 ± J k(w) and E Jk (w, = 0) are computed and scaled

for the antenna gain effect.	 '-1	 +^=1

Following the above initialization, the program simulates the fifteen measure-
ments under ideal antenna specifications. The structure of this program portion is

illustrated in Figure D.2. Subroutine ANTENNA is called with zero arguments to pre-

pare an ideal antenna parameter set f at , a t , or , 1,} i , i = 1,2, ....,15. Subroutine

IDEA€. forms the approximate (ideal) inversion model and a power matrix which ignores
the distinction between surface and antenna polarizations. Both the inversion model
and the power matrix are displayed. The inversion model is stared for subsequent use
by DIFFER. Subroutine COEF forms C ilk from the ideal antenna parameter set, in turn,
EXACT then uses 

Cilk 
to compute the exact inversion model, M i .. It is again called to

form the exact power matrix. The normal equations are prepare from the mo,! O and	 i
then is inverted by HEMINV. If the system is singular, a flag (ISING) is set true. All
matrix inversions are subsequently by-passed by an appropriate test. The exact inversion
model and the inverse of the normal equations are stored for subsequent use by MATRIX.
Once the return power is computed, both difference and matrix inversions are performed
and the statistical (accuracies) results are shown for the ideal antenna.

If the bias parameter ABIAS is nonzero, a bias error study is performed. This

portion of the program is illustrated in Figure D.3, The processing follows, for the most
part, that performed in characterization of the ideal antenna; however, the two bias

parameters ABIAS and BBIAS are employed in the arguments of ANTENNA to introduce

pattern deviations from the ideal case. The inversions are performed using the ideal
i antenna models.

If the perturbation parameter AMAX is non-zero a Monte-Carlo study is performed.
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INPUT PARAMETERS

ANTENNA TYPE - ITYPE	 1,2,3, or 4
BEAMWIDTH PARAMETER - ka
VIEW ANGLE - tnot (6p)
AMPLITUDE BIAS - ABIAS
PHASE BIAS - BBIAS
MAXIMUM AMPLITUDE PERTURBATION (AMAX)
MAXIMUM PHASE PERTURBATION (BMAX)

I
11

1

I

1

f-

f.

I

L

NO

YES

STOP

FORM SIN O
AND COS 9.

25

SAME	 NO	 COMPUTE
ANTENNA?	 ANTENNA

S 0o
NO	

DESCRIPTORS

7 FERENT	 25	 YES

YES

A

Figure D. la -- MACRO-FLOW CHART FOR SCATSIM —
PROGRAM INITIALIZATION AND ANTENNA PARAMETERIZATIONS
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i

)
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1
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195
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_	 J

DISPLAY
AME 0a AN	 PROBLEM	

DNTENNA	
pESCRIPTIO

a

COMPUTE DOMAIN
OF INTEGRATION

N

i
COMPOTE J k ( a) )
k=1,2,000,6
=1 2

, a O 0 
o 

(DINTEG)

COMPUTE K
kl ,

^Jk(w
^ Jk(w 	 O)	 1



FORM IDEAL	 FORM Cijk FOR

at, fe ,ar r	 IDEAL ANTENNA

(ANTENNA)	
(COEF)

FORM EXACT

FORM IDEAL	
MiJ

Mid

(IDEAL)

PREPARE M 
t 

M
AND INVERT

FORM IDEAL	 (INVERT)
POWER MATRIX
(PACT), & W (06}	 YES

(IDEAL)'
SET FLAG TO

	

SINGULAR?	
.TRUE.

DISPLAY M..,	 NO

POWER MATH X,	
FORM EXACTAND Wi(GO)	
POWER MATRIX
AND W,i (0 )

D

E

Figure D,2a -- MACRO-FLOW CHART OF SCATSIM--- COMPUTATION
OF THE IDEAL ANTENNA RESPONSE
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Figure © a lb — MACRO-FLOW CHART OF SCATSIM — COMPUTATION
OF THE IDEAL ANTENNA RESPONSE
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295

NO
:'3 s AS ^ 0

r	 rin

YES	 210

17 

FORM ANTENNA
PARAMETERS WITH
BIASES	 DISPLAY

(ANTENNA)
h	 [RESULTS

A C'^J	

TRUE

FLAG?
(COEF)	 ^

INVERT BY

SE
THE MATRIX

METHOD
(MATRI-

	

COMPUTE	
DIVERT BY

POWER MATRIX
AND	

THE DIFFERENC

	

1(90 )	 R4A^"	 ^ METHOD
(EXACT)	

(DIFFER)



210

AMAX > 0
	

10

,

i

I
I-1

	 FALSE	
I > ICASE	

TRUE	

RESULTS

	
' l

i

FORM ANTENNA	 10
PARAMETERS WITH
BIASES AND PERT-
URBATIONS (ANT.)

I-Tfl

TRUE

`IFORM C^^	 FALSE	 INVERT BY

FLAG	
THE MATRIX

I HOD

(COEF)	 MET (MATRIX)t

f

j

COMPUTE EXAM	 INVERT BY THE
Wi ($0)	 DIFFERENCE

I (EXACT)	 METHO?DIFFER)
.	 i

44
:t

Figure D ,4 MACRO FLOW CHART FOR SCATSIM —
COMPUTATION OF THE MONTE CARLO STUDY
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k	 The documentation for this portion of the program is illustrated in Figure D:4. The
course of this portion of the program is identical to the bias study except that many cases
are examined. The number of cases is specified on the instruction card. For each case

the antenna parameter set is perturbed randomly within subroutine ANTENNA.

i
2.4 Program Listing and Sample Output

The source listing of SCATSiM is shown in Figures D.5 through D. 18. Sufficient
comments have been inserted to identify variables with the theory and to track the

operation .:)f the program. A sample output is shown in Figures D.19a through D. 19F.
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CHAIN

C
C
C
C
C
C
C
C
C
C
C .
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

i+LJ+

N

V8144, 01 02+15-75	 23.049
	

SCAT SIMULATION PD OGRAH	 LABEL NAY"
	

PAGE

SCAT SIMULATION PROGRAM 00000070
00000080

THIS P pOURAH ENAnLcZ 7;;E USER TO STUDY THE PERFUR- 0000009+1
HANCE OF HIS SC;ATTEROMETER ANTENNA 1,HEN IT POSSESSES 00000100
LEAKAGE PROBLEMS FFOM THE ORTHOGONAL POLARIZATIBN OR 00000110
WHEN ITS POLARIZATICN PROPERTIES AREN'T KNOWN WITH 08000120
CF4TAINTY.	 THE P IJOGPAM PPE-SUFFOSES THAT THE USER 00000130
WILL ATTEMPT ANYONE OF THE FIFTEEN PEASUREHENTS AS 00000140
OESCRIOED IN	 THE REFOPT OY J.P. CLAASSEN ENTITLED 30000150

00000160
ICR	 I.	 THE USER HAS FCUP CHOICES OF ANTENNA 00000170
FATTEPNS AS EPECIFIED BY ITYPE =192,3 OR 4. 	 THC 00009100
TYPES COkKESJON]	 TO	 THE LAMDLL PATTERN_ OF TYPE 00000190
P=-1/2.0,1!2,1 4-5 CESCPIDCD TN THE FADAP HAN09OOK. Od000200
CHP.	 9	 THE DFnH WIDTH CF THE CHUSEN PATTFRN IS OD000210
GOVFRn09EO BY THE	 INPUT PARAHETEK KA. 	 THE BEAMWIDTH 00000220
1S fELA TLO	 TO KA	 IN ^;TATEHCNT NC.	 OF TH P	PROGRAM 00090:30
THe VTTW ANGLE AT WFTCH THE USER WISHES TO CONDUCT DA00024-0
HIS STUDY IS SPECIFIED IN TNOT. 	 THE OUTCOME OF THE 00000250
:MLATION IS JAiETs ON A SCATTERING CHARACTER- 	 - 00000260
TSTTC SIMILA P TO THAT OF TtiE SEA.	 P.Y 4F r)LACING 00000270
SUaPCUTINE SIGMA,	 THE USER MAY INTKCDUCE ANOTHER 00000280
LHAGACTERISTIC.	 NOTE THAT THE FOUTINE MIDST	 COMPUTE 00090290
7?-F CCGTTFPING CDEF P FR UNIT STERADIAN.	 DIAS 900OD300
LEAK4GF BY THE ORTHCGONAL POLARIZATION IS INTRODUCED 00000310
J:Y THE US'c OF	 THE	 INPUT PARAMETER' ARIAS. OODUU320
THE PHASE OF	 THIS LEAKAf.F.	 IS DEFINED @ELATrVE 00900330
10 VEFTI;AL POLARIZATION ANC IS CONTROLLED WITH 00000240
INPUT PA-Z19[-TER DBIA;. 	 TO CONCUCT HONTE-CARLO STUDIES 000OD350
OF THE OUTCCPE OF THE SCAT MEASUREMENTS WHEN SHALL UN- 00000360
CFRTAINTIES IN THE AMPLITUDE ANG PHASE PPOPERTIES Or 0306D37D
THE ANTENNA	 EXIST,	 INFUT PARHETERS AHAX AND BMA# 000002AD
PAY 9E SPECIFIE3 TO 9E OTHER THAI ZERO. 	 WHEN AHAX=O OOG00_'90
AND R% Y=9.IT IS ASSUMEG THAT NO SL^.H STUDY IS QE- 00000400
SIRED.	 THE CONTRAIhTS ON TJ•F	 DIAS AND RANDOM PARA- 00000410
PF.IFRS ARE OESCRIOEC IN SUBROUTINE ANTENNA. 00000420
HHFM BIASES ARF N0tl-7ERO THE MONTE CARLO 00000430
STUDIES ARE CONUUGTFO WITH BIASES thSERTFD. 00000440

00000450
POE =	 INTEGPALIPATTERN •COSITr+ETAl1 4• 2 OCOEG46C
PSCIII	 =	 INTEGRALIIPATTEEN"COSITMETAII 4r2'SIGMAIIIT 00000470
POUS = ICFAL 09SEHVATION MATRIX 00000400
PACT = ACTUAL OBSERVATION NATRTX WITH PERTURBATIONS 00000490
PINY = INVE.RSE OF THE NCRHAL EQUATIONS FORKED 06000500
FROM POBS 00000510
SC = ACTUAL SCATTEPING COEFFICIENTS AT'TNOT 00000520
TROT = VIEW ANGLE 00000530
ITYPE = ANTENNA TYPE 0000054D
KA = ANTENNA IJORVALIZED RADIUS 00000550
AT = RELATIVE GAIN OF HORIZONTAL PATTERN 00000560
DURING XHISSIOFJ 00000570
AR = RELATIVE GAIN OF HORIZONTAL PATTERN 000D0500

Figure D.5a — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM -- MAINLINE



L
s h '

i T8144 01 02-1575 23.089	 SCAT SIHLLATION PROGRAM LABEL NAXN	 PAGE	 2

53 C DUPING RECEPTION 08000590
54 G 0; = PHASF PFLATTVE TO V PATTERN DURING TRANS 00900100
55 C BR a ?MASF RELATIVE TO V PATTERN DURING RECP 00000610
56 C ARIAS - rATM-IN AMPLITUDE UTAS 00000620
57 C R6IAi v PATTFPN PHAW BIAS 0/1000630

58 C AHAX = MAX PATTERN PERTURBATION 90080F40
59 C BMAX = MAX PHASE PERTURBATION 00000E50
f0 C 00000660
61 C014MON /4NE1	 11(151,	 POBSI(15,91,	 P005EO5,919 PINY(9.919 SC(9)9 000n0F70

p	 lis) 62 L LABEL11019 ATI15),	 AR(15) 9	0T(15)9	 BR11519 SINTN, CDSTN, 00000E80
63 L t(A,	 ITYPE 00000b90
64
65 L

CIHEUSICU	 7HFTA(150),	 S1;OO(41,	 ANT14),	 NIDTH(4). PACT4159101,
P;CE(f.9),PSCI(91.C19.6,151.PBE(6,91,PBII9),PAT(61..0(G)

00007700
000n071D

66 E9TEPNAL LAHBOA 00009720.	 ^
s+' 67 PEAL KA . LAHPt:A , KAO 00000739

t-	
)

68
69 C

LOGICAL JUMPI.JUHP?.ISING •
CATA STATEMENTS

070007x0
.000U0750

70 CATA KAC , T31GTO,ITYPE0 /2'-1.0,-1/ 60000760
71 7ATA VIGTH 10.88,	 1.02.	 1.15.	 1.27/ 00000770
72 DATA ANT /-0.5.1.0,1.5,2.0/ 00000780
73 DATA 00000790
74 CATA PI/3.14159265/9('ELTA /4. 36332313E-03/,DEG/0.0174532925/ 00.100800

,. TS C 00060810
76 CALL SETCIM(PII1V.9,9) 00000620
77 C 000081130
78 C INPUT ANTENNA TYPE,	 NORMALIZEC RAOIL'S. 000nOR40
74 C VIEW ANGLE,	 A 11PL UTAS, PHASE SIAS9 MAX AMPL 0003OHSO
80 C FFPT1)nATI0N. MAX Pt ASE PERTU M BATION T 09001CAGO
81 C SAMPLE SIZE	 IN MONTE CARLO STUDY. DOODOF170
A2 C 0300on80
83 l0 READ	 (5,1000.E tt0 = 230)	 ITYPE,KA,TNOT,ABIAS,BPHASE, 00060890
64 1 AMAX .F ptASE.JCASES 00000900
85 1000 FOPMAT1I2,6Ff.5.I51 00000910
8 0, 1F(ITYPE .GT.	 t.	 . 00 .	 ITYPE	 .LT.	 11	 CALL ABORT92MTY1 041070920
B7 IFI.NOT. (AMAX	 .LT.	 0.0	 .OR. ARIAS .LT.	 0.0	 .OR. 00030930
On Q (A5IAS+AHAX1	 .GT.	 1.011	 GO	 TO	 20 00080940
89 HPITF(592000)	 ABIASrAMAX 90000950
90 2040 FORMAT(1M1,18.'PERTURBATIONS TOO LARGE',5X, 09000JEO
91 L 'ARIAS= 'F1D.5,3)(,'A MAX= 'F19.51 O00D0970
92 GO TO SC 00090980
93 C 00090990
9x C ROUND ANT LOOK ANGLE TO NEAREST HALF DEGREE. OOOL'SDGO
95 C 0000101D

96 20 JUMPL = KAO .EQ. KA .AND. ITYPEO 	 Co.. 	 ITYPE 90001020
97 MOT	 .	 IFIYI(TNGT o 0.25) 	 + 2.81	 / 2.0 00001030
9S JUMP2 = 7110TO .EQ. TNOT CROCID40
99 ISING = .FALSE. 60001050

