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Abst-^ct: A summary of results obtained from the first year of
Ariel-5 All-Sky Monitor operation is presented.
Transient source observations, as well as the results

of long-term studies of Sco X-1, Cyg X-3 and Cyg X-1
are described. By example, the included results are

indicative of the temporal effects to which the All-
Sky Monitor remains sensitive as it begins its second

year of observation.
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1. INTRODUCTION	 The All-Sky Monitor is a small, low sensitivity

instrument devoted to the full-time ctudy of the entire celestial sphere.

Its objectives are the identification of transient -c-ray intensity

variations in both known and i_ew x-ray sources, as well as the search

for regularity in the temporal variations from strong sources which

a long continuous observation ma y allow. It has operated without fault

for one year, during which time a variety of x-ray pht_iomena in these

categories have been observed. This paper summarizes some of the work

accomplished during this first year of Ariel-5 operation.

2. EXPERIMENT	 The All-Sky Monitor consists of a pair of x-ray

pinhole cameras which have an instantaneous fan beam acceptance angle

of 4° FWHM which extends from the spacecraft spin axis to anti--spin axis.

This fan beam is carried around by the spacecraft rotation so that the

whole sky is swept once each satellite spin period. The important instru-

ment parameters are an effective pinhole area of 0.6cm 2 in the band

3-6 keV, a duty cycle for source observation of — 1%, and a temporal

resolution of one orbit (100 min' :) during which time the sky is

divided into 512 resolution elements (_ 10°x10°). The 3-6 keV window

is almost totally insensitive to source spectral form, assuring a

monitor function which is dependent upon intensity alone. Approximately

20% of the sky is not monitored each orbit, as there are instrument

dead bands at the spacecraft poles and equatorial plane; the fields-of-

view of the other Ariel.-5 experiments are, therefore, mutually exclusive

of that of the All-Sky Monitor. A detailed description of the experiment

operation and sensitivity may b-, found in Holt (1975). Over an observation

time of ! -day, the average sensitivity is — 10% of the intensity of the

Crab Nebula.
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3. TRANSIENT SOURCE OBSERVATIONS
	

There have been more transient

sources ohserved during the first year of Ariel-5 operation than during

the preceding decade. The reason is primarily the excellent coverage

which the Spacecraft affords, rath--r tt, ,-n a particularly anomalous

year for transient phenomena.

The first detected was the source in Triangulum first reported from

the Ariel-5 Sky Survey Experiment (Pounds, 1974). As shown in Figure 1

from Kaluzienski, et al. (1975), the source exhibits some of the

characteristics of previously identified transients: a relatively

rapid rise (relative to decay), a drop to an apparent plateau during

which the decay is very slow, and a final decay with a timescale of — 2

months. The spectrum was similarly reminiscent of earlier sources, being

softer than that of the Crab Nebula. The new characteristics observed

by the combination of the Sky Survey and All-Sky Monitor experiments are a

variable extended pre-maximum on-state for the source, during which time

the spectrum softens. Such a gradual erratic increase to maximum may

preclude an association with thermonuclear models which have beer. put

forth for transient sources (as they typically involve a slow buildup of

fuel without x-ray production until they flash), and the spectral

softening up to a maximum suggests a source which may be Eddington-limited

at its onset.

The next transient, Cen X-mas (Ives, Sanford and Bell Burnell, 1975)

was out of the All-Sky Monitor field-of-view at the spacecraft pole

for its entire lifetime. Very unlike the Triangulum source, it exhibited

a spectrum much harder than the Crab and an e-folding decay time of only 	 1
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one week. It also was the first source discovered to be regularly

.modulated on a time scale of the order of minutes, and was, at maximum,

< 25% of the apparent magnitude of the Crab Nebula in x-rays. Like

the situation for Cen X-mas, no substantial data was accuniulateO for

the third Ariel-5 transient (near galactic center) in this case owing

to the source confusion in such a congested region of the galaxy. The

All-Sky Monito: detected it near maximum at a level in excess of the

Crab Nebula, but could not follow its decay. It would appear, however,

that its x-ray characteristics were much closer to those of Triangulum

than those of Centaurus.

The fourth transient, in Taurus, appeared at the spacecraft pole

during an extended stop at the Crab Nebula. Although the All-Sky

Monitor missed the onset, (Eyles, et al. 1975), the decay was followed

after the spin axis moved off the source (Kaluzienski, Holt, Roldt and

Serlemitsos, 1975). In all respects, this source closely resembles

Ceti X-mas (e.g. hard spectrum, ,,, minute pulsing). With an intensity at

maximum close to that of the Crab Nebula, the same sort of very regular

decay was obser ,,ed (in this case, with an e-folding time of — 19d).