100 IFIJUMP21 GO TO 25 00001060
101 T+IOTP s	 TIIOT •	 DEG 001101078
102 COSTII =	 COSI THOTR ) 00001090
103 SItii•tl •	 SIM	 TNL'Trl	 1 000010'30
104 25 WRITE	 (693000)	 7ter, 00801100

Figure D.5b -- FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — MAINLINE



T8144 91 02-15-75 23.049	 SCAT SIMULATION PROGRAH LABEL HAIR

105 3900 FORMAT(INV/' SCAT STUDY FOR VIEW ANGLE OF', 00001110
105 L FS.i. • OFGREES'111 00001120
107 C 00001130
10R C C04PUTE THETA WAX 1. 00001140
toy C CDOOL15D
110 IFtJUHPI1 GO TO 30 00001160
111 SINTP z	 SNCOLITYPEI	 / KA 00001170
112 COSTN a	 SUPTI 1.0 — SINTM • SINTH L 0000L1BO
113 THAX a ATA11(	 SINTH.COSTM 1/DEG 00001199
li t. T11AX =	 IFIXitIMAX,0,251	 •	 2.0	 1	 /	 2.0 00001200
its C 00001210
11h G CC411UTE 101TE' g A PARAMETERS. 40001220
117 C 00091:30
114 CALLSOLI01	 L A MO r)A,ITYPE,KA.1.09COST11,i0,4,S1 00001240
119 GAIN = 2.0 1 S 00001250
12G FACTOF	 =	 GA711 0 GA111	 /	 t	 t..0	 •	 PI	 0	 KA	 I * 0 2 00001260
121 GDO	 =	 10.0	 • ALOt101 GAIN	 1 00001270
122 E+EAM = WIOTh(ITYPE) • PI /1KA • CEGI 04001280
123 30 C9IA, =	 10. • ALUGiOtA flIa; ► 1.00-281 00001290
124 rpAN,3 = 14. • ALnG14tAPAx*1.OE• 78T 00001300
125 W01TE0,400C1 AHTtI TYPE I,XA, DEAN, GOO, COLAS, EPHASE.GRANO,RPHASE 09001310
126 4009 FO 11 M n T1//,20x.'A11TEH11A PAR A rETE UV/ 00001'70
127 R 1X.'IYPf'7X.'XA',6X9'WIDTH',5X,'GAIN',5X,'CROSS'16X,'RELA • / 00001330
128 L 20x,'i0EG1',5X,'to81 • ,Gx,'tCBI',6X,'PI•ASE • .SX,'AMAX',7X,'BHAX •/ 00091340
129 C F4.S,SX,7F10.2//1 OOO13L!50
130 PRXAS = r PHA9F • DFG 000011EO
131 OMAX = BFAASE • DE-1 00001370
132 C 00901380
133 C CHECK WHETHER SANE ANTENNA ANO ANGLE OBOU1390
134 C 00001400
135 IFIJUHPL	 .AND.	 JUMP21	 C3 TO 195 00001410
I36 HRITEt6,50001 00001420
337 5000 FO I?MATt//IX,' STRIP',2X,'THETA'933X,'FIEIGHTS',25X, 09001430
L38 L 'PRECISICN'//1 00001440
139 C 00001450
340 C COMPUTE NUMBER OF SAMPLING ANNULI, 00091460
1 4 1 C 00001470
142 C DCOOL480
143 C Al RIGHT OF EORESIGHT. 00001490
I44 C 00001500
145 I14CR v 2.0 • TMAX 0000151"•
146 C 00001520
147 C 01 LEFT OF 60RESIGHT. 00001530
14J! C 00001240
149 IF	 L TROT — 1HAX 135,40940 00001,59
ISO 35 INCL	 0	 2.0 + THOT 00001y60
151 GO TO 50 0000170
152 40 INCL	 =	 INC R 00001580
153 C 00001590
154 C TOTAL HUMOER OF ANNULI, 00001600
155 C 00001610
156 50 ITOTAL =	 INCR + INCL f 1 00001620

Figure D.ac — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — MAINLINE
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tr
CA

T0144 01 02-15-75 23.069	 SCAT SIMULATION PROGRAM

157 C
158 C COMPUTE MIDPOINTS CF SAMPLING STRIPS.
L59 C
160 IF	 1	 I N CL .EO.	 0	 1	 GO i4 70
161 ITEMP =	 INCL • i
162 CO	 60	 I a 19IHGL
163 TPET4(I)	 =	 TNOT -	 1	 ITEMP - I ) / 2.11
164 66 CONTINUE
165 70 DO	 60	 I = i,INCR+l
166 THETAIINCL	 + II	 a	 TNOT +	 1 I	 1 )	 / 2.0

167 80 CONTINUE
168 C
169 G CLEAR ACCUMULATORS
17a C
171 DO 83 I=1.9
172 FSCIIII	 =	 0.0
173 PBIIII	 =	 0.0
174 00 85 Js1.6
175 POE00I1=0.0
176 FSC£W,II=D.O
177 as CONTINUE
Ila CO iso	 II = 1,ITDTAL
179 I	 =	 II
169 C
181 C Al	 LIMITS ON COS(THETA)
162 C
183 THETAR = THETAII)*6EG
164 %2 a COS(THETAR-DELTA)
145 IF	 ITHETAR	 .LT.	 0.00011	 )(2 :	 1.0
(46 x1 = COSIT.:ETAR*OELTf0
W C
198 G B)	 LIMITS ON PHI.
189 C
190 CENOH = SINITHETAR)aSINTN
191 IF (CENOH ,LT, 0.000011 	 GO TO 90
192 CO;PI-I	 =	 I COSTH - COS(THETAR) M COSTN	 1/OENOM
193 IF	 (	 COSPHI	 .GT.	 -1.0	 1	 GO	 TO	 100
194 90 PHI	 = PI
195 GO TO 110
196 1GO FHI	 = ATAN2(	 SORT( A8S(1.0-COSPHI*COSPHI)	 1	 r
197 l COSPHI	 }
19a C
199 C C) SET HO. OF INTEGRATION OCHAINS
200 C
201 110 TNCY	 =	 PHI / DEG 0 1
202 IF(INCY	 .GT.	 311	 INCY 0 31
203 C
204 C GI	 INITIALIZE CONVERGENCE TESTING PARAMETERS*
205 C
206 DO 114 J a 1,6
207 01J)	 =	 0.0
205 114 CONTINUE

LASE}, RAIN	 PAGE	 4

00001630
00001640
OOOOIE5O
00801E60
000016:70
OBODIE80
00001690
00001700
a0ao1710
a0001720

•	 0000173C	 -
00001740
ail or, 1750
00OU1760
00001770
9oDOITFlo
00041790
00071000
00001Ala
00001820
00001830
OOOPIA4O
00001850
00001860
00001870
00001880
00001890
00001900
DOOOI910
00001920
OPOU1930
Do 001940
a0001h50
0aO0i9E0
GOOD1970
ODOU1980
DO 00l9gD
OOOD7d00
110002010
00002020
00092c3a
00002040
00002050
00002060

`	 00002070
00002080
0002090
00002100
000021i0
00802120
00002130
00802140

Figure D,5d — FORTRAN LISTING FOR THE
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Ta144 01 02-15-75 23.(!89	 SCAT SIMULATION PPOGRAV

209 C
210 C E)	 INTEGRATE WITH PRECISION J.
211 C
212 DO 120	 J + 4.8
21 i JJ	 '	 J
214 C
2L5 C F)	 COMPUTE WEIGHT CN ITH AtiNULUS.
216 C
217 CALL FXOPT(679191.0)
218 CALL DINTEG( PAT,X2.XI,PHIs-PHI,IItCY,JJsJJ I
219 CALL FXOPT(67pt90,01
220 C
221 C G)	 TEST FOR CONVERGENCE.
222 c
?23 (0 116 x - 1,6
"124 IFIPAT(K)	 .Lt.	 1.0E-281	 GO TO 116
225 IF ( AOS(PATIK)-OIK)1 / PATIK)	 .LT.	 1.E-5 I	 GO TO	 116
226 GO TO 119
227 116 CONTINUE
229 GO TO 130
229 118 00 12C	 K = 116
230 OtK1	 = PATtK)
231 120 CONTINUE
232 C
233 C 1.1	 CONVERGENCE ADMITTED
234 G
235 130 %FITE	 (6960001	 (I,TYETA(I),PAT,JJ)
235 6000 F04MATII4.F5. L GEI1.3.I5)
237 C II SYNIH_SIIE PARAMETERS TO COMPUTE EXACT RETURN AND
235 C 00,FFVATION MATRIX

Q^	 239 CO 150 J=1.9
CT	 240 jJ=J

241 SCATC = SIGHAtJJ,ThETA(II)
242 CO 140 K=1.b
243 FSCF(K*J)=PSCE(K,J)OPAT(K)nSCATC
244 r-oE(K*Jj=POE(K,J)+P4T(Kl
245 149 CONTINUE
246 F'rIlJ3	 = PSCI(J1+P4S(6)°SCATC
247 POI(J)	 = PBj(J)4,PA7(51
2 4 8 154 CONTINUE
249 C WRITE(6,.100) FACTOP,PgI,PSC1
250 C 5100 FOY"AT41FIiI0E12.4/9E12.4//)
251 C CALL MATOUT(POE.6,9,6,9.3HPeE93HRAtiI
252 C CALL HATOUTIP,CE169916,9,4F+PSCE,3HRAW1
Z53 C I1	 COMPUTE PEFERENCE SCAT. CCEF.
254 a0	 110	 I = 1,9
255 II = I
256 SC(I)	 c SIGHAiII.TNCT1
257 C J1	 SCALE FOR ANTENNA GAIN
253 POI111	 = P8IIII41FACTOR
259 PSCI(I1	 = PSCI(I)+FACTOR
260 00 SEO J 4 1,6

LABEL MAIN	 PAGE	 5

00002150
00002160
80 OR 2170
00002160
OOOC2t90
00002200
00002210
00002220
00002230
00002240
00002250
00002260
00002270
000t,2280
00002290
08002300
00002_10
00007320
00002330
00002240
00002350
00002360
00002370
0000280
00002390
00002400
0£0024t0
00002420
00002430
08002440
00082450
00002460
OG002470
00002480
00002490
B0ou2GBB
00002510
BB002^28
B0002530
00002540
08002450
00002568
00092570
00002E80
90002590
00002EDO
60002610
00002620
00002636
00 06 21:4 0
00002650
00002660

Figure Me — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM --- MAINLINE
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T8144 01 02-15-75 23.049	 SCAT SIriULATION PROGRAM

261 PSCFCJ,II	 = PSCE(J,II°FACTOR
262 PRETJ.I)	 = PBE(J,i);FACTOR
263 160 CONTINUE
264 C WRITE(6.5100)	 FACTO&.PBI,PSCI
255 C CALL HATlJUT (POF.6,9.49993HPPE.3hSCA1
256 C CALL HATCUT(PSCE,699.699.4k-PSCE,3HSCA)
267 C FOPH IDEAL PENCIL BEAM HEIGHTS AND POWER MATRIX
269 wRITE(6.70001
263

0 d
7000 FOPHATIlHi,'IOEAL ANTENNA HEIGHTS AND POWER HATRIVI

270
M 4 ANTFNNA(0.0.0.0.0.0,0.0)CALL

271
272

CALL	 I0F AL ( PL'3.POOSII
CALL	 I9EAL(PSC12PACT)

^-{ 273
Lj 274

C APPFND POWER VECTOR TO PACT FOR DISPLAY
Po	 170	 i	 =	 1.15

y	 275 PACT(I.SG) = H m
776 170 r0(ITT14UE

AM	
277 CALL MATCUT(PO4S2,i5.9,15,9#SHDELTA,6HHEIGHTI

e-i b 278 CALL HATCUT(PACT.15,f0,15.10.5HPOHER.6HHATRIXI
279 C FOPH EXACT PENCIL HEIGHTS AND POWER MATRIX
200 WRITf(6.7500)
241 7500 F9 P HAT(1H1.'EYACT ANTENNA HEIGHTS AND POWER RETURNS40
232 C WRITFC6.7100)	 (AT(I),BT(II.AR(II,BRCII,I=1.15)
283 C 7100 FOPHAT(//15(4£12.4/11
284 CALL CO)FF(.)
295 C 04ITF16,610G1	 (((C(I,J.K):J=1,61,1=i,91.K=1.151
206 C 6100 F0FHAT(//9(6E12.4/))
207 CALL F9ACT(PPE,P09SE.CoW)
248 CALL HATCUT(POs1SF.t5,9.15.9.5HOELTA,61-HEIGHT)
289 C PPEPAVE NORMAL EONS.
29D DO 180 I = 1.9

V	 291 CO 190 J =	 I	 I
292 PIPIVCI.J)	 =	 0.0
293 00	 175 K = 1.15
294 PI1IV(I,J)	 =	 PI14VII,JI*POBSE(K.I14POESE(K.JI
295 175 CONTINUE
296 PINV(J,t)	 =	 PIt1V(I,J)
297 100 CONTINUE
238 C CONFUTE AND CISPLAY INVERSION MATRIX
299 CALL HEVINV(PINV,9,PBI.g240)
300 C FORK EXACT POWER MATRIX
301 145 CALL EYACT(P5CE,PACT,C.W)
302 C APPEND POWER VECTOR TO PACT FOR DISPLAY
3D3 CO 190 I = 1115
304 PACT(I.10)	 = H(T)
305 190 CONTINUE
306 CALL HATCUItFACT,15.10915910,5HPO WER.6HHATRIXI
307 C COMPUTE SCATTERING COEFFICIENTS
308 C Al BY THE DIFFERENCE METHOD,
309 HRITE(61E5001
310 6500 F01411ATIlr11
311 CALL DIFFER
312 CALL GIFSHOH

LABEL HAIN . PAGE	 6

00002670
00002680
00002690
00002780
00002710
00002720
00002/30
00002740
00002750
00002760
00002770
00002780
00002790
00002900
MO2910
00002920
00002A30
000021140
00002450
60002P60
03002870
00002080
00062p90
GG002900
80002910
00002920
00002S30
00002940
000'02950
0000296D
00002970
00002580
B00V2990
00003000
0[003010
00003"20
00003030
00003040
00003+950
OD003060
00003070
OJOC3080
00003090
00 0G 3100
OC 00 3110
00003120
00003130
00003140
CoOD315D
GOOD3160
00003170
8000ai®D

Figure D.5f — FORTRAN LISTINGS FOR THE
SCATTEROMETER SIMULATION PROGRAM -- MAINLINE



T8144 01 02-15-75 23.099	 SCAT SIMULATION PROGRAM LA4EL HAIR

313 C E) 8Y THE MATRIX HEIHOD 00003190
314 IF(ISIHG) GO TO 195 0000200
31$ CALL HATFIX 00003210
316 CALL MATSHOW 04003220
317 195 TUOTO =	 TNOT 00003230
319 KAO = KA 00003240
319 ITYP=O =	 ITYPE 00003250
320 C Cl4.CK IF CASE WITH DIAS IS DESIREO 00003260
321 IF(.FOT.IAIIAS	 .GT.	 0. 0))	 GO	 TO 210 00001770
322 HRITE(69900C)	 COIAS,PPHASE 00003200
323 8000 FO G MAT11H1,'	 ANTENNA	 HITH DIASES ONLY'// 00002290
324 C IX.'AMFPL DIAS=`,F6.I.'	 DO'.SW PHASE BIAS='9FG.2s'	 DEG'/ 0 1 00003300
325 CALL ANTENNA(O.O,AUTAS,O.O,ODIAS) 00003310
3Z6 CALL COEF(CI 00003320
327 CALL CXACT(PSCE.PACT.C,H) 0006333D
328 C APPEND POWER VECTOR TO PACT F O R DISFLAV OP00_340
329 CO 200	 I = 1.15 00003350
330 PACT(I.101	 =	 W(II 00002260
°1 200 COHTIM •JF 00003370

1 ,2 CALL HATOUT(PACT,15,10,15r10,5HPOUER,6HHATRIXI 03003300
333 C Al	 11Y THE DIFFERENCE METHOD OUOC329D
334 CALL DIFFER 00003400
315 CALL PIFSHOW OOOG3410
336 C 01 9Y THE MATR IX METHOD 00003420
337 IF(ISINGI GO TO 210 00003430
338 CALL HAT 9 1X 00003440
339 CALL HATSHOW 00073450
340 C GH^CK IF MONTE CARLO STUDY DESIR	 , 000C3460
341 210 IFC.NOT.(A4AX	 .GT.	 0.0))	 GO TO SO g000347D
342 HRITF15,90001	 C9IAS9CPlASE,CQ At10,RPHASE 00093480

(A	 343 9000 s: O G i• AT(11'1 //' 	 MOy TE	 CARLO	 STUDY'// 00003490
344 L 1X,'AMPL DIA3 2 ',F6.10	 00'95X,'PHASE DIAS 2 ',F6r1.'	 DEG', 00003rC0
I45 d I x.'	 kANLD •4 AHPL ='. F6,1,'	 Od',5X.'RAN0Om; PHASE=',5X, 000024L0
34c L F6.1,'	 ..CG'//1 OOOR?5',O
347 C FERFOPH MONTE CAR'-'	 1- - Y 00003E30
349 CO	 220	 I=191CASES OCOU3540
349 CALL	 A14TFN ,1A(AMAX,A8IA5.9H1,: 	 _YAS1 0000?450
359 CALL COEF(v) 00003560
351 CALL EXACT(PSCE,PACT,C,WL OOOGSE70
352 CALL (IFFER 00012500
353 IF(ISING) ,C TO 220 00073590
354 CALL MATRIX 00803188
355 220 CONTINUE 013003EID
356 C SHOW RESULTS OF STUDY OOUO3E20
357 CALL C-jFSH3W DOD03E30
358 IF(ISING) GO TO	 18 00003F40
359 CALL MATSHOW OW 3E50
360 60 TO	 10 DDOG3660
361 230 STOP 00003E70
362 244 HRITF45,95001 00003EOO
363 5500 F9PMAT(llX,10llH d 1,'MATRI9 SINGULAR',10(1H a 31/) 00003E90
364 ISING =	 .TRUE. 000C2700
365 GO TO 185 00003710
366 END 08003720

Figure D,5g — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM -- MAINLINE
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T6144 01 02-15-75 23.092	 A	 SUBROUTINE ANTENNA

1 CANTENNA	 SUBROUTINE ANTENNA
2 SUBliOUTINE ANTENtJAIAHAx , ABIAS , BMAXIBBIASI

3 C
4 C THIS SUBROUTINE SYNTHESIZES THE RELATIVE AMPLITUDES
5 C AND PHASES OF THE Tun ORTHOGONALLY FOLARIZ£fl ANTENNA
5 C PATTERNS DURING TRANSHISSSION T AND RECEPTION R FOR
7 G THE FIFTEEN STANOAFO MEASUREMENTS.	 THE INPUT AR-
a C GUNFATS PER14 IT THE rRECISE ANTENNA FEQUIREHENTS FOR
9 C EACI. OF THE FIFTEEN MEASUREMENT CONDITIONS TO BE

10 C PERTUgOED KITH 9IASES EITHER FIXED 1IR RANDOM OR RUTH
it C
12 C A!!AWzflAXIYUH RANDOM PERTURBATICN INTRODUCED INTO THE'
13 C VOkZOUTALLY POLARIZED PATTERN
14 C
15 C AOIAS=BIAS INTRODUCED INTO THE HORIZONTALLY POLA-
16 C RIZED PATTEPN
17 C
18 C UHAX=MAXIMUH RA.170H PERTURBATION I 	 TROOUCEO INTO THE
19 C RELATIVE PHASE i3ETWEEN ORTHOGONALLY POLARIZED
20 C PATTERNS
21 C
22 C BeIAS=EIAS INTRO:IUCEO INTO THE RELATIVE PHASE
23 C UETHfEH OPTHOGONALLY POLARIZED PATTERIJ
24 C
25 C IF THE INPUT ARGUMENTS ARE SET TO ZERO,	 PRECISE
26 C ANTENNA REQUIREMENTS ARE ESTASLISHEC IN THE OUTPUT
27 C VECTORS:
28 G
29 C rTtt*>=r•ELATIVE AMP41TUDE OF TI-E HORIZONTALLY POLA-
30 C RIZED PATTERN OUdING TRhnSHIESIGN(REGEPTION)

^O	 31 C
32 C eT(P)=PELATIVE PHASE EETNEEN ORTHOZONAL POLARIZATION
33 C CURING TNAIISt • tSSIONTRECEPTICNI
34 C
35 C 071IrRWISE. PFRTUPSATIONS ARE INTRODUCED IN ACCORD
36 C sIITH ALGORITHMS 6ELOW.	 BIASES AP- , EFFECTIVE ONLY
37 C HHcN POLARIZFD TRAIrSMISSIONS OR RECEPTIONS ARE MADE
38 C IN THE FIFTEEN MEASUREMENTS,	 IT IS ASSUMED THAT
39 C LEAKAGE OR DE —POLARIZATION IS THE CAUSE OF THE
40 C EIASES.	 THE USER MLST A9SERVE THAT
41 C
42 G liAHA%	 .GT.	 0.
43 C
44 C 21ABIAS	 .GT.	 0.
45 C
46 C 31AMAx¢ABIAS	 .LE.	 1.0
47 C 41-PI	 .GT.	 BBIAS	 .LE. PI
49 C 51—PI .GT.	 BHAX .LE. PI
49 C
56 C THE RANDOM PERTURDATIONS ARE DISTRIBUTED UNIFORMILV
51 C OVEPtOPAHA%/21
52 C IF AT OR AR IS ZERG IN THE UNPERTURBED CASE• AND

LABEL ANVEUN PAGE

00003730
00003740
00003750
00003760
00001770
00003700
0000?790
00003tf00
00003n10
000031120
00003BSO
0000 3+:40
00003850
00 00 3960
0 110D 3+170
00003n80
00003?90
00003900
00003910
00005920
00003930
00011_940
00003950
00003960
00003970
00003900
0900 3':90
00004000
00094[10
00004020
09094030
000114040
00004050
00004G60
OOd04370
00004080
000041!90
UDOG4100
000041/0
00004120
000°4130
00004t40
00094150
00004160
00074170

y	 a80C4180
00004190
00004200
00004210
00004220
00004230
00004240

1

Figure D e6a -- rORTRAN LISTING FOR THE
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O

16144 01 02-i5-75 23.092	 A	 SUBROUTINE ANTENNA

53 c CVERti-AMAX/2o1)
134 C IF AT OP AR IS 01iF IN THE UNPERTURBED CASE, AND
55 C CV5pt.5-AHAX/2,.5+AFAR/21
58 C IF AT CR AR IS .5 In TKL UNPERTCRBEC CASE. 	 RANDOM
57 C PNaSES A P E DISTRIBUTED UNIFCRHILV OVER '
50 C (BT(P)-9HAX/2,ETtR)iBHAX/2)
59 C
60 COMMON /C'X/	 W(t ,3), POOSIt15,91,	 POBSE(15991 n PINVt9,9),	 SC191,
51 C LAF(EL110).	 ATI151,	 AR(15),	 BT11519	 BR(15)9	 SIHTN,	 COSTN,
62 L XA,	 ITYFE
63 I•ATA IST /33333333333/
64 DATA PIC4.PIO2.TPI04,PI /0.70539B163.1.5707963392.35619449,'
65 L 3.1415'12E5/
66 C ARITHMETIC ASSIGNMENT STATEI(ENTS(AAS)
67 AEPR2tTJ=(0.5-RCHSI)1GANAX
68 9EPR2(I)=(0.5-RCH(IIIoBHAX
69 C
70 C VV
71 c
72 AT(1)=AOIAS
73 A0Ii)=A0IA^
74 OT111=4RIAS
75 4?R(1)=9EIAS
76 C HK
77 AT12) =1.0-ARIAS
78 AR(21=1.0-ARIAS
79 BT(2)=9IeIAS
80 0x121=2EIAS
01 C VH
42 AT131=ARIAS
63 AR131=1.;^AOIAS
84 9T(T)=?5IAS
as 1s? [ U=dR1A;
86 C uVHHn
07 AT 14)=8.5*AE0R2[IST)
0)1 ZR(41=0.5*AFPR2IIST)
59 CT(41=PIC2+eCPo2(IST)
90 Fp(4)=- FIO2+PEr92lIST)
91 AT(S)=q.5+A94P2(IST)
92 GR(5)=0.5*AFFR2(IST)
93 ='7151=11E4P2(IST)
94 B9(5)=PI+BEPPZ(IST)
95 C VVHHI
9b AT(6)=0.5*AFPP2(ISTI
97 AR16)=O.5+AF4P2(IST1
9a 9T[61=PIC4*0ERR2(ISTI	 y
99 IR(6)=-TFI44+BFRP211ST)

100 AT(71=0.5+AEQR2(IST)
101 AR(7)=B.5+AERR2lI9T1
902 9717)=-FI04*OEPR2(IST)
103 8R171=TpI04*BEPR2(IST)
104 C VVVHR

LABEL ANPENN PAGE	 2

00004250
90004260
00004270
00004"30
O0nD4290
00004300
OOB04d10
O0 oe 4 320
onOP4.F30
00004340
00004350
00004760
00094270
00004280
00004390
OPOR4400
80004410
00004420
0B]n4a30
00004440
00001#450
00004460
BDO04470
009",480
OCOD4490
90004500
00004510
00004520
00004530
00004`40
00OW;50
00004560
OCt104570
00904500
00004590
00a0IsFa0
90004EIG
00004E20
09004E30
000041,40
000046.93
00004E60
00004670
00094Fa0
00004690
00004700
00004710
00004120
00004730
00004740
OOOB4750
09004760

Figure D ebb — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — SUBROUTINE ANTENNA



LABEL ANTENH PAGE	 3

00004770
00004780
00004 79 1)
001)(14900
00004A10
00004820
00004030
0000440
00004856
00904860

•	 00004870
00694080
00004?90
00904900
00004910
00004920
ODOU4930
00004940
O00C4950
66904966
000C4970
V0094980
00004990
00005[00
00005[10
00005020
00905[30
000G5C46
00095CSO
00065060
00005070
00005[80
00005090
00005100
00605110
06005120
00005130

M44 01 02-1575 23.092	 A	 SUBROUTINE ANTENNA

105 AT(8)=48IAS
106 AR(e)=O+i+AERR2(IST)
101 gT ( 81=g0IAS
108 BRI8I=-JE1•92(IST)
199 AT(9)=ACIA;
119 AO19) = 9.5+AFRR2IISTl
111 BT(9)=027.45
112 $8191 = PI4UCkR2(IST1
113
114

C VVVHI
AT(10I=ARIAS

115 ARIICI= 0.SoAERR21ISTI
116 AT I 1	 1

Ald 117
=P

gRI1
C
I=

-
F

TO2
i02+BERR2(IST)

^^
110
119

A7111) =ALIAS
A4(11)=O.c;*AFPP2(IST)

G 12C CT III I=P.93AS

t'd 121 BO(11)=FIC2*8ERR2(ISTI

^.tvv
122 C HVHHR
123 AT(12) = 1.6-ARIAS

1^5^ 124 FR 112)=0.5.A ERR 2lISTI
125
125

B) (12) =L'PitS
aa(12l=2EPR2IlST)

i^ 127 A11131=1.C-AOIAS

7.28 APP 31=0.5+AEP.R21ISTl
129 BT I1?)=BRIA5
130 9R113)=PIi9FFR21ISTI
131 C HVHHI

132 FT1141=1.0-A91AS
133 -111141= 0.5 ► AEPLP21IST1
134 RTfI	 I=Ei!IAS
135 911141=-P1-)2+6ERR2IIST)
136 LTIIS) = 1.0-ARIAS
13T AR ( I5)=0.5+ AEPRZIZST)
13 13 87 ( 15)=09IAS
139 6R115)=P102;8ERR2(TST)

"- 140 RETUON

141 ENO

Figure D,6c -- FORTRAN LISTING FCR THE
SCATTEROMETER SIMULATION PROGRAM — SUBROUTINE ANTENNA



T5144 01 02-15-75 23.093	 SUBROUTINE rOEF

1 CCOEF SUBROUTINE CDEF
2 SUBROUTINE C4EK{C)
3 COHMON /CNF/	 it(15),	 POBSIt15,9)0	 P065Et19 1 9)9	 PINV19v9ly SCt91v
4 L LAEEL1181 n AT(151+ AP(151v BT{151, 8P US)t SINTNv COSTN.
5 R KA,	 ITYPE
6 OIHENSICN r,[E.6,t5)
7 THIS ROUTINE PREPARES THE ANTENNA PATTERN
0 C FACTOPS FHOH THE ANTENNA GAINS ANO PHASES SET
9 G EY SUBROUTINE ANTENNA