Although not formally a transient, a flare measured f:-on Aql X-1

in June was almost indistinguishable from the operational definition

of such an object. Increasing to the level of the Crab Nebula from

an intensity two orders-of-magnitude lower during the previous two years,

the profile of the rise and decay of Aql X-1 is quite similar in shape

to the profile of the Triangulum source, with the temporal scale

compressed. It may, therefore, represent an important clue to the

nature of "ordinary" transients of the Triangulum variety, in much the
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same way as the - minute modulation and hard spectrum of Vela X-1 is

a useful hint at the nature of the Centaurus and Taurus transients.

Finally, the fifth (and most spectacular) source is A0620-00.

Discovered during a > one-month extended hold of the spacecraft

equatorial plane in coincidence with the galactic plane (Elvis, et al. 1975),

the onset was once again out of the All-Sky Monitor field-of-view.

As shown in Figure h, the experiment can see the source briefly shortly

after maximum, indicating a peak 3-6 keV intensity at more than 4 times

Sco X-1. The decay is quite regular, and apparently slowing down with

time. The All-Sky Monitor will be able to follow the decay for another

two decades in intensity, so that we expect that the source will be

observable for the remainder of the useful life of Ariel-5.

Perhaps as important as the number of sources observed is -

useful.limit on the number which could have escaped detection. For

sources more than 10° off the plane where source confusion is minimized,

there were no sources which were as intense as 10% of the Crab Nebula

for as much as a week (barring coincidence with the sun or the anti-

spin axis, where there is no coverage by any Ariel-5 experiment). In

the plane, whr.-e confusion can be problematic, the limit can range

between 0.1 and - 0.5 of the Crab Nebuln. The latter limit should,

therefore, be a relatively firm u pper limit for additional transient

sources in the plane.

/+. TRANSIENT SOURCE REKARKS	 The most obvious conclusion which can

be drawn from the Ariel-5 transient sources is that they appear to follow

a galactic plane source distribution. This contrasts u-ith the conclusion

of Silk (1973) that the distribution is Population II (partly because of
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the — 20° galactic latitude of one of the four pre-Ariel-5 transients).

It now appears certain that transients are largely confined to the

galactic plane.

Assuming a right-cylindrical source volume, we can (after Silk)

estimate the number of transients which exceed a limiting apparent

magnitude So in a time t:

N(Sost) = t L
	 ,

T <<rSox2

where T is the mean time between source appearances with !maximum luminosity

L in the galaxy (of radius R). Solving for the only complete unknowns

in terms of estimable quantities

L(ergs s-1 = 3.6x1438 N >S t (RR 155Z) 
(5.6x10-e)T (yr )	 T (

yr 

)

where 1.6x10-e ergs cm-2 sec -1 is the intensity of the Crab Nebula from

the Uh^:RU normalization. We cannot independently solve for L and T, but

can possible constrain one or the other by considering the upper limit

to a galactic "ridge" which may be composed of contributions from

transient sources of space density ns:

L ns < 8.6x10-3O ergs s-lcm s

from Holt, et al (1974). Since the source density must be approximately

1 T
n5 =	 —

2n IF h T

where h is the source disk half-thickness and T is the source "on-time"

(i.e. the e-folding time for an exponentially decaying source). Solving

for h,

h(pc) > 220 N(>So,t) T(yr) (1.6x10-e)

it must be recalled that the expression only has meaning when the s-arce
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on-time far exceeds the mean time between source appearances.

Considering chat the transients appear to form at least two

main classes, the soft-spectral long-decay sources yield (sin.ce N = 3

for'-S - §crab and t = 1)

L ;z:; 1039 ergs s-1yr -1
T

The failure of UHURU to detect more transient sources, as well as the

failure of the All-Sky Monitor to detect any others > .3 Crab even though

!the ones at issue are so long-lasting, would	 that T can certainly

be no smaller than 0.1 (i.e. no more than ten such sources per year at

any apparent magnitude). This means that L is no smal.:er than

10^ ergs s -1 , and such sources may well be f_'-idington-limited. This

argument is self-consistent, in the sense that no sources of this type

are expected at peak intensities bel r.w the All-Sky Moni*_ol level of

detestability. 1038 ergs s -1 sources, even at a distance of 25 kpc, will

exhibit an inte-isity at maxi.num comparable to that of Crab Nebula.