%x c
11 Ca	 10	 1=1.t5
12 ATt=1.0—AT(I)
t' SA=2.04Sr.PTtAT(I)*ATll
V. CBT=;A•COS(ET(I))
I5 :BT =.A•.It.[8T[I?)
I5 A41=1.0—APlI3
17 ^.A	 = 2.C•77wTtARII19ARl)

19 CBk=SA•CGS{OR[I))
20 C9TVP=C?T•GGP
21 C44.1.I1	 = COtC3P/2.0
22 AR2=?.0•A0[I)-1.0
23 AT2=2.09 AT II)-1,.0
24 ATZAF2 = AT2•AL2
25 C
25 C SIGMA—VV
27 C
24 C{1,1,It=AP1•ATt
29 Gttsz,I)=Aa1I1•ArtI1
30 C[1,3.I)=Aa,IvAT{I).ATIWARtI)OCSTCBR

V	 31 6
32 C SIGMA-14H
33 C
34 C{2.1,13=C(1.2.I)
35 Cf292.II=C(1,1.I)
36 C(293.I1=Cf1,3,I)
37 C
3E C SIrMA—VM
33 C
49 C[3+1,I1=L{1,3.I1-C14vi+I1
41 c13,2,I1-C(3.1.I)
42 CALF. FY0F'T(b7il,l,0)
4' Cf3,3,I1=2.C•{011 n 1 n Ilt•Cfl n 2+I)-E.5^CBFCBR;AT2AR21
44 CALL	 Fx0Prt67,1,0+0)
45 G43 n EvII=S0T•S9{d/2.0
46 C
47 C SEAL SIGMA VVHH
49 C
49 C Ct4+1 n I1=C8TC8P/2.0
54 :.f4.2.I1=Cf4,1.I1
51 C44,3,I1=2.0•ATZAR2-C8TCBR
S2 Ct4,6oV =-C[3v6,I1

LABEL CDEF	 PAGE	 1

00605140
00005150
90005160
00110 5170
00005100
a0005190
COMM
09065210
00005220
00005230
06095x49
00005250
a00052E0
0000527a
0aQ05260
06065290
00D::3aa
0(1,005316
9000520
00005130
00005.140
OCnPc;25a
09905360
040]5170
000052A0
00005390
D0015400
00005410
00645420
00008430
a a g e 5440
04005450
Oa0054Ea
0000547/1
06005466
0000'5490
011005500
9040 510
00005' 20 ,
0001.5530
00095540
00005550
06aa5=66
UDG5570
0000 55110
07005590
00005600
aaPa5E10
0P005E23
00005630
00005640
00005650

Figure D.7cI -- FORTRAN LISTING FOR THE
SCATTEROWETER SIMULATION PROGRAM -- SUBROUTINE COEF



18144 01 02-15-75 23.093	 SUBROUTINE COEF

53 C
54 C IMAGINARY SIGMA VVHH
55 G
55 Ct594,I1	 = ICBT*58P+tDR*SpT1/2.0
57 G15*5*I1=-C{5*4,I1
58 C
59 C REAL SIGMA VVHV
60 C
61 Ct6,1,I1-ARL*C9T+ATi*COR

-	 62 Ct8.1,I1=ATtII*C$3R^AF.[II+CBT
63 C96121I1	 =	 -C[8,1*I1
64 Cl6*39I1	 = 3.8*(AR2*C8T+AT2*GeR)
65 G
66 C IMAGINARY SIGMA VVHV
67 G
68 C(7,4,11=-IARlI1*S5T*AT[I.1*SBR1
69 C{7*5*I)=-IAR1*S8T ► ATS*S8R1
70 C
71 G REAL SIGMA VHMH
72 G
73 C Ct8*S,I1=AT(I)*CBR+AR(I)*CDT
74 G[8*2, I1=-015,1*I1
75 C[8*3;T1--C1693*I1
76 C
77 C IMAGINARY SIGMA VHMH
78 C
79 C[9*4*I1=C17,5*I1
60 C19,5,11=C{7,4.I1
81 10 CONTINUE
82 P GTl1 R11
83 ENO

W

LABEL COEF	 PAGE	 2

00005660
00005670
00005680
00005190
00005700
00005710
0+1005720
00005730
00005740
00005750
OOOD5760
011005770
00005780
00005790
00005000
00005910
00005920
00005830
00005040
00005950
09005960
00005970
00005900
00005090
000D5900
00005910
0000551)
00005930
00005940
00005950
00005960

Figure D.76--.FORTRAN LISTING FOR THE
SCATTEROMETER $1MULATION PROGRAM °- SUBROUTINE COEF



Y614b O1 02-15-75 23.094	 SUBROUTINE HATOUT

1 CMATOUT SUOPCUTINE MATOUT
2 C
3 C FOUTINE DISPLAYS HATRIX A 8Y ROWS AND
4 • G COLUMNS OF 10.	 MATRIX NAME APPEARS IN WORD LABEL
5 C '
6 SUORnUTIrrE MATOUT	 ( A,IQDIH.ICDIH. ? RSIZEIICSIZE'NA14E1 , P1A(1E21
7 CONMCN /CNE/	 51[151.	 PUaSi 4 i5.9i,	 PCBSE (15 9 9) ♦ 	PINV (9011	 SC(9)1
0 L LAGEL(10),	 AT(151,	 AR(151.	 01'1151,	 BR9151.	 SINTN,	 COSTNv
5 L s(Av	 ITYPE

e0 JIM^NSItn allkD^'„ICOIMI
ii C
12 00 10	 I=191CSIZE,10
13 N =	 I+9
14 IF	 11d	 .GT.	 ICSIZEI	 N=ICSIZE
SS HFITE	 46,1000)	 NAME11NAFE 2.	 (LABEL(K) 1	Kzl.N)
26 1000 FORMAT	 1//00x,A6,iX,A6//1X,'MEAS/COEFv.2X,A599(6X,A6)//1
17 CO	 10 J-1.IVSIZE
le WPITE	 (6.20001	 J.(1(J,K1,	 KnI.N)
19 2400 FORMAT	 (14,3X,10Ei2.4)
20 10 CONTIPME
21 QESUQrr
22 Eric

LABEL t;AVOUT PAGE
	

I

00005970
00005904
00005990
00005000
00x06010
0000r,e24
OCoobn3o
00006040
00806850
00006060
00006070
OCOOE080
000061190
00006100
00006110
00006120
00006130
00006140
80006150
00006160
00006170
00016100

Figure D.8 — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — SUBROUTINE MATOUT
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vat44

i
i
1
s
1
1

1
1
2
2
2
2
z

2
2
2
2
2
2

LLn	
3

3
3
3
3

at 02-15-75 23.095	 SUBROUTINE EXACT

1 CE%ACT SU9RCUTINE EY.ACT
2 C -
3 SUBROUTINE E%ACT(PIN,POT.C.HI
4 C
5 C TWTS 0011MIF COMPUTES THE SCATTEROMETER POWER
6 C COMPONENTS FOR THE FIFTEEN STANDARD MEASUREN-
7 C VENTS. EACH COMPONENT WITHIN A HEASLREHENT
a C IS ASSOCIATED WITH CNE OF THE N FIE SCATTERING COEFFI-
9 C CIEHTS. TYPICALLY. THE INPUT ARGUMENT PIN CONTAINS
0 C THE PATTERN-SURFACE WEIGHTS. WHEREAS. THE
i C OUTPUT PARAMETER POT CONTAINS THE PCHER COMPONENTS.
2 C IF PIN CONTAINS ONLY PATTERN WEIGHTS,
3 C THE CSSEPVATION MAT91X WILL BE CONSTRUCTED
4 C IN POT. THE SUM OF THE COMPCNENTS IS
5 C FORMED IN W.	 THE TOTAL RETURN POWER.
6 C
7 CIHEIISION PIN(691),	 W(i),	 PCT(15,1),	 C19,69151
E C FOR ERCH MFASUREHENT...
9 6O	 10 I=1,15
0 C FORM THE POWER COMPONENTS
1 DO 10 J-10
2 POTTI,J1=0.0
3 C OY ISOLATING TI'E TRACE ELEMENTS
4 DO	 10 K=1.6
5 POT(T,J)=POTII.J}+C(J,KiII*PIN(K,J)
6 to CONTINUE
7 C SUM THE ELEMENT IN THE TRACE
a VO 20	 I=1,15
9 WlIl=0.9
p C TO GET THE TOTAL POWER
1 La 2a J=1.9
2 W(I1 = W(I)+POT(I)JI
3 20 CONTINUE
4 PET .RN
5 END

LABEL EXACT PAGE
	

I

ODODG190
00006200
00006210
DODGEM
00006236
00906240
ODOU6250
00006260
000DE270
0000E280
000n6290
OG00E3aa
90oOE!lo
f00G6320
09006330
ODO06340
OR006350
000063EO
00006376
GO oil !Be

0000639D
000DF400
00006419
00006420
OCOOF430
00006440
00006450
00006460
00006470
00006480
COUGE499
OG006500
09006510
00006520
00006530

Figure ®,9 °- FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — SUBROUTINE EXACT
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40144 01 02-15-75 23.09E	 SUBROUTINE MATRIX

1 CHATRIx	 SUBROUTINE MATRIX
2 SUBROUTINE HATPIX
3 C THIS ROUTINE ESTIMATES THE MEASURED
4 C SCAT COEFICIENTS BY THE MATRIX METHOD,
S C SINCE THE SYSTEM IS OVER SPECIFIED A LEAST
6 C SQUARES TECNNI(JUE IS EMPLOYED TO INVERT THE
7 C PF4SUPEMF.NTS.	 THE ESTIMATES ARE COMPARED
a C WITH T14E EXACT COEFICIENTS.
9 C

10 Common /CNE/ W115),	 PoBSI(19,9), PODSE(15,91,	 PINVI9,91a	 SC(91*
11 L LASEL(1C),	 AT(15),	 AR(15),	 8T(15),	 6P(15),	 SINTN.	 COSTN9
12 L KA,	 ITYPE
L9 OIHENSION HP(9),SL;NFz),RHS(9),PSUm(9),FRH5(9)
t'4 C FORM TPANSFOFMED POHER MEASUREMENTS
15 IOBS = ICBS.l
16 00 1c	 I	 a 1,9
17 hPIII	 =	 0.0
13 CO ID J = 1.15

-	 !9 HP(I)	 = W P (l)	 + P08SE09I1.141J)
20 10 CONTINUE
21 GO 30 I	 = 1,9
22 W(I1	 = 0.0
23 GO 20	 J	 = 1,9
24 w(l)	 = W(II	 •	 PINVIIIJ)OWP(JI
25 20 CONTINUE
26 ERP	 s WiI)	 - SC(I1
27 SUmtII	 = SUm(I)	 + ERR
28 PHS(II	 - KHS(T)	 + ERR*ERR
29 30 CONTINUE
30 RETUPN
31 C SECONDARY ENTRY

V	 32 ENTRY HATSHOW

(]ti	 34 00 40 I
SUSHI	 = SUM(T1/I405

35 FSUM11)	 =	 100.007UH(II/5G(I1
36 IF(TaOS	 .Li.	 21	 GO TO 35
37 L<HS(I1	 = SQRT(A95(K1'S1I)/IOBS-SUM(II'►SUMIII))
38 FPMS(II	 =	 100.0•RMS(I)/SC(I)
39 35 CONTINUE
40 40 CONTINUE
41 WRTTE(6910001	 IO75.tLA0EL(I)..GtI),5umtI1,RM5(i),
42 L PSUMII1,FRMS(I),T =	 1,9)
43 1000 FORMATt//1x,'STATISTICS FOR THE MATRIX 	 It
44 L 'HFTHOD I:AsEO ON',I4,' OL-	 RVATIONS'//
45 L IXv'SCA7	 CQEF•,3X,•VAL(JE*oOX9'14EAN',9X,'R)iS',
46 L 7X.'%MEAH',E%+•%tH^'//
47 E (2x,A6,2Y93E12.3,2F12.311
(+a C CLEAR SUMHING VARIABLES
4$ 00 5a	 I = 199
5O SUPIT)	 = 0.0
51 PHS I I1	 = 0.0
52 50 CONTINUE
53 Ions x 0
54 RETUPN
55 ENO

LABEL NATR79 PAGE
	

1

00006540
0000E55a
00006560
00DOeS70
0000@586
00006x90
00006600
00006610
00006620
00006630
00006640
?POatc50
00906660
0003EE70
090G66aa
a0076F90
0800E700
00096710
00406720
00076730
00006740
OOOOE-750
OOOOE7E0
00006770
000BF700
00006790
00006e00
00005.930
09005820
0009EP30
00706x40
00006.950
00006960
00 006970
aDOoEAaO
00006890
0000F900
09OCE53a
0000E920
00496930
00006940
90006950
00096960
00006970
00006980
00006490
o0G07000
0G007C10
00007020
00807030
00007040
00007050
00007060
00007070
00007080

Figure D.10 -- FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — SUBROUTINE MATRIX
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70144 01 02-15-75	 23.097	 SUDROUTINE DINTEG

1 CDIe1TEG	 SUBROUTINE DINTEG
2 SUBROUTINE DINTEG	 ISUM,X2P,X1PtV2PtyiP,MNVvNNP.HMP1
3 c
4 C
5 C THIS ROUTINE EMPLOYS A OUASSIAN LEGENORE OUADRa7uRE
6 C 1INTEGPAT10141	 PKOCLGUPE.	 IRTEGNATICN OVER 1(-Y SEGF[ENTS
7 C APE	 FE O F42MFC AFTER TRA1iSLATICN TO	 1-1.1181-1e11s
8 G XZP,XSP = UPPER ANC LONER LIMITS ON N
9 C YZP•Y1P = UPPER ANC LONER LIMITS ON Y

10 c MY = SEGMEUTS IM	 V

11 c NP,HP = OEGREE OF PRECISION IN X AND Yv RESPECTIVEL•7
12 c
13 COMMON /OMF./ Ni151,	 P095I{15.9)•	 POOSE(15,91,	 PINV19v919	 SC M 2
14 t LABEL(10),	 AT[1;1•	 AR(L51,	 071151,	 OF1151,	 SINTN,	 COSTN.
15 t KA. ITVFE
16 OIHEIISICN SUM161
17 OIMEIISIC4 SAPPLE(Ov81,COEFl8.8)9SX101vSVEO1•C(8,81
1R PEAL LAPPDA.KA
19 VATA	 [;SANPLEIT.JI,J=1.81 •I=2,81/-O.:TT350269v0.577350269,
20 t	 0.o,0.D.0.a,n.av0.0,0.6.
21 t -00774595059,p.0,0.T7459666S.Q.0,0.0,O.OvO.O,O.O.
22 S -0,9v113f3i2s-G.339901044,0 .339981044,p.A61136312.
23 t
24 S -0.9^.5175046.-0.538469310,O.Ov0.5384693IO.0.906179846v
175 S	 0.090.a,a.0v
26 t -G.93?4F,9514v-0.661209306,-0.238bi91A69G.2306191B6.0.6612D9396v
27 t	 6.9324.,9514r0•Q,6.D,
28 t -0.945107912•-0,741531105,-0.405045151,0.0,0.405845151,
29 t	 9.741531105	 •Q.949L07912,0.0.
30 t -.91: P 2a 11856	 -.79655b477,-.525532410,-.183434642,.103434642,
31 t	 0.57553241 J, 9.7 ,j	 6b477.0.` rj9209f5561.
32 OA1-'; CCFF[1.11.J=(.A1.i-2.e7/1.Oo1.0e0.0.a.0,0.0.0.0v0.Qo0.0.
33 0.55S5S5555	 10.8444MM889	 .0.555555556	 ,0.0.a.(1,9.0.0.Dv0.0,
34 t 0.347854351 7 0.657145155	 ,0-E52145155	 ,0.347854851,D.O.D.O,Q•Dv
35 t	 9.00
36 4 0.735926965.0.47"628670. 0.5E8B9888990.474620670,
37 Q	 Ov23r92E9M5,D..0.Or 	 C.Ov
38 3 0.171324492,0.360761573,0.4E7913935,0.467913935.0.360761573,
39 6 0.171324492,0.00.0•
40 t 0.1214P49f5,0.2797d539110.38103005190.417959184.
41 6	 3.3MI93t351,0.279TOS39lvO.129464966,O.09
42 E O.10122B535,0.222381034,0.313706646,0.36268378390.3626037039
43 t 0.31270EE46,4.222311034.0.101228536/
44 C
45 C CLEAR SUMMING VARIABLES
46 c
47 CO 10	 I=1.6
48 ;UH[Il=f,o
49 10 CONTINUE
50 C
SL c KE-ASSIGN INPUT ARGUMENTS
52 C

LABEL DIC47EG PAGE
	

8

00007090
00007100
00007110
DODOS:?0
00007130
00087140
00007150
Beo07160
00007170
00067180
0007190
00007200
40007210
00007226
00007230
00047240
GOD07250
00007260
nnag7:!70
OCOC72BE'
06097290
00807300
03007310
00077320
00007330
D0037140
40097350
UPOO7360
60007370
001107399
00007390
04007490
00077410
00497420
00017430
00007440
00607450
00047460
00007470
nooP74p0
tl4V7490
OOCJ7,00
00007510
BG6ST520
00007230
00067540
OUOQ755D
00007560
00007570
00007560
00007590
00007600

Figure D. I I a — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM °- SUBROUTINE DINTEG



70144 01 02-S5-75 23.097	 SUOROUT8NE OINTEG

53 nY -- HMV
54 HP = NNP
55. MP a HMF
56 C
57 C COMPUTE LENGTH OF CELL SIDES
59 C
59 XM =	 (X2F*X1P100.5
60 UELX = 92P-91P
6L 143FL9	 - LELY00.5
62 DELY =	 1Y2P-Y1P1/FLOATt"0
63 1+9ELY = CELY00.5
E4 AJACOE = HDELVQHDELV
65 C
66 C FOQ11 SAMPLE FACTOR FOR X
67 C
69 90 20 I = 1,NP
69 SKID = SAMPLE(NP,IIOHOELXoXN
70 20 CONTINUE
71 C
72 C FORM SAMPLE FACTOR FOR Y
73 C
74 00	 30	 I	 =	 1,1112
75 SYIII s SANPLEW911614DELY
76 30 CONTINUE
77 C
70 C FORM GAUSSIAN 11EIGMTS
79 C
80 CO 50 I = 1,NP
01 00 40 J=1,NP
02 C(I,J)	 = COEF(NP,I)OCOEF(HP,JI
83 40 CONTINUE
Ot. 50 C011TINUE
85 C
86 C INTEGRATE IN STRIP OF OELX
$7 c
80 CO 90 I	 = I,NP
09 COS% = SX(I)
50 ^,INX = SGpT(1.0-CO$XOCOsXj
91 C
92 L INTEGRATE ALCNG Y

`	 93 C
94 YN = VIP - HDELY
95 CO 90 M = 1,MY
96 VM = YM • OFLY
97 00 70 J = I.VP
94 P"T = SYIJI ♦ YM
49 CALL S1hC0:(Ph1. SIIIPHi,	 COSPHI1

100 FACTOPa SI,IXOSINTNOCOSPIiIcCOSX000971i
101 1:RG=KAOSG0,T11.c-F ACTOR0O2)
102 PHIP=ATAh2(SINX*SINP1•I, FACTOR{
103 CALL SINCOS (PHIP P SINPMP P COSPHPI
104 COSPiI=COSPHIOCOSPHPO StNPNI°SINPHPOSIUTN

00007GIO
00007820
00007E30
OD007E40
00007450
00007E50
00007E70
00907'00
00007690
00007700
00007710
00007720
00007730
00007740
00007750
00007760

•	 00007770
00007700
00007790
03007800
00007810
48007rt?O
412007930
00007840
00007A50
00097860
Ot1007070
OC OC 7000
00007090
00007900
00007910
00007920
00007930
00007540
00007+50
00007960
00007976
0006798o
00007990
Ouauac90
00000L19
00000020
0000A030
00008040
0600F•750
0000F14:60
Ocoo9670
o0000DOO
00000090
00000150
00000110
00000120

2

Figurer ®.lib — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM ° SUBROUTINE ©1NTEG



16144 01 02-15-75 23.097	 SUBROUTINE OINTEG LABEL OINTEG	 PAGE	 3

105 SINPSI=CCSX*(SINPHr4COSPHP—COSPNI4PSINPHP+SINTN)4- 00000130
106 t JINX v Cos TN* 51UPh p 00008140
107 P=C (T.JI # Cf)SX • LAN FIB AIITYPE,ARG1""2 DOCO8150
108 SUM 61=SLH16)+P 00008160
109 SUHI9)=SL•H95)+P*COSPSI"*2 00008170
110 SUH(6)a'.LH(4)+P"SINPsr1%2 00008180its SUH(3)=Sum(31+P•ICOSPSI•4210(SrNPS14*2) 00003190
112 SUH(2)a5LHI21+F•(SINPSI**21W.2 00000200
113 ".Until-Su*E(1)+P•(CoSFSI•*2)o•2 00008210

.	 114 C 00003220
115 C FORM PARTIAL SUMS 00ODs"i0
136 C 00008240
117 60 CONTINUE 00008250
118 70 CONTINUE 00008260
It9 80 CONTINUE 00006270
120 90 CONTINUE 00008280
i21 C 00008290
122 C APPLY JACOSIAN 00008_80
123 C 00004310
124 60 100	 I a 196 COOD632D
125 SUH(II	 = RjAC08 •SUH(1) 00008330
126 100 CONTINUE 00008340
127 PE7Uu1j 00008350
128 ENO 80008360

.	 %0

Figure D. ] I c — FORTRAN LISTING FORTH E
SCATTEROMETER SIMULATION PROGRAM -- SUBROUTINE DINTEG
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75144 OS 0215-75 23.099	 SUBROUTINE DIFFER

1 COIFFER SUBROUTINE CTFFER
2 SUBROUTINE DIFFER
3 C THIS ROUTINE ESTIMATES THE MEASURED SCATTERING
4' C COEFFICIENTS BY THE SO-CALLED OIFFERENCE
5 C 1'FT)1oD.	 THE V STINATES APE CCHPARE9 NITH'THE A'Mm.
6 C COEFFICIENTS A113 THE STATISTICS ARE ACCUMULATED*
7 C
6 COMMON /ONE/ M1151 *	POBSI115,9)/	 POBSE(15,9)1	 PINV(9 * 93% SC491*
9 6 LABEL(101 * AT1151 * AR(15),	 ET0 51,	 BP(151,	 SINTN,	 COSTNI

10 L RA.	 ITVPE
11 GIHERSICc ,Url9),RHS(91*PSUM19)1PRHS(9)
12 CATA LAOFL/'VV	 '1'HH	 .'VH	 *1'VVNHR	 * 1'VVH%I	 *,
13 R • VVVHP	 * * 'VUVHI	 '.'HVHHR	 ','HVHHI	 ** *FOHER '/
t4 JOBS = I0911+1
15 C COHPAPE MEASLPCO AGAINST EXACT
16 00	 LO	 I	 = 1.:
17 EPv	 s 1A(I1/PG05ItI*I)-SC(I)
16 'UHII1	 : SUM(I1	 *ERR
19 FHF M = RH'tI)+ERP *ERR
20 10 CONTINUE
21 OD 20	 I	 = 4 9
22 It = 2*I-4
23 FP4	 =	 ( r1(II)- Wtll+1)112.0/PCOSI(II,I1-SC(I1
24 °UH(ll	 =	 5UM(I)*ERR
25 CMS111	 - RMS(JI,ERF*ERR
26 20 CONTINUE
27 4ETUPN
20 ENTRY OIFSHOu
29 C ,FCONDARV EN?.^,7
3D CO	 30	 I	 -	 119
31 'umin	 = `uMtIl/IOpF
32 N'va1I1	 =	 111C.00SUMIl1/SC(I)
33 IF(IORS	 .LT.	 21 GO TO 25
34 6nS11)	 = SORT IAOS(PHS(I)/JOBS- SUM1114SUH(I111
35 FAM51i)	 =	 1DO.0 *RHSIII/SC(I}
36 25 CONY I111JE
37 30 CONTINUE
311 wAiTFEfi1107pf	 IO>35,iL0.;lE6(I115CiF}*SUH(311RH5[I11
39 6 PwI1H1I111'P •t5{I),I	 =	 1.41
40 1000 F O 9 mAT(/ /IY1',TATISTICS FOP	 THE DIFFERENCE
41 l '"ET"09 PA;FI' 010,14.'	 03SERVATIONS'//
42 1 1%1'SCAT	 COFF',3;11'VALUE'*a%1'HEAN',9x1*RMS*r
43 C
44 & (2X,A6,2x13E12.3,2F,2.3))
45 C CLEAR SUMMING VARIABLES
46 LO 40 J a 1 n 9
47 SUM(I1	 =	 0.0
40 PHS(I)	 n	 0.0
49 40 CONTINUE
50 LOBS = 0
51 PETUPN
52 END

LABEL. DIFFER PAGE
	

1

00009370
00008380
60008390
COODB400
0000111410
0000042D
otoa8430
00000440
900GR450
00000.460
06008470
08084480
00000490
00000500
0000P=10
00008520
00018530
p00Da540
90008550
o00a8560
00000'70
000085tl0
accOR590
a000B600
0000 Bela
000086.20
D000RL30
BAOCAF40
aG409E50
0"000c60
0000RE70
DOOOCGa7
0000BF9a
00009700
ODOOP710
00008720
00008730
00004740
OJ0']8750
OBOG6760
0069	 To
0011^.87'0
90008790
09008800
00000817
00000820
00008830
00006840
00008850
00008860
aa0oa870
06094880

Figure D.12  - FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM - SUBROUTINE DIFFER
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T6144 01 02-15-75 23.100	 SUBROUTINE IDEAL

1 CIDEAL SUOROUTINE IDEAL
2 SUBROUTINE IDEAL WIN,POT)
3 C THIS ROUTINE PREPARES AN ANTENNA OBSERVATION HATRIA
4 C A11 D ITS rJ OH SUH3 FOR THE ANTENNA AS PREVIOUSLY
5 C yPECIFIEO BY SUOQOUTIN E ANTENNA
6 C
7 COMMON /01JE/ M(151,	 POPSII1501, POBSE(159919 PINV(9,9)9 SC691*
6 R LAOEL(10),	 AT(151,	 A(-tl51,	 87(151,	 GRI1519	 SINTN,	 CO$TN,
9 L KA,	 ?TYPE

10 0IH£NSI01. PIN19),POTt15,i)
it C PIN=VCGTOR CONTAINING PATTERN OR PATTERN AND SCATTER
12 C COEFFICIENT FFFECT 1=VV,2=HH,3=VH,4=VVHHR,5=VVH14I
13 C E=VVVHR , 7=VVVHI v o-H •iHR , 9 =HVHliI	 _

14 C POT=VECTON CON(AINIIIG MEASUREHEhT CCMPOFENTS
15 C H =509 OF R014 ELEMENTS IN POT
16 C INITIAL SOME PAR414LTEPS
17 00 10	 I=1,15
16 CAT=1.0—AT(I)
19 WA = 1.0—AQ{II

20 S°T=2.0*SOkT(CAT*AT(I)l
21 SPU-2,0*SQRT(CAP*AR(I11
22 SP=SGT*Su?/?.0
?3 COSUR=C^SIOPtIII
24 COSeT=CO',(9T1Il)
25 SP400-15I+1(8b'(I))
26 STNOT=SIN(Ol(I))
27 C COMPUTE	 THE	 NINE CONTRIBUTICNS
27 POTtT,ll=CAT+CA4*PIk(I)
21 POT CI,2}=ATIII*AR(I1*PIN12l
S0 FGT(I,3)=IAT(Il*CAR+AP(I)°CAT+

CO	 It Ci :Q`CCSCBR(TI—BTlllll*PIN131
3Z POT(I,41=SK•COs(aRLT1+BTIIiI•PIN(41
3] FGT(I,51=—:u•SINIpQ1I1+O7(I)1*PINC51
3a POT(I,6)=(CAP•SrtT•COSBT+CAT*SRk*COSSRI*PIN(61
3 1; FOT(I,7I=—(CAR*SRT*SINBT+CAT*SRR*SIhBRI*PIN(71
36 FOTCI,8)=(AQCII*SRT*COSOT+ATtI)*SRR*COSBRI*PIN(6)
T7 FOTII,91=—(ARc(IS*SRT*SINBT+ATIII*SRR*SINBR)*FIN(9)
35 C COMPUTE THE TOTAL OBSERVATIONS
39 10 CONTINUE
40 DO 20	 I=1,15
41 Htl)=a.0
42 C•0 20 J°1,9
43 B(I)mK(I1+POT(I,J)
44 20 CONTINUE
45 dETUT+N
46 ENO

LABEL IDEAL PAGE	 3

00000090
00000900	 l}
00000910
00006920
00006930
00000940
OOOa8950
00008960
00006970
0000/19410
00008990
00069000
00009010
00009020
00009030
00009940
00009050
00009060
OGUO9070
00009000
a00a9090
00009100
00009110
00009120
00099130
00009140
00009150
00009160
0000917()
000091Ao
Oa>)09199
000a92a0