With regard ,to the harder-spectral, shorter-duration sources, the

situation is quite different. Here we obtain

L _ 3xlo39 ergs s-1 yr-1
T

where we are certainly battling - detection threshold, and the shorter

lifetime only mattes the sources less easily detectable. At is wc,th

noting, in this respect, that the only one of the four well-established

pre-UHURU transients which is reconcilable with this subgroup (i.e. short

lifetime), was the weakest of the four (2U1735-28) at a strength of abuut

0.5 Crab. We can argue, then, thAt we can make T arbitrarily small to

reduce the average maximum .luminosity. The only restriction would appear
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to be from the lack of a ridge. As the sources last only ,,, two weeks,

we would require > 103 yr-1 (T < 10-3 ) in order to sustain such a hypo-

thetical ridge. But, as it would have a half-thickness 10 3 times too

large to be recon=ilable with a Population I source distribution, we must

have T > 10-3 . I cannot think of any reason why ±t must be greater than

T — 10-2 , which would give these sources rather modest luminosities

< 10''' erg sec. This might be reasonable in vier of the similarity

of these sources with Vel X-1. The latter system is driven by the

stellar wind of a supergiar.t, which typically gives rise to siib-Eddington

luminosities. There is no reason why there cannot be — 100 of these

sources per year in the galaxy.

5. SCO X-1	 Sco X-1 is the only source which allows any detailed

analysis of the orbit-by-orbit measurements. Typically, we obtain... 300

counts per element per orbit from Sco X-1, compared to — 20 from the Crab

Nebula, the next strongest source. Figure 5 illustrates the obvious lack

of source constancy from one orbit to the next. Nevertheless, the long

baseline enables us to 	 average over these variations when we test for a

known trial period. Figure 6 illustrates the result of folding — 200d

worth of data modulo .787313d, the candidate optical period of Sco X-1

(Gottlieb, Wright and Liller, 1975). The lack of observable modulation

places as upper limit on the x-ray modulation amplitude of ,., 1%, more

than an order of magnitude below the optical modulation amplitude.

Sco X-1 is not completely chaotic, however. Figure 7, from a

particularly disturbed period, illustrates that the large intensity varia-

tions appear to correlate on time scales larger than one orbit. We have

attempted to treat the problem as a clas3ical shot noise disturbance,

as we did on shorter time jcales for Cyg X-1 (c.f. Boldt, Holt, Rothschild
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aad Serlemitsos, 1975). At first glance, Figure 8 would appear to be a

grea,^ disappointment for the model, as the characteristic flattening is not

exhibited for times greater than the shot noise duration. We have

found, however, that there is, in fact, a persistent correlation time

of 4-5 orh(.ts (.., 1/3 d) for a large fraction (perhaps ha'_f) of the

Sco X-1 counting rate. It is important to note that such correlation

does not imply :hat half the Sco X-1 counting Lr:te •,jaxes and wanes

with a time scale of 1/3 day but that roughly this fraction is composed

of pulses which individually last that long. At ,jny time, there are tens

of such individual pulses "on". A complete desc: ption of this analysis

is presently in progress (Holt, Boldt, Serlemitsus and Kaluzienski, 1975a).

6. CYG X-3	 The long-term monitoring of sources below the level of

Sco X-1 is also possible with the All-Sky Monitor, albeit with much

tower sensitivity. We can observe regular behavior of other sources even

from single-orbit data, as evidenced by Figure 9. Here Cyg X-3 data

from... 100 days has been folded modulo the 4.8h period previously

determined from other investigations, and both the shape and phase

of the modulation are entirely consistent with previous reports (c.f.

L_ach, et al. 1975).

Figurel'J illustrates the long-term behavior of Cyg X-3 in daily

averages, which are indicative of a widely varying source intensity.

Although there are many trial period which give relative X2 maxims,

there is a systematic indication of a 17d effect. Figure 11 combines all

the data in Figure 10 folded at 17d, and the X2 distribution yields 17.0

+.3d with a phase at maximum of JD 2,440, 2387+2 near the most pronounced

peak. Evidence from the Ariel-5 Sky Survey Experiment (Pounds, private

communication, 1975) is consistent with the reported effect, in the sense
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that the three maxima observed by the Sky Survey Experiment (in the gaps

of Figurel0) are consistent with both the All-Sky Monitor period and

phase. This 17d variation may represent a quasi-periclic variation

similar to the 35d variation in Her X-1, or a more fundamental period.

If it is the system binary period, the 4.8h variation would have to be

reinterpreted in terms of source rotation, which would make Cyg X-3 even

more anomalous an X-ray source than it presently is believed to be.