O il o n 9210
aa009220
00009230
oaa092411
00009250
01)009260
000a?270
00009260
00009290
00009300
00909310
0000920
00009330
00009340

Figure D.13  -- FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM -- SUBROUTINE IDEAL



OD
1V

78344 09 DI-15-75	 23.10[	 SUAQOUTTNE SIGMA LABEL SIGMA

i CSIGmA :UBROUTIIIE SIGMA 00009350
2 FUNCTION SIG MAII.B! 00009360
3 DIMENSION C14.Ill 00009370
4 DATA TEN, DEG /10.0.	 0.4174532925/ ODO09?00
5 LATd	 1[CIIrJ),J=1.$1rY=1,41/ 00009390
6 L -0.1E15AE-02,	 0.41799E -OLs 	 -0.39750E 00,	 0.16000E 019 00DO9400
7 L -0.17226E O1,	 -0.41559E O1,	 0.13382E Ole	 0.16117E 02• 0000941D
0 Q -0.226O&E-02,	 0.59789E-C1,	 -0.59055E 00.	 0.27114E 01 9 00009+20
9 4 -0.47098E	 01,	 -0.11435E (its	 D.50802F	 00 9	O.16s06E 02 9 00009430

10 G	 0.0	 ,	 0.0	 ,	 -U.48897E-02,	 0.75403E -019 D6009440
it - 4 -0.3M45OE 00.	 0.39101E	 00,	 -0.47384E	 00,	 -0.11964E	 D2s 00009450
12 L	 0.9131 EP-05t	 -8.39295E-03.	 0.629E4F-02,	 -0.48574E -Oir 000094fo
13 L	 0.19 4 50E 00, -6.41108E 00a	 0.51675E 00,	 0.2A714E -D2/ 00009470
14 C OCDD9480
15 C THIS POUT;NE COMPUTES SCATTEPING COEFFICIENTS D0009490
16 C CF FIVE KINDS,	 I=12293,4.59 CCFRESPCNOING TO [10009500
17 C VY,MM,VII.KE(VVN)i},INAGtVVHl11. 	 TIIE	 REMAINING 0900'+,10
18 C COEFFICIENTS ARE ASSUMED ZERO. 00009520
19 C 00009530
20 A a e/TEN 00009541)
21 GO	 TOi1 p ,10a10.20,20,40,40s49.401,	 L ODp09F50
22 10 IF(I	 .LT.	 3	 .AND.	 0	 .LT.	 12.0)	 I=1 00009:60
23 SIGMA	 „	 { Iti lttCfL,1! • A ♦ CtI,21I •A+CII,313 + A+CiIr411°A+ OD00957-0
24 L	 C{Is5)1°A+CfI.631 • A+CII,7l1°A+GIIs91)/TEN 0000958D
25 SIGMA = TEN • n SIGMA 00009590
26 PETCPII 00009E00
27 20 ARG	 =	 tflilttC[4,L1°A+614,211 n A+Ct4s3))°A+ 00009a10
24 L	 C( 4,4)! • A.C44,511 ► a+Ci4,61)+A+Ct4,71) • A+Ct4,8l1 n DEG 00009620
29 ':TGHA	 =	 1[[IIIICti.lY + A+Cf1.21) +A +C I1 a3})+A+C(1,4))*Aa 00009630
30 L	 C(1,F)) + A+C{1,6!!°A +C(1,711 .4+CL1,8))/TEN 00009-40
31 AFID	 .LT.	 12.0!	 GO	 TO	 25 00009-50
32 SICn4	 = 000O9E60
33 L C42s41) n A+C12,6il ,A+Ct2.711 + A +0(2 9 81)/TEN/2.0+SIGMA 1270 oO0D9670
34 25 IF(I	 .ST.	 41	 GO	 TO 30 D0009660
35 SIGMA	 =	 iTEN +• SIGMA[ n (COS(dt:G)) 00009b90
36 RETUW4 00009700
37 30 SIGMA =	 tTEN ++ SIGMAT + iSIN(ARG)1 00069710
36 PETUQN 00009720
39 40 SIGMA a 1.0E-02 - 1.836734E-04- A-A DDOD9730
40 QETUPlt 00009740
41 FND 00009750

PAGE	 s

Figure D. 14 - FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM -- SUBROUTINE SIGMA
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I—)
r _	 T767E 01 00726475	 56,309	 SUBROUTINE SOLID	 LABEL SOLID	 FACE

1	 CSOLID	 SU9ROUTINE 5041 D	 00006flea
2	 SUBROUTINE S OLID IPCTINA A WNA V X2P#XIP#NNXINNPlSUH)	 00006890

4	 C	 THIS RIUT11Z EM PLOYS A OUASSIAN LEOE N oRE OUADWURE	 00006940
5	 C	 (INTEGRATION) P ROCEDURE; INTEGRATION OVER X SEGHRNT$	 00046920
6	 C	 ARE PEr1FORNE:D AFTER TRANSLATION TO 1-illIxt o lll)s	 OD006930
1	 C	 X2P,Xln n 11PPER AND LOWER LIMITS ON X	 000D0940
8	 C	 NNX a !GQMENTS IN X	 aoWo50
9	 C	 rINP a 'fEIjREE OF PRECISION IN X	 0500960

	Q^ y	 10	 C	 00006970

	

*a	 11	 DTHENSIO'j SAMPLEIBsBI,00EFIBrBIsSX(BIsCIBI	 00006960
12	 DATA 1(SAMPLE B #4)rJ=1 ► 8 )rI n 2,8I/-Oe5 7 7350269,0,577350269 p	00006990

	

v	 13	 8 00 - 0100020.0001-140,04.64 • 00007000
14	 6 -6 . 77459 6669 ,0,D,0, 7 745 9 666 9 ,0.0,a,D,O,D/0.Of0.Da 	 00007010

	

v r	 19	 d -D. 86 11 363 12s-O,3399 810 4 4,0.3399810 44 s0r 8 61136312s	 00007020

	

e^	 16	 d 0,Os0,Dr0,0a0,0,	 00007030

	

p	 17	 d -0, 9 0 6 1798 4 6 ,-1,5344 69310,D1O10,53 8 4693LOsD.906179846e	 00007040
►̂ >rr3 0	 d 0101n,7r0.a,	 00007010

19	 d -0, 9 324 67 5..4 ,-i)s6612093 0 6s-0,238 619186x0,23B6391B6#016612093961 	 00007060
20	 d Os932 4 69514s0,l,0,0x	 00007070
21	 d n 0, 949 1079 12,-1r7 4 1931f 85o w ae 4 O5B45i51s0e0s0,4058451511	 00007080
22	 9 0 1 7 4 1531165 aO,9491O79x2x0.4r	 GOOD7090
23	 d n 0, 9607 0 9056#-n,7 9 66664 7 7,-0,5255324107-OsLO343464210,1034346421 	 00407100
24	 t 0,525532410x0,796666477,0,960289856/	 00007110
25	 DdTA ((C^EFII.f),J n ls0I,I=2,B) /1"0. leaf 4,0x0.010,01 0e0,0,as 	 OD007120
26	 d 0101	 00007150
27	 d 0,555555556 ,0.88048988 9 ,0,555555556	 00007140
28	 d 0,3 4 785485110,652145155 #0, 6 52145155 x0, 3478 5 4 55110.0x0x0e0.01	 00007150

	

CO3	
29	 d 010#	 00007160
30	 d 0.2 3 6 9 26r385s0.47662e67010;568868B09,0 i 418628670s	 00007170
71	 d 0;236926785sOes0,Os 0;01	 a4D07t80
32	 d 0,1 7 132 4 492#0,360761573#0;46791393500.467913935o0,360761573a	 DDO07140
33	 d 0 1 1 7 131 4 4 92s0.D.OsOr	 OD007200
34	 d 0,129 4 0 4 966x0,27 970539=e0r3 81 8 30051,0,4179591831	 00007210
35	 d Or3 0 1 8 3005 1+0e779 7 0 5 3 9 11Df1294849 66,0001	 00007220
36	 8 Oi101220536e0,2223 d iO3410 1 313 7 46646F0.3626837B310o362683783s	 00007230
37	 d 0,313 7 0 6 6 4 610,222381034so.10122 8 536/	 00007240
38	 C	 OOOD7250'
39	 C	 CLEAR SUHMINO V A RIABLE	 00007260
4 0	 C	 60007270
41	 SUM 4 010	 DOD072HO
42	 C	 00007290
43	 C	 REASSIGN INPUT ARGUMENTS	 00001300
44	 C	 00007310
45	 uN a W'IA	 00007320
44	 H a HA	 00007330
47	 NX a NNX	 GDO07340
48	 NP a Nr1P	 aDO07350
49	 C	 00007360
SO	 C	 COMPUTE LENOTH Or CELL SIDES	 00007370
51	 C	 00007380
52	 DE:LX n IX2P-K3.P)/FLOATINX) 	 00007390

Figure D ,15a — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM -- SUBROUTINE SOLID
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17671 01 01:26-73 16,389	 SUHROUYINE SOLID

93 HDW a DELXa065
154 C
55 C FORM SAHpL£ FAC TOR FOR X

C
97 DO 20 t a 10P
98 Sxlil a SAH?LE(NP#D*HDELX
59 Ctl)	 a	 COEFINPaII
60 20 CONTINUE
6x C
62 C INTEGRATE IN STRIPS OF DEL%
63 C
64 XH a X1P r HDELX
65 00 4 0 N a JgJJX
66 XM a XM + DELX
67 C
68 C TRANSFOR" TO CELL 1-Rill
69 C
70 DO 30 1 a %INP
71 x a Sx1116xK
72 t+pSIN a HNnSORTt1,0 -Xax)
73 C
74 C FORK P ARTIAL SUNS
75 C
76 SU11 a SUNoFCTIH$HNSI?0mCII?
77 30 CONTINJE

-	 78 40 CONTINUE
79 SUM a 0,560ELXaSUH
80 RETURN
al END

co

LAUEL SOLID PAC&	 3

00407400
00007410
00007420
0aO07430
00007440
00007450
00007460
00007470
00007400
00007490
00007500
00007510
a0007520
00007530
00047540
00007550
00007560
00007570
00007580
00007590
00007600
00007610
00007620
00007630
00007640
00007650
00007660
00007670
00x07680

Figure D. l5b  — FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM -- SUBROUTINE SOLID



ti

T74% 01 01 ;26n 75 16,390	 SUBROUTINE S.AHBDA
•

LABEL 1.0 0804	 PAGE	 S

1 %ANBDASUBROUTINE LAMBDA 00007600
2 REAL $UNCTION LAMOVA(KM 00007700

00307710
4 C H IS A-1 INTERGER WITH VALUE I12o3a 	 OR it 00007720
8 C DEPE'1D:NQ ON ANTENNA TYPE, ODD07730
6 c 000077407 C 00007750
a C0 TO ( 100x200#300+4aa 1,H 00007760
9 c 00007770

t0 C . H 4 I lleANS ANTENNA TYPE v .1/2, OD007760
tl C 00007790
L2 '100 I F ( ADS(U)	 ,LT,	 1,Ea27 )	 GO TO 600 00047600
t3 LAHBDA a ( SIN(U) / U	 I •• 2 00007810
14 RETURN 04001820
15 C 00007030

' 16 C H a 2 BEANS ANTENNA TYPE a %; 0000 840
17 C 000378'03$ 200 LAMBDA p 1E,0 •	 BJ1XOx r U1} ••2 00807060
19 RETURN OD017870
20 C 000070$0
21 c H o 3 MEANS ANTENNA TYPE 0 312, n0087090
22
23

c
300 IF	 t Ags(U)	 ;LT;	 t,En 27 )	 GO TO 600

00037900
03007910

24 LA 10A a	 { 3,0 /	 (	 U • U	 )	 •	 1( SIN(U)/ U) a COS(Ul	 )) % a3 00807920
25 RETURN 00007930
26 C 00007940
27 C H A 4 'IEANS ANTENNA TYPE a 2 2' 0000700

' za c 50007960
29 400 I F 1 ABS{U}	 ,LT, I,E92T ) GO TO 600 00007970
30 LAMBDA a { 590/(U•U) • ( 2,0 4 SJ1XOx(U) o 8 JURO(U)))002 00007980
31 RETURN 0000799032 600 LAMBDA K 1 1 0 00006000

' 93 RETURN 00008010
14 END 00008020

Figure D.16 — FORTRAN LISTING FOR TH.E
SCATTEROMETER SIMULATION PROGRAM -- SUBROUTINE LAMBDA
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co
0%

97071 03 03;26+75 36.391	 SUBROUTINE BJ1E40

1 CDJZERO	 SUBROUTINE DJZeRO
2 REAL FUNCTION DJZE90(X)
3 C
4 C COMPUTES THE BESSEL FUNCTION OF INTEGER OR06R ZERO,
5 C USES A POLYNOMI AL METHOD,
6 C
7 REAL X.Tb.T2
8 C
9 C CHECK TO SEE WHICH APPROX 1 14ATION 15 NEEDED.

14 C 0<X<3
it IF	 {	 X	 ,F,T.	 3 1 0	 f	 00 TO 10a
12 C
13 T1 a .333333333 • x
14 T! a TiaTi
i5 BJZERO R{{{%%.0402100 + TS a i00?944A1;Ti • ,0444479);11
16 4 • ,3163966)!71 • 1,2636208)aTl	 2.249 999? ) DTi a 1,0
17 RETURN
to C
19 c x ) 3.0
20 c
21 100 71 a 3,0 / X
22 SJZERO a	 t(t{{,000%4476*Ti • 1000726 0'3)nTl •	 .00137237};11 .
23 $ ,0000 9 9121 011 0.00552740)071 "	 ,0000007?).T% •	 .79786456
24 C
29 T2 0	 ;(ift(e000135^0aT1^,00424333)0T%•.04054ia9)071^.00262073)
26 B 0T1-,00003954)*T1.,00003954)aT1•,04166397)*T1-,785398160X
27 BJZERO P BJZERU a CUSIY2) / SORTfX)
28 RETURN
29 END

LABEL BJZERO PAOG	 1

00008030
000080{0
00000450
00008060
00008070
00098090
00008090
00000100
00008110
0060x0120
00085130
00000140
00008150
OODOn160
DOOOB170
06001100
00000190
00008200
00000210
00009220
00008230
09008240
00008250
00006260
00008270
00009280
00009290
00005300
00000314

Figure: D.17 -•- FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — SUBROUTINE BJZERO



17('71 a2 0^+4-,,o;73 10092	 509ROUT{NE 8J1ial

1 CGJ&NG%	 SUBROUTIPrE SJVMO
2 FUNCTION 8J1x0k03;)
8 JF(L	 vt;?.	 3e0)	 GQ TO	 LO
4 C
U C 0	 ,GE,	 it	 ,LE,	 3
^ c

5	 a	 t333333333°'X
9 Y	 0 q°Y
4 RJi >;ax	 a	 {;;;c,00001109°q^0.0003176$)oYbi0p44$Sg9jaVe

40 Ai ,83954284)OYe,Zlq^3573}0gv,5024F905)aYo,9
it RETURN
12 £
13 c x	 G?,	 3
14 C
19 10 Y	 a	 313/9
10 AJ1xCX	 a	 t{{{fa,00024033°YO,Q0113853faVo,00249gL1TopG
11 g ,000171051$Ye,QLgy46A7kbYe,00000155)0Ye,7978845G
LO @J1XOX	 BJIXOX/S1c053RT(X))
19 j	 a	 (t{({=,D0079166aYe;000788243°go,00C74348)9Ya
20 ^, ,Op617A79}aYa,nOQU5650!°Y°e1249961$}°Ya2^33BL94^90>
21 9JLX9X o sjLxQx4G09(X1
22 RETURN
23 END

LhB^!, aJixt,.; i.^ar.

0000832
4000 9 3 1^!
4000b340
00008350
0000n3A0
00003370
00000304
00001390
00008400
0000'410
00008420
00800430
a0008440
00004450
moa4ea
00000470
00005460
0000A490
0000d500
00008510
00000520
40008530
80008540

Figure D. 18  a- FORTRAN LISTING FOR THE
SCATTEROMETER SIMULATION PROGRAM — SUBROUTINE BJIXO);
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SCAT STUOV FOR VIEV At4GIE OF 10.0 OEGAEES

ANTENNA PARAMETERS
TYPE	 uA	 kIOTh	 GAIN	 CROSS	 RELA

	

10EG1	 (DBl	 (091	 PHASE	 AMAX	 BMAR
1.0	 190.00	 1.0?	 x65.51	 -40.00	 0.	 -10.00	 0.

STRIP TmETA -	 mEIGMTS	 PRECTSIOM

	

1 e.0 0.+14@F- p A C-ClIE-13 Q.154f-SG 0.15 4E -10 0.647E-08 0.849F-06	 7

	

2 e.5 O.E54E-07 0.419=_-L1 0.385E-09 0.349E-09 0.61,4E-07 0.662E-07 	 6

	

3 9.0 C.E.3EE-06 O.L62E-LO 0.112°_-0f 0.114E-08 0.63TE-C6 0.639E-06	 8

	

h 9.5 0.341F-04 0.896F-LO 0.?iiE-07 0.2 1)?E-07 0.34tE-04 0.341E-04	 0

	

5.10.0 0.104E-03 0.240E-09 0.910E-01 0.912E-07 0.104E-03 0.104E-03 	 6

	

6 10.5 0.354E-04 0.741E-10 0.280E-07 0.280E-07 0.354E-84 0.354E-04 	 B

	

7 1i.0 0.68TF-06 0.121E-10 0.10P'c-OH 0.103E-08 0.608E-06 0.690E-06	 8

	

8 II.S 0.7S5F-07 0.773E-EI 8.332E-09 0.33 L E-09 6.7511E-0 0.762F-07	 6

	

9 12.0 0.103E-07 0.310E-13 I.126E-10 0,126E-10 0.101E-07 O.I01E-07	 6

	

zz	 Figure Do19a -- SAMPLE	 :;UTPUT FOR
co	 SCATTEROMETER SIMULATION PROGRAM



.	 M
	 r

IDEAL AWTt1117G WE16H7S AN D POSiEA HAYRi1

OEL"	 VICIGtiT

rICAS/COEF	 VV 1414 VH VVHMP VVHHI VVVHR V1IVNg H14HHR HVHHI
"	 1 0.4343E-01 0. 0. 0, 0. 0. 0. 0. 0.

2 0, 0.4343E-01 0. D. 0. 0. C. 0. 0.
3 0. 0. 0.43,36-Di 0. 0. 0. O. 0. Ti.
4 a.14a5E-al 0.1119 71E-01 a.1 Ti 3f 'AC 4.2772E - a1 0. 0-4309E-10 0. 0.4309E-10 0.
5 O.1Q96F-0i 0.1046£-01 0.179?'-: -3.2172'E-01 -0.4309E-10 0. -0.4309E°10 0. -9.4309F-10
6 0.1046E-01 0.1096£-61 0.l T !3,°11. 0.2144E-Ia 0.2172E-01 U. 9. 0. a.
7 0.1:a5E.01 0.1006E-OL 0.1793E-10 -5.3019E-09 -0.2172E- Oi 0. 0. 0. a.
a 0.2172E-0Y a. D.2177E-O. a. 0. 0.4343E-01 ' 0. 0. 0,
9 O.Z17Z5-01 0. 0.2172E-0; a. 0. -0.4343E-01 -O.B610E-t0 0. 0.

f0 0.2172E-31 0, 0.2172E-U 0. 6. 0.4287E-10 0.4343E-31 0. 0.
11 0.2172F-Di a. a.217ZF-31 0. 0. 0.4331E-L4 -0.4343E-01 0. 0.
12 0. 0.2172E-01 0.21 172E-0i 0. 0. 0. 0. 0.4343E-D1 6.
13 0. 0.21721.61 0.2172E^G1 0. 0. 0. ff. -0.4343E-01 -3.b6%dE-10
14 0. 0.2172E-01 O.Z17?E-01 0. 0. 0. 0. 0.2287E-10 0.4343E-01
15 0. 0.2172E-0S 0.2172E-0. 0. D. 0. 0. 0.4331E-10 -0.,.343E-OL

P1WER	 HATRIx

I1EAS/CCEF	 VV HH VH VVHHR VVHHI VVVHR VVHHI Hvmfi? HVHHI POHER

1 0.4331E	 00 0. 0. a. D. 0. 0. 0. 0. a-8331E 30
z 0. O.P331F	 00 0. 0. 0. D. a. 0. 6. 0.6331E 00
3 0. 11. 0.2521E-0? 0. 0. 0. Q. D. 0. 0.2421E-92
4 a.ZD83E	 On 0-Z043E 60 0.1041E-1L 0.4165E	 00 0. 0.1.234E-12 0- 0.142SOE-12 0. 0.4331E 03
5 D.2D4fE	 00 0.2063E	 00 a.104LF-11 -0.416 EE	 00 -0.3753E-LL 0. -0.4230E-12 D. -0.4230E-12 0.42'4^'E-05
6 0.10113E	 00 0.7033E	 00 0.1691E-02 0. 0. 0. 0. 0.4t64F DD
7 0.2083E	 00 0.?a63E	 00 0.1041E-11 -0.5741E-00 -0.1091E-02 0. 0. 0. 0. O.41ac,e 04
0 Cl, 4165.	 "a 0. a.l?blE '4z C. 0- 0.4263E-03 0. 0. a. a 
9 ff,416.5E	 Ou D. 0.1251F-02 0. 0. -0.4263E-03 -0.0460E-L2 a. 0. 0.4174E an

10 0-41E5E	 00 0. 0.1261E-02 0. C. 0.4209E-t2 0.4ZE3E-03 D. 0. 0.4.^.'E DO
It 0.1-L65E	 00 0. 0.1261E-02 0. 0. 0.4251E-12 -6.42E3E-03 0. a. 3.017, DS
12 0. 0.4155E 00 0.1261:-02 0. 0. 0. 0. 6.4263E-03 G. C- le2F n0
13 0. 0.4165E 00 0.1261E-C2 0. 0. 0. 0. -0-.263E-03 -0.0460E-12 C.,174E .10

14 9. 0.4165E	 00 0.1261F-DZ 0. D. 0. 0. 0.+.209F-12 V.4ZESE-03 a- .IO2;, 00
15 0. 0.4165E 00 O.IZ61"-O? 0. D. 0. 0. 0.4251E-12 -0.47;5E-03 a.417 4 ^- 00

F igure D o i 9b °- SAMPLE OUTPUT FOR
SCA T TEROMETER SIMULATION PROGRAM
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CIMCI AHTEH'+A 1,ETGHFS Am!) MtER PETURNS

DELTA	 WEIGHT

KAU CLEF	 VV HH VH VVHHR VVHHI VVVHR UVVHI HVHHR IVHHI
1 0.4336E-01 0.1095E-06 0.14'14E-OS 0.7472E-04 0. •0. 0, 0. 0.
2 0.1095E-06 0.433.,E-01 0.1494E-03 0.7472E-04 0. 0. 0. 0. 0.
3 0.373hc-04 0.3736E-94 0.4328F-01 -0.7G7ZE-V4 0. 0. 0. 0. 0.
4 0.1086E-01 0.t0 y 6E-01 -0.93t3E-09 9.217ZE-01 0.2168E-12 0.4302E-10 0. 0.4302E-10 0.
5 0.1042E-01 0.1042E-01 0.1494E-03 -0.2164E-01 -0.4302E-10 0. -0.4309E-10 0, -0.4309E-10
6 0.LCP4E-Ot 0.10 114F-01 0.7472F-04 0.3736E-04 0.2168E + 01 0. 0. 0. 0.
7 O.LC84E-01 0.1094E-9t 0.7472E-04 0.3736E-04 -0.2168E-01 0. 0. 0. 0.
e 9,2170E-0L 0.1473E-04 0.2t7ZE-OL 0. O. 0.432kF-91 0. 9.1120E-03 9.
9 0.2173F-01 0.1R73F-O4 0.217?F-91 0. 0. -0.4324E-01 -0.8611E-10 -0.1128E-0t -0.7435E-13

10 9.21TIF-OS O.I p 73E-94 0.2172E-01 9. 9. 0.4269E-10 9.4339E-91 0.1105E-12 0.3747E-04
It 0.2177E-01 0.18 7 3E-04 0.2[721-0S 0. 0. 0.43[2£-10 -0.4339E-01 0.11I7F-L2 -0.3747E-04
12 0.1.373E-04 0.2170E-01 0.2.1725-01 0. 9. 0.1120E-03 C. 0.4324E-01 0.
13 0.1873E-04 0.2179E-01 0.2172E-01 0. 9. -0.1120E-03 -0.7435E-13 -0.4324E-C1 -0.0611E-19
14 0.11373E-04 0.2170E-01 0.2172E-01 0. 0. 0.1105E-12 n.3747E-04 0.4269E-10 0.4339E-01
15 0.1073E-04 0.2170E-01 0.2L72E-01 O. 0. 0.1117E-1Z -0.3747E-04 0.4312E-10 -0.4339E-01

POHER	 HATRIX

HERS/CLEF	 VV HH VH VVHHR VVHH1 VVVHR VVVHI HVHHR HVHHI POSTER

1 O.R31EE	 00 0.2133E-05 0.8677F-05 0.143EE-02 0. 0. 0. 0. 0. 0.A3?lE no
2 0.2113E-05 O. a 316E 03 0.9677F-05 0.1436E-02 0. 0. 0. 0. 0. 0,5331E	 90
3 0.7179E-03 0.7176E-03 0.,7513E-02 -0.143bE-02 0. 0. 9. 0. 0. 0.2S13F-02
4 0-,7093E	 00 O.2CO3E 00 -0.4366F-10 0. fit 65E	 90 0.1809E-13 0.4223E-12 0. 0.4223E-12 0. 0,9331E	 00
5 0.2075E	 00 0.2075E 00 0.4577£-OS -0.4151£	 00 -0.3746E-11 0. -0.4230E-12 0. .0.4230E-12 0.1295E -04
6 0.2979£	 00 0.2074E	 00 0.4139E-05 0.7178E-03 0.1088E-02 0. 0, 0. 0. 0.,.134E	 00
7 0.2079E	 00 0.2075F	 00 0.4319F-05 0.7176E •-03 -0.1889E-02 0. 0. 0. 0. 0.4141E	 90
a 0.4LE2E	 00 0.V' 139E-03 0.1261F-02 0. 0. 0.4245E-03 0. 0.1099E-05 U. 0.41925	 00
9 0.41c.2F	 00 0.3;9?F-03 0.1251F-02 0. 0. -0.4245E•-03 -9,8457E-12 -0.1094E-0 5 -0.7,7 99E-15 0. 1 374c	 ".0

10 0.4t(?F	 09 0.2599E-03 0.L261F-02 0. 0. 0.4190E-12 0.4259E-03 0.1085E-14 0.3670E-06 0.4182E	 00
11 0.4152E	 00 0.3599E-03 0.1264E-02 0. 0. 0.4233E-12 -0.4259E-03 0.1096E-14 -0.3678E-06 0.4174F	 00
12 0.3549E-03 0. 6 162£ 00 0.12G1E-02 0. 0. 0.1099E-05 0. 0.4245E-03 0. 9.4142E 00
13 0.3599E-03 0. 4 162E 00 0.1261E-02 0. 0. -0.i099E-05 -0.7299E-15 -0.4245E-03 -0.8453_-12 0.4174E O0
14 0.3599F-03 0. 11 162E 00 0.1261E-02 9. 0. 0.1005E-14 0.3670E-06 0.4190E-12 0.4259£-03 0.4182E	 00
15 0.3599E-03 0. 11 162E	 00 0.1261E-02 0. 0. 9.1096E-14 -0.3670E-06 0.4233E-12 -9.4259E-93 0.4174E 00

1

Figure D:19c -- SAMPLE OUTPUT FOR
SCATTEROMETER SIMULATION PROGRAM
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STATISTICS Ton THE DIFFERENCE HgTHOC BASCG ON 	 I OBSERVATICt1S,

SCAT COEES V A LUE YFAH pHS	
I

XREAN XRPS

6V 0.192E 02 0.276E-02 0.762E-05 0.014 0:
t• H C-192E 02 Q.27EE-O2 Z.762E-05 0.014 Q.
VH 6.5rflF-01 -0.?07F-03 0142aF-07 -0.357 0.
VVHHR 0.-12E	 02 0.235E-02 0.554E-05 0.012 Q.
VVVHI -0.216E-03 0.4,68E-07 -0.240 0.
LVVHP fl.Se2F-02 -0.173E-04 a.299z-09 -0.176 p.
VVVHI 3.9[4ZE -02 -0.309E -O6 0.956c-13 -0.003 0.
I• VHHR 0.902E -02 -Q.173E-04 0.29?f-09 -C.176 0.
t'VHHI 0.902F -02 -0.309F-06 0.956E-13 -O.0O3 a.