7. CYG X-1	 We have positively detected a 5.6d modulation of the

Cyg X-1 intensity, which virtually clinches the identification of that

source with HDE 226868. Figure 11 is a long-term display of the daily

average intensity of Cyg X-1, which clearly indicates the relative

lac!( of a day-to-day variation in the source intensity until the flare

of .'ipril-May 19/5. The rise to maximum of the flare was observed by the
I

All-Sky Monitor until. the spin axis was pointed to Cyg X-1, and the daily

and	 ^ day data are shown in Figures 13 and 14 (from Holt, et. al. 1975b).

The few-day variation in the source intensity is characteristic of both

the rise and the fall of the increase (c.f. Sanford et. al. 1975), so that

models for the instability should reflect a factor-of-tw., variation on

a timescale of a few days.

All of the data in Figure 12 (excluding the April-May increase)

have been folded at trial periods in the neighborhood of 5.6d, with the

distribution of the resultant 2 exhibited in Figure 15. A significantX

modulation is found at 5.605+.008d from this distribution alone, which

includes the HDE 226868 period of 5.60089 (from t;ie Copernicus ephemeris).

The five-bin light curve is displayed in Figure 16, which clearly defines

the predominant feature of the variation to be a minimum near superior

conjunction. As described in more detail in Holt, et al. (1975c), the
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fractional light curve decrement at superior conjunction of .027 +.004

found in these data is an order of r^gr,itude more pronounced than one

would expect from the published observations of "absorption dips".

A possible clue to the nature of the effect is given by Figure 17,

wherein i'- can be observed that the depth of modulation as well as

the average source intensity apparently increase with time until the

April-May flare. The modulation may represent a shadowing of the hard

x-ray emitting region by material which then serves a fuel for the

gradually increasing intensity, until a system instability v`tch is

manifested in the flare reaejusts the source to its ore-buildup level.

8. SUMMARY	 The present results are meant to demonstrate the studies

presently undertaken with data from the All-Sky Monitor. The first year

of operation has beet highly successful for all the experiments aboard

Ariel-5, and the next year is eagerly anticipated. With respect to the

All-Sky Monitor alone, the doubling of the data base should ena^le the

discovery of another half-dozen transient sources, as well as the

continuation of long-term source investigations similar to those

reported here.

,4
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Figure Captions:

1. The light curve of A:524-62. The points are data from the All-Sky

Monitor accumulated over 3-7 orbits, while the solid trace is a

representation of the Sky Survey Experiment data normalized to

the nataral All-Sky Monitor ordinate.

2. The decay of A0536+26 from All-Sky Monitor 3-7 orbit accumulations.

3. The rise and fall of the flare in Aql X 	 in 3-7 orbit All-Sky

Monitor accumulations.

4. The early decay of A0620-00. The All-Sky Monitor data points are

daily averages (half-days near maximum), %,' 	 typical error

bars < 2%. The dashed trace is obtained from IAU circulars with

reports from other Ar.iel-5 instruments, normalized to the Crab

Nebula. The obvious difference at peak is attri}-ited to the soft

A0620-00 spectrum relative to that of the Crab.	 1

5. Single-orbit intensity measurements of Sco X-1. The statistical

errors are + la.

6. > 200 days of Sco X.-1 data folded irodulo .787313d. The "e.cpected

minimum" is the phase of the optical minimum.

7. Orbit-by-orbit Sco X-1 data for a time interval during W+lch the

intensity was chang:.ng more frequently (and with larger amplitude)

than usual. Note, particularly, the multiple-orbit duration of

the variations.

8. The "variance ratio" < (baXi > for — 103 orbits of Sco X-1 data.
bx i is the statistical error in the source intensity x i . X is the

candidate shot-noise rate (orbit -1 ) and T the shot duration (in

orbits).
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9. Single-orbit Cyg X-3 data folded modulo 4.8h.

10. Daily average intensities for Cyg X-3. The squares above the

figure are the positions of the 17d maxima expected from

Figure 11.

11. Results of folding the Cyg X-3 data at periods -tear 17d. Tne Xa

distribution yields 17.0 +0. 3d as the candidate period. The 17.Od folds

for Cyg X-3 are at two phases displaced by 1/2-bin, with Cyg X-1

used as a control.

12. Daily average inteusities for Cyg X-1.

13. Daily average Cyg X-1  intensities at the time of the April 1975

increase.

14. The sar^e data as in Figure 13 with - 1/2-day resolution.

15. Results of folding the Cyg X-1 data at periods near 5.6d. The X`

distribution yields 5.605 +. 008d as the candidate ?eriod.

16. Cyg X-1 and Crab Nebula data folded modulo 5.60089d.

17. The data of figure 12 broken into 56-day periods for which individual

5.6d folds and average intensities are displayed.
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