STATISTICS FOQ TmE HA;RIM PETHOO GAS M ON	 1 OOSERVAIICNS

SCAT COEF VALUE PFAN FHS LF9EAN XRNS

VV 0.292E	 02 0.256E-02 O.E56E-05 MIS p.
t-H 0.197E	 O2 0.25bL-02 0.657E-05 0.013 0.
Vx 0.581E-Oi -0.786F-05 O.Elac-10 -0.014 0.
VVHHP 0.1QZC	 02 0.256E-02 C.E56E-05 0.013 0.
VVVHI 0.87ZE-OL -O.E62E-04 0.43aE-00 -0.076 0.
VVVHP O.Sa2E-O2 -0..30E-06 O.I09E-12 -0.003 Q.
VVVHI 0.9?2=-0Z -O.Z94E-06 0.865E-13 -0.003 0.
hVHHR G-922E-02 -0.359£-06 0.129E-12 0.004 O.
HVHHI 0.982E-02 -0.317E-06 0.101E-12 -0.003 0.

Lam_

Figure D o 19d - SAMPLE OUTPUT FOR
SCATTEROME T Eli SIMULATION PROGRAM



Figure D .19e - SAMPLE OUTPUT FOR
SCATTEROMETER SIMULATION PROGRAM

MONTE CARLO :TVDV

APPL BIAS= -40.6 DB	 PHASE BIAS 9 	 0. OEu	 RANDOM AHPLn -10.0 CS	 RANDch PHASE*	 Oc DEG

1

STATISTICS FOit ToE DIFFERENCE METHOD BASED ON 150 OBSERVATIONS

SCAT CCEF	 VALL'E	 rEAN	 FNS	 2HEAn	 %RHS

VV	 0.192E D2	 0,317E-02	 0.113E-05	 0.017	 0.086
NH	 _	 0.192E 02	 0.319E-02	 0.119E-05	 0.017	 0.000
VH	 0.5.21E-01	 0.7N6E-02	 0.306E-05	 13.530	 0.005
VVHHR 	 0.192E 02 -O.E75E-01	 0.553E-01	 -0.352	 0.266
VVNPI'	 0.872E-01 -0.235E-02	 0.r4)1E-at	 •2.701	 51.410
YVVHR' _	 0.9h?E-02	 0.17tE OO	 0.362E 00	 1739.704	 3691.119
aVVHI.	 0.987=»02	 0.344F-01	 0.399E 08	 350.817	 4062.620
HYHHR	 C.5tl2E-02	 0.162E 00	 0.377E 00	 1653.317	 3039.045
rvr+r.I	 0.9827-02 -9.229E-02	 0.359E 00	 -84.299	 3654.711	 -

STATISTICS FO O THE HATRIX HFIHOD BASED ON 150 OBSERV4TIONS

SCAT CLEF	 VALUE	 TEAM	 FH5	 YMEAN	 YRrS

VV	 0.192E 02 -0.192E-Ot	 O.Z22E 00	 -0.100	 1.155
HH	 0.197E 02	 0.15EE-01	 0.77.2E 00	 0.08i	 1.156
VH	 D. 51! 	 -O.RE5F.-02	 0.226E 00	 -14085	 389.728
VVHHR	 0.192E 02 -0.E75E-01	 0.554E-01	 -0052	 0.289
vvrHl	 C- ME-01 -0.221E-020.449E-01	 -2.533	 51.506
VVYHt	 0.98?E-02	 0.171E OO	 0.364E OO	 1743.189	 „704.070
YVVHI	 O.9p2C -02	 0.345E-01	 8.399E 0G	 351.193	 4066.049
FVHHR	 0.98ZE-02	 0.163E 00	 0.376E 0C	 1696.123	 3053.521
HYMMI	 0.982E-OZ -0.831E-02	 0.359E GO	 -84.675	 3657.770



R a

A14TC1tt1A t5ITK elASES CNL7

APPL DIAS P -40.D OB	 PHASE EIAS 2	C,	 OFF

- PCrVVR	 14ATRIM

NZ A StCC EF	vv	 HH	 VH	 VYHHR	 Vvnrl vvvH2 vvvHl HVHHR I1VakI .'OUEU

I 0.0715E	 00	 0.2551E-D5	 0.957RE-05	 0.1601E-02	 D. 0.1690E-04 D. 0.4565E-07 0. 6.8331E 00
2 0.2551E-05	 0,0315E 00	 0.967eF-05	 O.I(D1E-02	 0. 0.4566E-07 0. 0.164FHF-D4 0. 0.933.E 0,
3 0.6011E--03	 0.8011E-03	 0.2513E-02 -0.1269E-02	 0. 0.0511E-05 0. 0.0511E-05 0. 0.26FSEr02
4 0.20?11"	 DQ	 0.20R3E 00	 -0.4366E-10	 0.4165£	 00	 0.1800E-13 0.4223E-12 f1. 0.4223F.-12 0. O.5'.11E DD
5 0.2075e	 00	 0.2075E	 DO	 !.9677(-37	 -t.4151F	 06 -0.3746E-11 0. -0.4430E-IZ 0. -0.4230E-12 O.t295E-04
6 0.207'11;	 CU	 0.2079E	 00	 0.4339F-75	 0.7176E-03	 0.1832E-02 0. 0. 0. 0. 0.41A4E li
7 0.2974E	 00	 0.?079 5 DG	 C.413AF-05	 0.7178E-03 -0.1868E-02 U. D. 0. 0. 04 -146F D7	 1
0 0.4161E	 00	 0.4154E-03	 0.12 g 6F-02	 0.9301E-02	 0. 0.4287E-03 0. 0.53070-D5 6. 0.4.EEE FO
9 3.4-LIE	 00	 0.1912E-03	 D.1236c-02 -0.6301E-02 -0.7492E-13 -0.4202E-03 -D. 11452F-12 0.3114E-05 -6.8143E-15 O."C9CE 00

ID 0.415IE	 OD	 0.4015E-03	 0.1251E-'.2	 C.819SE-11	 0.3776E-04 0.42*55E-05 0.4259E-03 0.42 ti6E-05 0.4104E-06 0.41R3E 03
11 0.4111E	 03	 0.40.15E-03	 O.12h1E-0'r	 0.0276E-11	 -0.3776E-D4 0. 4256E-05 -0.4259£-03 7.4256E_ 05 -0.4104E-06 0.4173E 00	 i.
12 0.4155E-03	 D. i 161E 00	 0.1296E-02	 0.03OLE-02	 0. 0.'397E-05 0. 0.42117E-03 0. 0.1,266E DO	 j
13 0..g72E-03	 0.4161E	 00	 0.1236E-02	 -a.1313 IF- 02	 -0.7493E-13 0.3114E-05 .0.0143E-15 -6.4202E-63 -0.8452E-12 0.4094E OD
14 0.4n15E-03	 0. 4 1 1.1E	 00	 0.1261E-02	 G.019 5E-11	 0.3776E-04 0.4256E-05 0.4184E-06 0.4756E-05 0.4259E-03 0. 1.183E 30
15 0.4015E-03	 0. 4 1 1+1F	 00	 0.1261E-02	 O.H27UE-lt -0.3778E-04 0.4256E-05 -0.4104E-06 0.4256E-05 -0.4259E-03 0. 1 .173E 00

STATISTICS FOa THE DIFFERE6CE METHOD DASD ON	 1 OBSERVATIONS

-	 SEAT r0EF V41UE	 DEAN	 DHS	 2HEAt1	 XR11S

vv 0.192E	 02	 6.317E-02	 1 .101E-04	 0.017	 0.
HH O.292F	 02	 G.i1RE-02	 91E-04	 0.017	 0.

C.J	 L'H 0.	 O.e17E-04	 13.530	 0.
VVHHR C.15?E	 02	 0.23'.E-02	 0.5S g E-175	 0.012	 0.
VYHHI 00972E-01	 -0.216E-73	 0.468E-07	 -0.240	 0.
VVVH Q 0.91.2E-02	 0.152E	 U0	 0.370E-01	 !959.587	 0.
YVVHI 0.99E-02	 D.C6 F-13	 0.755E-06	 8.852	 0.
HYHNA 0.91!27-02	 0.19?,_	 00	 0.37DE-Di	 1959.664	 0.
HVHMT 0.962E-02	 0.$64E-03	 01755_°-06	 8.852	 0.

STATISTICS Foa	 THE aATRIK	 rETft00 BASED On	 t OBSERVATIONS

SEAT COEF VLLL'F	 MEAN	 P-4	 Xt1EAN	 VMS

VY 0.152E	 02	 0.139E-02	 0.290E-CS	 0.007	 0.
HK 0.142E 02	 0.138E-02	 0.130E-05	 0.007	 0.
VH 0.FR1E-OS	 0.374E-02	 0.140E-04	 6.432	 0.
VVHH4 0.192E	 02	 0.25,IF-02	 0.564E-05	 0.1313	 0.

-	 VVHHI 0.372E-01	 -O.EE2E -04 	 0.438E-Q6	 -0.076	 D.
VVYH R 0.9UZE-02	 0.193E	 at	 0.37LC-U1	 1963.140	 04
YVVH I 3.9112E-02	 D.459E-03	 0.755E-04	 (1.352	 0.
61VHHR 0.902E-02	 0.453E	 Be	 0.371=-0_	 1963.164	 0.
HVHHI 0.982£-02	 0.8691-93	 0.755P-06	 8.852	 0.

igvre © G 19f - SAMPLE OUTPUT FOR,
'CAT EROl ETER SIMULATION PROGRAM
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APPENDIX E

Routine WHERE

1.0 PROGRAM DESCRIPTION

Fortran program WHERE was developed to compute the sampling points for apertures

having maximum dimensions xo and yQ across the x and y axis, respectively. The program
E	

will compute and list (e , 0. ) for m > 0 and n a 0 out to val ues of mand n restricted by
mn mn

0.9 < Cos e < 1.0	 (E- 1)

If the vo!-,, e of m or n exceeds 48 the value is restricted to 48 to limit the storage ard

printri c ,jtput to a reasonable amount. The listing of the program is shown in Figure E-1

2.0 EXAMPLE RUN

The maximum aperture dimensions (xo , yo) and operating wavelength (a) form the

program input requirement. These must be dimensionally in the some units. An input

data card containing these parameters must be prepared in accord with the read statement

and its accompanying format statement.

An example output of the program is illustrated in Table E.1 for an aperture having

a maximum dimension of 1.1760 meters and illuminated at a .02158 meter wavelength.
r	 ,

i

V



1 0414UE
2 C
^ J; ROUTSNC	 Ht+l:+1E
b c'

`	 4	 5 C ANTFNJ44 PATTrB '+ i4 +RLIN : P OINTS ARE SPECIFIF^ S'L`R
b G B FLQTiH ; 1 tL4R	 AJ=yT^I c C Y'F 11';^T4 Y'18T	 443 LEv'r fJ N3%

T";: TN-c oy Is ;_yLd 3A1 CviS T11 Li4-1 9Y J. P•	 LaAS-bEii•	 -
e C WAVELeNGTH MA- ICU -NO A ;: eaTU fE 91HEN.MNS P OSt BE
9 c 5PECIFItD 114 SA •'£ "t"ITTS,

LD c

It 0211E4STOu KK(481. T " 144448).	 P4*(411.4.91
12 R£4L LAHrnA
1S DATA Tn N AXs 4EC /0.44«9, ,^.[1745129?5/
14 C
L5 c SPECZFTE7 APEOTU tE OINTNSIONS :N7 HAVELENTR
16 C COMNSIINS 0 v Vr z.ED IN PIGy T-HAt478D COORDINATE
17 C SYSTEM w-T-21
16 C
19 4EA0	 (59100t)	 XLJOT.Yt,OT,LANr10A
20 SUED FOPUT t'C1^•c1
21 NJ) ITE fa6si5C " I vND T . @40T • LAMBDA
22 1500 pOJt!tATl3X, 'x?'Fii.4,?X.•va • F1L.b.3ti,'LAtt304n•Fi3.4)
23 C.
24 C ESTAPLISH VALID DOnn;, N n= SAt+PLING
25 c NOT TO EXCEED A 48 .44 KATRIx
2tx G
27 HgAY s 2.0"SINtrHMAX)'•x+!JT/LSN^]D,
26 IF	 (!'N AX .rT. 45)	 "MAX=44
20 NNAX = 7_.O°SI4 (THHAF)"Y'44T / L AM34J:
3Q IF	 1NI+AX ,GT, 48)	 F" W1=43
31 c
32 G OETERuIN £ SAMPLIt15 POINTS
33 c
34 14LAt! = LAMBDA /2.0
35 DO iC I= leHKAJC
3$ RN a T-1
37 no i0 J=i,HH4X

'	 36 RN a J-1	
-

4C G FORM SIN(Ttf_TA(:,JI)
&i C
42 -SINTH = HLS:1'SdPTt((-K/u'(OTI*°2 f (p F+/Y'1OTD a^2)1 .

t,3 IF	 (SINTP .,E.	 1.r)	 130 'r te i"-
4y TH(T.J) = 4TANtSI9'H/6 r 'T	 /DEG
45 I+= (I .EQ. 1 —ND— J - ET). 11 GO TC S
115 PHI{T^J) = AT4?t7(rTN•xNdTaFN'YNaTI/DEG
47 GO To t0
140 5 PHI (:,J)	 ^.D

is	 49 LO DONT*NUE
50 C
51 G DISwLAY SAIJ PL TrJS Ni NT5
52 c -

53 u0 2E' T= i,NAlagol

5 r IF 01 a GT.. llMAY)	 N=NRAX
56 DO 15 K = ?4!J
57 KK(r,)	 K-i
58 15 CDNTTUUS
59 WOTTS	 16,20071 YNOT, YNOT, LAHBOA.	 (K+C(K),K=T.N)
¢4 2040 F6oUT	 [i u i,45.x.'$Aas:L_ Arr, HST= IY	 (TM.TA,	 P++T,)•.

/.7X.'°0? AFcrT'J P= • , K i:.St.' WgF1'.5e'	 AND HAI(EL:uGTH'r . .
62 FLrJ.Sr/4X•"'/u•yI°_r7i15//,

{	 G3 00 20 J-i,411Arf
64 N - J-1-

'	 65 HaITz	 (6,'+ r' u^ 1	 t1, ITH [J,K},p HT [J.K) rK=I,':1	 j
65 3096 FJ1PMAT	 ,P4 .1,14111
51 20 CONTINUE
68 STOP
69 END

FIGURE

i

E-1, FORTRAN LISTING OF PROGRAM WHERE,

ORIGMAD AGE
aQ 1̂ ''C}0 AT	.1
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